Sample records for backscattered electron image

  1. Polished sample preparing and backscattered electron imaging and of fly ash-cement paste

    NASA Astrophysics Data System (ADS)

    Feng, Shuxia; Li, Yanqi

    2018-03-01

    In recent decades, the technology of backscattered electron imaging and image analysis was applied in more and more study of mixed cement paste because of its special advantages. Test accuracy of this technology is affected by polished sample preparation and image acquisition. In our work, effects of two factors in polished sample preparing and backscattered electron imaging were investigated. The results showed that increasing smoothing pressure could improve the flatness of polished surface and then help to eliminate interference of morphology on grey level distribution of backscattered electron images; increasing accelerating voltage was beneficial to increase gray difference among different phases in backscattered electron images.

  2. Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications.

    PubMed

    Winkelmann, A; Nolze, G; Vespucci, S; Naresh-Kumar, G; Trager-Cowan, C; Vilalta-Clemente, A; Wilkinson, A J; Vos, M

    2017-09-01

    We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  3. Cell surface and cell outline imaging in plant tissues using the backscattered electron detector in a variable pressure scanning electron microscope

    PubMed Central

    2013-01-01

    Background Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector. In one application, we used the backscattered electron detector under low vacuum conditions to collect images of uncoated barley leaf tissue followed by simple quantification of cell areas. Results Here, we outline methods for backscattered electron imaging of a variety of plant tissues with particular focus on collecting images for quantification of cell size and shape. We demonstrate the advantages of this technique over other methods to obtain high contrast cell outlines, and define a set of parameters for imaging Arabidopsis thaliana leaf epidermal cells together with a simple image analysis protocol. We also show how to vary parameters such as accelerating voltage and chamber pressure to optimise imaging in a range of other plant tissues. Conclusions Backscattered electron imaging of uncoated plant tissue allows acquisition of images showing details of plant morphology together with images of high contrast cell outlines suitable for semi-automated image analysis. The method is easily adaptable to many types of tissue and suitable for any laboratory with standard SEM preparation equipment and a variable-pressure-SEM or tabletop SEM. PMID:24135233

  4. Scanning electron microscopy of hepatic ultrastructure: secondary, backscattered, and transmitted electron imaging.

    PubMed

    Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M

    1976-10-01

    Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.

  5. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Investigation of the optimal backscatter for an aSi electronic portal imaging device.

    PubMed

    Ko, Lung; Kim, Jong Oh; Siebers, Jeffrey V

    2004-05-07

    The effects of backscattered radiation on the dosimetric response of the Varian aS500 amorphous silicon electronic portal imaging device (EPID) are studied. Measurements demonstrate that radiation backscattered from the EPID mechanical support structure causes 5% asymmetries in the detected signal. To minimize the effect of backscattered radiation from the support structure, this work proposes adding material downstream of the EPID phosphor which provides uniform backscattering material to the phosphor and attenuates backscatter from the support structure before it reaches the phosphor. Two material locations were studied: downstream of the existing image cassette and within the cassette, immediately downstream of the flat-panel imager glass panel. Monte Carlo simulations were used to determine the thicknesses of water, Pb and Cu backscattering materials required to saturate the backscattered signal response for 6 MV and 18 MV beams for material thicknesses up to 50 mm. Water was unable to saturate the backscattered signal for thicknesses up to 50 mm for both energies. For Pb, to obtain a signal within 1% of saturation, 3 mm was required at 6 MV, and 6.8 mm was required at 18 MV. For Cu, thicknesses of 20.6 mm and 22.6 mm were required for the 6 MV and 18 MV beams, respectively. For saturation thicknesses, at 6 MV, the Cu backscatter enhanced the signal more than for Pb (Cu 1.25, Pb 1.11), but at 18 MV the reverse was found (Cu 1.19, Pb 1.23). This is due to the fact that at 6 MV, the backscattered radiation signal is dominated by low-energy scattered photons, which are readily attenuated by the Pb, while at 18 MV, electron backscatter contributes substantially to the signal. Image blurring caused by backscatter spread was less for Pb than Cu. Placing Pb immediately downstream of the glass panel further reduced the signal spread and increased the backscatter enhancement to 1.20 and 1.39 for the 6 MV and 18 MV beams, respectively. Overall, it is determined that adding approximately 5 mm of Pb between the detector and the mechanical support structure will substantially reduce the nonuniformity in the backscattered signals for 6 MV and 18 MV photon beams.

  7. A method for removing arm backscatter from EPID images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Brian W.; Greer, Peter B.; School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308

    2013-07-15

    Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager.more » The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.« less

  8. Back-scattered electron imaging of skeletal tissues.

    PubMed

    Boyde, A; Jones, S J

    The use of solid-state back-scattered electron (BSE) detectors in the scanning electron microscopic study of skeletal tissues has been investigated. To minimize the topographic element in the image, flat samples and a ring detector configuration with the sample at normal incidence to the beam and the detector are used. Very flat samples are prepared by diamond micromilling or diamond polishing plastic-embedded tissue. Density discrimination in the image is so good that different density phases within mineralized bone can be imaged. For unembedded spongy bone, cut surfaces can be discriminated from natural surfaces by a topographic contrast mechanism. BSE imaging also presents advantages for unembedded samples with rough topography, such as anorganic preparations of the mineralization zone in cartilage, which give rise to severe charging problems with conventional secondary electron imaging.

  9. A Simulation of the Topographic Contrast in the SEM

    NASA Astrophysics Data System (ADS)

    Kotera, Masatoshi; Fujiwara, Takafumi; Suga, Hiroshi; Wittry, David B.

    1990-10-01

    A simulation model is presented to analyze the topographic contast in the scanning electron microscope (SEM). This simulation takes into account all major mechanisms from signal generation to signal detection in the SEM. The calculated result shows that the resolution of the secondary electron image is better than that of the backscattered electron image for 1 and 3 keV primary electrons incident on an Al target. An asymmetric intensity profile of a signal at a topographic pattern, usually found in the SEM equipped with the Everhart-Thornley detector, is mainly due to the asymmetric profile of the backscattered electron signal.

  10. X-ray backscatter imaging for radiography by selective detection and snapshot: Evolution, development, and optimization

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel

    Compton backscatter imaging (CBI) is a single-sided imaging technique that uses the penetrating power of radiation and unique interaction properties of radiation with matter to image subsurface features. CBI has a variety of applications that include non-destructive interrogation, medical imaging, security and military applications. Radiography by selective detection (RSD), lateral migration radiography (LMR) and shadow aperture backscatter radiography (SABR) are different CBI techniques that are being optimized and developed. Radiography by selective detection (RSD) is a pencil beam Compton backscatter imaging technique that falls between highly collimated and uncollimated techniques. Radiography by selective detection uses a combination of single- and multiple-scatter photons from a projected area below a collimation plane to generate an image. As a result, the image has a combination of first- and multiple-scatter components. RSD techniques offer greater subsurface resolution than uncollimated techniques, at speeds at least an order of magnitude faster than highly collimated techniques. RSD scanning systems have evolved from a prototype into near market-ready scanning devices for use in a variety of single-sided imaging applications. The design has changed to incorporate state-of-the-art detectors and electronics optimized for backscatter imaging with an emphasis on versatility, efficiency and speed. The RSD system has become more stable, about 4 times faster, and 60% lighter while maintaining or improving image quality and contrast over the past 3 years. A new snapshot backscatter radiography (SBR) CBI technique, shadow aperture backscatter radiography (SABR), has been developed from concept and proof-of-principle to a functional laboratory prototype. SABR radiography uses digital detection media and shaded aperture configurations to generate near-surface Compton backscatter images without scanning, similar to how transmission radiographs are taken. Finally, a more inclusive theory of the factors affecting CBI contrast generation has tied together the past work of LMR with the more recent research in RSD. A variety of factors that induce changes in the backscatter photon field intensity (resulting in contrast changes in images) include: changes in the electron density field, attenuation changes along the entrance and exit paths, changes in the relative geometric positioning of the target, feature, illumination beam, and detectors. Understanding the interplay of how changes in each of these factors affects image contrast becomes essential to utilizing and optimizing RSD for different applications.

  11. Mapping the plasmon response of Ag nanoislands on graphite at 100 nm resolution with scanning probe energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Murphy, Shane; Bauer, Karl; Sloan, Peter A.; Lawton, James J.; Tang, Lin; Palmer, Richard E.

    2015-12-01

    We demonstrate plasmon mapping of Ag nanostructures on graphite using scanning probe energy loss spectroscopy (SPELS) with a spatial resolution of 100 nm. In SPELS, an STM tip is used as a localized source of field-emitted electrons to probe the sample surface. The energy loss spectrum of the backscattered electrons is measured to provide a chemical signature of the surface under the tip. We acquire three images simultaneously with SPELS: i) constant-current field-emission images, which provide topographical information; ii) backscattered electron images, which display material contrast; and iii) SPELS images, where material-dependent features such as plasmons are mapped.

  12. The Scanning Electron Microscope and the Archaeologist

    ERIC Educational Resources Information Center

    Ponting, Matthew

    2004-01-01

    Images from scanning electron microscopy are now quite common and they can be of great value in archaeology. Techniques such as secondary electron imaging, backscattered electron imaging and energy-dispersive x-ray analysis can reveal information such as the presence of weevils in grain in Roman Britain, the composition of Roman coins and the…

  13. Direct observation of iron-induced conformational changes of mitochondrial DNA by high-resolution field-emission in-lens scanning electron microscopy.

    PubMed Central

    Yaffee, M; Walter, P; Richter, C; Müller, M

    1996-01-01

    When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8643576

  14. Backscattered helium spectroscopy in the helium ion microscope: Principles, resolution and applications

    NASA Astrophysics Data System (ADS)

    van Gastel, R.; Hlawacek, G.; Dutta, S.; Poelsema, B.

    2015-02-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of samples. The contrast that is seen in helium ion microscopy (HIM) images differs from that in scanning electron microscopy (SEM) and is generally a result of the higher surface sensitivity of the method. It allows, for instance, a much better visualization of low-Z materials as a result of the small secondary electron escape depth. However, the same differences in beam interaction that give HIM an edge over other imaging techniques, also impose limitations for spectroscopic applications using backscattered particles. Here we quantify those limitations and discuss opportunities to further improve the technique.

  15. Rapid contrast evaluation method based on affinity beads and backscattered electron imaging for the screening of electron stains.

    PubMed

    Kaku, Hiroki; Inoue, Kanako; Muranaka, Yoshinori; Park, Pyoyun; Ikeda, Kenichi

    2015-10-01

    Uranyl salts are toxic and radioactive; therefore, several studies have been conducted to screen for substitutes of electron stains. In this regard, the contrast evaluation process is time consuming and the results obtained are inconsistent. In this study, we developed a novel contrast evaluation method using affinity beads and a backscattered electron image (BSEI), obtained using scanning electron microscopy. The contrast ratios of BSEI in each electron stain treatment were correlated with those of transmission electron microscopic images. The affinity beads bound to cell components independently. Protein and DNA samples were enhanced by image contrast treated with electron stains; however, this was not observed for sugars. Protein-conjugated beads showed an additive effect of image contrast when double-stained with lead. However, additive effect of double staining was not observed in DNA-conjugated beads. The varying chemical properties of oligopeptides showed differences in image contrast when treated with each electron stain. This BSEI-based evaluation method not only enables screening for alternate electron stains, but also helps analyze the underlying mechanisms of electron staining of cellular structures. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Secondary signal imaging (SSI) electron tomography (SSI-ET): A new three-dimensional metrology for mesoscale specimens in transmission electron microscope.

    PubMed

    Han, Chang Wan; Ortalan, Volkan

    2015-09-01

    We have demonstrated a new electron tomography technique utilizing the secondary signals (secondary electrons and backscattered electrons) for ultra thick (a few μm) specimens. The Monte Carlo electron scattering simulations reveal that the amount of backscattered electrons generated by 200 and 300keV incident electrons is a monotonic function of the sample thickness and this causes the thickness contrast satisfying the projection requirement for the tomographic reconstruction. Additional contribution of the secondary electrons emitted from the edges of the specimens enhances the visibility of the surface features. The acquired SSI tilt series of the specimen having mesoscopic dimensions are successfully reconstructed verifying that this new technique, so called the secondary signal imaging electron tomography (SSI-ET), can directly be utilized for 3D structural analysis of mesoscale structures. Published by Elsevier Ltd.

  17. Backscattered electron SEM imaging of resin sections from plant specimens: observation of histological to subcellular structure and CLEM.

    PubMed

    Rizzo, N W; Duncan, K E; Bourett, T M; Howard, R J

    2016-08-01

    We have refined methods for biological specimen preparation and low-voltage backscattered electron imaging in the scanning electron microscope that allow for observation at continuous magnifications of ca. 130-70 000 X, and documentation of tissue and subcellular ultrastructure detail. The technique, based upon early work by Ogura & Hasegawa (1980), affords use of significantly larger sections from fixed and resin-embedded specimens than is possible with transmission electron microscopy while providing similar data. After microtomy, the sections, typically ca. 750 nm thick, were dried onto the surface of glass or silicon wafer and stained with heavy metals-the use of grids avoided. The glass/wafer support was then mounted onto standard scanning electron microscopy sample stubs, carbon-coated and imaged directly at an accelerating voltage of 5 kV, using either a yttrium aluminum garnet or ExB backscattered electron detector. Alternatively, the sections could be viewed first by light microscopy, for example to document signal from a fluorescent protein, and then by scanning electron microscopy to provide correlative light/electron microscope (CLEM) data. These methods provide unobstructed access to ultrastructure in the spatial context of a section ca. 7 × 10 mm in size, significantly larger than the typical 0.2 × 0.3 mm section used for conventional transmission electron microscopy imaging. Application of this approach was especially useful when the biology of interest was rare or difficult to find, e.g. a particular cell type, developmental stage, large organ, the interface between cells of interacting organisms, when contextual information within a large tissue was obligatory, or combinations of these factors. In addition, the methods were easily adapted for immunolocalizations. © 2015 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society.

  18. Comparison of selective staining of fungi in paraffin sections by light microscopy, SEM and BEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, E.L.; Laudate, A.; Carter, H.W.

    Paraffin-embedded sections from human tissues with fungi or organisms classified with fungi were studied by light microscopy (LM), scanning electron microscopy (SEM), and the backscatter electron imaging (BEI) mode of the SEM. The fungal organisms selected for study were those familiar to the pathologist on the basis of their appearance in paraffin-embedded material stained with the Gomori-Grocott Chromic Acid Methenamine Silver Stain (GMS). The organisms were Actinomyces, Rhizopus, Cryptococcus, Histoplasma capsulatum, and Coccidia imitis. Sections were stained with the GMS Stain and/or the Becker modification of the GMS Stain (BGMS) and examined in the secondary electron imaging mode (SEI) andmore » BEI mode with an annular backscatter electron detector. This silver staining technique accentuated the wall of fungal organisms, in the backscatter mode. Depending on the fungal organism and type of silver stain employed, the GMS seemed the preferable stain. The advantages of SEM over LM were greater depth of focus and potential range of magnifications. BEI may also be used in conjunction with LM stain for microorganisms to establish their presence.« less

  19. A simple way to obtain backscattered electron images in a scanning transmission electron microscope.

    PubMed

    Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki

    2014-08-01

    We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    PubMed

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  1. Scanning Electron Microscopy with Samples in an Electric Field

    PubMed Central

    Frank, Ludĕk; Hovorka, Miloš; Mikmeková, Šárka; Mikmeková, Eliška; Müllerová, Ilona; Pokorná, Zuzana

    2012-01-01

    The high negative bias of a sample in a scanning electron microscope constitutes the “cathode lens” with a strong electric field just above the sample surface. This mode offers a convenient tool for controlling the landing energy of electrons down to units or even fractions of electronvolts with only slight readjustments of the column. Moreover, the field accelerates and collimates the signal electrons to earthed detectors above and below the sample, thereby assuring high collection efficiency and high amplification of the image signal. One important feature is the ability to acquire the complete emission of the backscattered electrons, including those emitted at high angles with respect to the surface normal. The cathode lens aberrations are proportional to the landing energy of electrons so the spot size becomes nearly constant throughout the full energy scale. At low energies and with their complete angular distribution acquired, the backscattered electron images offer enhanced information about crystalline and electronic structures thanks to contrast mechanisms that are otherwise unavailable. Examples from various areas of materials science are presented.

  2. Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy

    DOE PAGES

    Ihlefeld, Jon F.; Michael, Joseph R.; McKenzie, Bonnie B.; ...

    2016-09-16

    We report that ferroelastic domain walls provide opportunities for deterministically controlling mechanical, optical, electrical, and thermal energy. Domain wall characterization in micro- and nanoscale systems, where their spacing may be of the order of 100 nm or less is presently limited to only a few techniques, such as piezoresponse force microscopy and transmission electron microscopy. These respective techniques cannot, however, independently characterize domain polarization orientation and domain wall motion in technologically relevant capacitor structures or in a non-destructive manner, thus presenting a limitation of their utility. In this work, we show how backscatter scanning electron microscopy utilizing channeling contrast yieldmore » can image the ferroelastic domain structure of ferroelectric films with domain wall spacing as narrow as 10 nm.« less

  3. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers.

    PubMed

    Wan, Q; Masters, R C; Lidzey, D; Abrams, K J; Dapor, M; Plenderleith, R A; Rimmer, S; Claeyssens, F; Rodenburg, C

    2016-12-01

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. New method for characterizing paper coating structures using argon ion beam milling and field emission scanning electron microscopy.

    PubMed

    Dahlström, C; Allem, R; Uesaka, T

    2011-02-01

    We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  5. Examination of oxide scales in the SEM using backscattered electron images

    NASA Technical Reports Server (NTRS)

    Price, C. W.; Wright, I. G.; Wallwork, G. R.

    1973-01-01

    The complementary use of the scanning electron microscope in the backscattered electron mode with the more usual secondary electron mode results in a significant increase in the versatility of the instrument, since regions of different chemical composition can be readily detected, and their morphology examined. The use of this technique to examine complex oxide scales formed on heat-resistant alloys is described, and in particular the location of thoria particles in the scale formed on a Ni-20 wt pct Cr-2.3 wt pct ThO2 alloy, and the examination of the behavior of yttrium during the high-temperature oxidation of a Co-Cr-Al-Y alloy are discussed.

  6. Scanning electron microscope observation of dislocations in semiconductor and metal materials.

    PubMed

    Kuwano, Noriyuki; Itakura, Masaru; Nagatomo, Yoshiyuki; Tachibana, Shigeaki

    2010-08-01

    Scanning electron microscope (SEM) image contrasts have been investigated for dislocations in semiconductor and metal materials. It is revealed that single dislocations can be observed in a high contrast in SEM images formed by backscattered electrons (BSE) under the condition of a normal configuration of SEM. The BSE images of dislocations were compared with those of the transmission electron microscope and scanning transmission electron microscope (STEM) and the dependence of BSE image contrast on the tilting of specimen was examined to discuss the origin of image contrast. From the experimental results, it is concluded that the BSE images of single dislocations are attributed to the diffraction effect and related with high-angle dark-field images of STEM.

  7. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    DOE PAGES

    Pullen, M. G.; Wolter, B.; Le, A. -T.; ...

    2016-06-22

    The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval ofmore » the structure of randomly oriented O 2 and C 2H 2 molecules, with π g and π u symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. As a result, while this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.« less

  8. Hot Corrosion Degradation of Metals and Alloys - A Unified Theory

    DTIC Science & Technology

    1979-06-01

    microscope, electron beam microprobe and X-ray diffraction. REULTS AND DMCtESION Hot Corrosion Degradation Sectuence In attempting to develop a unified...Figure 40a. Such ghost images, which can be called corrosion front ghosts , appear as sequential dark and light zones in electron backscatter images... Electronic and Solid State Sciences AUG Ill 1979I Bolling AFB, D.C. 20332 ID PRATT &WHITNEY ARCRAFT GROUP P.O . Box 2861 /Government Products Division wi

  9. Secondary electron imaging of monolayer materials inside a transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cretu, Ovidiu, E-mail: cretu.ovidiu@nims.go.jp; Lin, Yung-Chang; Suenaga, Kazutomo

    2015-08-10

    A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.

  10. A pseudo-3D approach based on electron backscatter diffraction and backscatter electron imaging to study the character of phase boundaries between Mg and long period stacking ordered phase in a Mg–2Y–Zn alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afshar, Mehran, E-mail: m.afshar@mpie.de; Zaefferer, Stefan, E-mail: s.zaefferer@mpie.de

    2015-03-15

    In Mg–2 at.% Y–1 at.% Zn alloys, the LPSO (Long Period Stacking Ordered) phase is important to improve mechanical properties of the material. The aim of this paper is to present a study on the phase boundary character in these two-phase alloys. Using EBSD pattern analysis it was found that the 24R structure is the dominant LPSO phase structure in the current alloy. The phase boundary character between the Mg matrix and the LPSO phase was investigated using an improved pseudo-3D EBSD (electron backscatter diffraction) technique in combination with BSE or SE (backscatter or secondary electron) imaging. A large amountmore » of very low-angle phase boundaries was detected. The (0 0 0 2) plane in the Mg matrix which is parallel to the (0 0 0 24) plane in the LPSO phase was found to be the most frequent plane for these phase boundaries. This plane is supposed to be the habit plane of the eutectic co-solidification of the Mg matrix and the LPSO phase. - Highlights: • It is shown that for the investigated alloy the LPSO phase has mainly 24R crystal structure. • A new method is presented which allows accurate determination of the 5-parameter grain or phase boundary character. • It is found that the low-angle phase boundaries appearing in the alloy all have basal phase boundary planes.« less

  11. Electron imaging with an EBSD detector.

    PubMed

    Wright, Stuart I; Nowell, Matthew M; de Kloe, René; Camus, Patrick; Rampton, Travis

    2015-01-01

    Electron Backscatter Diffraction (EBSD) has proven to be a useful tool for characterizing the crystallographic orientation aspects of microstructures at length scales ranging from tens of nanometers to millimeters in the scanning electron microscope (SEM). With the advent of high-speed digital cameras for EBSD use, it has become practical to use the EBSD detector as an imaging device similar to a backscatter (or forward-scatter) detector. Using the EBSD detector in this manner enables images exhibiting topographic, atomic density and orientation contrast to be obtained at rates similar to slow scanning in the conventional SEM manner. The high-speed acquisition is achieved through extreme binning of the camera-enough to result in a 5 × 5 pixel pattern. At such high binning, the captured patterns are not suitable for indexing. However, no indexing is required for using the detector as an imaging device. Rather, a 5 × 5 array of images is formed by essentially using each pixel in the 5 × 5 pixel pattern as an individual scattered electron detector. The images can also be formed at traditional EBSD scanning rates by recording the image data during a scan or can also be formed through post-processing of patterns recorded at each point in the scan. Such images lend themselves to correlative analysis of image data with the usual orientation data provided by and with chemical data obtained simultaneously via X-Ray Energy Dispersive Spectroscopy (XEDS). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Ionic liquid-based observation technique for nonconductive materials in the scanning electron microscope: Application to the characterization of a rare earth ore.

    PubMed

    Brodusch, Nicolas; Waters, Kristian; Demers, Hendrix; Gauvin, Raynald

    2014-03-01

    A new approach for preparing geological materials is proposed to reduce charging during their characterization in a scanning electron microscope. This technique was applied to a sample of the Nechalacho rare earth deposit, which contains a significant amount of the minerals fergusonite and zircon. Instead of covering the specimen surface with a conductive coating, the sample was immersed in a dilute solution of ionic liquid and then air dried prior to SEM analysis. Imaging at a wide range of accelerating voltages was then possible without evidence of charging when using the in-chamber secondary and backscattered electrons detectors, even at 1 kV. High resolution x-ray and electron backscatter diffraction mapping were successfully obtained at 20 and 5 kV with negligible image drifting and permitted the characterization of the microstructure of the zircon/fergusonite-Y aggregates encased in the matrix minerals. Because of the absence of a conductive layer at the surface of the specimen, the Kikuchi band contrast was improved and the backscatter electron signal increased at both 5 and 20 kV as confirmed by Monte Carlo modeling. These major developments led to an improvement of the spatial resolution and efficiency of the above characterization techniques applied to the rare earth ore and it is expected that they can be applied to other types of ores and minerals. Copyright © 2014 Wiley Periodicals, Inc.

  13. A multimodal microcharacterisation of trace-element zonation and crystallographic orientation in natural cassiterite by combining cathodoluminescence, EBSD, EPMA and contribution of confocal Raman-in-SEM imaging.

    PubMed

    Wille, G; Lerouge, C; Schmidt, U

    2018-01-16

    In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE). The presented results show the complementarity of the used analytical techniques. SEM, CL, EBSD, EPMA provide information from the interaction of an electron beam with minerals, leading to atomistic information about their composition, whereas RISE, Raman spectroscopy and imaging completes the studies with information about molecular vibrations, which are sensitive to structural modifications of the minerals. The correlation of Raman bands with the presence/absence of Nb, Ta, Fe (heterovalent substitution) and Ti (homovalent substitution) is established at a submicrometric scale. Combination of the different techniques makes it possible to establish a direct link between chemical and crystallographic data of cassiterite. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  14. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure

    PubMed Central

    Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast. PMID:29109816

  15. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.

    PubMed

    Kowoll, Thomas; Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO 2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO 2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  16. Investigation of Cellular Interactions of Nanoparticles by Helium Ion Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arey, Bruce W.; Shutthanandan, V.; Xie, Yumei

    The helium ion mircroscope (HIM) probes light elements (e.g. C, N, O, P) with high contrast due to the large variation in secondary electron yield, which minimizes the necessity of specimen staining. A defining characteristic of HIM is its remarkable capability to neutralize charge by the implementation of an electron flood gun, which eliminates the need for coating non-conductive specimens for imaging at high resolution. In addition, the small convergence angle in HeIM offers a large depth of field (~5x FE-SEM), enabling tall structures to be viewed in focus within a single image. Taking advantage of these capabilities, we investigatemore » the interactions of engineered nanoparticles (NPs) at the surface of alveolar type II epithelial cells grown at the air-liquid interface (ALI). The increasing use of nanomaterials in a wide range of commercial applications has the potential to increase human exposure to these materials, but the impact of such exposure on human health is still unclear. One of the main routs of exposure is the respiratory tract, where alveolar epithelial cells present a vulnerable target at the interface with ambient air. Since the cellular interactions of NPs govern the cellular response and ultimately determine the impact on human health, our studies will help delineating relationships between particle properties and cellular interactions and response to better evaluate NP toxicity or biocompatibility. The Rutherford backscattered ion (RBI) is a helium ions imaging mode, which backscatters helium ions from every element except hydrogen, with a backscatter yield that depends on the atomic number of the target. Energy-sensitive backscatter analysis is being developed, which when combined with RBI image information, supports elemental identification at helium ion nanometer resolution. This capability will enable distinguishing NPs from cell surface structures with nanometer resolution.« less

  17. Investigation of cellular interactions of nanoparticles by helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Arey, B. W.; Shutthanandan, V.; Xie, Y.; Tolic, A.; Williams, N.; Orr, G.

    2011-06-01

    The helium ion microscope (HIM) probes light elements (e.g. C, N, O, P) with high contrast due to the large variation in secondary electron yield, which minimizes the necessity of specimen staining. A defining characteristic of HIM is its remarkable capability to neutralize charge by the implementation of an electron flood gun, which eliminates the need for coating non-conductive specimens for imaging at high resolution. In addition, the small convergence angle in HeIM offers a large depth of field (~5× FE-SEM), enabling tall structures to be viewed in focus within a single image. Taking advantage of these capabilities, we investigate the interactions of engineered nanoparticles (NPs) at the surface of alveolar type II epithelial cells grown at the airliquid interface (ALI). The increasing use of nanomaterials in a wide range of commercial applications has the potential to increase human exposure to these materials, but the impact of such exposure on human health is still unclear. One of the main routs of exposure is the respiratory tract, where alveolar epithelial cells present a vulnerable target at the interface with ambient air. Since the cellular interactions of NPs govern the cellular response and ultimately determine the impact on human health, our studies will help delineating relationships between particle properties and cellular interactions and response to better evaluate NP toxicity or biocompatibility. The Rutherford backscattered ion (RBI) is a helium ions imaging mode, which backscatters helium ions from every element except hydrogen, with a backscatter yield that depends on the atomic number of the target. Energy-sensitive backscatter analysis is being developed, which when combined with RBI image information, supports elemental identification at helium ion nanometer resolution. This capability will enable distinguishing NPs from cell surface structures with nanometer resolution.

  18. Detection of secondary and backscattered electrons for 3D imaging with multi-detector method in VP/ESEM.

    PubMed

    Slówko, Witold; Wiatrowski, Artur; Krysztof, Michał

    2018-01-01

    The paper considers some major problems of adapting the multi-detector method for three-dimensional (3D) imaging of wet bio-medical samples in Variable Pressure/Environmental Scanning Electron Microscope (VP/ESEM). The described method pertains to "single-view techniques", which to create the 3D surface model utilise a sequence of 2D SEM images captured from a single view point (along the electron beam axis) but illuminated from four directions. The basis of the method and requirements resulting from them are given for the detector systems of secondary (SE) and backscattered electrons (BSE), as well as designs of the systems which could work in variable conditions. The problems of SE detection with application of the Pressure Limiting Aperture (PLA) as the signal collector are discussed with respect to secondary electron backscattering by a gaseous environment. However, the authors' attention is turned mainly to the directional BSE detection, realized in two ways. The high take off angle BSE were captured through PLA with use of the quadruple semiconductor detector placed inside the intermediate chamber, while BSE starting at lower angles were detected by the four-folded ionization device working in the sample chamber environment. The latter relied on a conversion of highly energetic BSE into low energetic SE generated on walls and a gaseous environment of the deep discharge gap oriented along the BSE velocity direction. The converted BSE signal was amplified in an ionising avalanche developed in the electric field arranged transversally to the gap. The detector system operation is illustrated with numerous computer simulations and examples of experiments and 3D images. The latter were conducted in a JSM 840 microscope with its combined detector-vacuum equipment which could extend capabilities of this high vacuum instrument toward elevated pressures (over 1kPa) and environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Scanning ultrafast electron microscopy.

    PubMed

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  20. Characterization of ultrafine grained Cu-Ni-Si alloys by electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Altenberger, I.; Kuhn, H. A.; Gholami, M.; Mhaede, M.; Wagner, L.

    2014-08-01

    A combination of rotary swaging and optimized precipitation hardening was applied to generate ultra fine grained (UFG) microstructures in low alloyed high performance Cu-based alloy CuNi3Si1Mg. As a result, ultrafine grained (UFG) microstructures with nanoscopically small Ni2Si-precipitates exhibiting high strength, ductility and electrical conductivity can be obtained. Grain boundary pinning by nano-precipitates enhances the thermal stability. Electron channeling contrast imaging (ECCI) and especially electron backscattering diffraction (EBSD) are predestined to characterize the evolving microstructures due to excellent resolution and vast crystallographic information. The following study summarizes the microstructure after different processing steps and points out the consequences for the most important mechanical and physical properties such as strength, ductility and conductivity.

  1. Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations.

    PubMed

    De Vries, Rowen J; Marsh, Steven

    2015-11-08

    Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2-14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997 ± 0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs.

  2. Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations

    PubMed Central

    Marsh, Steven

    2015-01-01

    Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2 mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2–14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997±0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs. PACS numbers: 87.53.Bn, 87.55.K‐, 87.56.bd PMID:26699566

  3. Chapter 14: Electron Microscopy on Thin Films for Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie

    2016-07-22

    This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less

  4. Variations in contrast of scanning electron microscope images for microstructure analysis of Si-based semiconductor materials.

    PubMed

    Itakura, Masaru; Kuwano, Noriyuki; Sato, Kaoru; Tachibana, Shigeaki

    2010-08-01

    Image contrasts of Si-based semiconducting materials have been investigated by using the latest scanning electron microscope with various detectors under a range of experimental conditions. Under a very low accelerating voltage (500 V), we obtained a good image contrast between crystalline SiGe whiskers and the amorphous matrix using an in-lens secondary electron (SE) detector, while the conventional topographic SE image and the compositional backscattered electron (BSE) image gave no distinct contrast. By using an angular-selective BSE (AsB) detector for wide-angle scattered BSE, on the other hand, the crystal grains in amorphous matrix can be clearly visualized as 'channelling contrast'. The image contrast is very similar to that of their transmission electron microscope image. The in-lens SE (true SE falling dots SE1) and the AsB (channelling) contrasts are quite useful to distinguish crystalline parts from amorphous ones.

  5. Iodine Vapor Staining for Atomic Number Contrast in Backscattered Electron and X-ray Imaging

    PubMed Central

    Boyde, Alan; Mccorkell, Fergus A; Taylor, Graham K; Bomphrey, Richard J; Doube, Michael

    2014-01-01

    Iodine imparts strong contrast to objects imaged with electrons and X-rays due to its high atomic number (53), and is widely used in liquid form as a microscopic stain and clinical contrast agent. We have developed a simple technique which exploits elemental iodine's sublimation-deposition state-change equilibrium to vapor stain specimens with iodine gas. Specimens are enclosed in a gas-tight container along with a small mass of solid I2. The bottle is left at ambient laboratory conditions while staining proceeds until empirically determined completion (typically days to weeks). We demonstrate the utility of iodine vapor staining by applying it to resin-embedded tissue blocks and whole locusts and imaging them with backscattered electron scanning electron microscopy (BSE SEM) or X-ray microtomography (XMT). Contrast is comparable to that achieved with liquid staining but without the consequent tissue shrinkage, stain pooling, or uneven coverage artefacts associated with immersing the specimen in iodine solutions. Unmineralized tissue histology can be read in BSE SEM images with good discrimination between tissue components. Organs within the locust head are readily distinguished in XMT images with particularly useful contrast in the chitin exoskeleton, muscle and nerves. Here, we have used iodine vapor staining for two imaging modalities in frequent use in our laboratories and on the specimen types with which we work. It is likely to be equally convenient for a wide range of specimens, and for other modalities which generate contrast from electron- and photon-sample interactions, such as transmission electron microscopy and light microscopy. Microsc. Res. Tech. 77:1044–1051, 2014. © 2014 The Authors. Microscopy Research Technique published by Wiley Periodocals, Inc. PMID:25219801

  6. Profiling of back-scattered electrons in opposed magnetic field of a Twin Electron Beam Gun

    NASA Astrophysics Data System (ADS)

    Sethi, S.; Gupta, Anchal; Dileep Kumar, V.; Mukherjee, Jaya; Gantayet, L. M.

    2012-11-01

    Electron gun is extensively used in material processing, physical vapour deposition and atomic vapour based laser processes. In these processes where the electron beam is incident on the substrate, a significant fraction of electron beam gets back-scattered from the target surface. The trajectory of this back scattered electron beam depends on the magnetic field in the vicinity. The fraction of back-scattered depends on the atomic number of the target metal and can be as high as ~40% of the incident beam current. These back-scattered electrons can cause undesired hot spots and also affect the overall process. Hence, the study of the trajectory of these back-scattered electrons is important. This paper provides the details of experimentally mapped back-scattered electrons of a 2×20kW Twin Electron Beam Gun (TEBG) in opposed magnetic field i.e. with these guns placed at 180° to each other.

  7. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    2007-09-01

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  8. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  9. Atomic level characterization of cadmium selenide nanocrystal systems using atomic number contrast scanning transmission electron microscopy and Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    McBride, James R.

    This project involved the characterization of CdSe nanocrystals. Through the use of Atomic Number Contrast Scanning Transmission Electron Microscopy (Z-STEM) and Rutherford Backscattering Spectroscopy (RBS), atomic level structure and chemical information was obtained. Specifically, CdSe nanocrystals produced using a mixture of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) were determined to be spherical compared to nanocrystals produced in TOPO only, which had elongated (101) facets. Additionally, the first Z-STEM images of CdSe/ZnS core/shell nanocrystals were obtained. From these images, the growth mechanism of the ZnS shell was determined and the existence of non-fluorescent ZnS particles was confirmed. Through collaboration with Quantum Dot Corp., core/shell nanocrystals with near unity quantum yield were developed. These core/shell nanocrystals included a US intermediate layer to improve shell coverage.

  10. Electron backscatter diffraction as a domain analysis technique in BiFeO(3)-PbTiO(3) single crystals.

    PubMed

    Burnett, T L; Comyn, T P; Merson, E; Bell, A J; Mingard, K; Hegarty, T; Cain, M

    2008-05-01

    xBiFeO(3)-(1-x)PbTiO(3) single crystals were grown via a flux method for a range of compositions. Presented here is a study of the domain configuration in the 0.5BiFeO(3)-0.5PbTiO(3) composition using electron backscatter diffraction to demonstrate the ability of the technique to map ferroelastic domain structures at the micron and submicron scale. The micron-scale domains exhibit an angle of approximately 85 degrees between each variant, indicative of a ferroelastic domain wall in a tetragonal system with a spontaneous strain, c/a - 1 of 0.10, in excellent agreement with the lattice parameters derived from x-ray diffraction. Contrast seen in forescatter images is attributed to variations in the direction of the electrical polarization vector, providing images of ferroelectric domain patterns.

  11. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    NASA Astrophysics Data System (ADS)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  12. The Use of Backscattered Electron Imaging and Transmission Electron Microscopy to Assess Bone Architecture and Mineral Loci: Effect of Intermittent Slow-Release Sodium Fluoride Therapy

    NASA Astrophysics Data System (ADS)

    Zerwekh, Joseph E.; Bellotto, Dennis; Prostak, Kenneth S.; Hagler, Herbert K.; Pak, Charles Y. C.

    1996-04-01

    Backscattered electron imaging (BEI) and transmission electron microscopy (TEM) were used to examine the effects of treatment with intermittent slow-release sodium fluoride (SRNaF) and continuous calcium citrate on bone architecture and crystallinity. Examination was performed in nondecalcified biopsies obtained from patients following up to four years of therapy (placebo or SRNaF) and compared to pretreatment biopsies from each patient, as well as to bone from young, normal subjects. BEI images disclosed increased areas of recent bone formation following fluoride administration. There was no evidence of a mineralization defect in any biopsy and both cortical and trabecular architecture remained normal. TEM analysis demonstrated intrafibrillar platelike crystals and extrafibrillar needlelike crystals for both the pre- and post-treatment biopsies as well as for the bone from young normal subjects. There was no evidence of increased crystal size or of an increase in extrafibrillar mineral deposition. These observations suggest that intermittent SRNaF and continuous calcium therapy exerts an anabolic action on the skeleton not accompanied by a mineralization defect or an alteration of bone mineral deposition. The use of BEI and TEM holds promise for the study of the pathophysiology and treatment of metabolic bone diseases.

  13. Errors in quantitative backscattered electron analysis of bone standardized by energy-dispersive x-ray spectrometry.

    PubMed

    Vajda, E G; Skedros, J G; Bloebaum, R D

    1998-10-01

    Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methylmethacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.

  14. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godec, Matjaz, E-mail: matjaz.godec@imt.si; Batic, Barbara Setina; Mandrino, Djordje

    2010-04-15

    A microstructural characterization of the powder-metallurgy high-speed-steel S390 Microclean was performed based on an elemental distribution of the carbide phase as well as crystallographic analyses. The results showed that there were two types of carbides present: vanadium-rich carbides, which were not chemically homogeneous and exhibited a tungsten-enriched or tungsten-depleted central area; and chemically homogeneous tungsten-rich M{sub 6}C-type carbides. Despite the possibility of chemical inhomogenities, the crystallographic orientation of each of the carbides was shown to be uniform. Using electron backscatter diffraction the vanadium-rich carbides were determined to be either cubic VC or hexagonal V{sub 6}C{sub 5}, while the tungsten-rich carbidesmore » were M{sub 6}C. The electron backscatter diffraction results were also verified using X-ray diffraction. Several electron backscatter diffraction pattern maps were acquired in order to define the fraction of each carbide phase as well as the amount of martensite phase. The fraction of martensite was estimated using band-contrast images, while the fraction of carbides was calculated using the crystallographic data.« less

  15. Development of inorganic resists for electron beam lithography: Novel materials and simulations

    NASA Astrophysics Data System (ADS)

    Jeyakumar, Augustin

    Electron beam lithography is gaining widespread utilization as the semiconductor industry progresses towards both advanced optical and non-optical lithographic technologies for high resolution patterning. The current resist technologies are based on organic systems that are imaged most commonly through chain scission, networking, or a chemically amplified polarity change in the material. Alternative resists based on inorganic systems were developed and characterized in this research for high resolution electron beam lithography and their interactions with incident electrons were investigated using Monte Carlo simulations. A novel inorganic resist imaging scheme was developed using metal-organic precursors which decompose to form metal oxides upon electron beam irradiation that can serve as inorganic hard masks for hybrid bilayer inorganic-organic imaging systems and also as directly patternable high resolution metal oxide structures. The electron beam imaging properties of these metal-organic materials were correlated to the precursor structure by studying effects such as interactions between high atomic number species and the incident electrons. Optimal single and multicomponent precursors were designed for utilization as viable inorganic resist materials for sub-50nm patterning in electron beam lithography. The electron beam imaging characteristics of the most widely used inorganic resist material, hydrogen silsesquioxane (HSQ), was also enhanced using a dual processing imaging approach with thermal curing as well as a sensitizer catalyzed imaging approach. The interaction between incident electrons and the high atomic number species contained in these inorganic resists was also studied using Monte Carlo simulations. The resolution attainable using inorganic systems as compared to organic systems can be greater for accelerating voltages greater than 50 keV due to minimized lateral scattering in the high density inorganic systems. The effects of loading nanoparticles in an electron beam resist was also investigated using a newly developed hybrid Monte Carlo approach that accounts for multiple components in a solid film. The resolution of the nanocomposite resist process was found to degrade with increasing nanoparticle loading. Finally, the electron beam patterning of self-assembled monolayers, which were found to primarily utilize backscattered electrons from the high atomic number substrate materials to form images, was also investigated and characterized. It was found that backscattered electrons limit the resolution attainable at low incident electron energies.

  16. Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

    NASA Astrophysics Data System (ADS)

    Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.

    2015-11-01

    Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.

  17. Copper Decoration of Carbon Nanotubes and High Resolution Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Probst, Camille

    A new process of decorating carbon nanotubes with copper was developed for the fabrication of nanocomposite aluminum-nanotubes. The process consists of three stages: oxidation, activation and electroless copper plating on the nanotubes. The oxidation step was required to create chemical function on the nanotubes, essential for the activation step. Then, catalytic nanoparticles of tin-palladium were deposited on the tubes. Finally, during the electroless copper plating, copper particles with a size between 20 and 60 nm were uniformly deposited on the nanotubes surface. The reproducibility of the process was shown by using another type of carbon nanotube. The fabrication of nanocomposites aluminum-nanotubes was tested by aluminum vacuum infiltration. Although the infiltration of carbon nanotubes did not produce the expected results, an interesting electron microscopy sample was discovered during the process development: the activated carbon nanotubes. Secondly, scanning transmitted electron microscopy (STEM) imaging in SEM was analysed. The images were obtained with a new detector on the field emission scanning electron microscope (Hitachi S-4700). Various parameters were analysed with the use of two different samples: the activated carbon nanotubes (previously obtained) and gold-palladium nanodeposits. Influences of working distance, accelerating voltage or sample used on the spatial resolution of images obtained with SMART (Scanning Microscope Assessment and Resolution Testing) were analysed. An optimum working distance for the best spatial resolution related to the sample analysed was found for the imaging in STEM mode. Finally, relation between probe size and spatial resolution of backscattered electrons (BSE) images was studied. An image synthesis method was developed to generate the BSE images from backscattered electrons coefficients obtained with CASINO software. Spatial resolution of images was determined using SMART. The analysis shown that using a probe size smaller than the size of the observed object (sample features) does not improve the spatial resolution. In addition, the effects of the accelerating voltage, the current intensity and the sample geometry and composition were analysed.

  18. Scanning ultrafast electron microscopy

    PubMed Central

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933

  19. Backscattered electron simulations to evaluate sensitivity against electron dosage of buried semiconductor features

    NASA Astrophysics Data System (ADS)

    Mukhtar, Maseeh; Thiel, Bradley

    2018-03-01

    In fabrication, overlay measurements of semiconductor device patterns have conventionally been performed using optical methods. Beginning with image-based techniques using box-in-box to the more recent diffraction-based overlay (DBO). Alternatively, use of SEM overlay is under consideration for in-device overlay. Two main application spaces are measurement features from multiple mask levels on the same surface and buried features. Modern CD-SEMs are adept at measuring overlay for cases where all features are on the surface. In order to measure overlay of buried features, HV-SEM is needed. Gate-to-fin and BEOL overlay are important use cases for this technique. A JMONSEL simulation exercise was performed for these two cases using 10 nm line/space gratings of graduated increase in depth of burial. Backscattered energy loss results of these simulations were used to calculate the sensitivity measurements of buried features versus electron dosage for an array of electron beam voltages.

  20. Sci—Fri PM: Dosimetry—05: Megavoltage electron backscatter: EGSnrc results versus 21 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, E. S. M.; The Ottawa Hospital Cancer Centre, Ottawa; Buchenberg, W.

    2014-08-15

    The accuracy of electron backscatter calculations at megavoltage energies is important for many medical physics applications. In this study, EGSnrc calculations of megavoltage electron backscatter (1–22 MeV) are performed and compared to the data from 21 experiments published between 1954 and 1993 for 25 single elements with atomic numbers from 3 to 92. Typical experimental uncertainties are 15%. For EGSnrc simulations, an ideal detector is assumed, and the most accurate electron physics options are employed, for a combined statistical and systematic uncertainty of 3%. The quantities compared are the backscatter coefficient and the energy spectra (in the backward hemisphere andmore » at specific detector locations). For the backscatter coefficient, the overall agreement is within ±2% in the absolute value of the backscatter coefficient (in per cent), and within 11% of the individual backscatter values. EGSnrc results are systematically on the higher end of the spread of the experimental data, which could be partially from systematic experimental errors discussed in the literature. For the energy spectra, reasonable agreement between simulations and experiments is observed, although there are significant variations in the experimental data. At the lower end of the spectra, simulations are higher than some experimental data, which could be due to reduced experimental sensitivity to lower energy electrons and/or over-estimation by EGSnrc for backscattered secondary electrons. In conclusion, overall good agreement is observed between EGSnrc backscatter calculations and experimental measurements for megavoltage electrons. There is a need for high quality experimental data for the energy spectra of backscattered electrons.« less

  1. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berecz, Tibor, E-mail: berecz@eik.bme.hu; Jenei, Péter, E-mail: jenei@metal.elte.hu; Csóré, András, E-mail: csorean@gmail.com

    2016-03-15

    The microstructure and the dislocation density in as-quenched ferrous lath martensite were studied by different methods. The blocks, packets and variants formed due to martensitic transformation were identified and their sizes were determined by electron backscatter diffraction (EBSD). Concomitant transmission electron microscopy (TEM) investigation revealed that the laths contain subgrains with the size between 50 and 100 nm. A novel evaluation procedure of EBSD images was elaborated for the determination of the density and the space distribution of geometrically necessary dislocations from the misorientation distribution. The total dislocation density obtained by X-ray diffraction line profile analysis was in good agreementmore » with the value determined by EBSD, indicating that the majority of dislocations formed due to martensitic transformation during quenching are geometrically necessary dislocations.« less

  2. Microstructural features of carious human enamel imaged with back-scattered electrons.

    PubMed

    Pearce, E I; Nelson, D G

    1989-02-01

    We have used back-scattered electrons (BE) in the scanning electron microscope to produce mineral density images of enamel. Flat surfaces of artificially-carious enamel, softened in an intra-oral experiment, and naturally-carious (white spot) enamel were polished to a high gloss with diamond lapping compound, rendering them almost featureless by secondary electron scanning electron microscopy. They were then examined at 10 to 30 kV in a Philips 505 instrument fitted with a 4-quadrant BE detector. Study of surfaces prepared approximately parallel to the natural surface showed that mineral was lost from both prism core and the interprismatic region, leaving a thin mineral-rich rim at the prism periphery. The same lesions viewed longitudinally on a surface prepared perpendicular to the natural surface showed mineral-rich bands at the prism margins in the outer enamel. Near the advancing front of the lesion, the prism junctions were widened and the prism cores sometimes hypermineralized. Natural lesions sectioned in the prism long axis showed features previously seen with other techniques, e.g., cross-striations and striae of Retzius, but in much greater detail. Mineral enrichment at the prism periphery in the lesion body and a widening of the prism junction at the advancing fronts of lesions in permanent teeth were most obvious. Calculations showed that with an accelerating voltage of 30 kV, the images reflected mineral density up to 4 microns beneath the surface. BE microscopy produces a high-resolution image of mineral loss or gain in carious enamel, with relatively easy sample preparation.

  3. New low-dose 1-MeV cargo inspection system with backscatter imaging

    NASA Astrophysics Data System (ADS)

    Sapp, William W., Jr.; Rothschild, Peter J.; Schueller, Richard L.; Mishin, Andrey

    2000-12-01

    A new intermediate energy x-ray source is described which uses a cw electron linear accelerator created specifically for this application. This source has been installed in the hub of a hollow-spoked rotation wheel to form a scanning beam of x-rays. As cargo is transported through the inspection tunnel at speeds up to 6 inches per second it is raster-scanned by this beam to form digital images of the backscattered as well as the transmitted x-rays. The system will be described in detail, and sample images of a heavily loaded 8 foot wide ISO container will be presented. Environmental radiation due to the x-rays scattered from the cargo itself will be discussed in the context of the tradeoffs between penetration, spatial resolution, x-ray energy, and x-ray flux.

  4. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells.

    PubMed

    Pluk, H; Stokes, D J; Lich, B; Wieringa, B; Fransen, J

    2009-03-01

    A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  6. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns.

    PubMed

    Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E

    2013-08-02

    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  7. Comparison of Electron Imaging Modes for Dimensional Measurements in the Scanning Electron Microscope.

    PubMed

    Postek, Michael T; Vladár, András E; Villarrubia, John S; Muto, Atsushi

    2016-08-01

    Dimensional measurements from secondary electron (SE) images were compared with those from backscattered electron (BSE) and low-loss electron (LLE) images. With the commonly used 50% threshold criterion, the lines consistently appeared larger in the SE images. As the images were acquired simultaneously by an instrument with the capability to operate detectors for both signals at the same time, the differences cannot be explained by the assumption that contamination or drift between images affected the SE, BSE, or LLE images differently. Simulations with JMONSEL, an electron microscope simulator, indicate that the nanometer-scale differences observed on this sample can be explained by the different convolution effects of a beam with finite size on signals with different symmetry (the SE signal's characteristic peak versus the BSE or LLE signal's characteristic step). This effect is too small to explain the >100 nm discrepancies that were observed in earlier work on different samples. Additional modeling indicates that those discrepancies can be explained by the much larger sidewall angles of the earlier samples, coupled with the different response of SE versus BSE/LLE profiles to such wall angles.

  8. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  9. Applications of Real Space Crystallography in Characterization of Dislocations in Geological Materials in a Scanning Electron Microscope (SEM)

    NASA Astrophysics Data System (ADS)

    Kaboli, S.; Burnley, P. C.

    2017-12-01

    Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This new approach in microstructure characterization of deformed geologic materials in FE-SEM, without the use of etching or decoration techniques, has valuable applications to both experimentally deformed and naturally deformed specimens.

  10. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  11. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  12. Lines of Evidence–Incremental Markings in Molar Enamel of Soay Sheep as Revealed by a Fluorochrome Labeling and Backscattered Electron Imaging Study

    PubMed Central

    Kierdorf, Horst; Kierdorf, Uwe; Frölich, Kai; Witzel, Carsten

    2013-01-01

    We studied the structural characteristics and periodicities of regular incremental markings in sheep enamel using fluorochrome injections for vital labeling of forming enamel and backscattered electron imaging in the scanning electron microscope. Microscopic analysis of mandibular first molars revealed the presence of incremental markings with a daily periodicity (laminations) that indicated successive positions of the forming front of interprismatic enamel. In addition to the laminations, incremental markings with a sub-daily periodicity were discernible both in interprismatic enamel and in enamel prisms. Five sub-daily increments were present between two consecutive laminations. Backscattered electron imaging revealed that each sub-daily growth increment consisted of a broader and more highly mineralized band and a narrower and less mineralized band (line). The sub-daily markings in the prisms of sheep enamel morphologically resembled the (daily) prisms cross striations seen in primate enamel. Incremental markings with a supra-daily periodicity were not observed in sheep enamel. Based on the periodicity of the incremental markings, maximum mean daily apposition rates of 17.0 µm in buccal enamel and of 13.4 µm in lingual enamel were recorded. Enamel extension rates were also high, with maximum means of 180 µm/day and 217 µm/day in upper crown areas of buccal and lingual enamel, respectively. Values in more cervical crown portions were markedly lower. Our results are in accordance with previous findings in other ungulate species. Using the incremental markings present in primate enamel as a reference could result in a misinterpretation of the incremental markings in ungulate enamel. Thus, the sub-daily growth increments in the prisms of ungulate enamel might be mistaken as prism cross striations with a daily periodicity, and the laminations misidentified as striae of Retzius with a supra-daily periodicity. This would lead to a considerable overestimation of crown formation times in ungulate teeth. PMID:24040293

  13. Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager.

    PubMed

    Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A

    2010-10-01

    Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.

  14. Observations of the electron density perturbation in the cusp irregularities during the ICI-2 campaign

    NASA Astrophysics Data System (ADS)

    Abe, Takumi; Moen, J. I.

    The ICI-2 (Investigation of Cusp Irregularities-2) sounding rocket campaign was conducted in Svalbard, Norway on December 2008. The scientific objective of ICI-2 is to investigate genera-tion mechanism(s) of coherent HF radar backscatter targets. Strong coherent HF backscatter echoes are well-known phenomena in the polar ionospheric cusp, and are thought to result from field-aligned plasma irregularities with decameter scale length. However, the generation mech-anism of backscatter targets has not yet been understood, and even the altitude profile of HF cusp backscatter is unknown. The ICI-2 rocket was launched at 10:35:10 UT at Ny-˚lesund, A and reached an apogee of 330 km at about 5 minutes after the launch. All onboard systems functioned flawlessly. A comprehensive measurement of the electron density, low energy elec-tron flux, medium energy particle flux, AC and DC electric fields was conducted to exploit the potential role of the gradient drift instability versus the other suggested mechanisms. We present a result obtained from a Fixed-Biased Probe (FBP) which was aimed at measuring fine-scale (< 1 m) electron density perturbation. Our analysis of the FBP data during the rocket's flight indicates that the rocket traversed HF backscatter regions where the electron density perturbation is relatively large. The power spectrum analysis of the electron density shows that the amplitude increases not only in the decameter wavelength but also in the broad range of frequency. Characteristic features of the electron density perturbation are summarized as follows: 1) A strong perturbation of the electron density was observed by the FBP when the ICI-2 rocket passed through a front side of the poleward moving 630 nm emission region which was identified by the all-sky imager. This means that the electron density perturbation and the 630 nm emission are observed to coexist in the same region. 2) The absolute value of the electron density becomes larger in the disturbed region than in the surrounding region. The electron density gradient in the boundary with the outer region is larger in the equatorward side than in the poleward side. 3) The amplitude of the electron density perturbation is remarkably large in the equatorward edge rather than the poleward boundaries. 4) The FBP identified the electron density perturbation at three different altitudes during the rocket flight. This indicates that the perturbation likely exists not only within the narrow limits but in a larger extent in the vertical direction.

  15. Observations on the Role of Hydrogen in Facet Formation in Near-alpha Titanium (Preprint)

    DTIC Science & Technology

    2011-05-01

    using quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning...quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning electron...tilt fractography / electron backscatter diffraction (EBSD) technique in which both the crystallographic orientation of the fractured grain and the

  16. Back-scattered electron imaging of a non-vertebral case of hypervitaminosis A in a cat.

    PubMed

    Franch, J; Pastor, J; Franch, B; Durall, I; Manzanares, M C

    2000-03-01

    We describe a clinical case of hypervitaminosis A in a cat. The main lesions were bony fusions of both the hip and stifle joints, without spinal involvement. A post-mortem study using back-scattered scanning electron microscopy (BEI-SEM) revealed that exostoses had formed around the joints without articular surface involvement. The more recently formed areas of bony proliferation were composed mainly of chondroid tissue surrounded by different degrees of woven bone. As the bony reaction occurred, remodelling of the trabeculae was observed which lead to progressive substitution of chondroid tissue by woven bone surrounded by apposition of lamellar bone. No traces of calcified cartilage were observed in any of the bone sections evaluated. Copyright 2000 European Society of Feline Medicine.

  17. Short communication on Kinetics of grain growth and particle pinning in U-10 wt.% Mo

    NASA Astrophysics Data System (ADS)

    Frazier, William E.; Hu, Shenyang; Overman, Nicole; Lavender, Curt; Joshi, Vineet V.

    2018-01-01

    The alloy U-10 wt% Mo was annealed at temperatures ranging from 700 °C to 900 °C for periods lasting up to 24 h. Annealed microstructures were examined using Electron Backscattered Diffraction (EBSD) to obtain average grain sizes and grain size distributions. From the temporal evolution of the average grain size, the activation energy of grain growth was determined to be 172.4 ± 0.961 kJ/mol. Grain growth over the annealing period stagnated after a period of 1-4 h. This stagnation is apparently caused by the pinning effect of second-phase particles in the materials. Back-scattered electron imaging (BSE) was used to confirm that these particles do not appreciably coarsen or dissolve during annealing at the aforementioned temperatures.

  18. Registering 2D and 3D imaging data of bone during healing.

    PubMed

    Hoerth, Rebecca M; Baum, Daniel; Knötel, David; Prohaska, Steffen; Willie, Bettina M; Duda, Georg N; Hege, Hans-Christian; Fratzl, Peter; Wagermaier, Wolfgang

    2015-04-01

    PURPOSE/AIMS OF THE STUDY: Bone's hierarchical structure can be visualized using a variety of methods. Many techniques, such as light and electron microscopy generate two-dimensional (2D) images, while micro-computed tomography (µCT) allows a direct representation of the three-dimensional (3D) structure. In addition, different methods provide complementary structural information, such as the arrangement of organic or inorganic compounds. The overall aim of the present study is to answer bone research questions by linking information of different 2D and 3D imaging techniques. A great challenge in combining different methods arises from the fact that they usually reflect different characteristics of the real structure. We investigated bone during healing by means of µCT and a couple of 2D methods. Backscattered electron images were used to qualitatively evaluate the tissue's calcium content and served as a position map for other experimental data. Nanoindentation and X-ray scattering experiments were performed to visualize mechanical and structural properties. We present an approach for the registration of 2D data in a 3D µCT reference frame, where scanning electron microscopies serve as a methodic link. Backscattered electron images are perfectly suited for registration into µCT reference frames, since both show structures based on the same physical principles. We introduce specific registration tools that have been developed to perform the registration process in a semi-automatic way. By applying this routine, we were able to exactly locate structural information (e.g. mineral particle properties) in the 3D bone volume. In bone healing studies this will help to better understand basic formation, remodeling and mineralization processes.

  19. Combined Multidimensional Microscopy as a Histopathology Imaging Tool.

    PubMed

    Shami, Gerald J; Cheng, Delfine; Braet, Filip

    2017-02-01

    Herein, we present a highly versatile bioimaging workflow for the multidimensional imaging of biological structures across vastly different length scales. Such an approach allows for the optimised preparation of samples in one go for consecutive X-ray micro-computed tomography, bright-field light microscopy and backscattered scanning electron microscopy, thus, facilitating the disclosure of combined structural information ranging from the gross tissue or cellular level, down to the nanometre scale. In this current study, we characterize various aspects of the hepatic vasculature, ranging from such large vessels as branches of the hepatic portal vein and hepatic artery, down to the smallest sinusoidal capillaries. By employing high-resolution backscattered scanning electron microscopy, we were able to further characterize the subcellular features of a range of hepatic sinusoidal cells including, liver sinusoidal endothelial cells, pit cells and Kupffer cells. Above all, we demonstrate the capabilities of a specimen manipulation workflow that can be applied and adapted to a plethora of functional and structural investigations and experimental models. Such an approach harnesses the fundamental advantages inherent to the various imaging modalities presented herein, and when combined, offers information not currently available by any single imaging platform. J. Cell. Physiol. 232: 249-256, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Analysis of FIB-induced damage by electron channelling contrast imaging in the SEM.

    PubMed

    Gutierrez-Urrutia, Ivan

    2017-01-01

    We have investigated the Ga + ion-damage effect induced by focused ion beam (FIB) milling in a [001] single crystal of a 316 L stainless steel by the electron channelling contrast imaging (ECCI) technique. The influence of FIB milling on the characteristic electron channelling contrast of surface dislocations was analysed. The ECCI approach provides sound estimation of the damage depth produced by FIB milling. For comparison purposes, we have also studied the same milled surface by a conventional electron backscatter diffraction (EBSD) approach. We observe that the ECCI approach provides further insight into the Ga + ion-damage phenomenon than the EBSD technique by direct imaging of FIB artefacts in the scanning electron microscope. We envisage that the ECCI technique may be a convenient tool to optimize the FIB milling settings in applications where the surface crystal defect content is relevant. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  1. Deceleration of probe beam by stage bias potential improves resolution of serial block-face scanning electron microscopic images.

    PubMed

    Bouwer, James C; Deerinck, Thomas J; Bushong, Eric; Astakhov, Vadim; Ramachandra, Ranjan; Peltier, Steven T; Ellisman, Mark H

    2017-01-01

    Serial block-face scanning electron microscopy (SBEM) is quickly becoming an important imaging tool to explore three-dimensional biological structure across spatial scales. At probe-beam-electron energies of 2.0 keV or lower, the axial resolution should improve, because there is less primary electron penetration into the block face. More specifically, at these lower energies, the interaction volume is much smaller, and therefore, surface detail is more highly resolved. However, the backscattered electron yield for metal contrast agents and the backscattered electron detector sensitivity are both sub-optimal at these lower energies, thus negating the gain in axial resolution. We found that the application of a negative voltage (reversal potential) applied to a modified SBEM stage creates a tunable electric field at the sample. This field can be used to decrease the probe-beam-landing energy and, at the same time, alter the trajectory of the signal to increase the signal collected by the detector. With decelerated low landing-energy electrons, we observed that the probe-beam-electron-penetration depth was reduced to less than 30 nm in epoxy-embedded biological specimens. Concurrently, a large increase in recorded signal occurred due to the re-acceleration of BSEs in the bias field towards the objective pole piece where the detector is located. By tuning the bias field, we were able to manipulate the trajectories of the  primary and secondary electrons, enabling the spatial discrimination of these signals using an advanced ring-type BSE detector configuration or a standard monolithic BSE detector coupled with a blocking aperture.

  2. Thomson-backscattered x rays from laser-accelerated electrons.

    PubMed

    Schwoerer, H; Liesfeld, B; Schlenvoigt, H-P; Amthor, K-U; Sauerbrey, R

    2006-01-13

    We present the first observation of Thomson-backscattered light from laser-accelerated electrons. In a compact, all-optical setup, the "photon collider," a high-intensity laser pulse is focused into a pulsed He gas jet and accelerates electrons to relativistic energies. A counterpropagating laser probe pulse is scattered from these high-energy electrons, and the backscattered x-ray photons are spectrally analyzed. This experiment demonstrates a novel source of directed ultrashort x-ray pulses and additionally allows for time-resolved spectroscopy of the laser acceleration of electrons.

  3. Enhanced EDX images by fusion of multimodal SEM images using pansharpening techniques.

    PubMed

    Franchi, G; Angulo, J; Moreaud, M; Sorbier, L

    2018-01-01

    The goal of this paper is to explore the potential interest of image fusion in the context of multimodal scanning electron microscope (SEM) imaging. In particular, we aim at merging the backscattered electron images that usually have a high spatial resolution but do not provide enough discriminative information to physically classify the nature of the sample, with energy-dispersive X-ray spectroscopy (EDX) images that have discriminative information but a lower spatial resolution. The produced images are named enhanced EDX. To achieve this goal, we have compared the results obtained with classical pansharpening techniques for image fusion with an original approach tailored for multimodal SEM fusion of information. Quantitative assessment is obtained by means of two SEM images and a simulated dataset produced by a software based on PENELOPE. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  4. A Micropulse eye-safe all-fiber molecular backscatter coherent temperature lidar

    NASA Astrophysics Data System (ADS)

    Abari, Cyrus F.; Chu, Xinzhao; Mann, Jakob; Spuler, Scott

    2016-06-01

    In this paper, we analyze the performance of an all-fiber, micropulse, 1.5 μm coherent lidar for remote sensing of atmospheric temperature. The proposed system benefits from the recent advances in optics/electronics technology, especially an all-fiber image-reject homodyne receiver, where a high resolution spectrum in the baseband can be acquired. Due to the presence of a structured spectra resulting from the spontaneous Rayleigh-Brillouine scattering, associated with the relevant operating regimes, an accurate estimation of the temperature can be carried out. One of the main advantages of this system is the removal of the contaminating Mie backscatter signal by electronic filters at the baseband (before signal conditioning and amplification). The paper presents the basic concepts as well as a Monte-Carlo system simulation as the proof of concept.

  5. An energy-dependent electron backscattering coefficient

    NASA Astrophysics Data System (ADS)

    Williamson, W., Jr.; Antolak, A. J.; Meredith, R. J.

    1987-05-01

    An energy-dependent electron backscattering coefficient is derived based on the continuous slowing down approximation and the Bethe stopping power. Backscattering coefficients are given for 10-50-keV electrons incident on bulk and thin-film aluminum, silver, and gold targets. The results are compared with the Everhart theory and empirical fits to experimental data. The energy-dependent theory agrees better with experimental work.

  6. Electronic Imaging: Rochester Imaging Consortium, Abstracts of Research Topics Reported at the Annual Meeting of the Optical Society of America Held in San Jose, California on 3-8 November 1991

    DTIC Science & Technology

    1991-11-01

    Nicholas George "Image Deblurring for Multiple-Point Impulse Responses," Bryan J. Stossel and Nicholas George 14. SUBJECT TERMS 15. NUMBER OF PAGES...Keith B. Farr Nicholas George Backscatter from a Tilted Rough Disc Donald J. Schertler Nicholas George Image Deblurring for Multiple-Point Impulse ...correlation components. Uf) c)z 0 CL C/) Ix I- z 0 0 LL C,z -J a 0l IMAGE DEBLURRING FOR MULTIPLE-POINT IMPULSE RESPONSES Bryan J. Stossel and Nicholas George

  7. Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.

    PubMed

    Chow, James C L; Leung, Michael K K

    2008-06-01

    The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger recombination in the SiO2 gate. It is concluded that the MOSFET dosimeter performed well for measuring the electron backscatter from lead using electron beams. The uncertainty of EBF determined by comparing the results of Monte Carlo simulations and measurements is well within the accuracy of the MOSFET dosimeter (< +/- 4.2%) provided by the manufacturer.

  8. Development of a fountain detector for spectroscopy of secondary electrons in scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Agemura, Toshihide; Kimura, Takashi; Sekiguchi, Takashi

    2018-04-01

    The low-pass secondary electron (SE) detector, the so-called “fountain detector (FD)”, for scanning electron microscopy has high potential for application to the imaging of low-energy SEs. Low-energy SE imaging may be used for detecting the surface potential variations of a specimen. However, the detected SEs include a certain fraction of tertiary electrons (SE3s) because some of the high-energy backscattered electrons hit the grid to yield SE3s. We have overcome this difficulty by increasing the aperture ratio of the bias and ground grids and using the lock-in technique, in which the AC field with the DC offset was applied on the bias grid. The energy-filtered SE images of a 4H-SiC p-n junction show complex behavior according to the grid bias. These observations are clearly explained by the variations of Auger spectra across the p-n junction. The filtered SE images taken with the FD can be applied to observing the surface potential variation of specimens.

  9. Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.

    PubMed

    Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C

    2017-04-03

    The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  10. Two novel approaches to study arthropod anatomy by using dualbeam FIB/SEM.

    PubMed

    Di Giulio, Andrea; Muzzi, Maurizio

    2018-03-01

    Transmission Electron Microscopy (TEM) has always been the conventional method to study arthropod ultrastructure, while the use of Scanning Electron Microscopy (SEM) was mainly devoted to the examination of the external cuticular structures by secondary electrons. The new generation field emission SEMs are capable to generate images at sub-cellular level, comparable to TEM images employing backscattered electrons. The potential of this kind of acquisition becomes very powerful in the dual beam FIB/SEM where the SEM column is combined with a Focused Ion Beam (FIB) column. FIB uses ions as a nano-scalpel to slice samples fixed and embedded in resin, replacing traditional ultramicrotomy. We here present two novel methods, which optimize the use of FIB/SEM for studying arthropod anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Initation of pitting corrosion in martensitic stainless steels. [17-4PH; 13-8Mo; Custom 450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, W.R.; Semarge, R.E.; Bovard, F.S.

    1986-01-01

    The form of localized corrosion known as pitting often initiates preferentially at microstructural inhomogeneities. The pit initiation resistance, therefore, is controlled by the characteristics of the initiation sites, rather than by the bulk material composition. This investigation correlates the pit initiation resistance, as measured by critical pitting potentials, with preferred pit initiation sites for 3 martensitic stainless steels. Pit initiation sites are determined by secondary electron (SE) and backscattered electron (BSE) imaging and energy dispersive and wavelength dispersive spectrometries (EDS and WDS) with a scalling electron microscope (SEM) and an electron probe microanalyzer (EPMA).

  12. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    PubMed

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  13. Backscatter measurements for NIF ignition targets (invited).

    PubMed

    Moody, J D; Datte, P; Krauter, K; Bond, E; Michel, P A; Glenzer, S H; Divol, L; Niemann, C; Suter, L; Meezan, N; MacGowan, B J; Hibbard, R; London, R; Kilkenny, J; Wallace, R; Kline, J L; Knittel, K; Frieders, G; Golick, B; Ross, G; Widmann, K; Jackson, J; Vernon, S; Clancy, T

    2010-10-01

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  14. Electron Microscope Studies of Cadmium Mercury Telluride

    NASA Astrophysics Data System (ADS)

    Lyster, Martin

    Available from UMI in association with The British Library. Requires signed TDF. Epitaxial layers of Cd_{x }Hg_{(1-x)}Te grown on various substrates by liquid phase epitaxy and metallo-organic vapour phase epitaxy have been studied using transmission and scanning electron microscopy, in a variety of contrast modes. Wavelength-dispersive X-ray microanalysis has been used to study interfaces in epitaxial specimens, and the results are used to derive diffusion coefficients for a range of values of x in Cd_ {x}Hg_{(1-x)} Te. Extensive use has been made of back-scattered electron contrast in the SEM as a means of compositional mapping, and defect structures are imaged by this technique. The back-scattered electron contrast at interfaces has been studied in detail and is modelled using the Monte Carlo approach. The modelling is combined with calculations and practical measurements of the probe size in the SEM instrument used in the work, to arrive at a quantitative explanation of this contrast. The SEM and scintillator detector used allow a spatial resolution of better than 1000A, but it is shown that improvements in this are possible with present technology. Scanning infra-red microscopy (SIRM) and high -resolution transmission electron microscopy (HREM) have been applied to the study of CdTe. SIRM images reveal information about Te precipitation, including particle size and density. HREM images provide results concerning dislocation structures in CdTe. Selected-area diffraction contrast TEM results are presented which illustrate the microstructure of LPE and MOVPE material; and TEM foil preparation techniques are discussed, including the choice of ion species for milling cross-sectional specimens. In view of the results obtained, suggestions are made for future work in this field.

  15. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    PubMed

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  16. Occurrence and Distribution of Fe-0 Globules in Lunar Agglutinates

    NASA Technical Reports Server (NTRS)

    Basu, Abhijit; Wentworth, Susan J.; McKay, David S.

    2001-01-01

    High-resolution Backscattered Electron Imaging (BSE) of agglutinitic glass shows immiscible metallic Fe(o) globules (greater than 99% are less than 15 nm; greater than 50% are less than 50 nm) in agglutinitic melt defining flow-lines, occurring in clusters, and rimming clasts (approx. 5%). Additional information is contained in the original extended abstract.

  17. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    PubMed

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  18. Electron Microscopy Localization and Characterization of Functionalized Composite Organic-Inorganic SERS Nanoparticles on Leukemia Cells

    PubMed Central

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet Scanning Electron Microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron detector (BSE) was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution Transmission Electron Microscope (TEM) images and Scanning Auger Electron Spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens. PMID:18995965

  19. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.

    PubMed

    Hsiao, Z-W; Chen, D; Kuo, J-C; Lin, D-Y

    2017-04-01

    This study investigated the influence of deformation on precipitation behaviour and microstructure change during annealing. Here, the prior deformation of high-chromium stainless steel was tensile deformation of 3%, 6% and 10%, and the specimens were then annealed at 700˚C for 10 h. The specimens were subsequently analyzed using backscattered electron image and electron backscattering diffraction measurements with SEM. Compared with the deformation microstructure, the grains revealed no preferred orientation. The precipitates of TiN and NbC were formed homogenously in the grain interior and at grain boundaries after annealing. Fine Laves phase precipitates were observed in grains and along subgrain boundaries as the deformation increased. Furthermore, the volume fraction of Laves phase increased, but the average particle diameter of precipitate was reduced as the deformation increased. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Image contrast enhancement of Ni/YSZ anode during the slice-and-view process in FIB-SEM.

    PubMed

    Liu, Shu-Sheng; Takayama, Akiko; Matsumura, Syo; Koyama, Michihisa

    2016-03-01

    Focused ion beam-scanning electron microscopy (FIB-SEM) is a widely used and easily operational equipment for three-dimensional reconstruction with flexible analysis volume. It has been using successfully and increasingly in the field of solid oxide fuel cell. However, the phase contrast of the SEM images is indistinct in many cases, which will bring difficulties to the image processing. Herein, the phase contrast of a conventional Ni/yttria stabilized zirconia anode is tuned in an FIB-SEM with In-Lens secondary electron (SE) and backscattered electron detectors. Two accessories, tungsten probe and carbon nozzle, are inserted during the observation. The former has no influence on the contrast. When the carbon nozzle is inserted, best and distinct contrast can be obtained by In-Lens SE detector. This method is novel for contrast enhancement. Phase segmentation of the image can be automatically performed. The related mechanism for different images is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  2. Electron backscattering simulation in Geant4

    NASA Astrophysics Data System (ADS)

    Dondero, Paolo; Mantero, Alfonso; Ivanchencko, Vladimir; Lotti, Simone; Mineo, Teresa; Fioretti, Valentina

    2018-06-01

    The backscattering of electrons is a key phenomenon in several physics applications which range from medical therapy to space including AREMBES, the new ESA simulation framework for radiation background effects. The importance of properly reproducing this complex interaction has grown considerably in the last years and the Geant4 Monte Carlo simulation toolkit, recently upgraded to the version 10.3, is able to comply with the AREMBES requirements in a wide energy range. In this study a validation of the electron Geant4 backscattering models is performed with respect to several experimental data. In addition a selection of the most recent validation results on the electron scattering processes is also presented. Results of our analysis show a good agreement between simulations and data from several experiments, confirming the Geant4 electron backscattering models to be robust and reliable up to a few tens of electronvolts.

  3. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  4. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin

    2016-07-25

    Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less

  5. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further details of the instrumentation used for insulator measurements and representative measurements of insulating spacecraft materials are provided in other Spacecraft Charging Conference presentations. The NASA Space Environments and Effects Program, the Air Force Office of Scientific Research, the Boeing Corporation, NASA Graduate Research Fellowships, and the NASA Rocky Mountain Space Grant Consortium have provided support.

  6. The aCORN backscatter-suppressed beta spectrometer

    DOE PAGES

    Hassan, M. T.; Bateman, F.; Collett, B.; ...

    2017-06-16

    Backscatter of electrons from a beta detector, with incomplete energy deposition, can lead to undesirable effects in many types of experiments. We present and discuss the design and operation of a backscatter-suppressed beta spectrometer that was developed as part of a program to measure the electron–antineutrino correlation coefficient in neutron beta decay (aCORN). An array of backscatter veto detectors surrounds a plastic scintillator beta energy detector. The spectrometer contains an axial magnetic field gradient, so electrons are efficiently admitted but have a low probability for escaping back through the entrance after backscattering. Lastly, the design, construction, calibration, and performance ofmore » the spectrometer are discussed.« less

  7. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1983-01-01

    The evolution of the lunar regolith under solar wind and micrometeorite bombardment is discussed as well as the size distribution of ultrafine iron in lunar soil. The most important characteristics of complex graphite, sulfide, arsenide, palladium, and platinum mineralization in a pegmatoid pyroxenite of the Stillwater Complex in Montana are examined. Oblique reflected light micrographs and backscattered electron SEM images of the graphite associations are included.

  8. Direct-detection EPID dosimetry: investigation of a potential clinical configuration for IMRT verification.

    PubMed

    Vial, Philip; Gustafsson, Helen; Oliver, Lyn; Baldock, Clive; Greer, Peter B

    2009-12-07

    The routine use of electronic portal imaging devices (EPIDs) as dosimeters for radiotherapy quality assurance is complicated by the non-water equivalence of the EPID's dose response. A commercial EPID modified to a direct-detection configuration was previously demonstrated to provide water-equivalent dose response with d(max) solid water build-up and 10 cm solid water backscatter. Clinical implementation of the direct EPID (dEPID) requires a design that maintains the water-equivalent dose response, can be incorporated onto existing EPID support arms and maintains sufficient image quality for clinical imaging. This study investigated the dEPID dose response with different configurations of build-up and backscatter using varying thickness of solid water and copper. Field size output factors and beam profiles measured with the dEPID were compared with ionization chamber measurements of dose in water for both 6 MV and 18 MV. The dEPID configured with d(max) solid water build-up and no backscatter (except for the support arm) was within 1.5% of dose in water data for both energies. The dEPID was maintained in this configuration for clinical dosimetry and image quality studies. Close agreement between the dEPID and treatment planning system was obtained for an IMRT field with 98.4% of pixels within the field meeting a gamma criterion of 3% and 3 mm. The reduced sensitivity of the dEPID resulted in a poorer image quality based on quantitative (contrast-to-noise ratio) and qualitative (anthropomorphic phantom) studies. However, clinically useful images were obtained with the dEPID using typical treatment field doses. The dEPID is a water-equivalent dosimeter that can be implemented with minimal modifications to the standard commercial EPID design. The proposed dEPID design greatly simplifies the verification of IMRT dose delivery.

  9. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  10. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  11. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    PubMed

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  12. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    PubMed Central

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2015-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  13. FIB-SEM cathodoluminescence tomography: practical and theoretical considerations.

    PubMed

    De Winter, D A M; Lebbink, M N; Wiggers De Vries, D F; Post, J A; Drury, M R

    2011-09-01

    Focused ion beam-scanning electron microscope (FIB-SEM) tomography is a powerful application in obtaining three-dimensional (3D) information. The FIB creates a cross section and subsequently removes thin slices. The SEM takes images using secondary or backscattered electrons, or maps every slice using X-rays and/or electron backscatter diffraction patterns. The objective of this study is to assess the possibilities of combining FIB-SEM tomography with cathodoluminescence (CL) imaging. The intensity of CL emission is related to variations in defect or impurity concentrations. A potential problem with FIB-SEM CL tomography is that ion milling may change the defect state of the material and the CL emission. In addition the conventional tilted sample geometry used in FIB-SEM tomography is not compatible with conventional CL detectors. Here we examine the influence of the FIB on CL emission in natural diamond and the feasibility of FIB-SEM CL tomography. A systematic investigation establishes that the ion beam influences CL emission of diamond, with a dependency on both the ion beam and electron beam acceleration voltage. CL emission in natural diamond is enhanced particularly at low ion beam and electron beam voltages. This enhancement of the CL emission can be partly explained by an increase in surface defects induced by ion milling. CL emission enhancement could be used to improve the CL image quality. To conduct FIB-SEM CL tomography, a recently developed novel specimen geometry is adopted to enable sequential ion milling and CL imaging on an untilted sample. We show that CL imaging can be manually combined with FIB-SEM tomography with a modified protocol for 3D microstructure reconstruction. In principle, automated FIB-SEM CL tomography should be feasible, provided that dedicated CL detectors are developed that allow subsequent milling and CL imaging without manual intervention, as the current CL detector needs to be manually retracted before a slice can be milled. Due to the required high electron beam acceleration voltage for CL emission, the resolution for FIB-SEM CL tomography is currently limited to several hundreds of nm in XY and up to 650 nm in Z for diamonds. Opaque materials are likely to have an improved Z resolution, as CL emission generated deeper in the material is not able to escape from it. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  14. An automated method of quantifying ferrite microstructures using electron backscatter diffraction (EBSD) data.

    PubMed

    Shrestha, Sachin L; Breen, Andrew J; Trimby, Patrick; Proust, Gwénaëlle; Ringer, Simon P; Cairney, Julie M

    2014-02-01

    The identification and quantification of the different ferrite microconstituents in steels has long been a major challenge for metallurgists. Manual point counting from images obtained by optical and scanning electron microscopy (SEM) is commonly used for this purpose. While classification systems exist, the complexity of steel microstructures means that identifying and quantifying these phases is still a great challenge. Moreover, point counting is extremely tedious, time consuming, and subject to operator bias. This paper presents a new automated identification and quantification technique for the characterisation of complex ferrite microstructures by electron backscatter diffraction (EBSD). This technique takes advantage of the fact that different classes of ferrite exhibit preferential grain boundary misorientations, aspect ratios and mean misorientation, all of which can be detected using current EBSD software. These characteristics are set as criteria for identification and linked to grain size to determine the area fractions. The results of this method were evaluated by comparing the new automated technique with point counting results. The technique could easily be applied to a range of other steel microstructures. © 2013 Published by Elsevier B.V.

  15. Microstructural and microtextural characterization of oxide scale on steel using electron backscatter diffraction.

    PubMed

    Birosca, S; Dingley, D; Higginson, R L

    2004-03-01

    High-temperature oxidation of steel has been extensively studied. The microstructure of iron oxides is, however, not well understood because of the difficulty in imaging it using conventional methods, such as optical or electron microscopy. A knowledge of the oxide microstructure and texture is critical in understanding how the oxide film behaves during high-temperature deformation of steels and more importantly how it can be removed following processing. Recently, electron back-scatter diffraction (EBSD) has proved to be a powerful technique for distinguishing the different phases in scales. This technique gives valuable information both on the microstructure and on the orientation relationships between the steel and the scale layers. In the current study EBSD has been used to investigate the microstructure and microtexture of iron oxide layers grown on interstitial free steel at different times and temperatures. Heat treatments have been carried out under normal oxidation conditions in order to relate the results to real steel manufacturing in industry. The composition, morphologies, microstructure and microtexture of selected conditions have been studied using EBSD.

  16. Effect of Welding Heat Input on Microstructure and Texture of Inconel 625 Weld Overlay Studied Using the Electron Backscatter Diffraction Method

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Suk; Lee, Hae-Woo

    2016-12-01

    The grain size and the texture of three specimens prepared at different heat inputs were determined using optical microscopy and the electron backscatter diffraction method of scanning electron microscopy. Each specimen was equally divided into fusion line zone (FLZ), columnar dendrite zone (CDZ), and surface zone (SZ), according to the location of the weld. Fine dendrites were observed in the FLZ, coarse dendrites in the CDZ, and dendrites grew perpendicular to the FLZ and CDZ. As the heat input increased, the melted zone in the vicinity of the FLZ widened due to the higher Fe content. A lower image quality value was observed for the FLZ compared to the other zones. The results of grain size measurement in each zone showed that the grain size of the SZ became larger as the heat input increased. From the inverse pole figure (IPF) map in the normal direction (ND) and the rolling direction (RD), as the heat input increased, a specific orientation was formed. However, a dominant [001] direction was observed in the RD IPF map.

  17. Three Dimensional Characterization of Tin Crystallography and Cu6Sn5 Intermetallics in Solder Joints by Multiscale Tomography

    NASA Astrophysics Data System (ADS)

    Kirubanandham, A.; Lujan-Regalado, I.; Vallabhaneni, R.; Chawla, N.

    2016-11-01

    Decreasing pitch size in electronic packaging has resulted in a drastic decrease in solder volumes. The Sn grain crystallography and fraction of intermetallic compounds (IMCs) in small-scale solder joints evolve much differently at the smaller length scales. A cross-sectional study limits the morphological analysis of microstructural features to two dimensions. This study utilizes serial sectioning technique in conjunction with electron backscatter diffraction to investigate the crystallographic orientation of both Sn grains and Cu6Sn5 IMCs in Cu/Pure Sn/Cu solder joints in three dimensional (3D). Quantification of grain aspect ratio is affected by local cooling rate differences within the solder volume. Backscatter electron imaging and focused ion beam serial sectioning enabled the visualization of morphology of both nanosized Cu6Sn5 IMCs and the hollow hexagonal morphology type Cu6Sn5 IMCs in 3D. Quantification and visualization of microstructural features in 3D thus enable us to better understand the microstructure and deformation mechanics within these small scale solder joints.

  18. X-Ray Backscatter Imaging for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel; Edwards, Talion; Toh, Chin

    2011-06-01

    Scatter x-ray imaging (SXI) is a real time, digital, x-ray backscatter imaging technique that allows radiographs to be taken from one side of an object. This x-ray backscatter imaging technique offers many advantages over conventional transmission radiography that include single-sided access and extremely low radiation fields compared to conventional open source industrial radiography. Examples of some applications include the detection of corrosion, foreign object debris, water intrusion, cracking, impact damage and leak detection in a variety of material such as aluminum, composites, honeycomb structures, and titanium.

  19. Effects of fatty infiltration in human livers on the backscattered statistics of ultrasound imaging.

    PubMed

    Wan, Yung-Liang; Tai, Dar-In; Ma, Hsiang-Yang; Chiang, Bing-Hao; Chen, Chin-Kuo; Tsui, Po-Hsiang

    2015-06-01

    Ultrasound imaging has been widely applied to screen fatty liver disease. Fatty liver disease is a condition where large vacuoles of triglyceride fat accumulate in liver cells, thereby altering the arrangement of scatterers and the corresponding backscattered statistics. In this study, we used ultrasound Nakagami imaging to explore the effects of fatty infiltration in human livers on the statistical distribution of backscattered signals. A total of 107 patients volunteered to participate in the experiments. The livers were scanned using a clinical ultrasound scanner to obtain the raw backscattered signals for ultrasound B-mode and Nakagami imaging. Clinical scores of fatty liver disease for each patient were determined according to a well-accepted sonographic scoring system. The results showed that the Nakagami image can visualize the local backscattering properties of liver tissues. The Nakagami parameter increased from 0.62 ± 0.11 to 1.02 ± 0.07 as the fatty liver disease stage increased from normal to severe, indicating that the backscattered statistics vary from pre-Rayleigh to Rayleigh distributions. A significant positive correlation (correlation coefficient ρ = 0.84; probability value (p value) < 0.0001) exists between the degree of fatty infiltration and the Nakagami parameter, suggesting that ultrasound Nakagami imaging has potentials in future applications in fatty liver disease diagnosis. © IMechE 2015.

  20. Calibrating nadir striped artifacts in a multibeam backscatter image using the equal mean-variance fitting model

    NASA Astrophysics Data System (ADS)

    Yang, Fanlin; Zhao, Chunxia; Zhang, Kai; Feng, Chengkai; Ma, Yue

    2017-07-01

    Acoustic seafloor classification with multibeam backscatter measurements is an attractive approach for mapping seafloor properties over a large area. However, artifacts in the multibeam backscatter measurements prevent accurate characterization of the seafloor. In particular, the backscatter level is extremely strong and highly variable in the near-nadir region due to the specular echo phenomenon. Consequently, striped artifacts emerge in the backscatter image, which can degrade the classification accuracy. This study focuses on the striped artifacts in multibeam backscatter images. To this end, a calibration algorithm based on equal mean-variance fitting is developed. By fitting the local shape of the angular response curve, the striped artifacts are compressed and moved according to the relations between the mean and variance in the near-nadir and off-nadir region. The algorithm utilized the measured data of near-nadir region and retained the basic shape of the response curve. The experimental results verify the high performance of the proposed method.

  1. Quantitative Analysis of Venus Radar Backscatter Data in ArcGIS

    NASA Technical Reports Server (NTRS)

    Long, S. M.; Grosfils, E. B.

    2005-01-01

    Ongoing mapping of the Ganiki Planitia (V14) quadrangle of Venus and definition of material units has involved an integrated but qualitative analysis of Magellan radar backscatter images and topography using standard geomorphological mapping techniques. However, such analyses do not take full advantage of the quantitative information contained within the images. Analysis of the backscatter coefficient allows a much more rigorous statistical comparison between mapped units, permitting first order selfsimilarity tests of geographically separated materials assigned identical geomorphological labels. Such analyses cannot be performed directly on pixel (DN) values from Magellan backscatter images, because the pixels are scaled to the Muhleman law for radar echoes on Venus and are not corrected for latitudinal variations in incidence angle. Therefore, DN values must be converted based on pixel latitude back to their backscatter coefficient values before accurate statistical analysis can occur. Here we present a method for performing the conversions and analysis of Magellan backscatter data using commonly available ArcGIS software and illustrate the advantages of the process for geological mapping.

  2. Producing Science-Ready Radar Datasets for the Retrieval of Forest Structure Parameters from Backscatter: Correcting for Terrain Topography and Changes in Vegetation Reflectivity

    NASA Technical Reports Server (NTRS)

    Simard, M.; Riel, Bryan; Hensley, S.; Lavalle, Marco

    2011-01-01

    Radar backscatter data contain both geometric and radiometric distortions due to underlying topography and the radar viewing geometry. Our objective is to develop a radiometric correction algorithm specific to the UAVSAR system configuration that would improve retrieval of forest structure parameters. UAVSAR is an airborne Lband radar capable of repeat?pass interferometry producing images with a spatial resolution of 5m. It is characterized by an electronically steerable antenna to compensate for aircraft attitude. Thus, the computation of viewing angles (i.e. look, incidence and projection) must include aircraft attitude angles (i.e. yaw, pitch and roll) in addition to the antenna steering angle. In this presentation, we address two components of radiometric correction: area projection and vegetation reflectivity. The first correction is applied by normalization of the radar backscatter by the local ground area illuminated by the radar beam. The second is a correction due to changes in vegetation reflectivity with viewing geometry.

  3. Evaluation of Characterization Techniques for Carbon-Carbon Composites

    DTIC Science & Technology

    1992-05-01

    Enhancement of Resin (50X) 51 28 Confocal Image of Reticulated , Vitreous Carbon Foam 53 29 Schemmtic Principle of Backscattered Electron Microscopy for...future. 7.2 Confocal Microscopy Both carbon - carbon composites and reticulated vitreous carbon foams were submitted to Sarastro, Inc. to evaluate...indicate 1-micron resolutions are possible; however, the depth penetration is limited even further at these parameters. Six reticulated vitreous carbon

  4. Estimation of vegetation parameters such as Leaf Area Index from polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Hetz, Marina; Blumberg, Dan G.; Rotman, Stanley R.

    2010-05-01

    This work presents the analysis of the capability to use the radar backscatter coefficient in semi-arid zones to estimate the vegetation crown in terms of Leaf Area Index (LAI). The research area is characterized by the presence of a pine forest with shrubs as an underlying vegetation layer (understory), olive trees, natural grove areas and eucalyptus trees. The research area was imaged by an airborne RADAR system in L-band during February 2009. The imagery includes multi-look radar images. All the images were fully polarized i.e., HH, VV, HV polarizations. For this research we used the central azimuth angle (113° ). We measured LAI using the ?T Sun Scan Canopy Analysis System. Verification was done by analytic calculations and digital methods for the leaf's and needle's surface area. In addition, we estimated the radar extinction coefficient of the vegetation volume by comparing point calibration targets (trihedral corner reflectors with 150cm side length) within and without the canopy. The radar extinction in co- polarized images was ~26dB and ~24dB for pines and olives respectively, compared to the same calibration target outside the vegetation. We used smaller trihedral corner reflectors (41cm side length) and covered them with vegetation to measure the correlation between vegetation density, LAI and radar backscatter coefficient for pines and olives under known conditions. An inverse correlation between the radar backscatter coefficient of the trihedral corner reflectors covered by olive branches and the LAI of those branches was observed. The correlation between LAI and the optical transmittance was derived using the Beer-Lambert law. In addition, comparing this law's principle to the principle of the radar backscatter coefficient production, we derived the equation that connects between the radar backscatter coefficient and LAI. After extracting the radar backscatter coefficient of forested areas, all the vegetation parameters were used as inputs for the MIMICS model that simulates the radar backscatter coefficient of pines. The model results show a backscatter of -18dB in HV polarization which is 13dB higher than the mean pines backscatter in the radar images, whereas the co-polarized images revealed a backscatter of -10dB which is 23dB higher than the actual backscatter value deriver from the radar images. Therefore, next step in the research will incorporate other vegetation parameters and attempt to understand the discrepancies between the simulation and the actual data.

  5. Crystallography of Magnetite Plaquettes and their Significance as Asymmetric Catalysts for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.

  6. Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques.

    PubMed

    Plascencia-Villa, Germán; Starr, Clarise R; Armstrong, Linda S; Ponce, Arturo; José-Yacamán, Miguel

    2012-11-01

    Use of engineered metal oxide nanoparticles in a plethora of biological applications and custom products has warned about some possible dose-dependent cytotoxic effects. Macrophages are key components of the innate immune system used to study possible toxic effects and internalization of different nanoparticulate materials. In this work, ultra-high resolution field emission scanning electron microscopy (FE-SEM) was used to offer new insights into the dynamical processes of interaction of nanomaterials with macrophage cells dosed with different concentrations of metal oxide nanoparticles (CeO(2), TiO(2) and ZnO). The versatility of FE-SEM has allowed obtaining a detailed characterization of processes of adsorption and endocytosis of nanoparticles, by using advanced analytical and imaging techniques on complete unstained uncoated cells, including secondary electron imaging, high-sensitive backscattered electron imaging, X-ray microanalysis and stereoimaging. Low voltage BF/DF-STEM confirmed nanoparticle adsorption and internalization into endosomes of CeO(2) and TiO(2), whereas ZnO develop apoptosis after 24 h of interaction caused by dissolution and invasion of cell nucleus. Ultra-high resolution scanning electron microscopy techniques provided new insights into interactions of inorganic nanoparticles with macrophage cells with high spatial resolution.

  7. Method and Apparatus for Computed Imaging Backscatter Radiography

    NASA Technical Reports Server (NTRS)

    Shedlock, Daniel (Inventor); Sabri, Nissia (Inventor); Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Meng, Christopher (Inventor)

    2013-01-01

    Systems and methods of x-ray backscatter radiography are provided. A single-sided, non-destructive imaging technique utilizing x-ray radiation to image subsurface features is disclosed, capable of scanning a region using a fan beam aperture and gathering data using rotational motion.

  8. Total rate imaging with x-rays (TRIX)--a simple method of forming a non-projection x-ray image in the SEM using an energy dispersive detector and its application to biological specimens.

    PubMed

    Ingram, P; Shelburne, J D

    1980-01-01

    X-ray images can be formed in a conventional scanning electron microscope equipped with a Si(Li) energy dispersive spectrometer. All the x-ray events generated in the electron beam scanning process are synchronously displayed in the same manner as for dot maps. The quasi-digital image formed using Total Rate Imaging with X-rays (TRIX) exhibits good gray scale contrast and is dependent on topography, orientation and atomic number. Although this latter dependence is complex, it has been found useful in locating several types of inclusions in lung tissue (silicosis), human alveolar macrophages and cigarette smoke condensate. This is because of the greater depth of penetration of x-rays than backscattered electrons (BSE) usually used for such localizations in a matrix, and the negligible sensitivity of the Si(Li) detector to x-rays from an organic biological matrix. The optimum procedure is to use a combination of TRIX and BSE to investigate such specimens.

  9. Visible/Infrared Optical Depths of Cirrus as Seen by Satellite and Scanning Lidar

    NASA Technical Reports Server (NTRS)

    Wylie, Donald; Wolf, Walt; Piironen, Paivi; Eloranta, Edwin

    1996-01-01

    The High Spectral Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL) were combined to produce a quantitative image of the visible optical depth of cirrus clouds. The HSRL was used to calibrate the VIL signal into backscatter cross sections of particulates. The backscatter cross sections were related to extinction by a constant backscatter phase function determined from the HSRL data. This produced a three dimensional image of visual extinction in the cirrus clouds over a one hour period. Two lidar images were constructed from one hour VIL cross section records.

  10. Simultaneous Scanning Electron Microscope Imaging of Topographical and Chemical Contrast Using In-Lens, In-Column, and Everhart-Thornley Detector Systems.

    PubMed

    Zhang, Xinming; Cen, Xi; Ravichandran, Rijuta; Hughes, Lauren A; van Benthem, Klaus

    2016-06-01

    The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.

  11. Two-colour X-gamma ray inverse Compton back-scattering source

    NASA Astrophysics Data System (ADS)

    Drebot, I.; Petrillo, V.; Serafini, L.

    2017-10-01

    We present a simple and new scheme for producing two-colour Thomson/Compton radiation with the possibility of controlling separately the polarization of the two different colours, based on the interaction of one single electron beam with two light pulses that can come from the same laser setup or from two different lasers and that collide with the electrons at different angle. One of the most interesting cases for medical applications is to provide two X-ray pulses across the iodine K-edge at 33.2 keV. The iodine is used as contrast medium in various imaging techniques and the availability of two spectral lines accross the K-edge allows one to produce subtraction images with a great increase in accuracy.

  12. Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.

    PubMed

    Cui, Liping; Knox, Wayne H

    2010-01-01

    Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.

  13. Skeletal growth phases of the cold-water coral Lophelia pertusa shown by scanning electron microscope and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Mouchi, Vincent; Vonlanthen, Pierre; Verrecchia, Eric P.; Crowley, Quentin G.

    2016-04-01

    Lophelia pertusa is a cold-water coral, which may form reefs by the association of multiple coralites within which a polyp lives. Each individual polyp builds an aragonite skeleton by an initial phase of early mineralization (traditionally referred to as centres of calcification) from which aragonite fibres grow in thickening deposits. The skeleton wall features successive optically opaque and translucent bands previously attributed to different regimes of growth as either uniform in crystal orientation (translucent bands) or with a chaotic organization (opaque bands). The processes involved in any organizational changes are still unknown. Microlayers in the coral wall, which represent separate periods of skeletal growth, have been recently identified and described. These growth patterns are readily visible under scanning electron microscope (SEM) after etching in dilute formic acid, but they do not necessarily form continuously visible structures. Here we present high quality SEM images and electron backscatter diffraction (EBSD) maps to study aragonite fibre orientation across the wall of L. pertusa. Both microlayers and opaque and translucent bands are compared to the crystallographic orientation of the aragonite fibres. EBSD maps and SEM images indicate that aragonite fibres do not exhibit a chaotic orientation, even in opaque bands. The absence of continuity of microlayers is partially explained by an association of multiple crystallographic preferred orientations of aragonite fibres. In the case of L. pertusa, careful textural characterisation is necessary prior to elemental or isotope analysis in order to select a skeletal transect representing a linear and continuous time period.

  14. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for the Surface of Mars: An Instrument for the Planetary Science Community

    NASA Technical Reports Server (NTRS)

    Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.; hide

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.

  15. Clean image synthesis and target numerical marching for optical imaging with backscattering light

    PubMed Central

    Pu, Yang; Wang, Wubao

    2011-01-01

    Scanning backscattering imaging and independent component analysis (ICA) are used to probe targets hidden in the subsurface of a turbid medium. A new correction procedure is proposed and used to synthesize a “clean” image of a homogeneous host medium numerically from a set of raster-scanned “dirty” backscattering images of the medium with embedded targets. The independent intensity distributions on the surface of the medium corresponding to individual targets are then unmixed using ICA of the difference between the set of dirty images and the clean image. The target positions are localized by a novel analytical method, which marches the target to the surface of the turbid medium until a match with the retrieved independent component is accomplished. The unknown surface property of the turbid medium is automatically accounted for by this method. Employing clean image synthesis and target numerical marching, three-dimensional (3D) localization of objects embedded inside a turbid medium using independent component analysis in a backscattering geometry is demonstrated for the first time, using as an example, imaging a small piece of cancerous prostate tissue embedded in a host consisting of normal prostate tissue. PMID:21483608

  16. Novel X-ray backscatter technique for detection of dangerous materials: application to aviation and port security

    NASA Astrophysics Data System (ADS)

    Kolkoori, S.; Wrobel, N.; Osterloh, K.; Zscherpel, U.; Ewert, U.

    2013-09-01

    Radiological inspections, in general, are the nondestructive testing (NDT) methods to detect the bulk of explosives in large objects. In contrast to personal luggage, cargo or building components constitute a complexity that may significantly hinder the detection of a threat by conventional X-ray transmission radiography. In this article, a novel X-ray backscatter technique is presented for detecting suspicious objects in a densely packed large object with only a single sided access. It consists of an X-ray backscatter camera with a special twisted slit collimator for imaging backscattering objects. The new X-ray backscatter camera is not only imaging the objects based on their densities but also by including the influences of surrounding objects. This unique feature of the X-ray backscatter camera provides new insights in identifying the internal features of the inspected object. Experimental mock-ups were designed imitating containers with threats among a complex packing as they may be encountered in reality. We investigated the dependence of the quality of the X-ray backscatter image on (a) the exposure time, (b) multiple exposures, (c) the distance between object and slit camera, and (d) the width of the slit. At the end, the significant advantages of the presented X-ray backscatter camera in the context of aviation and port security are discussed.

  17. Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Nico; Lam, Sylvia; Carraro, Anita; Korbelik, Jagoda; Miller, Dianne M.; McAlpine, Jessica N.; Lee, Marette; Kienle, Alwin; MacAulay, Calum

    2016-06-01

    A fiber optic imaging approach is presented using structured illumination for quantification of almost pure epithelial backscattering. We employ multiple spatially modulated projection patterns and camera-based reflectance capture to image depth-dependent epithelial scattering. The potential diagnostic value of our approach is investigated on cervical ex vivo tissue specimens. Our study indicates a strong backscattering increase in the upper part of the cervical epithelium caused by dysplastic microstructural changes. Quantization of relative depth-dependent backscattering is confirmed as a potentially useful diagnostic feature for detection of precancerous lesions in cervical squamous epithelium.

  18. Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.

    PubMed

    Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana

    2010-10-01

    The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.

  19. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Whitaker, Ross (Inventor); Turner, D. Clark (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  20. Automated in-chamber specimen coating for serial block-face electron microscopy.

    PubMed

    Titze, B; Denk, W

    2013-05-01

    When imaging insulating specimens in a scanning electron microscope, negative charge accumulates locally ('sample charging'). The resulting electric fields distort signal amplitude, focus and image geometry, which can be avoided by coating the specimen with a conductive film prior to introducing it into the microscope chamber. This, however, is incompatible with serial block-face electron microscopy (SBEM), where imaging and surface removal cycles (by diamond knife or focused ion beam) alternate, with the sample remaining in place. Here we show that coating the sample after each cutting cycle with a 1-2 nm metallic film, using an electron beam evaporator that is integrated into the microscope chamber, eliminates charging effects for both backscattered (BSE) and secondary electron (SE) imaging. The reduction in signal-to-noise ratio (SNR) caused by the film is smaller than that caused by the widely used low-vacuum method. Sample surfaces as large as 12 mm across were coated and imaged without charging effects at beam currents as high as 25 nA. The coatings also enabled the use of beam deceleration for non-conducting samples, leading to substantial SNR gains for BSE contrast. We modified and automated the evaporator to enable the acquisition of SBEM stacks, and demonstrated the acquisition of stacks of over 1000 successive cut/coat/image cycles and of stacks using beam deceleration or SE contrast. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  1. Focussed Ion Beam Milling and Scanning Electron Microscopy of Brain Tissue

    PubMed Central

    Knott, Graham; Rosset, Stéphanie; Cantoni, Marco

    2011-01-01

    This protocol describes how biological samples, like brain tissue, can be imaged in three dimensions using the focussed ion beam/scanning electron microscope (FIB/SEM). The samples are fixed with aldehydes, heavy metal stained using osmium tetroxide and uranyl acetate. They are then dehydrated with alcohol and infiltrated with resin, which is then hardened. Using a light microscope and ultramicrotome with glass knives, a small block containing the region interest close to the surface is made. The block is then placed inside the FIB/SEM, and the ion beam used to roughly mill a vertical face along one side of the block, close to this region. Using backscattered electrons to image the underlying structures, a smaller face is then milled with a finer ion beam and the surface scrutinised more closely to determine the exact area of the face to be imaged and milled. The parameters of the microscope are then set so that the face is repeatedly milled and imaged so that serial images are collected through a volume of the block. The image stack will typically contain isotropic voxels with dimenions as small a 4 nm in each direction. This image quality in any imaging plane enables the user to analyse cell ultrastructure at any viewing angle within the image stack. PMID:21775953

  2. Scanning electron microscopy of bone.

    PubMed

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  3. Comparisons between MCNP, EGS4 and experiment for clinical electron beams.

    PubMed

    Jeraj, R; Keall, P J; Ostwald, P M

    1999-03-01

    Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza

    A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of themore » differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.« less

  5. Investigation of Synthetic Mg(1.3)V(1.7)O4 Spinel with MgO Inclusions: Case Study of a Spinel with an Apparently occupied Interstitial Site

    NASA Technical Reports Server (NTRS)

    Uchida, Hinako; Righter, Kevin; Lavina, Barbara; Nowell, Matthew M.; Wright, Stuart I.; Downs, Robert T.; Yang, Hexiong

    2007-01-01

    A magnesium vanadate spinel crystal, ideally MgV2O4, synthesized at 1 bar, 1200 C and equilibrated under FMQ + 1.3 log f(sub o2) condition, was investigated using single-crystal X-ray diffraction, electron microprobe, and electron backscatter (EBSD). The initial X-ray structure refinements gave tetrahedral and octahedral site occupancies, along with the presence of 0.053 apfu Mg at an interstitial octahedral site . Back-scattered electron (BSE) images and electron microprobe analyses revealed the existence of an Mg-rich phase in the spinel matrix, which was too small (less than or equal to 3microns) for an accurate chemical determination. The EBSD analysis combined with X-ray energy dispersive spectroscop[y (XEDS) suggested that the Mg-rich inclusions are periclase oriented coherently with the spinel matrix. The final structure refinements were optimized by subtracting the X-ray intensity contributions (approx. 9%) of periclase reflections, which eliminated the interstitial Mg. This study provides insight into possible origins of refined interstitial cations reported in the the literature for spinel, and points to the difficulty of using only X-ray diffraction data to distinguish a spinel with interstitial cations from one with coherently oriented MgO inclusions.

  6. TH-AB-BRA-10: The Physics of Interface Effects for Radiation Treatments in a MRI-Linac: A Monte Carlo Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, S; Sarfehnia, A; Kim, A

    Purpose: To investigate and explain the interface effects for clinically relevant materials being irradiated in the presence of a 1.5 T transverse magnetic field. Methods: Interface effects were investigated using Geant4.10.1 both with (B-On) and without (B-Off) a magnetic field for an Elekta MRI-Linac. A slab of thickness 8 cm, representing inhomogeneity, was placed at a depth of 4 cm in a 20×20×20 cm water phantom. Backscattered electron fluence was calculated through a 20×20 cm plane aligned with the surface of the inhomogeneity. Inhomogeneities investigated were lung, bone, aluminum, titanium, stainless steel, and dental filling. A photon beam with fieldmore » size of 2×2 cm at the isocenter and SAD of 143.5 cm was generated from a point source with energy distribution sampled from a histogram representing the true Elekta MRI-Linac photon spectrum. Results: In the B-On case, if the heterogeneity is a low Z{sub eff} material, such as lung, the backscattered electron fluence is increased considerably, i.e. by 54 %, and the corresponding dose is expected to be higher near the interface compared to the B-Off case. On the contrary, if the heterogeneity is a high Z{sub eff} material then the backscattered electron fluence is reduced in the B-On electron fluence is reduced in the B-On case. This reduction leads to a lower dose deposition at the interface compared to the B-Off case. Conclusion: The reduction in dose at the interface, in the B-On case, is directly related to the reduction in backscattered electron fluence. The reduction in backscattered electron fluence occurs due to two different reasons. First, the electron energy spectrum hitting the interface is changed for the B-On case which changes the electron scattering probability. Second, some electrons that are looping under the influence of the magnetic field are captured by the higher density side of the interface and no longer contribute to the backscattered electron stream. Funding support for this study was provided by ElektaTM.« less

  7. Mapping biomass for a northern forest ecosystem using multi-frequency SAR data

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, Guoqing

    1992-01-01

    Image processing methods for mapping standing biomass for a forest in Maine, using NASA/JPL airborne synthetic aperture radar (AIRSAR) polarimeter data, are presented. By examining the dependence of backscattering on standing biomass, it is determined that the ratio of HV backscattering from a longer wavelength (P- or L-band) to a shorter wavelength (C) is a good combination for mapping total biomass. This ratio enhances the correlation of the image signature to the standing biomass and compensates for a major part of the variations in backscattering attributed to radar incidence angle. The image processing methods used include image calibration, ratioing, filtering, and segmentation. The image segmentation algorithm uses both means and variances of the image, and it is combined with the image filtering process. Preliminary assessment of the resultant biomass maps suggests that this is a promising method.

  8. The energy-dependent electron loss model: backscattering and application to heterogeneous slab media.

    PubMed

    Lee, Tae Kyu; Sandison, George A

    2003-01-21

    Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, chi, in the algorithm to be determined in advance of calculation.

  9. The energy-dependent electron loss model: backscattering and application to heterogeneous slab media

    NASA Astrophysics Data System (ADS)

    Lee, Tae Kyu; Sandison, George A.

    2003-01-01

    Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, χ, in the algorithm to be determined in advance of calculation.

  10. Collection efficiency and acceptance maps of electron detectors for understanding signal detection on modern scanning electron microscopy.

    PubMed

    Agemura, Toshihide; Sekiguchi, Takashi

    2018-02-01

    Collection efficiency and acceptance maps of typical detectors in modern scanning electron microscopes (SEMs) were investigated. Secondary and backscattered electron trajectories from a specimen to through-the-lens and under-the-lens detectors placed on an electron optical axis and an Everhart-Thornley detector mounted on a specimen chamber were simulated three-dimensionally. The acceptance maps were drawn as the relationship between the energy and angle of collected electrons under different working distances. The collection efficiency considering the detector sensitivity was also estimated for the various working distances. These data indicated that the acceptance maps and collection efficiency are keys to understand the detection mechanism and image contrast for each detector in the modern SEMs. Furthermore, the working distance is the dominant parameter because electron trajectories are drastically changed with the working distance.

  11. Correlative multi-scale characterization of a fine grained Nd-Fe-B sintered magnet.

    PubMed

    Sasaki, T T; Ohkubo, T; Hono, K; Une, Y; Sagawa, M

    2013-09-01

    The Nd-rich phases in pressless processed fine grained Nd-Fe-B sintered magnets have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and three dimensional atom probe tomography (3DAP). The combination of the backscattered electron (BSE) and in-lens secondary electron (IL-SE) images in SEM led to an unambiguous identification of four types of Nd-rich phases, NdOx, Ia3 type phase, which is isostructural to Nd₂O₃, dhcp-Nd and Nd₁Fe₄B₄. In addition, the 3DAP analysis of thin Nd-rich grain boundary layer indicate that the coercivity has a close correlation with the chemistry of the grain boundary phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Imaging of immunolabeled membrane receptors in uncoated SEM specimens.

    PubMed

    Heinzmann, U; Reninger, A; Autrata, R; Höfler, H

    1994-01-01

    Epidermal growth factor receptors (EGFR) were labeled with 10 nm immunogold and examined on uncoated specimens of A431 human epidermoid carcinoma cells. A field emission gun and a high-sensitivity YAG ring detector were used to demonstrate the affinity labeling simultaneously in the secondary-electron (SE) and backscattered-electron (BSE) modes with a low accelerating voltage (Vo). At Vo = 2 kV, the SE and BSE signals were too weak to identify all markers, while at Vo = 3-7 kV labeling was observed unambiguously in both the SE and BSE modes with smaller and higher working distances. Increasing the Vo to above 7 kV sometimes provokes instability of the specimens. A Vo of > or = 10 kV produces charging artifacts in the SE image, but permits a BSE image of the gold markers providing additional topographic information. In conclusion, immunogold labeling can be used with good results for uncoated specimens.

  13. Microstructure of bentonite in iron ore green pellets.

    PubMed

    Bhuiyan, Iftekhar U; Mouzon, Johanne; Schröppel, Birgit; Kaech, Andres; Dobryden, Illia; Forsmo, Seija P E; Hedlund, Jonas

    2014-02-01

    Sodium-activated calcium bentonite is used as a binder in iron ore pellets and is known to increase strength of both wet and dry iron ore green pellets. In this article, the microstructure of bentonite in magnetite pellets is revealed for the first time using scanning electron microscopy. The microstructure of bentonite in wet and dry iron ore pellets, as well as in distilled water, was imaged by various imaging techniques (e.g., imaging at low voltage with monochromatic and decelerated beam or low loss backscattered electrons) and cryogenic methods (i.e., high pressure freezing and plunge freezing in liquid ethane). In wet iron ore green pellets, clay tactoids (stacks of parallel primary clay platelets) were very well dispersed and formed a voluminous network occupying the space available between mineral particles. When the pellet was dried, bentonite was drawn to the contact points between the particles and formed solid bridges, which impart strength to the solid compact.

  14. Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques†

    PubMed Central

    Plascencia-Villa, Germán; Starr, Clarise R.; Armstrong, Linda S.; Ponce, Arturo

    2016-01-01

    Use of engineered metal oxide nanoparticles in a plethora of biological applications and custom products has warned about some possible dose-dependent cytotoxic effects. Macrophages are key components of the innate immune system used to study possible toxic effects and internalization of different nanoparticulate materials. In this work, ultra-high resolution field emission scanning electron microscopy (FE-SEM) was used to offer new insights into the dynamical processes of interaction of nanomaterials with macrophage cells dosed with different concentrations of metal oxide nanoparticles (CeO2, TiO2 and ZnO). The versatility of FE-SEM has allowed obtaining a detailed characterization of processes of adsorption and endocytosis of nanoparticles, by using advanced analytical and imaging techniques on complete unstained uncoated cells, including secondary electron imaging, high-sensitive backscattered electron imaging, X-ray microanalysis and stereoimaging. Low voltage BF/DF-STEM confirmed nanoparticle adsorption and internalization into endosomes of CeO2 and TiO2, whereas ZnO develop apoptosis after 24 h of interaction caused by dissolution and invasion of cell nucleus. Ultra-high resolution scanning electron microscopy techniques provided new insights into interactions of inorganic nanoparticles with macrophage cells with high spatial resolution. PMID:23023106

  15. Atomically Thin Graphene Windows That Enable High Contrast Electron Microscopy without a Specimen Vacuum Chamber.

    PubMed

    Han, Yimo; Nguyen, Kayla X; Ogawa, Yui; Park, Jiwoong; Muller, David A

    2016-12-14

    Scanning electron microscopes (SEMs) require a high vacuum environment to generate and shape an electron beam for imaging; however, the vacuum conditions greatly limit the nature of specimens that can be examined. From a purely scattering physics perspective, it is not necessary to place the specimen inside the vacuum chamber-the mean free paths (MFPs) for electron scattering in air at typical SEM beam voltages are 50-100 μm. This is the idea behind the airSEM, which removes the specimen vacuum chamber from the SEM and places the sample in air. The thickness of the gas layer is less than a MFP from an electron-transparent window to preserve the shape and resolution of the incident beam, resulting in comparable imaging quality to an all-vacuum SEM. Present silicon nitride windows scatter far more strongly than the air gap and are currently the contrast and resolution limiting factor in the airSEM. Graphene windows have been used previously to wrap or seal samples in vacuum for imaging. Here we demonstrate the use of a robust bilayer graphene window for sealing the electron optics from the room environment, providing an electron transparent window with only a 2% drop in contrast. There is a 5-fold-increase in signal/noise ratio for imaging compared to multi-MFP-thick silicon nitride windows, enabling high contrast in backscattered, transmission, and surface imaging modes for the new airSEM geometry.

  16. Characterization of conductive nanobiomaterials derived from viral assemblies by low-voltage STEM imaging and Raman scattering

    NASA Astrophysics Data System (ADS)

    Plascencia-Villa, Germán; Carreño-Fuentes, Liliana; Bahena, Daniel; José-Yacamán, Miguel; Palomares, Laura A.; Ramírez, Octavio T.

    2014-09-01

    New technologies require the development of novel nanomaterials that need to be fully characterized to achieve their potential. High-resolution low-voltage scanning transmission electron microscopy (STEM) has proven to be a very powerful technique in nanotechnology, but its use for the characterization of nanobiomaterials has been limited. Rotavirus VP6 self-assembles into nanotubular assemblies that possess an intrinsic affinity for Au ions. This property was exploited to produce hybrid nanobiomaterials by the in situ functionalization of recombinant VP6 nanotubes with gold nanoparticles. In this work, Raman spectroscopy and advanced analytical electron microscopy imaging with spherical aberration-corrected (Cs) STEM and nanodiffraction at low-voltage doses were employed to characterize nanobiomaterials. STEM imaging revealed the precise structure and arrangement of the protein templates, as well as the nanostructure and atomic arrangement of gold nanoparticles with high spatial sub-Angstrom resolution and avoided radiation damage. The imaging was coupled with backscattered electron imaging, ultra-high resolution scanning electron microscopy and x-ray spectroscopy. The hybrid nanobiomaterials that were obtained showed unique properties as bioelectronic conductive devices and showed enhanced Raman scattering by their precise arrangement into superlattices, displaying the utility of viral assemblies as functional integrative self-assembled nanomaterials for novel applications.

  17. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    PubMed

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Deducing Electron Properties from Hard X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; hide

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  19. Investigation of light scattering characteristics of individual leukocytes using three-dimensional refractive index maps

    NASA Astrophysics Data System (ADS)

    Sung, Kung-Bin; Lin, Yang-Hsien; Lin, Fong-jheng; Hsieh, Chao-Mao; Wu, Shang-Ju

    2017-04-01

    Three-dimensional (3D) refractive-index (RI) microscopy is an emerging technique suitable for live-cell imaging due to its label-free and fast 3D imaging capabilities. We have developed a common-path system to acquire 3D RI microscopic images of cells with excellent speed and stability. After obtaining 3D RI distributions of individual leukocytes, we used a 3D finite-difference time-domain tool to study light scattering properties. Backscattering spectra of lymphocytes, monocytes and neutrophils are different from each other. Backscattering spectra of lymphocytes matched well with those of homogeneous spheres as predicted by Mie theory while backscattering spectra of neutrophils are significantly more intense than those of the other two types. This suggests the possibility of classifying the three types of leukocytes based on backscattering.

  20. Three-dimensional Visualization of Ultrasound Backscatter Statistics by Window-modulated Compounding Nakagami Imaging.

    PubMed

    Zhou, Zhuhuang; Wu, Shuicai; Lin, Man-Yen; Fang, Jui; Liu, Hao-Li; Tsui, Po-Hsiang

    2018-05-01

    In this study, the window-modulated compounding (WMC) technique was integrated into three-dimensional (3D) ultrasound Nakagami imaging for improving the spatial visualization of backscatter statistics. A 3D WMC Nakagami image was produced by summing and averaging a number of 3D Nakagami images (number of frames denoted as N) formed using sliding cubes with varying side lengths ranging from 1 to N times the transducer pulse. To evaluate the performance of the proposed 3D WMC Nakagami imaging method, agar phantoms with scatterer concentrations ranging from 2 to 64 scatterers/mm 3 were made, and six stages of fatty liver (zero, one, two, four, six, and eight weeks) were induced in rats by methionine-choline-deficient diets (three rats for each stage, total n = 18). A mechanical scanning system with a 5-MHz focused single-element transducer was used for ultrasound radiofrequency data acquisition. The experimental results showed that 3D WMC Nakagami imaging was able to characterize different scatterer concentrations. Backscatter statistics were visualized with various numbers of frames; N = 5 reduced the estimation error of 3D WMC Nakagami imaging in visualizing the backscatter statistics. Compared with conventional 3D Nakagami imaging, 3D WMC Nakagami imaging improved the image smoothness without significant image resolution degradation, and it can thus be used for describing different stages of fatty liver in rats.

  1. Automatic tool alignment in a backscatter X-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-11-17

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a medical device is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  2. Automatic tool alignment in a backscatter x-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-06-16

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a tool is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  3. Acoustical imaging of high-frequency elastic responses of targets

    NASA Astrophysics Data System (ADS)

    Morse, Scot F.; Hefner, Brian T.; Marston, Philip L.

    2002-05-01

    Acoustical imaging was used to investigate high-frequency elastic responses to sound of two targets in water. The backscattering of broadband bipolar acoustic pulses by a truncated cylindrical shell was recorded over a wide range of tilt angles [S. F. Morse and P. L. Marston, ``Backscattering of transients by tilted truncated cylindrical shells: time-frequency identification of ray contributions from measurements,'' J. Acoust. Soc. Am. (in press)]. This data set was used to form synthetic aperture images of the target based on the data within different angular apertures. Over a range of viewing angles, the visibility of the cylinder's closest rear corner was significantly enhanced by the meridional flexural wave contribution to the backscattering. In another experiment, the time evolution of acoustic holographic images was used to explore the response of tilted elastic circular disks to tone bursts having frequencies of 250 and 300 kHz. For different tilt angles, specific responses that enhance the backscattering were identified from the time evolution of the images [B. T. Hefner and P. L. Marston, Acoust. Res. Lett. Online 2, 55-60 (2001)]. [Work supported by ONR.

  4. Monitoring radiofrequency ablation with ultrasound Nakagami imaging.

    PubMed

    Wang, Chiao-Yin; Geng, Xiaonan; Yeh, Ta-Sen; Liu, Hao-Li; Tsui, Po-Hsiang

    2013-07-01

    Radiofrequency ablation (RFA) is a widely used alternative modality in the treatment of liver tumors. Ultrasound B-mode imaging is an important tool to guide the insertion of the RFA electrode into the tissue. However, it is difficult to visualize the ablation zone because RFA induces the shadow effect in a B-scan. Based on the randomness of ultrasonic backscattering, this study proposes ultrasound Nakagami imaging, which is a well-established method for backscattered statistics analysis, as an approach to complement the conventional B-scan for evaluating the ablation region. Porcine liver samples (n = 6) were ablated using a RFA system and monitored by employing an ultrasound scanner equipped with a 7.5 MHz linear array transducer. During the stages of ablation (0-12 min) and postablation (12-24 min), the raw backscattered data were acquired at a sampling rate of 30 MHz for B-mode, Nakagami imaging, and polynomial approximation of Nakagami imaging. The contrast-to-noise ratio (CNR) was also calculated to compare the image contrasts of the B-mode and Nakagami images. The results demonstrated that the Nakagami image has the ability to visualize changes in the backscattered statistics in the ablation zone, including the shadow region during RFA. The average Nakagami parameter increased from 0.2 to 0.6 in the ablation stage, and then decreased to approximately 0.3 at the end of the postablation stage. Moreover, the CNR of the Nakagami image was threefold that of the B-mode image, showing that the Nakagami image has a better image contrast for monitoring RFA. Specifically, the use of the polynomial approximation equips the Nakagami image with an enhanced ability to estimate the range of the ablation region. This study demonstrated that ultrasound Nakagami imaging based on the analysis of backscattered statistics has the ability to visualize the RFA-induced ablation zone, even if the shadow effect exists in the B-scan.

  5. Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua

    2015-12-01

    Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.

  6. Simulation of electron transport during electron-beam-induced deposition of nanostructures

    PubMed Central

    Jeschke, Harald O; Valentí, Roser

    2013-01-01

    Summary We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments. PMID:24367747

  7. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    PubMed Central

    Zhang, Tiantian; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-01-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270–1480 MPa. PMID:27279765

  8. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Jiang, Jun; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-05-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270-1480 MPa.

  9. Collective effects in the Thomson back-scattering between a laser pulse and a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Bacci, A.; Maroli, C.; Petrillo, V.; Serafini, L.

    2006-08-01

    Collective effects in the radiation emission via Thomson back-scattering of an intense optical laser pulse by high brightness electron beams are analyzed. The micro-bunching of the electron beam on the scale of the wavelength of the emitted radiation and the consequent free-electron-laser instability may significantly enhance the number of photons emitted. Scaling-laws of the radiation properties, both in the collective and incoherent spontaneous regimes versus laser and electron beam parameters are discussed in the framework of the one-dimensional model.

  10. Gallery of melt textures developed in Westerly Granite during high-pressure triaxial friction experiments

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2016-09-23

    IntroductionMelting occurred during stick-slip faulting of granite blocks sheared at room-dry, room-temperature conditions in a triaxial apparatus at 200–400 megapascals (MPa) confining pressure. Petrographic examinations of melt textures focused largely on the 400-MPa run products. This report presents an overview of the petrographic data collected on those samples, followed by brief descriptions of annotated versions of all the images.Scanning electron microscope (SEM) images of the starting materials and the three examined 400-MPa samples are presented in this report. Secondary-electron (SE) and backscattered-electron (BSE) imaging techniques were used on different samples. The SE images look down on the sawcut surfaces, yielding topographic and three-dimensional textural information. The BSE imaging was done on samples cut to provide cross-sectional views of the glass-filled shear band (or zone) that developed along the sawcut. Brightness in the BSE images increases with increasing mean atomic number of the material. Additional chemical information about the quenched melt and adjoining minerals was obtained using the energy dispersive system of the SEM during BSE examinations. However, the very narrow shear-band thicknesses and common occurrence of very fine lamellar compositional layering limited the usefulness of this technique for estimating melt chemistry.

  11. COSMO-SkyMed Image Investigation of Snow Features in Alpine Environment

    PubMed Central

    Paloscia, Simonetta; Pettinato, Simone; Santi, Emanuele; Valt, Mauro

    2017-01-01

    In this work, X band images acquired by COSMO-SkyMed (CSK) on alpine environment have been analyzed for investigating snow characteristics and their effect on backscattering variations. Preliminary results confirmed the capability of simultaneous optical and Synthetic Aperture Radar (SAR) images (Landsat-8 and CSK) in separating snow/no-snow areas and in detecting wet snow. The sensitivity of backscattering to snow depth has not always been confirmed, depending on snow characteristics related to the season. A model based on Dense Media Radiative Transfer theory (DMRT-QMS) was applied for simulating the backscattering response on the X band from snow cover in different conditions of grain size, snow density and depth. By using DMRT-QMS and snow in-situ data collected on Cordevole basin in Italian Alps, the effect of grain size and snow density, beside snow depth and snow water equivalent, was pointed out, showing that the snow features affect the backscatter in different and sometimes opposite ways. Experimental values of backscattering were correctly simulated by using this model and selected intervals of ground parameters. The relationship between simulated and measured backscattering for the entire dataset shows slope >0.9, determination coefficient, R2 = 0.77, and root mean square error, RMSE = 1.1 dB, with p-value <0.05. PMID:28054962

  12. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope.

    PubMed

    den Engelsen, Daniel; Harris, Paul G; Ireland, Terry G; Fern, George R; Silver, Jack

    2015-10-01

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Comparison of SeaWinds Backscatter Imaging Algorithms

    PubMed Central

    Long, David G.

    2017-01-01

    This paper compares the performance and tradeoffs of various backscatter imaging algorithms for the SeaWinds scatterometer when multiple passes over a target are available. Reconstruction methods are compared with conventional gridding algorithms. In particular, the performance and tradeoffs in conventional ‘drop in the bucket’ (DIB) gridding at the intrinsic sensor resolution are compared to high-spatial-resolution imaging algorithms such as fine-resolution DIB and the scatterometer image reconstruction (SIR) that generate enhanced-resolution backscatter images. Various options for each algorithm are explored, including considering both linear and dB computation. The effects of sampling density and reconstruction quality versus time are explored. Both simulated and actual data results are considered. The results demonstrate the effectiveness of high-resolution reconstruction using SIR as well as its limitations and the limitations of DIB and fDIB. PMID:28828143

  14. Experimental Retrieval of Target Structure Information from Laser-Induced Rescattered Photoelectron Momentum Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okunishi, M.; Pruemper, G.; Shimada, K.

    We have measured two-dimensional photoelectron momentum spectra of Ne, Ar, and Xe generated by 800-nm, 100-fs laser pulses and succeeded in identifying the spectral ridge region (back-rescattered ridges) which marks the location of the returning electrons that have been backscattered at their maximum kinetic energies. We demonstrate that the structural information, in particular the differential elastic scattering cross sections of the target ion by free electrons, can be accurately extracted from the intensity distributions of photoelectrons on the ridges, thus effecting a first step toward laser-induced self-imaging of the target, with unprecedented spatial and temporal resolutions.

  15. Sidescan backscatter variations of cold seeps on the Hikurangi Margin (New Zealand): indications for different stages in seep development

    NASA Astrophysics Data System (ADS)

    Dumke, Ines; Klaucke, Ingo; Berndt, Christian; Bialas, Jörg

    2014-06-01

    Cold seeps on the Hikurangi Margin off New Zealand exhibit various seabed morphologies producing different intensity patterns in sidescan backscatter images. Acoustic backscatter characteristics of 25 investigated seep sites fall into four distinct types characterised by variations in backscatter intensity, distribution and inferred structural heights. The types reflect different carbonate morphologies including up to 20-m-high structures (type 1), low-relief crusts (type 2), scattered blocks (type 3) and carbonate-free sites (type 4). Each seep corresponds to a single type; intermediates were not observed. This correlates well with published data on seep fauna at each site, with the four types representing three different faunal habitats of successive stages of seep development. Backscatter signatures in sidescan sonar images of cold seeps may therefore serve as a convenient proxy for variations in faunal habitats.

  16. Backscattering of electrons from solid targets

    NASA Astrophysics Data System (ADS)

    Dapor, Maurizio

    1990-11-01

    A simple equation is derived which describes the electron backscattering coefficient as a function of the target atomic number in the primary energy range 2-45 KeV. Such an equation, very useful for practical purposes, is in better agreement with the experimental data of Palluel and of Cosslett and Thomas than both the treatments of Everhart and of Archard.

  17. Interlinking backscatter, grain size and benthic community structure

    NASA Astrophysics Data System (ADS)

    McGonigle, Chris; Collier, Jenny S.

    2014-06-01

    The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p < 0.001). Results for the Clamshell grab for two of the methods have stronger positive correlations; mean backscatter intensity (r2 = 0.619; p < 0.001) and angular response predicted mean grain size (r2 = 0.692; p < 0.001). ANOVA reveals significant differences in mean grain size (Hamon) within acoustic groups for all methods: mean backscatter (p < 0.001), angular response predicted grain size (p < 0.001), and QTC class (p = 0.009). Mean grain size (Clamshell) shows a significant difference between groups for mean backscatter (p = 0.001); other methods were not significant. PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab samples can be explained by mean backscatter or acoustically-predicted grain size. These results show that there is significant predictive capacity for sediment characteristics from multibeam backscatter and that these acoustic classifications can have ecological validity.

  18. Backscatter from metal surfaces in diagnostic radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodera, Y.; Schmidt, R.A.; Chan, H.P.

    Backscatter from four commonly used metals (aluminum, lead, copper, and iron) was measured under diagnostic imaging conditions, using screen-film systems as detectors. The results indicate that for an 80-kV filtered beam and Par Speed/XRP system, backscatter increases as aluminum (Al) thickness increases until it reaches a plateau of approximately 12% at 50 mm Al. The amount of backscatter depends strongly on the screen used, possibly due to their attenuation and energy response. Backscatter from aluminum was significantly greater than that from the other metals tested.

  19. Backscatter from metal surfaces in diagnostic radiology.

    PubMed

    Kodera, Y; Schmidt, R A; Chan, H P; Doi, K

    1984-01-01

    Backscatter from four commonly used metals (aluminum, lead, copper, and iron) was measured under diagnostic imaging conditions, using screen-film systems as detectors. The results indicate that for an 80-kV filtered beam and Par Speed/XRP system, backscatter increases as aluminum (Al) thickness increases until it reaches a plateau of approximately 12% at 50 mm Al. The amount of backscatter from any of these four metals increases as the tube voltage is raised from 60 to 115 kV. Measured backscatter depends strongly on the screens used, possibly due to their attenuation and energy response. Backscatter from aluminum was significantly greater than that from the other metals tested.

  20. METALLIC AND CERAMIC MATERIALS RESEARCH Task Order 0003: Metallic Materials, Processing and Performance Development for Air Force Applications

    DTIC Science & Technology

    2015-10-01

    journal articles and papers, and is referenced in the text. 15. SUBJECT TERMS high entropy alloys, titanium, inertia welding 16. SECURITY...Backscatter electron image and (b) inverse pole figure map of the IFW region showing transition from a flat (right) to wavy (left) weld interface...appearance. The weld interface is outlined by a white line in figure (b). The LSHR alloy is below the IFW interface and it is darker than the Mar-M247

  1. Detection of Objects Hidden in Highly Scattering Media Using Time-Gated Imaging Methods

    NASA Technical Reports Server (NTRS)

    Galland, Pierre A.; Wang, L.; Liang, X.; Ho, P. P.; Alfano, R. R.

    2000-01-01

    Non-intrusive and non-invasive optical imaging techniques has generated great interest among researchers for their potential applications to biological study, device characterization, surface defect detection, and jet fuel dynamics. Non-linear optical parametric amplification gate (NLOPG) has been used to detect back-scattered images of objects hidden in diluted Intralipid solutions. To directly detect objects hidden in highly scattering media, the diffusive component of light needs to be sorted out from early arrived ballistic and snake photons. In an optical imaging system, images are collected in transmission or back-scattered geometry. The early arrival photons in the transmission approach, always carry the direct information of the hidden object embedded in the turbid medium. In the back-scattered approach, the result is not so forth coming. In the presence of a scattering host, the first arrival photons in back-scattered approach will be directly photons from the host material. In the presentation, NLOPG was applied to acquire time resolved back-scattered images under the phase matching condition. A time-gated amplified signal was obtained through this NLOPG process. The system's gain was approximately 100 times. The time-gate was achieved through phase matching condition where only coherent photons retain their phase. As a result, the diffusive photons, which were the primary contributor to the background, were removed. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes. Refinements to these techniques may enable drop size measurements in the highly scattering, optically dense region of multi-element rocket injectors. These types of measurements should greatly enhance the design of stable, and higher performing rocket engines.

  2. Energy dependence of the spatial distribution of inelastically scattered electrons in backscatter electron diffraction

    NASA Astrophysics Data System (ADS)

    Ram, Farangis; De Graef, Marc

    2018-04-01

    In an electron backscatter diffraction pattern (EBSP), the angular distribution of backscattered electrons (BSEs) depends on their energy. Monte Carlo modeling of their depth and energy distributions suggests that the highest energy BSEs are more likely to hit the bottom of the detector than the top. In this paper, we examine experimental EBSPs to validate the modeled angular BSE distribution. To that end, the Kikuchi bandlet method is employed to measure the width of Kikuchi bands in both modeled and measured EBSPs. The results show that in an EBSP obtained with a 15 keV primary probe, the width of a Kikuchi band varies by about 0 .4∘ from the bottom of the EBSD detector to its top. The same is true for a simulated pattern that is composed of BSEs with 5 keV to 15 keV energies, which validates the Monte Carlo simulations.

  3. Three-dimensional characterization of ODS ferritic steel using by FIB-SEM serial sectioning method.

    PubMed

    Endo, T; Sugino, Y; Ohono, N; Ukai, S; Miyazaki, N; Wang, Y; Ohnuki, S

    2014-11-01

    Considerable attention has been paid to the research of the electron tomography due to determine the three-dimensional (3D) structure of materials [1]. One of the electron tomography techniques, focused ion beam/scanning electron microscopy (FIB-SEM) imaging has advantages of high resolutions (10 nm), large area observation (μm order) and simultaneous energy dispersive x- ray microanalysis (EDS)/ electron backscatter diffraction (EBSD) analysis. The purpose of this study, three-dimensional EBSD analysis of ODS ferritic steel which carried out cold work using FIB-SEM equipment was conducted, and it aimed at analyzing the microstructure obtained there. The zone annealing tests were conducted for ferritic steel [2,3], which were produced through mechanical alloying and hot-extrusion. After zone annealing, specimens were mechanically polished with #400∼4000 emery paper, 1 µm diamond paste and alumina colloidal silica. The serial sectioning and the 3D-electron backscattering diffraction (3D-EBSD) analysis were carried out. We made the micro pillar (30 x 30 x 15 µm). The EBSD measurements were carried out in each layer after serial sectioning at a step size and milling depth was 80 nm with 30 slices. After EBSD analysis, the series of cross-sectional images were aligned according to arbitrarily specified areas and then stacked up to form a volume. Consequently, we obtained the 3D-IPF maps for ODS ferritic steel. In this specimen, the {111} and {001} grains are layered by turns. In addition, the volume fraction value of both plane are similar. The aspect ratio increases with specimen depth. The 3D-EBSD mapping is useful to analysis of the bulk material since this method obtain many microstructure information, such a shape, volume and orientation of the crystal, grain boundary. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Processing ultrasound backscatter to monitor high-intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay; Bailey, Michael R.

    2005-09-01

    The development of new noninvasive surgical methods such as HIFU for the treatment of cancer and internal bleeding requires simultaneous development of new sensing approaches to guide, monitor, and assess the therapy. Ultrasound imaging using echo amplitude has long been used to map tissue morphology for diagnostic interpretation by the clinician. New quantitative ultrasonic methods that rely on amplitude and phase processing for tissue characterization are being developed for monitoring of ablative therapy. We have been developing the use of full wave ultrasound backscattering for real-time temperature estimation, and to image changes in tissue backscatter spectrum as therapy progresses. Both approaches rely on differential processing of the backscatter signal in time, and precise measurement of phase differences. Noise and artifacts from motion and nonstationary speckle statistics are addressed by constraining inversions for tissue parameters with physical models. We present results of HIFU experiments with static point and scanned HIFU exposures in which temperature rise can be accurately mapped using a new heat transfer equation (HTE) model-constrained inverse approach. We also present results of a recently developed spectral imaging method that elucidates microbubble-mediated nonlinearity not visible as a change in backscatter amplitude. [Work supported by Army MRMC.

  5. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  6. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  7. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  8. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    PubMed

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-03-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.

  9. Hyperspectral image analysis for standoff trace detection using IR laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Jarvis, J.; Fuchs, F.; Hugger, S.; Ostendorf, R.; Butschek, L.; Yang, Q.; Dreyhaupt, A.; Grahmann, J.; Wagner, J.

    2016-05-01

    In the recent past infrared laser backscattering spectroscopy using Quantum Cascade Lasers (QCL) emitting in the molecular fingerprint region between 7.5 μm and 10 μm proved a highly promising approach for stand-off detection of dangerous substances. In this work we present an active illumination hyperspectral image sensor, utilizing QCLs as spectral selective illumination sources. A high performance Mercury Cadmium Telluride (MCT) imager is used for collection of the diffusely backscattered light. Well known target detection algorithms like the Adaptive Matched Subspace Detector and the Adaptive Coherent Estimator are used to detect pixel vectors in the recorded hyperspectral image that contain traces of explosive substances like PETN, RDX or TNT. In addition we present an extension of the backscattering spectroscopy technique towards real-time detection using a MOEMS EC-QCL.

  10. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    NASA Astrophysics Data System (ADS)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  11. Comparison of Lidar Backscatter with Particle Distribution and GOES-7 Data in Hurricane Juliette

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; McCaul, Eugene W., Jr.; Jedlovec, Gary J.; Atkinson, Robert J.; Pueschel, Rudolf F.; Cutten, Dean R.

    1997-01-01

    Measurements of calibrated backscatter, using two continuous wave Doppler lidars operating at wavelengths 9.1 and 10.6 micrometers were obtained along with cloud particle size distributions in Hurricane Juliette on 21 September 1995 at altitude approximately 11.7 km. Agreement between backscatter from the two lidars and with the cloud particle size distribution is excellent. Features in backscatter and particle number density compare well with concurrent GOES-7 infrared images.

  12. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  13. Measuring Ultrasonic Backscatter in the Presence of Nonlinear Propagation

    NASA Astrophysics Data System (ADS)

    Stiles, Timothy; Guerrero, Quinton

    2011-11-01

    A goal of medical ultrasound is the formation of quantitative ultrasound images in which contrast is determined by acoustic or physical properties of tissue rather than relative echo amplitude. Such images could greatly enhance early detection of many diseases, including breast cancer and liver cirrhosis. Accurate determination of the ultrasonic backscatter coefficient from patients remains a difficult task. One reason for this difficulty is the inherent nonlinear propagation of ultrasound at high intensities used for medical imaging. The backscatter coefficient from several tissue-mimicking samples were measured using the planar reflector method. In this method, the power spectrum from a sample is compared to the power spectrum of an optically flat sample of quartz. The results should be independent of incident pressure amplitude. Results demonstrate that backscatter coefficients can vary by more than an order of magnitude when ultrasound pressure varies from 0.1 MPa to 1.5 MPa at 5.0 MHz. A new method that incorporates nonlinear propagation is proposed to explain these discrepancies.

  14. Cirrus Cloud Optical and Morphological Variations within a Mesoscale Volume

    NASA Technical Reports Server (NTRS)

    Wolf, Walter W.

    1996-01-01

    Cirrus cloud optical and structural properties were measured above southern Wisconsin in two time segments between 18:07 and 21:20 GMT on December 1, 1989 by the volume imaging lidar (VIL) and the High Spectral Resolution Lidar (HSRL) and the visible infrared spin scan radiometer (VISSR) atmospheric sounder (VAS) on GOES. A new technique was used to calculate the cirrus cloud visible aerosol backscatter cross sections for a single channel elastic backscatter lidar. Cirrus clouds were viewed simultaneously by the VIL and the HSRL. This allowed the HSRL aerosol backscatter cross sections to be directly compared to the VIL single channel backscattered signal. This first attempt resulted in an adequate calibration. The calibration was extended to all the cirrus clouds in the mesoscale volume imaged by the VIL.

  15. Application of Terahertz Imaging and Backscatter Radiography to Space Shuttle Foam Inspection

    NASA Technical Reports Server (NTRS)

    Ussery, Warren

    2008-01-01

    Two state of the art technologies have been developed for External Fuel Tank foam inspections. Results of POD tests have shown Backscatter Radiography and Terahertz imaging detect critical defects with no false positive issue. These techniques are currently in use on the External Tank program as one component in the foam quality assurance program.

  16. Backscatter from metal surfaces in diagnostic radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodera, Y.; Schmidt, R.A.; Chan, H.P.

    Backscatter from four commonly used metals (aluminum, lead, copper, and iron) was measured under diagnostic imaging conditions, using screen-film systems as detectors. The results indicate that for an 80-kV filtered beam and Par Speed/XRP system, backscatter increases as aluminum (Al) thickness increases until it reaches a plateau of approximately 12% at 50 mm Al. The amount of backscatter from any of these four metals increases as the tube voltage is raised from 60 to 115 kV. Measured backscatter depends strongly on the screens used, possibly due to their attenuation and energy response. Backscatter from aluminum was significantly greater than thatmore » from the other metals tested.« less

  17. FIB-SEM tomography in biology.

    PubMed

    Kizilyaprak, Caroline; Bittermann, Anne Greet; Daraspe, Jean; Humbel, Bruno M

    2014-01-01

    Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.

  18. Analysis of seafloor backscatter strength dependence on the survey azimuth using multibeam echosounder data

    NASA Astrophysics Data System (ADS)

    Lurton, Xavier; Eleftherakis, Dimitrios; Augustin, Jean-Marie

    2018-06-01

    The sediment backscatter strength measured by multibeam echosounders is a key feature for seafloor mapping either qualitative (image mosaics) or quantitative (extraction of classifying features). An important phenomenon, often underestimated, is the dependence of the backscatter level on the azimuth angle imposed by the survey line directions: strong level differences at varying azimuth can be observed in case of organized roughness of the seabed, usually caused by tide currents over sandy sediments. This paper presents a number of experimental results obtained from shallow-water cruises using a 300-kHz multibeam echosounder and specially dedicated to the study of this azimuthal effect, with a specific configuration of the survey strategy involving a systematic coverage of reference areas following "compass rose" patterns. The results show for some areas a very strong dependence of the backscatter level, up to about 10-dB differences at intermediate oblique angles, although the presence of these ripples cannot be observed directly—neither from the bathymetry data nor from the sonar image, due to the insufficient resolution capability of the sonar. An elementary modeling of backscattering from rippled interfaces explains and comforts these observations. The consequences of this backscatter dependence upon survey azimuth on the current strategies of backscatter data acquisition and exploitation are discussed.

  19. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Seafloor Characterization from Spatial Variation of Multibeam Backscatter vs. Grazing Angle

    NASA Astrophysics Data System (ADS)

    hou, T.

    2001-12-01

    Backscatter vs. grazing angle, which can be extracted from multibeam backscatter data, depend on characteristics of the multibeam system and the angular responses of backscatter that are characteristic of different seafloor properties, such as sediment hardness and roughness. Changes in backscatter vs. grazing angle that are contributed by the multibeam system normally remain fixed over both space and time. Therefore, they can readily be determined and removed from backscatter data. The variation of backscatter vs. grazing angle due to the properties of sediments will vary from location to location, as sediment type changes. The sediment component of variability can be inferred using the redundant observations from different grazing angles in several small pieces of seafloor where the sediment property is uniform in any given piece of seafloor yet vary from one piece of the seafloor to another. Thanks to the multibeam survey (Roger Flood, State University of New York) at SAX 99 Project sponsored by Office of Naval Research (ONR), which had 800% coverage in most of the survey area; there is a data set, which is suitable for investigating seafloor characterization. The investigation analyzed the spatial variation of the backscatter vs. grazing angle and compared that with ground truth sediment data. In this research, the 6.9 gigabytes raw multibeam data were cleaned using an automated outlier detection algorithm (Tianhang Hou, Lloyd Huff and Larry Mayer. 2001). Then, the surveyed area was equally divided into 52X78 rectangle working cells (4056), the side of each cell was about 20 meters. The backscatter vs. grazing angle of backscatter data for each cell is computed by averaging backscatter data by the corresponding beam numbers using all data with the same beam number from different survey lines. Systematic effects on the backscatter vs. grazing angle, caused by multibeam system hardware or software as well as system installation, were corrected in order to remove the asymmetric and skew effects. In order to easily evaluate the spatial variation of the backscatter vs. grazing angle, a graphic interface was developed. With a mouse click, the images based on different subsets of the data can be compared throughout the survey area. The subsets were created using specific beam numbers. These images for different beams show significant variations between nadir and off-nadir beams. These variations allow an interesting interpretation to be made of the images in light of seafloor characteristics, which were derived from ground truth data, such as sediment grain size, density and velocity.

  1. Electromagnetic backscattering from freak waves in (1 + 1)-dimensional deep-water

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Shen, Tao; William, Perrie; Chen, Wei; Kuang, Hai-Lan

    2010-05-01

    To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1 + 1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles.

  2. X-ray backscatter imaging of nuclear materials

    DOEpatents

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  3. Conceptual development of a transportable/deployable x-ray inspection system for cars and vans

    NASA Astrophysics Data System (ADS)

    Swift, Roderick D.

    1997-02-01

    The technology of transmission and backscatter imaging by flying-spot x-ray beams was extended to 450 kV beam energies with the installation of a prototype CargoSearchTM system at Otay Mesa, California in the summer of 1994. CargoSearchTM is a fixed-site system designed for the inspection of large over-the-road vehicles at border crossings. A self-contained, mobile implementation of the same technology has also been developed to scan objects ranging in size from a small car up to a full-scale tractor- trailer rig. MobileSearchTM is able to be moved over ordinary roadways to its intended operating site and set up easily by two or three people, but is currently limited to backscatter imaging only. It also lacks the ability to effectively image the vehicle's undercarriage, which is important for the detection of contraband concealed in the vehicle itself rather than its cargo. There is a need for a transportable, deployable scanning system that combines the self-contained mobility of MobileSearchTM and the combined transmission and backscatter imaging characteristics of CargoSearchTM, including its good geometry for backscatter imaging of the undercarriage of inspected vehicles. Concepts for two approaches that meet these needs are presented.

  4. Application of ECH to the study of transport in ITER baseline scenario-like discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Austin, M. E.; Ernst, D. R.

    Recent DIII-D experiments in the ITER Baseline Scenario (IBS) have shown strong increases in fluctuations and correlated reduction of confinement associated with entering the electron-heating-dominated regime with strong electron cyclotron heating (ECH). The addition of 3.2 MW of 110 GHz EC power deposited at ρ~0.42 to IBS discharges with ~3 MW of neutral beam injection causes large increases in low-k and medium-k turbulent density fluctuations observed with Doppler backscatter (DBS), beam emission spectroscopy (BES) and phase-contrast imaging (PCI) diagnostics, correlated with decreases in the energy, particle, and momentum confinement times. Power balance calculations show the electron heat diffusivity χ emore » increases significantly in the mid-radius region 0.4« less

  5. Application of ECH to the study of transport in ITER baseline scenario-like discharges in DIII-D

    DOE PAGES

    Pinsker, R. I.; Austin, M. E.; Ernst, D. R.; ...

    2015-03-12

    Recent DIII-D experiments in the ITER Baseline Scenario (IBS) have shown strong increases in fluctuations and correlated reduction of confinement associated with entering the electron-heating-dominated regime with strong electron cyclotron heating (ECH). The addition of 3.2 MW of 110 GHz EC power deposited at ρ~0.42 to IBS discharges with ~3 MW of neutral beam injection causes large increases in low-k and medium-k turbulent density fluctuations observed with Doppler backscatter (DBS), beam emission spectroscopy (BES) and phase-contrast imaging (PCI) diagnostics, correlated with decreases in the energy, particle, and momentum confinement times. Power balance calculations show the electron heat diffusivity χ emore » increases significantly in the mid-radius region 0.4« less

  6. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Papenberg, C.

    2011-07-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. However, up to the present, the extremely high data rate hampers water column backscatter investigations. More sophisticated visualization and processing techniques for water column backscatter analysis are still under development. We here present such water column backscattering data gathered with a 50 kHz prototype multibeam system. Water column backscattering data is presented in videoframes grabbed over 75 s and a "re-sorted" singlebeam presentation. Thus individual gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images and rise velocities can be determined. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. It applies a cross-correlation technique similar to that used in Particle Imaging Velocimetry (PIV) to the acoustic backscatter images. Tempo-spatial drift patterns of the bubbles are assessed and match very well measured and theoretical rise patterns. The application of this processing scheme to our field data gives impressive results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main driver for misinterpretations, i.e. fish-mediated echoes. Even though image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, this technique was never applied in the proposed sense for an acoustic bubble detector.

  7. An improved Monte-Carlo model of the Varian EPID separating support arm and rear-housing backscatter

    NASA Astrophysics Data System (ADS)

    Monville, M. E.; Kuncic, Z.; Greer, P. B.

    2014-03-01

    Previous investigators of EPID dosimetric properties have ascribed the backscatter, that contaminates dosimetric EPID images, to its supporting arm. Accordingly, Monte-Carlo (MC) EPID models have approximated the backscatter signal from the layers under the detector and the robotic support arm using either uniform or non-uniform solid water slabs, or through convolutions with back-scatter kernels. The aim of this work is to improve the existent MC models by measuring and modelling the separate backscatter contributions of the robotic arm and the rear plastic housing of the EPID. The EPID plastic housing is non-uniform with a 11.9 cm wide indented section that runs across the cross-plane direction in the superior half of the EPID which is 1.75 cm closer to the EPID sensitive layer than the rest of the housing. The thickness of the plastic housing is 0.5 cm. Experiments were performed with and without the housing present by removing all components of the EPID from the housing. The robotic support arm was not present for these measurements. A MC model of the linear accelerator and the EPID was modified to include the rear-housing indentation and results compared to the measurement. The rear housing was found to contribute a maximum of 3% additional signal. The rear housing contribution to the image is non-uniform in the in-plane direction with 2% asymmetry across the central 20 cm of an image irradiating the entire detector. The MC model was able to reproduce this non-uniform contribution. The EPID rear housing contributes a non-uniform backscatter component to the EPID image, which has not been previously characterized. This has been incorporated into an improved MC model of the EPID.

  8. Three applications of backscatter x-ray imaging technology to homeland defense

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2005-05-01

    A brief review of backscatter x-ray imaging and a description of three systems currently applying it to homeland defense missions (BodySearch, ZBV and ZBP). These missions include detection of concealed weapons, explosives and contraband on personnel, in vehicles and large cargo containers. An overview of the x-ray imaging subsystems is provided as well as sample images from each system. Key features such as x-ray safety, throughput and detection are discussed. Recent trends in operational modes are described that facilitate 100% inspection at high throughput chokepoints.

  9. Nanofabrication with a helium ion microscope

    NASA Astrophysics Data System (ADS)

    Maas, Diederik; van Veldhoven, Emile; Chen, Ping; Sidorkin, Vadim; Salemink, Huub; van der Drift, Emile..; Alkemade, Paul

    2010-03-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valuable signal for high-resolution imaging as well as a mechanism for very precise nanofabrication. The low proximity effects, due to the low yield of backscattered ions and the confinement of the forward scattered ions into a narrow cone, enable patterning of ultra-dense sub-10 nm structures. This paper presents various nanofabrication results obtained with direct-write, with scanning helium ion beam lithography, and with helium ion beam induced deposition.

  10. Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint.

    PubMed

    Hermans, Joen; Osmond, Gillian; van Loon, Annelies; Iedema, Piet; Chapman, Robyn; Drennan, John; Jack, Kevin; Rasch, Ronald; Morgan, Garry; Zhang, Zhi; Monteiro, Michael; Keune, Katrien

    2018-06-04

    Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.

  11. Corneal backscatter in insulin-dependent and non-insulin-dependent diabetes mellitus patients: a pilot study.

    PubMed

    Calvo-Maroto, Ana M; Pérez-Cambrodí, Rafael J; Esteve-Taboada, José J; García-Lázaro, Santiago; Cerviño, Aleja Ndro

    2017-06-01

    To compare central corneal backscatter obtained from Scheimpflug images between patients with insulin-dependent and non-insulin-dependent diabetes mellitus (IDDM and NIDDM, respectively) and healthy controls. Seven patients with IDDM (7 eyes), eleven patients with NIDDM (11 eyes), and sixteen healthy subjects (16 eyes) were included in this pilot study. Scheimpflug imaging system (Pentacam, Oculus Inc., Germany) was used to obtain optical sections of the cornea. Seven meridians were analyzed for each eye, oriented from 70° to 110°. Optical density values for the central 3-mm and 5-mm zones of the cornea were obtained by image analysis using external software. Corneal backscatter was significantly higher in the diabetic patients than in the controls for the central 3-mm (p=0.016) and 5-mm (p=0.014) zones. No significant differences in corneal backscatter were found between the IDDM and NIDDM groups for either zone (both p>0.05). In the NIDDM group, significant correlations were observed for both central zones between corneal backscatter and age (3 mm: r=0.604, p=0.025; 5 mm: r=0.614, p=0.022) and central corneal thickness (3 mm: r=0.641, p=0.017; 5 mm: r=0.671, p=0.012); this was not found in the IDDM group (p>0.05). The presence of diabetes showed a significant effect on central corneal backscatter (Kruskal-Wallis test, p<0.001). Diabetic patients showed higher values of corneal light backscatter than healthy subjects. Corneal optical density analysis may be a useful tool for monitoring and assessing the ocular changes caused by diabetes.

  12. Scintillator for low accelerating voltage scanning electron microscopy imaging

    NASA Astrophysics Data System (ADS)

    Bowser, Christopher; Tzolov, Marian; Barbi, Nicholas

    Scintillators are essential in detecting electrons in SEM. The conventional scintillators such as YAP and YAG have poor response at low accelerating voltages due to a top conductive layer of ITO or Al. We have developed a thin film ZnWO4 scintillator with high photoluminescence quantum efficiency of 60% with enough electrical conductivity to prevent charging. We are showing that the ZnWO4 films are effective in detecting electrons at low accelerating voltages. This makes it a good option for a top layer on crystalline scintillators and we have integrated ZnWO4 with YAP to explore the high response of YAP at high electron energies and the effective response of ZnWO4 at low electron energies. We will compare the spectral intensities over a range of accelerating voltages between 1 and 30kV between the conventional and coupled thin film scintillator. The results are interpreted using a simulation of the depth profile of the electron penetration in the scintillator using CASINO. We have verified the absence of charging by measuring the sum of the secondary and backscattered electron coefficients. We have built detectors with the combined scintillators and we will compare SEM images recorded simultaneously by conventional and ZnWO4-based scintillators.

  13. The Low Backscattering Objects Classification in Polsar Image Based on Bag of Words Model Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Yang, L.; Shi, L.; Li, P.; Yang, J.; Zhao, L.; Zhao, B.

    2018-04-01

    Due to the forward scattering and block of radar signal, the water, bare soil, shadow, named low backscattering objects (LBOs), often present low backscattering intensity in polarimetric synthetic aperture radar (PolSAR) image. Because the LBOs rise similar backscattering intensity and polarimetric responses, the spectral-based classifiers are inefficient to deal with LBO classification, such as Wishart method. Although some polarimetric features had been exploited to relieve the confusion phenomenon, the backscattering features are still found unstable when the system noise floor varies in the range direction. This paper will introduce a simple but effective scene classification method based on Bag of Words (BoW) model using Support Vector Machine (SVM) to discriminate the LBOs, without relying on any polarimetric features. In the proposed approach, square windows are firstly opened around the LBOs adaptively to determine the scene images, and then the Scale-Invariant Feature Transform (SIFT) points are detected in training and test scenes. The several SIFT features detected are clustered using K-means to obtain certain cluster centers as the visual word lists and scene images are represented using word frequency. At last, the SVM is selected for training and predicting new scenes as some kind of LBOs. The proposed method is executed over two AIRSAR data sets at C band and L band, including water, bare soil and shadow scenes. The experimental results illustrate the effectiveness of the scene method in distinguishing LBOs.

  14. An Approach for the Visualization of Temperature Distribution in Tissues According to Changes in Ultrasonic Backscattered Energy

    PubMed Central

    Li, Qiang; Liu, Hao-Li; Chen, Wen-Shiang

    2013-01-01

    Previous studies developed ultrasound temperature-imaging methods based on changes in backscattered energy (CBE) to monitor variations in temperature during hyperthermia. In conventional CBE imaging, tracking and compensation of the echo shift due to temperature increase need to be done. Moreover, the CBE image does not enable visualization of the temperature distribution in tissues during nonuniform heating, which limits its clinical application in guidance of tissue ablation treatment. In this study, we investigated a CBE imaging method based on the sliding window technique and the polynomial approximation of the integrated CBE (ICBEpa image) to overcome the difficulties of conventional CBE imaging. We conducted experiments with tissue samples of pork tenderloin ablated by microwave irradiation to validate the feasibility of the proposed method. During ablation, the raw backscattered signals were acquired using an ultrasound scanner for B-mode and ICBEpa imaging. The experimental results showed that the proposed ICBEpa image can visualize the temperature distribution in a tissue with a very good contrast. Moreover, tracking and compensation of the echo shift were not necessary when using the ICBEpa image to visualize the temperature profile. The experimental findings suggested that the ICBEpa image, a new CBE imaging method, has a great potential in CBE-based imaging of hyperthermia and other thermal therapies. PMID:24260041

  15. The surface topography of the choroid plexus. Environmental, low and high vacuum scanning electron microscopy.

    PubMed

    Mestres, Pedro; Pütz, Norbert; Garcia Gómez de Las Heras, Soledad; García Poblete, Eduardo; Morguet, Andrea; Laue, Michael

    2011-05-01

    Environmental scanning electron microscopy (ESEM) allows the examination of hydrated and dried specimens without a conductive metal coating which could be advantageous in the imaging of biological and medical objects. The aim of this study was to assess the performance and benefits of wet-mode and low vacuum ESEM in comparison to high vacuum scanning electron microscopy (SEM) using the choroid plexus of chicken embryos as a model, an organ of the brain involved in the formation of cerebrospinal fluid in vertebrates. Specimens were fixed with or without heavy metals and examined directly or after critical point drying with or without metal coating. For wet mode ESEM freshly excised specimens without any pre-treatment were also examined. Conventional high vacuum SEM revealed the characteristic morphology of the choroid plexus cells at a high resolution and served as reference. With low vacuum ESEM of dried but uncoated samples the structure appeared well preserved but charging was a problem. It could be reduced by a short beam dwell time and averaging of images or by using the backscattered electron detector instead of the gaseous secondary electron detector. However, resolution was lower than with conventional SEM. Wet mode imaging was only possible with tissue that had been stabilized by fixation. Not all surface details (e.g. microvilli) could be visualized and other structures, like the cilia, were deformed. In summary, ESEM is an additional option for the imaging of bio-medical samples but it is problematic with regard to resolution and sample stability during imaging. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Beam deceleration for block-face scanning electron microscopy of embedded biological tissue.

    PubMed

    Ohta, Keisuke; Sadayama, Shoji; Togo, Akinobu; Higashi, Ryuhei; Tanoue, Ryuichiro; Nakamura, Kei-ichiro

    2012-04-01

    The beam deceleration (BD) method for scanning electron microscopes (SEM) also referred to as "retarding" was applied to back-scattered electron (BSE) imaging of the flat block face of a resin embedded biological specimen under low accelerating voltage and low beam current conditions. BSE imaging was performed with 0-4 kV of BD on en bloc stained rat hepatocyte. BD drastically enhanced the compositional contrast of the specimen and also improved the resolution at low landing energy levels (1.5-3 keV) and a low beam current (10 pA). These effects also functioned in long working distance observation, however, stage tilting caused uncorrectable astigmatism in BD observation. Stage tilting is mechanically required for a FIB/SEM, so we designed a novel specimen holder to minimize the unfavorable tilting effect. The FIB/SEM 3D reconstruction using the new holder showed a reasonable contrast and resolution high enough to analyze individual cell organelles and also the mitochondrial cristae structures (~5 nm) of the hepatocyte. These results indicate the advantages of BD for block face imaging of biological materials such as cells and tissues under low-voltage and low beam current conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Element-resolved Kikuchi pattern measurements of non-centrosymmetric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.au

    2017-01-15

    Angle-resolved electron Rutherford backscattering (ERBS) measurements using an electrostatic electron energy analyser can provide unique access to element-resolved crystallographic information. We present Kikuchi pattern measurements of the non-centrosymmetric crystal GaP, separately resolving the contributions of electrons backscattered from Ga and P. In comparison to element-integrated measurements like in the method of electron backscatter diffraction (EBSD), the effect of the absence of a proper 4-fold rotation axis in the point group of GaP can be sensed with a much higher visibility via the element-resolved Ga to P intensity ratio. These element-resolved measurements make it possible to experimentally attribute the previously observedmore » point-group dependent effect in element-integrated EBSD measurements to the larger contribution of electrons scattered from Ga compared to P. - Highlights: •Element specific Kikuchi patterns are presented for GaP. •Absence of a proper four-fold rotation axis is demonstrated. •Ga and P intensity variations after 90 degree rotation have opposite phase. •The asymmetry in the total intensity distribution resembles that of Ga.« less

  18. Information or resolution: Which is required from an SEM to study bulk inorganic materials?: Evaluate SEMs’ practical performance

    DOE PAGES

    Xing, Q.

    2016-07-11

    Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. Themore » electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energydispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. Finally, for an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly affect the usability of the SEM.« less

  19. Information or resolution: Which is required from an SEM to study bulk inorganic materials?

    PubMed

    Xing, Q

    2016-11-01

    Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. The electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energy-dispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. For an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly improve the usability of the SEM. SCANNING 38:864-879, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  20. Information or resolution: Which is required from an SEM to study bulk inorganic materials?: Evaluate SEMs’ practical performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Q.

    Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. Themore » electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energydispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. Finally, for an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly affect the usability of the SEM.« less

  1. Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint)

    DTIC Science & Technology

    2014-04-01

    ANSI Std. Z39-18 O.N. Senkov et al . / Journal of Alloys and Compounds 509 (2011) 6043–6048 6045 Fig. 3. SEM backscatter electron images of a...Senkov et al . / Journal of Alloys and Compounds 509 (2011) 6043–6048 Here ci is the atomic fraction of element i. The calculated (Calc.) amix is given...O.N. Senkov et al . / Journal of Alloys and Compounds 509 (2011) 6043–6048 6047 Table 4 Relative atomic size difference, ıaij (underlined numbers), and

  2. Development of a Coded Aperture X-Ray Backscatter Imager for Explosive Device Detection

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; Rothschild, Richard E.; Leblanc, Philippe; McFee, John Elton

    2009-02-01

    Defence R&D Canada has an active research and development program on detection of explosive devices using nuclear methods. One system under development is a coded aperture-based X-ray backscatter imaging detector designed to provide sufficient speed, contrast and spatial resolution to detect antipersonnel landmines and improvised explosive devices. The successful development of a hand-held imaging detector requires, among other things, a light-weight, ruggedized detector with low power requirements, supplying high spatial resolution. The University of California, San Diego-designed HEXIS detector provides a modern, large area, high-temperature CZT imaging surface, robustly packaged in a light-weight housing with sound mechanical properties. Based on the potential for the HEXIS detector to be incorporated as the detection element of a hand-held imaging detector, the authors initiated a collaborative effort to demonstrate the capability of a coded aperture-based X-ray backscatter imaging detector. This paper will discuss the landmine and IED detection problem and review the coded aperture technique. Results from initial proof-of-principle experiments will then be reported.

  3. Evolutionary computation applied to the reconstruction of 3-D surface topography in the SEM.

    PubMed

    Kodama, Tetsuji; Li, Xiaoyuan; Nakahira, Kenji; Ito, Dai

    2005-10-01

    A genetic algorithm has been applied to the line profile reconstruction from the signals of the standard secondary electron (SE) and/or backscattered electron detectors in a scanning electron microscope. This method solves the topographical surface reconstruction problem as one of combinatorial optimization. To extend this optimization approach for three-dimensional (3-D) surface topography, this paper considers the use of a string coding where a 3-D surface topography is represented by a set of coordinates of vertices. We introduce the Delaunay triangulation, which attains the minimum roughness for any set of height data to capture the fundamental features of the surface being probed by an electron beam. With this coding, the strings are processed with a class of hybrid optimization algorithms that combine genetic algorithms and simulated annealing algorithms. Experimental results on SE images are presented.

  4. Stress Corrosion Cracking Facet Crystallography of Ti-8Al-1Mo-1V (Preprint)

    DTIC Science & Technology

    2011-05-01

    fractography and electron backscatter diffraction. The results indicate that most facets are formed nearly perpendicular to the loading direction on...of Ti-8Al- 1Mo-1V have been characterized using quantitative fractography and electron backscatter diffraction. The results indicate that most facets...EBSD and quantitative tilt fractography [27;29] allow for determination of the crystallographic fracture plane to an accuracy between 1o [29] and

  5. A method to correct coordinate distortion in EBSD maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.B., E-mail: yubz@dtu.dk; Elbrønd, A.; Lin, F.X.

    2014-10-15

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. -more » Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction.« less

  6. Adaptive focus for deep tissue using diffuse backscatter

    NASA Astrophysics Data System (ADS)

    Kress, Jeremy; Pourrezaei, Kambiz

    2014-02-01

    A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.

  7. Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    PubMed

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-11-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Combined use of backscattered and transmitted images in x-ray personnel screening systems

    NASA Astrophysics Data System (ADS)

    Tracey, B.; Schiefele, Markus; Alvino, Christopher; Miller, Eric; Al-Kofani, Omar

    2012-06-01

    Current aviation security relies heavily on personnel screening using X-ray backscatter systems or other advanced imaging technologies. Passenger privacy concerns and screening times can be reduced through the use of low-dose twosided X-ray backscatter (Bx) systems, which also have the ability to collect transmission (Tx) X-ray. Bx images reveal objects placed on the body, such as contraband and security threats, as well as anatomical features at or close to the surface, such as lungs cavities and bones. While the quality of the transmission images is lower than medical imagery due to the low X-ray dose, Tx images can be of significant value in interpreting features in the Bx images, such as lung cavities, which can cause false alarms in automated threat detection (ATD) algorithms. Here we demonstrate an ATD processing chain fusing both Tx and BX images. The approach employs automatically extracted fiducial points on the body and localized active contour methods to segments lungs in acquired Tx and Bx images. Additionally, we derive metrics from the Tx image can be related to the probability of observing internal body structure in the Bx image. The combined use of Tx and Bx data can enable improved overall system performance.

  9. Terahertz Imaging and Backscatter Radiography Probability of Detection Study for Space Shuttle Foam Inspections

    NASA Technical Reports Server (NTRS)

    Ussery, Warren; Johnson, Kenneth; Walker, James; Rummel, Ward

    2008-01-01

    This slide presentation reviews the use of terahertz imaging and Backscatter Radiography in a probability of detection study of the foam on the external tank (ET) shedding and damaging the shuttle orbiter. Non-destructive Examination (NDE) is performed as one method of preventing critical foam debris during the launch. Conventional NDE methods for inspection of the foam are assessed and the deficiencies are reviewed. Two methods for NDE inspection are reviewed: Backscatter Radiography (BSX) and Terahertz (THZ) Imaging. The purpose of the Probability of Detection (POD) study was to assess performance and reliability of the use of BSX and or THZ as an appropriate NDE method. The study used a test article with inserted defects, and a sample of blanks included to test for false positives. The results of the POD study are reported.

  10. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas.

    PubMed

    Suga, Mitsuo; Nishiyama, Hidetoshi; Konyuba, Yuji; Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki; Yoshiura, Chie; Ueda, Takumi; Sato, Chikara

    2011-12-01

    Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Vanishing Act: Experiments on Fission Track Annealing in Monazite

    NASA Astrophysics Data System (ADS)

    Shipley, N. K.; Fayon, A. K.

    2006-12-01

    To determine the viability of monazite as a low temperature thermochronometer, we conducted fission track annealing experiments under isothermal conditions. These experiments evaluated the effects of uranium concentration and zoning on annealing rates. Fission track annealing rates in monazite were also compared to those in Durango apatite. Preliminary results indicate that monazite grains with higher initial track densities anneal at faster rates than those with low initial densities and that fission tracks in monazite anneal at a faster rate than those in apatite. Monazite sand grains were selected from a placer sand deposit, mounted in teflon, and polished. Grains were imaged with electron backscattering to characterize zoning patterns and variations in uranium concentration. Monazite grain mounts were etched in boiling 37% HCl for 50 minutes and fission track densities were determined using standard fission track counting techniques. Durango apatite was etched in 5N HNO3 at room temperature for 20 seconds. After the initial track densities were determined, mounts in one group were annealed at 150 ° C for 1to 6 h. The mounts in a second group were annealed at 200 ° C for 2 hour periods along with mounts of Durango apatite grains. All grains were re-polished prior to each anneal. Upon completion of the experiment, backscatter images were taken of grains from which fission track counts were obtained to verify continuance of concentric zoning. Results of these experiments indicate that annealing rates of fission tracks in monazite vary as a function of uranium concentration. Uranium concentration was constrained on the basis of zoning patterns obtained from electron backscatter images. Fission track densities in grains with initial track densities of approximately 2.4 × 106 tracks/cm2 were reduced at average rate of 16% every two hours. In contrast, track densities in grains with initial track densities of approximately 1.6 × 106 tracks/cm2 average 4.6% density reduction every two hours. In both cases, track density reduction in monazite was faster than the rate of 0.1 % every two hours obtained for apatite. This would indicate that fission track annealing occurs at a lower temperature in monazite than in apatite. Thus monazite would be useful as a low temperature chronometer for determining cooling histories in recently exhumed rocks.

  12. Design of the optical backscatter diagnostic for laser plasma interaction measurements on NIF

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Datte, P.; Ng, E.; Maitland, K.; Hsing, W.; MacGowan, B. J.; Froula, D. H.; Neumayer, P.; Sutter, L.; Meezan, N.; Glenzer, S. H.; Kirkwood, R. K.; Divol, L.; Andrews, S.; Jackson, J.; MacKinnon, A.; Jovanovic, I.; Beeler, R.; Bertolini, L.; Landon, M.; Alvarez, S.; Lee, T.; Watts, P.

    2007-11-01

    We describe the design of the backscatter diagnostic for NIF laser-plasma interaction (LPI) studies. It will initially be used to validate the 280 eV point design hohlraum and select phase plates for the ignition experiments. Backscatter measurements are planned for two separate groups of 4 beams (a quad). One quad is 30^o from the hohlraum axis and the other at 50^o. The backscatter measurement utilizes 2 instruments for each beam quad. The full aperture backscatter system (FABS) measures light backscattered into the final focus lens of each beam in the quad. The near backscatter imager (NBI) measures light backscattered outside of the beam quad. Both instruments must work in conjunction to provide spectrally and temporally resolved backscatter power. We describe the design of the diagnostic and its capabilities as well as plans for calibrating it and analyzing the resulting data. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  13. BOREAS RSS-17 1994 ERS-1 Level-3 Freeze/Thaw Backscatter Change Images

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Way, JoBea; McDonald, Kyle C.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-17 team acquired and analyzed imaging radar data from the European Space Agency's (ESA's) European Remote Sensing Satellite (ERS)-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. Two independent transitions corresponding to soil thaw and possible canopy thaw were revealed by the data. The results demonstrated that radar provides an ability to observe thaw transitions at the beginning of the growing season, which in turn helps constrain the length of the growing season. The data set presented here includes change maps derived from radar backscatter images that were mosaicked together to cover the southern BOREAS sites. The image values used for calculating the changes are given relative to the reference mosaic image. The data are stored in binary image format files. The imaging radar data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  14. ERS-1 Investigations of Southern Ocean Sea Ice Geophysics Using Combined Scatterometer and SAR Images

    NASA Technical Reports Server (NTRS)

    Drinkwater, M.; Early, D.; Long, D.

    1994-01-01

    Coregistered ERS-1 SAR and Scatterometer data are presented for the Weddell Sea, Antarctica. Calibrated image backscatter statistics are extracted from data acquired in regions where surface measurements were made during two extensive international Weddell Sea experiments in 1992. Changes in summer ice-surface conditions, due to temperature and wind, are shown to have a large impact on observed microwave backscatter values. Winter calibrated backscatter distributions are also investigated as a way of describing ice thickness conditions in different location during winter. Coregistered SAR and EScat data over a manned drifting ice station are used to illustrate the seasonal signature changes occurring during the fall freeze-up transition.

  15. Particle Morphology Analysis of Biomass Material Based on Improved Image Processing Method

    PubMed Central

    Lu, Zhaolin

    2017-01-01

    Particle morphology, including size and shape, is an important factor that significantly influences the physical and chemical properties of biomass material. Based on image processing technology, a method was developed to process sample images, measure particle dimensions, and analyse the particle size and shape distributions of knife-milled wheat straw, which had been preclassified into five nominal size groups using mechanical sieving approach. Considering the great variation of particle size from micrometer to millimeter, the powders greater than 250 μm were photographed by a flatbed scanner without zoom function, and the others were photographed using a scanning electron microscopy (SEM) with high-image resolution. Actual imaging tests confirmed the excellent effect of backscattered electron (BSE) imaging mode of SEM. Particle aggregation is an important factor that affects the recognition accuracy of the image processing method. In sample preparation, the singulated arrangement and ultrasonic dispersion methods were used to separate powders into particles that were larger and smaller than the nominal size of 250 μm. In addition, an image segmentation algorithm based on particle geometrical information was proposed to recognise the finer clustered powders. Experimental results demonstrated that the improved image processing method was suitable to analyse the particle size and shape distributions of ground biomass materials and solve the size inconsistencies in sieving analysis. PMID:28298925

  16. Comments on the paper "Bragg's law diffraction simulations for electron backscatter diffraction analysis" by Josh Kacher, Colin Landon, Brent L. Adams & David Fullwood.

    PubMed

    Maurice, Claire; Fortunier, Roland; Driver, Julian; Day, Austin; Mingard, Ken; Meaden, Graham

    2010-06-01

    This comment on the paper "Bragg's Law diffraction simulations for electron backscatter diffraction analysis" by Kacher et al. explains the limitations in determining elastic strains using synthetic EBSD patterns. Of particular importance are those due to the accuracy of determination of the EBSD geometry projection parameters. Additional references and supporting information are provided. Copyright 2010 Elsevier B.V. All rights reserved.

  17. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Wang, Xin, E-mail: wangx@tongji.edu.cn, E-mail: mubz@tongji.edu.cn; Zhan, Qi

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system basedmore » on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.« less

  18. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wang, Xin; Zhan, Qi; Huang, Shengling; Chen, Yifan; Mu, Baozhong

    2016-07-01

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system based on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.

  19. Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages

    PubMed Central

    Plascencia-Villa, Germán; Bahena, Daniel; Rodríguez, Annette R.; Ponce, Arturo; José-Yacamán, Miguel

    2013-01-01

    Metallic nanoparticles have diverse applications in biomedicine, as diagnostics, image contrast agents, nanosensors and drug delivery systems. Anisotropic metallic nanoparticles possess potential applications in cell imaging and therapy+diagnostics (theranostics), but controlled synthesis and growth of these anisotropic or branched nanostructures has been challenging and usually require use of high concentrations of surfactants. Star-shaped gold nanoparticles were synthesized in high yield through a seed mediated route using HEPES as a precise shape-directing capping agent. Characterization was performed using advanced electron microscopy techniques including atomic resolution TEM, obtaining a detailed characterization of nanostructure and atomic arrangement. Spectroscopy techniques showed that particles have narrow size distribution, monodispersity and high colloidal stability, with absorbance into NIR region and high efficiency for SERS applications. Gold nanostars showed to be biocompatible and efficiently adsorbed and internalized by macrophages, as revealed by advanced FE-SEM and backscattered electron imaging techniques of complete unstained uncoated cells. Additionally, low voltage STEM and X-ray microanalysis revealed the ultra-structural location and confirmed stability of nanoparticles after endocytosis with high spatial resolution. PMID:23443314

  20. Quantitative Ultrasound: Transition from the Laboratory to the Clinic

    NASA Astrophysics Data System (ADS)

    Hall, Timothy

    2014-03-01

    There is a long history of development and testing of quantitative methods in medical ultrasound. From the initial attempts to scan breasts with ultrasound in the early 1950's, there was a simultaneous attempt to classify tissue as benign or malignant based on the appearance of the echo signal on an oscilloscope. Since that time, there has been substantial improvement in the ultrasound systems used, the models to describe wave propagation in random media, the methods of signal detection theory, and the combination of those models and methods into parameter estimation techniques. One particularly useful measure in ultrasonics is the acoustic differential scattering cross section per unit volume in the special case of the 180° (as occurs in pulse-echo ultrasound imaging) which is known as the backscatter coefficient. The backscatter coefficient, and parameters derived from it, can be used to objectively measure quantities that are used clinically to subjectively describe ultrasound images. For example, the ``echogenicity'' (relative ultrasound image brightness) of the renal cortex is commonly compared to that of the liver. Investigating the possibility of liver disease, it is assumed the renal cortex echogenicity is normal. Investigating the kidney, it is assumed the liver echogenicity is normal. Objective measures of backscatter remove these assumptions. There is a 30-year history of accurate estimates of acoustic backscatter coefficients with laboratory systems. Twenty years ago that ability was extended to clinical imaging systems with array transducers. Recent studies involving multiple laboratories and a variety of clinical imaging systems has demonstrated system-independent estimates of acoustic backscatter coefficients in well-characterized media (agreement within about 1.5dB over about a 1-decade frequency range). Advancements that made this possible, transition of this and similar capabilities into medical practice and the prospects for quantitative image-based biomarkers will be discussed. This work was supported, in part, by NIH grants R01CA140271 and R01HD072077.

  1. Contribution of a new generation field-emission scanning electron microscope in the understanding of a 2099 Al-Li alloy.

    PubMed

    Brodusch, Nicolas; Trudeau, Michel; Michaud, Pierre; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald

    2012-12-01

    Aluminum-lithium alloys are widespread in the aerospace industry. The new 2099 and 2199 alloys provide improved properties, but their microstructure and texture are not well known. This article describes how state-of-the-art field-emission scanning electron microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy and metallic alloys in general. Investigations were carried out on bulk and thinned samples. Backscattered electron imaging at 3 kV and scanning transmission electron microscope imaging at 30 kV along with highly efficient microanalysis permitted correlation of experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al, and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain"-shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted as it provides information in the macro- and microscales with relevant details. Its ability to probe the distribution of precipitates from nano- to microsizes throughout the matrix makes FE-SEM an essential technique for the characterization of metallic alloys.

  2. Liouville master equation for multi-electron dynamics during ion-surface interactions

    NASA Astrophysics Data System (ADS)

    Wirtz, L.; Reinhold, C. O.; Lemell, C.; Burgdorfer, J.

    2003-05-01

    We present a simulation of the neutralization of highly charged ions in front of a LiF(100) surface including the close-collision regime above the surface. Our approach employs a Monte-Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from CTMC calculations as well as quantum mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface (``trampoline effect"). For Ne10+ ions we find that image acceleration dominates and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutrals or even as singly charged negative particles, irrespective of the charge state of the incoming ion.

  3. Quantitative image analysis of WE43-T6 cracking behavior

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Yahya, Z.

    2013-06-01

    Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. The intermetallic (rare earthed-enriched divorced intermetallic retained at grain boundaries and predominantly at triple points) material was found to play a significant role in initiating cracks which leads to failure of this material. Quantitative measurements were required for this project. The populations of the intermetallic and clusters of intermetallic particles were analyzed using image analysis of metallographic images. This is part of the work to generate a theoretical model of the effect of notch geometry on the static fatigue strength of this material.

  4. SU-E-T-474: Improvements to Intra-Oral Shield Design for Electron Beam Treatments: Use of Multi-Layered Metal Foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butson, M

    Purpose: Intraoral electron shields used in radiotherapy are designed to minimize radiation exposure to non-treatment tissue. Sites where shields are used include but are not limited to, the treatment of lips, cheeks and ears whilst shielding the underlying oral cavity, tongue, gingival or temporal region. However their use produces an enhancement in dose on the beam side caused by an increase in electron backscatter radiation. This work designs a new shield incorporating copper, aluminium and wax in a step down filter arrangement to minimise backscatter whilst minimizing overall shield thickness. Methods: For electron beams ranging from 6 MeV to 10more » MeV, shields of varying designs and thicknesses were assessed to determine the thinnest shield design that could be produced whilst minimising backscattered radiation to a clinically acceptable level. This was performed with conventional lead and wax shields as well as varying quantities of aluminium and copper foils. Results: From tested shield designs, a new shield design of 4 mm lead, 0.6 mm copper, 1.0 mm aluminium and 1.5 mm wax (3.1 mm added filtration, 7.1 mm total thickness) provided a clinically acceptable (no greater than 110% dose) backscatter and transmission reduction and matched a standard 4.5 mm lead and 10 mm wax (total thickness 14.5 mm) electron shield. Dose enhancement values of no more than 10 % were measured utilising this shield design with a 50 % reduction in shield thickness. Conclusion: The thinner layered shield reduced backscattered radiation dose to less than 10% enhancement for beam energies on 10 MeV and less and will allow easier patient set up. The thinner shields are tolerated better by patients when mucosal reactions occur as they place less physical pressure on these sites during treatment due to their smaller size and thickness.« less

  5. Backscatter particle image velocimetry via optical time-of-flight sectioning

    DOE PAGES

    Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick; ...

    2018-01-11

    Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less

  6. Backscatter particle image velocimetry via optical time-of-flight sectioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick

    Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less

  7. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scatteringmore » sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.« less

  8. Imaging of dental material by polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.

    1999-05-01

    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  9. Digenetic Changes in Macro- to Nano-Scale Porosity in the St. Peter Sandstone:L An (Ultra) Small Angle Neutron Scattering and Backscattered Electron Imagining Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Cole, David; Rother, Gernot

    2013-01-01

    Small- and Ultra-Small Angle Neutron Scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U)SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of ourmore » data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that microporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions.« less

  10. Simulation of L-band and HH microwave backscattering from coniferous forest stands - A comparison with SIR-B data

    NASA Technical Reports Server (NTRS)

    Sun, Guo-Qing; Simonett, David S.

    1988-01-01

    SIR-B images of the Mt. Shasta region of northern California are used to evaluate a composite L-band HH backscattering model of coniferous forest stands. It is found that both SIR-B and simulated backscattering coefficients for eight stands studied have similar trends and relations to average tree height and average number of trees per pixel. Also, the dispersion and distribution of simulated backscattering coefficients from each stand broadly match SIR-B data from the same stand. Although the limited quality and quantity of experimental data makes it difficult to draw any strong conclusions, the comparisons indicate that a stand-based L-band HH composite model seems promising for explaining backscattering features.

  11. Application of backscatter absorption gas imaging to the detection of chemicals related to drug production

    NASA Astrophysics Data System (ADS)

    Kulp, Thomas J.; Garvis, Darrel G.; Kennedy, Randall B.; McRae, Thomas G.

    1991-08-01

    The application of backscatter absorption gas imaging (BAGI) to the detection of gaseous chemical species associated with the production of illegal drugs is considered. BAGI is a gas visualization technique that allows the imaging of over 70 organic vapors at minimum concentrations of a few to several hundred ppm-m. Present BAGI capabilities at Lawrence Livermore National Laboratory and Laser Imaging Systems are discussed. Eighteen different species of interest in drug-law enforcement are identified as being detectable by BAGI. The chemical remote sensing needs of law enforcement officials are described, and the use of BAGI in meeting some of these needs is outlined.

  12. Echo Decorrelation Imaging of Rabbit Liver and VX2 Tumor during In Vivo Ultrasound Ablation.

    PubMed

    Fosnight, Tyler R; Hooi, Fong Ming; Keil, Ryan D; Ross, Alexander P; Subramanian, Swetha; Akinyi, Teckla G; Killin, Jakob K; Barthe, Peter G; Rudich, Steven M; Ahmad, Syed A; Rao, Marepalli B; Mast, T Douglas

    2017-01-01

    In open surgical procedures, image-ablate ultrasound arrays performed thermal ablation and imaging on rabbit liver lobes with implanted VX2 tumor. Treatments included unfocused (bulk ultrasound ablation, N = 10) and focused (high-intensity focused ultrasound ablation, N = 13) exposure conditions. Echo decorrelation and integrated backscatter images were formed from pulse-echo data recorded during rest periods after each therapy pulse. Echo decorrelation images were corrected for artifacts using decorrelation measured prior to ablation. Ablation prediction performance was assessed using receiver operating characteristic curves. Results revealed significantly increased echo decorrelation and integrated backscatter in both ablated liver and ablated tumor relative to unablated tissue, with larger differences observed in liver than in tumor. For receiver operating characteristic curves computed from all ablation exposures, both echo decorrelation and integrated backscatter predicted liver and tumor ablation with statistically significant success, and echo decorrelation was significantly better as a predictor of liver ablation. These results indicate echo decorrelation imaging is a successful predictor of local thermal ablation in both normal liver and tumor tissue, with potential for real-time therapy monitoring. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Monte Carlo investigation of backscatter point spread function for x-ray imaging examinations

    NASA Astrophysics Data System (ADS)

    Xiong, Zhenyu; Vijayan, Sarath; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    X-ray imaging examinations, especially complex interventions, may result in relatively high doses to the patient's skin inducing skin injuries. A method was developed to determine the skin-dose distribution for non-uniform x-ray beams by convolving the backscatter point-spread-function (PSF) with the primary-dose distribution to generate the backscatter distribution that, when added to the primary dose, gives the total-dose distribution. This technique was incorporated in the dose-tracking system (DTS), which provides a real-time color-coded 3D-mapping of skin dose during fluoroscopic procedures. The aim of this work is to investigate the variation of the backscatter PSF with different parameters. A backscatter PSF of a 1-mm x-ray beam was generated by EGSnrc Monte-Carlo code for different x-ray beam energies, different soft-tissue thickness above bone, different bone thickness and different entrance-beam angles, as well as for different locations on the SK-150 anthropomorphic head phantom. The results show a reduction of the peak scatter to primary dose ratio of 48% when X-ray beam voltage is increased from 40 keV to 120 keV. The backscatter dose was reduced when bone was beneath the soft tissue layer and this reduction increased with thinner soft tissue and thicker bone layers. The backscatter factor increased about 21% as the angle of incidence of the beam with the entrance surface decreased from 90° (perpendicular) to 30°. The backscatter PSF differed for different locations on the SK-150 phantom by up to 15%. The results of this study can be used to improve the accuracy of dose calculation when using PSF convolution in the DTS.

  14. Sea-floor geology of a part of Mamala Bay, Hawaii

    USGS Publications Warehouse

    Hampton, Monty A.; Torresan, Michael E.; Barber, John H.

    1997-01-01

    We surveyed the sea-floor geology within a 200-km2 area of Mamala Bay, off Honolulu, Hawaii by collecting and analyzing sidescan sonar images, 3.5-kHz profiles, video and still visual images, and box-core samples. The study area extends from 20-m water depth on the insular shelf to 600-m water depth in a southeast-trending trough. The sidescan images depict three principal types of sea-floor material: low-backscatter natural sediment, high-backscatter drowned carbonate reef, and intermediate-backscatter dredged-material deposits. Cores indicate that the natural sediment is muddy sand, composed of carbonate reef and microfauna debris with some volcanic grains. Vague areal trends in composition are evident. The dredged material comprises poorly sorted, cobble- to clay-size mixtures of reef, volcanic, and man-made debris, up to 35 cm thick. Dredged-material deposits are not evident in the 3.5-kHz profiles. In the sidescan images they appear as isolated, circular to subcircular imprints, apparently formed by individual drops, around the periphery of their occurrence, but they overlap and coalesce to a nearly continuous, intermediate-backscatter blanket toward the center of three disposal sites investigated. We did not observe significant currents during our camera surveys, but there is abundant evidence of sediment reworking: symmetrical and asymmetrical ripples in the visual images, sand waves in the 3.5-kHz profiles and side-scan images, moats around the reefs in 3.5-kHz profiles, winnowed dredged material in the visual images, and burial of dredged material by natural sediment in cores. Most current indicators imply a westerly to northwesterly transport direction, along contours or up-slope, although there are a few areas of easterly indicators. Internal waves probably drive the transport; their possible existence is implied by measured water-column density gradients.

  15. Sea-floor geology of a part of Mamala Bay, Hawai'i

    USGS Publications Warehouse

    Hampton, M.A.; Torresan, M.E.; Barber, J.H.

    1997-01-01

    We surveyed the sea-floor geology within a 200-km2 area of Mamala Bay, off Honolulu, Hawai'i, by collecting and analyzing sidescan sonar images, 3.5kHz profiles, video and still visual images, and box-core samples. The study area extends from 20-m water depth on the insular shelf to 600-m water depth in a southeast-trending trough. The sidescan images depict three principal types of seafloor material: low-backscatter natural sediment, high-backscatter drowned carbonate reef, and intermediate-backscatter dredged-material deposits. Cores indicate that the natural sediment is muddy sand, composed of carbonate reef and microfauna debris with some volcanic grains. Vague areal trends in composition are evident. The dredged material comprises poorly sorted, cobble- to clay-size mixtures of reef, volcanic, and man-made debris, up to 35 cm thick. Dredged-material deposits are not evident in the 3.5-kHz profiles. In the sidescan images they appear as isolated, circular to subcircular imprints, apparently formed by individual drops, around the periphery of their occurrence, but they overlap and coalesce to a nearly continuous, intermediate-backscatter blanket toward the center of three disposal sites investigated. We did not observe noticeable currents during our camera surveys, but there is abundant evidence of sediment reworking: symmetrical and asymmetrical ripples in the visual images, sand waves in the 3.5-kHz profiles and side-scan images, moats around the reefs in 3.5-kHz profiles, winnowed dredged material in the visual images, and burial of dredged material by natural sediment in cores. Most current indicators imply a westerly to northwesterly transport direction, along contours or upslope, although there are a few areas of easterly indicators. Internal waves probably drive the transport; their possible existence is implied by measured water-column density gradients.

  16. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz.

    PubMed

    Huang, Chih-Chung

    2010-10-07

    There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r(2)) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm(-1) at 30 MHz to 0.47 Nepers mm(-1) at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a hematocrit of 20% at the same rotation speed, and shifted to a hematocrit of 10% at a higher speed. The backscattering properties of rat RBCs in plasma are similar to those of RBCs in saline at a higher rotation speed. The differences in attenuation and backscattering between rat and porcine blood may be attributed to RBCs' being smaller and the RBC aggregation level being lower for rat blood than for porcine blood.

  17. Purification of melt-spun metallurgical grade silicon micro-flakes through a multi-step segregation procedure

    NASA Astrophysics Data System (ADS)

    Martinsen, F. A.; Nordstrand, E. F.; Gibson, U. J.

    2013-01-01

    Melt-spun metallurgical grade (MG) micron dimension silicon flakes have been purified into near solar grade (SG) quality through a multi-step melting and re-solidification procedure. A wet oxidation-applied thermal oxide maintained the sample morphology during annealing while the interiors were melted and re-solidified. The small thickness of the flakes allowed for near elimination of in-plane grain boundaries, with segregation enhanced accumulation of impurities at the object surface and in the few remaining grain boundaries. A subsequent etch in 48% hydrofluoric acid (HF) removed the impure oxide layer, and part of the contamination at the oxide-silicon interface, as shown by electron dispersive spectroscopy (EDS) and backscattered electron imaging (BEI). The sample grains were investigated by electron back-scattered diffraction (EBSD) after varying numbers of oxidation-annealing-etch cycles, and were observed to grow from ˜5 μm to ˜200 μm. The concentration of iron, titanium, copper and aluminium were shown by secondary ion mass spectroscopy (SIMS) and inductively coupled plasma mass spectroscopy (ICPMS) to drop between five and six orders of magnitude. The concentration of boron was observed to drop approximately one order of magnitude. A good correlation was observed between impurity removal rates and segregation models, indicating that the purification effect is mainly caused by segregation. Deviations from these models could be explained by the formation of oxides and hydroxides later removed through etching.

  18. Reflection and backscattering of microwaves under doubling of the plasma density and displacement of the gyroresonance region during electron cyclotron resonance heating of plasma in the l-2M stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batanov, G. M.; Borzosekov, V. D.; Vasilkov, D. G.

    Reflection and backscattering of high-power (400 kW) gyrotron radiation creating and heating plasma at the second harmonic of the electronic cyclotron frequency in the L-2M stellarator have been investigated experimentally. The effect of the displacement of the gyroresonance region from the axis of the plasma column under doubling of the plasma density on the processes of reflection and backscattering of microwave radiation has been examined. A near doubling of short-wavelength (k{sub ⊥} ≈ 30 cm{sup –1}) turbulent density fluctuations squared is observed. The change in the energy confinement time under variations of plasma parameters and characteristics of short-wavelength turbulence ismore » discussed. A discrepancy between the measured values of the reflection coefficient from the electron cyclotron resonance heating region and predictions of the one-dimensional model is revealed.« less

  19. Serial Section Scanning Electron Microscopy (S3EM) on Silicon Wafers for Ultra-Structural Volume Imaging of Cells and Tissues

    PubMed Central

    Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas

    2012-01-01

    High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S3EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation. PMID:22523574

  20. Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues.

    PubMed

    Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas

    2012-01-01

    High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larche, Michael R.; Prowant, Matthew S.; Bruillard, Paul J.

    This study compares different approaches for imaging the internal architecture of graphite/epoxy composites using backscattered ultrasound. Two cases are studied. In the first, near-surface defects in a thin graphite/epoxy plates are imaged. The same backscattered waveforms were used to produce peak-to-peak, logarithm of signal energy, as well as entropy images of different types. All of the entropy images exhibit better border delineation and defect contrast than the either peak-to-peak or logarithm of signal energy. The best results are obtained using the joint entropy of the backscattered waveforms with a reference function. Two different references are examined. The first is amore » reflection of the insonifying pulse from a stainless steel reflector. The second is an approximate optimum obtained from an iterative parametric search. The joint entropy images produced using this reference exhibit three times the contrast obtained in previous studies. These plates were later destructively analyzed to determine size and location of near-surface defects and the results found to agree with the defect location and shape as indicated by the entropy images. In the second study, images of long carbon graphite fibers (50% by weight) in polypropylene thermoplastic are obtained as a first step toward ultrasonic determination of the distributions of fiber position and orientation.« less

  2. Space Radar Image of Manaus, Brazil

    NASA Image and Video Library

    1999-01-27

    These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. http://photojournal.jpl.nasa.gov/catalog/PIA01712

  3. Electrochemical Liquid Phase Epitaxy (ec-LPE): A New Methodology for the Synthesis of Crystalline Group IV Semiconductor Epifilms.

    PubMed

    Demuth, Joshua; Fahrenkrug, Eli; Ma, Luyao; Shodiya, Titilayo; Deitz, Julia I; Grassman, Tyler J; Maldonado, Stephen

    2017-05-24

    Deposition of epitaxial germanium (Ge) thin films on silicon (Si) wafers has been achieved over large areas with aqueous feedstock solutions using electrochemical liquid phase epitaxy (ec-LPE) at low temperatures (T ≤ 90 °C). The ec-LPE method uniquely blends the simplicity and control of traditional electrodeposition with the material quality of melt growth. A new electrochemical cell design based on the compression of a liquid metal electrode into a thin cavity that enables ec-LPE is described. The epitaxial nature, low strain character, and crystallographic defect content of the resultant solid Ge films were analyzed by electron backscatter diffraction, scanning transmission electron microscopy, high resolution X-ray diffraction, and electron channeling contrast imaging. The results here show the first step toward a manufacturing infrastructure for traditional crystalline inorganic semiconductor epifilms that does not require high temperature, gaseous precursors, or complex apparatus.

  4. Quantitative three-dimensional ice roughness from scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Butterfield, Nicholas; Rowe, Penny M.; Stewart, Emily; Roesel, David; Neshyba, Steven

    2017-03-01

    We present a method for inferring surface morphology of ice from scanning electron microscope images. We first develop a novel functional form for the backscattered electron intensity as a function of ice facet orientation; this form is parameterized using smooth ice facets of known orientation. Three-dimensional representations of rough surfaces are retrieved at approximately micrometer resolution using Gauss-Newton inversion within a Bayesian framework. Statistical analysis of the resulting data sets permits characterization of ice surface roughness with a much higher statistical confidence than previously possible. A survey of results in the range -39°C to -29°C shows that characteristics of the roughness (e.g., Weibull parameters) are sensitive not only to the degree of roughening but also to the symmetry of the roughening. These results suggest that roughening characteristics obtained by remote sensing and in situ measurements of atmospheric ice clouds can potentially provide more facet-specific information than has previously been appreciated.

  5. Pulsed laser linescanner for a backscatter absorption gas imaging system

    DOEpatents

    Kulp, Thomas J.; Reichardt, Thomas A.; Schmitt, Randal L.; Bambha, Ray P.

    2004-02-10

    An active (laser-illuminated) imaging system is described that is suitable for use in backscatter absorption gas imaging (BAGI). A BAGI imager operates by imaging a scene as it is illuminated with radiation that is absorbed by the gas to be detected. Gases become "visible" in the image when they attenuate the illumination creating a shadow in the image. This disclosure describes a BAGI imager that operates in a linescanned manner using a high repetition rate pulsed laser as its illumination source. The format of this system allows differential imaging, in which the scene is illuminated with light at least 2 wavelengths--one or more absorbed by the gas and one or more not absorbed. The system is designed to accomplish imaging in a manner that is insensitive to motion of the camera, so that it can be held in the hand of an operator or operated from a moving vehicle.

  6. Simulation of multistatic and backscattering cross sections for airborne radar

    NASA Astrophysics Data System (ADS)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  7. aCORN Beta Spectrometer and Electrostatic Mirror

    NASA Astrophysics Data System (ADS)

    Hassan, Md; aCORN Collaboration

    2013-10-01

    aCORN uses a high efficiency backscatter suppressed beta spectrometer to measure the electron-antineutrino correlation in neutron beta decay. We measure the correlation by counting protons and beta electrons in coincidence with precisely determined electron energy. There are 19 photomultiplier tubes arranged in a hexagonal array coupled to a single phosphor doped polystyrene scintillator. The magnetic field is shaped so that electrons that backscatter without depositing their full energy strike a tulip-shaped array of scintillator paddles and these events are vetoed. The detailed construction, performance and calibration of this beta spectrometer will be presented. I will also present the simulation, construction, and features of our novel electrostatic mirror. This work was supported by the National Science Foundation and the NIST Center for Neutron Research.

  8. Analysis of auroral particle fluxes

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.

    1972-01-01

    The physical processes which describe the interaction of auroral electrons with the atmosphere appear to be more complex than just the Coulomb scattering of the incident primary electrons with a subsequent loss of energy. The comparison of the measured backscattered electron spectra with spectra predicted using a theoretical scattering calculation has led to a discrepancy for energies below about 1 to 2 keV. It was found that the very high ratio (100%) of backscattered to incident fluxes for these energies could be most reasonably explained by a parallel downward-directed electric field which prevents these lower energy electrons from entering the atmospheric scattering region. This parallel field with potential drop of about 1 keV is thought to have its origin in waveparticle interactions in the turbulent auroral ionosphere.

  9. High resolution energy-angle correlation measurement of hard x rays from laser-Thomson backscattering.

    PubMed

    Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U

    2013-09-13

    Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.

  10. An analytic formula for the relativistic incoherent Thomson backscattering spectrum for a drifting bi-Maxwellian plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naito, O.

    2015-08-15

    An analytic formula has been derived for the relativistic incoherent Thomson backscattering spectrum for a drifting anisotropic plasma when the scattering vector is parallel to the drifting direction. The shape of the scattering spectrum is insensitive to the electron temperature perpendicular to the scattering vector, but its amplitude may be modulated. As a result, while the measured temperature correctly represents the electron distribution parallel to the scattering vector, the electron density may be underestimated when the perpendicular temperature is higher than the parallel temperature. Since the scattering spectrum in shorter wavelengths is greatly enhanced by the existence of drift, themore » diagnostics might be used to measure local electron current density in fusion plasmas.« less

  11. Oil spill detection from TerraSAR-X dual-polarized images using artificial neural network

    NASA Astrophysics Data System (ADS)

    Kim, D.; Jung, H.-S.

    2017-10-01

    Marine pollution from oil spills destroys ecosystems. In order to minimize the damage, it is important to fast cleanup it after predicting how the oil will spread. In order to predict the spread of oil spill, remote sensing technique, especially radar satellite image is widely used. In previous studies, only the back-scattering value is generally used for the detection of oil spill. However, in this study, oil spill was detected by applying ANN (Artificial Neural Network) as input data from the back-scattering value of the radar image as well as the phase information extracted from the dual polarization. In order to maximize the efficiency of oil spill detection using a back-scattering value, the speckle noise acting as an error factor should be removed first. NL-means filter was applied to multi-look image to remove it without smoothing of spatial resolution. In the coherence image, the sea has a high value and the oil spill area has a low value due to the scattering characteristics of the pulse. In order to using the characteristics of radar image, training sample was set up from NL-means filtered images(HH, VV) and coherence image, and ANN was applied to produce probability map of oil spill. In general, the value was 0.4 or less in the case of the sea, and the value was mainly in the range of 0.7 to 0.9 in the oil spill area. Using coherence images generated from different polarizations showed better detection results for relatively thin oil spill areas such as oil slick or oil sheen than using back-scattering information alone. It is expected that if the information about the look-alike of oil spill such as algae, internal wave and rainfall area is provided, the probability map can be produced with higher accuracy.

  12. SAR studies in the Yuma Desert, Arizona: Sand penetration, geology, and the detection of military ordnance debris

    USGS Publications Warehouse

    Schaber, G.G.

    1999-01-01

    Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also Compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).

  13. Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment.

    PubMed

    Shiu, A S; Tung, S S; Gastorf, R J; Hogstrom, K R; Morrison, W H; Peters, L J

    1996-06-01

    The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at 9 MeV. For the tungsten eye shield coated with 2-3 mm of dental acrylic, the lid dose was increased from 85 to 98.5% at 6 MeV and 86 to 106% at 9 MeV. Commercially available eye shields were evaluated and found to be clearly inadequate to protect the ocular structures for electron beam energies equal to or greater than 6 MeV. A tungsten eye shield has been found to provide adequate protection for electrons up to 9 MeV. The increase in lid dose due to electrons backscattered off the tungsten eye shield should be considered in the dose prescription. A minimum thickness of 2 mm dental acrylic on the beam entrance surface of the tungsten eye shield was found to reduce the backscattered electron effect to acceptable levels.

  14. Is there a real danger of concealing gunshot residue (GSR) particles by skin debris using the tape-lift method for sampling GSR from hands?

    PubMed

    Zeichner, A

    2001-11-01

    Experiments were carried out to assess the danger of concealing GSR particles by skin debris using the tape-lift method for sampling GSR from hands. Thirty discrete spherical particles (from GSR and from the debris of oxygen cutting of steel) sized from 8 to 30 microns were mounted on a double-side adhesive coated stubs in known locations using a stereomicroscope. These stubs were then used for dabbing hands 50 times. Some of the particles or parts thereof were covered by skin flakes, however, all particles could be detected using the backscattered electron image (BEI) in the scanning electron microscope (SEM). Also, all could be identified by the energy dispersive X-ray spectroscopy (EDX).

  15. Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: A study with simultaneous in situ synchrotron x-ray imaging and diffraction

    DOE PAGES

    Lu, L.; Huang, J. W.; Fan, D.; ...

    2016-08-29

    In situ synchrotron x-ray imaging and diffraction are used to investigate anisotropic deformation of an extruded magnesium alloy AZ31 under uniaxial compression along two different directions, with the loading axis (LA) either parallel or perpendicular to the extrusion direction (ED), referred to as LA∥ED and LAED, respectively. Multiscale measurements including stress–strain curves (macroscale), x-ray digital image correlation (mesoscale), and diffraction (microscale) are obtained simultaneously. Electron backscatter diffraction is performed on samples collected at various strains to characterize deformation twins. The rapid increase in strain hardening rate for the LA∥ED loading is attributed to marked {101¯2} extension twinning and subsequent homogenizationmore » of deformation, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate.« less

  16. Ionospheric electron number densities from CUTLASS dual-frequency velocity measurements using artificial backscatter over EISCAT

    NASA Astrophysics Data System (ADS)

    Sarno-Smith, Lois K.; Kosch, Michael J.; Yeoman, Timothy; Rietveld, Michael; Nel, Amore'; Liemohn, Michael W.

    2016-08-01

    Using quasi-simultaneous line-of-sight velocity measurements at multiple frequencies from the Hankasalmi Cooperative UK Twin Auroral Sounding System (CUTLASS) on the Super Dual Auroral Radar Network (SuperDARN), we calculate electron number densities using a derivation outlined in Gillies et al. (2010, 2012). Backscatter targets were generated using the European Incoherent Scatter (EISCAT) ionospheric modification facility at Tromsø, Norway. We use two methods on two case studies. The first approach is to use the dual-frequency capability on CUTLASS and compare line-of-sight velocities between frequencies with a MHz or greater difference. The other method used the kHz frequency shifts automatically made by the SuperDARN radar during routine operations. Using ray tracing to obtain the approximate altitude of the backscatter, we demonstrate that for both methods, SuperDARN significantly overestimates Ne compared to those obtained from the EISCAT incoherent scatter radar over the same time period. The discrepancy between the Ne measurements of both radars may be largely due to SuperDARN sensitivity to backscatter produced by localized density irregularities which obscure the background levels.

  17. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    NASA Astrophysics Data System (ADS)

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  18. Detection of Explosive Devices using X-ray Backscatter Radiation

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.

    2002-09-01

    It is our goal to develop a coded aperture based X-ray backscatter imaging detector that will provide sufficient speed, contrast and spatial resolution to detect Antipersonnel Landmines and Improvised Explosive Devices (IED). While our final objective is to field a hand-held detector, we have currently constrained ourselves to a design that can be fielded on a small robotic platform. Coded aperture imaging has been used by the observational gamma astronomy community for a number of years. However, it has been the recent advances in the field of medical nuclear imaging which has allowed for the application of the technique to a backscatter scenario. In addition, driven by requirements in medical applications, advances in X-ray detection are continually being made, and detectors are now being produced that are faster, cheaper and lighter than those only a decade ago. With these advances, a coded aperture hand-held imaging system has only recently become a possibility. This paper will begin with an introduction to the technique, identify recent advances which have made this approach possible, present a simulated example case, and conclude with a discussion on future work.

  19. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited).

    PubMed

    Vann, R G L; Brunner, K J; Ellis, R; Taylor, G; Thomas, D A

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  20. Micro-PIXE and micro-RBS characterization of micropores in porous silicon prepared using microwave-assisted hydrofluoric acid etching.

    PubMed

    Ahmad, Muthanna; Grime, Geoffrey W

    2013-04-01

    Porous silicon (PS) has been prepared using a microwave-assisted hydrofluoric acid (HF) etching method from a silicon wafer pre-implanted with 5 MeV Cu ions. The use of microbeam proton-induced X-ray emission (micro-PIXE) and microbeam Rutherford backscattering techniques reveals for the first time the capability of these techniques for studying the formation of micropores. The porous structures observed from micro-PIXE imaging results are compared to scanning electron microscope images. It was observed that the implanted copper accumulates in the same location as the pores and that at high implanted dose the pores form large-scale patterns of lines and concentric circles. This is the first work demonstrating the use of microwave-assisted HF etching in the formation of PS.

  1. Characterization of Discontinuous Coarsening Reaction Products in INCONEL® Alloy 740H® Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; Dupont, John N.; Watanabe, Masashi; de Barbadillo, John J.

    2017-04-01

    Characterization of γ' coarsened zones (CZs) in alloy 740H fusion welds via a variety of electron microscopy techniques was conducted. The effects of solute partitioning during nonequilibrium solidification on the amount of strengthening precipitates along the grain boundaries were evaluated via electron-probe microanalysis and scanning electron microscopy. Electron backscatter diffraction was used to present evidence for the preferential growth of CZs toward regions of lower γ' content, even if growth in that direction increases grain boundary area. Scanning electron microscopy and image analysis were used to quantify the propensity for CZs to develop along certain segments of the grain boundaries, as governed by the local variations in γ' content. Scanning transmission electron microscopy with X-ray energy-dispersive spectrometry (XEDS) was used to assess the compositions of the matrix and precipitate phases within the CZs and to quantify the segregation of alloying components to the reaction front. Thermodynamic and kinetic modeling were used to compare calculated and experimental compositions. The work presented here provides new insight into the progression of the discontinuous coarsening (DC) reaction in a complex engineering alloy.

  2. Metacarpal head biomechanics: a comparative backscattered electron image analysis of trabecular bone mineral density in Pan troglodytes, Pongo pygmaeus, and Homo sapiens.

    PubMed

    Zeininger, Angel; Richmond, Brian G; Hartman, Gideon

    2011-06-01

    Great apes and humans use their hands in fundamentally different ways, but little is known about joint biomechanics and internal bone variation. This study examines the distribution of mineral density in the third metacarpal heads in three hominoid species that differ in their habitual joint postures and loading histories. We test the hypothesis that micro-architectural properties relating to bone mineral density reflect habitual joint use. The third metacarpal heads of Pan troglodytes, Pongo pygmaeus, and Homo sapiens were sectioned in a sagittal plane and imaged using backscattered electron microscopy (BSE-SEM). For each individual, 72 areas of subarticular cortical (subchondral) and trabecular bone were sampled from within 12 consecutive regions of the BSE-SEM images. In each area, gray levels (representing relative mineralization density) were quantified. Results show that chimpanzee, orangutan, and human metacarpal III heads have different gray level distributions. Weighted mean gray levels (WMGLs) in the chimpanzee showed a distinct pattern in which the 'knuckle-walking' regions (dorsal) and 'climbing' regions (palmar) are less mineralized, interpreted to reflect elevated remodeling rates, than the distal regions. Pongo pygmaeus exhibited the lowest WMGLs in the distal region, suggesting elevated remodeling rates in this region, which is loaded during hook grip hand postures associated with suspension and climbing. Differences among regions within metacarpal heads of the chimpanzee and orangutan specimens are significant (Kruskal-Wallis, p < 0.001). In humans, whose hands are used for manipulation as opposed to locomotion, mineralization density is much more uniform throughout the metacarpal head. WMGLs were significantly (p < 0.05) lower in subchondral compared to trabecular regions in all samples except humans. This micro-architectural approach offers a means of investigating joint loading patterns in primates and shows significant differences in metacarpal joint biomechanics among great apes and humans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Multi-signal FIB/SEM tomography

    NASA Astrophysics Data System (ADS)

    Giannuzzi, Lucille A.

    2012-06-01

    Focused ion beam (FIB) milling coupled with scanning electron microscopy (SEM) on the same platform enables 3D microstructural analysis of structures using FIB for serial sectioning and SEM for imaging. Since FIB milling is a destructive technique, the acquisition of multiple signals from each slice is desirable. The feasibility of collecting both an inlens backscattered electron (BSE) signal and an inlens secondary electron (SE) simultaneously from a single scan of the electron beam from each FIB slice is demonstrated. The simultaneous acquisition of two different SE signals from two different detectors (inlens vs. Everhart-Thornley (ET) detector) is also possible. Obtaining multiple signals from each FIB slice with one scan increases the acquisition throughput. In addition, optimization of microstructural and morphological information from the target is achieved using multi-signals. Examples of multi-signal FIB/SEM tomography from a dental implant will be provided where both material contrast from the bone/ceramic coating/Ti substrate phases and porosity in the ceramic coating will be characterized.

  4. Practical aspects of the use of the X(2) holder for HRTEM-quality TEM sample preparation by FIB.

    PubMed

    van Mierlo, Willem; Geiger, Dorin; Robins, Alan; Stumpf, Matthias; Ray, Mary Louise; Fischione, Paul; Kaiser, Ute

    2014-12-01

    The X(2) holder enables the effective production of thin, electron transparent samples for high-resolution transmission electron microscopy (HRTEM). Improvements to the X(2) holder for high-quality transmission electron microscopy (TEM) sample preparation are presented in this paper. We discuss the influence of backscattered electrons (BSE) from the sample holder in determining the lamella thickness in situ and demonstrate that a significant improvement in thickness determination can be achieved by comparatively simple means using the relative BSE intensity. We show (using Monte Carlo simulations) that by taking into account the finite collection angle of the electron backscatter detector, an approximately 20% underestimation of the lamella thickness in a silicon sample can be avoided. However, a correct thickness determination for light-element lamellas still remains a problem with the backscatter method; we introduce a more accurate method using the energy dispersive X-ray spectroscopy (EDX) signal for in situ thickness determination. Finally, we demonstrate how to produce a thin lamella with a nearly damage-free surface using the X(2) holder in combination with sub-kV polishing in the Fischione Instruments׳ NanoMill(®) TEM specimen preparation system. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Added aluminum shielding to attenuate back scatter electrons from intra-oral lead shields.

    PubMed

    Weidlich, G A; Nuesch, C E; Fuery, J J

    1996-01-01

    An intra-oral lead shield was developed that consists of a lead base with an aluminum layer that is placed upstream of the lead base. Several such shields with various thicknesses of Al layers were manufactured and quantitatively evaluated in 6 MeV and 12 MeV electron radiation by Thermoluminescent dosimetry (TLD) measurements. The clinical relevance was established by using a 5 cm backscatter block down-stream of the lead shield to simulate anatomical structures of the head and a 0.5 cm superflab bolus upstream of the Al layers of the shield to simulate the patient's lip or cheek. The TLDs were placed between the Al layers of the shield and the superflab to determine the intra-oral skin dose. TLD exposure results revealed that 59.8% of the skin dose at 6 MeV and 45.1% of the skin dose at 12 MeV is due to backscattered electrons. Introduction of a 3.0 mm thick Al layer reduces the backscatter contribution to 13.5% of the back scatter dose at 6 MeV and 56.3% of the back scatter dose at 12 MeV electron radiation.

  6. Photon mirror acceleration in the quantum regime

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Fedele, R.

    2014-12-01

    Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.

  7. The relative effect of particles and turbulence on acoustic scattering from deep sea hydrothermal vent plumes revisited.

    PubMed

    Xu, Guangyu; Jackson, Darrell R; Bemis, Karen G

    2017-03-01

    The relative importance of suspended particles and turbulence as backscattering mechanisms within a hydrothermal plume located on the Endeavour Segment of the Juan de Fuca Ridge is determined by comparing acoustic backscatter measured by the Cabled Observatory Vent Imaging Sonar (COVIS) with model calculations based on in situ samples of particles suspended within the plume. Analysis of plume samples yields estimates of the mass concentration and size distribution of particles, which are used to quantify their contribution to acoustic backscatter. The result shows negligible effects of plume particles on acoustic backscatter within the initial 10-m rise of the plume. This suggests turbulence-induced temperature fluctuations are the dominant backscattering mechanism within lower levels of the plume. Furthermore, inversion of the observed acoustic backscatter for the standard deviation of temperature within the plume yields a reasonable match with the in situ temperature measurements made by a conductivity-temperature-depth instrument. This finding shows that turbulence-induced temperature fluctuations are the dominant backscattering mechanism and demonstrates the potential of using acoustic backscatter as a remote-sensing tool to measure the temperature variability within a hydrothermal plume.

  8. Uniform laser-driven relativistic electron layer for coherent Thomson scattering.

    PubMed

    Wu, H-C; Meyer-ter-Vehn, J; Fernández, J; Hegelich, B M

    2010-06-11

    A novel scheme is proposed to generate uniform relativistic electron layers for coherent Thomson backscattering. A few-cycle laser pulse is used to produce the electron layer from an ultrathin solid foil. The key element of the new scheme is an additional foil that reflects the drive-laser pulse, but lets the electrons pass almost unperturbed. Making use of two-dimensional particle-in-cell simulations and well-known basic theory, it is shown that the electrons, after interacting with both the drive and reflected laser pulses, form a very uniform flyer freely cruising with a high relativistic γ factor exactly in the drive-laser direction (no transverse momentum). It backscatters the probe light with a full Doppler shift factor of 4γ(2). The reflectivity and its decay due to layer expansion are discussed.

  9. Polarimetric optical imaging of scattering surfaces.

    PubMed

    Barter, J D; Lee, P H

    1996-10-20

    A polarimetric optical specular event detector (OSED) has been developed to provide spatially and temporally resolved polarimetric data of backscattering in the visible from water wave surfaces. The OSED acquires simultaneous, two-dimensionally resolved images of the remote target in two orthogonal planes of polarization. With the use of plane-polarized illumination the OSED presently can measure, in an ensemble of breaking waves, the equivalent four-element polarization matrix common to polarimetric radars. Upgrade to full Stokes parameter state of polarization measurements is straightforward with the use of present single-aperture, multi-imager CCD camera technology. The OSED is used in conjunction with a coherent pulse-chirped radar (PCR), which also measures the four-element polarization matrix, to provide direct time-correlated identification of backscattering mechanisms operative during wave-breaking events which heretofore have not been described theoretically. We describe the instrument and its implementation, and examples of spatially resolved polarimetric data are displayed as correlated with the PCR backscatter cross section and polarization ratio records.

  10. Scanning EM of non-heavy metal stained biosamples: Large-field of view, high contrast and highly efficient immunolabeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuipers, Jeroen; Boer, Pascal de; Giepmans, Ben N.G., E-mail: b.n.g.giepmans@umcg.nl

    Scanning electron microscopy (SEM) is increasing its application in life sciences for electron density measurements of ultrathin sections. These are traditionally analyzed with transmission electron microscopy (TEM); by most labs, SEM analysis still is associated with surface imaging only. Here we report several advantages of SEM for thin sections over TEM, both for structural inspection, as well as analyzing immuno-targeted labels such as quantum dots (QDs) and gold, where we find that QD-labeling is ten times more efficient than gold-labeling. Furthermore, we find that omitting post-staining with uranyl and lead leads to QDs readily detectable over the ultrastructure, but undermore » these conditions ultrastructural contrast was even almost invisible in TEM examination. Importantly, imaging in SEM with STEM detection leads to both outstanding QDs and ultrastructural contrast. STEM imaging is superior over back-scattered electron imaging of these non-contrasted samples, whereas secondary electron detection cannot be used at all. We conclude that examination of ultrathin sections by SEM, which may be immunolabeled with QDs, will allow rapid and straightforward analysis of large fields with more efficient labeling than can be achieved with immunogold. The large fields of view routinely achieved with SEM, but not with TEM, allows straightforward raw data sharing using virtual microscopy, also known as nanotomy when this concerns EM data in the life sciences. - Highlights: • High resolution and large fields of view via nanotomy or virtual microscopy. • Highly relevant for EM‐datasets where information density is high. • Sample preparation with low contrast good for STEM, not TEM. • Quantum dots now stand out in STEM‐based detection. • 10 Times more efficient labeling with quantum dots compared to gold.« less

  11. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective.

    PubMed

    Skedros, John G; Holmes, Jennifer L; Vajda, Eric G; Bloebaum, Roy D

    2005-09-01

    Using qualitative backscattered electron (BSE) imaging and quantitative energy dispersive X-ray (EDX) spectroscopy, some investigators have concluded that cement (reversal) lines located at the periphery of secondary osteons are poorly mineralized viscous interfaces with respect to surrounding bone. This conclusion contradicts historical observations of apparent highly mineralized (or collagen-deficient) cement lines in microradiographs. Such conclusions, however, may stem from unrecognized artifacts that can occur during scanning electron microscopy. These include specimen degradation due to high-energy beams and the sampling of electron interaction volumes that extend beyond target locations during EDX analysis. This study used quantitative BSE imaging and EDX analysis, each with relatively lower-energy beams, to test the hypothesis that cement lines are poorly mineralized. Undemineralized adult human femoral diaphyses (n = 8) and radial diaphyses (n = 5) were sectioned transversely, embedded in polymethyl methacrylate, and imaged in a scanning electron microscope for BSE and EDX analyses. Unembedded samples were also evaluated. Additional thin embedded samples were stained and evaluated with light microscopy and correlated BSE imaging. BSE analyses showed the consistent presence of a bright line (higher atomic number) coincident with the classical location and description of the cement line. This may represent relative hypermineralization or, alternatively, collagen deficiency with respect to surrounding bone. EDX analyses of cement lines showed either higher Ca content or equivalent Ca content when compared to distant osteonal and interstitial bone. These data reject the hypothesis that cement lines of secondary osteons are poorly mineralized. Copyright 2005 Wiley-Liss, Inc

  12. High-resolution scanning electron microscopy of frozen-hydrated cells.

    PubMed

    Walther, P; Chen, Y; Pech, L L; Pawley, J B

    1992-11-01

    Cryo-fixed yeast Paramecia and sea urchin embryos were investigated with an in-lens type field-emission SEM using a cold stage. The goal was to further develop and investigate the processing of frozen samples for the low-temperature scanning electron microscope (LTSEM). Uncoated frozen-hydrated samples were imaged with the low-voltage backscattered electron signal (BSE). Resolution and contrast were sufficient to visualize cross-fractured membranes, nuclear pores and small vesicles in the cytoplasm. It is assumed that the resolution of this approach is limited by the extraction depth of the BSE which depends upon the accelerating voltage of the primary beam (V0). In this study, the lowest possible V0 was 2.6 kV because below this value the sensitivity of the BSE detector is insufficient. It is concluded that the resolution of the uncoated specimen could be improved if equipment were available for high-resolution BSE imaging at 0.5-2 kV. Higher resolution was obtained with platinum cryo-coated samples, on which intramembranous particles were easily imaged. These images even show the ring-like appearance of the hexagonally arranged intramembranous particles known from high-resolution replica studies. On fully hydrated samples at high magnification, the observation time for a particular area is limited by mass loss caused by electron irradiation. Other potential sources of artefacts are the deposition of water vapour contamination and shrinkage caused by the sublimation of ice. Imaging of partially dehydrated (partially freeze-dried) samples, e.g. high-pressure frozen Paramecium and sea urchin embryos, will probably become the main application in cell biology. In spite of possible shrinkage problems, this approach has a number of advantages compared with any other electron microscopy preparation method: no chemical fixation is necessary, eliminating this source of artefacts; due to partial removal of the water additional structures in the cytoplasm can be investigated; and finally, the mass loss due to electron beam irradiation is greatly reduced compared to fully frozen-hydrated specimens.

  13. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    PubMed

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Absorption and backscatter of internal conversion electrons in the measurements of surface contamination of ¹³⁷Cs.

    PubMed

    Yunoki, A; Kawada, Y; Yamada, T; Unno, Y; Sato, Y; Hino, Y

    2013-11-01

    We measured 4π and 2π counting efficiencies for internal conversion electrons (ICEs), gross β-particles and also β-rays alone with various source conditions regarding absorber and backing foil thickness using e-X coincidence technique. Dominant differences regarding the penetration, attenuation and backscattering properties among ICEs and β-rays were revealed. Although the abundance of internal conversion electrons of (137)Cs-(137)Ba is only 9.35%, 60% of gross counts may be attributed to ICEs in worse source conditions. This information will be useful for radionuclide metrology and for surface contamination monitoring. © 2013 Elsevier Ltd. All rights reserved.

  15. Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound.

    PubMed

    Sheet, Debdoot; Karamalis, Athanasios; Eslami, Abouzar; Noël, Peter; Chatterjee, Jyotirmoy; Ray, Ajoy K; Laine, Andrew F; Carlier, Stephane G; Navab, Nassir; Katouzian, Amin

    2014-01-01

    Intravascular Ultrasound (IVUS) is a predominant imaging modality in interventional cardiology. It provides real-time cross-sectional images of arteries and assists clinicians to infer about atherosclerotic plaques composition. These plaques are heterogeneous in nature and constitute fibrous tissue, lipid deposits and calcifications. Each of these tissues backscatter ultrasonic pulses and are associated with a characteristic intensity in B-mode IVUS image. However, clinicians are challenged when colocated heterogeneous tissue backscatter mixed signals appearing as non-unique intensity patterns in B-mode IVUS image. Tissue characterization algorithms have been developed to assist clinicians to identify such heterogeneous tissues and assess plaque vulnerability. In this paper, we propose a novel technique coined as Stochastic Driven Histology (SDH) that is able to provide information about co-located heterogeneous tissues. It employs learning of tissue specific ultrasonic backscattering statistical physics and signal confidence primal from labeled data for predicting heterogeneous tissue composition in plaques. We employ a random forest for the purpose of learning such a primal using sparsely labeled and noisy samples. In clinical deployment, the posterior prediction of different lesions constituting the plaque is estimated. Folded cross-validation experiments have been performed with 53 plaques indicating high concurrence with traditional tissue histology. On the wider horizon, this framework enables learning of tissue-energy interaction statistical physics and can be leveraged for promising clinical applications requiring tissue characterization beyond the application demonstrated in this paper. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Opposition effect of the Moon from LROC WAC data

    NASA Astrophysics Data System (ADS)

    Velikodsky, Yu. I.; Korokhin, V. V.; Shkuratov, Yu. G.; Kaydash, V. G.; Videen, Gorden

    2016-09-01

    LROC WAC images acquired in 5 bands of the visible spectral range were used to study the opposition effect for two mare and two highland regions near the lunar equator. Opposition phase curves were extracted from the images containing the opposition by separating the phase-curve effect from the albedo pattern by comparing WAC images at different phase angles (from 0° to 30°). Akimov's photometric function and the NASA Digital Terrain Model GLD100 were used in the processing. It was found that phase-curve slopes at small phase angles directly correlate with albedo, while at larger phase angles, they are anti-correlated. We suggest a parameter to characterize the coherent-backscattering component of the lunar opposition surge, which is defined as the maximum phase angle for which the opposition-surge slope increases with growing albedo. The width of the coherent-backscattering opposition effect varies from approximately 1.2° for highlands in red light to 3.9° for maria in blue light. The parameter depends on albedo, which is in agreement with the coherent-backscattering theory. The maximum amplitude of the coherent opposition effect is estimated to be near 8%. Maps of albedo and phase-curve slope at phase angles larger than those, at which the coherent-backscattering occurs, were built for the areas under study. Absolute calibration of WAC images was compared with Earth-based observations: the WAC-determined albedo is very close to the mean lunar albedo calculated using available Earth-based observations.

  17. A comparative study of inelastic scattering models at energy levels ranging from 0.5 keV to 10 keV

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Lin, Chun-Hung

    2017-03-01

    Six models, including a single-scattering model, four hybrid models, and one dielectric function model, were evaluated using Monte Carlo simulations for aluminum and copper at incident beam energies ranging from 0.5 keV to 10 keV. The inelastic mean free path, mean energy loss per unit path length, and backscattering coefficients obtained by these models are compared and discussed to understand the merits of the various models. ANOVA (analysis of variance) statistical models were used to quantify the effects of inelastic cross section and energy loss models on the basis of the simulated results deviation from the experimental data for the inelastic mean free path, the mean energy loss per unit path length, and the backscattering coefficient, as well as their correlations. This work in this study is believed to be the first application of ANOVA models towards evaluating inelastic electron beam scattering models. This approach is an improvement over the traditional approach which involves only visual estimation of the difference between the experimental data and simulated results. The data suggests that the optimization of the effective electron number per atom, binding energy, and cut-off energy of an inelastic model for different materials at different beam energies is more important than the selection of inelastic models for Monte Carlo electron scattering simulation. During the simulations, parameters in the equations should be tuned according to different materials for different beam energies rather than merely employing default parameters for an arbitrary material. Energy loss models and cross-section formulas are not the main factors influencing energy loss. Comparison of the deviation of the simulated results from the experimental data shows a significant correlation (p < 0.05) between the backscattering coefficient and energy loss per unit path length. The inclusion of backscattering electrons generated by both primary and secondary electrons for backscattering coefficient simulation is recommended for elements with high atomic numbers. In hybrid models, introducing the inner shell ionization model improves the accuracy of simulated results.

  18. Imaging radar observations of frozen Arctic lakes

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Bryan, M. L.; Weeks, W. F.

    1976-01-01

    A synthetic aperture imaging L-band radar flown aboard the NASA CV-990 remotely sensed a number of ice-covered lakes about 48 km northwest of Bethel, Alaska. The image obtained is a high resolution, two-dimensional representation of the surface backscatter cross section, and large differences in backscatter returns are observed: homogeneous low returns, homogeneous high returns and/or low returns near lake borders, and high returns from central areas. It is suggested that a low return indicates that the lake is frozen completely to the bottom, while a high return indicates the presence of fresh water between the ice cover and the lake bed.

  19. In-Depth View of the Structure and Growth of SnO2 Nanowires and Nanobrushes.

    PubMed

    Stuckert, Erin P; Geiss, Roy H; Miller, Christopher J; Fisher, Ellen R

    2016-08-31

    Strategic application of an array of complementary imaging and diffraction techniques is critical to determine accurate structural information on nanomaterials, especially when also seeking to elucidate structure-property relationships and their effects on gas sensors. In this work, SnO2 nanowires and nanobrushes grown via chemical vapor deposition (CVD) displayed the same tetragonal SnO2 structure as revealed via powder X-ray diffraction bulk crystallinity data. Additional characterization using a range of electron microscopy imaging and diffraction techniques, however, revealed important structure and morphology distinctions between the nanomaterials. Tailoring scanning transmission electron microscopy (STEM) modes combined with transmission electron backscatter diffraction (t-EBSD) techniques afforded a more detailed view of the SnO2 nanostructures. Indeed, upon deeper analysis of individual wires and brushes, we discovered that, despite a similar bulk structure, wires and brushes grew with different crystal faces and lattice spacings. Had we not utilized multiple STEM diffraction modes in conjunction with t-EBSD, differences in orientation related to bristle density would have been overlooked. Thus, it is only through a methodical combination of several structural analysis techniques that precise structural information can be reliably obtained.

  20. Focal adhesion interactions with topographical structures: a novel method for immuno-SEM labelling of focal adhesions in S-phase cells.

    PubMed

    Biggs, M J P; Richards, R G; Wilkinson, C D W; Dalby, M J

    2008-07-01

    Current understanding of the mechanisms involved in osseointegration following implantation of a biomaterial has led to adhesion quantification being implemented as an assay of cytocompatibility. Such measurement can be hindered by intra-sample variation owing to morphological changes associated with the cell cycle. Here we report on a new scanning electron microscopical method for the simultaneous immunogold labelling of cellular focal adhesions and S-phase nuclei identified by BrdU incorporation. Prior to labelling, cellular membranes are removed by tritonization and antigens of non-interest blocked by serum incubation. Adhesion plaque-associated vinculin and S-phase nuclei were both separately labelled with a 1.4 nm gold colloid and visualized by subsequent colloid enhancement via silver deposition. This study is specifically concerned with the effects microgroove topographies have on adhesion formation in S-phase osteoblasts. By combining backscattered electron (BSE) imaging with secondary electron (SE) imaging it was possible to visualize S-phase nuclei and the immunogold-labelled adhesion sites in one energy 'plane' and the underlying nanotopography in another. Osteoblast adhesion to these nanotopographies was ascertained by quantification of adhesion complex formation.

  1. Electron Backscatter Diffraction (EBSD) Analysis and U-Pb Geochronology of the Oldest Lunar Zircon: Constraining Early Lunar Differentiation and Dating Impact-Related Deformation

    NASA Technical Reports Server (NTRS)

    Timms, Nick; Nemchin, Alexander; Grange, Marion; Reddy, Steve; Pidgeon, Bob; Geisler, Thorsten; Meyer, Chuck

    2009-01-01

    The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with <100>{010} slip. The deformation bands are unlike curved morphology of crystal-plastic microstructures in tectonically deformed terrestrial zircon, and geometrically similar to dislocation microstructures reported in experimentally shocked zircon. We interpret these crystal-plastic deformation microstructures to have resulted from a significant impact, either directly from impact shock, or during ductile flow directly following the impact. The deformation bands appear to continue undeflected through the non-indexed, radiation-damaged areas of the grain, which suggests that the orientation variation predates any significant mechanical weakening from radiation damage in the grain, and therefore occurred early in its history.

  2. Seeing Below the Drop: Direct Nano-to-microscale Imaging of Complex Interfaces involving Solid, Liquid, and Gas Phases

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Landin, Trevan; Walker, Marlon L.; Scott, John Henry J.; Varanasi, Kripa K.

    2012-11-01

    Nanostructured surfaces with special wetting properties have the potential to transform number of industries, including power generation, water desalination, gas and oil production, and microelectronics thermal management. Predicting the wetting properties of these surfaces requires detailed knowledge of the geometry and the composition of the contact volume linking the droplet to the underlying substrate. Surprisingly, a general nano-to-microscale method for direct imaging of such interfaces has previously not been developed. Here we introduce a three dimensional imaging method which resolves this one-hundred-year-old metrology gap in wetting research. Specifically, we demonstrate direct nano-to-microscale imaging of complex fluidic interfaces using cryofixation in combination with cryo-FIB/SEM. We show that application of this method yields previously unattainable quantitative information about the interfacial geometry of water condensed on silicon nanowire forests with hydrophilic and hydrophobic surface termination in the presence or absence of an intermediate water repelling oil. We also discuss imaging artifacts and the advantages of secondary and backscatter electron imaging, Energy Dispersive Spectrometry (EDS), and three dimensional FIB/SEM tomography.

  3. Feasibility of sea ice typing with synthetic aperture radar (SAR): Merging of Landsat thematic mapper and ERS 1 SAR satellite imagery

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Heinrichs, John

    1994-01-01

    Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and Landsat thematic mapper (TM) images were acquired for the same area in the Beaufort Sea, April 16 and 18, 1992. The two image pairs were colocated to the same grid (25-m resolution), and a supervised ice type classification was performed on the TM images in order to classify ice free, nilas, gray ice, gray-white ice, thin first-year ice, medium and thick first-year ice, and old ice. Comparison of the collocated SAR pixels showed that ice-free areas can only be classified under calm wind conditions (less than 3 m/s) and for surface winds greater than 10 m/s based on the backscattering coefficient alone. This is true for pack ice regions during the cold months of the year where ice-free areas are spatially limited and where the capillary waves that cause SAR backscatter are dampened by entrained ice crystals. For nilas, two distinct backscatter classes were found at -17 dB and at -10 dB. The higher backscattering coefficient is attributed to the presence of frost flowers on light nilas. Gray and gray-white ice have a backscatter signature similar to first-year ice and therefore cannot be distinguished by SAR alone. First-year and old ice can be clearly separated based on their backscattering coefficient. The performance of the Geophysical Processor System ice classifier was tested against the Landsat derived ice products. It was found that smooth first-year ice and rough first-year ice were not significantly different in the backscatter domain. Ice concentration estimates based on ERS 1 C band SAR showed an error range of 5 to 8% for high ice concentration regions, mainly due to misclassified ice-free and smooth first-year ice areas. This error is expected to increase for areas of lower ice concentration. The combination of C band SAR and TM channels 2, 4, and 6 resulted in ice typing performance with an estimated accuracy of 90% for all seven ice classes.

  4. Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2018-03-01

    The electrons in the edge channels of two-dimensional topological insulators can be described as a helical Tomonaga-Luttinger liquid. They couple to nuclear spins embedded in the host materials through the hyperfine interaction, and are therefore subject to elastic spin-flip backscattering on the nuclear spins. We investigate the nuclear-spin-induced edge resistance due to such backscattering by performing a renormalization-group analysis. Remarkably, the effect of this backscattering mechanism is stronger in a helical edge than in nonhelical channels, which are believed to be present in the trivial regime of InAs/GaSb quantum wells. In a system with sufficiently long edges, the disordered nuclear spins lead to an edge resistance which grows exponentially upon lowering the temperature. On the other hand, electrons from the edge states mediate an anisotropic Ruderman-Kittel-Kasuya-Yosida nuclear spin-spin interaction, which induces a spiral nuclear spin order below the transition temperature. We discuss the features of the spiral order, as well as its experimental signatures. In the ordered phase, we identify two backscattering mechanisms, due to charge impurities and magnons. The backscattering on charge impurities is allowed by the internally generated magnetic field, and leads to an Anderson-type localization of the edge states. The magnon-mediated backscattering results in a power-law resistance, which is suppressed at zero temperature. Overall, we find that in a sufficiently long edge the nuclear spins, whether ordered or not, suppress the edge conductance to zero as the temperature approaches zero.

  5. Short range shooting distance estimation using variable pressure SEM images of the surroundings of bullet holes in textiles.

    PubMed

    Hinrichs, Ruth; Frank, Paulo Ricardo Ost; Vasconcellos, M A Z

    2017-03-01

    Modifications of cotton and polyester textiles due to shots fired at short range were analyzed with a variable pressure scanning electron microscope (VP-SEM). Different mechanisms of fiber rupture as a function of fiber type and shooting distance were detected, namely fusing, melting, scorching, and mechanical breakage. To estimate the firing distance, the approximately exponential decay of GSR coverage as a function of radial distance from the entrance hole was determined from image analysis, instead of relying on chemical analysis with EDX, which is problematic in the VP-SEM. A set of backscattered electron images, with sufficient magnification to discriminate micrometer wide GSR particles, was acquired at different radial distances from the entrance hole. The atomic number contrast between the GSR particles and the organic fibers allowed to find a robust procedure to segment the micrographs into binary images, in which the white pixel count was attributed to GSR coverage. The decrease of the white pixel count followed an exponential decay, and it was found that the reciprocal of the decay constant, obtained from the least-square fitting of the coverage data, showed a linear dependence on the shooting distance. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Enhanced backscattering of electrons in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkovits, R.; Eliyahu, D.; Kaveh, M.

    1990-01-01

    We calculate the exact shape of the enhanced coherent backscattering peak for electrons in the presence of an external magnetic field. The interference phenomena that cause the backscattered enhancement are reduced due to the breaking of time-reversal symmetry. It is shown that the form of the peak in the presence of a magnetics field {ital I}({ital q},{ital H}) can be obtained (to a good approximation) from {ital I}({ital q},{ital H}=0) by replacing {ital q} with {ital {tilde q}}=({ital q}{sup 2}+(3L{sub {ital H}}{sup 2}){sup {minus}1}){sup 11}, where {ital L}{sub {ital H}}=(2{h bar}c/eH){sup 1/2}. We have also calculated {ital I}({ital q},{ital H})more » at finite temperatures and proposed it as the most sensitive tool for extracting inelastic processes.« less

  7. Relationship between the v2PO4/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone

    NASA Astrophysics Data System (ADS)

    Roschger, Andreas; Gamsjaeger, Sonja; Hofstetter, Birgit; Masic, Admir; Blouin, Stéphane; Messmer, Phaedra; Berzlanovich, Andrea; Paschalis, Eleftherios P.; Roschger, Paul; Klaushofer, Klaus; Fratzl, Peter

    2014-06-01

    Raman microspectroscopy and quantitative backscattered electron imaging (qBEI) of bone are powerful tools to investigate bone material properties. Both methods provide information on the degree of bone matrix mineralization. However, a head-to-head comparison of these outcomes from identical bone areas has not been performed to date. In femoral midshaft cross sections of three women, 99 regions (20×20 μ) were selected inside osteons and interstitial bone covering a wide range of matrix mineralization. As the focus of this study was only on regions undergoing secondary mineralization, zones exhibiting a distinct gradient in mineral content close to the mineralization front were excluded. The same regions were measured by both methods. We found a linear correlation (R2=0.75) between mineral/matrix as measured by Raman spectroscopy and the wt. %Mineral/(100-wt. %Mineral) as obtained by qBEI, in good agreement with theoretical estimations. The observed deviations of single values from the linear regression line were determined to reflect biological heterogeneities. The data of this study demonstrate the good correspondence between Raman and qBEI outcomes in describing tissue mineralization. The obtained correlation is likely sensitive to changes in bone tissue composition, providing an approach to detect potential deviations from normal bone.

  8. 2000 Multibeam Sonar Survey of Crater Lake, Oregon - Data, GIS, Images, and Movies

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter

    2001-01-01

    In the summer of 2000, the U.S. Geological Survey, Pacific Seafloor Mapping Project in cooperation with the National Park Service, and the Center for Coastal and Ocean Mapping, University of New Hampshire used a state-of-the-art multibeam sonar system to collect high-resolution bathymetry and calibrated, co-registered acoustic backscatter to support both biological and geological research in the Crater Lake area. This interactive CD-ROM contains the multibeam bathymetry and acoustic backscatter data, along with an ESRI ArcExplorer project (and software), images, and movies.

  9. Flat ion milling: a powerful tool for preparation of cross-sections of lead-silver alloys.

    PubMed

    Brodusch, Nicolas; Boisvert, Sophie; Gauvin, Raynald

    2013-06-01

    While conventional mechanical and chemical polishing results in stress, deformation and polishing particles embedded on the surface, flat milling with Ar+ ions erodes the material with no mechanical artefacts. This flat milling process is presented as an alternative method to prepare a Pb-Ag alloy cross-section for scanning electron microscopy. The resulting surface is free of scratches with very little to no stress induced, so that electron diffraction and channelling contrast are possible. The results have shown that energy dispersive spectrometer (EDS) mapping, electron channelling contrast imaging and electron backscatter diffraction can be conducted with only one sample preparation step. Electron diffraction patterns acquired at 5 keV possessed very good pattern quality, highlighting an excellent surface condition. An orientation map was acquired at 20 keV with an indexing rate of 90.1%. An EDS map was performed at 5 keV, and Pb-Ag precipitates of sizes lower than 100 nm were observed. However, the drawback of the method is the generation of a noticeable surface topography resulting from the interaction of the ion beam with a polycrystalline and biphasic sample.

  10. Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition

    NASA Astrophysics Data System (ADS)

    Kim, S.; Russell, M.; Henry, M.; Kim, S. S.; Naik, R. R.; Voevodin, A. A.; Jang, S. S.; Tsukruk, V. V.; Fedorov, A. G.

    2015-09-01

    We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 1018 e- per cm2). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 1019 e- per cm2 results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, ``direct-write'' functional patterning of graphene-based electronic devices with potential for on-demand re-configurability.We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 1018 e- per cm2). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 1019 e- per cm2 results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, ``direct-write'' functional patterning of graphene-based electronic devices with potential for on-demand re-configurability. Electronic supplementary information (ESI) available: Optimization of a PMMA-mediated wet transfer method of graphene, transfer characteristics of all the channels, raw data of drain-source current measured by sweeping a backgate voltage and an AFM topography image and cross-sectional profiles of Fig. 4 and the corresponding electrical measurement along with an estimation of carbon diffusion coefficient. See DOI: 10.1039/c5nr04063a

  11. Volumetric three-dimensional intravascular ultrasound visualization using shape-based nonlinear interpolation

    PubMed Central

    2013-01-01

    Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569

  12. Evaluation of a novel approach in the prevention of white spot lesions around orthodontic brackets.

    PubMed

    Yap, J; Walsh, L J; Naser-Ud Din, S; Ngo, H; Manton, D J

    2014-03-01

    The purpose of this study was to evaluate and compare the relative efficacy of a resin fissure sealant, nano-filled self-adhesive protective coating, resin infiltrant, glass ionomer cement (GIC), and GIC containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) in preventing the formation of subsurface lesions of enamel (SLE) adjacent to orthodontic brackets by acting as an enamel surface sealant (ESS). Eighty-five enamel specimens with molar tubes bonded at their centre were randomly divided into five groups, each treated with a different material at the bracket's periphery. Specimens were stored in an acetate demineralization solution at pH 4.5 for 7 days at 37 °C then imaged using quantitative light-induced fluorescence (QLF) to determine the difference in fluorescence (∆F) between sound- and acid-exposed enamel. Lesion cross-sections were then examined using backscattered scanning electron microscopy (SEM) to measure lesion depth. The use of GIC alone or incorporating CPP-ACP significantly reduced ∆F compared with other materials. Backscattered SEM images showed no measurable demineralization for enamel treated with either GIC material in contrast with other groups, which showed statistically significant demineralization levels. The fluoride-releasing effects and CPP-ACP benefits of the GIC materials show promise as an effective ESS in inhibiting enamel demineralization adjacent to orthodontic brackets. © 2014 Australian Dental Association.

  13. Digital image analysis to quantify carbide networks in ultrahigh carbon steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N., E-mail: ypicard@cmu.edu

    A method has been developed and demonstrated to quantify the degree of carbide network connectivity in ultrahigh carbon steels through digital image processing and analysis of experimental micrographs. It was shown that the network connectivity and carbon content can be correlated to toughness for various ultrahigh carbon steel specimens. The image analysis approach first involved segmenting the carbide network and pearlite matrix into binary contrast representations via a grayscale intensity thresholding operation. Next, the carbide network pixels were skeletonized and parceled into braches and nodes, allowing the determination of a connectivity index for the carbide network. Intermediate image processing stepsmore » to remove noise and fill voids in the network are also detailed. The connectivity indexes of scanning electron micrographs were consistent in both secondary and backscattered electron imaging modes, as well as across two different (50 × and 100 ×) magnifications. Results from ultrahigh carbon steels reported here along with other results from the literature generally showed lower connectivity indexes correlated with higher Charpy impact energy (toughness). A deviation from this trend was observed at higher connectivity indexes, consistent with a percolation threshold for crack propagation across the carbide network. - Highlights: • A method for carbide network analysis in steels is proposed and demonstrated. • ImageJ method extracts a network connectivity index from micrographs. • Connectivity index consistent in different imaging conditions and magnifications. • Impact energy may plateau when a critical network connectivity is exceeded.« less

  14. Use of reciprocal lattice layer spacing in electron backscatter diffraction pattern analysis

    PubMed

    Michael; Eades

    2000-03-01

    In the scanning electron microscope using electron backscattered diffraction, it is possible to measure the spacing of the layers in the reciprocal lattice. These values are of great use in confirming the identification of phases. The technique derives the layer spacing from the higher-order Laue zone rings which appear in patterns from many materials. The method adapts results from convergent-beam electron diffraction in the transmission electron microscope. For many materials the measured layer spacing compares well with the calculated layer spacing. A noted exception is for higher atomic number materials. In these cases an extrapolation procedure is described that requires layer spacing measurements at a range of accelerating voltages. This procedure is shown to improve the accuracy of the technique significantly. The application of layer spacing measurements in EBSD is shown to be of use for the analysis of two polytypes of SiC.

  15. The 1984 ASEE-NASA summer faculty fellowship program (aeronautics and research)

    NASA Technical Reports Server (NTRS)

    Dah-Nien, F.; Hodge, J. R.; Emad, F. P.

    1984-01-01

    The 1984 NASA-ASEE Faculty Fellowship Program (SFFP) is reported. The report includes: (1) a list of participants; (2) abstracts of research projects; (3) seminar schedule; (4) evaluation questionnaire; and (5) agenda of visitation by faculty programs committee. Topics discussed include: effects of multiple scattering on laser beam propagation; information management; computer techniques; guidelines for writing user documentation; 30 graphics software; high energy electron and antiproton cosmic rays; high resolution Fourier transform infrared spectrum; average monthly annual zonal and global albedos; laser backscattering from ocean surface; image processing systems; geomorphological mapping; low redshift quasars; application of artificial intelligence to command management systems.

  16. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2010-01-01

    Methodologies for understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  17. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2011-01-01

    Methodologies for understanding the plastic deformation mechanisms related 10 crack propagation at the nano, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  18. Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues.

    PubMed

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-06-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as magnetic resonance diffusion tensor imaging (MR-DTI) or ultrasound elastic tensor imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in a clinical setting. In this study, we propose a new technique, backscatter tensor imaging (BTI), which enables determination of the fiber directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally because of the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotating phased-array probes or 2-D matrix probes for noninvasive evaluation of myocardial fibers.

  19. Ultrasound Backscatter Tensor Imaging (BTI): Analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues

    PubMed Central

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-01-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as Magnetic Resonance (MR) Diffusion Tensor Imaging or Ultrasound Elastic Tensor Imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in clinical setting. In this study, we propose a new technique, the Backscatter Tensor Imaging (BTI) which enables determining the fibers directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally due to the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotative phased-array probes or 2-D matrix probes for non-invasive evaluation of myocardial fibers. PMID:24859662

  20. Monte-Carlo study of the influence of backscattered electrons on the transmission of a mini-orange β spectrometer

    NASA Astrophysics Data System (ADS)

    Detistov, Pavel; Balabanski, Dimiter L.

    2015-04-01

    This work work is a part of the performance investigation of the recently constructed Mini-Orange beta spectrometer. The spectrometer has eight different configurations using three different magnet shapes and combination of three, four, and six magnet pieces allowing detection of electrons in wide kinetic energy range. The performance of the device is studied using the GEANT4 simulation tool. Evaluation of the device's basic parameters has been made, paying special attention to the backscattering, for which a study of the dependence of this process on the energy and the angle is made.

  1. Mapping 180° polar domains using electron backscatter diffraction and dynamical scattering simulations

    DOE PAGES

    Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth; ...

    2016-11-18

    A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO 3 single crystals. Furthermore, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system.

  2. Stress in recrystallized quartz by electron backscatter diffraction mapping

    NASA Astrophysics Data System (ADS)

    Llana-Fúnez, S.

    2017-07-01

    The long-term state of stress at middle and lower crustal depths can be estimated through the study of the microstructure of exhumed rocks from active and/or ancient shear zones. Constitutive equations for deformation mechanisms in experimentally deformed rocks relate differential stress to the size of recrystallized grains. Cross et al. (2017) take advantage of electron backscatter diffraction mapping to systematically separate new recrystallized grains from host grains on the basis of the measurable lattice distorsion within the grains. They produce the first calibrated piezometer for quartz with this technique, reproducing within error a previous calibration based on optical microscopy.

  3. Mössbauer study on the deformed surface of high-manganese steel

    NASA Astrophysics Data System (ADS)

    Nasu, S.; Tanimoto, H.; Fujita, F. E.

    1990-07-01

    Conversion electron, X-ray backscattering and conventional transmission57Fe Mössbauer measurements have been performed to investigate the origin of the remarkable work hardening at the surface of a high-manganese steel which is called Hadfield steel. Mössbauer results show that α' martensite has no relation to work hardening. From the comparison of conversion electron to X-ray backscattering spectra, the occurrence of decarbonization is suggested at the surface. The transmission Mössbauer spectrum at 20 K for deformed specimen shows the existence of ɛ martensite which could be related to the work hardening of Hadfield steel.

  4. Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope.

    PubMed

    Brodusch, N; Demers, H; Gauvin, R

    2013-04-01

    A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  5. BOREAS RSS-16 AIRSAR CM Images: Integrated Processor Version 6.1 Level-3b

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Saatchi, Susan; Newcomer, Jeffrey A.; Strub, Richard; Irani, Fred

    2000-01-01

    The BOREAS RSS-16 team used satellite and aircraft SAR data in conjunction with various ground measurements to determine the moisture regime of the boreal forest. RSS-16 assisted with the acquisition and ordering of NASA JPL AIRSAR data collected from the NASA DC-8 aircraft. The NASA JPL AIRSAR is a side-looking imaging radar system that utilizes the SAR principle to obtain high resolution images that represent the radar backscatter of the imaged surface at different frequencies and polarizations. The information contained in each pixel of the AIRSAR data represents the radar backscatter for all possible combinations of horizontal and vertical transmit and receive polarizations (i.e., HH, HV, VH, and VV). Geographically, the data cover portions of the BOREAS SSA and NSA. Temporally, the data were acquired from 12-Aug-1993 to 31-Jul-1995. The level-3b AIRSAR CM data are in compressed Stokes matrix format, which has 10 bytes per pixel. From this data format, it is possible to synthesize a number of different radar backscatter measurements. The data are stored in binary image-format files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. Detail Extraction from Electron Backscatter Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Basinger, Jay

    Cross-correlation based analysis of electron backscatter diffraction (EBSD) patterns and the use of simulated reference patterns has opened up entirely new avenues of insight into local lattice properties within EBSD scans. The benefits of accessing new levels of orientation resolution and multiple types of previously inaccessible data measures are accompanied with new challenges in characterizing microscope geometry and other error previously ignored in EBSD systems. The foremost of these challenges, when using simulated patterns in high resolution EBSD (HR-EBSD), is the determination of pattern center (the location on the sample from which the EBSD pattern originated) with sufficient accuracy to avoid the introduction of phantom lattice rotations and elastic strain into these highly sensitive measures. This dissertation demonstrates how to greatly improve pattern center determination. It also presents a method for the extraction of grain boundary plane information from single two-dimensional surface scans. These are accomplished through the use of previously un-accessed detail within EBSD images, coupled with physical models of the backscattering phenomena. A software algorithm is detailed and applied for the determination of pattern center with an accuracy of ˜0.03% of the phosphor screen width, or ˜10μm. This resolution makes it possible to apply a simulated pattern method (developed at BYU) in HR-EBSD, with several important benefits over the original HR-EBSD approach developed by Angus Wilkinson. Experimental work is done on epitaxially-grown silicon and germanium in order to gauge the precision of HR-EBSD with simulated reference patterns using the new pattern center calibration approach. It is found that strain resolution with a calibrated pattern center and simulated reference patterns can be as low as 7x10-4. Finally, Monte Carlo-based models of the electron interaction volume are used in conjunction with pattern-mixing-strength curves of line scans crossing grain boundaries in order to recover 3D grain boundary plane information. Validation of the approach is done using 3D serial scan data and coherent twin boundaries in tantalum and copper. The proposed method for recovery of grain boundary plane orientation exhibits an average error of 3 degrees.

  7. Recent results from experimental studies on laser-plasma coupling in a shock ignition relevant regime

    NASA Astrophysics Data System (ADS)

    Koester, P.; Antonelli, L.; Atzeni, S.; Badziak, J.; Baffigi, F.; Batani, D.; Cecchetti, C. A.; Chodukowski, T.; Consoli, F.; Cristoforetti, G.; De Angelis, R.; Folpini, G.; Gizzi, L. A.; Kalinowska, Z.; Krousky, E.; Kucharik, M.; Labate, L.; Levato, T.; Liska, R.; Malka, G.; Maheut, Y.; Marocchino, A.; Nicolai, P.; O'Dell, T.; Parys, P.; Pisarczyk, T.; Raczka, P.; Renner, O.; Rhee, Y. J.; Ribeyre, X.; Richetta, M.; Rosinski, M.; Ryc, L.; Skala, J.; Schiavi, A.; Schurtz, G.; Smid, M.; Spindloe, C.; Ullschmied, J.; Wolowski, J.; Zaras, A.

    2013-12-01

    Shock ignition (SI) is an appealing approach in the inertial confinement scenario for the ignition and burn of a pre-compressed fusion pellet. In this scheme, a strong converging shock is launched by laser irradiation at an intensity Iλ2 > 1015 W cm-2 µm2 at the end of the compression phase. In this intensity regime, laser-plasma interactions are characterized by the onset of a variety of instabilities, including stimulated Raman scattering, Brillouin scattering and the two plasmon decay, accompanied by the generation of a population of fast electrons. The effect of the fast electrons on the efficiency of the shock wave production is investigated in a series of dedicated experiments at the Prague Asterix Laser Facility (PALS). We study the laser-plasma coupling in a SI relevant regime in a planar geometry by creating an extended preformed plasma with a laser beam at ˜7 × 1013 W cm-2 (250 ps, 1315 nm). A strong shock is launched by irradiation with a second laser beam at intensities in the range 1015-1016 W cm-2 (250 ps, 438 nm) at various delays with respect to the first beam. The pre-plasma is characterized using x-ray spectroscopy, ion diagnostics and interferometry. Spectroscopy and calorimetry of the backscattered radiation is performed in the spectral range 250-850 nm, including (3/2)ω, ω and ω/2 emission. The fast electron production is characterized through spectroscopy and imaging of the Kα emission. Information on the shock pressure is obtained using shock breakout chronometry and measurements of the craters produced by the shock in a massive target. Preliminary results show that the backscattered energy is in the range 3-15%, mainly due to backscattered light at the laser wavelength (438 nm), which increases with increasing the delay between the two laser beams. The values of the peak shock pressures inferred from the shock breakout times are lower than expected from 2D numerical simulations. The same simulations reveal that the 2D effects play a major role in these experiments, with the laser spot size comparable with the distance between critical and ablation layers.

  8. Experimental Characterization and Simulation of Slip Transfer at Grain Boundaries and Microstructurally-Sensitive Crack Propagation

    NASA Technical Reports Server (NTRS)

    Gupta, Vipul; Hochhalter, Jacob; Yamakov, Vesselin; Scott, Willard; Spear, Ashley; Smith, Stephen; Glaessgen, Edward

    2013-01-01

    A systematic study of crack tip interaction with grain boundaries is critical for improvement of multiscale modeling of microstructurally-sensitive fatigue crack propagation and for the computationally-assisted design of more durable materials. In this study, single, bi- and large-grain multi-crystal specimens of an aluminum-copper alloy are fabricated, characterized using electron backscattered diffraction (EBSD), and deformed under tensile loading and nano-indentation. 2D image correlation (IC) in an environmental scanning electron microscope (ESEM) is used to measure displacements near crack tips, grain boundaries and within grain interiors. The role of grain boundaries on slip transfer is examined using nano-indentation in combination with high-resolution EBSD. The use of detailed IC and EBSD-based experiments are discussed as they relate to crystal-plasticity finite element (CPFE) model calibration and validation.

  9. The solid-solution region for the langasite-type Ca3TaGa3Si2O14 crystal as determined by a lever rule

    NASA Astrophysics Data System (ADS)

    Zhao, Hengyu; Uda, Satoshi; Maeda, Kensaku; Nozawa, Jun; Koizumi, Haruhiko; Fujiwara, Kozo

    2015-04-01

    A lever rule was applied to data concerning the compositions and proportions of secondary phases coexisting with a Ca3TaGa3Si2O14 (CTGS) matrix to determine the boundary compositions of the solid-solution region for CTGS at 1320 °C, as a means of ascertaining the solid-solution for the langasite-type phase in the quaternary CaO-Ta2O5-Ga2O3-SiO2 system. The compositions and proportions of secondary phases were assessed by electron probe micro-analysis as well as through back-scattered electron images. The experimental results showed that the narrow solid-solution region for CTGS is located in a Ta-poor, Ga-poor and Si-rich region relative to its stoichiometric composition.

  10. Classification of kidney and liver tissue using ultrasound backscatter data

    NASA Astrophysics Data System (ADS)

    Aalamifar, Fereshteh; Rivaz, Hassan; Cerrolaza, Juan J.; Jago, James; Safdar, Nabile; Boctor, Emad M.; Linguraru, Marius G.

    2015-03-01

    Ultrasound (US) tissue characterization provides valuable information for the initialization of automatic segmentation algorithms, and can further provide complementary information for diagnosis of pathologies. US tissue characterization is challenging due to the presence of various types of image artifacts and dependence on the sonographer's skills. One way of overcoming this challenge is by characterizing images based on the distribution of the backscatter data derived from the interaction between US waves and tissue. The goal of this work is to classify liver versus kidney tissue in 3D volumetric US data using the distribution of backscatter US data recovered from end-user displayed Bmode image available in clinical systems. To this end, we first propose the computation of a large set of features based on the homodyned-K distribution of the speckle as well as the correlation coefficients between small patches in 3D images. We then utilize the random forests framework to select the most important features for classification. Experiments on in-vivo 3D US data from nine pediatric patients with hydronephrosis showed an average accuracy of 94% for the classification of liver and kidney tissues showing a good potential of this work to assist in the classification and segmentation of abdominal soft tissue.

  11. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    DOE PAGES

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; ...

    2016-09-13

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI’s active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals aremore » directed perpendicular to the density fluctuations, SAMI’s 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. Lastly, the results demonstrate encouraging agreement between SAMI and other independent measurements.« less

  12. Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments.

    PubMed

    Aydarous, A Sh

    2008-01-01

    The size of hot particles contained in nuclear fallout ranges from 10 nm to 20 microm for the worldwide weapons fallout. Hot particles from nuclear power reactors can be significantly bigger (100 microm to several millimetres). Electron backscattering from such particles is a prominent secondary effect in beta dosimetry for radiological protection purposes, such as skin dosimetry. In this study, the effect of electron backscattering due to hot particles contamination on skin dose is investigated. These include parameters such as detector area, source radius, source energy, scattering material and source density. The Monte-Carlo Neutron Particle code (MCNP4C) was used to calculate the depth dose distribution for 10 different beta sources and various materials. The backscattering dose factors (BSDF) were then calculated. A significant dependence is shown for the BSDF magnitude upon detector area, source radius and scatterers. It is clearly shown that the BSDF increases with increasing detector area. For high Z scatterers, the BSDF can reach as high as 40 and 100% for sources with radii 0.1 and 0.0001 cm, respectively. The variation of BSDF with source radius, source energy and source density is discussed.

  13. Biomarkers and Microfossils in the Murchison, Rainbow, and Tagish Lake meteorites

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Jerman, Gregory A.; Rozanov, Alexei Y.; Davies, Paul C.

    2003-02-01

    During the past six years, we have conducted extensive scanning electron and optical microscopy investigations and x-ray analysis to determine the morphology, life cycle processes, and elemental distributions in living and fossil cyanobacteria, bacteria, archaea, fungi, and algae sampled from terrestrial environments relevant to Astrobiology. Biominerals, pseudomorphs and microfossils have been studied for diverse microbial groups in various states of preservation in many types of rocks (e.g., oil shales, graphites, shungites, bauxites, limestones, pyrites, phosphorites, and hydrothermal vent chimneys). Results of these studies have been applied to the search for biosignatures in carbonaceous chondrites, stony, and nickel iron meteorites. We review important biomarkers found in terrestrial rocks and meteorites and present additional evidence for the existence of indigenous bacterial microfossils in-situ in freshly fractured surfaces of the Murchison, Rainbow and Tagish Lake carbonaceous meteorites. We provide secondary and backscatter electron images and spectral data obtained with Field Emission and Environmental Scanning Electron Microscopes of biominerals and microfossils. We discuss techniques for discriminating indigenous microfossils from recent terrestrial contaminants. Images are provided of framboidal magnetites in oil shales and meteorites and images and 2D x-ray maps are shown of bacterial microfossils embedded in the mineral matrix of the Murchison, Rainbow and Tagish Lake Carbonaceous Meteorites. These microfossils exhibit characteristics that preclude their interpretation as post-arrival contaminants and we interpret them as indigenous biogenic remains.

  14. Highly dynamic biological seabed alterations revealed by side scan sonar tracking of Lanice conchilega beds offshore the island of Sylt (German Bight)

    NASA Astrophysics Data System (ADS)

    Heinrich, C.; Feldens, P.; Schwarzer, K.

    2017-06-01

    Hydroacoustic surveys are common tools for habitat investigation and monitoring that aid in the realisation of the aims of the EU Marine Directives. However, the creation of habitat maps is difficult, especially when benthic organisms densely populate the seafloor. This study assesses the sensitivity of entropy and homogeneity image texture parameters derived from backscatter strength data to benthic habitats dominated by the tubeworm Lanice conchilega. Side scan sonar backscatter surveys were carried out in 2010 and 2011 in the German Bight (southern North Sea) at two sites approx. 20 km offshore of the island of Sylt. Abiotic and biotic seabed facies, such as sorted bedforms, areas of fine to medium sand and L. conchilega beds with different tube densities, were identified and characterised based on manual expert analysis and image texture analysis. Ground truthing was performed by grab sampling and underwater video observations. Compared to the manual expert analysis, the k- means classification of image textures proves to be a semi-automated method to investigate small-scale differences in a biologically altered seabed from backscatter data. The texture parameters entropy and homogeneity appear linearly interrelated with tube density, the former positively and the latter negatively. Reinvestigation of one site after 1 year showed an extensive change in the distribution of the L. conchilega-altered seabed. Such marked annual fluctuations in L. conchilega tube cover demonstrate the need for dense time series and high spatial coverage to meaningfully monitor ecological patterns on the seafloor with acoustic backscatter methods in the study region and similar settings worldwide, particularly because the sand mason plays a pivotal role in promoting biodiversity. In this context, image texture analysis provides a cost-effective and reproducible method to track biologically altered seabeds from side scan sonar backscatter signatures.

  15. The measurement of ultrasound scattering from individual micron-sized objects and its application in single cell scattering.

    PubMed

    Falou, Omar; Rui, Min; El Kaffas, Ahmed; Kumaradas, J Carl; Kolios, Michael C

    2010-08-01

    The measurement of the ultrasound backscatter from individual micron-sized objects such as cells is required for various applications such as tissue characterization. However, performing such a measurement remains a challenge. For example, the presence of air bubbles in a suspension of cells during the measurements may lead to the incorrect interpretation of the acoustic signals. This work introduces a technique for measuring the ultrasound backscatter from individual micron-sized objects by combining a microinjection system with a co-registered optical microscope and an ultrasound imaging device. This allowed the measurement of the ultrasound backscatter response from a single object under optical microscope guidance. The optical and ultrasonic data were used to determine the size of the object and to deduce its backscatter responses, respectively. In order to calibrate the system, the backscatter frequency responses from polystyrene microspheres were measured and compared to theoretical predictions. A very good agreement was found between the measured backscatter responses of individual microspheres and theoretical predictions of an elastic sphere. The backscatter responses from single OCI-AML-5 cells were also investigated. It was found that the backscatter responses from AML cells are best modeled using the fluid sphere model. The advantages, limitations, and future applications of the developed technique are discussed.

  16. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    PubMed

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Label-free optical imaging of membrane patches for atomic force microscopy

    PubMed Central

    Churnside, Allison B.; King, Gavin M.; Perkins, Thomas T.

    2010-01-01

    In atomic force microscopy (AFM), finding sparsely distributed regions of interest can be difficult and time-consuming. Typically, the tip is scanned until the desired object is located. This process can mechanically or chemically degrade the tip, as well as damage fragile biological samples. Protein assemblies can be detected using the back-scattered light from a focused laser beam. We previously used back-scattered light from a pair of laser foci to stabilize an AFM. In the present work, we integrate these techniques to optically image patches of purple membranes prior to AFM investigation. These rapidly acquired optical images were aligned to the subsequent AFM images to ~40 nm, since the tip position was aligned to the optical axis of the imaging laser. Thus, this label-free imaging efficiently locates sparsely distributed protein assemblies for subsequent AFM study while simultaneously minimizing degradation of the tip and the sample. PMID:21164738

  18. Specimen Holder for Analytical Electron Microscopes

    NASA Technical Reports Server (NTRS)

    Clanton, U. S.; Isaacs, A. M.; Mackinnon, I.

    1985-01-01

    Reduces spectral contamination by spurious X-ray. Specimen holder made of compressed carbon, securely retains standard electron microscope grid (disk) 3 mm in diameter and absorbs backscattered electrons that otherwise generate spurious X-rays. Since holder inexpensive, dedicated to single specimen when numerous samples examined.

  19. Electronic Transport and Quantum Hall Effect in Bipolar Graphene p-n-p Junctions

    NASA Astrophysics Data System (ADS)

    Özyilmaz, Barbaros; Jarillo-Herrero, Pablo; Efetov, Dmitri; Abanin, Dmitry A.; Levitov, Leonid S.; Kim, Philip

    2007-10-01

    We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locally gated bipolar graphene p-n-p junctions. We observe a series of fractional quantum Hall conductance plateaus at high magnetic fields as the local charge density is varied in the p and n regions. These fractional plateaus, originating from chiral edge states equilibration at the p-n interfaces, exhibit sensitivity to interedge backscattering which is found to be strong for some of the plateaus and much weaker for other plateaus. We use this effect to explore the role of backscattering and estimate disorder strength in our graphene devices.

  20. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    NASA Astrophysics Data System (ADS)

    Shand, B. A.; Lester, M.; Yeoman, T. K.

    1996-08-01

    A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE). The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s-1, the backscatter intensity (measured in decibels) remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels) and Doppler velocity for velocities between 200 m s-1 and 700 m s-1. At velocities greater than 700 m s-1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  1. Evaluation of crop development stages with TerraSAR-X backscatter signatures (2010-12) by using Growing Degree Days

    NASA Astrophysics Data System (ADS)

    Ishaq, Atif; Pasternak, René; Wessollek, Christine

    2017-10-01

    TerraSAR-X images have been tested for agricultural fields of corn and wheat. The main purpose was to evaluate the impact of daily temperatures in crop development to optimize climate induced factors on the plant growth anomalies. The results are completed by utilizing Geographic Information Science, e.g. tools of ArcMap 10.3.1 and databases of ground truth and meteorological information. Synthetic Aperture Radar (SAR) images from German Aerospace Center (DLR) are acquired and the field survey datasets are sampled, each per month for three years (2010-2012) but only for the crop seasons (April-October). Correlation between SAR images and farmland anomalies is investigated in accordance with daily heat accumulations and a comparison of the three years' SAR backscatter signatures is explained for corn and wheat. Finding the influence of daily temperatures on crops and hence on the TerraSAR-X backscatter is developed by Growing Degree Days (GDD) which appears to be the most suitable parameter for this purpose. Observation of GDD permits that the coolest year was 2010, either rest of the years were warmer and GDD accumulated in 2011 was higher as compared to that of 2012 in the first half of the year, however 2012 had rather more heat accumulation in the second half of the year. SAR backscatter from farmland depicts the crop development stages which depend upon the time when satellite captures data during the crop season. It varies with different development stages of crop plants. Backscatter of each development stage changes as the roughness and the moisture content (dielectric property) of the plants changes and local temperature directly impacts crop growth and hence the development stages.

  2. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.

    PubMed

    Liljequist, David

    2012-01-01

    Backscattering of very low energy electrons in thin layers of amorphous ice is known to provide experimental data for the elastic and inelastic cross sections and indicates values to be expected in liquid water. The extraction of cross sections was based on a transport analysis consistent with Monte Carlo simulation of electron trajectories. However, at electron energies below 20 eV, quantum coherence effects may be important and trajectory-based methods may be in significant error. This possibility is here investigated by calculating quantum multiple elastic scattering of electrons in a simple model of a very small, thin foil of amorphous ice. The average quantum multiple elastic scattering of electrons is calculated for a large number of simulated foils, using a point-scatterer model for the water molecule and taking inelastic absorption into account. The calculation is compared with a corresponding trajectory simulation. The difference between average quantum scattering and trajectory simulation at energies below about 20 eV is large, in particular in the forward scattering direction, and is found to be almost entirely due to coherence effects associated with the short-range order in the amorphous ice. For electrons backscattered at the experimental detection angle (45° relative to the surface normal) the difference is however small except at electron energies below about 10 eV. Although coherence effects are in general found to be strong, the mean free path values derived by trajectory-based analysis may actually be in fair agreement with the result of an analysis based on quantum scattering, at least for electron energies larger than about 10 eV.

  3. In-situ integrity control of frozen-hydrated, vitreous lamellas prepared by the cryo-focused ion beam-scanning electron microscope.

    PubMed

    de Winter, D A Matthijs; Mesman, Rob J; Hayles, Michael F; Schneijdenberg, Chris T W M; Mathisen, Cliff; Post, Jan A

    2013-07-01

    Recently a number of new approaches have been presented with the intention to produce electron beam transparent cryo-sections (lamellas in FIB-SEM terminology) from hydrated vitreously frozen cryo samples with a Focused Ion Beam (FIB) system, suitable for cryo-Transmission Electron Microscopy (cryo-TEM). As the workflow is still challenging and time consuming, it is important to be able to determine the integrity and suitability (cells vs. no cells; vitreous vs. crystalline) of the lamellas. Here we present an in situ method that tests both conditions by using the cryo-Scanning Electron Microscope (cryo-SEM) in transmission mode (TSEM; Transmission Scanning Electron Microscope) once the FIB-made lamella is ready. Cryo-TSEM imaging of unstained cells yields strong contrast, enabling direct imaging of material present in the lamellas. In addition, orientation contrast is shown to be suitable for distinguishing crystalline lamellas from vitreous lamellas. Tilting the stage a few degrees results in changes of contrast between ice grains as a function of the tilt angle, whereas the contrast of areas with vitreous ice remains unchanged as a function of the tilt angle. This orientation contrast has subsequently been validated by cryo-Electron BackScattered Diffraction (EBSD) in transmission mode. Integration of the presented method is discussed and the role it can play in future developments for a new and innovative all-in-one cryo-FIB-SEM life sciences instrument. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Highly Sensitive Detection of Target Biomolecules on Cell Surface Using Gold Nanoparticle Conjugated with Aptamer Probe

    NASA Astrophysics Data System (ADS)

    Kim, Hyonchol; Terazono, Hideyuki; Hayashi, Masahito; Takei, Hiroyuki; Yasuda, Kenji

    2012-06-01

    A method of gold nanoparticle (Au NP) labeling with backscattered electron (BE) imaging of field emission scanning electron microscopy (FE-SEM) was applied for specific detection of target biomolecules on a cell surface. A single-stranded DNA aptamer, which specifically binds to the target molecule on a human acute lymphoblastic leukemia cell, was conjugated with a 20 nm Au NP and used as a probe to label its target molecule on the cell. The Au NP probe was incubated with the cell, and the interaction was confirmed using BE imaging of FE-SEM through direct counting of the number of Au NPs attached on the target cell surface. Specific Au NP-aptamer probes were observed on a single cell surface and their spatial distributions including submicron-order localizations were also clearly visualized, whereas the nonspecific aptamer probes were not observed on it. The aptamer probe can be potentially dislodged from the cell surface with treatment of nucleases, indicating that Au NP-conjugated aptamer probes can be used as sensitive and reversible probes to label target biomolecules on cells.

  5. Post-image acquisition processing approaches for coherent backscatter validation

    NASA Astrophysics Data System (ADS)

    Smith, Christopher A.; Belichki, Sara B.; Coffaro, Joseph T.; Panich, Michael G.; Andrews, Larry C.; Phillips, Ronald L.

    2014-10-01

    Utilizing a retro-reflector from a target point, the reflected irradiance of a laser beam traveling back toward the transmitting point contains a peak point of intensity known as the enhanced backscatter (EBS) phenomenon. EBS is dependent on the strength regime of turbulence currently occurring within the atmosphere as the beam propagates across and back. In order to capture and analyze this phenomenon so that it may be compared to theory, an imaging system is integrated into the optical set up. With proper imaging established, we are able to implement various post-image acquisition techniques to help determine detection and positioning of EBS which can then be validated with theory by inspection of certain dependent meteorological parameters such as the refractive index structure parameter, Cn2 and wind speed.

  6. Active pixel sensor array as a detector for electron microscopy.

    PubMed

    Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu

    2005-09-01

    A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.

  7. Fraser, Colorado

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This sequence of three images in northern Colorado was taken by NASA's Airborne Synthetic Aperture Radar (AirSar) for the joint NASA-National Oceanic and Atmospheric Administration Cold Land Processes Experiment. The images were produced from data acquired on February 19, 21 and 23, 2002 (top to bottom), and demonstrate the effects of snow on the radar backscatter at different frequencies. The images are centered at 40 degrees north latitude and 106 degrees west longitude, 12 kilometers (7.5 miles) west of the town of Fraser. The colors red, green and blue indicate the relative total power of the radar backscatter at P-, L-, and C-bands, respectively.

    The top image was acquired before snowfall; the middle image was acquired the morning after the snow. When the snow melted, the most prominent changes were visible and can be seen in the bottom image. In this image, melting snow allows less of the radar signal to backscatter and some features appear darker.

    The Cold Land Processes Experiment is a multi-year experiment to study how snow processes work and how snow-covered areas affect weather and climate. Fraser, Colo., is one of three study areas in northern Colorado and southern Wyoming providing ideal natural laboratories for snow research.

    AirSar flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. Built, operated and managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., AirSar is part of NASA's Earth Science Enterprise program. JPL is a division of the California Institute of Technology in Pasadena.

  8. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state.

    PubMed

    Vidavsky, Netta; Akiva, Anat; Kaplan-Ashiri, Ifat; Rechav, Katya; Addadi, Lia; Weiner, Steve; Schertel, Andreas

    2016-12-01

    Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm 3 ) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Evidence for broken Galilean invariance at the quantum spin Hall edge

    NASA Astrophysics Data System (ADS)

    Geissler, Florian; Crépin, François; Trauzettel, Björn

    2015-12-01

    We study transport properties of the helical edge channels of a quantum spin Hall insulator, in the presence of electron-electron interactions and weak, local Rashba spin-orbit coupling. The combination of the two allows for inelastic backscattering that does not break time-reversal symmetry, resulting in interaction-dependent power-law corrections to the conductance. Here, we use a nonequilibrium Keldysh formalism to describe the situation of a long, one-dimensional edge channel coupled to external reservoirs, where the applied bias is the leading energy scale. By calculating explicitly the corrections to the conductance up to fourth order of the impurity strength, we analyze correlated single- and two-particle backscattering processes on a microscopic level. Interestingly, we show that the modeling of the leads together with the breaking of Galilean invariance has important effects on the transport properties. Such breaking occurs because the Galilean invariance of the bulk spectrum transforms into an emergent Lorentz invariance of the edge spectrum. With this broken Galilean invariance at the quantum spin Hall edge, we find a contribution to single-particle backscattering with a very low power scaling, while in the presence of Galilean invariance the leading contribution will be due to correlated two-particle backscattering only. This difference is further reflected in the different values of the Fano factor of the shot noise, an experimentally observable quantity. The described behavior is specific to the Rashba scatterer and does not occur in the case of backscattering off a time-reversal-breaking, magnetic impurity.

  10. In situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-Ion Batteries during Charge/Discharge Processes

    PubMed Central

    Chen, Chih-Yao; Sano, Teruki; Tsuda, Tetsuya; Ui, Koichi; Oshima, Yoshifumi; Yamagata, Masaki; Ishikawa, Masashi; Haruta, Masakazu; Doi, Takayuki; Inaba, Minoru; Kuwabata, Susumu

    2016-01-01

    A comprehensive understanding of the charge/discharge behaviour of high-capacity anode active materials, e.g., Si and Li, is essential for the design and development of next-generation high-performance Li-based batteries. Here, we demonstrate the in situ scanning electron microscopy (in situ SEM) of Si anodes in a configuration analogous to actual lithium-ion batteries (LIBs) with an ionic liquid (IL) that is expected to be a functional LIB electrolyte in the future. We discovered that variations in the morphology of Si active materials during charge/discharge processes is strongly dependent on their size and shape. Even the diffusion of atomic Li into Si materials can be visualized using a back-scattering electron imaging technique. The electrode reactions were successfully recorded as video clips. This in situ SEM technique can simultaneously provide useful data on, for example, morphological variations and elemental distributions, as well as electrochemical data. PMID:27782200

  11. New innovations for contrast enhancement in electron microscopy

    NASA Astrophysics Data System (ADS)

    Mohan, A.

    In this study two techniques for producing and improving contrast in Electron Microscopy are discussed. The first technique deals with the production of secondary contrast in a Variable Pressure SEM under poor vacuum conditions using the specimen current signal. A review of the prior work in this field shows that the presence of the gas ions in the microscope column results in the amplification of the specimen current signal which is enriched in secondary content. The focus of this study is to establish practical conditions for imaging samples in the microscope using specimen current with gas amplification. This is done by understanding the different variables in the microscope which affect the image formation process and then finding out optimum conditions for obtaining the best possible image, i.e., the image most enhanced in secondary contrast. A few 'real life' samples analyzed using this technique show that the gas amplified specimen current images contain secondary information and, in some cases, provide clear advantages to imaging with conventional secondary and backscattered detectors. The second technique dealing with the production of phase contrast in the TEM for extremely thin, electron transparent samples, is analyzed. A review of the literature regarding prior work in the field shows that, while the theoretical aspects of production of phase contrast in the TEM using a phase plate are well understood, there have been problems in practically implementing this in the microscope. One major assumption with most of the studies is that a fiber, partially coated with gold, results in the formation of point charges which is an essential requirement for symmetrically shifting the phase of the electron beam. The focus of this portion of the dissertation is to image the type of fields associated with such a phase plate using the technique of electron holography. It is found that there are two types of fields associated with a phase plate of this sort. One is a cylindrical field which extends along the length of the fiber while the other is a localized spherically symmetric field. A series of simulations show that the spherical field can produce phase contrast in the TEM and also improve the contrast transfer properties of the microscope.

  12. Time-frequency analysis of backscattered signals from diffuse radar targets

    NASA Astrophysics Data System (ADS)

    Kenny, O. P.; Boashash, B.

    1993-06-01

    The need for analysis of time-varying signals has led to the formulation of a class of joint time-frequency distributions (TFDs). One of these TFDs, the Wigner-Ville distribution (WVD), has useful properties which can be applied to radar imaging. The authors discuss time-frequency representation of the backscattered signal from a diffuse radar target. It is then shown that for point scatterers which are statistically dependent or for which the reflectivity coefficient has a nonzero mean value, reconstruction using time of flight positron emission tomography on time-frequency images is effective for estimating the scattering function of the target.

  13. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    NASA Astrophysics Data System (ADS)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki; Young Jeong, Hu; Galeano, Carolina; Schüth, Ferdi; Terasaki, Osamu

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  14. System and Method for Scan Range Gating

    NASA Technical Reports Server (NTRS)

    Lindemann, Scott (Inventor); Zuk, David M. (Inventor)

    2017-01-01

    A system for scanning light to define a range gated signal includes a pulsed coherent light source that directs light into the atmosphere, a light gathering instrument that receives the light modified by atmospheric backscatter and transfers the light onto an image plane, a scanner that scans collimated light from the image plane to form a range gated signal from the light modified by atmospheric backscatter, a control circuit that coordinates timing of a scan rate of the scanner and a pulse rate of the pulsed coherent light source so that the range gated signal is formed according to a desired range gate, an optical device onto which an image of the range gated signal is scanned, and an interferometer to which the image of the range gated signal is directed by the optical device. The interferometer is configured to modify the image according to a desired analysis.

  15. Backscatter of hard X-rays in the solar atmosphere. [Calculating the reflectance of solar x ray emission

    NASA Technical Reports Server (NTRS)

    Bai, T.; Ramaty, R.

    1977-01-01

    The solar photosphere backscatters a substantial fraction of the hard X rays from solar flares incident upon it. This reflection was studied using a Monte Carlo simulation which takes into account Compton scattering and photo-electric absorption. Both isotropic and anisotropic X ray sources are considered. The bremsstrahlung from an anisotropic distribution of electrons are evaluated. By taking the reflection into account, the inconsistency is removed between recent observational data regarding the center-to-limb variation of solar X ray emission and the predictions of models in which accelerated electrons are moving down toward the photosphere.

  16. Radar backscatter from the sea: Controlled experiments

    NASA Astrophysics Data System (ADS)

    Moore, R. K.

    1992-04-01

    The subwindowing method of modelling synthetic-aperture-radar (SAR) imaging of ocean waves was extended to allow wave propagation in arbitrary directions. Simulated images show that the SAR image response to swells that are imaged by velocity bunching is reduced by random smearing due to wind-generated waves. The magnitude of this response is not accurately predicted by introducing a finite coherence time in the radar backscatter. The smearing does not affect the imaging of waves by surface radar cross-section modulation, and is independent of the wind direction. Adjusting the focus of the SAR processor introduces an offset in the image response of the surface scatters. When adjusted by one-half the azimuthal phase velocity of the wave, this compensates the incoherent advance of the wave being imaged, leading to a higher image contrast. The azimuthal cut-off and range rotation of the spectral peak are predicted when the imaging of wind-generated wave trains is simulated. The simulated images suggest that velocity bunching and azimuthal smearing are strongly interdependent, and cannot be included in a model separately.

  17. Comparisons of NDT Methods to Inspect Cork and Cork filled Epoxy Bands

    NASA Technical Reports Server (NTRS)

    Lingbloom, Mike

    2007-01-01

    Sheet cork and cork filled epoxy provide external insulation for the Reusable Solid Rocket Motor (RSRM) on the Nation's Space Transportation System (STS). Interest in the reliability of the external insulation bonds has increased since the Columbia incident. A non-destructive test (NDT) method that will provide the best inspection for these bonds has been under evaluation. Electronic Shearography has been selected as the primary NDT method for inspection of these bond lines in the RSRM production flow. ATK Launch Systems Group has purchased an electronic shearography system that includes a vacuum chamber that is used for evaluation of test parts and custom vacuum windows for inspection of full-scale motors. Although the electronic shearography technology has been selected as the primary method for inspection of the external bonds, other technologies that exist continue to be investigated. The NASA/Marshall Space Flight Center (MSFC) NDT department has inspected several samples for comparison with electronic shearography with various inspections systems in their laboratory. The systems that were evaluated are X-ray backscatter, terahertz imaging, and microwave imaging. The samples tested have some programmed flaws as well as some flaws that occurred naturally during the sample making process. These samples provide sufficient flaw variation for the evaluation of the different inspection systems. This paper will describe and compare the basic functionality, test method and test results including dissection for each inspection technology.

  18. Phase Composition Maps integrate mineral compositions with rock textures from the micro-meter to the thin section scale

    NASA Astrophysics Data System (ADS)

    Willis, Kyle V.; Srogi, LeeAnn; Lutz, Tim; Monson, Frederick C.; Pollock, Meagen

    2017-12-01

    Textures and compositions are critical information for interpreting rock formation. Existing methods to integrate both types of information favor high-resolution images of mineral compositions over small areas or low-resolution images of larger areas for phase identification. The method in this paper produces images of individual phases in which textural and compositional details are resolved over three orders of magnitude, from tens of micrometers to tens of millimeters. To construct these images, called Phase Composition Maps (PCMs), we make use of the resolution in backscattered electron (BSE) images and calibrate the gray scale values with mineral analyses by energy-dispersive X-ray spectrometry (EDS). The resulting images show the area of a standard thin section (roughly 40 mm × 20 mm) with spatial resolution as good as 3.5 μm/pixel, or more than 81 000 pixels/mm2, comparable to the resolution of X-ray element maps produced by wavelength-dispersive spectrometry (WDS). Procedures to create PCMs for mafic igneous rocks with multivariate linear regression models for minerals with solid solution (olivine, plagioclase feldspar, and pyroxenes) are presented and are applicable to other rock types. PCMs are processed using threshold functions based on the regression models to image specific composition ranges of minerals. PCMs are constructed using widely-available instrumentation: a scanning-electron microscope (SEM) with BSE and EDS X-ray detectors and standard image processing software such as ImageJ and Adobe Photoshop. Three brief applications illustrate the use of PCMs as petrologic tools: to reveal mineral composition patterns at multiple scales; to generate crystal size distributions for intracrystalline compositional zones and compare growth over time; and to image spatial distributions of minerals at different stages of magma crystallization by integrating textures and compositions with thermodynamic modeling.

  19. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  20. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine CT images are resolved at 10-20 μm, while SEM images are resolved at 10-20 nm; grayscale values vary according to collection time and instrument sensitivity; and compositional sensitivities via EMP vary in interrogation volume and scale. We have so far successfully registered SEM imagery within a multimode tomographic volume and have used standard methods to isolate pore space within the volume. We are developing a three-dimensional solid-phase identification and registration method that is constrained by bulk-sample X-ray diffraction Rietveld refinements. The results of this project will prove useful in fields that require the fine-scale definition of solid-phase distributions and relationships, and could replace more inefficient methods for making these estimations.

  1. A new inversion algorithm for HF sky-wave backscatter ionograms

    NASA Astrophysics Data System (ADS)

    Feng, Jing; Ni, Binbin; Lou, Peng; Wei, Na; Yang, Longquan; Liu, Wen; Zhao, Zhengyu; Li, Xue

    2018-05-01

    HF sky-wave backscatter sounding system is capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density. The leading edge (LE) of a backscatter ionogram (BSI) is widely used for ionospheric inversion since it is hardly affected by any factors other than ionospheric electron density. Traditional BSI inversion methods have failed to distinguish LEs associated with different ionospheric layers, and simply utilize the minimum group path of each operating frequency, which generally corresponds to the LE associated with the F2 layer. Consequently, while the inversion results can provide accurate profiles of the F region below the F2 peak, the diagnostics may not be so effective for other ionospheric layers. In order to resolve this issue, we present a new BSI inversion method using LEs associated with different layers, which can further improve the accuracy of electron density distribution, especially the profile of the ionospheric layers below the F2 region. The efficiency of the algorithm is evaluated by computing the mean and the standard deviation of the differences between inverted parameter values and true values obtained from both vertical and oblique incidence sounding. Test results clearly manifest that the method we have developed outputs more accurate electron density profiles due to improvements to acquire the profiles of the layers below the F2 region. Our study can further improve the current BSI inversion methods on the reconstruction of 2-D electron density distribution in a vertical plane aligned with the direction of sounding.

  2. Microprobe studies of microtomed particles of white druse salts in shergottite EETA 79001

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. J.

    1991-01-01

    The white druse material in Antarctic shergottite EETA 79001 has attracted much attention as a possible sample fo Martian aqueous deposits. Instrumental Neutron Activation Analysis (INAA) was used to determine trace element analyses of small particles of this material obtained by handpicking of likely grains from broken surfaces of the meteorite. Electron microprobe work was attempted on grain areas as large as 150x120 microns. Backscattered electron images show considerable variations in brightness, and botryoidal structures were observed. Microprobe analyses showed considerable variability both within single particles and between different particles. Microtomed surfaces of small selected particles were shown to be very useful in obtaining information on the texture and composition of rare lithologies like the white druse of EETA 79001. This material is clearly heterogeneous on all distance scales, so a large number of further analyses will be required to characterize it.

  3. Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel

    NASA Astrophysics Data System (ADS)

    Yang, R.; Wu, G. L.; Zhang, X.; Fu, W. T.; Huang, X.

    2017-07-01

    A commercial gear steel (18CrNiMo7-6) containing a tempered martensite structure was nitrided using a pressurized gas nitriding process under a pressure of 5 atm at 530 °C for 5 hours. The mechanical properties and microstructure of the nitrided sample were characterized by Vickers hardness measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure.

  4. Grain boundary misorientations and percolative current paths in high-{ital J}{sub {ital c}} powder-in-tube (Bi,Pb){sub 2}Sr{sub 3}Ca{sub 3}Cu{sub 3}O{sub {ital x}}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, A.; Specht, E.D.; Kroeger, D.M.

    1995-05-22

    Grain orientations and grain boundary misorientations in high-{ital J}{sub {ital c}}, powder-in-tube (PIT) (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} (Bi-2223) were determined using electron backscatter Kikuchi diffraction and x-ray microdiffraction. Data collected from over 113 spatially correlated grains, resulting in 227 grain boundaries, show that over 40% of the boundaries are {Sigma}1 or small angle (less than 15{degree}). In addition, 8% of the boundaries are within the Brandon criterion for CSLs (sigma larger than 1 and less than 50). Grain boundary ``texture maps`` derived from the electron microscope image and orientation data reveal the presence of percolative paths betweenmore » low energy boundaries.« less

  5. Structure of the Global Nanoscience and Nanotechnology Research Literature

    DTIC Science & Technology

    2006-01-01

    Transistors, Nature, 424 (6949): 654-657, 2003. Joannopoulos, JD, Meade, RD, Winn, JN, Photonic Crystals: Molding the Flow of Light, Princeton...1.27 Force Microscopy 40 0.10 0.00 Electron Spectroscopy 40 0.10 0.00 Rutherford backscattering spectrometry 38 0.10 0.00 flow cytometry 36 0.09...Backscattering Spectroscopy/Spectrometry • Flow Cytometry • Spectrophotometry (UV-Visible) • Deep Level Transient Spectroscopy • Inductively

  6. Using SAR satellite data time series for regional glacier mapping

    NASA Astrophysics Data System (ADS)

    Winsvold, Solveig H.; Kääb, Andreas; Nuth, Christopher; Andreassen, Liss M.; van Pelt, Ward J. J.; Schellenberger, Thomas

    2018-03-01

    With dense SAR satellite data time series it is possible to map surface and subsurface glacier properties that vary in time. On Sentinel-1A and RADARSAT-2 backscatter time series images over mainland Norway and Svalbard, we outline how to map glaciers using descriptive methods. We present five application scenarios. The first shows potential for tracking transient snow lines with SAR backscatter time series and correlates with both optical satellite images (Sentinel-2A and Landsat 8) and equilibrium line altitudes derived from in situ surface mass balance data. In the second application scenario, time series representation of glacier facies corresponding to SAR glacier zones shows potential for a more accurate delineation of the zones and how they change in time. The third application scenario investigates the firn evolution using dense SAR backscatter time series together with a coupled energy balance and multilayer firn model. We find strong correlation between backscatter signals with both the modeled firn air content and modeled wetness in the firn. In the fourth application scenario, we highlight how winter rain events can be detected in SAR time series, revealing important information about the area extent of internal accumulation. In the last application scenario, averaged summer SAR images were found to have potential in assisting the process of mapping glaciers outlines, especially in the presence of seasonal snow. Altogether we present examples of how to map glaciers and to further understand glaciological processes using the existing and future massive amount of multi-sensor time series data.

  7. Hydrodynamics simulations of 2{omega} laser propagation in underdense gasbag plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N.B.; Divol, L.; Marinak, M.M.

    2004-12-01

    Recent 2{omega} laser propagation and stimulated Raman backscatter (SRS) experiments performed on the Helen laser have been analyzed using the radiation-hydrodynamics code HYDRA [M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, Phys. Plasmas 8, 2275 (2001)]. These experiments utilized two diagnostics sensitive to the hydrodynamics of gasbag targets: a fast x-ray framing camera (FXI) and a SRS streak spectrometer. With a newly implemented nonlocal thermal transport model, HYDRA is able to reproduce many features seen in the FXI images and the SRS streak spectra. Experimental andmore » simulated side-on FXI images suggest that propagation can be explained by classical laser absorption and the resulting hydrodynamics. Synthetic SRS spectra generated from the HYDRA results reproduce the details of the experimental SRS streak spectra. Most features in the synthetic spectra can be explained solely by axial density and temperature gradients. The total SRS backscatter increases with initial gasbag fill density up to {approx_equal}0.08 times the critical density, then decreases. Data from a near-backscatter imaging camera show that severe beam spray is not responsible for the trend in total backscatter. Filamentation does not appear to be a significant factor in gasbag hydrodynamics. The simulation and analysis techniques established here can be used in ongoing experimental campaigns on the Omega laser facility and the National Ignition Facility.« less

  8. Liouville master equation for multielectron dynamics: Neutralization of highly charged ions near a LiF surface

    NASA Astrophysics Data System (ADS)

    Wirtz, Ludger; Reinhold, Carlos O.; Lemell, Christoph; Burgdörfer, Joachim

    2003-01-01

    We present a simulation of the neutralization of highly charged ions in front of a lithium fluoride surface including the close-collision regime above the surface. The present approach employs a Monte Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from classical trajectory Monte Carlo calculations as well as quantum-mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface (“trampoline effect”). For Ne10+ we find that image acceleration is dominant and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutral or even as singly charged negative particles, irrespective of the charge state of the incoming ions.

  9. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging

    PubMed Central

    Lammeier, Carmen; Li, YuPing; Lunos, Scott; Fok, Alex; Rudney, Joel

    2012-01-01

    Abstract. The purpose of this study was to investigate cross-polarization-optical coherence tomography (CP-OCT) signal attenuation through different resin material compositions. Four distinct composite systems were used: Filtek supreme ultra (FSU) (3M ESPE), IPS empress direct (EMD) (Ivoclar Vivadent), estelite sigma quick (SQK) (Tokuyama Dental), and Z100 (3M ESPE). Cross-sectional images of different composite-demineralized phantoms (n=108) were collected using a 1310-nm intraoral cross-polarization swept source OCT (CP-OCT) imaging system. %T quantified the CP-OCT signal attenuation. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectrometer chemical analysis was utilized to determine how different matrix/filler compositions affected attenuation of the near infrared (NIR) signal. CP-OCT imaging of dental resin composites showed enormous variation in signal attenuation. For each of our composite systems, there was not a consistent attenuation difference in the NIR signal for A to D shades. The four composites had similar measured backscattering values but attenuated the overall signal to different degrees. When comparing the A2 shades between the four different composite systems, the order of highest to lowest of %T was EMD>Z100, FSU>SQK (ANOVA, Tukey, p<0.0001). As a result, we demonstrate the importance of understanding how the constituents of composite materials affect CP-OCT signal attenuation. PMID:23224001

  10. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Lammeier, Carmen; Li, YuPing; Lunos, Scott; Fok, Alex; Rudney, Joel; Jones, Robert S.

    2012-10-01

    The purpose of this study was to investigate cross-polarization-optical coherence tomography (CP-OCT) signal attenuation through different resin material compositions. Four distinct composite systems were used: Filtek supreme ultra (FSU) (3M ESPE), IPS empress direct (EMD) (Ivoclar Vivadent), estelite sigma quick (SQK) (Tokuyama Dental), and Z100 (3M ESPE). Cross-sectional images of different composite-demineralized phantoms (n=108) were collected using a 1310-nm intraoral cross-polarization swept source OCT (CP-OCT) imaging system. %T quantified the CP-OCT signal attenuation. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectrometer chemical analysis was utilized to determine how different matrix/filler compositions affected attenuation of the near infrared (NIR) signal. CP-OCT imaging of dental resin composites showed enormous variation in signal attenuation. For each of our composite systems, there was not a consistent attenuation difference in the NIR signal for A to D shades. The four composites had similar measured backscattering values but attenuated the overall signal to different degrees. When comparing the A2 shades between the four different composite systems, the order of highest to lowest of %T was EMD>Z100, FSU>SQK (ANOVA, Tukey, p<0.0001). As a result, we demonstrate the importance of understanding how the constituents of composite materials affect CP-OCT signal attenuation.

  11. Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections

    PubMed Central

    Theodossiou, Theodossis A.; Thrasivoulou, Christopher; Ekwobi, Chidi; Becker, David L.

    2006-01-01

    We performed second harmonic generation (SHG) imaging of collagen in rat-tendon cryosections, using femtosecond laser scanning confocal microscopy, both in backscattering and transmission geometries. SHG transmission images of collagen fibers were spatially resolved due to a coherent, directional SHG component. This effect was enhanced with the use of an index-matching fluid (ni = 1.52). The average SHG intensity oscillated with wavelength in the backscattered geometry (isotropic SHG component), whereas the spectral profile was consistent with quasi-phase-matching conditions in transmission geometry (forward propagating, coherent SHG component) around 440 nm (λp = 880 nm). Collagen type I from bovine Achilles tendon was imaged for SHG in the backscattered geometry and its first-order effective nonlinear coefficient was determined (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\vert}d_{{\\mathrm{eff}}}{\\vert}\\approx 0.085({\\pm}0.025){\\times}10^{-12}{\\mathrm{mV}}^{-1}\\end{equation*}\\end{document}) by comparison to samples of inorganic materials with known effective nonlinear coefficients (LiNbO3 and LiIO3). The SHG spectral response of collagen type I from bovine Achilles tendon matched that of the rat-tendon cryosections in backscattered geometry. Collagen types I, II, and VI powders (nonfibrous) did not show any detectable SHG, indicating a lack of noncentrosymmetric crystalline structure at the molecular level. The various stages of collagen thermal denaturation were investigated in rat-tendon cryosections using SHG and bright-field imaging. Thermal denaturation resulted in the gradual destruction of the SHG signal. PMID:17130233

  12. SAR backscatter from coniferous forest gaps

    NASA Technical Reports Server (NTRS)

    Day, John L.; Davis, Frank W.

    1992-01-01

    A study is in progress comparing Airborne Synthetic Aperture Radar (AIRSAR) backscatter from coniferous forest plots containing gaps to backscatter from adjacent gap-free plots. Issues discussed are how do gaps in the range of 400 to 1600 sq m (approximately 4-14 pixels at intermediate incidence angles) affect forest backscatter statistics and what incidence angles, wavelengths, and polarizations are most sensitive to forest gaps. In order to visualize the slant-range imaging of forest and gaps, a simple conceptual model is used. This strictly qualitative model has led us to hypothesize that forest radar returns at short wavelengths (eg., C-band) and large incidence angles (e.g., 50 deg) should be most affected by the presence of gaps, whereas returns at long wavelengths and small angles should be least affected. Preliminary analysis of 1989 AIRSAR data from forest near Mt. Shasta supports the hypothesis. Current forest backscatter models such as MIMICS and Santa Barbara Discontinuous Canopy Backscatter Model have in several cases correctly predicted backscatter from forest stands based on inputs of measured or estimated forest parameters. These models do not, however, predict within-stand SAR scene texture, or 'intrinsic scene variability' as Ulaby et al. has referred to it. For instance, the Santa Barbara model, which may be the most spatially coupled of the existing models, is not truly spatial. Tree locations within a simulated pixel are distributed according to a Poisson process, as they are in many natural forests, but tree size is unrelated to location, which is not the case in nature. Furthermore, since pixels of a simulated stand are generated independently in the Santa Barbara model, spatial processes larger than one pixel are not modeled. Using a different approach, Oliver modeled scene texture based on an hypothetical forest geometry. His simulated scenes do not agree well with SAR data, perhaps due to the simple geometric model used. Insofar as texture is the expression of biological forest processes, such as succession and disease, and physical ones, such as fire and wind-throw, it contains useful information about the forest, and has value in image interpretation and classification. Forest gaps are undoubtedly important contributors to scene variance. By studying the localized effects of gaps on forest backscatter, guided by our qualitative model, we hope to understand more clearly the manner in which spatial heterogeneities in forests produce variations in backscatter, which collectively give rise to scene texture.

  13. Reconstructing the microstructure of polyimide-silicalite mixed-matrix membranes and their particle connectivity using FIB-SEM tomography.

    PubMed

    Diblíková, P; Veselý, M; Sysel, P; Čapek, P

    2018-03-01

    Properties of a composite material made of a continuous matrix and particles often depend on microscopic details, such as contacts between particles. Focusing on processing raw focused-ion beam scanning electron microscope (FIB-SEM) tomography data, we reconstructed three mixed-matrix membrane samples made of 6FDA-ODA polyimide and silicalite-1 particles. In the first step of image processing, backscattered electron (BSE) and secondary electron (SE) signals were mixed in a ratio that was expected to obtain a segmented 3D image with a realistic volume fraction of silicalite-1. Second, after spatial alignment of the stacked FIB-SEM data, the 3D image was smoothed using adaptive median and anisotropic nonlinear diffusion filters. Third, the image was segmented using the power watershed method coupled with a seeding algorithm based on geodesic reconstruction from the markers. If the resulting volume fraction did not match the target value quantified by chemical analysis of the sample, the BSE and SE signals were mixed in another ratio and the procedure was repeated until the target volume fraction was achieved. Otherwise, the segmented 3D image (replica) was accepted and its microstructure was thoroughly characterized with special attention paid to connectivity of the silicalite phase. In terms of the phase connectivity, Monte Carlo simulations based on the pure-phase permeability values enabled us to calculate the effective permeability tensor, the main diagonal elements of which were compared with the experimental permeability. In line with the hypothesis proposed in our recent paper (Čapek, P. et al. (2014) Comput. Mater. Sci. 89, 142-156), the results confirmed that the existence of particle clusters was a key microstructural feature determining effective permeability. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. Influence of Heat Treatments on Microstructure and Magnetic Domains in Duplex Stainless Steel S31803

    NASA Astrophysics Data System (ADS)

    Dille, Jean; Pacheco, Clara Johanna; Camerini, Cesar Giron; Malet, Loic Charles; Nysten, Bernard; Pereira, Gabriela Ribeiro; De Almeida, Luiz Henrique; Alcoforado Rebello, João Marcos

    2018-06-01

    The influence of heat treatments on microstructure and magnetic domains in duplex stainless steel S31803 is studied using an innovative structural characterization protocol. Electron backscatter diffraction (EBSD) maps as well as magnetic force microscopy (MFM) images acquired on the same region of the sample, before and after heat treatment, are compared. The influence of heat treatments on the phase volumetric fractions is studied, and several structural modifications after heat treatment are highlighted. Three different mechanisms for the decomposition of ferrite into sigma phase and secondary austenite are observed during annealing at 800 °C. MFM analysis reveals that a variety of magnetic domain patterns can exist in one ferrite grain.

  15. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  16. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  17. Microstructure heterogeneity after the ECAP process and its influence on recrystallization in aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, S., E-mail: wronski@fis.agh.edu.pl; Tarasiuk, J., E-mail: tarasiuk@ftj.agh.edu.pl; Bacroix, B., E-mail: brigitte.bacroix@univ-paris13.fr

    The main purpose of the present work is to describe the qualitative and quantitative behaviours of aluminium during high strain plastic deformation and the effect of deformation on the subsequent recrystallization process. An Electron Backscatter Diffraction analysis of aluminium after the Equal channel angular pressing (ECAP) and recrystallization process is presented. In order to do this, several topological maps are measured for samples processed by 4 and 8 passes and recrystallized. The processing was conducted with route C. For all samples, distributions of grain size, misorientation, image quality factor (IQ) and texture were preceded and then analysed in some detail.more » - Highlights: ► Describe the microstructure fragmentation in aluminum. ► High strain plastic deformation and effect of deformation on recrystallization. ► The microstructure fragmentation and its influence on recrystallization. ► Image quality factor and misorientation characteristics are examined using EBSD.« less

  18. Backscatter dose effects for high atomic number materials being irradiated in the presence of a magnetic field: A Monte Carlo study for the MRI linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Syed Bilal

    Purpose: To quantify and explain the backscatter dose effects for clinically relevant high atomic number materials being irradiated in the presence of a 1.5 T transverse magnetic field. Methods: Interface effects were investigated using Monte Carlo simulation techniques. We used GPUMCD (v5.1) and GEANT4 (v10.1) for this purpose. GPUMCD is a commercial software written for the Elekta AB, MRI linac. Dose was scored using GPUMCD in cubic voxels of side 1 and 0.5 mm, in two different virtual phantoms of dimensions 20 × 20 × 20 cm and 5 × 5 × 13.3 cm, respectively. A photon beam was generatedmore » from a point 143.5 cm away from the isocenter with energy distribution sampled from a histogram representing the true Elekta, MRI linac photon spectrum. A slab of variable thickness and position containing either bone, aluminum, titanium, stainless steel, or one of the two different dental filling materials was inserted as an inhomogeneity in the 20 × 20 × 20 cm phantom. The 5 × 5 × 13.3 cm phantom was used as a clinical test case in order to explain the dose perturbation effects for a head and neck cancer patient. The back scatter dose factor (BSDF) was defined as the ratio of the doses at a given depth with and without the presence of the inhomogeneity. Backscattered electron fluence was calculated at the inhomogeneity interface using GEANT4. A 1.5 T magnetic field was applied perpendicular to the direction of the beam in both phantoms, identical to the geometry in the Elekta MRI linac. Results: With the application of a 1.5 T magnetic field, all the BSDF’s were reduced by 12%–47%, compared to the no magnetic field case. The corresponding backscattered electron fluence at the interface was also reduced by 45%–64%. The reduction in the BSDF at the interface, due to the application of the magnetic field, is manifested in a different manner for each material. In the case of bone, the dose drops at the interface contrary to the expected increase when no magnetic field is applied. In the case of aluminum, the dose at the interface is the same with and without the presence of the aluminum. For all of the other materials the dose increases at the interface. Conclusions: The reduction in dose at the interface, in the presence of the magnetic field, is directly related to the reduction in backscattered electron fluence. This reduction occurs due to two different reasons. First, the electron spectrum hitting the interface is changed when the magnetic field is turned on, which results in changes in the electron scattering probability. Second, some electrons that have curved trajectories due to the presence of the magnetic field are absorbed by the higher density side of the interface and no longer contribute to the backscattered electron fluence.« less

  19. An experimental attenuation plate to improve the dose distribution in intraoperative electron beam radiotherapy for breast cancer.

    PubMed

    Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K

    2009-06-07

    Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.

  20. Improving the detection of wind fields from LIDAR aerosol backscatter using feature extraction

    NASA Astrophysics Data System (ADS)

    Bickel, Brady R.; Rotthoff, Eric R.; Walters, Gage S.; Kane, Timothy J.; Mayor, Shane D.

    2016-04-01

    The tracking of winds and atmospheric features has many applications, from predicting and analyzing weather patterns in the upper and lower atmosphere to monitoring air movement from pig and chicken farms. Doppler LIDAR systems exist to quantify the underlying wind speeds, but cost of these systems can sometimes be relatively high, and processing limitations exist. The alternative is using an incoherent LIDAR system to analyze aerosol backscatter. Improving the detection and analysis of wind information from aerosol backscatter LIDAR systems will allow for the adoption of these relatively low cost instruments in environments where the size, complexity, and cost of other options are prohibitive. Using data from a simple aerosol backscatter LIDAR system, we attempt to extend the processing capabilities by calculating wind vectors through image correlation techniques to improve the detection of wind features.

  1. Development of an infrared analyzer following the

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A radar calibration subsystem for measuring the radar backscattering characteristics of an imaged terrain is described. To achieve the required accuracy for the backscattering coefficient measurement (about 2 dB with 80 percent confidence), the space hardware design includes a means of monitoring the state parameters of the radar. For example, the transmitter output power is sampled and a replica of its output waveform is circulated through the receiver. These are recorded digitally and are used on the ground to determine such radar parameters as the transmitter power and the receiver gain. This part of the data is needed by the ground processor to measure the terrain backscattering characteristics.

  2. Ultrasonic nondestructive evaluation of graphite epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1990-01-01

    Quantitative ultrasonic techniques are summarized with applications to the measurement of frequency-dependent attenuation and backscatter and to the NDE of composite laminates. Results are listed for the ultrasonic NDE of graphite-epoxy composite laminates including impact and fatigue damage as well as porosity. The methods reviewed include transmission measurements of attenuation, reconstructive tomography based on attenuation, estimating attenuation from backscattered ultrasound, and backscatter approaches. Phase-sensitive and -insensitive detection techniques are mentioned such as phase cancellation at piezoelectric receiving transducers and acoustoelectric effects. The techniques permit the NDE of the parameters listed in inhomogeneous media and provide both images from the transmission mode and in the reflection mode.

  3. Determination of the Sources of Radar Scattering

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Zoughi, R.

    1984-01-01

    Fine-resolution radar backscattering measurements were proposed to determine the backscattering sources in various vegetation canopies and surface targets. The results were then used to improve the existing theoretical models of terrain scattering, and also to enhance understanding of the radar signal observed by an imaging radar over a vegetated area. Various experiments were performed on targets such as corn, milo, soybeans, grass, asphalt pavements, soil and concrete walkways. Due to the lack of available references on measurements of this type, the obtained results will be used primarily as a foundation or future experiments. The constituent backscattering characteristics of the vegetation canopies was also examined.

  4. An analytical model for light backscattering by coccoliths and coccospheres of Emiliania huxleyi.

    PubMed

    Fournier, Georges; Neukermans, Griet

    2017-06-26

    We present an analytical model for light backscattering by coccoliths and coccolithophores of the marine calcifying phytoplankter Emiliania huxleyi. The model is based on the separation of the effects of diffraction, refraction, and reflection on scattering, a valid assumption for particle sizes typical of coccoliths and coccolithophores. Our model results match closely with results from an exact scattering code that uses complex particle geometry and our model also mimics well abrupt transitions in scattering magnitude. Finally, we apply our model to predict changes in the spectral backscattering coefficient during an Emiliania huxleyi bloom with results that closely match in situ measurements. Because our model captures the key features that control the light backscattering process, it can be generalized to coccoliths and coccolithophores of different morphologies which can be obtained from size-calibrated electron microphotographs. Matlab codes of this model are provided as supplementary material.

  5. The influence of lifelong exposure to environmental fluoride on bone quality in humans

    NASA Astrophysics Data System (ADS)

    Chachra, Debbie

    The objective of this study was to determine if lifelong exposure to environmental sources of fluoride (including fluoridated water) had an effect on bone quality in humans. Ninety-two femoral heads were obtained from individuals undergoing total hip arthroplasty in regions with and without fluoridated water (Toronto and Montreal, respectively), so that the donors would have had a wide range of fluoride exposure. As the samples were obtained at surgery, the femoral heads were affected by osteoarthritis (75), osteoporosis (9) and other diseases. The fluoride content of cancellous bone was assessed by instrumental neutron activation analysis. A number of contributors to bone quality were assessed. The compressive and torsional mechanical properties were measured for cancellous cores excised from the centre of the femoral head. The architecture was assessed by image analysis of an x-ray of a 5 mm thick coronal section of the femoral head, as well as of histological sections taken from the superior (weightbearing) and the inferior (nonweightbearing) surface of the femoral head. The degree of mineralization was measured using backscattered electron imaging and microhardness, again at the superior and the inferior surface. Femoral heads from Toronto donors had a greater mean fluoride content than those from Montreal donors (1033 +/- 438 ppm vs. 643 +/- 220 ppm). However, the fluoride content of the Toronto donors ranged approximately twelve-fold (192--2264 ppm) and entirely contained the range of Montreal donors. Therefore, fluoridated water exposure is not the only determinant of fluoride content. The logarithm of the bone fluoride content increased with age. No substantive effect of fluoride, independent of age, was observed for the mechanical properties. Similarly, at the inferior surface, the architecture was affected by age but not by fluoride incorporation but the degree of mineralization was not affected by either. However, the degree of mineralization (measured by both backscattered electron imaging and microhardness) at the superior surface increased linearly with the fluoride content. As osteoarthritis results in a reduced degree of mineralization at the superior surface, this suggests that the presence of fluoride (which increases the degree of mineralization in osteoarthritis-affected bone) may aid in preventing this loss.

  6. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.

    PubMed

    Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A

    2009-05-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.

  7. Radarsat-1 and ERS InSAR analysis over southeastern coastal Louisiana: Implications for mapping water-level changes beneath swamp forests

    USGS Publications Warehouse

    Lu, Z.; Kwoun, Oh-Ig

    2008-01-01

    Detailed analysis of C-band European Remote Sensing 1 and 2 (ERS-1/ERS-2) and Radarsat-1 interferometric synthetic aperture radar (InSAR) imagery was conducted to study water-level changes of coastal wetlands of southeastern Louisiana. Radar backscattering and InSAR coherence suggest that the dominant radar backscattering mechanism for swamp forest and saline marsh is double-bounce backscattering, implying that InSAR images can be used to estimate water-level changes with unprecedented spatial details. On the one hand, InSAR images suggest that water-level changes over the study site can be dynamic and spatially heterogeneous and cannot be represented by readings from sparsely distributed gauge stations. On the other hand, InSAR phase measurements are disconnected by structures and other barriers and require absolute water-level measurements from gauge stations or other sources to convert InSAR phase values to absolute water-level changes. ?? 2006 IEEE.

  8. The hidden life of pyrite: how low can it go?

    NASA Astrophysics Data System (ADS)

    Boyle, Alan; Barrie, Craig; Salter, Michael

    2010-05-01

    Pyrite is the most abundant sulphide mineral in the Earth's crust, being present in most rock units but only volumetrically important in sulphide ore deposits. Thus, rheological behaviour of pyrite does not have significant implications for crustal deformation as a whole, but it does for deformation of ore deposits. Therefore, understanding pyrite behaviour in ore deposits may help understanding of deformation in rocks where it is of low abundance. Pyrite is a difficult mineral to study because it is both opaque and cubic, two properties that hide most of its microstructure when studied using optical microscopy as well as standard SEM back-scattered electron imaging. Etching can reveal some of the internal secrets of pyrite, but the technique is not universally applicable. The generally accepted view from such studies, coupled with experimental deformation and some TEM studies, is that pyrite is a robust mineral, which, under typical geological strain-rates, deforms by plastic deformation mechanisms above ~425 °C and by brittle or pressure-solution diffusive mechanisms below. Over the last decade or so, the advent of reliable and fast SEM-based electron backscattered diffraction (EBSD) systems, coupled with orientation contrast (OC) imaging techniques, has revolutionised study of microstructure in cubic minerals. Plastic deformation can now be readily identified in pyrite; it is no longer hidden. Freitag et al (2004) documented relatively low temperature (~350 °C) plastic deformation of pyrite from Green's Creek, Alaska, raising the possibility that pyrite deforms plastically at lower temperatures than is generally accepted. In this presentation we describe pyrite microstructures from a series of pyrite-rich polymetallic ore deposits (Parys Mountain, Anglesey; Løkken, Norway; Baia Borsa, Romania), deformed at low temperature metamorphic conditions (~200-420 °C). Our results (Barrie et al. 2009) indicate that pyrite grains in all of the ore deposits studied preserve internal lattice ‘distortion' or ‘bending' indicating plastic deformation mechanisms operated. Many pyrite grains in the ore deposits also contain low-angle (~2°) sub-grain boundaries or ‘dislocation walls', indicating that both dislocation glide and creep deformation mechanisms have operated within the pyrite grains. These results indicate that plastic deformation of pyrite, under geological strain-rates, can go down to as low as ~200 °C suggesting the brittle-ductile transition in pyrite occurs at temperatures potentially as low as ~200 °C; much lower than the generally accepted temperature of ~425 °C. Many pyrite grains in sulphide ore deposits preserve internal chemical zonation of trace elements (e.g. Large et al. 2009). The potential relationship between plastic deformation and trace element distribution in pyrite will be discussed. Barrie, C. D., Boyle, A. P. & Salter, M., 2009. How low can you go? - Extending downwards the limits of plastic deformation in pyrite. Mineralogical Magazine, 73(6), 895-913. Freitag, K., Boyle, A. P., Nelson, E., Hitzman, M., Churchill, J. & Lopez-Pedrosa, M., 2004. The use of electron backscatter diffraction and orientation contrast imaging as tools for sulphide textural studies: example from the Greens Creek deposit (Alaska). Mineralium Deposita, 39, 103-113. Large, R. R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B. & Foster, J., 2009. Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Economic Geology, 104(5), 635-668.

  9. Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Fuchs, Frank; Hugger, Stefan; Kinzer, Michel; Aidam, Rolf; Bronner, Wolfgang; Lösch, Rainer; Yang, Quankui; Degreif, Kai; Schnürer, Frank

    2010-11-01

    The use of a tunable midinfrared external cavity quantum cascade laser for the standoff detection of explosives at medium distances between 2 and 5 m is presented. For the collection of the diffusely backscattered light, a high-performance infrared imager was used. Illumination and wavelength tuning of the laser source was synchronized with the image acquisition, establishing a hyperspectral data cube. Sampling of the backscattered radiation from the test samples was performed in a noncooperative geometry at angles of incidence far away from specular reflection. We show sensitive detection of traces of trinitrotoluene and pentaerythritol tetranitrate on real-world materials, such as standard car paint, polyacrylics from backpacks, and jeans fabric. Concentrations corresponding to fingerprints were detected, while concepts for false alarm suppression due to cross-contaminations were presented.

  10. Scannerless laser range imaging using loss modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandusky, John V

    2011-08-09

    A scannerless 3-D imaging apparatus is disclosed which utilizes an amplitude modulated cw light source to illuminate a field of view containing a target of interest. Backscattered light from the target is passed through one or more loss modulators which are modulated at the same frequency as the light source, but with a phase delay .delta. which can be fixed or variable. The backscattered light is demodulated by the loss modulator and detected with a CCD, CMOS or focal plane array (FPA) detector to construct a 3-D image of the target. The scannerless 3-D imaging apparatus, which can operate inmore » the eye-safe wavelength region 1.4-1.7 .mu.m and which can be constructed as a flash LADAR, has applications for vehicle collision avoidance, autonomous rendezvous and docking, robotic vision, industrial inspection and measurement, 3-D cameras, and facial recognition.« less

  11. Improved spatial mapping of rainfall events with spaceborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Brisco, B.; Dobson, C.

    1983-01-01

    The Seasat satellite acquired the first spaceborne synthetic-aperture radar (SAR) images of the earth's surface, in 1978, at a frequency of 1.275 GHz (L-band) in a like-polarization mode at incidence angles of 23 + or - 3 deg. Although this may not be the optimum system configuration for radar remote sensing of soil moisture, interpretation of two Seasat images of Iowa demonstrates the sensitivity of microwave backscatter to soil moisture content. In both scenes, increased image brightness, which represents more radar backscatter, can be related to previous rainfall activity in the two areas. Comparison of these images with ground-based rainfall observations illustrates the increased spatial coverage of the rainfall event that can be obtained from the satellite SAR data. These data can then be color-enhanced by a digital computer to produce aesthetically pleasing output products for the user community.

  12. Scannerless laser range imaging using loss modulation

    DOEpatents

    Sandusky, John V [Albuquerque, NM

    2011-08-09

    A scannerless 3-D imaging apparatus is disclosed which utilizes an amplitude modulated cw light source to illuminate a field of view containing a target of interest. Backscattered light from the target is passed through one or more loss modulators which are modulated at the same frequency as the light source, but with a phase delay .delta. which can be fixed or variable. The backscattered light is demodulated by the loss modulator and detected with a CCD, CMOS or focal plane array (FPA) detector to construct a 3-D image of the target. The scannerless 3-D imaging apparatus, which can operate in the eye-safe wavelength region 1.4-1.7 .mu.m and which can be constructed as a flash LADAR, has applications for vehicle collision avoidance, autonomous rendezvous and docking, robotic vision, industrial inspection and measurement, 3-D cameras, and facial recognition.

  13. Comparison of high intensity focused ultrasound (HIFU) exposures using empirical and backscatter attenuation estimation methods

    NASA Astrophysics Data System (ADS)

    Civale, John; Ter Haar, Gail; Rivens, Ian; Bamber, Jeff

    2005-09-01

    Currently, the intensity to be used in our clinical HIFU treatments is calculated from the acoustic path lengths in different tissues measured on diagnostic ultrasound images of the patient in the treatment position, and published values of ultrasound attenuation coefficients. This yields an approximate value for the acoustic power at the transducer required to give a stipulated focal intensity in situ. Estimation methods for the actual acoustic attenuation have been investigated in large parts of the tissue path overlying the target volume from the backscattered ultrasound signal for each patient (backscatter attenuation estimation: BAE). Several methods have been investigated. The backscattered echo information acquired from an Acuson scanner has been used to compute the diffraction-corrected attenuation coefficient at each frequency using two methods: a substitution method and an inverse diffraction filtering process. A homogeneous sponge phantom was used to validate the techniques. The use of BAE to determine the correct HIFU exposure parameters for lesioning has been tested in ex vivo liver. HIFU lesions created with a 1.7-MHz therapy transducer have been studied using a semiautomated image processing technique. The reproducibility of lesion size for given in situ intensities determined using BAE and empirical techniques has been compared.

  14. Echo decorrelation imaging of ex vivo HIFU and bulk ultrasound ablation using image-treat arrays

    NASA Astrophysics Data System (ADS)

    Fosnight, Tyler R.; Hooi, Fong Ming; Colbert, Sadie B.; Keil, Ryan D.; Barthe, Peter G.; Mast, T. Douglas

    2017-03-01

    In this study, the ability of ultrasound echo decorrelation imaging to map and predict heat-induced cell death was tested using bulk ultrasound thermal ablation, high intensity focused ultrasound (HIFU) thermal ablation, and pulse-echo imaging of ex vivo liver tissue by a custom image-treat array. Tissue was sonicated at 5.0 MHz using either pulses of unfocused ultrasound (N=12) (7.5 s, 50.9-101.8 W/cm2 in situ spatial-peak, temporal-peak intensity) for bulk ablation or focused ultrasound (N=21) (1 s, 284-769 W/cm2 in situ spatial-peak, temporal-peak intensity and focus depth of 10 mm) for HIFU ablation. Echo decorrelation and integrated backscatter (IBS) maps were formed from radiofrequency pulse-echo images captured at 118 frames per second during 5.0 s rest periods, beginning 1.1 s after each sonication pulse. Tissue samples were frozen at -80˚C, sectioned, vitally stained, imaged, and semi-automatically segmented for receiver operating characteristic (ROC) analysis. ROC curves were constructed to assess prediction performance for echo decorrelation and IBS. Logarithmically scaled mean echo decorrelation in non-ablated and ablated tissue regions before and after electronic noise and motion correction were compared. Ablation prediction by echo decorrelation and IBS was significant for both focused and bulk ultrasound ablation. The log10-scaled mean echo decorrelation was significantly greater in regions of ablation for both HIFU and bulk ultrasound ablation. Echo decorrelation due to electronic noise and motion was significantly reduced by correction. These results suggest that ultrasound echo decorrelation imaging is a promising approach for real-time prediction of heat-induced cell death for guidance and monitoring of clinical thermal ablation, including radiofrequency ablation and HIFU.

  15. Backscattering and absorption coefficients for electrons: Solutions of invariant embedding transport equations using a method of convergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, C.; Brizuela, H.; Heluani, S. P.

    2014-05-21

    The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types ofmore » approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams.« less

  16. Analysis of the Dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: a case study of soda alkaline saline soils in Western Jilin Province using RADARSAT-2 data.

    PubMed

    Li, Yang-yang; Zhao, Kai; Ren, Jian-hua; Ding, Yan-ling; Wu, Li-li

    2014-01-01

    Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion's components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered.

  17. Applications of Subsurface Radar for Mine Detection

    DTIC Science & Technology

    1990-12-31

    sofware routines for signal/image processing and image display, which are included in the Appendix along with examples of recent images obtained of the... maxima and minima. The case of the M19 shown a main backscattering lobe only 5* wide. These results demonstrate the realiability and consistency of

  18. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Papenberg, C.

    2012-03-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV) to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  19. On the relationship between age of lava flows and radar backscattering

    NASA Technical Reports Server (NTRS)

    Blom, R. G.; Cooley, P.; Schenck, L. R.

    1986-01-01

    The observation that older lava flows have lower backscatter in radar images is assessed with multiwavelength/polarization scatterometer data with incidence angles from 15 to 50 deg. Backscatter decreases over time because surface roughness decreases due to infilling with dust and mechanical weathering of the rocks. Pahoehoe lavas in the Snake River Plain with ages of 2.1, 7,4, and 12.0 K yr are best separated with 2.25 cm wavelength data. Blocky obsidian flows at Medicine Lake Highland and Newberry Volcano with ages of 0.9, 1.1 and 1.4 K yr are best separated with 6.3 cm wavelength data. Two Pleistocene flows at the Snake River Plain are best separated with 19.0 cm wavelength data. Incidence angles from 20 to 35 deg are best. These data indicate it may be possible to separate lava flows into eruptive periods using calibrated multiwavelength radar backscatter data.

  20. Forest above ground biomass estimation and forest/non-forest classification for Odisha, India, using L-band Synthetic Aperture Radar (SAR) data

    NASA Astrophysics Data System (ADS)

    Suresh, M.; Kiran Chand, T. R.; Fararoda, R.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    Tropical forests contribute to approximately 40 % of the total carbon found in terrestrial biomass. In this context, forest/non-forest classification and estimation of forest above ground biomass over tropical regions are very important and relevant in understanding the contribution of tropical forests in global biogeochemical cycles, especially in terms of carbon pools and fluxes. Information on the spatio-temporal biomass distribution acts as a key input to Reducing Emissions from Deforestation and forest Degradation Plus (REDD+) action plans. This necessitates precise and reliable methods to estimate forest biomass and to reduce uncertainties in existing biomass quantification scenarios. The use of backscatter information from a host of allweather capable Synthetic Aperture Radar (SAR) systems during the recent past has demonstrated the potential of SAR data in forest above ground biomass estimation and forest / nonforest classification. In the present study, Advanced Land Observing Satellite (ALOS) / Phased Array L-band Synthetic Aperture Radar (PALSAR) data along with field inventory data have been used in forest above ground biomass estimation and forest / non-forest classification over Odisha state, India. The ALOSPALSAR 50 m spatial resolution orthorectified and radiometrically corrected HH/HV dual polarization data (digital numbers) for the year 2010 were converted to backscattering coefficient images (Schimada et al., 2009). The tree level measurements collected during field inventory (2009-'10) on Girth at Breast Height (GBH at 1.3 m above ground) and height of all individual trees at plot (plot size 0.1 ha) level were converted to biomass density using species specific allometric equations and wood densities. The field inventory based biomass estimations were empirically integrated with ALOS-PALSAR backscatter coefficients to derive spatial forest above ground biomass estimates for the study area. Further, The Support Vector Machines (SVM) based Radial Basis Function classification technique was employed to carry out binary (forest-non forest) classification using ALOSPALSAR HH and HV backscatter coefficient images and field inventory data. The textural Haralick's Grey Level Cooccurrence Matrix (GLCM) texture measures are determined on HV backscatter image for Odisha, for the year 2010. PALSAR HH, HV backscatter coefficient images, their difference (HHHV) and HV backscatter coefficient based eight textural parameters (Mean, Variance, Dissimilarity, Contrast, Angular second moment, Homogeneity, Correlation and Contrast) are used as input parameters for Support Vector Machines (SVM) tool. Ground based inputs for forest / non-forest were taken from field inventory data and high resolution Google maps. Results suggested significant relationship between HV backscatter coefficient and field based biomass (R2 = 0.508, p = 0.55) compared to HH with biomass values ranging from 5 to 365 t/ha. The spatial variability of biomass with reference to different forest types is in good agreement. The forest / nonforest classified map suggested a total forest cover of 50214 km2 with an overall accuracy of 92.54 %. The forest / non-forest information derived from the present study showed a good spatial agreement with the standard forest cover map of Forest Survey of India (FSI) and corresponding published area of 50575 km2. Results are discussed in the paper.

  1. Some new results on electron transport in the atmosphere. [Monte Carlo calculation of penetration, diffusion, and slowing down of electron beams in air

    NASA Technical Reports Server (NTRS)

    Berger, M. J.; Seltzer, S. M.; Maeda, K.

    1972-01-01

    The penetration, diffusion and slowing down of electrons in a semi-infinite air medium has been studied by the Monte Carlo method. The results are applicable to the atmosphere at altitudes up to 300 km. Most of the results pertain to monoenergetic electron beams injected into the atmosphere at a height of 300 km, either vertically downwards or with a pitch-angle distribution isotropic over the downward hemisphere. Some results were also obtained for various initial pitch angles between 0 deg and 90 deg. Information has been generated concerning the following topics: (1) the backscattering of electrons from the atmosphere, expressed in terms of backscattering coefficients, angular distributions and energy spectra of reflected electrons, for incident energies T(o) between 2 keV and 2 MeV; (2) energy deposition by electrons as a function of the altitude, down to 80 km, for T(o) between 2 keV and 2 MeV; (3) the corresponding energy depostion by electron-produced bremsstrahlung, down to 30 km; (4) the evolution of the electron flux spectrum as function of the atmospheric depth, for T(o) between 2 keV and 20 keV. Energy deposition results are given for incident electron beams with exponential and power-exponential spectra.

  2. Restoration of longitudinal laser tomography target image from inhomogeneous medium degradation under common conditions.

    PubMed

    Yi, WenJun; Wang, Ping; Fu, MeiCheng; Tan, JiChun; Zhu, Jubo; Li, XiuJian

    2017-07-10

    In order to overcome the shortages of the target image restoration method for longitudinal laser tomography using self-calibration, a more general restoration method through backscattering medium images associated with prior parameters is developed for common conditions. The system parameters are extracted from pre-calibration, and the LIDAR ratio is estimated according to the medium types. Assisted by these prior parameters, the degradation caused by inhomogeneous turbid media can be established with the backscattering medium images, which can further be used for removal of the interferences of turbid media. The results of simulations and experiments demonstrate that the proposed image restoration method can effectively eliminate the inhomogeneous interferences of turbid media and achieve exactly the reflectivity distribution of targets behind inhomogeneous turbid media. Furthermore, the restoration method can work beyond the limitation of the previous method that only works well under the conditions of localized turbid attenuations and some types of targets with fairly uniform reflectivity distributions.

  3. Geologic Map of the Sif Mons Quadrangle (V-31), Venus

    USGS Publications Warehouse

    Copp, Duncan L.; Guest, John E.

    2007-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Sif Mons quadrangle of Venus includes lat 0? to 25? N. and long 330? to 0? E.; it covers an area of about 8.10 x 106 km2 (fig. 1). The data used to construct the geologic map were from the National Aeronautics and Space Administration (NASA) Magellan Mission. The area is also covered by Arecibo images, which were also consulted (Campbell and Campbell, 1990; Campbell and others, 1989). Data from the Soviet Venera orbiters do not cover this area. All of the SAR products were employed for geologic mapping. C1-MIDRs were used for general recognition of units and structures; F-MIDRs and F-MAPs were used for more specific examination of surface characteristics and structures. Where the highest resolution was required or some image processing was necessary to solve a particular mapping problem, the images were examined using the digital data on CD-ROMs. In cycle 1, the SAR incidence angles for images obtained for the Sif Mons quadrangle ranged from 44? to 46?; in cycle 3, they were between 25? and 26?. We use the term 'high backscatter' of a material unit to imply a rough surface texture at the wavelength scale used by Magellan SAR. Conversely, 'low backscatter' implies a smooth surface. In addition, altimetric, radiometric, and rms slope data were superposed on SAR images. Figure 2 shows altimetry data; figure 3 shows images of ancillary data for the quadrangle; and figure 4 shows backscatter coefficient for selected units. The interpretation of these data was discussed by Ford and others (1989, 1993). For corrected backscatter and numerical ancillary data see tables 1 and 2; these data allow comparison with units at different latitudes on the planet, where the visual appearance may differ because of a different incidence angle. Synthetic stereo images, produced by overlaying SAR images and altimetric data, were of great value in interpreting structures and stratigraphic relations.

  4. Three-dimensional ultrastructure of osteocytes assessed by focused ion beam-scanning electron microscopy (FIB-SEM).

    PubMed

    Hasegawa, Tomoka; Yamamoto, Tomomaya; Hongo, Hiromi; Qiu, Zixuan; Abe, Miki; Kanesaki, Takuma; Tanaka, Kawori; Endo, Takashi; de Freitas, Paulo Henrique Luiz; Li, Minqi; Amizuka, Norio

    2018-04-01

    The aim of this study is to demonstrate the application of focused ion beam-scanning electron microscopy, FIB-SEM for revealing the three-dimensional features of osteocytic cytoplasmic processes in metaphyseal (immature) and diaphyseal (mature) trabeculae. Tibiae of eight-week-old male mice were fixed with aldehyde solution, and treated with block staining prior to FIB-SEM observation. While two-dimensional backscattered SEM images showed osteocytes' cytoplasmic processes in a fragmented fashion, three-dimensional reconstructions of FIB-SEM images demonstrated that osteocytes in primary metaphyseal trabeculae extended their cytoplasmic processes randomly, thus maintaining contact with neighboring osteocytes and osteoblasts. In contrast, diaphyseal osteocytes extended thin cytoplasmic processes from their cell bodies, which ran perpendicular to the bone surface. In addition, these osteocytes featured thick processes that branched into thinner, transverse cytoplasmic processes; at some point, however, these transverse processes bend at a right angle to run perpendicular to the bone surface. Osteoblasts also possessed thicker cytoplasmic processes that branched off as thinner processes, which then connected with cytoplasmic processes of neighboring osteocytes. Thus, FIB-SEM is a useful technology for visualizing the three-dimensional structures of osteocytes and their cytoplasmic processes.

  5. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  6. Use of simulation to optimize the pinhole diameter and mask thickness for an x-ray backscatter imaging system

    NASA Astrophysics Data System (ADS)

    Vella, A.; Munoz, Andre; Healy, Matthew J. F.; Lane, David; Lockley, D.

    2017-08-01

    The PENELOPE Monte Carlo simulation code was used to determine the optimum thickness and aperture diameter of a pinhole mask for X-ray backscatter imaging in a security application. The mask material needs to be thick enough to absorb most X-rays, and the pinhole must be wide enough for sufficient field of view whilst narrow enough for sufficient image spatial resolution. The model consisted of a fixed geometry test object, various masks with and without pinholes, and a 1040 x 1340 pixels' area detector inside a lead lined camera housing. The photon energy distribution incident upon masks was flat up to selected energy limits. This artificial source was used to avoid the optimisation being specific to any particular X-ray source technology. The pixelated detector was modelled by digitising the surface area represented by the PENELOPE phase space file and integrating the energies of the photons impacting within each pixel; a MATLAB code was written for this. The image contrast, signal to background ratio, spatial resolution, and collimation effect were calculated at the simulated detector as a function of pinhole diameter and various thicknesses of mask made of tungsten, tungsten/epoxy composite or bismuth alloy. A process of elimination was applied to identify suitable masks for a viable X-ray backscattering security application.

  7. Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations.

    PubMed

    Marais, Willem J; Holz, Robert E; Hu, Yu Hen; Kuehn, Ralph E; Eloranta, Edwin E; Willett, Rebecca M

    2016-10-10

    Atmospheric lidar observations provide a unique capability to directly observe the vertical column of cloud and aerosol scattering properties. Detector and solar-background noise, however, hinder the ability of lidar systems to provide reliable backscatter and extinction cross-section estimates. Standard methods for solving this inverse problem are most effective with high signal-to-noise ratio observations that are only available at low resolution in uniform scenes. This paper describes a novel method for solving the inverse problem with high-resolution, lower signal-to-noise ratio observations that are effective in non-uniform scenes. The novelty is twofold. First, the inferences of the backscatter and extinction are applied to images, whereas current lidar algorithms only use the information content of single profiles. Hence, the latent spatial and temporal information in noisy images are utilized to infer the cross-sections. Second, the noise associated with photon-counting lidar observations can be modeled using a Poisson distribution, and state-of-the-art tools for solving Poisson inverse problems are adapted to the atmospheric lidar problem. It is demonstrated through photon-counting high spectral resolution lidar (HSRL) simulations that the proposed algorithm yields inverted backscatter and extinction cross-sections (per unit volume) with smaller mean squared error values at higher spatial and temporal resolutions, compared to the standard approach. Two case studies of real experimental data are also provided where the proposed algorithm is applied on HSRL observations and the inverted backscatter and extinction cross-sections are compared against the standard approach.

  8. Multisource multibeam backscatter data: developing a strategy for the production of benthic habitat maps using semi-automated seafloor classification methods

    NASA Astrophysics Data System (ADS)

    Lacharité, Myriam; Brown, Craig J.; Gazzola, Vicki

    2018-06-01

    The establishment of multibeam echosounders (MBES) as a mainstream tool in ocean mapping has facilitated integrative approaches towards nautical charting, benthic habitat mapping, and seafloor geotechnical surveys. The bathymetric and backscatter information generated by MBES enables marine scientists to present highly accurate bathymetric data with a spatial resolution closely matching that of terrestrial mapping, and can generate customized thematic seafloor maps to meet multiple ocean management needs. However, when a variety of MBES systems are used, the creation of objective habitat maps can be hindered by the lack of backscatter calibration, due for example, to system-specific settings, yielding relative rather than absolute values. Here, we describe an approach using object-based image analysis to combine 4 non-overlapping and uncalibrated (backscatter) MBES coverages to form a seamless habitat map on St. Anns Bank (Atlantic Canada), a marine protected area hosting a diversity of benthic habitats. The benthoscape map was produced by analysing each coverage independently with supervised classification (k-nearest neighbor) of image-objects based on a common suite of 7 benthoscapes (determined with 4214 ground-truthing photographs at 61 stations, and characterized with backscatter, bathymetry, and bathymetric position index). Manual re-classification based on uncertainty in membership values to individual classes—especially at the boundaries between coverages—was used to build the final benthoscape map. Given the costs and scarcity of MBES surveys in offshore marine ecosystems—particularly in large ecosystems in need of adequate conservation strategies, such as in Canadian waters—developing approaches to synthesize multiple datasets to meet management needs is warranted.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Timothy D; Hollenbach, Daniel F; Shedlock, Daniel

    Radiography by Selective Detection (RSD), was investigated for its ability to determine the presence and types of defects in a UO{sub 2} fuel rod surrounded by zirconium cladding. Images created using a Monte Carlo model compared favorably with actual X-ray backscatter images from mock fuel rods. A fuel rod was modeled as a rectangular parallelepiped with zirconium cladding, and pencil beam X-ray sources of 160 kVp (79 keV avg) and 480 kVp (218 keV avg) were generated using the Monte Carlo N-Particle Transport Code to attempt to image void and palladium (Pd) defects in the interior and on the surfacemore » of the fuel pellet. It was found that the 160 kVp spectrum was unable to detect the presence of interior defects, whereas the 480 kVp spectrum detected them with both the standard and the RSD backscatter methods, though the RSD method was very inefficient. It was also found that both energy spectra were able to detect void and Pd defects on the surface using both imaging methods. Additionally, two mock fuel rods were imaged using a backscatter X-ray imaging system, one consisting of hafnium pellets in a Zircaloy-4 cladding and the other consisting of steel pellets in a Zircalloy-4 cladding which was then encased in a steel cladding (a double encapsulation configuration employed in irradiation and experiments). It was found that the system was capable of detecting individual HfO{sub 2} pellets in a Zircaloy-4 cladding and may be capable of detecting individual steel pellets in the double-encapsulated sample. It is expected that the system would also be capable of detecting individual UO{sub 2} pellets in a Zircaloy-4 cladding, though no UO{sub 2} fuel rod was available for imaging.« less

  10. 75 MHz ultrasound biomicroscopy of anterior segment of eye.

    PubMed

    Silverman, Ronald H; Cannata, Jonathan; Shung, K Kirk; Gal, Omer; Patel, Monica; Lloyd, Harriet O; Feleppa, Ernest J; Coleman, D Jackson

    2006-07-01

    Very high frequency ultrasound (35-50 MHz) has had a significant impact upon clinical imaging of the anterior segment of the eye, offering an axial resolution as small as 30 microm. Higher frequencies, while potentially offering even finer resolution, are more affected by absorption in ocular tissues and even in the fluid coupling medium. Our aim was to develop and apply improved transducer technology utilizing frequencies beyond those routinely used for ultrasound biomicroscopy of the eye. A 75-MHz lithium niobate transducer with 2 mm aperture and 6 mm focal length was fabricated. We scanned the ciliary body and cornea of a human eye six years post-LASIK. Spectral parameter images were produced from the midband fit to local calibrated power spectra. Images were compared with those produced using a 35 MHz lithium niobate transducer of similar fractional bandwidth and focal ratio. The 75-MHz transducer was found to have a fractional bandwidth (-6 dB) of 61%. Images of the post-LASIK cornea showed higher stromal backscatter at 75 MHz than at 35 MHz. The improved lateral resolution resulted in better visualization of discontinuities in Bowman's layer, indicative of microfolds or breaks occurring at the time of surgery. The LASIK surface was evident as a discontinuity in stromal backscatter between the stromal component of the flap and the residual stroma. The iris and ciliary body were visualized despite attenuation by the overlying sclera. Very high frequency ultrasound imaging of the anterior segment of the eye has been restricted to the 35-50 MHz band for over a decade. We showed that higher frequencies can be used in vivo to image the cornea and anterior segment. This improvement in resolution and high sensitivity to backscatter from the corneal stroma will provide benefits in clinical diagnostic imaging of the anterior segment.

  11. Acquisition of a High Resolution Field Emission Scanning Electron Microscope for the Analysis of Returned Samples

    NASA Technical Reports Server (NTRS)

    Nittler, Larry R.

    2003-01-01

    This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.

  12. Angle-resolved investigation of Auger electrons from Cu and Au adsorbed on W(110)

    NASA Astrophysics Data System (ADS)

    Koshikawa, T.; Von Dem Hagen, T.; Bauer, E.

    1981-08-01

    The angular distribution of Cu M 2,3VV and Au N 6,7VV Auger electrons from Cu and Au mono- and double layers on W(110) is measured with the goal of obtaining information on the contribution of the backscattered wave on the angular distribution of Auger electrons from adsorbed atoms.

  13. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    NASA Astrophysics Data System (ADS)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  14. Quantitative evaluation of the oral biofilm-removing capacity of a dental water jet using an electron-probe microanalyzer.

    PubMed

    Kato, Kazuo; Tamura, Kiyomi; Nakagaki, Haruo

    2012-01-01

    This study was conducted to evaluate the oral biofilm-removing capacity of a dental water jet (DWJ) by measuring biofilm thickness using an electron-probe microanalyzer (EPMA). Thirty consenting subjects wore in situ plaque-generating devices, which consisted of a pair of 4mm(2) enamel slabs attached to the upper molars for 2 days. Each device removed from the mouth was clamped, and one of the slab surfaces was treated with the DWJ, irrigating it for 5s. The devices were randomly assigned to three different pressure settings of 707, 350 or 102kPa. Another slab with no treatment served as a control. Each slab was freeze-dried, sputter-coated with platinum, and examined using secondary-electron imaging. The slabs were then embedded in methacrylate and cross-sectioned in the centre. Their surfaces were polished, coated with carbon, and examined using backscattered electron compositional (COMPO) imaging. The area between the enamel and the outer biofilm surface, indicated by a thin platinum layer, was measured by COMPO imaging to calculate the average thickness of the biofilm on the specimen. The removal capacity of biofilm by irrigation was estimated using a reduced rate of biofilm thickness, which was calculated from the differences between a pair of treated and control slabs. The reduced rates were 85.5% at 707kPa, 85.1% at 350kPa and 63.4% at 102kPa, indicating that biofilm thickness was significantly reduced at every pressure setting. The results suggest that irrigation using a DWJ would be an effective means of plaque control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A digital instrument for nondestructive measurements of coating thicknesses by beta backscattering

    NASA Astrophysics Data System (ADS)

    Farcasiu, D. M.; Apostolescu, T.; Bozdog, H.; Badescu, E.; Bohm, V.; Stanescu, S. P.; Jianu, A.; Bordeanu, C.; Cracium, M. V.

    1992-02-01

    The elements of nondestructive gauging of coatings applied on various metal bases are presented. The intensity of the backscattered beta radiations is related to the thickness of the coating. With a fixed measuring geometry and radioactive sources (147Pm, 204Tl, 90Sr+90Y) the intensity of the backscattered beta particles is dependent on the following parameters: coating thickness, atomic number of the coating material and of the base, the beta particle energy and the surface finish. It can be used for the measurement of a wide range of coating thicknesses provided that the difference between the coating and the support atomic numbers is at least 20%. Fields of application include electronics, electrotechnique and so on.

  16. Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.

    2011-01-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596

  17. Auger electron spectroscopy and Rutherford backscattering studies of copper in 2024-T3 aluminum following electrochemical anodization in phosphoric acid

    NASA Astrophysics Data System (ADS)

    Solomon, J. S.

    1981-05-01

    The effects of the electrochemical anodization of dioxidized 2024-T3 aluminum on copper were characterized by Auger electron spectroscopy and Rutherford backscattering. Anodization was performed in phosphoric acid at constant potential. Data is presented which shows that constant potential anodization of 2024-T3 is more efficient than aluminum in terms of oxide growth rates for short anodization times. However the maximum anodic oxide thickness achievable on the alloy is less than the pure metal. Copper is shown to be enriched at the oxide metal interface because of its diffusion from the bulk during anodization. The presence of copper at the oxide-metal interface is shown to affect oxide morphology.

  18. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    PubMed

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.

  19. Investigation of plastic deformation heterogeneities in duplex steel by EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, S., E-mail: wronski@ftj.agh.edu.pl; Tarasiuk, J., E-mail: tarasiuk@ftj.agh.edu.pl; Bacroix, B., E-mail: brigitte.bacroix@univ-paris13.fr

    2012-11-15

    An EBSD analysis of a duplex steel (austeno-ferritic) deformed in tension up to fracture is presented. The main purpose of the paper is to describe, qualitatively and quantitatively, the differences in the behavior of the two phases during plastic deformation. In order to do so, several topological maps are measured on the deformed state using the electron backscatter diffraction technique. Distributions of grain size, misorientation, image quality factor and texture are then analyzed in detail. - Highlights: Black-Right-Pointing-Pointer Heterogeneities in duplex steel is studied. Black-Right-Pointing-Pointer The behavior of the two phases during plastic deformation is studied. Black-Right-Pointing-Pointer IQ factor distributionmore » and misorientation characteristics are examined using EBSD.« less

  20. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolison, L; Samant, S; Baciak, J

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection inmore » industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is based upon work supported under an Integrated University Program Graduate Fellowship sponsored by the Department of Energy Office of Nuclear Energy.« less

  1. Quantitative Image Recovery From Measured Blind Backscattered Data Using a Globally Convergent Inverse Method

    DTIC Science & Technology

    2012-01-01

    research interests include in- 794 verse problems related to superresolution imaging and metamaterial design. 795 Dr. Fiddy is a Fellow of the Optical...verse problems related to superresolution imaging and metamaterial design. 795 Dr. Fiddy is a Fellow of the Optical Society of America, the IOP, and The

  2. TH-C-19A-09: Quantification of Transmission and Backscatter Factors as a function of Distance to Inhomogeneity Interface for Three Types of Surgical Implant Plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D; Mills, M; Wang, B

    Purpose: Carbon fiber materials have been increasingly used clinically, mainly in orthopedics, as an alternative to metallic implants because of their minimal artifacts on CT and MRI images. This study characterizes the transmission and backscatter property of carbon fiber plates (CarboFix Orthopedics, Herzeliya, Israel) with measurements for radiation therapy applications, and compares them to traditional Stainless Steel (SS) and Titanium (Ti) metal materials. Methods: For the transmission measurements, 1-mm-thick test plate was placed upstream from a plane parallel Markus chamber, separated by various thicknesses of polystyrene plates in 0.5 cm increments between 0 and 5 cm. With this setup, wemore » quantified the radiation transmission as a function of distance to the inhomogeneity interface. The LINAC source to detector distance was maintained at 100 cm and 200 MU was delivered for each measurement. Two 3-cm solid water phantoms were placed at the top and bottom to provide build up. All the measurements were performed for 6 MV and 18 MV photons. The backscatter measurements had the identical setup, except that the test plate was downstream of the chamber from radiation. Results: The carbon fiber plates did not introduce any measureable inhomogeneity effect on the transmission and backscatter factor because of its low atomic number. In contrast, traditional metal implant materials caused up to 15% dose difference at upstream and 25% backscatter at downstream from radiation. Such differences decrease as the distance to the inhomogeneity interface increases and become unmeasurable at distance of 3 cm and 1 cm for upstream and downstream, respectively. Conclusion: A new type of carbon fiber implant plate was evaluated and found to have minimal inhomogeneity effect in MV radiation beams. Patients would benefit from a carbon based implant over metal for radiation therapy due to their minimal backscatter and imaging artifacts.« less

  3. Optical wet steam monitor

    DOEpatents

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  4. Optical wet steam monitor

    DOEpatents

    Maxey, Lonnie C.; Simpson, Marc L.

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  5. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In thismore » work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.« less

  6. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs.

    PubMed

    Mangum, John S; Chan, Lisa H; Schmidt, Ute; Garten, Lauren M; Ginley, David S; Gorman, Brian P

    2018-05-01

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In this work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    DOE PAGES

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute; ...

    2018-02-23

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In thismore » work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.« less

  8. Study on Subgrain Rotation Behavior at Different Interfaces of a Solder Joint During Thermal Shock

    NASA Astrophysics Data System (ADS)

    Han, Jing; Tan, Shihai; Guo, Fu

    2016-12-01

    In order to investigate subgrain rotation behavior in the recrystallized region of lead-free solder joints, a ball grid array (BGA) specimen with a cross-sectioned edge row was thermally shocked. Electron backscattered diffraction (EBSD) was used to obtain the microstructure and orientations of Sn grains or subgrains in as-reflowed and thermally shocked conditions. Orientation imaging microscopy (OIM) showed that several subgrains were formed at the tilted twin grain boundaries, near the chip side and near the printed circuit board (PCB) side after 200 thermal shocks due to a highly mismatched coefficient of thermal expansion (CTE) of twin grains. Also, subgrains formed at the chip side and PCB side in the solder joint were selected to research the grain rotation behavior in lead-free solder joints. The analysis of subgrain rotation also indicated that the rotation behavior of subgrains was different between the chip side and PCB side. It was closely related with the large different crystal orientations between the chip side and PCB side. Furthermore, electron backscattered patterns (EBSPs) at several parts of the joint were not obtained after 300 thermal shocks due to the serious deformation caused by mismatched CTE during thermal shock. But 4 subgrains were selected and compared with that of the initial state and 200-thermal shock conditions. The results showed that the subgrains at the chip side were also rotated around the Sn [101] and [001] axes and the subgrains at the PCB side were also rotated around the Sn [100] axis, which indicated a continuous process of subgrain rotation.

  9. New method for binder and carbon black detection at nanometer scale in carbon electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Jaiser, Stefan; Müller, Marcus; Scharfer, Philip; Schabel, Wilhelm; Bauer, Werner; Scheiba, Frieder; Ehrenberg, Helmut

    2017-09-01

    In the current work, graphite electrodes comprising PVDF binder and carbon black are subjected to characterization. An energy selective backscatter detector is used to localize carbon black and fluorine of PVDF. Therefore, it is necessary to distinguish between graphite, amorphous carbon and fluorine rich regions. Typically, an angular selective backscatter detector is employed to obtain an image providing the material contrast of the sample. Suitable materials for that detector are e.g. alloys to observe intermetallic phases, semiconductor for ;channeling contrast;, or imaging SiO2 and Au nanoparticles in biological cells. However, this detector cannot be used to distinguish between light elements with low atomic numbers, such as C to P. In addition, the contrast of fluorine rich regions and graphite is poor in normal in-lens images due to the low difference of the atomic mass between C and F. The aim of this study is to enhance the contrast of fluorine rich regions to graphite to carbon black. Therefore, the energy selective backscatter detector is used and its advantages and setup is described. Finally this technique is applied to investigate 400 μm thick cross-sections of graphite electrodes dried at different temperatures and obtain the carbon black distribution.

  10. Predicted seafloor facies of Central Santa Monica Bay, California

    USGS Publications Warehouse

    Dartnell, Peter; Gardner, James V.

    2004-01-01

    Summary -- Mapping surficial seafloor facies (sand, silt, muddy sand, rock, etc.) should be the first step in marine geological studies and is crucial when modeling sediment processes, pollution transport, deciphering tectonics, and defining benthic habitats. This report outlines an empirical technique that predicts the distribution of seafloor facies for a large area offshore Los Angeles, CA using high-resolution bathymetry and co-registered, calibrated backscatter from multibeam echosounders (MBES) correlated to ground-truth sediment samples. The technique uses a series of procedures that involve supervised classification and a hierarchical decision tree classification that are now available in advanced image-analysis software packages. Derivative variance images of both bathymetry and acoustic backscatter are calculated from the MBES data and then used in a hierarchical decision-tree framework to classify the MBES data into areas of rock, gravelly muddy sand, muddy sand, and mud. A quantitative accuracy assessment on the classification results is performed using ground-truth sediment samples. The predicted facies map is also ground-truthed using seafloor photographs and high-resolution sub-bottom seismic-reflection profiles. This Open-File Report contains the predicted seafloor facies map as a georeferenced TIFF image along with the multibeam bathymetry and acoustic backscatter data used in the study as well as an explanation of the empirical classification process.

  11. Dosimetric distribution of the surroundings of different dental crowns and implants during LINAC photon irradiation

    NASA Astrophysics Data System (ADS)

    Chang, Kwo-Ping; Lin, Wei-Ting; Shiau, An-Cheng; Chie, Yu-Huang

    2014-11-01

    In radiotherapy of the head and neck, metal dentures or implants will increase the risk of complications such as mucositis and osteoradionecrosis. The aim of this study is to explore the back scatter effect of commercially available dental metal alloys on the mucosa and bone under 6 MV LINAC irradiation. The Monte Carlo method has been employed to calculate the dose distribution in the heterogeneous media of the designed oral phantom based on the oral cavity geometry. Backscatter dose increases up to a maximum of 53%, and is primarily dependent on the physical density and electron density of the metal crown alloy. Ceramic metal crowns have been quantified to increase backscatter dose up to 10% on mucosa. Ceramic serves as an inherent shield of mucosa. The backscatter dose will be greater for a small field size if the tumor is located at a deeper region. Titanium implants will increase the backscatter dose by 13% to bone but will not affect the mucosa. QC-20 (polystyrene resin) is recommended as a shield material (3 mm) to eliminate the backscatter dose on mucosa due to the high density metals.

  12. Microstructural analysis of aluminum high pressure die castings

    NASA Astrophysics Data System (ADS)

    David, Maria Diana

    Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.

  13. A New Polarimetric Classification Approach Evaluated for Agricultural Crops

    NASA Astrophysics Data System (ADS)

    Hoekman, D.

    2003-04-01

    Statistical properties of the polarimetric backscatter behaviour for a single homogeneous area are described by the Wishart distribution or its marginal distributions. These distributions do not necessarily well describe the statistics for a collection of homogeneous areas of the same class because of variation in, for example, biophysical parameters. Using Kolmogorov-Smirnov (K-S) tests of fit it is shown that, for example, the Beta distribution is a better descriptor for the coherence magnitude, and the log-normal distribution for the backscatter level. An evaluation is given for a number of agricultural crop classes, grasslands and fruit tree plantations at the Flevoland test site, using an AirSAR (C-, L- and P- band polarimetric) image of 3 July 1991. A new reversible transform of the covariance matrix into backscatter intensities will be introduced in order to describe the full polarimetric target properties in a mathematically alternative way, allowing for the development of simple, versatile and robust classifiers. Moreover, it allows for polarimetric image segmentation using conventional approaches. The effect of azimuthally asymmetric backscatter behaviour on the classification results is discussed. Several models are proposed and results are compared with results from literature for the same test site. It can be concluded that the introduced classifiers perform very well, with levels of accuracy for this test site of 90.4% for C-band, 88.7% for L- band and 96.3% for the combination of C- and L-band.

  14. Response of Helical Luttinger Liquid in InAs/GaSb Edges to a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Li, Tingxin; Tong, Bingbing; Liu, Xiaoxue; Han, Zhongdong; Zhang, Chi; Sullivan, Gerard; Du, Rui-Rui

    Electron-electron interactions have been shown to play an important role in InAs/GaSb quantum spin Hall (QSH) edge states, leading to power-law behaviors of the helical edge conductance as a function of temperature and bias voltage (Li et al., Phys. Rev. Lett. 115 136804). A variety of inelastic and/or multiparticle backscattering processes could occur in helical edges when taking electron-electron interactions into account. On the other hand, in the presence of an external magnetic field, single-particle elastic backscattering is also allowed in QSH edge due to the breaking of time-reversal symmetry (TRS). It would be interesting to pursue experimental investigations for the combined effect of electron-electron interactions and TRS breaking on QSH edge transport. We report work in progress for low temperature conductance measurements of the helical edge in InAs/GaSb under perpendicular or in-plane magnetic fields. We found that the magnetic field responses are generally correlated with the interaction strength in the edge states. The work at Peking University were supported by NBRPC Grants (No. 2012CB921301 and No. 2014CB920901), and by Collaborative Innovation Center of Quantum Matter.

  15. A novel Compton camera design featuring a rear-panel shield for substantial noise reduction in gamma-ray images

    NASA Astrophysics Data System (ADS)

    Nishiyama, T.; Kataoka, J.; Kishimoto, A.; Fujita, T.; Iwamoto, Y.; Taya, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Sakurai, N.; Adachi, S.; Uchiyama, T.

    2014-12-01

    After the Japanese nuclear disaster in 2011, large amounts of radioactive isotopes were released and still remain a serious problem in Japan. Consequently, various gamma cameras are being developed to help identify radiation hotspots and ensure effective decontamination operation. The Compton camera utilizes the kinematics of Compton scattering to contract images without using a mechanical collimator, and features a wide field of view. For instance, we have developed a novel Compton camera that features a small size (13 × 14 × 15 cm3) and light weight (1.9 kg), but which also achieves high sensitivity thanks to Ce:GAGG scintillators optically coupled wiith MPPC arrays. By definition, in such a Compton camera, gamma rays are expected to scatter in the ``scatterer'' and then be fully absorbed in the ``absorber'' (in what is called a forward-scattered event). However, high energy gamma rays often interact with the detector in the opposite direction - initially scattered in the absorber and then absorbed in the scatterer - in what is called a ``back-scattered'' event. Any contamination of such back-scattered events is known to substantially degrade the quality of gamma-ray images, but determining the order of gamma-ray interaction based solely on energy deposits in the scatterer and absorber is quite difficult. For this reason, we propose a novel yet simple Compton camera design that includes a rear-panel shield (a few mm thick) consisting of W or Pb located just behind the scatterer. Since the energy of scattered gamma rays in back-scattered events is much lower than that in forward-scattered events, we can effectively discriminate and reduce back-scattered events to improve the signal-to-noise ratio in the images. This paper presents our detailed optimization of the rear-panel shield using Geant4 simulation, and describes a demonstration test using our Compton camera.

  16. 3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy.

    PubMed

    Arthur, R Martin; Basu, Debomita; Guo, Yuzheng; Trobaugh, Jason W; Moros, Eduardo G

    2010-08-01

    Temperature imaging with a non-invasive modality to monitor the heating of tumors during hyperthermia treatment is an attractive alternative to sparse invasive measurement. Previously, we predicted monotonic changes in backscattered energy (CBE) of ultrasound with temperature for certain sub-wavelength scatterers. We also measured CBE values similar to our predictions in bovine liver, turkey breast muscle, and pork rib muscle in 2-D in vitro studies and in nude mice during 2-D in vivo studies. To extend these studies to three dimensions, we compensated for motion and measured CBE in turkey breast muscle. 3-D data sets were assembled from images formed by a phased-array imager with a 7.5-MHz linear probe moved in 0.6-mm steps in elevation during uniform heating from 37 to 45 degrees C in 0.5 degrees C increments. We used cross-correlation as a similarity measure in RF signals to automatically track feature displacement as a function of temperature. Feature displacement was non-rigid. Envelopes of image regions, compensated for non-rigid motion, were found with the Hilbert transform then smoothed with a 3 x 3 running average filter before forming the backscattered energy at each pixel. CBE in 3-D motion-compensated images was nearly linear with an average sensitivity of 0.30 dB/ degrees C. 3-D estimation of temperature in separate tissue regions had errors with a maximum standard deviation of about 0.5 degrees C over 1-cm(3) volumes. Success of CBE temperature estimation based on 3-D non-rigid tracking and compensation for real and apparent motion of image features could serve as the foundation for the eventual generation of 3-D temperature maps in soft tissue in a non-invasive, convenient, and low-cost way in clinical hyperthermia.

  17. User expectations for multibeam echo sounders backscatter strength data-looking back into the future

    NASA Astrophysics Data System (ADS)

    Lucieer, Vanessa; Roche, Marc; Degrendele, Koen; Malik, Mashkoor; Dolan, Margaret; Lamarche, Geoffroy

    2018-06-01

    With the ability of multibeam echo sounders (MBES) to measure backscatter strength (BS) as a function of true angle of insonification across the seafloor, came a new recognition of the potential of backscatter measurements to remotely characterize the properties of the seafloor. Advances in transducer design, digital electronics, signal processing capabilities, navigation, and graphic display devices, have improved the resolution and particularly the dynamic range available to sonar and processing software manufacturers. Alongside these improvements the expectations of what the data can deliver has also grown. In this paper, we identify these user-expectations and explore how MBES backscatter is utilized by different communities involved in marine seabed research at present, and the aspirations that these communities have for the data in the future. The results presented here are based on a user survey conducted by the GeoHab (Marine Geological and Biological Habitat Mapping) association. This paper summarises the different processing procedures employed to extract useful information from MBES backscatter data and the various intentions for which the user community collect the data. We show how a range of backscatter output products are generated from the different processing procedures, and how these results are taken up by different scientific disciplines, and also identify common constraints in handling MBES BS data. Finally, we outline our expectations for the future of this unique and important data source for seafloor mapping and characterisation.

  18. SuperDARN HF Scattering and Propagation in the Presence of Polar Patches Imaged Using RISR

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Perry, G. W.; Varney, R. H.; Gillies, D. M.; Donovan, E.

    2017-12-01

    The global array of High Frequency (HF) Super Dual Auroral Radar Network (SuperDARN) radars continuously monitors ionospheric convection in the middle-to-high latitude region. The radars measure coherent backscatter from decameter scale field-aligned irregularities. One of the main generation mechanisms for these field-aligned irregularities is the gradient drift instability (GDI). The edges of ionospheric density structures, such as polar cap patches, provide ideal locations for GDI growth. The geometry required for GDI growth results in irregularities forming on the trailing edge of polar patches. However, irregularities generated by the non-linear evolution of the GDI can become prevalent throughout the patch within minutes. Modelling the irregularity growth and measurements of backscatter within patches have both confirmed this. One aspect that has often been overlooked in studies of coherent backscatter within patches is the effect of HF propagation on echo location. This study examines HF echo locations in the vicinity of patches that were imaged using the Resolute Bay Incoherent Scatter Radars (RISR). The effect of both vertical and lateral refraction of the HF wave on echo location is examined.

  19. Attempt of correlative observation of morphological synaptic connectivity by combining confocal laser-scanning microscope and FIB-SEM for immunohistochemical staining technique.

    PubMed

    Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Honma, Satoru; Kaneko, Takeshi

    2014-11-01

    Ten years have passed since a serial block-face scanning electron microscopy (SBF-SEM) method was developed [1]. In this innovative method, samples were automatically sectioned with an ultramicrotome placed inside a scanning electron microscope column, and the block surfaces were imaged one after another by SEM to capture back-scattered electrons. The contrast-inverted images obtained by the SBF-SEM were very similar to those acquired using conventional TEM. SFB-SEM has made easy to acquire image stacks of the transmission electron microscopy (TEM) in the mesoscale, which is taken with the confocal laser-scanning microcopy(CF-LSM).Furthermore, serial-section SEM has been combined with the focused ion beam (FIB) milling method [2]. FIB-incorporated SEM (FIB-SEM) has enabled the acquisition of three-dimensional images with a higher z-axis resolution com- pared to ultramicrotome-equipped SEM.We tried immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in CF-LSM. Dendrites of neurons in the rat neostriatum were visualized using a recombinant viral vector. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively.We showed that conventional immuno-cytochemical staining for TEM was applicable to FIB-SEM. Furthermore, several synaptic contacts, which were thought to exist on the basis of CF-LSM findings, were confirmed with FIB-SEM, revealing the usefulness of the combined method of CF-LSM and FIB-SEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. A novel biometric X-ray backscatter inspection of dangerous materials based on a lobster-eye objective

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wang, Xin; Mu, Baozhong; Zhan, Qi; Xie, Qing; Li, Yaran; Chen, Yifan; He, Yanan

    2016-10-01

    In order to counter drug-related crimes effectively, and to safeguard homeland security as well as public safety, it is important to inspect drugs, explosives and other contraband quickly and accurately from the express mail system, luggage, vehicles and other objects. In this paper, we discuss X-ray backscatter inspection system based on a novel lobster-eye X-ray objective, which is an effective inspection technology for drugs, explosives and other contraband inspection. Low atomic number materials, such as drugs and explosives, leads to strong Compton scattering after irradiated by X-ray, which is much stronger than high atomic number material, such as common metals, etc. By detecting the intensity of scattering signals, it is possible to distinguish between organics and inorganics. The lobster-eye X-ray optical system imitates the reflective eyes of lobsters, which field of view can be made as large as desired and it is practical to achieve spatial resolution of several millimeters for finite distance detection. A novel lobster-eye X-ray objective is designed based on modifying Schmidt geometry by using multi-lens structure, so as to reduce the difference of resolution between the horizontal and vertical directions. The demonstration experiments of X-ray backscattering imaging were carried out. A suitcase, a wooden box and a tire with several typical samples hidden in them were imaged by the X-ray backscattering inspection system based on a lobster-eye X-ray objective. The results show that this X-ray backscattering inspection system can get a resolution of less than five millimeters under the FOV of more than two hundred millimeters with 0.5 meter object distance, which can still be improved.

  1. Focused Ion Beam (FIB) combined with SEM (FIB/SEM) and TEM: Advanced tools for nano-analysis in Geosciences

    NASA Astrophysics Data System (ADS)

    Wirth, R.; Morales, L. G.

    2011-12-01

    Focused ion beam (FIB) techniques have been successfully applied to the preparation of site-specific electron transparent membranes for transmission electron microscopy (TEM) investigations in Geosciences since several years. For example, systematic TEM studies of nano-inclusions in diamond foils prepared with FIB have improved our knowledge on diamond formation. However, FIB is not exclusively used for sample preparation for TEM application because it has been proved that one and the same TEM foil can also be used for Synchrotron IR, Synchrotron X-Ray fluorescence (XRF), scanning transmission X-Ray microscopy (STXM) and NanoSIMS analysis. In addition, FIB milling turned out to be very useful for sample preparation of Brillouin scattering experiments and has a strong potential for preparation of highly-polished, micrometer-scale samples. However, a real break through in FIB application was achieved combining a Ga-ion source of the FIB with an electron source of a scanning electron microscope (SEM) in one single instrument. The combination of FIB/SEM renders access to the third dimension of the sample possible. A cavity normal to the sample surface is sputtered with Ga-ions and this newly created inner surface is imaged with the electron beam. Alternating slicing and viewing along these cavities allow the acquisition of a sequence of images that allows the observation in 3 dimensions. Recently, this technique has been successfully applied to image the structure of grain or phase boundaries in metamorphic rocks as well as micro- and nanoporosity in shales, but its applicability goes far beyond these few examples. Combining slicing and viewing with X-Ray and electron backscatter diffraction (EBSD) analysis can provide 3D elemental mapping and 3D crystallographic orientation mapping of crystalline materials. Combined FIB/SEM devices also facilitate the preparation of substantially thinner and cleaner TEM foils (approximately 30 nm) because electron beam imaging controls the progress of the sputtering process without sputtering the sample during imaging. Electron induce sputtering is substantially smaller than ion induced sputtering. Finally, the amorphous layers created by Ga-ion sputtering and Ga-ion implantation can be removed from the foil surfaces by subsequent argon ion bombardment under a low angle of incidence and low acceleration voltage thus permitting TEM high-resolution imaging and electron energy-loss spectroscopy (EELS). Additionally, ultra-thin foils have the advantage that they are electron transparent even at 30 keV, the common operational voltage of a SEM. Therefore the electron column of the FIB/SEM system can be used as a TEM at low voltage and images can be made either in bright-field, dark field and through a high-angle annular dark field (HAADF) detector. The HAADF detector provides information about the chemical composition of the specimen with high spatial resolution because it is Z-contrast sensitive.

  2. A sensitive, selective, and portable detector for contraband: The compact integrated narcotics detection instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuemer, T.O.; Doan, L.; Su, C.W.

    2000-07-01

    A Compact Integrated Narcotics Detection Instrument (CINDI) has been developed at NOVA R and D, Inc., in cooperation with the US Coast Guard. This detector utilizes neutrons emitted from {sup 252}Cf. Neutrons emitted from the front face of CINDI penetrate dense compartment barrier materials with little change in energy but are backscattered by hydrogen-rich materials such as drugs. The backscattered neutrons are detected, and the rate is displayed by a microprocessor-controller integrated into CINDI. The operator guides the detector along a suspected area and receives immediate feedback from the state-of-the-art electronics. For user safety, the device incorporates a highly sensitivemore » detection scheme to permit the use of a very weak radioactive source, without compromising detectability. CINDI is capable of detecting narcotics effectively behind panels made of steel, wood, fiberglass, or even lead-lined materials. This makes it useful for inspecting marine vessels, ship bulkheads, automobiles, structure walls, or small sealed containers. Figure 2 shows three views of the CINDI instrument. CINDI responds strongly to hydrogen-rich materials such as narcotics. It has been tested at NOVA, the US Coast Guard, and Brewt Power Systems. The results of the tests show excellent response and specificity to narcotics. CINDI has led to a new technology that shows promise for identifying the concealed contraband. The new technique uses a fusion of two independent but complementary signals for detecting and possibly identifying concealed drugs in a variety of carriers such as vehicles, marine vessels, airplanes, containers, cargo, and luggage. The carriers will be scanned using both neutron and gamma-ray sources. The signal from both the neutron and gamma-ray backscattering and/or transmission can be used simultaneously to detect and possibly identify the contrabands it has been trained for. A system that can produce three-dimensional images for both signals may also be developed. The two images may be combined and analyzed by a fast host computer to detect concealed contraband. The two independent signatures when analyzed simultaneously may help determine the type of concealed contraband.« less

  3. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  4. Backscatter Analysis Using Multi-Temporal SENTINEL-1 SAR Data for Crop Growth of Maize in Konya Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Abdikan, S.; Sekertekin, A.; Ustunern, M.; Balik Sanli, F.; Nasirzadehdizaji, R.

    2018-04-01

    Temporal monitoring of crop types is essential for the sustainable management of agricultural activities on both national and global levels. As a practical and efficient tool, remote sensing is widely used in such applications. In this study, Sentinel-1 Synthetic Aperture Radar (SAR) imagery was utilized to investigate the performance of the sensor backscatter image on crop monitoring. Multi-temporal C-band VV and VH polarized SAR images were acquired simultaneously by in-situ measurements which was conducted at Konya basin, central Anatolia Turkey. During the measurements, plant height of maize plant was collected and relationship between backscatter values and plant height was analysed. The maize growth development was described under Biologische Bundesanstalt, bundessortenamt und CHemische industrie (BBCH). Under BBCH stages, the test site was classified as leaf development, stem elongation, heading and flowering in general. The correlation coefficient values indicated high correlation for both polarimetry during the early stages of the plant, while late stages indicated lower values in both polarimetry. As a last step, multi-temporal coverage of crop fields was analysed to map seasonal land use. To this aim, object based image classification was applied following image segmentation. About 80 % accuracies of land use maps were created in this experiment. As preliminary results, it is concluded that Sentinel-1 data provides beneficial information about plant growth. Dual-polarized Sentinel-1 data has high potential for multi-temporal analyses for agriculture monitoring and reliable mapping.

  5. Characterizing the temporal variability of L-band backscatter using dense UAVSAR time-series in preparation for the NISAR mission

    NASA Astrophysics Data System (ADS)

    Lavalle, M.; Lee, A.; Shiroma, G. X. H.; Rosen, P. A.

    2017-12-01

    The NASA-ISRO SAR (NISAR) mission will deliver unprecedented global maps of L-band HH/HV backscatter every 12 days with resolution ranging from a few to tens of meters in support of ecosystem, solid Earth and cryosphere science and applications. Understanding and modeling the temporal variability of L-band backscatter over temporal scales of years, months and days is critical for developing retrieval algorithms that can robustly extract the biophysical variables of interest (e.g., forest biomass, soil moisture, etc.) from NISAR time series. In this talk, we will focus on the 5-year time series of 60 JPL/UAVSAR polarimetric images collected near the Sacramento Delta to characterize the inter-annual, seasonal and short-scale variability of the L-band polarimetric backscatter for a broad range of land cover types. Our preliminary analysis reveals that backscatter from man-made structures is very stable over time, whereas backscatter from bare soil and herbaceous vegetation fluctuates over time with standard deviation of 2.3 dB. Land-cover classes with larger biomass such as trees and tall vegetation show about 1.5 dB standard deviation in temporal backscatter variability. Closer examination of high-spatial resolution UAVSAR imagery reveal also that vegetation structure, speckle noise and horizontal forest heterogeneity in the Sacramento Delta area can significantly affect the point-wise backscatter value. In our talk, we will illustrate the long UAVSAR time series, describe our data analysis strategy, show the results of polarimetric variability for different land cover classes and number of looks, and discuss the implications for the development of NISAR L2/L3 retrieval algorithms of ecosystem science.

  6. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Influence of the Rayleigh backscattering on the mode composition of radiation in multimode graded-index waveguides with a quadratic refractive-index profile

    NASA Astrophysics Data System (ADS)

    Esayan, G. L.; Krivoshlykov, S. G.

    1989-08-01

    A method of coherent states is used to describe the process of Rayleigh scattering in a multimode graded-index waveguide with a quadratic refractive-index profile. Explicit expressions are obtained for the coefficients representing excitation of Gaussian-Hermite backscattering modes in two cases of practical importance: excitation of a waveguide by an extended noncoherent light source and selective excitation of different modes at the entry to a waveguide. An analysis is also made of the coefficients of coupling between forward and backward modes. Explicit expressions for the coefficients representing capture of backscattered radiation by a waveguide are obtained for two special cases of excitation (extended light source and zeroth mode).

  7. Characteristics of biogenic calcite in the prismatic layer of a pearl oyster, Pinctada fucata.

    PubMed

    Okumura, Taiga; Suzuki, Michio; Nagasawa, Hiromichi; Kogure, Toshihiro

    2010-10-01

    The fine structure of the calcite prism in the outer layer of a pearl oyster, Pinctada fucata, has been investigated using various electron beam techniques, in order to understand its characteristics and growth mechanism including the role of intracrystalline organic substances. As the calcite prismatic layer grows thicker, sinuous boundaries develop to divide the prism into a number of domains. The crystal misorientation between the adjacent domains is several to more than ten degrees. The component of the misorientation is mainly the rotation about the c-axis. There is no continuous organic membrane at the boundaries. Furthermore, the crystal orientation inside the domains changes gradually, as indicated by the electron back-scattered diffraction (EBSD) in a scanning electron microscope (SEM). Transmission electron microscopy (TEM) examination revealed that the domain consists of sub-grains of a few hundred nanometers divided by small-angle grain boundaries, which are probably the origin of the gradual change of the crystal orientation inside the domains. Spherular Fresnel contrasts were often observed at the small-angle grain boundaries, in defocused TEM images. Electron energy-loss spectroscopy (EELS) indicated the spherules are organic macromolecules, suggesting that incorporation of organic macromolecules during the crystal growth forms the sub-grain structure of the calcite prism.

  8. Growth process optimization of ZnO thin film using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao

    2016-12-01

    The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.

  9. Photoluminescence and thermoluminescence properties of BaGa2O4

    NASA Astrophysics Data System (ADS)

    Noto, L. L.; Poelman, D.; Orante-Barrón, V. R.; Swart, H. C.; Mathevula, L. E.; Nyenge, R.; Chithambo, M.; Mothudi, B. M.; Dhlamini, M. S.

    2018-04-01

    Rare-Earth free luminescent materials are fast becoming important as the cost of rare earth ions gradually increases. In this work, a Rare-Earth free BaGa2O4 luminescent compound was prepared by solid state chemical reaction, which was confirmed to have a single phase by X-ray Diffraction. The Backscattered Electron image and Energy Dispersive X-ray spectroscopy maps confirmed irregular particle and homogeneous compound formation, respectively. The Photoluminescence spectrum displayed broad emission between 350 to 650 nm, which was deconvoluted into two components. The photoluminescence excitation peak was positioned at 254 nm, which corresponds with the band-to-band position observed from the diffuse reflectance spectrum. The band gap was extrapolated to 4.65 ± 0.02 eV using the Kubelka-Munk model. The preliminary thermoluminescence results indicated that the kinetics involved were neither of first nor second order. Additionally, the activation energy of the electrons within the trap centres was approximated to 0.61 ± 0.01 eV using the Initial Rise model.

  10. Self-assembled growth of MnSi~1.7 nanowires with a single orientation and a large aspect ratio on Si(110) surfaces

    PubMed Central

    2013-01-01

    MnSi~1.7 nanowires (NWs) with a single orientation and a large aspect ratio have been formed on a Si(110) surface with the molecular beam epitaxy method by a delicate control of growth parameters, such as temperature, deposition rate, and deposition time. Scanning tunneling microscopy (STM) was employed to study the influence of these parameters on the growth of NWs. The supply of free Si atoms per unit time during the silicide reaction plays a critical role in the growth kinetics of the NWs. High growth temperature and low deposition rate are favorable for the formation of NWs with a large aspect ratio. The orientation relationship between the NWs and the reconstruction rows of the Si(110) surface suggests that the NWs grow along the 11¯0 direction of the silicon substrate. High-resolution STM and backscattered electron scanning electron microscopy images indicate that the NWs are composed of MnSi~1.7. PMID:23339353

  11. Forward ultrasonic model validation using wavefield imaging methods

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.

    2018-04-01

    The validation of forward ultrasonic wave propagation models in a complex titanium polycrystalline material system is accomplished using wavefield imaging methods. An innovative measurement approach is described that permits the visualization and quantitative evaluation of bulk elastic wave propagation and scattering behaviors in the titanium material for a typical focused immersion ultrasound measurement process. Results are provided for the determination and direct comparison of the ultrasonic beam's focal properties, mode-converted shear wave position and angle, and scattering and reflection from millimeter-sized microtexture regions (MTRs) within the titanium material. The approach and results are important with respect to understanding the root-cause backscatter signal responses generated in aerospace engine materials, where model-assisted methods are being used to understand the probabilistic nature of the backscatter signal content. Wavefield imaging methods are shown to be an effective means for corroborating and validating important forward model predictions in a direct manner using time- and spatially-resolved displacement field amplitude measurements.

  12. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    DOEpatents

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  13. Ice Cloud Backscatter Study and Comparison with CALIPSO and MODIS Satellite Data

    NASA Technical Reports Server (NTRS)

    Ding, Jiachen; Yang, Ping; Holz, Robert E.; Platnick, Steven; Meyer, Kerry G.; Vaughan, Mark A.; Hu, Yongxiang; King, Michael D.

    2016-01-01

    An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6 percent and 9 percent for tropical and mid-latitude ice clouds, respectively.

  14. Measurements of ultrasonic backscattered spectral centroid shift from spine in vivo: methodology and preliminary results.

    PubMed

    Garra, Brian S; Locher, Melanie; Felker, Steven; Wear, Keith A

    2009-01-01

    Ultrasonic backscatter measurements from vertebral bodies (L3 and L4) in nine women were performed using a clinical ultrasonic imaging system. Measurements were made through the abdomen. The location of a vertebra was identified from the bright specular reflection from the vertebral anterior surface. Backscattered signals were gated to isolate signal emanating from the cancellous interiors of vertebrae. The spectral centroid shift of the backscattered signal, which has previously been shown to correlate highly with bone mineral density (BMD) in human calcaneus in vitro, was measured. BMD was also measured in the nine subjects' vertebrae using a clinical bone densitometer. The correlation coefficient between centroid shift and BMD was r = -0.61. The slope of the linear fit was -160 kHz / (g/cm(2)). The negative slope was expected because the attenuation coefficient (and therefore magnitude of the centroid downshift) is known from previous studies to increase with BMD. The centroid shift may be a useful parameter for characterizing bone in vivo.

  15. Ice Processes and Growth History on Arctic and Sub-Arctic Lakes Using ERS-1 SAR Data

    NASA Technical Reports Server (NTRS)

    Morris, K.; Jeffries, M. O.; Weeks, W. F.

    1995-01-01

    A survey of ice growth and decay processes on a selection of shallow and deep sub-Arctic and Arctic lakes was conducted using radiometrically calibrated ERS-1 SAR images. Time series of radar backscatter data were compiled for selected sites on the lakes during the period ot ice cover (September to June) for the years 1991-1992 and 1992-1993. A variety of lake-ice processes could be observed, and significant changes in backscatter occurred from the time of initial ice formation in autumn until the onset of the spring thaw. Backscatter also varied according to the location and depth of the lakes. The spatial and temporal changes in backscatter were most constant and predictable at the shallow lakes on the North Slope of Alaska. As a consequence, they represent the most promising sites for long-term monitoring and the detection of changes related to global warming and its effects on the polar regions.

  16. Lidar using the backscatter amplification effect

    NASA Astrophysics Data System (ADS)

    Razenkov, Igor A.; Banakh, Victor A.

    2018-04-01

    Experimental data proving the possibility of lidar measurement of the refractive turbulence strength based on the effect of backscatter amplification (BSA) are reported. It is shown that the values of the amplification factor correlate with the variance of random jitter of optical image of an incoherent light source depending on the value of the structure constant of the air refractive index turbulent fluctuations averaged over the probing path. This paper presents the results of measurements of the BSA factor in comparison with the simultaneous measurements of the BSA peak, which is very narrow and only occurs on the laser beam axis. It is constructed the range-time images of the derivative of the amplification factor gives a comprehensive picture of the location of turbulent zones and their temporal dynamics.

  17. Classification of biological micro-objects using optical coherence tomography: in silico study

    PubMed Central

    Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter RT

    2017-01-01

    We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system’s objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results. PMID:28856039

  18. Classification of biological micro-objects using optical coherence tomography: in silico study.

    PubMed

    Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter Rt

    2017-08-01

    We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system's objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results.

  19. Characterization of twin boundaries in an Fe–17.5Mn–0.56C twinning induced plasticity steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Erin E., E-mail: erin.diedrich@yahoo.com; Field, David P., E-mail: dfield@wsu.edu; Zhang, Yudong, E-mail: yudong.zhang@univ-metz.fr

    2013-11-15

    A twinning-induced plasticity steel of composition Fe–17.5 wt.% Mn–0.56 wt.% C–1.39 wt.% Al–0.24 wt.% Si was analyzed for the purpose of characterizing the relationship between tensile strain and deformation twinning. Tensile samples achieved a maximum of 0.46 true strain at failure, and a maximum ultimate tensile strength of 1599 MPa. Electron backscatter diffraction (EBSD) analysis showed that the grain orientation rotated heavily to < 111 > parallel to the tensile axis above 0.3 true strain. Sigma 3 misorientations, as identified by EBSD orientation measurements, and using the image quality maps were used to quantify the number of twins present inmore » the scanned areas of the samples. The image quality method yielded a distinct positive correlation between the twin area density and deformation, but the orientation measurements were unreliable in quantifying twin density in these structures. Quantitative analysis of the twin fraction is limited from orientation information because of the poor spatial resolution of EBSD in relation to the twin thickness. The EBSD orientation maps created for a thin foil sample showed some improvement in the resolution of the twins, but not enough to be significant. Measurements of the twins in the transmission electron microscopy micrographs yielded an average thickness of 23 nm, which is near the resolution capabilities of EBSD on this material for the instrumentation used. Electron channeling contrast imaging performed on one bulk tensile specimen of 0.34 true strain, using a method of controlled diffraction, yielded several images of twinning, dislocation structures and strain fields. A twin thickness of 66 nm was measured by the same method used for the transmission electron microscopy measurement. It is apparent that the results obtain by electron channeling contrast imaging were better than those by EBSD but did not capture all information on the twin boundaries such as was observed by transmission electron microscopy. - Highlights: • Performed tensile tests to assess mechanical performance of TWIP alloy • Analyzed tensile specimens using EBSD, TEM, and ECCI • EBSD showed that most twinning occurred at or near the < 111 >//TA orientation. • EBSD, TEM and ECCI were used to measure average twin density. • Compared spatial resolution of EBSD, ECCI and TEM for the instrumentation used.« less

  20. Polarimetry of uncoupled light on the NIF.

    PubMed

    Turnbull, D; Moody, J D; Michel, P; Ralph, J E; Divol, L

    2014-11-01

    Polarimetry has been added to the full aperture backscatter diagnostic on the NIF. Wollaston prisms are used to sample a small region of a beam's backscatter, effectively separating it into two linear polarizations, one of which is parallel to the incident beam. A time-averaged measurement of each polarization is obtained by imaging the separated spots off of a scatter plate. Results have improved understanding of crossed beam energy transfer, glint, and sidescatter, and motivated plans to upgrade to a time-resolved polarimeter measuring the full Stokes vector.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinteck, N., E-mail: swinteck@email.arizona.edu; Matsuo, S.; Runge, K.

    Recent progress in electronic and electromagnetic topological insulators has led to the demonstration of one way propagation of electron and photon edge states and the possibility of immunity to backscattering by edge defects. Unfortunately, such topologically protected propagation of waves in the bulk of a material has not been observed. We show, in the case of sound/elastic waves, that bulk waves with unidirectional backscattering-immune topological states can be observed in a time-dependent elastic superlattice. The superlattice is realized via spatial and temporal modulation of the stiffness of an elastic material. Bulk elastic waves in this superlattice are supported by amore » manifold in momentum space with the topology of a single twist Möbius strip. Our results demonstrate the possibility of attaining one way transport and immunity to scattering of bulk elastic waves.« less

  2. Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas.

    PubMed

    Froula, D H; Divol, L; Meezan, N B; Dixit, S; Moody, J D; Neumayer, P; Pollock, B B; Ross, J S; Glenzer, S H

    2007-02-23

    We demonstrate that a blue (3omega, 351 nm) laser beam with an intensity of 2 x 10(15) W cm(-2) propagates nearly within the original beam cone through a millimeter scale, T(e)=3.5 keV high density (n(e)=5 x 10(20) cm(-3)) plasma. The beam produced less than 1% total backscatter at these high temperatures and densities; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.

  3. Electron-cloud updated simulation results for the PSR, and recent results for the SNS

    NASA Astrophysics Data System (ADS)

    Pivi, M.; Furman, M. A.

    2002-05-01

    Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code.

  4. X-ray backscatter radiography with lower open fraction coded masks

    NASA Astrophysics Data System (ADS)

    Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David

    2017-09-01

    Single sided radiographic imaging would find great utility for medical, aerospace and security applications. While coded apertures can be used to form such an image from backscattered X-rays they suffer from near field limitations that introduce noise. Several theoretical studies have indicated that for an extended source the images signal to noise ratio may be optimised by using a low open fraction (<0.5) mask. However, few experimental results have been published for such low open fraction patterns and details of their formulation are often unavailable or are ambiguous. In this paper we address this process for two types of low open fraction mask, the dilute URA and the Singer set array. For the dilute URA the procedure for producing multiple 2D array patterns from given 1D binary sequences (Barker codes) is explained. Their point spread functions are calculated and their imaging properties are critically reviewed. These results are then compared to those from the Singer set and experimental exposures are presented for both type of pattern; their prospects for near field imaging are discussed.

  5. Mechanical Energy Propagation and Backscattering in Nominally Dry Soil: Imaging Buried Land Mines

    NASA Astrophysics Data System (ADS)

    Sen, Surajit

    2003-04-01

    The imaging of shallow buried objects in a complex medium, e.g., nominally dry sand, is an outstanding challenge. Such imaging is of relevance in connection with the detection and subsequent imaging of buried non-metallic anti-personnel land mines and in other applications. It has been shown that gentle mechanical impulses and low frequency sound waves with frequencies roughly between 150-350 Hz or so can penetrate distances of up to a foot in sand. Hence, such signals can potentially be useful in the detection and perhaps in the imaging of shallow buried objects. It is presently unclear whether high frequency signals can be effectively used to image shallow buried objects. Impulses can typically penetrate larger distances into sand and soil. Both impulses and continuous sound waves can be used for imaging shallow buried objects. The talk shall briefly review the state-of-the-art in low frequency sound propagation in soil and shall discuss the current understanding of impulse propagation and backscattering in nominally dry sand beds. It will be argued that impulse based imaging may have the potential to be a simple and fast way to detect and image small non-metallic mines. Research supported by the National Science Foundation Grant No. NSF-CMS 0070055.

  6. Backscattered Diffraction | Materials Science | NREL

    Science.gov Websites

    crystalline orientation (left) and grain distribution (right). EBSD images showing properties of crystalline investigate misorientation between grain boundaries, texture, grain distribution, deformation, strain, and

  7. Investigation of Optical Cavity Modes and Ultrafast Carrier Dynamics in Zinc Oxide Rods Using Second-Harmonic Generation and Transient Absorption Pump-Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Mehl, Brian Peter

    The polydispersity intrinsic to nanoscale and microscale semiconductor materials poses a major challenge to using individual objects as building blocks for device applications. The ability to manipulate the shape of ZnO structures is enormous, making it an ideal material for studying shape-dependent phenomena. We have built a nonlinear microscope used to directly image optical cavity modes in ZnO rods using second-harmonic generation. Images of second-harmonic generation in needle-shaped ZnO rods obtained from individual structures show areas of enhanced second-harmonic intensity along the longitudinal axis of the rod that are periodically distributed and symmetrically situated relative to the rod midpoint. The spatial modulation is a direct consequence of the fundamental optical field coupling into standing wave resonator modes of the ZnO structure, leading to an enhanced backscattered second-harmonic condition that cannot be achieved in bulk ZnO. A more complicated second-harmonic image is observed when excitation is below the band gap, which is attributed to whispering gallery modes. Additionally, the nonlinear microscope was combined with transient absorption pump-probe to follow the electron-hole recombination dynamics at different points within individual needle-shaped ZnO rods to characterize spatial differences in dynamical behavior. The results from pump-probe experiments are correlated with spatially resolved ultrafast emission measurements, and scanning electron microscopy provides structural details. Dramatically different electron-hole recombination dynamics are observed in the narrow tips compared to the interior, with the ends exhibiting a greater propensity for electron-hole plasma formation and faster recombination of carriers across the band gap that stem from a physical confinement of the charge carriers. In the interior of the rod, a greater fraction of the electron-hole recombination is trap-mediated and occurs on a significantly longer time scale.

  8. Identifying Planar Deformation Features Using EBSD and FIB

    NASA Astrophysics Data System (ADS)

    Pickersgill, A. E.; Lee, M. R.

    2015-09-01

    Planar deformation features in quartz grains from the Gow Lake impact structure have been successfully identified and indexed using electron backscatter diffraction in combination with focused ion beam milling.

  9. Quantum transport in graphene Hall bars: Effects of side gates

    NASA Astrophysics Data System (ADS)

    Petrović, M. D.; Peeters, F. M.

    2017-05-01

    Quantum electron transport in side-gated graphene Hall bars is investigated in the presence of quantizing external magnetic fields. The asymmetric potential of four side-gates distorts the otherwise flat bands of the relativistic Landau levels, and creates new propagating states in the Landau spectrum (i.e. snake states). The existence of these new states leads to an interesting modification of the bend and Hall resistances, with new quantizing plateaus appearing in close proximity of the Landau levels. The electron guiding in this system can be understood by studying the current density profiles of the incoming and outgoing modes. From the fact that guided electrons fully transmit without any backscattering (similarly to edge states), we are able to analytically predict the values of the quantized resistances, and they match the resistance data we obtain with our numerical (tight-binding) method. These insights in the electron guiding will be useful in predicting the resistances for other side-gate configurations, and possibly in other system geometries, as long as there is no backscattering of the guided states.

  10. Radar images analysis for scattering surfaces characterization

    NASA Astrophysics Data System (ADS)

    Piazza, Enrico

    1998-10-01

    According to the different problems and techniques related to the detection and recognition of airplanes and vehicles moving on the Airport surface, the present work mainly deals with the processing of images gathered by a high-resolution radar sensor. The radar images used to test the investigated algorithms are relative to sequence of images obtained in some field experiments carried out by the Electronic Engineering Department of the University of Florence. The radar is the Ka band radar operating in the'Leonardo da Vinci' Airport in Fiumicino (Rome). The images obtained from the radar scan converter are digitized and putted in x, y, (pixel) co- ordinates. For a correct matching of the images, these are corrected in true geometrical co-ordinates (meters) on the basis of fixed points on an airport map. Correlating the airplane 2-D multipoint template with actual radar images, the value of the signal in the points involved in the template can be extracted. Results for a lot of observation show a typical response for the main section of the fuselage and the wings. For the fuselage, the back-scattered echo is low at the prow, became larger near the center on the aircraft and than it decrease again toward the tail. For the wings the signal is growing with a pretty regular slope from the fuselage to the tips, where the signal is the strongest.

  11. Cavitation inception by the backscattering of pressure waves from a bubble interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble.more » The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.« less

  12. Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.

    PubMed

    Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H

    2008-02-01

    We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.

  13. Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene.

    PubMed

    Li, Jing; Wen, Hua; Watanabe, Kenji; Taniguchi, Takashi; Zhu, Jun

    2018-02-02

    The edge states of the quantum Hall and fractional quantum Hall effect of a two-dimensional electron gas carry key information of the bulk excitations. Here we demonstrate gate-controlled transmission of edge states in bilayer graphene through a potential barrier with tunable height. The backscattering rate is continuously varied from 0 to close to 1, with fractional quantized values corresponding to the sequential complete backscattering of individual modes. Our experiments demonstrate the feasibility to controllably manipulate edge states in bilayer graphene, thus opening the door to more complex experiments.

  14. Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wen, Hua; Watanabe, Kenji; Taniguchi, Takashi; Zhu, Jun

    2018-02-01

    The edge states of the quantum Hall and fractional quantum Hall effect of a two-dimensional electron gas carry key information of the bulk excitations. Here we demonstrate gate-controlled transmission of edge states in bilayer graphene through a potential barrier with tunable height. The backscattering rate is continuously varied from 0 to close to 1, with fractional quantized values corresponding to the sequential complete backscattering of individual modes. Our experiments demonstrate the feasibility to controllably manipulate edge states in bilayer graphene, thus opening the door to more complex experiments.

  15. A colinear backscattering Mueller matrix microscope for reflection Muller matrix imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Yao, Yue; Zhu, Yuanhuan; Ma, Hui

    2018-02-01

    In a recent attempt, we developed a colinear backscattering Mueller matrix microscope by adding polarization state generator (PSG) and polarization state analyzer (PSA) into the illumination and detection optical paths of a commercial metallurgical microscope. It is found that specific efforts have to be made to reduce the artifacts due to the intrinsic residual polarizations of the optical system, particularly the dichroism due to the 45 degrees beam splitter. In this paper, we present a new calibration method based on numerical reconstruction of the instrument matrix to remove the artifacts introduced by beam splitter. Preliminary tests using a mirror as a standard sample show that the maximum Muller matrix element error of the colinear backscattering Muller matrix microscope can be reduced to a few percent.

  16. Method and apparatus for shadow aperture backscatter radiography (SABR) system and protocol

    NASA Technical Reports Server (NTRS)

    Shedlock, Daniel (Inventor); Jacobs, Alan M. (Inventor); Jacobs, Sharon Auerback (Inventor); Dugan, Edward (Inventor)

    2010-01-01

    A shadow aperture backscatter radiography (SABR) system includes at least one penetrating radiation source for providing a penetrating radiation field, and at least one partially transmissive radiation detector, wherein the partially transmissive radiation detector is interposed between an object region to be interrogated and the radiation source. The partially transmissive radiation detector transmits a portion of the illumination radiation field. A shadow aperture having a plurality of radiation attenuating regions having apertures therebetween is disposed between the radiation source and the detector. The apertures provide illumination regions for the illumination radiation field to reach the object region, wherein backscattered radiation from the object is detected and generates an image by the detector in regions of the detector that are shadowed by the radiation attenuation regions.

  17. Solving next generation (1x node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxiao; Snow, Patrick W.; Vaid, Alok; Solecky, Eric; Zhou, Hua; Ge, Zhenhua; Yasharzade, Shay; Shoval, Ori; Adan, Ofer; Schwarzband, Ishai; Bar-Zvi, Maayan

    2015-03-01

    Traditional metrology solutions are facing a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. Hybrid metrology offers promising new capabilities to address some of these challenges but it will take some time before fully realized. This paper explores new capabilities currently offered on the in-line Critical Dimension Scanning Electron Microscope (CD-SEM) to address these challenges and enable the CD-SEM to move beyond measuring bottom CD using top down imaging. Device performance is strongly correlated with Fin geometry causing an urgent need for 3D measurements. New beam tilting capabilities enhance the ability to make 3D measurements in the front-end-of-line (FEOL) of the metal gate FinFET process in manufacturing. We explore these new capabilities for measuring Fin height and build upon the work communicated last year at SPIE1. Furthermore, we extend the application of the tilt beam to the back-end-of-line (BEOL) trench depth measurement and demonstrate its capability in production targeting replacement of the existing Atomic Force Microscope (AFM) measurements by including the height measurement in the existing CDSEM recipe to reduce fab cycle time. In the BEOL, another increasingly challenging measurement for the traditional CD-SEM is the bottom CD of the self-aligned via (SAV) in a trench first via last (TFVL) process. Due to the extremely high aspect ratio of the structure secondary electron (SE) collection from the via bottom is significantly reduced requiring the use of backscatter electrons (BSE) to increase the relevant image quality. Even with this solution, the resulting images are difficult to measure with advanced technology nodes. We explore new methods to increase measurement robustness and combine this with novel segmentation-based measurement algorithm generated specifically for BSE images. The results will be contrasted with data from previously used methods to quantify the improvement. We also compare the results to electrical test data to evaluate and quantify the measurement performance improvements. Lastly, according to International Technology Roadmap for Semiconductors (ITRS) from 2013, the overlay 3 sigma requirement will be 3.3 nm in 2015 and 2.9 nm in 2016. Advanced lithography requires overlay measurement in die on features resembling the device geometry. However, current optical overlay measurement is performed in the scribe line on large targets due to optical diffraction limit. In some cases, this limits the usefulness of the measurement since it does not represent the true behavior of the device. We explore using high voltage imaging to help address this urgent need. Novel CD-SEM based overlay targets that optimize the restrictions of process geometry and SEM technique were designed and spread out across the die. Measurements are done on these new targets both after photolithography and etch. Correlation is drawn between the two measurements. These results will also be compared to conventional optical overlay measurement approaches and we will discuss the possibility of using this capability in high volume manufacturing.

  18. Multiple incidence angle SIR-B experiment over Argentina

    NASA Technical Reports Server (NTRS)

    Cimino, Jobea; Casey, Daren; Wall, Stephen; Brandani, Aldo; Domik, Gitta; Leberl, Franz

    1986-01-01

    The Shuttle Imaging Radar (SIR-B), the second synthetic aperture radar (SAR) to fly aboard a shuttle, was launched on October 5, 1984. One of the primary goals of the SIR-B experiment was to use multiple incidence angle radar images to distinguish different terrain types through the use of their characteristic backscatter curves. This goal was accomplished in several locations including the Chubut Province of southern Argentina. Four descending image acquisitions were collected providing a multiple incidence angle image set. The data were first used to assess stereo-radargrammetric techniques. A digital elevation model was produced using the optimum pair of multiple incidence angle images. This model was then used to determine the local incidence angle of each picture element to generate curves of relative brightness vs. incidence angle. Secondary image products were also generated using the multi-angle data. The results of this work indicate that: (1) various forest species and various structures of a single species may be discriminated using multiple incidence angle radar imagery, and (2) it is essential to consider the variation in backscatter due to a variable incidence angle when analyzing and comparing data collected at varying frequencies and polarizations.

  19. An Adaptive Ship Detection Algorithm for Hrws SAR Images Under Complex Background: Application to SENTINEL1A Data

    NASA Astrophysics Data System (ADS)

    He, G.; Xia, Z.; Chen, H.; Li, K.; Zhao, Z.; Guo, Y.; Feng, P.

    2018-04-01

    Real-time ship detection using synthetic aperture radar (SAR) plays a vital role in disaster emergency and marine security. Especially the high resolution and wide swath (HRWS) SAR images, provides the advantages of high resolution and wide swath synchronously, significantly promotes the wide area ocean surveillance performance. In this study, a novel method is developed for ship target detection by using the HRWS SAR images. Firstly, an adaptive sliding window is developed to propose the suspected ship target areas, based upon the analysis of SAR backscattering intensity images. Then, backscattering intensity and texture features extracted from the training samples of manually selected ship and non-ship slice images, are used to train a support vector machine (SVM) to classify the proposed ship slice images. The approach is verified by using the Sentinl1A data working in interferometric wide swath mode. The results demonstrate the improvement performance of the proposed method over the constant false alarm rate (CFAR) method, where the classification accuracy improved from 88.5 % to 96.4 % and the false alarm rate mitigated from 11.5 % to 3.6 % compared with CFAR respectively.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macente, A.; Fusseis, F.; Menegon, L.

    Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono-metamorphic processes, however they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron-based X-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets withmore » increasing strain. Our microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X-ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low strain domain, garnets form a well interconnected large garnet aggregate that develops throughout the entire Page 1 of 52 sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet show a near-random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo-nucleation and overgrowth. Microprobe chemical analysis revealed that garnet compositions progressively equilibrate to eclogite facies, becoming more almandine-rich. We interpret these observations as pointing to a mechanical disintegration of the garnet coronas during strain localisation, and their rearrangement into individual garnet clusters through a combination of garnet coalescence and overgrowth while the rock was deforming.« less

  1. High-frequency ultrasound for monitoring changes in liver tissue during preservation

    NASA Astrophysics Data System (ADS)

    Vlad, Roxana M.; Czarnota, Gregory J.; Giles, Anoja; Sherar, Michael D.; Hunt, John W.; Kolios, Michael C.

    2005-01-01

    Currently the only method to assess liver preservation injury is based on liver appearance and donor medical history. Previous work has shown that high-frequency ultrasound could detect ischemic cell death due to changes in cell morphology. In this study, we use high-frequency ultrasound integrated backscatter to assess liver damage in experimental models of liver ischemia. Ultimately, our goal is to predict organ suitability for transplantation using high-frequency imaging and spectral analysis techniques. To examine the effects of liver ischemia at different temperatures, livers from Wistar rats were surgically excised, immersed in phosphate buffer saline and stored at 4 and 20 °C for 24 h. To mimic organ preservation, livers were excised, flushed with University of Wisconsin (UW) solution and stored at 4 °C for 24 h. Preservation injury was simulated by either not flushing livers with UW solution or, before scanning, allowing livers to reach room temperature. Ultrasound images and corresponding radiofrequency data were collected over the ischemic period. No significant increase in integrated backscatter (~2.5 dBr) was measured for the livers prepared using standard preservation conditions. For all other ischemia models, the integrated backscatter increased by 4-9 dBr demonstrating kinetics dependent on storage conditions. The results provide a possible framework for using high-frequency imaging to non-invasively assess liver preservation injury.

  2. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems.

    PubMed

    Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A

    2008-06-01

    Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

  3. Optimisation d'analyses de grenat almandin realisees au microscope electronique a balayage

    NASA Astrophysics Data System (ADS)

    Larose, Miguel

    The electron microprobe (EMP) is considered as the golden standard for the collection of precise and representative chemical composition of minerals in rocks, but data of similar quality should be obtainable with a scanning electron microscope (SEM). This thesis presents an analytical protocol aimed at optimizing operational parameters of an SEM paired with an EDS Si(Li) X-ray detector (JEOL JSM-840A) for the imaging, quantitative chemical analysis and compositional X-ray maps of almandine garnet found in pelitic schists from the Canadian Cordillera. Results are then compared to those obtained for the same samples on a JEOL JXA 8900 EMP. For imaging purposes, the secondary electrons and backscattered electrons signals have been used to obtain topographic and chemical contrast of the samples, respectively. The SEM allows the acquisition of images with higher resolution than the EMP when working at high magnifications. However, for millimetric size minerals requiring very low magnifications, the EMP can usually match the imaging capabilities of an SEM. When optimizing images for both signals, the optimal operational parameters to show similar contrasts are not restricted to a unique combination of values. Optimization of operational parameters for quantitative chemical analysis resulted in analytical data with a similar precision and showing good correlation to that obtained with an EMP. Optimization of operational parameters for compositional X-ray maps aimed at maximizing the collected intensity within a pixel as well as complying with the spatial resolution criterion in order to obtain a qualitative compositional map representative of the chemical variation within the grain. Even though various corrections were needed, such as the shadow effect and the background noise removal, as well as the impossibility to meet the spatial resolution criterion because of the limited pixel density available on the SEM, the compositional X-ray maps show a good correlation with those obtained with the EMP, even for concentrations as low as 0,5%. When paired with a rigorous analytical protocol, the use of an SEM equipped with an EDS Si (Li) X-ray detector allows the collection of qualitative and quantitative results similar to those obtained with an EMP for all three of the applications considered.

  4. Precipitation in a lead calcium tin anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Gonzalez, Francisco A., E-mail: fco.aurelio@inbox.com; Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon; Camurri, Carlos G., E-mail: ccamurri@udec.cl

    Samples from a hot rolled sheet of a tin and calcium bearing lead alloy were solution heat treated at 300 Degree-Sign C and cooled down to room temperature at different rates; these samples were left at room temperature to study natural precipitation of CaSn{sub 3} particles. The samples were aged for 45 days before analysing their microstructure, which was carried out in a scanning electron microscope using secondary and backscattered electron detectors. Selected X-ray spectra analyses were conducted to verify the nature of the precipitates. Images were taken at different magnifications in both modes of observation to locate the precipitatesmore » and record their position within the images and calculate the distance between them. Differential scanning calorimeter analyses were conducted on selected samples. It was found that the mechanical properties of the material correlate with the minimum average distance between precipitates, which is related to the average cooling rate from solution heat treatment. - Highlights: Black-Right-Pointing-Pointer The distance between precipitates in a lead alloy is recorded. Black-Right-Pointing-Pointer The relationship between the distance and the cooling rate is established. Black-Right-Pointing-Pointer It is found that the strengthening of the alloy depends on the distance between precipitates.« less

  5. Uptake of yeast (Saccharomyces boulardii) in normal and rotavirus treated intestine.

    PubMed Central

    Cartwright-Shamoon, J; Dickson, G R; Dodge, J; Carr, K E

    1996-01-01

    BACKGROUND: There has recently been a growing interest in the use of the non-pathogenic yeast Saccharomyces boulardii, in the treatment of gastrointestinal disorders, including diarrhoea. The full effects of administration of the yeast are not fully understood. AIMS: To investigate the morphological effects of inoculated S boulardii on mouse intestinal villi, both in control animals and those treated with rotavirus. METHODS: Seven day old BALB/c seronegative mice were intubated with either rotavirus (30 microliters orally) or S boulardii (1.5 g/kg) or both rotavirus and S boulardii administered together. Control animals were given saline only. Animals were killed by decapitation 48 hours post-treatment. The middle region of the small intestine was studied using light microscopy and transmission and scanning electron microscopy, including backscattered electron imaging. RESULTS: Animals treated with rotavirus with or without S boulardii developed severe diarrhoea and showed morphological villous changes such as stromal separation and increased epithelial vacuolation. Specimens treated with S boulardii contained yeast particles within the mucosal tissues. CONCLUSION: The administration of S boulardii did not influence the changes produced by rotavirus, but yeast particles appeared to be taken up by the villous mucosa, with the predominant route apparently being uptake between adjacent epithelial cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8991857

  6. Thick target bremsstrahlung spectra for 1.00-, 1.25-, and 1.40-Mev electrons

    USGS Publications Warehouse

    Miller, W.; Motz, J.W.; Cialella, C.

    1954-01-01

    The spectrum of radiation produced by 1.0-, 1.25-, and 1.40-Mev electrons incident on a thick tungsten target was measured at 0A????and 90A????with the incident beam by a method involving the magnetic analysis of Compton electrons. The effects of electron scattering and energy loss in the target preclude any simple interpretation of this data to yield a differential bremsstrahlung cross section. However, an estimate of the spectra to be expected at 0A????and 90A????was obtained by combining the Sauter expression for the bremsstrahlung cross section with the available information on electron scatter and energy loss in the target and backscatter from the target. The reliability of the estimate is limited because the Sauter formula was calculated by using the Born approximation, the electron scattering calculations are applicable to an infinite medium only, and the backscatter was estimated empirically from Bothe's experimental data which were obtained with lower energy electrons (370 kev). Furthermore electron energy straggling was neglected. Nevertheless, the predicted spectral shapes at 0A????and 90A????and the relative intensities at these two angles are in qualitative agreement with the measured values. The absolute magnitudes of the measured intensities at both angles are about a factor of two greater than the predicted values. ?? 1954 The American Physical Society.

  7. 75 MHz Ultrasound Biomicroscopy of Anterior Segment of Eye

    PubMed Central

    Silverman, Ronald H.; Cannata, Jonathan; Shung, K. Kirk; Gal, Omer; Patel, Monica; Lloyd, Harriet O.; Feleppa, Ernest J.; Coleman, D. Jackson

    2006-01-01

    Very high frequency ultrasound (35–50 MHz) has had a significant impact upon clinical imaging of the anterior segment of the eye, offering an axial resolution as small as 30 μm. Higher frequencies, while potentially offering even finer resolution, are more affected by absorption in ocular tissues and even in the fluid coupling medium. Our aim was to develop and apply improved transducer technology utilizing frequencies beyond those routinely used for ultrasound biomicroscopy of the eye. A 75-MHz lithium niobate transducer with 2 mm aperture and 6 mm focal length was fabricated. We scanned the ciliary body and cornea of a human eye six years post-LASIK. Spectral parameter images were produced from the midband fit to local calibrated power spectra. Images were compared with those produced using a 35 MHz lithium niobate transducer of similar fractional bandwidth and focal ratio. The 75-MHz transducer was found to have a fractional bandwidth (−6 dB) of 61%. Images of the post-LASIK cornea showed higher stromal backscatter at 75 MHz than at 35 MHz. The improved lateral resolution resulted in better visualization of discontinuities in Bowman’s layer, indicative of microfolds or breaks occurring at the time of surgery. The LASIK surface was evident as a discontinuity in stromal backscatter between the stromal component of the flap and the residual stroma. The iris and ciliary body were visualized despite attenuation by the overlying sclera. Very high frequency ultrasound imaging of the anterior segment of the eye has been restricted to the 35–50 MHz band for over a decade. We showed that higher frequencies can be used in vivo to image the cornea and anterior segment. This improvement in resolution and high sensitivity to backscatter from the corneal stroma will provide benefits in clinical diagnostic imaging of the anterior segment. PMID:17147058

  8. 78 FR 34990 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... living organisms, cellular constructs, viruses, bacteria, and single-celled organisms, as well as... samples, and back-scattered electron detection of colloidal gold particles. Experiments will also require...

  9. Backscattered Electron Microscopy as an Advanced Technique in Petrography.

    ERIC Educational Resources Information Center

    Krinsley, David Henry; Manley, Curtis Robert

    1989-01-01

    Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)

  10. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers

    NASA Astrophysics Data System (ADS)

    Kotthaus, Simone; O'Connor, Ewan; Münkel, Christoph; Charlton-Perez, Cristina; Haeffelin, Martial; Gabey, Andrew M.; Grimmond, C. Sue B.

    2016-08-01

    Ceilometer lidars are used for cloud base height detection, to probe aerosol layers in the atmosphere (e.g. detection of elevated layers of Saharan dust or volcanic ash), and to examine boundary layer dynamics. Sensor optics and acquisition algorithms can strongly influence the observed attenuated backscatter profiles; therefore, physical interpretation of the profiles requires careful application of corrections. This study addresses the widely deployed Vaisala CL31 ceilometer. Attenuated backscatter profiles are studied to evaluate the impact of both the hardware generation and firmware version. In response to this work and discussion within the CL31/TOPROF user community (TOPROF, European COST Action aiming to harmonise ground-based remote sensing networks across Europe), Vaisala released new firmware (versions 1.72 and 2.03) for the CL31 sensors. These firmware versions are tested against previous versions, showing that several artificial features introduced by the data processing have been removed. Hence, it is recommended to use this recent firmware for analysing attenuated backscatter profiles. To allow for consistent processing of historic data, correction procedures have been developed that account for artefacts detected in data collected with older firmware. Furthermore, a procedure is proposed to determine and account for the instrument-related background signal from electronic and optical components. This is necessary for using attenuated backscatter observations from any CL31 ceilometer. Recommendations are made for the processing of attenuated backscatter observed with Vaisala CL31 sensors, including the estimation of noise which is not provided in the standard CL31 output. After taking these aspects into account, attenuated backscatter profiles from Vaisala CL31 ceilometers are considered capable of providing valuable information for a range of applications including atmospheric boundary layer studies, detection of elevated aerosol layers, and model verification.

  11. Observation of auroral secondary electrons in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Mcnutt, Ralph L., Jr.; Bagenal, Fran; Thorne, Richard M.

    1990-01-01

    Localized enhancements in the flux of suprathermal electrons were observed by the Voyager 1 Plasma Science instrument near the outer boundary of the Io plasma torus between L = 7.5 and l = 10. This localization, which occurs within the general region of hot electrons noted by Sittler and Strobel (1987), and the spectral characteristics of the observed electrons are consistent with secondary (backscattered) electron production by intense Jovian auroral energetic particle precipitation and support the hypothesis that such electrons may contribute to the processes that heat the plasma in this region of the magnetosphere.

  12. Effect of quartz overgrowth precipitation on the multiscale porosity of sandstone: A (U)SANS and imaging analysis

    DOE PAGES

    Anovitz, Lawrence M.; Cole, David R.; Jackson, Andrew J.; ...

    2015-06-01

    We have performed a series of experiments to understand the effects of quartz overgrowths on nanometer to centimeter scale pore structures of sandstones. Blocks from two samples of St. Peter Sandstone with different initial porosities (5.8 and 18.3%) were reacted from 3 days to 7.5 months at 100 and 200 °C in aqueous solutions supersaturated with respect to quartz by reaction with amorphous silica. Porosity in the resultant samples was analyzed using small and ultrasmall angle neutron scattering and scanning electron microscope/backscattered electron (SEM/BSE)-based image-scale processing techniques.Significant changes were observed in the multiscale pore structures. By three days much ofmore » the overgrowth in the low-porosity sample dissolved away. The reason for this is uncertain, but the overgrowths can be clearly distinguished from the original core grains in the BSE images. At longer times the larger pores are observed to fill with plate-like precipitates. As with the unreacted sandstones, porosity is a step function of size. Grain boundaries are typically fractal, but no evidence of mass fractal or fuzzy interface behavior was observed suggesting a structural difference between chemical and clastic sediments. After the initial loss of the overgrowths, image scale porosity (>~1 cm) decreases with time. Submicron porosity (typically ~25% of the total) is relatively constant or slightly decreasing in absolute terms, but the percent change is significant. Fractal dimensions decrease at larger scales, and increase at smaller scales with increased precipitation.« less

  13. Regional Glacier Mapping by Combination of Dense Optical and SAR Satellite Image Time-Series

    NASA Astrophysics Data System (ADS)

    Winsvold, S. H.; Kääb, A.; Andreassen, L. M.; Nuth, C.; Schellenberger, T.; van Pelt, W.

    2016-12-01

    Near-future dense time series from both SAR (Sentinel-1A and B) and optical satellite sensors (Landsat 8, Sentinel-2A and B) will promote new multisensory time series applications for glacier mapping. We assess such combinations of optical and SAR data among others by 1) using SAR data to supplement optical time series that suffer from heavy cloud cover (chronological gap-filling), 2) merging the two data types based on stack statistics (Std.dev, Mean, Max. etc.), or 3) better explaining glacier facies patterns in SAR data using optical satellite images. As one example, summer SAR backscatter time series have been largely unexplored and even neglected in many glaciological studies due to the high content of liquid melt water on the ice surface and its intrusion in the upper part of the snow and firn. This water content causes strong specular scattering and absorption of the radar signal, and little energy is scattered back to the SAR sensor. We find in many scenes of a Sentinel-1 time series a significant temporal backscatter difference between the glacier ice surface and the seasonal snow as it melts up glacier. Even though both surfaces have typically wet conditions, we suggest that the backscatter difference is due to different roughness lengths of the two surfaces. Higher backscatter is found on the ice surface in the ablation area compared to the firn/seasonal snow surface. We find and present also other backscatter patterns in the Sentinel-1 time series related to glacier facies and weather events. For the Ny Ålesund area, Svalbard we use Radarsat-2 time series to explore the glacier backscatter conditions in a > 5 year period, discussing distinct temporal signals from among others refreezing of the firn in late autumn, or temporal lakes. All these examples are analyzed using the above 3 methods. By this multi-temporal and multi-sensor approach we also explore and describe the possible connection between combined SAR/optical time series and surface mass balance.

  14. The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Prichard, H. M.; Barnes, S. J.; Godel, B.; Reddy, S. M.; Vukmanovic, Z.; Halfpenny, A.; Neary, C. R.; Fisher, P. C.

    2015-03-01

    Nodular chromite is a characteristic feature of ophiolitic podiform chromitite and there has been much debate about how it forms. Nodular chromite from the Troodos ophiolite in Cyprus is unusual in that it contains skeletal crystals enclosed within the centres of the nodules and interstitial to them. 3D imaging and electron backscatter diffraction have shown that the skeletal crystals within the nodules are single crystals that are surrounded by a rim of polycrystalline chromite. 3D analysis reveals that the skeletal crystals are partially or completely formed cage or hopper structures elongated along the < 111 > axis. The rim is composed of a patchwork of chromite grains that are truncated on the outer edge of the rim. The skeletal crystals formed first from a magma supersaturated in chromite and silicate minerals crystallised from melt trapped between the chromite skeletal crystal blades as they grew. The formation of skeletal crystals was followed by a crystallisation event which formed a silicate-poor rim of chromite grains around the skeletal crystals. These crystals show a weak preferred orientation related to the orientation of the core skeletal crystal implying that they formed by nucleation and growth on this core, and did not form by random mechanical aggregation. Patches of equilibrium adcumulate textures within the rim attest to in situ development of such textures. The nodules were subsequently exposed to chromite undersaturated magma resulting in dissolution, recorded by truncated grain boundaries in the rim and a smooth outer surface to the nodule. None of these stages of formation require a turbulent magma. Lastly the nodules impinged on each other causing local deformation at points of contact.

  15. Correlation of electron backscatter diffraction and piezoresponse force microscopy for the nanoscale characterization of ferroelectric domains in polycrystalline lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Burnett, T. L.; Weaver, P. M.; Blackburn, J. F.; Stewart, M.; Cain, M. G.

    2010-08-01

    The functional properties of ferroelectric ceramic bulk or thin film materials are strongly influenced by their nanostructure, crystallographic orientation, and structural geometry. In this paper, we show how, by combining textural analysis, through electron backscattered diffraction, with piezoresponse force microscopy, quantitative measurements of the piezoelectric properties can be made at a scale of 25 nm, smaller than the domain size. The combined technique is used to obtain data on the domain-resolved effective single crystal piezoelectric response of individual crystallites in Pb(Zr0.4Ti0.6)O3 ceramics. The results offer insight into the science of domain engineering and provide a tool for the future development of new nanostructured ferroelectric materials for memory, nanoactuators, and sensors based on magnetoelectric multiferroics.

  16. Large Area Stress Distribution in Crystalline Materials Calculated from Lattice Deformation Identified by Electron Backscatter Diffraction

    NASA Astrophysics Data System (ADS)

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-08-01

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.

  17. Large area stress distribution in crystalline materials calculated from lattice deformation identified by electron backscatter diffraction.

    PubMed

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-08-05

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.

  18. Large Area Stress Distribution in Crystalline Materials Calculated from Lattice Deformation Identified by Electron Backscatter Diffraction

    PubMed Central

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-01-01

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data. PMID:25091314

  19. Three dimensional X-ray Diffraction Contrast Tomography Reconstruction of Polycrystalline Strontium Titanate during Sintering and Electron Backscatter Diffraction Validation

    NASA Astrophysics Data System (ADS)

    Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.

    The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.

  20. SU-C-BRC-05: Monte Carlo Calculations to Establish a Simple Relation of Backscatter Dose Enhancement Around High-Z Dental Alloy to Its Atomic Number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsunomiya, S; Kushima, N; Katsura, K

    Purpose: To establish a simple relation of backscatter dose enhancement around a high-Z dental alloy in head and neck radiation therapy to its average atomic number based on Monte Carlo calculations. Methods: The PHITS Monte Carlo code was used to calculate dose enhancement, which is quantified by the backscatter dose factor (BSDF). The accuracy of the beam modeling with PHITS was verified by comparing with basic measured data namely PDDs and dose profiles. In the simulation, a high-Z alloy of 1 cm cube was embedded into a tough water phantom irradiated by a 6-MV (nominal) X-ray beam of 10 cmmore » × 10 cm field size of Novalis TX (Brainlab). The ten different materials of high-Z alloys (Al, Ti, Cu, Ag, Au-Pd-Ag, I, Ba, W, Au, Pb) were considered. The accuracy of calculated BSDF was verified by comparing with measured data by Gafchromic EBT3 films placed at from 0 to 10 mm away from a high-Z alloy (Au-Pd-Ag). We derived an approximate equation to determine the relation of BSDF and range of backscatter to average atomic number of high-Z alloy. Results: The calculated BSDF showed excellent agreement with measured one by Gafchromic EBT3 films at from 0 to 10 mm away from the high-Z alloy. We found the simple linear relation of BSDF and range of backscatter to average atomic number of dental alloys. The latter relation was proven by the fact that energy spectrum of backscatter electrons strongly depend on average atomic number. Conclusion: We found a simple relation of backscatter dose enhancement around high-Z alloys to its average atomic number based on Monte Carlo calculations. This work provides a simple and useful method to estimate backscatter dose enhancement from dental alloys and corresponding optimal thickness of dental spacer to prevent mucositis effectively.« less

Top