Sample records for backscattered electron mode

  1. Scanning electron microscopy of hepatic ultrastructure: secondary, backscattered, and transmitted electron imaging.

    PubMed

    Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M

    1976-10-01

    Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.

  2. Comparison of selective staining of fungi in paraffin sections by light microscopy, SEM and BEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, E.L.; Laudate, A.; Carter, H.W.

    Paraffin-embedded sections from human tissues with fungi or organisms classified with fungi were studied by light microscopy (LM), scanning electron microscopy (SEM), and the backscatter electron imaging (BEI) mode of the SEM. The fungal organisms selected for study were those familiar to the pathologist on the basis of their appearance in paraffin-embedded material stained with the Gomori-Grocott Chromic Acid Methenamine Silver Stain (GMS). The organisms were Actinomyces, Rhizopus, Cryptococcus, Histoplasma capsulatum, and Coccidia imitis. Sections were stained with the GMS Stain and/or the Becker modification of the GMS Stain (BGMS) and examined in the secondary electron imaging mode (SEI) andmore » BEI mode with an annular backscatter electron detector. This silver staining technique accentuated the wall of fungal organisms, in the backscatter mode. Depending on the fungal organism and type of silver stain employed, the GMS seemed the preferable stain. The advantages of SEM over LM were greater depth of focus and potential range of magnifications. BEI may also be used in conjunction with LM stain for microorganisms to establish their presence.« less

  3. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Influence of the Rayleigh backscattering on the mode composition of radiation in multimode graded-index waveguides with a quadratic refractive-index profile

    NASA Astrophysics Data System (ADS)

    Esayan, G. L.; Krivoshlykov, S. G.

    1989-08-01

    A method of coherent states is used to describe the process of Rayleigh scattering in a multimode graded-index waveguide with a quadratic refractive-index profile. Explicit expressions are obtained for the coefficients representing excitation of Gaussian-Hermite backscattering modes in two cases of practical importance: excitation of a waveguide by an extended noncoherent light source and selective excitation of different modes at the entry to a waveguide. An analysis is also made of the coefficients of coupling between forward and backward modes. Explicit expressions for the coefficients representing capture of backscattered radiation by a waveguide are obtained for two special cases of excitation (extended light source and zeroth mode).

  4. Examination of oxide scales in the SEM using backscattered electron images

    NASA Technical Reports Server (NTRS)

    Price, C. W.; Wright, I. G.; Wallwork, G. R.

    1973-01-01

    The complementary use of the scanning electron microscope in the backscattered electron mode with the more usual secondary electron mode results in a significant increase in the versatility of the instrument, since regions of different chemical composition can be readily detected, and their morphology examined. The use of this technique to examine complex oxide scales formed on heat-resistant alloys is described, and in particular the location of thoria particles in the scale formed on a Ni-20 wt pct Cr-2.3 wt pct ThO2 alloy, and the examination of the behavior of yttrium during the high-temperature oxidation of a Co-Cr-Al-Y alloy are discussed.

  5. Scanning Electron Microscopy with Samples in an Electric Field

    PubMed Central

    Frank, Ludĕk; Hovorka, Miloš; Mikmeková, Šárka; Mikmeková, Eliška; Müllerová, Ilona; Pokorná, Zuzana

    2012-01-01

    The high negative bias of a sample in a scanning electron microscope constitutes the “cathode lens” with a strong electric field just above the sample surface. This mode offers a convenient tool for controlling the landing energy of electrons down to units or even fractions of electronvolts with only slight readjustments of the column. Moreover, the field accelerates and collimates the signal electrons to earthed detectors above and below the sample, thereby assuring high collection efficiency and high amplification of the image signal. One important feature is the ability to acquire the complete emission of the backscattered electrons, including those emitted at high angles with respect to the surface normal. The cathode lens aberrations are proportional to the landing energy of electrons so the spot size becomes nearly constant throughout the full energy scale. At low energies and with their complete angular distribution acquired, the backscattered electron images offer enhanced information about crystalline and electronic structures thanks to contrast mechanisms that are otherwise unavailable. Examples from various areas of materials science are presented.

  6. Incomplete immunity to backscattering in chiral one-way photonic crystals.

    PubMed

    Cheng, Pi-Ju; Tien, Chung-Hao; Chang, Shu-Wei

    2015-04-20

    We show that the propagating modes in a strongly-guided chiral one-way photonic crystal are not backscattering-immune even though they are indeed insensitive to many kinds of scatters. Since these modes are not protected by the nonreciprocity, the backscattering does occur under certain circumstances. We use a perturbative method to derive criteria for the prominent backscattering in such chiral structures. From both our theory and numerical examinations, we find that the amount of backscattering critically depends on the symmetry of scatters. Additionally, for these chiral photonic modes, disturbances at the most intense parts of field profiles do not necessarily lead to the most effective backscattering.

  7. Modification of ordinary-mode reflectometry system to detect lower-hybrid waves in Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, S. G.; Shiraiwa, S.; Parker, R. R.

    2012-10-15

    Backscattering experiments to detect lower-hybrid (LH) waves have been performed in Alcator C-Mod, using the two modified channels (60 GHz and 75 GHz) of an ordinary-mode reflectometry system with newly developed spectral recorders that can continuously monitor spectral power at a target frequency. The change in the baseline of the spectral recorder during the LH wave injection is highly correlated to the strength of the X-mode non-thermal electron cyclotron emission. In high density plasmas where an anomalous drop in the lower hybrid current drive efficiency is observed, the observed backscattered signals are expected to be generated near the last closedmore » flux surface, demonstrating the presence of LH waves within the plasma. This experimental technique can be useful in identifying spatially localized LH electric fields in the periphery of high-density plasmas.« less

  8. Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene.

    PubMed

    Li, Jing; Wen, Hua; Watanabe, Kenji; Taniguchi, Takashi; Zhu, Jun

    2018-02-02

    The edge states of the quantum Hall and fractional quantum Hall effect of a two-dimensional electron gas carry key information of the bulk excitations. Here we demonstrate gate-controlled transmission of edge states in bilayer graphene through a potential barrier with tunable height. The backscattering rate is continuously varied from 0 to close to 1, with fractional quantized values corresponding to the sequential complete backscattering of individual modes. Our experiments demonstrate the feasibility to controllably manipulate edge states in bilayer graphene, thus opening the door to more complex experiments.

  9. Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wen, Hua; Watanabe, Kenji; Taniguchi, Takashi; Zhu, Jun

    2018-02-01

    The edge states of the quantum Hall and fractional quantum Hall effect of a two-dimensional electron gas carry key information of the bulk excitations. Here we demonstrate gate-controlled transmission of edge states in bilayer graphene through a potential barrier with tunable height. The backscattering rate is continuously varied from 0 to close to 1, with fractional quantized values corresponding to the sequential complete backscattering of individual modes. Our experiments demonstrate the feasibility to controllably manipulate edge states in bilayer graphene, thus opening the door to more complex experiments.

  10. Scanning ultrafast electron microscopy.

    PubMed

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  11. Scanning ultrafast electron microscopy

    PubMed Central

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933

  12. Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations.

    PubMed

    De Vries, Rowen J; Marsh, Steven

    2015-11-08

    Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2-14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997 ± 0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs.

  13. Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations

    PubMed Central

    Marsh, Steven

    2015-01-01

    Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2 mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2–14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997±0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs. PACS numbers: 87.53.Bn, 87.55.K‐, 87.56.bd PMID:26699566

  14. Quantized edge modes in atomic-scale point contacts in graphene

    NASA Astrophysics Data System (ADS)

    Kinikar, Amogh; Phanindra Sai, T.; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G0 = 2e2/h. At the same time, conductance plateaux at G0/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  15. Quantized edge modes in atomic-scale point contacts in graphene.

    PubMed

    Kinikar, Amogh; Phanindra Sai, T; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K; Krishnamurthy, H R; Jain, Manish; Shenoy, Vijay B; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G 0  = 2e 2 /h. At the same time, conductance plateaux at G 0 /2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  16. Profiling of back-scattered electrons in opposed magnetic field of a Twin Electron Beam Gun

    NASA Astrophysics Data System (ADS)

    Sethi, S.; Gupta, Anchal; Dileep Kumar, V.; Mukherjee, Jaya; Gantayet, L. M.

    2012-11-01

    Electron gun is extensively used in material processing, physical vapour deposition and atomic vapour based laser processes. In these processes where the electron beam is incident on the substrate, a significant fraction of electron beam gets back-scattered from the target surface. The trajectory of this back scattered electron beam depends on the magnetic field in the vicinity. The fraction of back-scattered depends on the atomic number of the target metal and can be as high as ~40% of the incident beam current. These back-scattered electrons can cause undesired hot spots and also affect the overall process. Hence, the study of the trajectory of these back-scattered electrons is important. This paper provides the details of experimentally mapped back-scattered electrons of a 2×20kW Twin Electron Beam Gun (TEBG) in opposed magnetic field i.e. with these guns placed at 180° to each other.

  17. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks.

    PubMed

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-06-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model.

  18. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks

    PubMed Central

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-01-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model. PMID:28587171

  19. Inter-layered clay stacks in Jurassic shales

    NASA Technical Reports Server (NTRS)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  20. Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules.

    PubMed

    Johansson, Jonas; Sparén, Anders; Svensson, Olof; Folestad, Staffan; Claybourn, Mike

    2007-11-01

    Quantitative analysis of pharmaceutical formulations using the new approach of transmission Raman spectroscopy has been investigated. For comparison, measurements were also made in conventional backscatter mode. The experimental setup consisted of a Raman probe-based spectrometer with 785 nm excitation for measurements in backscatter mode. In transmission mode the same system was used to detect the Raman scattered light, while an external diode laser of the same type was used as excitation source. Quantitative partial least squares models were developed for both measurement modes. The results for tablets show that the prediction error for an independent test set was lower for the transmission measurements with a relative root mean square error of about 2.2% as compared with 2.9% for the backscatter mode. Furthermore, the models were simpler in the transmission case, for which only a single partial least squares (PLS) component was required to explain the variation. The main reason for the improvement using the transmission mode is a more representative sampling of the tablets compared with the backscatter mode. Capsules containing mixtures of pharmaceutical powders were also assessed by transmission only. The quantitative results for the capsules' contents were good, with a prediction error of 3.6% w/w for an independent test set. The advantage of transmission Raman over backscatter Raman spectroscopy has been demonstrated for quantitative analysis of pharmaceutical formulations, and the prospects for reliable, lean calibrations for pharmaceutical analysis is discussed.

  1. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    PubMed

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  2. Quantum transport in graphene Hall bars: Effects of side gates

    NASA Astrophysics Data System (ADS)

    Petrović, M. D.; Peeters, F. M.

    2017-05-01

    Quantum electron transport in side-gated graphene Hall bars is investigated in the presence of quantizing external magnetic fields. The asymmetric potential of four side-gates distorts the otherwise flat bands of the relativistic Landau levels, and creates new propagating states in the Landau spectrum (i.e. snake states). The existence of these new states leads to an interesting modification of the bend and Hall resistances, with new quantizing plateaus appearing in close proximity of the Landau levels. The electron guiding in this system can be understood by studying the current density profiles of the incoming and outgoing modes. From the fact that guided electrons fully transmit without any backscattering (similarly to edge states), we are able to analytically predict the values of the quantized resistances, and they match the resistance data we obtain with our numerical (tight-binding) method. These insights in the electron guiding will be useful in predicting the resistances for other side-gate configurations, and possibly in other system geometries, as long as there is no backscattering of the guided states.

  3. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    DOE PAGES

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...

    2016-05-10

    In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less

  4. Quantifying Fish Backscattering using SONAR Instrument and Kirchhoff Ray Mode (KRM) Model

    NASA Astrophysics Data System (ADS)

    Manik, Henry M.

    2016-08-01

    Sonar instrument was used to study backscattering from tuna fish. Extraction of target strength, incidence angle, and frequency dependence of the backscattered signal for individual scatterer was important for biological information. For this purpose, acoustic measurement of fish backscatter was conducted in the laboratory. Characteristics and general trends of the target strength of fish with special reference to tuna fish were investigated by using a Kirchhoff Ray Mode (KRM) model. Backscattering strength were calculated for the KRM having typical morphological and physical parameters of actual fish. Those backscattering amplitudes were shown as frequency, body length, backscattering patterns, the density and sound speed dependences, and orientation dependence. These results were compared with experimentally measured target strength data and good agreement was found. Measurement and model showed the target strength from the fish are depend on the presence of swimbladder. Target Strength increase with increasing the frequency and fish length.

  5. Polished sample preparing and backscattered electron imaging and of fly ash-cement paste

    NASA Astrophysics Data System (ADS)

    Feng, Shuxia; Li, Yanqi

    2018-03-01

    In recent decades, the technology of backscattered electron imaging and image analysis was applied in more and more study of mixed cement paste because of its special advantages. Test accuracy of this technology is affected by polished sample preparation and image acquisition. In our work, effects of two factors in polished sample preparing and backscattered electron imaging were investigated. The results showed that increasing smoothing pressure could improve the flatness of polished surface and then help to eliminate interference of morphology on grey level distribution of backscattered electron images; increasing accelerating voltage was beneficial to increase gray difference among different phases in backscattered electron images.

  6. Criteria of backscattering in chiral one-way photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  7. Sci—Fri PM: Dosimetry—05: Megavoltage electron backscatter: EGSnrc results versus 21 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, E. S. M.; The Ottawa Hospital Cancer Centre, Ottawa; Buchenberg, W.

    2014-08-15

    The accuracy of electron backscatter calculations at megavoltage energies is important for many medical physics applications. In this study, EGSnrc calculations of megavoltage electron backscatter (1–22 MeV) are performed and compared to the data from 21 experiments published between 1954 and 1993 for 25 single elements with atomic numbers from 3 to 92. Typical experimental uncertainties are 15%. For EGSnrc simulations, an ideal detector is assumed, and the most accurate electron physics options are employed, for a combined statistical and systematic uncertainty of 3%. The quantities compared are the backscatter coefficient and the energy spectra (in the backward hemisphere andmore » at specific detector locations). For the backscatter coefficient, the overall agreement is within ±2% in the absolute value of the backscatter coefficient (in per cent), and within 11% of the individual backscatter values. EGSnrc results are systematically on the higher end of the spread of the experimental data, which could be partially from systematic experimental errors discussed in the literature. For the energy spectra, reasonable agreement between simulations and experiments is observed, although there are significant variations in the experimental data. At the lower end of the spectra, simulations are higher than some experimental data, which could be due to reduced experimental sensitivity to lower energy electrons and/or over-estimation by EGSnrc for backscattered secondary electrons. In conclusion, overall good agreement is observed between EGSnrc backscatter calculations and experimental measurements for megavoltage electrons. There is a need for high quality experimental data for the energy spectra of backscattered electrons.« less

  8. Modeling of the competition of stimulated Raman and Brillouin scatter in multiple beam experiments

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce I.; Baldis, Hector A.; Berger, Richard L.; Estabrook, Kent G.; Williams, Edward A.; Labaune, Christine

    2001-02-01

    Multiple laser beam experiments with plastic target foils at the Laboratoire pour L'Utilisation des Lasers Intenses (LULI) facility [Baldis et al., Phys. Rev. Lett. 77, 2957 (1996)] demonstrated anticorrelation of stimulated Brillouin and Raman backscatter (SBS and SRS). Detailed Thomson scattering diagnostics showed that SBS always precedes SRS, that secondary electron plasma waves sometimes accompanied SRS appropriate to the Langmuir Decay Instability (LDI), and that, with multiple interaction laser beams, the SBS direct backscatter signal in the primary laser beam was reduced while the SRS backscatter signal was enhanced and occurred earlier in time. Analysis and numerical calculations are presented here that evaluate the influences on the competition of SBS and SRS, of local pump depletion in laser hot spots due to SBS, of mode coupling of SBS and LDI ion waves, and of optical mixing of secondary and primary laser beams. These influences can be significant. The calculations take into account simple models of the laser beam hot-spot intensity probability distributions and assess whether ponderomotive and thermal self-focusing are significant. Within the limits of the model, which omits several other potentially important nonlinearities, the calculations suggest the effectiveness of local pump depletion, ion wave mode coupling, and optical mixing in affecting the LULI observations.

  9. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns.

    PubMed

    Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E

    2013-08-02

    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  10. Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.

    PubMed

    Cui, Liping; Knox, Wayne H

    2010-01-01

    Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.

  11. Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer

    NASA Astrophysics Data System (ADS)

    Sanchez-Yamagishi, Javier D.; Luo, Jason Y.; Young, Andrea F.; Hunt, Benjamin M.; Watanabe, Kenji; Taniguchi, Takashi; Ashoori, Raymond C.; Jarillo-Herrero, Pablo

    2017-02-01

    Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics. Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron-hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong non-local transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Unlike other approaches used for realizing helical states, the graphene electron-hole bilayer can be used to build new 1D systems incorporating fractional edge states. Indeed, we are able to tune the bilayer devices into a regime hosting fractional and integer edge states of opposite chiralities, paving the way towards 1D helical conductors with fractional quantum statistics.

  12. Observations on the Role of Hydrogen in Facet Formation in Near-alpha Titanium (Preprint)

    DTIC Science & Technology

    2011-05-01

    using quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning...quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning electron...tilt fractography / electron backscatter diffraction (EBSD) technique in which both the crystallographic orientation of the fractured grain and the

  13. Electromagnetic eigenmodes of collisional and collisionless plasmas and their stability to stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Pathak, Vishwa Bandhu; Tripathi, V. K.

    2007-02-01

    Nonlinear electromagnetic eigenmodes of collisional and collisionless plasmas, when the temporal extent of the modes is longer than the ambipolar diffusion time, have been investigated. The nonlinearity in a collisionless plasma arises through ponderomotive force, whereas in collisional plasmas Ohmic nonlinearity prevails. The mode structure in both cases, representing a balance between the nonlinearity-induced self-convergence and diffraction-induced divergence, closely resembles Gaussian form. The spot size of the mode decreases with the increasing axial amplitude of the laser, attains a minimum, and then rises very gradually. The modes are susceptible to stimulated Brillouin backscattering. The growth rate of the Brillouin process initially increases with mode amplitude, attains a maximum, and then decreases. The reduction in the growth rate is caused by strong electron evacuation from the axial region by the ponderomotive force and thermal pressure gradient force created by nonuniform Ohmic heating.

  14. Thomson-backscattered x rays from laser-accelerated electrons.

    PubMed

    Schwoerer, H; Liesfeld, B; Schlenvoigt, H-P; Amthor, K-U; Sauerbrey, R

    2006-01-13

    We present the first observation of Thomson-backscattered light from laser-accelerated electrons. In a compact, all-optical setup, the "photon collider," a high-intensity laser pulse is focused into a pulsed He gas jet and accelerates electrons to relativistic energies. A counterpropagating laser probe pulse is scattered from these high-energy electrons, and the backscattered x-ray photons are spectrally analyzed. This experiment demonstrates a novel source of directed ultrashort x-ray pulses and additionally allows for time-resolved spectroscopy of the laser acceleration of electrons.

  15. An energy-dependent electron backscattering coefficient

    NASA Astrophysics Data System (ADS)

    Williamson, W., Jr.; Antolak, A. J.; Meredith, R. J.

    1987-05-01

    An energy-dependent electron backscattering coefficient is derived based on the continuous slowing down approximation and the Bethe stopping power. Backscattering coefficients are given for 10-50-keV electrons incident on bulk and thin-film aluminum, silver, and gold targets. The results are compared with the Everhart theory and empirical fits to experimental data. The energy-dependent theory agrees better with experimental work.

  16. Electron plasma wave filamentation in the kinetic regime

    NASA Astrophysics Data System (ADS)

    Lushnikov, Pavel; Rose, Harvey; Silantyev, Denis

    2016-10-01

    We consider nonlinear electron plasma wave (EPW) dynamics in the kinetic wavenumber regime, 0.25 < kλD < 0.45 , which is typical for current high temperature laser-plasma interaction experiments, where k is the EPW wavenumber and λD is the electron Debye length. In this kinetic regime, EPW frequency reduction due to electron trapping may dominate the ponderomotive frequency shift. Previous 3D PIC simulations showed that the trapped electron EPW filamentation instability can saturate stimulated Raman backscatter by reducing the EPWs coherence but multidimensional Vlasov simulations [1] are needed to address that saturation in details. We performed nonlinear, non-equilibrium 2D Vlasov simulations to study the EPW filamentation. The initial conditions are created either by external forcing or by constructing the appropriate 1D travelling Bernstein-Greene-Kruskal (BGK) mode. Transverse perturbations of any of these initial conditions grow with time eventually producing strongly nonlinear filamentation followed by plasma turbulence. We compared these simulations with the theoretical results on growth rates of the transverse instability BGK mode showing the satisfactory agreement. Supported by the New Mexico Consortium and NSF DMS-1412140.

  17. Mode-converted diffuse ultrasonic backscatter.

    PubMed

    Hu, Ping; Kube, Christopher M; Koester, Lucas W; Turner, Joseph A

    2013-08-01

    Diffuse ultrasonic backscatter describes the scattering of elastic waves from interfaces within heterogeneous materials. Previously, theoretical models have been developed for the diffuse backscatter of longitudinal-to-longitudinal (L-L) wave scattering within polycrystalline materials. Following a similar formalism, a mode-conversion scattering model is presented here to quantify the component of an incident longitudinal wave that scatters and is converted to a transverse (shear) wave within a polycrystalline sample. The model is then used to fit experimental measurements associated with a pitch-catch transducer configuration performed using a sample of 1040 steel. From these measurements, an average material correlation length is determined. This value is found to be in agreement with results from L-L scattering measurements and is on the order of the grain size as determined from optical micrographs. Mode-converted ultrasonic backscatter is influenced much less by the front-wall reflection than an L-L measurement and it provides additional microstructural information that is not accessible in any other manner.

  18. Advanced technique for ultra-thin residue inspection with sub-10nm thickness using high-energy back-scattered electrons

    NASA Astrophysics Data System (ADS)

    Han, Jin-Hee

    2018-03-01

    Recently the aspect ratio of capacitor and via hole of memory semiconductor device has been dramatically increasing in order to store more information in a limited area. A small amount of remained residues after etch process on the bottom of the high aspect ratio structure can make a critical failure in device operation. Back-scattered electrons (BSE) are mainly used for inspecting the defect located at the bottom of the high aspect ratio structure or analyzing the overlay of the multi-layer structure because these electrons have a high linearity with the direction of emission and a high kinetic energy above 50eV. However, there is a limitation on that it cannot detect ultra-thin residue material having a thickness of several nanometers because the surface sensitivity is extremely low. We studied the characteristics of BSE spectra using Monte Carlo simulations for several cases which the high aspect ratio structures have extreme microscopic residues. Based on the assumption that most of the electrons emitted without energy loss are localized on the surface, we selected the detection energy window which has a range of 20eV below the maximum energy of the BSE. This window section is named as the high-energy BSE region. As a result of comparing the detection sensitivity of the conventional and the high-energy BSE detection mode, we found that the detection sensitivity for the residuals which have 2nm thickness is improved by more than 10 times in the high-energy BSE mode. This BSE technology is a new inspection method that can greatly be improved the inspection sensitivity for the ultra-thin residual material presented in the high aspect ratio structure, and its application will be expanded.

  19. Simulation of reflectometry Bragg backscattering spectral responses in the absence of a cutoff layer.

    PubMed

    da Silva, F; da Graça, S; Heuraux, S; Conway, G D

    2010-10-01

    Experimental reflectometry signals obtained in the absence of a cutoff layer, with the possibility of interferometric operation excluded, show a coherent and recurrent frequency spectrum signature similar to an Alfvén cascade signature. A possible explanation resides in the modulation of a resonant Bragg backscattering response by an Alfvén mode structure located at the center of the plasma whose frequency of oscillation modulates the backscattered signal in a conformable way. This situation is modeled and simulated using an O-mode full-wave Maxwell finite-difference time-domain code and the resulting signatures are discussed.

  20. Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.

    PubMed

    Chow, James C L; Leung, Michael K K

    2008-06-01

    The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger recombination in the SiO2 gate. It is concluded that the MOSFET dosimeter performed well for measuring the electron backscatter from lead using electron beams. The uncertainty of EBF determined by comparing the results of Monte Carlo simulations and measurements is well within the accuracy of the MOSFET dosimeter (< +/- 4.2%) provided by the manufacturer.

  1. Tilt angle dependence of backscattering enhancements from organ pipe modes of open water-filled cylinders: Measurements and models

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.; Marston, Philip L.

    2003-04-01

    A simple target for simulating narrow low-frequency resonances of cylinders is an open metal pipe completely filled with water. We have previously described how the high-Q organ-pipe modes having a pressure node near each end are easily observed in backscattering experiments with small cylinders [C. F. Osterhoudt and P. L. Marston, J. Acoust. Soc. Am. 110, 2773 (2001)]. The resonance occurs because of the strong reflection of internal acoustic waves from the open ends of the pipe [H. Levine and J. Schwinger, Phys. Rev. 73, 383-406 (1948)]. In the present research, the dependence of the backscattering amplitude on the orientation of the cylinder is measured and modeled. The tilt angle dependence is affected by the symmetry of the organ pipe mode. An approximation was also developed for the backscattering amplitude at high Q resonances based on energy conservation, reciprocity, and the optical theorem. While this analysis applies to cylinders suspended in water away from boundaries, the organ-pipe modes studied may be useful for investigating scattering processes for buried or partially buried cylinders. [Research supported in part by ONR.

  2. Artificially controlled backscattering in single mode fibers based on femtosecond laser fabricated reflectors

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; Wu, Qiong

    2018-04-01

    A novel method to artificially control the backscattering of the single-mode fiber (SMF) is proposed and investigated for the first time. This method can help to fabricate a high backscattering fiber (HBSF), such as by fabricating reflectors in every one meter interval of an SMF based on the exposure of the femtosecond laser beam. The artificially controlled backscattering (ACBS) can be much higher than the natural Rayleigh backscattering (RB) of the SMF. The RB power and ACBS power in the unit length fiber are derived according to the theory of the RBS. The total relative power and the relative back power reflected in the unit length of the HBSF have been simulated and presented. The simulated results show that the HBSF has the characteristics of both low optical attenuation and high backscattering. The relative back power reflected in the unit length of the HBSF is 25dB larger than the RB power of the SMF when the refractive index modulation quantity of the reflectors is 0.009. Some preliminary experiments also indicate that the method fabricating reflectors to increase the backscattering power of the SMF is practical and promising.

  3. Patterned low temperature copper-rich deposits using inkjet printing

    NASA Astrophysics Data System (ADS)

    Rozenberg, Gregor G.; Bresler, Eric; Speakman, Stuart P.; Jeynes, Chris; Steinke, Joachim H. G.

    2002-12-01

    A PZT piezoelectric ceramic research drop-on-demand inkjet print head operating in bend mode was used as a means of delivering a copper precursor, vinyltrimethylsilane copper (+1) hexafluoroacetylacetonate, in a controlled and placement accurate fashion. The reagent disproportionates at low temperature (<200 °C), to deposit copper on glass. These deposits are shown to be more than 90% copper by weight by electron probe microanalysis and microbeam Rutherford backscattering spectroscopy. Microscopy shows a deposit diameter and three-dimensional profile that suggests a complex deposition and conversion mechanism. Our findings represent an important step towards the manufacture of electronic devices by entirely nonlithographic means.

  4. CO2 lidar backscatter experiment

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Rothermel, Jeffry; Bowdle, David A.; Srivastava, Vandana; Cutten, Dean; Mccaul, Eugene W., Jr.

    1993-01-01

    The Aerosol/Lidar Science Group of the Remote Sensing Branch engages in experimental and theoretical studies of atmospheric aerosol scattering and atmospheric dynamics, emphasizing Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts by in-house personnel, coordinated with similar efforts by university and government institutional researchers. The primary focus of activities related to understanding aerosol scattering is the GLObal Backscatter Experiment (GLOBE) program. GLOBE was initiated by NASA in 1986 to support the engineering design, performance simulation, and science planning for the prospective NASA Laser Atmospheric Wind Sounder (LAWS). The most important GLOBE scientific result has been identified of a background aerosol mode with a surprisingly uniform backscatter mixing ratio (backscatter normalized by air density) throughout a deep tropospheric layer. The backscatter magnitude of the background mode evident from the MSFC CW lidar measurements is remarkably similar to that evident from ground-based backscatter profile climatologies obtained by JPL in Pasadena CA, NOAA/WPL in Boulder CO, and by the Royal Signals and Radar Establishment in the United Kingdom. Similar values for the background mode have been inferred from the conversion of in situ aerosol microphysical measurements to backscatter using Mie theory. Little seasonal or hemispheric variation is evident in the survey mission data, as opposed to large variation for clouds, aerosol plums, and the marine boundary layer. Additional features include: localized aerosol residues from dissipated clouds, occasional regions having mass concentrations of nanograms per cubic meter and very low backscatter, and aerosol plumes extending thousands of kilometers and several kilometers deep. Preliminary comparison with meteorological observations thus far indicate correlation between backscatter and water vapor under high humidity conditions. Limited intercomparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) limb extinction sounder shows differences in the troposphere, however, it should be noted that in general SAGE measurements have not yet been validated in the troposphere.

  5. Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs /InAs1 -xSbx

    NASA Astrophysics Data System (ADS)

    Liu, Henan; Zhang, Yong; Steenbergen, Elizabeth H.; Liu, Shi; Lin, Zhiyuan; Zhang, Yong-Hang; Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Dupuis, Russell D.; Kim, Jin K.; Hawkins, Samuel D.; Klem, John F.

    2017-09-01

    The InAs /InAs1 -xSbx superlattice system distinctly differs from two well-studied superlattice systems GaAs /AlAs and InAs /GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs /InAs1 -xSbx system when compared to the other two systems. In this work, we report a polarized Raman study of the vibrational properties of the InAs /InAs1 -xSbx superlattices (SLs) as well as selected InAs1 -xSbx alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) from both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like "forbidden" LO mode is observed in two parallel-polarization configurations. The InAs1 -xSbx alloys lattice matched to the substrate (xSb˜0.09 ) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (xSb˜0.35 ) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs /InAs1 -xSbx and InAs /GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of the forbidden LO-like mode is a universal signature for SLs and bulk systems resulting from the mixing of phonon modes due to structural modulation or symmetry reduction.

  6. Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs / InAs 1 - x Sb x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Henan; Zhang, Yong; Steenbergen, Elizabeth H.

    The InAs/InAs 1-xSb x superlattice system distinctly differs from two well-studied superlattice systems GaAs / AlAs and InAs/GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs/InAs 1-xSb x system when compared to the other two systems. Here, we report a polarized Raman study of the vibrational properties of the InAs/InAs 1-xSb x superlattices (SLs) as well as selected InAs 1-xSb x alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) frommore » both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like “forbidden” LO mode is observed in two parallel-polarization configurations. The InAs 1-xSb x alloys lattice matched to the substrate (x Sb ~ 0.09) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (x Sb ~ 0.35) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs/InAs 1-xSb x and InAs/GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of the forbidden LO-like mode is a universal signature for SLs and bulk systems resulting from the mixing of phonon modes due to structural modulation or symmetry reduction.« less

  7. Topological Magnon Modes in Patterned Ferrimagnetic Insulator Thin Films.

    PubMed

    Li, Yun-Mei; Xiao, Jiang; Chang, Kai

    2018-05-09

    Manipulation of magnons opens an attractive direction in the future energy-efficient information processing devices. Such quasi-particles can transfer and process information free from the troublesome Ohmic loss in conventional electronic devices. Here, we propose to realize topologically protected magnon modes using the interface between the patterned ferrimagnetic insulator thin films of different configurations without the Dzyaloshinskii-Moriya interaction. The interface thus behaves like a perfect waveguide to conduct the magnon modes lying in the band gap. These modes are immune to backscattering even in sharply bent tracks, robust against the disorders, and maintain a high degree of coherence during propagation. We design a magnonic Mach-Zehnder interferometer, which realizes a continuous change of magnon signal with varying external magnetic field or driving frequency. Our results pave a new way for realizing topologically protected magnon waveguide and finally achieving a scalable low-dissipation spintronic devices and even the magnonic integrated circuit.

  8. Imaging of immunolabeled membrane receptors in uncoated SEM specimens.

    PubMed

    Heinzmann, U; Reninger, A; Autrata, R; Höfler, H

    1994-01-01

    Epidermal growth factor receptors (EGFR) were labeled with 10 nm immunogold and examined on uncoated specimens of A431 human epidermoid carcinoma cells. A field emission gun and a high-sensitivity YAG ring detector were used to demonstrate the affinity labeling simultaneously in the secondary-electron (SE) and backscattered-electron (BSE) modes with a low accelerating voltage (Vo). At Vo = 2 kV, the SE and BSE signals were too weak to identify all markers, while at Vo = 3-7 kV labeling was observed unambiguously in both the SE and BSE modes with smaller and higher working distances. Increasing the Vo to above 7 kV sometimes provokes instability of the specimens. A Vo of > or = 10 kV produces charging artifacts in the SE image, but permits a BSE image of the gold markers providing additional topographic information. In conclusion, immunogold labeling can be used with good results for uncoated specimens.

  9. Ultrasonic nondestructive evaluation of graphite epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1990-01-01

    Quantitative ultrasonic techniques are summarized with applications to the measurement of frequency-dependent attenuation and backscatter and to the NDE of composite laminates. Results are listed for the ultrasonic NDE of graphite-epoxy composite laminates including impact and fatigue damage as well as porosity. The methods reviewed include transmission measurements of attenuation, reconstructive tomography based on attenuation, estimating attenuation from backscattered ultrasound, and backscatter approaches. Phase-sensitive and -insensitive detection techniques are mentioned such as phase cancellation at piezoelectric receiving transducers and acoustoelectric effects. The techniques permit the NDE of the parameters listed in inhomogeneous media and provide both images from the transmission mode and in the reflection mode.

  10. Investigation of Cellular Interactions of Nanoparticles by Helium Ion Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arey, Bruce W.; Shutthanandan, V.; Xie, Yumei

    The helium ion mircroscope (HIM) probes light elements (e.g. C, N, O, P) with high contrast due to the large variation in secondary electron yield, which minimizes the necessity of specimen staining. A defining characteristic of HIM is its remarkable capability to neutralize charge by the implementation of an electron flood gun, which eliminates the need for coating non-conductive specimens for imaging at high resolution. In addition, the small convergence angle in HeIM offers a large depth of field (~5x FE-SEM), enabling tall structures to be viewed in focus within a single image. Taking advantage of these capabilities, we investigatemore » the interactions of engineered nanoparticles (NPs) at the surface of alveolar type II epithelial cells grown at the air-liquid interface (ALI). The increasing use of nanomaterials in a wide range of commercial applications has the potential to increase human exposure to these materials, but the impact of such exposure on human health is still unclear. One of the main routs of exposure is the respiratory tract, where alveolar epithelial cells present a vulnerable target at the interface with ambient air. Since the cellular interactions of NPs govern the cellular response and ultimately determine the impact on human health, our studies will help delineating relationships between particle properties and cellular interactions and response to better evaluate NP toxicity or biocompatibility. The Rutherford backscattered ion (RBI) is a helium ions imaging mode, which backscatters helium ions from every element except hydrogen, with a backscatter yield that depends on the atomic number of the target. Energy-sensitive backscatter analysis is being developed, which when combined with RBI image information, supports elemental identification at helium ion nanometer resolution. This capability will enable distinguishing NPs from cell surface structures with nanometer resolution.« less

  11. Investigation of cellular interactions of nanoparticles by helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Arey, B. W.; Shutthanandan, V.; Xie, Y.; Tolic, A.; Williams, N.; Orr, G.

    2011-06-01

    The helium ion microscope (HIM) probes light elements (e.g. C, N, O, P) with high contrast due to the large variation in secondary electron yield, which minimizes the necessity of specimen staining. A defining characteristic of HIM is its remarkable capability to neutralize charge by the implementation of an electron flood gun, which eliminates the need for coating non-conductive specimens for imaging at high resolution. In addition, the small convergence angle in HeIM offers a large depth of field (~5× FE-SEM), enabling tall structures to be viewed in focus within a single image. Taking advantage of these capabilities, we investigate the interactions of engineered nanoparticles (NPs) at the surface of alveolar type II epithelial cells grown at the airliquid interface (ALI). The increasing use of nanomaterials in a wide range of commercial applications has the potential to increase human exposure to these materials, but the impact of such exposure on human health is still unclear. One of the main routs of exposure is the respiratory tract, where alveolar epithelial cells present a vulnerable target at the interface with ambient air. Since the cellular interactions of NPs govern the cellular response and ultimately determine the impact on human health, our studies will help delineating relationships between particle properties and cellular interactions and response to better evaluate NP toxicity or biocompatibility. The Rutherford backscattered ion (RBI) is a helium ions imaging mode, which backscatters helium ions from every element except hydrogen, with a backscatter yield that depends on the atomic number of the target. Energy-sensitive backscatter analysis is being developed, which when combined with RBI image information, supports elemental identification at helium ion nanometer resolution. This capability will enable distinguishing NPs from cell surface structures with nanometer resolution.

  12. Electron backscattering simulation in Geant4

    NASA Astrophysics Data System (ADS)

    Dondero, Paolo; Mantero, Alfonso; Ivanchencko, Vladimir; Lotti, Simone; Mineo, Teresa; Fioretti, Valentina

    2018-06-01

    The backscattering of electrons is a key phenomenon in several physics applications which range from medical therapy to space including AREMBES, the new ESA simulation framework for radiation background effects. The importance of properly reproducing this complex interaction has grown considerably in the last years and the Geant4 Monte Carlo simulation toolkit, recently upgraded to the version 10.3, is able to comply with the AREMBES requirements in a wide energy range. In this study a validation of the electron Geant4 backscattering models is performed with respect to several experimental data. In addition a selection of the most recent validation results on the electron scattering processes is also presented. Results of our analysis show a good agreement between simulations and data from several experiments, confirming the Geant4 electron backscattering models to be robust and reliable up to a few tens of electronvolts.

  13. Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles

    Treesearch

    Vladimir A Kovalev; Wei Min Hao; Cyle Wold

    2007-01-01

    A new method is considered that can be used for inverting data obtained from a combined elastic-inelastic lidar or a high spectral resolution lidar operating in a one-directional mode, or an elastic lidar operating in a multiangle mode. The particulate extinction coefficient is retrieved from the simultaneously measured profiles of the particulate backscatter...

  14. Artificial optical emissions in the thermosphere induced by powerful radio waves: A review

    NASA Astrophysics Data System (ADS)

    Kosch, M.; Senior, A.; Gustavsson, B.; Grach, S.; Pedersen, T.; Rietveld, M.

    High-power high-frequency radio waves beamed into the ionosphere with O-mode polarization cause plasma turbulence which can accelerate electrons These electrons collide with the F-layer neutrals causing artificial optical emissions identical to natural aurora The brightest optical emissions are O 1D 630 nm with a threshold of 2 eV and O 1S 557 7 nm with a threshold of 4 2 eV The optical emissions give direct evidence of electron acceleration by plasma turbulence as well as their non-Maxwellian energy spectrum HF pumping of the ionosphere also causes electron temperature enhancements but these alone are not sufficient to explain the optical emissions EISCAT plasma-line measurements indicate that the enhanced electron temperatures are consistent with the bulk of the electrons having a Maxwellian energy spectrum Novel discoveries include 1 Very large electron temperature enhancements of several 1000 K which maximise along the magnetic field line direction 2 Ion temperature enhancements of a few 100 K 3 Large ion outflows exceeding 200 m s 4 The F-layer optical emission maximizes sharply near the magnetic zenith with clear evidence of self-focusing 5 The optical emission generally appears below the HF pump reflection altitude as well as the upper-hybrid resonance height 6 The optical emission and HF coherent radar backscatter generally minimize when pumping on the third or higher electron gyro-harmonic frequency suggesting upper-hybrid waves as the primary mechanism 7 The optical emissions and HF coherent backscatter are enhanced on the

  15. The aCORN backscatter-suppressed beta spectrometer

    DOE PAGES

    Hassan, M. T.; Bateman, F.; Collett, B.; ...

    2017-06-16

    Backscatter of electrons from a beta detector, with incomplete energy deposition, can lead to undesirable effects in many types of experiments. We present and discuss the design and operation of a backscatter-suppressed beta spectrometer that was developed as part of a program to measure the electron–antineutrino correlation coefficient in neutron beta decay (aCORN). An array of backscatter veto detectors surrounds a plastic scintillator beta energy detector. The spectrometer contains an axial magnetic field gradient, so electrons are efficiently admitted but have a low probability for escaping back through the entrance after backscattering. Lastly, the design, construction, calibration, and performance ofmore » the spectrometer are discussed.« less

  16. Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications.

    PubMed

    Winkelmann, A; Nolze, G; Vespucci, S; Naresh-Kumar, G; Trager-Cowan, C; Vilalta-Clemente, A; Wilkinson, A J; Vos, M

    2017-09-01

    We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  17. Beta systems error analysis

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The atmospheric backscatter coefficient, beta, measured with an airborne CO Laser Doppler Velocimeter (LDV) system operating in a continuous wave, focussed model is discussed. The Single Particle Mode (SPM) algorithm, was developed from concept through analysis of an extensive amount of data obtained with the system on board a NASA aircraft. The SPM algorithm is intended to be employed in situations where one particle at a time appears in the sensitive volume of the LDV. In addition to giving the backscatter coefficient, the SPM algorithm also produces as intermediate results the aerosol density and the aerosol backscatter cross section distribution. A second method, which measures only the atmospheric backscatter coefficient, is called the Volume Mode (VM) and was simultaneously employed. The results of these two methods differed by slightly less than an order of magnitude. The measurement uncertainties or other errors in the results of the two methods are examined.

  18. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber.

    PubMed

    Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi

    2011-12-19

    A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.

  19. Statistical Properties of a Ring Laser with Injected Signal and Backscattering

    NASA Astrophysics Data System (ADS)

    Leng, Feng; Zhu, Shi-Qun

    2001-01-01

    The statistical properties of a homogeneously broadened ring laser with an injected signal are investigated and the normalized two-mode intensity auto- and cross-correlation functions are calculated by a full saturation laser theory with backscattering. The theoretical predictions are in good agreement with the experimental measurements. Further investigation reveals that the backscattering can reduce the fluctuations in the system while the full saturation effect plays a major role when the laser is operated above threshold. It is also quite important to notice that the injected signal can drive the weak mode from incoherent light to coherent light. The project supported by National Natural Science Foundation of China (Grant No. 19874046) and Natural Science Foundation of Jiangsu Education Commission of China

  20. Scanning electron microscopy of bone.

    PubMed

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  1. On the passive probing of fiber optic quantum communication channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korol'kov, A. V., E-mail: sergei.kulik@gmail.co; Katamadze, K. G.; Kulik, S. P.

    2010-04-15

    Avalanche photodetectors based on InGaAs:P are the most sensitive and only detectors operating in the telecommunication wavelength range 1.30-1.55 {mu}m in the fiber optic quantum cryptography systems that can operate in the single photon count mode. In contrast to the widely used silicon photodetectors for wavelengths up to 1 {mu}m operating in a waiting mode, these detectors always operate in a gated mode. The production of an electron-hole pair in the process of the absorption of a photon and the subsequent appearance of an avalanche of carriers can be accompanied by the inverse processes of the recombination and emission ofmore » photons. Such a backward emission can present a potential serious problem for the stability of fiber optic quantum cryptography systems against passive probing. The results of analyzing the detection of backscattered radiation are reported. The probability of such an emission has been estimated.« less

  2. Majorana zero modes in Dirac semimetal Josephson junctions

    NASA Astrophysics Data System (ADS)

    Li, Chuan; de Boer, Jorrit; de Ronde, Bob; Huang, Yingkai; Golden, Mark; Brinkman, Alexander

    We have realized proximity-induced superconductivity in a Dirac semimetal and revealed the topological nature of the superconductivity by the observation of Majorana zero modes. As a Dirac semimetal, Bi0.97Sb0.03 is used, where a three-dimensional Dirac cone exists in the bulk due to an accidental touching between conduction and valence bands. Electronic transport measurements on Hall-bars fabricated out of Bi0.97Sb0.03 flakes consistently show negative magnetoresistance for magnetic fields parallel to the current, which is associated with the chiral anomaly. In perpendicular magnetic fields, we see Shubnikov-de Haas oscillations that indicate very low carrier densities. The low Fermi energy and protection against backscattering in our Dirac semimetal Josephson junctions provide favorable conditions for a large contribution of Majorana zero modes to the supercurrent. In radiofrequency irradiation experiments, we indeed observe these Majorana zero modes in Nb-Bi0.97Sb0.03-Nb Josephson junctions as a 4 π periodic contribution to the current-phase relation.

  3. Does prism width from the shell prismatic layer have a random distribution?

    NASA Astrophysics Data System (ADS)

    Vancolen, Séverine; Verrecchia, Eric

    2008-10-01

    A study of the distribution of the prism width inside the prismatic layer of Unio tumidus (Philipsson 1788, Diss Hist-Nat, Berling, Lundæ) from Lake Neuchâtel, Switzerland, has been conducted in order to determine whether or not this distribution is random. Measurements of 954 to 1,343 prism widths (depending on shell sample) have been made using a scanning electron microscope in backscattered electron mode. A white noise test has been applied to the distribution of prism sizes (i.e. width). It shows that there is no temporal cycle that could potentially influence their formation and growth. These results suggest that prism widths are randomly distributed, and related neither to external rings nor to environmental constraints.

  4. Localization of massless Dirac particles via spatial modulations of the Fermi velocity

    NASA Astrophysics Data System (ADS)

    Downing, C. A.; Portnoi, M. E.

    2017-08-01

    The electrons found in Dirac materials are notorious for being difficult to manipulate due to the Klein phenomenon and absence of backscattering. Here we investigate how spatial modulations of the Fermi velocity in two-dimensional Dirac materials can give rise to localization effects, with either full (zero-dimensional) confinement or partial (one-dimensional) confinement possible depending on the geometry of the velocity modulation. We present several exactly solvable models illustrating the nature of the bound states which arise, revealing how the gradient of the Fermi velocity is crucial for determining fundamental properties of the bound states such as the zero-point energy. We discuss the implications for guiding electronic waves in few-mode waveguides formed by Fermi velocity modulation.

  5. Electronic transport across a junction between armchair graphene nanotube and zigzag nanoribbon. Transmission in an armchair nanotube without a zigzag half-line of dimers

    NASA Astrophysics Data System (ADS)

    Sharma, Basant Lal

    2018-05-01

    Based on the well known nearest-neighbor tight-binding approximation for graphene, an exact expression for the electronic conductance across a zigzag nanoribbon/armchair nanotube junction is presented for non-interacting electrons. The junction results from the removal of a half-row of zigzag dimers in armchair nanotube, or equivalently by partial rolling of zigzag nanoribbon and insertion of a half-row of zigzag dimers in between. From the former point of view, a discrete form of Dirichlet condition is imposed on a zigzag half-line of dimers assuming the vanishing of wave function outside the physical structure. A closed form expression is provided for the reflection and transmission moduli for the outgoing wave modes for each given electronic wave mode incident from either side of the junction. It is demonstrated that such a contact junction between the nanotube and nanoribbon exhibits negligible backscattering, and the transmission has been found to be nearly ballistic. In contrast to the previously reported studies for partially unzipped carbon nanotubes (CNTs), using the same tight binding model, it is found that due to the "defect" there is certain amount of mixing between the electronic wave modes with even and odd reflection symmetries. But the junction remains a perfect valley filter for CNTs at certain energy ranges. Applications aside from the electronic case, include wave propagation in quasi-one-dimensional honeycomb structures of graphene-like constitution. The paper includes several numerical calculations, analytical derivations, and graphical results, which complement the provision of succinct closed form expressions.

  6. Investigation of the optimal backscatter for an aSi electronic portal imaging device.

    PubMed

    Ko, Lung; Kim, Jong Oh; Siebers, Jeffrey V

    2004-05-07

    The effects of backscattered radiation on the dosimetric response of the Varian aS500 amorphous silicon electronic portal imaging device (EPID) are studied. Measurements demonstrate that radiation backscattered from the EPID mechanical support structure causes 5% asymmetries in the detected signal. To minimize the effect of backscattered radiation from the support structure, this work proposes adding material downstream of the EPID phosphor which provides uniform backscattering material to the phosphor and attenuates backscatter from the support structure before it reaches the phosphor. Two material locations were studied: downstream of the existing image cassette and within the cassette, immediately downstream of the flat-panel imager glass panel. Monte Carlo simulations were used to determine the thicknesses of water, Pb and Cu backscattering materials required to saturate the backscattered signal response for 6 MV and 18 MV beams for material thicknesses up to 50 mm. Water was unable to saturate the backscattered signal for thicknesses up to 50 mm for both energies. For Pb, to obtain a signal within 1% of saturation, 3 mm was required at 6 MV, and 6.8 mm was required at 18 MV. For Cu, thicknesses of 20.6 mm and 22.6 mm were required for the 6 MV and 18 MV beams, respectively. For saturation thicknesses, at 6 MV, the Cu backscatter enhanced the signal more than for Pb (Cu 1.25, Pb 1.11), but at 18 MV the reverse was found (Cu 1.19, Pb 1.23). This is due to the fact that at 6 MV, the backscattered radiation signal is dominated by low-energy scattered photons, which are readily attenuated by the Pb, while at 18 MV, electron backscatter contributes substantially to the signal. Image blurring caused by backscatter spread was less for Pb than Cu. Placing Pb immediately downstream of the glass panel further reduced the signal spread and increased the backscatter enhancement to 1.20 and 1.39 for the 6 MV and 18 MV beams, respectively. Overall, it is determined that adding approximately 5 mm of Pb between the detector and the mechanical support structure will substantially reduce the nonuniformity in the backscattered signals for 6 MV and 18 MV photon beams.

  7. Comparisons between MCNP, EGS4 and experiment for clinical electron beams.

    PubMed

    Jeraj, R; Keall, P J; Ostwald, P M

    1999-03-01

    Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza

    A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of themore » differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.« less

  9. Cell surface and cell outline imaging in plant tissues using the backscattered electron detector in a variable pressure scanning electron microscope

    PubMed Central

    2013-01-01

    Background Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector. In one application, we used the backscattered electron detector under low vacuum conditions to collect images of uncoated barley leaf tissue followed by simple quantification of cell areas. Results Here, we outline methods for backscattered electron imaging of a variety of plant tissues with particular focus on collecting images for quantification of cell size and shape. We demonstrate the advantages of this technique over other methods to obtain high contrast cell outlines, and define a set of parameters for imaging Arabidopsis thaliana leaf epidermal cells together with a simple image analysis protocol. We also show how to vary parameters such as accelerating voltage and chamber pressure to optimise imaging in a range of other plant tissues. Conclusions Backscattered electron imaging of uncoated plant tissue allows acquisition of images showing details of plant morphology together with images of high contrast cell outlines suitable for semi-automated image analysis. The method is easily adaptable to many types of tissue and suitable for any laboratory with standard SEM preparation equipment and a variable-pressure-SEM or tabletop SEM. PMID:24135233

  10. Aerosol Profile Retrievals from Integrated Dual Wavelengths Space Lidar ESSP3-CENA and Spectral Radiance MODIS Data

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Mattoo, Shana; Tanre, Didier; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The ESSP3-CENA space mission (formally PICASSO-CENA) will provide continues global observations with a two wavelength lidar. The attenuated backscattering coefficients measured by the lidar, have valuable information about the vertical distribution of aerosol particles and their sizes. However the information cannot be mapped into unique aerosol physical properties. Infinite number of physical solutions with different attenuations through the atmosphere can reconstruct the same two wavelength backscattered profile measured from space. Spectral radiance measured by MODIS simultaneously with the ESSP3 data can constrain the problem and resolve this ambiguity to a large extent. Sensitivity study shows that inversion of the integrated MODIS+ESSP3 data can derive the vertical profiles of the fine and coarse modes mixed in the same atmospheric column in the presence of moderate calibration uncertainties and electronic noise (approx. 10%). We shall present the sensitivity study and results from application of the technique to measurements in the SAFARI-2000 and SHADE experiments.

  11. TH-AB-BRA-10: The Physics of Interface Effects for Radiation Treatments in a MRI-Linac: A Monte Carlo Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, S; Sarfehnia, A; Kim, A

    Purpose: To investigate and explain the interface effects for clinically relevant materials being irradiated in the presence of a 1.5 T transverse magnetic field. Methods: Interface effects were investigated using Geant4.10.1 both with (B-On) and without (B-Off) a magnetic field for an Elekta MRI-Linac. A slab of thickness 8 cm, representing inhomogeneity, was placed at a depth of 4 cm in a 20×20×20 cm water phantom. Backscattered electron fluence was calculated through a 20×20 cm plane aligned with the surface of the inhomogeneity. Inhomogeneities investigated were lung, bone, aluminum, titanium, stainless steel, and dental filling. A photon beam with fieldmore » size of 2×2 cm at the isocenter and SAD of 143.5 cm was generated from a point source with energy distribution sampled from a histogram representing the true Elekta MRI-Linac photon spectrum. Results: In the B-On case, if the heterogeneity is a low Z{sub eff} material, such as lung, the backscattered electron fluence is increased considerably, i.e. by 54 %, and the corresponding dose is expected to be higher near the interface compared to the B-Off case. On the contrary, if the heterogeneity is a high Z{sub eff} material then the backscattered electron fluence is reduced in the B-On electron fluence is reduced in the B-On case. This reduction leads to a lower dose deposition at the interface compared to the B-Off case. Conclusion: The reduction in dose at the interface, in the B-On case, is directly related to the reduction in backscattered electron fluence. The reduction in backscattered electron fluence occurs due to two different reasons. First, the electron energy spectrum hitting the interface is changed for the B-On case which changes the electron scattering probability. Second, some electrons that are looping under the influence of the magnetic field are captured by the higher density side of the interface and no longer contribute to the backscattered electron stream. Funding support for this study was provided by ElektaTM.« less

  12. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  13. The energy-dependent electron loss model: backscattering and application to heterogeneous slab media.

    PubMed

    Lee, Tae Kyu; Sandison, George A

    2003-01-21

    Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, chi, in the algorithm to be determined in advance of calculation.

  14. The energy-dependent electron loss model: backscattering and application to heterogeneous slab media

    NASA Astrophysics Data System (ADS)

    Lee, Tae Kyu; Sandison, George A.

    2003-01-01

    Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, χ, in the algorithm to be determined in advance of calculation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)

  16. Monitoring radiofrequency ablation with ultrasound Nakagami imaging.

    PubMed

    Wang, Chiao-Yin; Geng, Xiaonan; Yeh, Ta-Sen; Liu, Hao-Li; Tsui, Po-Hsiang

    2013-07-01

    Radiofrequency ablation (RFA) is a widely used alternative modality in the treatment of liver tumors. Ultrasound B-mode imaging is an important tool to guide the insertion of the RFA electrode into the tissue. However, it is difficult to visualize the ablation zone because RFA induces the shadow effect in a B-scan. Based on the randomness of ultrasonic backscattering, this study proposes ultrasound Nakagami imaging, which is a well-established method for backscattered statistics analysis, as an approach to complement the conventional B-scan for evaluating the ablation region. Porcine liver samples (n = 6) were ablated using a RFA system and monitored by employing an ultrasound scanner equipped with a 7.5 MHz linear array transducer. During the stages of ablation (0-12 min) and postablation (12-24 min), the raw backscattered data were acquired at a sampling rate of 30 MHz for B-mode, Nakagami imaging, and polynomial approximation of Nakagami imaging. The contrast-to-noise ratio (CNR) was also calculated to compare the image contrasts of the B-mode and Nakagami images. The results demonstrated that the Nakagami image has the ability to visualize changes in the backscattered statistics in the ablation zone, including the shadow region during RFA. The average Nakagami parameter increased from 0.2 to 0.6 in the ablation stage, and then decreased to approximately 0.3 at the end of the postablation stage. Moreover, the CNR of the Nakagami image was threefold that of the B-mode image, showing that the Nakagami image has a better image contrast for monitoring RFA. Specifically, the use of the polynomial approximation equips the Nakagami image with an enhanced ability to estimate the range of the ablation region. This study demonstrated that ultrasound Nakagami imaging based on the analysis of backscattered statistics has the ability to visualize the RFA-induced ablation zone, even if the shadow effect exists in the B-scan.

  17. In-Depth View of the Structure and Growth of SnO2 Nanowires and Nanobrushes.

    PubMed

    Stuckert, Erin P; Geiss, Roy H; Miller, Christopher J; Fisher, Ellen R

    2016-08-31

    Strategic application of an array of complementary imaging and diffraction techniques is critical to determine accurate structural information on nanomaterials, especially when also seeking to elucidate structure-property relationships and their effects on gas sensors. In this work, SnO2 nanowires and nanobrushes grown via chemical vapor deposition (CVD) displayed the same tetragonal SnO2 structure as revealed via powder X-ray diffraction bulk crystallinity data. Additional characterization using a range of electron microscopy imaging and diffraction techniques, however, revealed important structure and morphology distinctions between the nanomaterials. Tailoring scanning transmission electron microscopy (STEM) modes combined with transmission electron backscatter diffraction (t-EBSD) techniques afforded a more detailed view of the SnO2 nanostructures. Indeed, upon deeper analysis of individual wires and brushes, we discovered that, despite a similar bulk structure, wires and brushes grew with different crystal faces and lattice spacings. Had we not utilized multiple STEM diffraction modes in conjunction with t-EBSD, differences in orientation related to bristle density would have been overlooked. Thus, it is only through a methodical combination of several structural analysis techniques that precise structural information can be reliably obtained.

  18. The surface topography of the choroid plexus. Environmental, low and high vacuum scanning electron microscopy.

    PubMed

    Mestres, Pedro; Pütz, Norbert; Garcia Gómez de Las Heras, Soledad; García Poblete, Eduardo; Morguet, Andrea; Laue, Michael

    2011-05-01

    Environmental scanning electron microscopy (ESEM) allows the examination of hydrated and dried specimens without a conductive metal coating which could be advantageous in the imaging of biological and medical objects. The aim of this study was to assess the performance and benefits of wet-mode and low vacuum ESEM in comparison to high vacuum scanning electron microscopy (SEM) using the choroid plexus of chicken embryos as a model, an organ of the brain involved in the formation of cerebrospinal fluid in vertebrates. Specimens were fixed with or without heavy metals and examined directly or after critical point drying with or without metal coating. For wet mode ESEM freshly excised specimens without any pre-treatment were also examined. Conventional high vacuum SEM revealed the characteristic morphology of the choroid plexus cells at a high resolution and served as reference. With low vacuum ESEM of dried but uncoated samples the structure appeared well preserved but charging was a problem. It could be reduced by a short beam dwell time and averaging of images or by using the backscattered electron detector instead of the gaseous secondary electron detector. However, resolution was lower than with conventional SEM. Wet mode imaging was only possible with tissue that had been stabilized by fixation. Not all surface details (e.g. microvilli) could be visualized and other structures, like the cilia, were deformed. In summary, ESEM is an additional option for the imaging of bio-medical samples but it is problematic with regard to resolution and sample stability during imaging. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Switchable and non-switchable zero backscattering of dielectric nano-resonators

    DOE PAGES

    Wang, Feng; Wei, Qi -Huo; Htoon, Han

    2015-02-27

    Previous studies have shown that two-dimensional (2D) arrays of high-permittivity dielectric nanoparticles are capable of fully suppressing backward light scattering when the resonant frequencies of electrical and magnetic dipolar modes are coincident. In this paper, we numerically demonstrate that the zero-backscattering of 2D Si nanocuboid arrays can be engineered to be switchable or non-switchable in response to a variation in the environmental refractive index. For each cuboid width/length, there exist certain cuboid heights and orthogonal periodicity ratio for which the electrical and magnetic resonances exhibit similar spectra widths and equivalent sensitivities to the environmental index changes, so that the zero-backscatteringmore » is non-switchable upon environmental change. For some other cuboid heights and certain anisotropic periodicity ratios, the electric and magnetic modes exhibit different sensitivities to environmental index changes, making the zero-backscattering sensitive to environmental changes. We also show that by using two different types of nano-resonators in the unit cell, Fano resonances can be introduced to greatly enhance the switching sensitivity of zero-backscattering.« less

  20. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  1. Lidar instruments proposed for Eos

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    1990-01-01

    Lidar, an acronym for light detection and ranging, represents a class of instruments that utilize lasers to send probe beams into the atmosphere or onto the surface of the Earth and detect the backscattered return in order to measure properties of the atmosphere or surface. The associated technology has matured to the point where two lidar facilities, Geodynamics Laser Ranging System (GLRS), and Laser Atmospheric Wind Sensor (LAWS) were accepted for Phase 2 studies for Eos. A third lidar facility Laser Atmospheric Sounder and Altimeter (LASA), with the lidar experiment EAGLE (Eos Atmospheric Global Lidar Experiment) was proposed for Eos. The generic lidar system has a number of components. They include controlling electronics, laser transmitters, collimating optics, a receiving telescope, spectral filters, detectors, signal chain electronics, and a data system. Lidar systems that measure atmospheric constituents or meteorological parameters record the signal versus time as the beam propagates through the atmosphere. The backscatter arises from molecular (Rayleigh) and aerosol (Mie) scattering, while attenuation arises from molecular and aerosol scattering and absorption. Lidar systems that measure distance to the Earth's surface or retroreflectors in a ranging mode record signals with high temporal resolution over a short time period. The overall characteristics and measurements objectives of the three lidar systems proposed for Eos are given.

  2. Spall Response of Additive Manufactured Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Brown, Andrew; Gregg, Adam; Escobedo, Jp; Hazell, Paul; East, Daniel; Quadir, Zakaria

    2017-06-01

    Additive manufactured (AM) Ti-6Al-4V was produced via electron beam melting (EBM) and laser melting deposition (LMD) techniques. The dynamic response of AM varieties of common aerospace and infrastructure metals are yet to be fully characterized and compared to their traditionally processed counterparts. Spall damage is one of the primary failure modes in metals subjected to shock loading from high velocity impact. Both EBM and LMD Ti-6Al-4V were shock loaded via flyer-target plate impact using a single-stage light gas gun. Target plates were subjected to pressures just above the spall strength of the material (3-5 GPa) to investigate the early onset of damage nucleation as a function of processing technique and shock orientation with respect to the AM-build direction. Post-mortem characterization of the spall damage and surrounding microstructure was performed using a combination of optical microscopy, scanning electron microscopy, and electron backscatter diffraction.

  3. Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua

    2015-12-01

    Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.

  4. Dual-mode endomicroscopy for detection of epithelial dysplasia in the mouth: a descriptive pilot study

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Nico; Poh, Catherine F.; Lam, Sylvia; Lane, Pierre; Guillaud, Martial; MacAulay, Calum E.

    2017-08-01

    Dual-mode endomicroscopy is a diagnostic tool for early cancer detection. It combines the high-resolution nuclear tissue contrast of fluorescence endomicroscopy with quantified depth-dependent epithelial backscattering as obtained by diffuse optical microscopy. In an in vivo pilot imaging study of 27 oral lesions from 21 patients, we demonstrate the complementary diagnostic value of both modalities and show correlations between grade of epithelial dysplasia and relative depth-dependent shifts in light backscattering. When combined, the two modalities provide diagnostic sensitivity to both moderate and severe epithelial dysplasia in vivo.

  5. Simulation of electron transport during electron-beam-induced deposition of nanostructures

    PubMed Central

    Jeschke, Harald O; Valentí, Roser

    2013-01-01

    Summary We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments. PMID:24367747

  6. Random fiber laser based on artificially controlled backscattering fibers.

    PubMed

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  7. Temperature dependence Infrared and Raman studies of III-V/II-VI core-shell nanostructures

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia S.; McCombe, Bruce D.; Lucey, Derrick

    2005-03-01

    The temperature dependence (8 K < T < 300 K) of optical phonon modes confined in InP/II-VI core-shell nanostructures have been investigated by far-infrared (FIR) and Raman scattering spectroscopies. The core-shell nanostructures were fabricated by colloidal chemistry and characterized by transmission electron microscopy and X-ray diffraction prior to being embedded in a polycrystalline CsI matrix for the present studies. The FIR measurements of InP/ZnSe sample exhibits three absorption features, one clearly due to the Froelich mode of the InP cores, and the others related to modes associated with the shell layer and its coupling to the matrix. Strong mixing of the characteristic vibrations of each constituent material was observed for InP/ZnS sample. Raman scattering (457.9 nm excitation) features were determined without polarization selection in the backscattering geometry. Interesting T-dependent resonant Raman effect of the surface optical phonon modes has been discovered in InP/ZnSe sample. Reasonable agreement is obtained between the Raman and FIR results, as well as with theoretical calculations.

  8. Collective effects in the Thomson back-scattering between a laser pulse and a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Bacci, A.; Maroli, C.; Petrillo, V.; Serafini, L.

    2006-08-01

    Collective effects in the radiation emission via Thomson back-scattering of an intense optical laser pulse by high brightness electron beams are analyzed. The micro-bunching of the electron beam on the scale of the wavelength of the emitted radiation and the consequent free-electron-laser instability may significantly enhance the number of photons emitted. Scaling-laws of the radiation properties, both in the collective and incoherent spontaneous regimes versus laser and electron beam parameters are discussed in the framework of the one-dimensional model.

  9. Electron Microscope Studies of Cadmium Mercury Telluride

    NASA Astrophysics Data System (ADS)

    Lyster, Martin

    Available from UMI in association with The British Library. Requires signed TDF. Epitaxial layers of Cd_{x }Hg_{(1-x)}Te grown on various substrates by liquid phase epitaxy and metallo-organic vapour phase epitaxy have been studied using transmission and scanning electron microscopy, in a variety of contrast modes. Wavelength-dispersive X-ray microanalysis has been used to study interfaces in epitaxial specimens, and the results are used to derive diffusion coefficients for a range of values of x in Cd_ {x}Hg_{(1-x)} Te. Extensive use has been made of back-scattered electron contrast in the SEM as a means of compositional mapping, and defect structures are imaged by this technique. The back-scattered electron contrast at interfaces has been studied in detail and is modelled using the Monte Carlo approach. The modelling is combined with calculations and practical measurements of the probe size in the SEM instrument used in the work, to arrive at a quantitative explanation of this contrast. The SEM and scintillator detector used allow a spatial resolution of better than 1000A, but it is shown that improvements in this are possible with present technology. Scanning infra-red microscopy (SIRM) and high -resolution transmission electron microscopy (HREM) have been applied to the study of CdTe. SIRM images reveal information about Te precipitation, including particle size and density. HREM images provide results concerning dislocation structures in CdTe. Selected-area diffraction contrast TEM results are presented which illustrate the microstructure of LPE and MOVPE material; and TEM foil preparation techniques are discussed, including the choice of ion species for milling cross-sectional specimens. In view of the results obtained, suggestions are made for future work in this field.

  10. Backscattering of electrons from solid targets

    NASA Astrophysics Data System (ADS)

    Dapor, Maurizio

    1990-11-01

    A simple equation is derived which describes the electron backscattering coefficient as a function of the target atomic number in the primary energy range 2-45 KeV. Such an equation, very useful for practical purposes, is in better agreement with the experimental data of Palluel and of Cosslett and Thomas than both the treatments of Everhart and of Archard.

  11. Comparison of Electron Imaging Modes for Dimensional Measurements in the Scanning Electron Microscope.

    PubMed

    Postek, Michael T; Vladár, András E; Villarrubia, John S; Muto, Atsushi

    2016-08-01

    Dimensional measurements from secondary electron (SE) images were compared with those from backscattered electron (BSE) and low-loss electron (LLE) images. With the commonly used 50% threshold criterion, the lines consistently appeared larger in the SE images. As the images were acquired simultaneously by an instrument with the capability to operate detectors for both signals at the same time, the differences cannot be explained by the assumption that contamination or drift between images affected the SE, BSE, or LLE images differently. Simulations with JMONSEL, an electron microscope simulator, indicate that the nanometer-scale differences observed on this sample can be explained by the different convolution effects of a beam with finite size on signals with different symmetry (the SE signal's characteristic peak versus the BSE or LLE signal's characteristic step). This effect is too small to explain the >100 nm discrepancies that were observed in earlier work on different samples. Additional modeling indicates that those discrepancies can be explained by the much larger sidewall angles of the earlier samples, coupled with the different response of SE versus BSE/LLE profiles to such wall angles.

  12. Ion beam induced optical and surface modification in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-01

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm-1 along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  13. In-situ integrity control of frozen-hydrated, vitreous lamellas prepared by the cryo-focused ion beam-scanning electron microscope.

    PubMed

    de Winter, D A Matthijs; Mesman, Rob J; Hayles, Michael F; Schneijdenberg, Chris T W M; Mathisen, Cliff; Post, Jan A

    2013-07-01

    Recently a number of new approaches have been presented with the intention to produce electron beam transparent cryo-sections (lamellas in FIB-SEM terminology) from hydrated vitreously frozen cryo samples with a Focused Ion Beam (FIB) system, suitable for cryo-Transmission Electron Microscopy (cryo-TEM). As the workflow is still challenging and time consuming, it is important to be able to determine the integrity and suitability (cells vs. no cells; vitreous vs. crystalline) of the lamellas. Here we present an in situ method that tests both conditions by using the cryo-Scanning Electron Microscope (cryo-SEM) in transmission mode (TSEM; Transmission Scanning Electron Microscope) once the FIB-made lamella is ready. Cryo-TSEM imaging of unstained cells yields strong contrast, enabling direct imaging of material present in the lamellas. In addition, orientation contrast is shown to be suitable for distinguishing crystalline lamellas from vitreous lamellas. Tilting the stage a few degrees results in changes of contrast between ice grains as a function of the tilt angle, whereas the contrast of areas with vitreous ice remains unchanged as a function of the tilt angle. This orientation contrast has subsequently been validated by cryo-Electron BackScattered Diffraction (EBSD) in transmission mode. Integration of the presented method is discussed and the role it can play in future developments for a new and innovative all-in-one cryo-FIB-SEM life sciences instrument. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Topological phononic insulator with robust pseudospin-dependent transport

    NASA Astrophysics Data System (ADS)

    Xia, Bai-Zhan; Liu, Ting-Ting; Huang, Guo-Liang; Dai, Hong-Qing; Jiao, Jun-Rui; Zang, Xian-Guo; Yu, De-Jie; Zheng, Sheng-Jie; Liu, Jian

    2017-09-01

    Topological phononic states, which facilitate unique acoustic transport around defects and disorders, have significantly revolutionized our scientific cognition of acoustic systems. Here, by introducing a zone folding mechanism, we realize the topological phase transition in a double Dirac cone of the rotatable triangular phononic crystal with C3 v symmetry. We then investigate the distinct topological edge states on two types of interfaces of our phononic insulators. The first one is a zigzag interface which simultaneously possesses a symmetric mode and an antisymmetric mode. Hybridization of the two modes leads to a robust pseudospin-dependent one-way propagation. The second one is a linear interface with a symmetric mode or an antisymmetric mode. The type of mode is dependent on the topological phase transition of the phononic insulators. Based on the rotatability of triangular phononic crystals, we consider several complicated contours defined by the topological zigzag interfaces. Along these contours, the acoustic waves can unimpededly transmit without backscattering. Our research develops a route for the exploration of the topological phenomena in experiments and provides an excellent framework for freely steering the acoustic backscattering-immune propagation within topological phononic structures.

  15. A Simulation of the Topographic Contrast in the SEM

    NASA Astrophysics Data System (ADS)

    Kotera, Masatoshi; Fujiwara, Takafumi; Suga, Hiroshi; Wittry, David B.

    1990-10-01

    A simulation model is presented to analyze the topographic contast in the scanning electron microscope (SEM). This simulation takes into account all major mechanisms from signal generation to signal detection in the SEM. The calculated result shows that the resolution of the secondary electron image is better than that of the backscattered electron image for 1 and 3 keV primary electrons incident on an Al target. An asymmetric intensity profile of a signal at a topographic pattern, usually found in the SEM equipped with the Everhart-Thornley detector, is mainly due to the asymmetric profile of the backscattered electron signal.

  16. SuperDARN elevation angle calibration using HAARP-induced backscatter

    NASA Astrophysics Data System (ADS)

    Shepherd, S. G.; Thomas, E. G.; Palinski, T. J.; Bristow, W.

    2017-12-01

    SuperDARN radars rely on refraction in the ionosphere to make Doppler measurements of backscatter from ionospheric irregularities or the ground/sea, often to ranges of 4000 km or more. Elevation angle measurements of backscattered signals can be important for proper geolocation, mode identification and Doppler velocity corrections to the data. SuperDARN radars are equipped with a secondary array to make elevation angle measurements, however, calibration is often difficult. One method of calibration is presented here, whereby backscatter from HAARP-induced irregularities, at a known location, is used to independently determine the elevation angle of signals. Comparisons are made for several radars with HAARP in their field-of-view in addition to the results obtained fromray-tracing in a model ionosphere.

  17. Energy dependence of the spatial distribution of inelastically scattered electrons in backscatter electron diffraction

    NASA Astrophysics Data System (ADS)

    Ram, Farangis; De Graef, Marc

    2018-04-01

    In an electron backscatter diffraction pattern (EBSP), the angular distribution of backscattered electrons (BSEs) depends on their energy. Monte Carlo modeling of their depth and energy distributions suggests that the highest energy BSEs are more likely to hit the bottom of the detector than the top. In this paper, we examine experimental EBSPs to validate the modeled angular BSE distribution. To that end, the Kikuchi bandlet method is employed to measure the width of Kikuchi bands in both modeled and measured EBSPs. The results show that in an EBSP obtained with a 15 keV primary probe, the width of a Kikuchi band varies by about 0 .4∘ from the bottom of the EBSD detector to its top. The same is true for a simulated pattern that is composed of BSEs with 5 keV to 15 keV energies, which validates the Monte Carlo simulations.

  18. NRF Based Nondestructive Inspection System for SNM by Using Laser-Compton-Backscattering Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Ohgaki, H.; Omer, M.; Negm, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Hori, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.

    2015-10-01

    A non-destructive inspection system for special nuclear materials (SNMs) hidden in a sea cargo has been developed. The system consists of a fast screening system using neutron generated by inertial electrostatic confinement (IEC) device and an isotope identification system using nuclear resonance fluorescence (NRF) measurements with laser Compton backscattering (LCS) gamma-rays has been developed. The neutron flux of 108 n/sec has been achieved by the IEC in static mode. We have developed a modified neutron reactor noise analysis method to detect fission neutron in a short time. The LCS gamma-rays has been generated by using a small racetrack microtoron accelerator and an intense sub-nano second laser colliding head-on to the electron beam. The gamma-ray flux has been achieved more than 105 photons/s. The NRF gamma-rays will be measured using LaBr3(Ce) scintillation detector array whose performance has been measured by NRF experiment of U-235 in HIGS facility. The whole inspection system has been designed to satisfy a demand from the sea port.

  19. Multiple coherent light scattering in ultracold rubidium

    NASA Astrophysics Data System (ADS)

    Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2001-11-01

    We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.

  20. Multiple coherent light scattering in ultracold rubidium

    NASA Astrophysics Data System (ADS)

    Havey, M. D.; Sukenik, C. I.; Kulatunga, P.; Kupriyanov, D. V.; Sokolov, I. M.

    2001-05-01

    We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.

  1. Investigation of Optical Cavity Modes and Ultrafast Carrier Dynamics in Zinc Oxide Rods Using Second-Harmonic Generation and Transient Absorption Pump-Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Mehl, Brian Peter

    The polydispersity intrinsic to nanoscale and microscale semiconductor materials poses a major challenge to using individual objects as building blocks for device applications. The ability to manipulate the shape of ZnO structures is enormous, making it an ideal material for studying shape-dependent phenomena. We have built a nonlinear microscope used to directly image optical cavity modes in ZnO rods using second-harmonic generation. Images of second-harmonic generation in needle-shaped ZnO rods obtained from individual structures show areas of enhanced second-harmonic intensity along the longitudinal axis of the rod that are periodically distributed and symmetrically situated relative to the rod midpoint. The spatial modulation is a direct consequence of the fundamental optical field coupling into standing wave resonator modes of the ZnO structure, leading to an enhanced backscattered second-harmonic condition that cannot be achieved in bulk ZnO. A more complicated second-harmonic image is observed when excitation is below the band gap, which is attributed to whispering gallery modes. Additionally, the nonlinear microscope was combined with transient absorption pump-probe to follow the electron-hole recombination dynamics at different points within individual needle-shaped ZnO rods to characterize spatial differences in dynamical behavior. The results from pump-probe experiments are correlated with spatially resolved ultrafast emission measurements, and scanning electron microscopy provides structural details. Dramatically different electron-hole recombination dynamics are observed in the narrow tips compared to the interior, with the ends exhibiting a greater propensity for electron-hole plasma formation and faster recombination of carriers across the band gap that stem from a physical confinement of the charge carriers. In the interior of the rod, a greater fraction of the electron-hole recombination is trap-mediated and occurs on a significantly longer time scale.

  2. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  3. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  4. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  5. Mineral content changes in bone associated with damage induced by the electron beam.

    PubMed

    Bloebaum, Roy D; Holmes, Jennifer L; Skedros, John G

    2005-01-01

    Energy-dispersive x-ray (EDX) spectroscopy and backscattered electron (BSE) imaging are finding increased use for determining mineral content in microscopic regions of bone. Electron beam bombardment, however, can damage the tissue, leading to erroneous interpretations of mineral content. We performed elemental (EDX) and mineral content (BSE) analyses on bone tissue in order to quantify observable deleterious effects in the context of (1) prolonged scanning time, (2) scan versus point (spot) mode, (3) low versus high magnification, and (4) embedding in poly-methylmethacrylate (PMMA). Undemineralized cortical bone specimens from adult human femora were examined in three groups: 200x embedded, 200x unembedded, and 1000x embedded. Coupled BSE/EDX analyses were conducted five consecutive times, with no location analyzed more than five times. Variation in the relative proportions of calcium (Ca), phosphorous (P), and carbon (C) were measured using EDX spectroscopy, and mineral content variations were inferred from changes in mean gray levels ("atomic number contrast") in BSE images captured at 20 keV. In point mode at 200x, the embedded specimens exhibited a significant increase in Ca by the second measurement (7.2%, p < 0.05); in scan mode, a small and statistically nonsignificant increase (1.0%) was seen by the second measurement. Changes in P were similar, although the increases were less. The apparent increases in Ca and P likely result from decreases in C: -3.2% (p < 0.05) in point mode and -0.3% in scan mode by the second measurement. Analysis of unembedded specimens showed similar results. In contrast to embedded specimens at 200x, 1000x data showed significantly larger variations in the proportions of Ca, P, and C by the second or third measurement in scan and point mode. At both magnifications, BSE image gray level values increased (suggesting increased mineral content) by the second measurement, with increases up to 23% in point mode. These results show that mineral content measurements can be reliable when using coupled BSE/EDX analyses in PMMA-embedded bone if lower magnifications are used in scan mode and if prolonged exposure to the electron beam is avoided. When point mode is used to analyze minute regions, adjustments in accelerating voltages and probe current may be required to minimize damage.

  6. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  7. Observation of unidirectional backscattering-immune topological electromagnetic states.

    PubMed

    Wang, Zheng; Chong, Yidong; Joannopoulos, J D; Soljacić, Marin

    2009-10-08

    One of the most striking phenomena in condensed-matter physics is the quantum Hall effect, which arises in two-dimensional electron systems subject to a large magnetic field applied perpendicular to the plane in which the electrons reside. In such circumstances, current is carried by electrons along the edges of the system, in so-called chiral edge states (CESs). These are states that, as a consequence of nontrivial topological properties of the bulk electronic band structure, have a unique directionality and are robust against scattering from disorder. Recently, it was theoretically predicted that electromagnetic analogues of such electronic edge states could be observed in photonic crystals, which are materials having refractive-index variations with a periodicity comparable to the wavelength of the light passing through them. Here we report the experimental realization and observation of such electromagnetic CESs in a magneto-optical photonic crystal fabricated in the microwave regime. We demonstrate that, like their electronic counterparts, electromagnetic CESs can travel in only one direction and are very robust against scattering from disorder; we find that even large metallic scatterers placed in the path of the propagating edge modes do not induce reflections. These modes may enable the production of new classes of electromagnetic device and experiments that would be impossible using conventional reciprocal photonic states alone. Furthermore, our experimental demonstration and study of photonic CESs provides strong support for the generalization and application of topological band theories to classical and bosonic systems, and may lead to the realization and observation of topological phenomena in a generally much more controlled and customizable fashion than is typically possible with electronic systems.

  8. Copper Decoration of Carbon Nanotubes and High Resolution Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Probst, Camille

    A new process of decorating carbon nanotubes with copper was developed for the fabrication of nanocomposite aluminum-nanotubes. The process consists of three stages: oxidation, activation and electroless copper plating on the nanotubes. The oxidation step was required to create chemical function on the nanotubes, essential for the activation step. Then, catalytic nanoparticles of tin-palladium were deposited on the tubes. Finally, during the electroless copper plating, copper particles with a size between 20 and 60 nm were uniformly deposited on the nanotubes surface. The reproducibility of the process was shown by using another type of carbon nanotube. The fabrication of nanocomposites aluminum-nanotubes was tested by aluminum vacuum infiltration. Although the infiltration of carbon nanotubes did not produce the expected results, an interesting electron microscopy sample was discovered during the process development: the activated carbon nanotubes. Secondly, scanning transmitted electron microscopy (STEM) imaging in SEM was analysed. The images were obtained with a new detector on the field emission scanning electron microscope (Hitachi S-4700). Various parameters were analysed with the use of two different samples: the activated carbon nanotubes (previously obtained) and gold-palladium nanodeposits. Influences of working distance, accelerating voltage or sample used on the spatial resolution of images obtained with SMART (Scanning Microscope Assessment and Resolution Testing) were analysed. An optimum working distance for the best spatial resolution related to the sample analysed was found for the imaging in STEM mode. Finally, relation between probe size and spatial resolution of backscattered electrons (BSE) images was studied. An image synthesis method was developed to generate the BSE images from backscattered electrons coefficients obtained with CASINO software. Spatial resolution of images was determined using SMART. The analysis shown that using a probe size smaller than the size of the observed object (sample features) does not improve the spatial resolution. In addition, the effects of the accelerating voltage, the current intensity and the sample geometry and composition were analysed.

  9. Contrast and Raman spectroscopy study of single- and few-layered charge density wave material: 2H-TaSe2

    PubMed Central

    Hajiyev, Parviz; Cong, Chunxiao; Qiu, Caiyu; Yu, Ting

    2013-01-01

    In this article, we report the first successful preparation of single- and few-layers of tantalum diselenide (2H-TaSe2) by mechanical exfoliation technique. Number of layers is confirmed by white light contrast spectroscopy and atomic force microscopy (AFM). Vibrational properties of the atomically thin layers of 2H-TaSe2 are characterized by micro-Raman spectroscopy. Room temperature Raman measurements demonstrate MoS2-like spectral features, which are reliable for thickness determination. E1g mode, usually forbidden in backscattering Raman configuration is observed in the supported TaSe2 layers while disappears in the suspended layers, suggesting that this mode may be enabled because of the symmetry breaking induced by the interaction with the substrate. A systematic in-situ low temperature Raman study, for the first time, reveals the existence of incommensurate charge density wave phase transition in single and double-layered 2H-TaSe2 as reflected by a sudden softening of the second-order broad Raman mode resulted from the strong electron-phonon coupling (Kohn anomaly). PMID:24005335

  10. Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

    NASA Astrophysics Data System (ADS)

    Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.

    2015-11-01

    Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.

  11. Quasiparticle tunneling in the lowest Landau level

    NASA Astrophysics Data System (ADS)

    Hennel, Szymon; Scheidegger, Patrick; Kellermeier, Max; Hofmann, Andrea; Krähenmann, Tobias; Reichl, Christian; Wegscheider, Werner; Ihn, Thomas; Ensslin, Klaus

    2018-06-01

    We measure quasiparticle tunneling across a constriction in the first Landau level. In the limit of weak backscattering, the dependence of the tunneling conductance on temperature and dc-bias is in qualitative disagreement with existing theories. For stronger backscattering, data obtained in the ν =1 /3 state can be fitted to weak backscattering theory with the predicted effective fractional charge of e*=e /3 . The scaling parameter g is however not universal and depends strongly on the gate voltage applied to the constriction. At ν =4 /3 , a more complex picture emerges. We propose an interpretation in terms of selective tunneling between the multiple modes present at the edge.

  12. Simplifications of the RELIEF flow tagging system for laboratory use. [Raman Excitation plus Laser Induced Electronic Fluorescence

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.; Zhang, Boying; Miles, Richard B.; Diskin, Glenn

    1991-01-01

    The use of an O2:He stimulated Raman cell to generate the Stokes beam for the Raman vibrational pumping step of the RELIEF (Raman Excitation plus Laser-Induced Electronic Fluorescence) flow tagging method is reported. Use of the Raman cell rather than a dye laser provides pump and Stokes beams which are automatically frequency matched and temporally and spatially overlapped. The Nd:YAG pump laser is operated multilongitudinal mode, which eliminates the need for injection seeding, resulting in decreased operation complexity and improved stability with respect to acoustic noise. Results are presented for 1st Stokes conversion efficiency and stimulated Brillouin backscattering loss and are compared to the case of pure O2. Scanning CARS measurements of the Q-branch lineshape for both pure O2 and the O2:He mixture are also presented.

  13. Failure Behavior Characterization of Mo-Modified Ti Surface by Impact Test and Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Qin, Jianfeng; Zhang, Xiangyu; Lin, Naiming; Huang, Xiaobo; Tang, Bin

    2015-07-01

    Using the impact test and finite element simulation, the failure behavior of the Mo-modified layer on pure Ti was investigated. In the impact test, four loads of 100, 300, 500, and 700 N and 104 impacts were adopted. The three-dimensional residual impact dents were examined using an optical microscope (Olympus-DSX500i), indicating that the impact resistance of the Ti surface was improved. Two failure modes cohesive and wearing were elucidated by electron backscatter diffraction and energy-dispersive spectrometer performed in a field-emission scanning electron microscope. Through finite element forward analysis performed at a typical impact load of 300 N, stress-strain distributions in the Mo-modified Ti were quantitatively determined. In addition, the failure behavior of the Mo-modified layer was determined and an ideal failure model was proposed for high-load impact, based on the experimental and finite element forward analysis results.

  14. Raman scattering from TO phonons in (GaAs)n/(AlAs)n superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Han, H. X.; Li, G. H.; Jiang, D. S.; Ploog, K.

    1988-10-01

    (GaAS)n/(AlAs)n superlattices with n=4, 6, and 8 grown by molecular-beam epitaxy on (001)-oriented GaAs substrates were investigated by Raman scattering. In a strict backscattering geometry, confined TO-phonon modes with E symmetry are Raman forbidden. However, the effects due to near-Brewster-angle incidence and a large aperture of the scattering-light collecting lens create a small wave-vector component along the (110) orientation, and thus induce a Raman activity of TO phonons. When we take X∥[11¯0], Y∥[110], and Z∥[001], in the near-Z(YX)Z¯ backscattering configuration confined LO-phonon modes are Raman inactive. Using this configuration, we have for the first time observed both GaAs-like and AlAs-like confined TO-phonon modes at room temperature and under off-resonance conditions.

  15. The measurement of the winds near the ocean surface with a radiometer-scatterometer on Skylab

    NASA Technical Reports Server (NTRS)

    Pierson, W. J.; Moore, R. K.; Mcclain, E. P. (Principal Investigator); Cardone, V. J.; Young, J. D.; Greenwood, J. A.; Greenwood, C.; Fung, A. K.; Salfi, R.; Chan, H. L.

    1976-01-01

    The author has identified the following significant results. There were a total of twenty-six passes in the ZLV mode that yielded useful data. Six were in the in-track noncontiguous mode; all others were in the cross-track noncontiguous mode. The wind speed and direction, as effectively determined in a neutral atmosphere at 19.5 m above the sea surface, were found for each cell scanned by S193. It is shown how the passive microwave measurements were used both to compute the attenuation of the radar beam and to determine those cells where the backscatter measurement was suspect. Given the direction of the wind from some independent source, with the typical accuracy of measurement by available meteorological methods, a backscatter measurement at a nadir angle of 50, 43, or 32 deg can be used to compute the speed of the wind averaged over the illuminated area.

  16. Element-resolved Kikuchi pattern measurements of non-centrosymmetric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.au

    2017-01-15

    Angle-resolved electron Rutherford backscattering (ERBS) measurements using an electrostatic electron energy analyser can provide unique access to element-resolved crystallographic information. We present Kikuchi pattern measurements of the non-centrosymmetric crystal GaP, separately resolving the contributions of electrons backscattered from Ga and P. In comparison to element-integrated measurements like in the method of electron backscatter diffraction (EBSD), the effect of the absence of a proper 4-fold rotation axis in the point group of GaP can be sensed with a much higher visibility via the element-resolved Ga to P intensity ratio. These element-resolved measurements make it possible to experimentally attribute the previously observedmore » point-group dependent effect in element-integrated EBSD measurements to the larger contribution of electrons scattered from Ga compared to P. - Highlights: •Element specific Kikuchi patterns are presented for GaP. •Absence of a proper four-fold rotation axis is demonstrated. •Ga and P intensity variations after 90 degree rotation have opposite phase. •The asymmetry in the total intensity distribution resembles that of Ga.« less

  17. Seafloor multibeam backscatter calibration experiment: comparing 45°-tilted 38-kHz split-beam echosounder and 30-kHz multibeam data

    NASA Astrophysics Data System (ADS)

    Ladroit, Yoann; Lamarche, Geoffroy; Pallentin, Arne

    2018-06-01

    Obtaining absolute seafloor backscatter measurements from hydrographic multibeam echosounders is yet to be achieved. We propose a low-cost experiment to calibrate the various acquisition modes of a 30-kHz Kongsberg EM 302 multibeam echosounder in a range of water depths. We use a 38-kHz Simrad EK60 calibrated fisheries split-beam echosounder mounted at 45° angle on the vessel's hull as a reference for the calibration. The processing to extract seafloor backscatter from the EK60 requires bottom detection, ray tracing and motion compensation to obtain acceptable geo-referenced backscatter measurements from this non-hydrographic system. Our experiment was run in Cook Strait, New Zealand, on well-known seafloor patches in shallow, mid, and deep-water depths. Despite acquisition issues due to weather, our results demonstrate the strong potential of such an approach to obtain system's absolute calibration which is required for quantitative use of backscatter strength data.

  18. Heater-induced altitude descent of the EISCAT UHF ion line enhancements: Observations and modelling

    NASA Astrophysics Data System (ADS)

    Ashrafi, M.; Kosch, M. J.; Honary, F.

    2006-01-01

    On 12 November 2001, artificial optical annuli were produced using the EISCAT high-frequency (HF) ionospheric heating facility. This unusual phenomenon was induced using O-mode transmissions at 5.423 MHz with 550 MW effective isotropic radiated power and the pump beam dipped 9° south of the zenith. The pump frequency corresponds to the fourth electron gyroharmonic frequency at 215 km altitude. The EISCAT UHF radar observed a persistent pump-induced enhancement in the ion line backscatter power near the HF reflection altitude. The optical and radar signatures of HF pumping started at ˜230 km and descended to ˜220 km within ˜60 s. This effect has been modelled using the solution to differential equations describing pump-induced electron temperature and density perturbations. The decrease in altitude of the ion line by ˜10 km and changes in electron density have been modelled. The results show that a maximum electron temperature enhancement of up to ˜5700 K can be achieved on average, which is not sufficient to explain the observed optical emissions.

  19. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Liangyun, E-mail: lanly@me.neu.edu.cn; State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819; Kong, Xiangwei

    2015-07-15

    Coarse austenite to bainite transformation in low carbon steel under simulated welding thermal cycles was morphologically and crystallographically characterized by means of optical microscope, transmission electron microscope and electron backscattered diffraction technology. The results showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to granular bainite with the increase in cooling time. The width of bainitic laths also increases gradually with the cooling time. For a welding thermal cycle with relatively short cooling time (e.g. t{sub 8/5} is 30 s), the main mode of variant grouping at the scale of individual prior austenite grainsmore » changes from Bain grouping to close-packed plane grouping with the progress of phase transformation, which results in inhomogeneous distribution of high angle boundaries. As the cooling time is increased, the Bain grouping of variants becomes predominant mode, which enlarges the effective grain size of product phase. - Highlights: • Main microstructure changes and the width of lath structure increases with cooling time. • Variant grouping changes from Bain zone to close-packed plane grouping with the transformation. • The change of variant grouping results in uneven distribution of high angle grain boundary. • Bain grouping is main mode for large heat input, which lowers the density of high angle boundary.« less

  20. Stress Corrosion Cracking Facet Crystallography of Ti-8Al-1Mo-1V (Preprint)

    DTIC Science & Technology

    2011-05-01

    fractography and electron backscatter diffraction. The results indicate that most facets are formed nearly perpendicular to the loading direction on...of Ti-8Al- 1Mo-1V have been characterized using quantitative fractography and electron backscatter diffraction. The results indicate that most facets...EBSD and quantitative tilt fractography [27;29] allow for determination of the crystallographic fracture plane to an accuracy between 1o [29] and

  1. A method to correct coordinate distortion in EBSD maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.B., E-mail: yubz@dtu.dk; Elbrønd, A.; Lin, F.X.

    2014-10-15

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. -more » Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction.« less

  2. The role of zonal flows and predator–prey oscillations in triggering the formation of edge and core transport barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, Lothar; Zeng, Lei; Rhodes, Terry L.

    2014-04-24

    Here, we present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator–prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ω E×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H–L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field)more » $$\\beta_{\\theta} =2\\mu_{0} n{( {T_{{\\rm e}} +T_{{\\rm i}}})}/{B_{\\theta}^{2}}$$ in ITER.« less

  3. The role of zonal flows and predator-prey oscillations in triggering the formation of edge and core transport barriers

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Zeng, L.; Rhodes, T. L.; Hillesheim, J. C.; Peebles, W. A.; Groebner, R. J.; Burrell, K. H.; McKee, G. R.; Yan, Z.; Tynan, G. R.; Diamond, P. H.; Boedo, J. A.; Doyle, E. J.; Grierson, B. A.; Chrystal, C.; Austin, M. E.; Solomon, W. M.; Wang, G.

    2014-07-01

    We present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator-prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ωE×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H-L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field) \\beta_{\\theta} =2\\mu_{0} n{( {T_{e} +T_{i}})}/{B_{\\theta}^{2}} in ITER.

  4. Observations of the electron density perturbation in the cusp irregularities during the ICI-2 campaign

    NASA Astrophysics Data System (ADS)

    Abe, Takumi; Moen, J. I.

    The ICI-2 (Investigation of Cusp Irregularities-2) sounding rocket campaign was conducted in Svalbard, Norway on December 2008. The scientific objective of ICI-2 is to investigate genera-tion mechanism(s) of coherent HF radar backscatter targets. Strong coherent HF backscatter echoes are well-known phenomena in the polar ionospheric cusp, and are thought to result from field-aligned plasma irregularities with decameter scale length. However, the generation mech-anism of backscatter targets has not yet been understood, and even the altitude profile of HF cusp backscatter is unknown. The ICI-2 rocket was launched at 10:35:10 UT at Ny-˚lesund, A and reached an apogee of 330 km at about 5 minutes after the launch. All onboard systems functioned flawlessly. A comprehensive measurement of the electron density, low energy elec-tron flux, medium energy particle flux, AC and DC electric fields was conducted to exploit the potential role of the gradient drift instability versus the other suggested mechanisms. We present a result obtained from a Fixed-Biased Probe (FBP) which was aimed at measuring fine-scale (< 1 m) electron density perturbation. Our analysis of the FBP data during the rocket's flight indicates that the rocket traversed HF backscatter regions where the electron density perturbation is relatively large. The power spectrum analysis of the electron density shows that the amplitude increases not only in the decameter wavelength but also in the broad range of frequency. Characteristic features of the electron density perturbation are summarized as follows: 1) A strong perturbation of the electron density was observed by the FBP when the ICI-2 rocket passed through a front side of the poleward moving 630 nm emission region which was identified by the all-sky imager. This means that the electron density perturbation and the 630 nm emission are observed to coexist in the same region. 2) The absolute value of the electron density becomes larger in the disturbed region than in the surrounding region. The electron density gradient in the boundary with the outer region is larger in the equatorward side than in the poleward side. 3) The amplitude of the electron density perturbation is remarkably large in the equatorward edge rather than the poleward boundaries. 4) The FBP identified the electron density perturbation at three different altitudes during the rocket flight. This indicates that the perturbation likely exists not only within the narrow limits but in a larger extent in the vertical direction.

  5. Internal solitons in the Andaman Sea: a new look at an old problem

    NASA Astrophysics Data System (ADS)

    da Silva, J. C. B.; Magalhaes, J. M.

    2016-10-01

    When Osborne and Burch [1] reported their observations of large-amplitude, long internal waves in the Andaman Sea that conform with theoretical results from the physics of nonlinear waves, a new research field on ocean waves was immediately set out. They described their findings in the frame of shallow-water solitary waves governed by the K-dV equation, which occur because of a balance between nonlinear cohesive and linear dispersive forces in a fluid. It was concluded that the internal waves in the Andaman Sea were solitons and that they evolved either from an initial waveform (over approximately constant water depth) or by a fission process (over variable water depth). Since then, there has been a great deal of progress in our understanding of Internal Solitary Waves (ISWs), or solitons in the ocean, particularly making use of satellite Synthetic Aperture Radar (SAR) systems. While two layer models such as those used by Osborne and Burch[1] allow for propagation of fundamental mode (i.e. mode-1) ISWs, continuous stratification permits the existence of higher mode internal waves. It happens that the Andaman Sea stratification is characterized by two (or more) maxima in the vertical profile of the buoyancy frequency N(z), i.e. a double pycnocline, hence prone to the existence of mode-2 (or higher) internal waves. In this paper we report solitary-like internal waves with mode-2 vertical structure co-existing with the large well know mode-1 solitons. The mode-2 waves are identified in satellite SAR images (e.g. TerraSAR-X, Envisat, etc.) because of their distinct surface signature. While the SAR image intensity of mode-1 waves is characterized by bright, enhanced backscatter preceding dark reduced backscatter along the nonlinear internal wave propagation direction (in agreement with Alpers, 1985[2]), for mode-2 solitary wave structures, the polarity of the SAR signature is reversed and thus a dark reduced backscatter crest precedes a bright, enhanced backscatter feature in the propagation direction of the wave. The polarity of these mode-2 signatures changes because the location of the surface convergent and divergent zones is reversed in relation to mode-1 ISWs. Mode-2 ISWs are identified in many locations of the Andaman Sea, but here we focus on ISWs along the Ten Degree Channel which occur along-side large mode-1 ISWs. We discuss possible generation locations and mechanisms for both mode-1 and mode-2 ISWs along this stretch of the Andaman Sea, recurring to modeling of the ray pathways of internal tidal energy propagation, and the P. G. Baines[3] barotropic body force, which drives the generation of internal tides near the shallow water areas between the Andaman and Nicobar Islands. We consider three possible explanations for mode-2 solitary wave generation in the Andaman Sea: (1) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (2) nonlinear disintegration of internal tide modes; (3) the lee wave forming mechanism to the west of a ridge during westward tidal flow out of the Andaman Sea (as originally proposed by Osborne and Burch for mode-1 ISWs). SAR evidence is of critical importance for examining those generation mechanisms.

  6. Kinetic simulation of edge instability in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Fulton, Daniel Patrick

    In this work, gyrokinetic simulations in edge plasmas of both tokamaks and field reversed. configurations (FRC) have been carried out using the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC) has been formulated for cross-separatrix FRC simulation. In the tokamak edge, turbulent transport in the pedestal of an H-mode DIII-D plasma is. studied via simulations of electrostatic driftwaves. Annulus geometry is used and simulations focus on two radial locations corresponding to the pedestal top with mild pressure gradient and steep pressure gradient. A reactive trapped electron instability with typical ballooning mode structure is excited in the pedestal top. At the steep gradient, the electrostatic instability exhibits unusual mode structure, peaking at poloidal angles theta=+- pi/2. Simulations find this unusual mode structure is due to steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry has a stabilizing effect compared to a simple circular tokamak geometry. Driftwave instability in FRC is studied for the first time using gyrokinetic simulation. GTC. is upgraded to treat realistic equilibrium calculated by an MHD equilibrium code. Electrostatic local simulations in outer closed flux surfaces find ion-scale modes are stable due to the large ion gyroradius and that electron drift-interchange modes are excited by electron temperature gradient and bad magnetic curvature. In the scrape-off layer (SOL) ion-scale modes are excited by density gradient and bad curvature. Collisions have weak effects on instabilities both in the core and SOL. Simulation results are consistent with density fluctuation measurements in the C-2 experiment using Doppler backscattering (DBS). The critical density gradients measured by the DBS qualitatively agree with the linear instability threshold calculated by GTC simulations. One outstanding critical issue in the FRC is the interplay between turbulence in the FRC. core and SOL regions. While the magnetic flux coordinates used by GTC provide a number of computational advantages, they present unique challenges at the magnetic field separatrix. To address this limitation, a new code, capable of coupled core-SOL simulations, is formulated, implemented, and successfully verified.

  7. Secondary signal imaging (SSI) electron tomography (SSI-ET): A new three-dimensional metrology for mesoscale specimens in transmission electron microscope.

    PubMed

    Han, Chang Wan; Ortalan, Volkan

    2015-09-01

    We have demonstrated a new electron tomography technique utilizing the secondary signals (secondary electrons and backscattered electrons) for ultra thick (a few μm) specimens. The Monte Carlo electron scattering simulations reveal that the amount of backscattered electrons generated by 200 and 300keV incident electrons is a monotonic function of the sample thickness and this causes the thickness contrast satisfying the projection requirement for the tomographic reconstruction. Additional contribution of the secondary electrons emitted from the edges of the specimens enhances the visibility of the surface features. The acquired SSI tilt series of the specimen having mesoscopic dimensions are successfully reconstructed verifying that this new technique, so called the secondary signal imaging electron tomography (SSI-ET), can directly be utilized for 3D structural analysis of mesoscale structures. Published by Elsevier Ltd.

  8. Comments on the paper "Bragg's law diffraction simulations for electron backscatter diffraction analysis" by Josh Kacher, Colin Landon, Brent L. Adams & David Fullwood.

    PubMed

    Maurice, Claire; Fortunier, Roland; Driver, Julian; Day, Austin; Mingard, Ken; Meaden, Graham

    2010-06-01

    This comment on the paper "Bragg's Law diffraction simulations for electron backscatter diffraction analysis" by Kacher et al. explains the limitations in determining elastic strains using synthetic EBSD patterns. Of particular importance are those due to the accuracy of determination of the EBSD geometry projection parameters. Additional references and supporting information are provided. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    PubMed

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  10. Measurements of particle backscatter, extinction, and lidar ratio at 1064 nm with the rotational raman method in Polly-XT

    NASA Astrophysics Data System (ADS)

    Engelmann, Ronny; Haarig, Moritz; Baars, Holger; Ansmann, Albert; Kottas, Michael; Marinou, Eleni

    2018-04-01

    We replaced a 1064-nm interference filter of a Polly-XT lidar system by a 1058-nm filter to observe pure rotational Raman backscattering from atmospheric Nitrogen and Oxygen. Polly-XT is compact Raman lidar with a Nd:YAG laser (20 Hz, 200 mJ at 1064 nm) and a 30-cm telescope mirror which applies photomultipliers in photoncounting mode. We present the first measured signals at 1058 nm and the derived extinction profile from measurements aboard RV Polarstern and in Leipzig. In combination with another Polly-XT system we could also derive particle backscatter and lidar ratio profiles at 1064 nm.

  11. First detection of lead in black paper from intraoral film: an environmental concern.

    PubMed

    Guedes, Débora F C; Silva, Reginaldo S; da Veiga, Márcia A M S; Pecora, Jesus D

    2009-10-30

    Lead (Pb) contamination in the black paper that recovers intraoral films (BKP) has been investigated. BKP samples were collected from the Radiology Clinics of the Dental School of Ribeirão Preto, University of São Paulo, Brazil. For sake of comparison, four different methods were used. The results revealed the presence of high lead levels, well above the maximum limit allowed by the legislation. Pb contamination levels achieved after the following treatments: paper digestion in nitric acid, microwave treatment, DIN38414-54 method and TCLP method were 997 microg g(-1), 189 microg g(-1), 20.8 microg g(-1), and 54.0 microg g(-1), respectively. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma mass spectrometry (ICP-MS) were employed for lead determination according to the protocols of the applied methods. Lead contamination in used BKP was confirmed by scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDS). All the SEM imaging was carried out in the secondary electron mode (SE) and backscattered-electron mode (QBSD) following punctual X-ray fluorescence spectra. Soil contamination derived from this product revealed the urgent need of addressing this problem. These elevated Pb levels, show that a preliminary treatment of BKP is mandatory before it is disposed into the common trash. The high lead content of this material makes its direct dumping into the environment unwise.

  12. Failure Mechanisms of SAC/Fe-Ni Solder Joints During Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Gao, Li-Yin; Liu, Zhi-Quan; Li, Cai-Fu

    2017-08-01

    Thermal cycling tests have been conducted on Sn-Ag-Cu/Fe- xNi ( x = 73 wt.% or 45 wt.%) and Sn-Ag-Cu/Cu solder joints according to the Joint Electron Device Engineering Council industrial standard to study their interfacial reliability under thermal stress. The interfacial intermetallic compounds formed for solder joints on Cu, Fe-73Ni, and Fe-45Ni were 4.5 μm, 1.7 μm, and 1.4 μm thick, respectively, after 3000 cycles, demonstrating excellent diffusion barrier effect of Fe-Ni under bump metallization (UBM). Also, two deformation modes, viz. solder extrusion and fatigue crack formation, were observed by scanning electron microscopy and three-dimensional x-ray microscopy. Solder extrusion dominated for solder joints on Cu, while fatigue cracks dominated for solder joints on Fe-45Ni and both modes were detected for those on Fe-73Ni. Solder joints on Fe-Ni presented inferior reliability during thermal cycling compared with those on Cu, with characteristic lifetime of 3441 h, 3190 h, and 1247 h for Cu, Fe-73Ni, and Fe-45Ni UBM, respectively. This degradation of the interfacial reliability for solder joints on Fe-Ni is attributed to the mismatch in coefficient of thermal expansion (CTE) at interconnection level. The CTE mismatch at microstructure level was also analyzed by electron backscatter diffraction for clearer identification of recrystallization-related deformation mechanisms.

  13. High-frequency ultrasound M-mode monitoring of HIFU ablation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-10-01

    Effective real-time HIFU lesion detection is important for expanded use of HIFU in interventional electrophysiology (e.g., epicardial ablation of cardiac arrhythmia). The goal of this study was to investigate rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes in tissue during HIFU application. The HIFU application (4.33 MHz, 1000 Hz PRF, 50% duty cycle, 1 s exposure, 6100 W/cm2) was perpendicularly applied to porcine cardiac tissue with a high-frequency imaging system (Visualsonics Vevo 770, 55 MHz, 4.5 mm focal distance) confocally aligned. Radiofrequency (RF) M-mode data (1 kHz PRF, 4 s × 7 mm) was acquired before, during, and after HIFU treatment. Gross lesions were compared with M-mode data to correlate lesion and cavity formation. Integrated backscatter, echo-decorrelation parameters, and their cumulative extrema over time were analyzed for automatically identifying lesion width and bubble formation. Cumulative maximum integrated backscatter showed the best results for identifying the final lesion width, and a criterion based on line-to-line decorrelation was proposed for identification of transient bubble activity.

  14. SU-E-T-474: Improvements to Intra-Oral Shield Design for Electron Beam Treatments: Use of Multi-Layered Metal Foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butson, M

    Purpose: Intraoral electron shields used in radiotherapy are designed to minimize radiation exposure to non-treatment tissue. Sites where shields are used include but are not limited to, the treatment of lips, cheeks and ears whilst shielding the underlying oral cavity, tongue, gingival or temporal region. However their use produces an enhancement in dose on the beam side caused by an increase in electron backscatter radiation. This work designs a new shield incorporating copper, aluminium and wax in a step down filter arrangement to minimise backscatter whilst minimizing overall shield thickness. Methods: For electron beams ranging from 6 MeV to 10more » MeV, shields of varying designs and thicknesses were assessed to determine the thinnest shield design that could be produced whilst minimising backscattered radiation to a clinically acceptable level. This was performed with conventional lead and wax shields as well as varying quantities of aluminium and copper foils. Results: From tested shield designs, a new shield design of 4 mm lead, 0.6 mm copper, 1.0 mm aluminium and 1.5 mm wax (3.1 mm added filtration, 7.1 mm total thickness) provided a clinically acceptable (no greater than 110% dose) backscatter and transmission reduction and matched a standard 4.5 mm lead and 10 mm wax (total thickness 14.5 mm) electron shield. Dose enhancement values of no more than 10 % were measured utilising this shield design with a 50 % reduction in shield thickness. Conclusion: The thinner layered shield reduced backscattered radiation dose to less than 10% enhancement for beam energies on 10 MeV and less and will allow easier patient set up. The thinner shields are tolerated better by patients when mucosal reactions occur as they place less physical pressure on these sites during treatment due to their smaller size and thickness.« less

  15. Gate-controlled topological conducting channels in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wang, Ke; McFaul, Kenton J.; Zern, Zachary; Ren, Yafei; Watanabe, Kenji; Taniguchi, Takashi; Qiao, Zhenhua; Zhu, Jun

    2016-12-01

    The existence of inequivalent valleys K and K‧ in the momentum space of 2D hexagonal lattices provides a new electronic degree of freedom, the manipulation of which can potentially lead to new types of electronics, analogous to the role played by electron spin. In materials with broken inversion symmetry, such as an electrically gated bilayer graphene (BLG), the momentum-space Berry curvature Ω carries opposite sign in the K and K‧ valleys. A sign reversal of Ω along an internal boundary of the sheet gives rise to counterpropagating 1D conducting modes encoded with opposite-valley indices. These metallic states are topologically protected against backscattering in the absence of valley-mixing scattering, and thus can carry current ballistically. In BLG, the reversal of Ω can occur at the domain wall of AB- and BA-stacked domains, or at the line junction of two oppositely gated regions. The latter approach can provide a scalable platform to implement valleytronic operations, such as valves and waveguides, but it is technically challenging to realize. Here, we fabricate a dual-split-gate structure in BLG and present evidence of the predicted metallic states in electrical transport. The metallic states possess a mean free path (MFP) of up to a few hundred nanometres in the absence of a magnetic field. The application of a perpendicular magnetic field suppresses the backscattering significantly and enables a junction 400 nm in length to exhibit conductance close to the ballistic limit of 4e2/h at 8 T. Our experiment paves the way to the realization of gate-controlled ballistic valley transport and the development of valleytronic applications in atomically thin materials.

  16. CATS Version 2 Aerosol Feature Detection and Applications for Data Assimilation

    NASA Technical Reports Server (NTRS)

    Nowottnick, E. P.; Yorks, J. E.; Selmer, P. A.; Palm, S. P.; Hlavka, D. L.; Pauly, R. M.; Ozog, S.; McGill, M. J.; Da Silva, A.

    2017-01-01

    The Cloud Aerosol Transport System (CATS) lidar has been operating onboard the International Space Station (ISS) since February 2015 and provides vertical observations of clouds and aerosols using total attenuated backscatter and depolarization measurements. From February March 2015, CATS operated in Mode 1, providing backscatter and depolarization measurements at 532 and 1064 nm. CATS began operation in Mode 2 in March 2015, providing backscatter and depolarization measurements at 1064 nm and has continued to operate to the present in this mode. CATS level 2 products are derived from these measurements, including feature detection, cloud aerosol discrimination, cloud and aerosol typing, and optical properties of cloud and aerosol layers. Here, we present changes to our level 2 algorithms, which were aimed at reducing several biases in our version 1 level 2 data products. These changes will be incorporated into our upcoming version 2 level 2 data release in summer 2017. Additionally, owing to the near real time (NRT) data downlinking capabilities of the ISS, CATS provides expedited NRT data products within 6 hours of observation time. This capability provides a unique opportunity for supporting field campaigns and for developing data assimilation techniques to improve simulated cloud and aerosol vertical distributions in models. We additionally present preliminary work toward assimilating CATS observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) global atmospheric model and data assimilation system.

  17. Reflection and backscattering of microwaves under doubling of the plasma density and displacement of the gyroresonance region during electron cyclotron resonance heating of plasma in the l-2M stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batanov, G. M.; Borzosekov, V. D.; Vasilkov, D. G.

    Reflection and backscattering of high-power (400 kW) gyrotron radiation creating and heating plasma at the second harmonic of the electronic cyclotron frequency in the L-2M stellarator have been investigated experimentally. The effect of the displacement of the gyroresonance region from the axis of the plasma column under doubling of the plasma density on the processes of reflection and backscattering of microwave radiation has been examined. A near doubling of short-wavelength (k{sub ⊥} ≈ 30 cm{sup –1}) turbulent density fluctuations squared is observed. The change in the energy confinement time under variations of plasma parameters and characteristics of short-wavelength turbulence ismore » discussed. A discrepancy between the measured values of the reflection coefficient from the electron cyclotron resonance heating region and predictions of the one-dimensional model is revealed.« less

  18. Direct observation of iron-induced conformational changes of mitochondrial DNA by high-resolution field-emission in-lens scanning electron microscopy.

    PubMed Central

    Yaffee, M; Walter, P; Richter, C; Müller, M

    1996-01-01

    When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8643576

  19. Reduced backscattering cross section (Sigma degree) data from the Skylab S-193 radar altimeter

    NASA Technical Reports Server (NTRS)

    Brown, G. S.

    1975-01-01

    Backscattering cross section per unit scattering area data, reduced from measurements made by the Skylab S-193 radar altimeter over the ocean surface are presented. Descriptions of the altimeter are given where applicable to the measurement process. Analytical solutions are obtained for the flat surface impulse response for the case of a nonsymmetrical antenna pattern. Formulations are developed for converting altimeter AGC outputs into values for the backscattering cross section. Reduced data are presented for Missions SL-2, 3 and 4 for all modes of the altimeter where sufficient calibration existed. The problem of interpreting land scatter data is also discussed. Finally, a comprehensive error analysis of the measurement is presented and worst case random and bias errors are estimated.

  20. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Characterization of Microstructure and Mechanical Properties of Mg-8Li-3Al-1Y Alloy Subjected to Different Rolling Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Liu, Qiang; Liu, Ruirui; Zhou, Haitao

    2018-06-01

    The mechanical properties and microstructure evolution of Mg-8Li-3Al-1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the MgLi2Al precipitated in β-Li matrix due to the transformation reaction: β-Li → β-Li + MgLi2Al + α-Mg. As for the alloy subjected to annealed hot rolling, β-Li phase was clearly recrystallized while recrystallization rarely occurred in α-Mg phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh α-Mg grains in β-Li phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg-8Li-3Al-1Y alloys can be effectively tuned by different rolling processes.

  2. Simulation of multistatic and backscattering cross sections for airborne radar

    NASA Astrophysics Data System (ADS)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  3. aCORN Beta Spectrometer and Electrostatic Mirror

    NASA Astrophysics Data System (ADS)

    Hassan, Md; aCORN Collaboration

    2013-10-01

    aCORN uses a high efficiency backscatter suppressed beta spectrometer to measure the electron-antineutrino correlation in neutron beta decay. We measure the correlation by counting protons and beta electrons in coincidence with precisely determined electron energy. There are 19 photomultiplier tubes arranged in a hexagonal array coupled to a single phosphor doped polystyrene scintillator. The magnetic field is shaped so that electrons that backscatter without depositing their full energy strike a tulip-shaped array of scintillator paddles and these events are vetoed. The detailed construction, performance and calibration of this beta spectrometer will be presented. I will also present the simulation, construction, and features of our novel electrostatic mirror. This work was supported by the National Science Foundation and the NIST Center for Neutron Research.

  4. Analysis of auroral particle fluxes

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.

    1972-01-01

    The physical processes which describe the interaction of auroral electrons with the atmosphere appear to be more complex than just the Coulomb scattering of the incident primary electrons with a subsequent loss of energy. The comparison of the measured backscattered electron spectra with spectra predicted using a theoretical scattering calculation has led to a discrepancy for energies below about 1 to 2 keV. It was found that the very high ratio (100%) of backscattered to incident fluxes for these energies could be most reasonably explained by a parallel downward-directed electric field which prevents these lower energy electrons from entering the atmospheric scattering region. This parallel field with potential drop of about 1 keV is thought to have its origin in waveparticle interactions in the turbulent auroral ionosphere.

  5. High resolution energy-angle correlation measurement of hard x rays from laser-Thomson backscattering.

    PubMed

    Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U

    2013-09-13

    Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.

  6. An analytic formula for the relativistic incoherent Thomson backscattering spectrum for a drifting bi-Maxwellian plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naito, O.

    2015-08-15

    An analytic formula has been derived for the relativistic incoherent Thomson backscattering spectrum for a drifting anisotropic plasma when the scattering vector is parallel to the drifting direction. The shape of the scattering spectrum is insensitive to the electron temperature perpendicular to the scattering vector, but its amplitude may be modulated. As a result, while the measured temperature correctly represents the electron distribution parallel to the scattering vector, the electron density may be underestimated when the perpendicular temperature is higher than the parallel temperature. Since the scattering spectrum in shorter wavelengths is greatly enhanced by the existence of drift, themore » diagnostics might be used to measure local electron current density in fusion plasmas.« less

  7. Toward single-mode active crystal fibers for next-generation high-power fiber devices.

    PubMed

    Lai, Chien-Chih; Gao, Wan-Ting; Nguyen, Duc Huy; Ma, Yuan-Ron; Cheng, Nai-Chia; Wang, Shih-Chang; Tjiu, Jeng-Wei; Huang, Chun-Ming

    2014-08-27

    We report what we believe to be the first demonstration of a facile approach with controlled geometry for the production of crystal-core ceramic-clad hybrid fibers for scaling fiber devices to high average powers. The process consists of dip coating a solution of polycrystalline alumina onto a high-crystallinity 40-μm-diameter Ti:sapphire single-crystalline core followed by thermal treatments. Comparison of the measured refractive index with high-resolution transmission electron microscopy reveals that a Ca/Si-rich intragranular layer is precipitated at grain boundaries by impurity segregation and liquid-phase formation due to the relief of misfit strain energy in the Al2O3 matrix, slightly perturbing the refractive index and hence the optical properties. Additionally, electron backscatter diffractions supply further evidence that the Ti:sapphire single-crystalline core provides the template for growth into a sacrificial polycrystalline cladding, bringing the core and cladding into a direct bond. The thus-prepared doped crystal core with the undoped crystal cladding was achieved through the abnormal grain-growth process. The presented results provide a general guideline both for controlling crystal growth and for the performance of hybrid materials and provides insights into how one might design single-mode high-power crystal fiber devices.

  8. Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment.

    PubMed

    Shiu, A S; Tung, S S; Gastorf, R J; Hogstrom, K R; Morrison, W H; Peters, L J

    1996-06-01

    The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at 9 MeV. For the tungsten eye shield coated with 2-3 mm of dental acrylic, the lid dose was increased from 85 to 98.5% at 6 MeV and 86 to 106% at 9 MeV. Commercially available eye shields were evaluated and found to be clearly inadequate to protect the ocular structures for electron beam energies equal to or greater than 6 MeV. A tungsten eye shield has been found to provide adequate protection for electrons up to 9 MeV. The increase in lid dose due to electrons backscattered off the tungsten eye shield should be considered in the dose prescription. A minimum thickness of 2 mm dental acrylic on the beam entrance surface of the tungsten eye shield was found to reduce the backscattered electron effect to acceptable levels.

  9. Evanescent acoustic waves: Production and scattering by resonant targets

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.

    Small targets with acoustic resonances which may be excited by incident acoustic planewaves are shown to possess high-Q modes ("organ-pipe" modes) which may be suitable for ocean-based calibration and ranging purposes. The modes are modeled using a double point-source model; this, along with acoustic reciprocity and inversion symmetry, is shown to adequately model the backscattering form functions of the modes at low frequencies. The backscattering form-functions are extended to apply to any bistatic acoustic experiment using the targets when the target response is dominated by the modes in question. An interface between two fluids which each approximate an unbounded half-space has been produced in the laboratory. The fluids have different sound speeds. When sound is incident on this interface at beyond the critical angle from within the first fluid, the second fluid is made to evince a region dominated by evanescent acoustic energy. Such a system is shown to be an possible laboratory-based proxy for a flat sediment bottom in the ocean, or sloped (unrippled) bottom in littoral environments. The evanescent sound field is characterized and shown to have complicated features despite the simplicity of its production. Notable among these features is the presence of dips in the soundfield amplitude, or "quasi-nulls". These are proposed to be extremely important when considering the return from ocean-based experiments. The soundfield features are also shown to be accurately predicted and characterized by wavenumber-integration software. The targets which exhibit organ-pipe modes in the free-field are shown to also be excited by the evanescent waves, and may be used as soundfield probes when the target returns are well characterized. Alternately, if the soundfield is well-known, the target parameters may be extracted from back- or bistatic-scattering experiments in evanescent fields. It is shown that the spatial decay rate as measured by a probe directly in the evanescent field is half that as measured by backscattering experiments on horizontal and vertical cylinders driven at the fundamental mode, and it is demonstrated that this is explained by the principle of acoustic reciprocity.

  10. Ionospheric electron number densities from CUTLASS dual-frequency velocity measurements using artificial backscatter over EISCAT

    NASA Astrophysics Data System (ADS)

    Sarno-Smith, Lois K.; Kosch, Michael J.; Yeoman, Timothy; Rietveld, Michael; Nel, Amore'; Liemohn, Michael W.

    2016-08-01

    Using quasi-simultaneous line-of-sight velocity measurements at multiple frequencies from the Hankasalmi Cooperative UK Twin Auroral Sounding System (CUTLASS) on the Super Dual Auroral Radar Network (SuperDARN), we calculate electron number densities using a derivation outlined in Gillies et al. (2010, 2012). Backscatter targets were generated using the European Incoherent Scatter (EISCAT) ionospheric modification facility at Tromsø, Norway. We use two methods on two case studies. The first approach is to use the dual-frequency capability on CUTLASS and compare line-of-sight velocities between frequencies with a MHz or greater difference. The other method used the kHz frequency shifts automatically made by the SuperDARN radar during routine operations. Using ray tracing to obtain the approximate altitude of the backscatter, we demonstrate that for both methods, SuperDARN significantly overestimates Ne compared to those obtained from the EISCAT incoherent scatter radar over the same time period. The discrepancy between the Ne measurements of both radars may be largely due to SuperDARN sensitivity to backscatter produced by localized density irregularities which obscure the background levels.

  11. Backscattered helium spectroscopy in the helium ion microscope: Principles, resolution and applications

    NASA Astrophysics Data System (ADS)

    van Gastel, R.; Hlawacek, G.; Dutta, S.; Poelsema, B.

    2015-02-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of samples. The contrast that is seen in helium ion microscopy (HIM) images differs from that in scanning electron microscopy (SEM) and is generally a result of the higher surface sensitivity of the method. It allows, for instance, a much better visualization of low-Z materials as a result of the small secondary electron escape depth. However, the same differences in beam interaction that give HIM an edge over other imaging techniques, also impose limitations for spectroscopic applications using backscattered particles. Here we quantify those limitations and discuss opportunities to further improve the technique.

  12. Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound.

    PubMed

    Sheet, Debdoot; Karamalis, Athanasios; Eslami, Abouzar; Noël, Peter; Chatterjee, Jyotirmoy; Ray, Ajoy K; Laine, Andrew F; Carlier, Stephane G; Navab, Nassir; Katouzian, Amin

    2014-01-01

    Intravascular Ultrasound (IVUS) is a predominant imaging modality in interventional cardiology. It provides real-time cross-sectional images of arteries and assists clinicians to infer about atherosclerotic plaques composition. These plaques are heterogeneous in nature and constitute fibrous tissue, lipid deposits and calcifications. Each of these tissues backscatter ultrasonic pulses and are associated with a characteristic intensity in B-mode IVUS image. However, clinicians are challenged when colocated heterogeneous tissue backscatter mixed signals appearing as non-unique intensity patterns in B-mode IVUS image. Tissue characterization algorithms have been developed to assist clinicians to identify such heterogeneous tissues and assess plaque vulnerability. In this paper, we propose a novel technique coined as Stochastic Driven Histology (SDH) that is able to provide information about co-located heterogeneous tissues. It employs learning of tissue specific ultrasonic backscattering statistical physics and signal confidence primal from labeled data for predicting heterogeneous tissue composition in plaques. We employ a random forest for the purpose of learning such a primal using sparsely labeled and noisy samples. In clinical deployment, the posterior prediction of different lesions constituting the plaque is estimated. Folded cross-validation experiments have been performed with 53 plaques indicating high concurrence with traditional tissue histology. On the wider horizon, this framework enables learning of tissue-energy interaction statistical physics and can be leveraged for promising clinical applications requiring tissue characterization beyond the application demonstrated in this paper. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Remote sensing of PM2.5 from ground-based optical measurements

    NASA Astrophysics Data System (ADS)

    Li, S.; Joseph, E.; Min, Q.

    2014-12-01

    Remote sensing of particulate matter concentration with aerodynamic diameter smaller than 2.5 um(PM2.5) by using ground-based optical measurements of aerosols is investigated based on 6 years of hourly average measurements of aerosol optical properties, PM2.5, ceilometer backscatter coefficients and meteorological factors from Howard University Beltsville Campus facility (HUBC). The accuracy of quantitative retrieval of PM2.5 using aerosol optical depth (AOD) is limited due to changes in aerosol size distribution and vertical distribution. In this study, ceilometer backscatter coefficients are used to provide vertical information of aerosol. It is found that the PM2.5-AOD ratio can vary largely for different aerosol vertical distributions. The ratio is also sensitive to mode parameters of bimodal lognormal aerosol size distribution when the geometric mean radius for the fine mode is small. Using two Angstrom exponents calculated at three wavelengths of 415, 500, 860nm are found better representing aerosol size distributions than only using one Angstrom exponent. A regression model is proposed to assess the impacts of different factors on the retrieval of PM2.5. Compared to a simple linear regression model, the new model combining AOD and ceilometer backscatter can prominently improve the fitting of PM2.5. The contribution of further introducing Angstrom coefficients is apparent. Using combined measurements of AOD, ceilometer backscatter, Angstrom coefficients and meteorological parameters in the regression model can get a correlation coefficient of 0.79 between fitted and expected PM2.5.

  14. Self-mixing detection of backscattered radiation in a single-mode erbium fibre laser for Doppler spectroscopy and velocity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitriev, A K; Konovalov, A N; Ul'yanov, V A

    2014-04-28

    We report an experimental study of the self-mixing effect in a single-mode multifrequency erbium fibre laser when radiation backscattered from an external moving object arrives at its cavity. To eliminate resulting chaotic pulsations in the laser, we have proposed a technique for suppressing backscattered radiation through the use of multimode fibre for radiation delivery. The multifrequency operation of the laser has been shown to lead to strong fluctuations of the amplitude of the Doppler signal and a nonmonotonic variation of the amplitude with distance to the scattering object. In spite of these features, the self-mixing signal was detected with amore » high signal-to-noise ratio (above 10{sup 2}) when the radiation was scattered by a rotating disc, and the Doppler frequency shift, evaluated as the centroid of its spectrum, had high stability (0.15%) and linearity relative to the rotation rate. We conclude that the self-mixing effect in this type of fibre laser can be used for measuring the velocity of scattering objects and in Doppler spectroscopy for monitoring the laser evaporation of materials and biological tissues. (control of laser radiation parameters)« less

  15. Practical aspects of the use of the X(2) holder for HRTEM-quality TEM sample preparation by FIB.

    PubMed

    van Mierlo, Willem; Geiger, Dorin; Robins, Alan; Stumpf, Matthias; Ray, Mary Louise; Fischione, Paul; Kaiser, Ute

    2014-12-01

    The X(2) holder enables the effective production of thin, electron transparent samples for high-resolution transmission electron microscopy (HRTEM). Improvements to the X(2) holder for high-quality transmission electron microscopy (TEM) sample preparation are presented in this paper. We discuss the influence of backscattered electrons (BSE) from the sample holder in determining the lamella thickness in situ and demonstrate that a significant improvement in thickness determination can be achieved by comparatively simple means using the relative BSE intensity. We show (using Monte Carlo simulations) that by taking into account the finite collection angle of the electron backscatter detector, an approximately 20% underestimation of the lamella thickness in a silicon sample can be avoided. However, a correct thickness determination for light-element lamellas still remains a problem with the backscatter method; we introduce a more accurate method using the energy dispersive X-ray spectroscopy (EDX) signal for in situ thickness determination. Finally, we demonstrate how to produce a thin lamella with a nearly damage-free surface using the X(2) holder in combination with sub-kV polishing in the Fischione Instruments׳ NanoMill(®) TEM specimen preparation system. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Added aluminum shielding to attenuate back scatter electrons from intra-oral lead shields.

    PubMed

    Weidlich, G A; Nuesch, C E; Fuery, J J

    1996-01-01

    An intra-oral lead shield was developed that consists of a lead base with an aluminum layer that is placed upstream of the lead base. Several such shields with various thicknesses of Al layers were manufactured and quantitatively evaluated in 6 MeV and 12 MeV electron radiation by Thermoluminescent dosimetry (TLD) measurements. The clinical relevance was established by using a 5 cm backscatter block down-stream of the lead shield to simulate anatomical structures of the head and a 0.5 cm superflab bolus upstream of the Al layers of the shield to simulate the patient's lip or cheek. The TLDs were placed between the Al layers of the shield and the superflab to determine the intra-oral skin dose. TLD exposure results revealed that 59.8% of the skin dose at 6 MeV and 45.1% of the skin dose at 12 MeV is due to backscattered electrons. Introduction of a 3.0 mm thick Al layer reduces the backscatter contribution to 13.5% of the back scatter dose at 6 MeV and 56.3% of the back scatter dose at 12 MeV electron radiation.

  17. Photon mirror acceleration in the quantum regime

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Fedele, R.

    2014-12-01

    Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.

  18. A simple way to obtain backscattered electron images in a scanning transmission electron microscope.

    PubMed

    Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki

    2014-08-01

    We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Uniform laser-driven relativistic electron layer for coherent Thomson scattering.

    PubMed

    Wu, H-C; Meyer-ter-Vehn, J; Fernández, J; Hegelich, B M

    2010-06-11

    A novel scheme is proposed to generate uniform relativistic electron layers for coherent Thomson backscattering. A few-cycle laser pulse is used to produce the electron layer from an ultrathin solid foil. The key element of the new scheme is an additional foil that reflects the drive-laser pulse, but lets the electrons pass almost unperturbed. Making use of two-dimensional particle-in-cell simulations and well-known basic theory, it is shown that the electrons, after interacting with both the drive and reflected laser pulses, form a very uniform flyer freely cruising with a high relativistic γ factor exactly in the drive-laser direction (no transverse momentum). It backscatters the probe light with a full Doppler shift factor of 4γ(2). The reflectivity and its decay due to layer expansion are discussed.

  20. Mapping the plasmon response of Ag nanoislands on graphite at 100 nm resolution with scanning probe energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Murphy, Shane; Bauer, Karl; Sloan, Peter A.; Lawton, James J.; Tang, Lin; Palmer, Richard E.

    2015-12-01

    We demonstrate plasmon mapping of Ag nanostructures on graphite using scanning probe energy loss spectroscopy (SPELS) with a spatial resolution of 100 nm. In SPELS, an STM tip is used as a localized source of field-emitted electrons to probe the sample surface. The energy loss spectrum of the backscattered electrons is measured to provide a chemical signature of the surface under the tip. We acquire three images simultaneously with SPELS: i) constant-current field-emission images, which provide topographical information; ii) backscattered electron images, which display material contrast; and iii) SPELS images, where material-dependent features such as plasmons are mapped.

  1. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    PubMed

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Absorption and backscatter of internal conversion electrons in the measurements of surface contamination of ¹³⁷Cs.

    PubMed

    Yunoki, A; Kawada, Y; Yamada, T; Unno, Y; Sato, Y; Hino, Y

    2013-11-01

    We measured 4π and 2π counting efficiencies for internal conversion electrons (ICEs), gross β-particles and also β-rays alone with various source conditions regarding absorber and backing foil thickness using e-X coincidence technique. Dominant differences regarding the penetration, attenuation and backscattering properties among ICEs and β-rays were revealed. Although the abundance of internal conversion electrons of (137)Cs-(137)Ba is only 9.35%, 60% of gross counts may be attributed to ICEs in worse source conditions. This information will be useful for radionuclide metrology and for surface contamination monitoring. © 2013 Elsevier Ltd. All rights reserved.

  3. Analysis of the influence of backscattered optical power over bidirectional PON links

    NASA Astrophysics Data System (ADS)

    Martínez, J. J.; Garcés, I.; López, A.; Villafranca, A.; Losada, M. A.

    2010-05-01

    Our aim is to describe the behavior of non-linear scattering effects that arise in standard single mode fiber (SMF), specifically scattering effects that propagate optical power in the reverse direction of the source signal such as Rayleigh Scattering (RS) and Brillouin Scattering (BS). For this purpose, the effects of backscattering phenomena over a bidirectional data transmission in a passive optical network (PON) scheme have been assessed. The impact of these high optical power components over reception at the optical line terminal (OLT) side has been determined when both links use the same wavelength. Bit Error Rate (BER) measurements have been performed with different transmission rates, using several techniques to mitigate the influence of backscattering over the received signal and considering cases with filtered and unfiltered BS.

  4. Stimulated Raman scattering of sub-millimeter waves in bismuth

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Tripathi, V. K.

    2007-12-01

    A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.

  5. A comparative study of inelastic scattering models at energy levels ranging from 0.5 keV to 10 keV

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Lin, Chun-Hung

    2017-03-01

    Six models, including a single-scattering model, four hybrid models, and one dielectric function model, were evaluated using Monte Carlo simulations for aluminum and copper at incident beam energies ranging from 0.5 keV to 10 keV. The inelastic mean free path, mean energy loss per unit path length, and backscattering coefficients obtained by these models are compared and discussed to understand the merits of the various models. ANOVA (analysis of variance) statistical models were used to quantify the effects of inelastic cross section and energy loss models on the basis of the simulated results deviation from the experimental data for the inelastic mean free path, the mean energy loss per unit path length, and the backscattering coefficient, as well as their correlations. This work in this study is believed to be the first application of ANOVA models towards evaluating inelastic electron beam scattering models. This approach is an improvement over the traditional approach which involves only visual estimation of the difference between the experimental data and simulated results. The data suggests that the optimization of the effective electron number per atom, binding energy, and cut-off energy of an inelastic model for different materials at different beam energies is more important than the selection of inelastic models for Monte Carlo electron scattering simulation. During the simulations, parameters in the equations should be tuned according to different materials for different beam energies rather than merely employing default parameters for an arbitrary material. Energy loss models and cross-section formulas are not the main factors influencing energy loss. Comparison of the deviation of the simulated results from the experimental data shows a significant correlation (p < 0.05) between the backscattering coefficient and energy loss per unit path length. The inclusion of backscattering electrons generated by both primary and secondary electrons for backscattering coefficient simulation is recommended for elements with high atomic numbers. In hybrid models, introducing the inner shell ionization model improves the accuracy of simulated results.

  6. A method for removing arm backscatter from EPID images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Brian W.; Greer, Peter B.; School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308

    2013-07-15

    Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager.more » The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.« less

  7. Back-scattered electron imaging of skeletal tissues.

    PubMed

    Boyde, A; Jones, S J

    The use of solid-state back-scattered electron (BSE) detectors in the scanning electron microscopic study of skeletal tissues has been investigated. To minimize the topographic element in the image, flat samples and a ring detector configuration with the sample at normal incidence to the beam and the detector are used. Very flat samples are prepared by diamond micromilling or diamond polishing plastic-embedded tissue. Density discrimination in the image is so good that different density phases within mineralized bone can be imaged. For unembedded spongy bone, cut surfaces can be discriminated from natural surfaces by a topographic contrast mechanism. BSE imaging also presents advantages for unembedded samples with rough topography, such as anorganic preparations of the mineralization zone in cartilage, which give rise to severe charging problems with conventional secondary electron imaging.

  8. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure

    PubMed Central

    Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast. PMID:29109816

  9. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.

    PubMed

    Kowoll, Thomas; Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO 2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO 2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  10. A pseudo-3D approach based on electron backscatter diffraction and backscatter electron imaging to study the character of phase boundaries between Mg and long period stacking ordered phase in a Mg–2Y–Zn alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afshar, Mehran, E-mail: m.afshar@mpie.de; Zaefferer, Stefan, E-mail: s.zaefferer@mpie.de

    2015-03-15

    In Mg–2 at.% Y–1 at.% Zn alloys, the LPSO (Long Period Stacking Ordered) phase is important to improve mechanical properties of the material. The aim of this paper is to present a study on the phase boundary character in these two-phase alloys. Using EBSD pattern analysis it was found that the 24R structure is the dominant LPSO phase structure in the current alloy. The phase boundary character between the Mg matrix and the LPSO phase was investigated using an improved pseudo-3D EBSD (electron backscatter diffraction) technique in combination with BSE or SE (backscatter or secondary electron) imaging. A large amountmore » of very low-angle phase boundaries was detected. The (0 0 0 2) plane in the Mg matrix which is parallel to the (0 0 0 24) plane in the LPSO phase was found to be the most frequent plane for these phase boundaries. This plane is supposed to be the habit plane of the eutectic co-solidification of the Mg matrix and the LPSO phase. - Highlights: • It is shown that for the investigated alloy the LPSO phase has mainly 24R crystal structure. • A new method is presented which allows accurate determination of the 5-parameter grain or phase boundary character. • It is found that the low-angle phase boundaries appearing in the alloy all have basal phase boundary planes.« less

  11. Three applications of backscatter x-ray imaging technology to homeland defense

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2005-05-01

    A brief review of backscatter x-ray imaging and a description of three systems currently applying it to homeland defense missions (BodySearch, ZBV and ZBP). These missions include detection of concealed weapons, explosives and contraband on personnel, in vehicles and large cargo containers. An overview of the x-ray imaging subsystems is provided as well as sample images from each system. Key features such as x-ray safety, throughput and detection are discussed. Recent trends in operational modes are described that facilitate 100% inspection at high throughput chokepoints.

  12. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various Earth surfaces giving good agreement, suggesting that the lidar efficiency, and thus a lidar calibration factor for detection, can be estimated fairly well using Earth's surface signal.

  13. Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2018-03-01

    The electrons in the edge channels of two-dimensional topological insulators can be described as a helical Tomonaga-Luttinger liquid. They couple to nuclear spins embedded in the host materials through the hyperfine interaction, and are therefore subject to elastic spin-flip backscattering on the nuclear spins. We investigate the nuclear-spin-induced edge resistance due to such backscattering by performing a renormalization-group analysis. Remarkably, the effect of this backscattering mechanism is stronger in a helical edge than in nonhelical channels, which are believed to be present in the trivial regime of InAs/GaSb quantum wells. In a system with sufficiently long edges, the disordered nuclear spins lead to an edge resistance which grows exponentially upon lowering the temperature. On the other hand, electrons from the edge states mediate an anisotropic Ruderman-Kittel-Kasuya-Yosida nuclear spin-spin interaction, which induces a spiral nuclear spin order below the transition temperature. We discuss the features of the spiral order, as well as its experimental signatures. In the ordered phase, we identify two backscattering mechanisms, due to charge impurities and magnons. The backscattering on charge impurities is allowed by the internally generated magnetic field, and leads to an Anderson-type localization of the edge states. The magnon-mediated backscattering results in a power-law resistance, which is suppressed at zero temperature. Overall, we find that in a sufficiently long edge the nuclear spins, whether ordered or not, suppress the edge conductance to zero as the temperature approaches zero.

  14. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godec, Matjaz, E-mail: matjaz.godec@imt.si; Batic, Barbara Setina; Mandrino, Djordje

    2010-04-15

    A microstructural characterization of the powder-metallurgy high-speed-steel S390 Microclean was performed based on an elemental distribution of the carbide phase as well as crystallographic analyses. The results showed that there were two types of carbides present: vanadium-rich carbides, which were not chemically homogeneous and exhibited a tungsten-enriched or tungsten-depleted central area; and chemically homogeneous tungsten-rich M{sub 6}C-type carbides. Despite the possibility of chemical inhomogenities, the crystallographic orientation of each of the carbides was shown to be uniform. Using electron backscatter diffraction the vanadium-rich carbides were determined to be either cubic VC or hexagonal V{sub 6}C{sub 5}, while the tungsten-rich carbidesmore » were M{sub 6}C. The electron backscatter diffraction results were also verified using X-ray diffraction. Several electron backscatter diffraction pattern maps were acquired in order to define the fraction of each carbide phase as well as the amount of martensite phase. The fraction of martensite was estimated using band-contrast images, while the fraction of carbides was calculated using the crystallographic data.« less

  15. Enhanced backscattering of electrons in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkovits, R.; Eliyahu, D.; Kaveh, M.

    1990-01-01

    We calculate the exact shape of the enhanced coherent backscattering peak for electrons in the presence of an external magnetic field. The interference phenomena that cause the backscattered enhancement are reduced due to the breaking of time-reversal symmetry. It is shown that the form of the peak in the presence of a magnetics field {ital I}({ital q},{ital H}) can be obtained (to a good approximation) from {ital I}({ital q},{ital H}=0) by replacing {ital q} with {ital {tilde q}}=({ital q}{sup 2}+(3L{sub {ital H}}{sup 2}){sup {minus}1}){sup 11}, where {ital L}{sub {ital H}}=(2{h bar}c/eH){sup 1/2}. We have also calculated {ital I}({ital q},{ital H})more » at finite temperatures and proposed it as the most sensitive tool for extracting inelastic processes.« less

  16. Effects of fatty infiltration in human livers on the backscattered statistics of ultrasound imaging.

    PubMed

    Wan, Yung-Liang; Tai, Dar-In; Ma, Hsiang-Yang; Chiang, Bing-Hao; Chen, Chin-Kuo; Tsui, Po-Hsiang

    2015-06-01

    Ultrasound imaging has been widely applied to screen fatty liver disease. Fatty liver disease is a condition where large vacuoles of triglyceride fat accumulate in liver cells, thereby altering the arrangement of scatterers and the corresponding backscattered statistics. In this study, we used ultrasound Nakagami imaging to explore the effects of fatty infiltration in human livers on the statistical distribution of backscattered signals. A total of 107 patients volunteered to participate in the experiments. The livers were scanned using a clinical ultrasound scanner to obtain the raw backscattered signals for ultrasound B-mode and Nakagami imaging. Clinical scores of fatty liver disease for each patient were determined according to a well-accepted sonographic scoring system. The results showed that the Nakagami image can visualize the local backscattering properties of liver tissues. The Nakagami parameter increased from 0.62 ± 0.11 to 1.02 ± 0.07 as the fatty liver disease stage increased from normal to severe, indicating that the backscattered statistics vary from pre-Rayleigh to Rayleigh distributions. A significant positive correlation (correlation coefficient ρ = 0.84; probability value (p value) < 0.0001) exists between the degree of fatty infiltration and the Nakagami parameter, suggesting that ultrasound Nakagami imaging has potentials in future applications in fatty liver disease diagnosis. © IMechE 2015.

  17. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    2007-09-01

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  18. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  19. Use of reciprocal lattice layer spacing in electron backscatter diffraction pattern analysis

    PubMed

    Michael; Eades

    2000-03-01

    In the scanning electron microscope using electron backscattered diffraction, it is possible to measure the spacing of the layers in the reciprocal lattice. These values are of great use in confirming the identification of phases. The technique derives the layer spacing from the higher-order Laue zone rings which appear in patterns from many materials. The method adapts results from convergent-beam electron diffraction in the transmission electron microscope. For many materials the measured layer spacing compares well with the calculated layer spacing. A noted exception is for higher atomic number materials. In these cases an extrapolation procedure is described that requires layer spacing measurements at a range of accelerating voltages. This procedure is shown to improve the accuracy of the technique significantly. The application of layer spacing measurements in EBSD is shown to be of use for the analysis of two polytypes of SiC.

  20. Monte-Carlo study of the influence of backscattered electrons on the transmission of a mini-orange β spectrometer

    NASA Astrophysics Data System (ADS)

    Detistov, Pavel; Balabanski, Dimiter L.

    2015-04-01

    This work work is a part of the performance investigation of the recently constructed Mini-Orange beta spectrometer. The spectrometer has eight different configurations using three different magnet shapes and combination of three, four, and six magnet pieces allowing detection of electrons in wide kinetic energy range. The performance of the device is studied using the GEANT4 simulation tool. Evaluation of the device's basic parameters has been made, paying special attention to the backscattering, for which a study of the dependence of this process on the energy and the angle is made.

  1. Mapping 180° polar domains using electron backscatter diffraction and dynamical scattering simulations

    DOE PAGES

    Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth; ...

    2016-11-18

    A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO 3 single crystals. Furthermore, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system.

  2. Stress in recrystallized quartz by electron backscatter diffraction mapping

    NASA Astrophysics Data System (ADS)

    Llana-Fúnez, S.

    2017-07-01

    The long-term state of stress at middle and lower crustal depths can be estimated through the study of the microstructure of exhumed rocks from active and/or ancient shear zones. Constitutive equations for deformation mechanisms in experimentally deformed rocks relate differential stress to the size of recrystallized grains. Cross et al. (2017) take advantage of electron backscatter diffraction mapping to systematically separate new recrystallized grains from host grains on the basis of the measurable lattice distorsion within the grains. They produce the first calibrated piezometer for quartz with this technique, reproducing within error a previous calibration based on optical microscopy.

  3. Mössbauer study on the deformed surface of high-manganese steel

    NASA Astrophysics Data System (ADS)

    Nasu, S.; Tanimoto, H.; Fujita, F. E.

    1990-07-01

    Conversion electron, X-ray backscattering and conventional transmission57Fe Mössbauer measurements have been performed to investigate the origin of the remarkable work hardening at the surface of a high-manganese steel which is called Hadfield steel. Mössbauer results show that α' martensite has no relation to work hardening. From the comparison of conversion electron to X-ray backscattering spectra, the occurrence of decarbonization is suggested at the surface. The transmission Mössbauer spectrum at 20 K for deformed specimen shows the existence of ɛ martensite which could be related to the work hardening of Hadfield steel.

  4. Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope.

    PubMed

    Brodusch, N; Demers, H; Gauvin, R

    2013-04-01

    A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  5. Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments.

    PubMed

    Aydarous, A Sh

    2008-01-01

    The size of hot particles contained in nuclear fallout ranges from 10 nm to 20 microm for the worldwide weapons fallout. Hot particles from nuclear power reactors can be significantly bigger (100 microm to several millimetres). Electron backscattering from such particles is a prominent secondary effect in beta dosimetry for radiological protection purposes, such as skin dosimetry. In this study, the effect of electron backscattering due to hot particles contamination on skin dose is investigated. These include parameters such as detector area, source radius, source energy, scattering material and source density. The Monte-Carlo Neutron Particle code (MCNP4C) was used to calculate the depth dose distribution for 10 different beta sources and various materials. The backscattering dose factors (BSDF) were then calculated. A significant dependence is shown for the BSDF magnitude upon detector area, source radius and scatterers. It is clearly shown that the BSDF increases with increasing detector area. For high Z scatterers, the BSDF can reach as high as 40 and 100% for sources with radii 0.1 and 0.0001 cm, respectively. The variation of BSDF with source radius, source energy and source density is discussed.

  6. Lidar- and balloon-borne particle counter comparisons following recent volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Reiter, R.; Jager, H.

    1983-01-01

    Balloon-borne particle counter measurements at Laramie, Wyoming (41 deg N) are used to calculate the expected lidar backscatter at 0.694 micron wavelength from July 1979 to February 1982, a period which included at least four detectable perturbations of the stratospheric aerosol layer due to volcanic eruptions. These calculations are compared with lidar measurements conducted at Garmisch-Partenkirchen (47.5 deg N) during the same period. While the agreement is generally good using only the main mode in the particle size distribution (radius about 0.07 micron) during approximately the first 6 months following a major volcanic eruption, a measured secondary mode near 1 micron radius, when included, improves the agreement. Calculations of the expected backscatter at 25-30 km reveal that substantial number of particles diffuse into this high altitude region about 7 months after a major eruption, and these particles should be taken into account when normalizing lidar at these altitudes.

  7. Specimen Holder for Analytical Electron Microscopes

    NASA Technical Reports Server (NTRS)

    Clanton, U. S.; Isaacs, A. M.; Mackinnon, I.

    1985-01-01

    Reduces spectral contamination by spurious X-ray. Specimen holder made of compressed carbon, securely retains standard electron microscope grid (disk) 3 mm in diameter and absorbs backscattered electrons that otherwise generate spurious X-rays. Since holder inexpensive, dedicated to single specimen when numerous samples examined.

  8. Characterization of ultrafine grained Cu-Ni-Si alloys by electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Altenberger, I.; Kuhn, H. A.; Gholami, M.; Mhaede, M.; Wagner, L.

    2014-08-01

    A combination of rotary swaging and optimized precipitation hardening was applied to generate ultra fine grained (UFG) microstructures in low alloyed high performance Cu-based alloy CuNi3Si1Mg. As a result, ultrafine grained (UFG) microstructures with nanoscopically small Ni2Si-precipitates exhibiting high strength, ductility and electrical conductivity can be obtained. Grain boundary pinning by nano-precipitates enhances the thermal stability. Electron channeling contrast imaging (ECCI) and especially electron backscattering diffraction (EBSD) are predestined to characterize the evolving microstructures due to excellent resolution and vast crystallographic information. The following study summarizes the microstructure after different processing steps and points out the consequences for the most important mechanical and physical properties such as strength, ductility and conductivity.

  9. Electronic Transport and Quantum Hall Effect in Bipolar Graphene p-n-p Junctions

    NASA Astrophysics Data System (ADS)

    Özyilmaz, Barbaros; Jarillo-Herrero, Pablo; Efetov, Dmitri; Abanin, Dmitry A.; Levitov, Leonid S.; Kim, Philip

    2007-10-01

    We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locally gated bipolar graphene p-n-p junctions. We observe a series of fractional quantum Hall conductance plateaus at high magnetic fields as the local charge density is varied in the p and n regions. These fractional plateaus, originating from chiral edge states equilibration at the p-n interfaces, exhibit sensitivity to interedge backscattering which is found to be strong for some of the plateaus and much weaker for other plateaus. We use this effect to explore the role of backscattering and estimate disorder strength in our graphene devices.

  10. Anomalous behavior of B{sub 1g} mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com; Ojha, S.; Singh, Fouran, E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com

    2015-12-15

    The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO) thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO{sub 2} lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb{sup +5} in the TiO{sub 2} lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Ramanmore » (MR) spectra of films with small size crystallites shows stiffening of about 4 cm{sup −1} for the E{sub g(1)} mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B{sub 1g} mode exhibits a large anomalous softening of 20 cm{sup −1} with asymmetrical broadening; which was not reported for the case of pure TiO{sub 2} crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb{sup 5+} doping induced reduction of Ti{sup 4+} ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS) and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.« less

  11. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    NASA Astrophysics Data System (ADS)

    Shand, B. A.; Lester, M.; Yeoman, T. K.

    1996-08-01

    A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE). The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s-1, the backscatter intensity (measured in decibels) remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels) and Doppler velocity for velocities between 200 m s-1 and 700 m s-1. At velocities greater than 700 m s-1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  12. Backscattered electron SEM imaging of resin sections from plant specimens: observation of histological to subcellular structure and CLEM.

    PubMed

    Rizzo, N W; Duncan, K E; Bourett, T M; Howard, R J

    2016-08-01

    We have refined methods for biological specimen preparation and low-voltage backscattered electron imaging in the scanning electron microscope that allow for observation at continuous magnifications of ca. 130-70 000 X, and documentation of tissue and subcellular ultrastructure detail. The technique, based upon early work by Ogura & Hasegawa (1980), affords use of significantly larger sections from fixed and resin-embedded specimens than is possible with transmission electron microscopy while providing similar data. After microtomy, the sections, typically ca. 750 nm thick, were dried onto the surface of glass or silicon wafer and stained with heavy metals-the use of grids avoided. The glass/wafer support was then mounted onto standard scanning electron microscopy sample stubs, carbon-coated and imaged directly at an accelerating voltage of 5 kV, using either a yttrium aluminum garnet or ExB backscattered electron detector. Alternatively, the sections could be viewed first by light microscopy, for example to document signal from a fluorescent protein, and then by scanning electron microscopy to provide correlative light/electron microscope (CLEM) data. These methods provide unobstructed access to ultrastructure in the spatial context of a section ca. 7 × 10 mm in size, significantly larger than the typical 0.2 × 0.3 mm section used for conventional transmission electron microscopy imaging. Application of this approach was especially useful when the biology of interest was rare or difficult to find, e.g. a particular cell type, developmental stage, large organ, the interface between cells of interacting organisms, when contextual information within a large tissue was obligatory, or combinations of these factors. In addition, the methods were easily adapted for immunolocalizations. © 2015 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society.

  13. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.

    PubMed

    Liljequist, David

    2012-01-01

    Backscattering of very low energy electrons in thin layers of amorphous ice is known to provide experimental data for the elastic and inelastic cross sections and indicates values to be expected in liquid water. The extraction of cross sections was based on a transport analysis consistent with Monte Carlo simulation of electron trajectories. However, at electron energies below 20 eV, quantum coherence effects may be important and trajectory-based methods may be in significant error. This possibility is here investigated by calculating quantum multiple elastic scattering of electrons in a simple model of a very small, thin foil of amorphous ice. The average quantum multiple elastic scattering of electrons is calculated for a large number of simulated foils, using a point-scatterer model for the water molecule and taking inelastic absorption into account. The calculation is compared with a corresponding trajectory simulation. The difference between average quantum scattering and trajectory simulation at energies below about 20 eV is large, in particular in the forward scattering direction, and is found to be almost entirely due to coherence effects associated with the short-range order in the amorphous ice. For electrons backscattered at the experimental detection angle (45° relative to the surface normal) the difference is however small except at electron energies below about 10 eV. Although coherence effects are in general found to be strong, the mean free path values derived by trajectory-based analysis may actually be in fair agreement with the result of an analysis based on quantum scattering, at least for electron energies larger than about 10 eV.

  14. Active pixel sensor array as a detector for electron microscopy.

    PubMed

    Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu

    2005-09-01

    A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.

  15. Displacement analysis of diagnostic ultrasound backscatter: A methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy

    PubMed Central

    Speyer, Gavriel; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.

    2010-01-01

    Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy. The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented. PMID:20649206

  16. Modeling scattering enhancements at isolated resonances using energy conservation, reciprocity, symmetry, and the optical theorem

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Osterhoudt, Curtis F.

    2003-04-01

    Sound scattered by some objects in water exhibits isolated narrow resonances that are sufficiently large in amplitude to dominate the low-frequency scattering. Examples include the quadrupole mode of thin spherical shells and of solid plastic spheres [B. T. Hefner and P. L. Marston, J. Acoust. Soc. Am. 107, 1930-1936 (2000)] and organ-pipe modes of water-filled pipes [C. F. Osterhoudt and P. L. Marston, J. Acoust. Soc. Am. 110, 2773 (2001)]. This presentation concerns simple methods for approximating the scattering. In the case of spheres, ray theory for the backscattering reduces to a simple form for high-Q modes: Eq. (58) of Marston [J. Acoust. Soc. Am. 83, 25-37 (1988)]. This result gives the backscattering form function at resonance (in the usual normalization) to have the magnitude 2(2n+1)/ka. Here n is the partial wave index associated with the mode of the sphere and ka is the product of the wave number and the sphere radius. This result may also be derived directly from energy conservation and the optical theorem. Scattering amplitudes associated with high-Q organ pipe resonances of open cylindrical pipes are also derived here by a related method using the energy conservation, reciprocity, symmetry, and the optical theorem.

  17. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    PubMed

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  18. Evidence for broken Galilean invariance at the quantum spin Hall edge

    NASA Astrophysics Data System (ADS)

    Geissler, Florian; Crépin, François; Trauzettel, Björn

    2015-12-01

    We study transport properties of the helical edge channels of a quantum spin Hall insulator, in the presence of electron-electron interactions and weak, local Rashba spin-orbit coupling. The combination of the two allows for inelastic backscattering that does not break time-reversal symmetry, resulting in interaction-dependent power-law corrections to the conductance. Here, we use a nonequilibrium Keldysh formalism to describe the situation of a long, one-dimensional edge channel coupled to external reservoirs, where the applied bias is the leading energy scale. By calculating explicitly the corrections to the conductance up to fourth order of the impurity strength, we analyze correlated single- and two-particle backscattering processes on a microscopic level. Interestingly, we show that the modeling of the leads together with the breaking of Galilean invariance has important effects on the transport properties. Such breaking occurs because the Galilean invariance of the bulk spectrum transforms into an emergent Lorentz invariance of the edge spectrum. With this broken Galilean invariance at the quantum spin Hall edge, we find a contribution to single-particle backscattering with a very low power scaling, while in the presence of Galilean invariance the leading contribution will be due to correlated two-particle backscattering only. This difference is further reflected in the different values of the Fano factor of the shot noise, an experimentally observable quantity. The described behavior is specific to the Rashba scatterer and does not occur in the case of backscattering off a time-reversal-breaking, magnetic impurity.

  19. Improved scatterer property estimates from ultrasound backscatter for small gate lengths using a gate-edge correction factor

    NASA Astrophysics Data System (ADS)

    Oelze, Michael L.; O'Brien, William D.

    2004-11-01

    Backscattered rf signals used to construct conventional ultrasound B-mode images contain frequency-dependent information that can be examined through the backscattered power spectrum. The backscattered power spectrum is found by taking the magnitude squared of the Fourier transform of a gated time segment corresponding to a region in the scattering volume. When a time segment is gated, the edges of the gated regions change the frequency content of the backscattered power spectrum due to truncating of the waveform. Tapered windows, like the Hanning window, and longer gate lengths reduce the relative contribution of the gate-edge effects. A new gate-edge correction factor was developed that partially accounted for the edge effects. The gate-edge correction factor gave more accurate estimates of scatterer properties at small gate lengths compared to conventional windowing functions. The gate-edge correction factor gave estimates of scatterer properties within 5% of actual values at very small gate lengths (less than 5 spatial pulse lengths) in both simulations and from measurements on glass-bead phantoms. While the gate-edge correction factor gave higher accuracy of estimates at smaller gate lengths, the precision of estimates was not improved at small gate lengths over conventional windowing functions. .

  20. The Scanning Electron Microscope and the Archaeologist

    ERIC Educational Resources Information Center

    Ponting, Matthew

    2004-01-01

    Images from scanning electron microscopy are now quite common and they can be of great value in archaeology. Techniques such as secondary electron imaging, backscattered electron imaging and energy-dispersive x-ray analysis can reveal information such as the presence of weevils in grain in Roman Britain, the composition of Roman coins and the…

  1. X-ray backscatter imaging for radiography by selective detection and snapshot: Evolution, development, and optimization

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel

    Compton backscatter imaging (CBI) is a single-sided imaging technique that uses the penetrating power of radiation and unique interaction properties of radiation with matter to image subsurface features. CBI has a variety of applications that include non-destructive interrogation, medical imaging, security and military applications. Radiography by selective detection (RSD), lateral migration radiography (LMR) and shadow aperture backscatter radiography (SABR) are different CBI techniques that are being optimized and developed. Radiography by selective detection (RSD) is a pencil beam Compton backscatter imaging technique that falls between highly collimated and uncollimated techniques. Radiography by selective detection uses a combination of single- and multiple-scatter photons from a projected area below a collimation plane to generate an image. As a result, the image has a combination of first- and multiple-scatter components. RSD techniques offer greater subsurface resolution than uncollimated techniques, at speeds at least an order of magnitude faster than highly collimated techniques. RSD scanning systems have evolved from a prototype into near market-ready scanning devices for use in a variety of single-sided imaging applications. The design has changed to incorporate state-of-the-art detectors and electronics optimized for backscatter imaging with an emphasis on versatility, efficiency and speed. The RSD system has become more stable, about 4 times faster, and 60% lighter while maintaining or improving image quality and contrast over the past 3 years. A new snapshot backscatter radiography (SBR) CBI technique, shadow aperture backscatter radiography (SABR), has been developed from concept and proof-of-principle to a functional laboratory prototype. SABR radiography uses digital detection media and shaded aperture configurations to generate near-surface Compton backscatter images without scanning, similar to how transmission radiographs are taken. Finally, a more inclusive theory of the factors affecting CBI contrast generation has tied together the past work of LMR with the more recent research in RSD. A variety of factors that induce changes in the backscatter photon field intensity (resulting in contrast changes in images) include: changes in the electron density field, attenuation changes along the entrance and exit paths, changes in the relative geometric positioning of the target, feature, illumination beam, and detectors. Understanding the interplay of how changes in each of these factors affects image contrast becomes essential to utilizing and optimizing RSD for different applications.

  2. Topological Acoustic Delay Line

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan

    2018-03-01

    Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.

  3. Phenotypically heterogeneous deletion of the ABH antigen from the transformed bladder urothelium. A scanning electron microscope study.

    PubMed

    De Harven, E; He, S; Hanna, W; Bootsma, G; Connolly, J G

    1987-10-01

    The deletion of ABH blood group antigens from the luminal surface of the bladder mucosa in cases of well differentiated transitional cell carcinomata, and the formation of pleomorphic microvilli have both been associated with aggressive biological behaviour and invasiveness of the tumors. We have studied cold cup biopsies from 8 normal mucosae and 17 papillary transitional cell carcinomata of the urinary bladder. The aim of our study was to correlate the formation of uniform or pleomorphic microvilli with the extent of deletion of the ABH blood group antigens on the surface of normal and transformed bladder urothelium. Immunogold scanning electron microscopy (SEM) in the backscattered electron (BE) imaging mode was used for this purpose. In the normal urothelium, uniform labeling of the luminal cells was demonstrated. In well differentiated tumors, the superficial cells exhibited uniform microvilli and a heterogeneous expression of the ABH antigens, giving characteristic 'mosaic' patterns of the antigenic labeling across the mucosal surface. These patterns were sharply delimitated at cell junctions when viewed by SEM; these observations were confirmed by transmission electron microscopy. In higher grade tumors, decreased ABH antigen expression, pleomorphic microvilli and/or featureless luminal cells were observed. In the transformed urothelium, the formation of uniform microvilli appeared to precede the loss of ABH antigen in most cases.

  4. Backscatter of hard X-rays in the solar atmosphere. [Calculating the reflectance of solar x ray emission

    NASA Technical Reports Server (NTRS)

    Bai, T.; Ramaty, R.

    1977-01-01

    The solar photosphere backscatters a substantial fraction of the hard X rays from solar flares incident upon it. This reflection was studied using a Monte Carlo simulation which takes into account Compton scattering and photo-electric absorption. Both isotropic and anisotropic X ray sources are considered. The bremsstrahlung from an anisotropic distribution of electrons are evaluated. By taking the reflection into account, the inconsistency is removed between recent observational data regarding the center-to-limb variation of solar X ray emission and the predictions of models in which accelerated electrons are moving down toward the photosphere.

  5. Backscattered electron simulations to evaluate sensitivity against electron dosage of buried semiconductor features

    NASA Astrophysics Data System (ADS)

    Mukhtar, Maseeh; Thiel, Bradley

    2018-03-01

    In fabrication, overlay measurements of semiconductor device patterns have conventionally been performed using optical methods. Beginning with image-based techniques using box-in-box to the more recent diffraction-based overlay (DBO). Alternatively, use of SEM overlay is under consideration for in-device overlay. Two main application spaces are measurement features from multiple mask levels on the same surface and buried features. Modern CD-SEMs are adept at measuring overlay for cases where all features are on the surface. In order to measure overlay of buried features, HV-SEM is needed. Gate-to-fin and BEOL overlay are important use cases for this technique. A JMONSEL simulation exercise was performed for these two cases using 10 nm line/space gratings of graduated increase in depth of burial. Backscattered energy loss results of these simulations were used to calculate the sensitivity measurements of buried features versus electron dosage for an array of electron beam voltages.

  6. Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy

    DOE PAGES

    Ihlefeld, Jon F.; Michael, Joseph R.; McKenzie, Bonnie B.; ...

    2016-09-16

    We report that ferroelastic domain walls provide opportunities for deterministically controlling mechanical, optical, electrical, and thermal energy. Domain wall characterization in micro- and nanoscale systems, where their spacing may be of the order of 100 nm or less is presently limited to only a few techniques, such as piezoresponse force microscopy and transmission electron microscopy. These respective techniques cannot, however, independently characterize domain polarization orientation and domain wall motion in technologically relevant capacitor structures or in a non-destructive manner, thus presenting a limitation of their utility. In this work, we show how backscatter scanning electron microscopy utilizing channeling contrast yieldmore » can image the ferroelastic domain structure of ferroelectric films with domain wall spacing as narrow as 10 nm.« less

  7. Neural network approach to the inverse problem of the crack-depth determination from ultrasonic backscattering data

    NASA Astrophysics Data System (ADS)

    Takadoya, M.; Notake, M.; Kitahara, M.; Achenbach, J. D.; Guo, Q. C.; Peterson, M. L.

    A neural network approach has been developed to determine the depth of a surface breaking crack in a steel plate from ultrasonic backscattering data. The network is trained by the use of a feedforward three-layered network together with a back-propagation algorithm for error corrections. Synthetic data are employed for network training. The signal used for crack isonification is a mode converted 45 deg transverse wave. The plate with a surface breaking crack is immersed in water, and the crack is insonified from the opposite uncracked side of the plate. A numerical analysis of the backscattered field is carried out based on the elastic wave theory by the use of the boundary element method. The numerical analysis provides synthetic data for the training of the network. The training data have been calculated for cracks with specific increments of the experimental data which are different from the training data.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Sambit Bikas; Haldar, Arijit; Roy, Basudev

    A photonic force microscope comprises of an optically trapped micro-probe and a position detection system to track the motion of the probe. Signal collection for motion detection is often carried out using the backscattered light off the probe-however, this mode has problems of low S/N due to the small backscattering cross sections of the micro-probes typically used. The position sensors often used in these cases are quadrant photodetectors. To ensure maximum sensitivity of such detectors, it would help if the detector size matched with the detection beam radius after the condenser lens (which for backscattered detection would be the trappingmore » objective itself). To suit this condition, we have used a miniature displacement sensor whose dimensions makes it ideal to work with 1:1 images of micrometer-sized trapped probes in the backscattering detection mode. The detector is based on the quadrant photo-integrated chip in the optical pick-up head of a compact disc player. Using this detector, we measured absolute displacements of an optically trapped 1.1 {mu}m probe with a resolution of {approx}10 nm for a bandwidth of 10 Hz at 95% significance without any sample or laser stabilization. We characterized our optical trap for different sized probes by measuring the power spectrum for each probe to 1% accuracy, and found that for 1.1 {mu}m diameter probes, the noise in our position measurement matched the thermal resolution limit for averaging times up to 10 ms. We also achieved a linear response range of around 385 nm with cross talk between axes {approx_equal}4% for 1.1 {mu}m diameter probes. The detector has extremely high bandwidth (few MHz) and low optical power threshold-other factors that can lead to its widespread use in photonic force microscopy.« less

  9. Ionic liquid-based observation technique for nonconductive materials in the scanning electron microscope: Application to the characterization of a rare earth ore.

    PubMed

    Brodusch, Nicolas; Waters, Kristian; Demers, Hendrix; Gauvin, Raynald

    2014-03-01

    A new approach for preparing geological materials is proposed to reduce charging during their characterization in a scanning electron microscope. This technique was applied to a sample of the Nechalacho rare earth deposit, which contains a significant amount of the minerals fergusonite and zircon. Instead of covering the specimen surface with a conductive coating, the sample was immersed in a dilute solution of ionic liquid and then air dried prior to SEM analysis. Imaging at a wide range of accelerating voltages was then possible without evidence of charging when using the in-chamber secondary and backscattered electrons detectors, even at 1 kV. High resolution x-ray and electron backscatter diffraction mapping were successfully obtained at 20 and 5 kV with negligible image drifting and permitted the characterization of the microstructure of the zircon/fergusonite-Y aggregates encased in the matrix minerals. Because of the absence of a conductive layer at the surface of the specimen, the Kikuchi band contrast was improved and the backscatter electron signal increased at both 5 and 20 kV as confirmed by Monte Carlo modeling. These major developments led to an improvement of the spatial resolution and efficiency of the above characterization techniques applied to the rare earth ore and it is expected that they can be applied to other types of ores and minerals. Copyright © 2014 Wiley Periodicals, Inc.

  10. A new inversion algorithm for HF sky-wave backscatter ionograms

    NASA Astrophysics Data System (ADS)

    Feng, Jing; Ni, Binbin; Lou, Peng; Wei, Na; Yang, Longquan; Liu, Wen; Zhao, Zhengyu; Li, Xue

    2018-05-01

    HF sky-wave backscatter sounding system is capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density. The leading edge (LE) of a backscatter ionogram (BSI) is widely used for ionospheric inversion since it is hardly affected by any factors other than ionospheric electron density. Traditional BSI inversion methods have failed to distinguish LEs associated with different ionospheric layers, and simply utilize the minimum group path of each operating frequency, which generally corresponds to the LE associated with the F2 layer. Consequently, while the inversion results can provide accurate profiles of the F region below the F2 peak, the diagnostics may not be so effective for other ionospheric layers. In order to resolve this issue, we present a new BSI inversion method using LEs associated with different layers, which can further improve the accuracy of electron density distribution, especially the profile of the ionospheric layers below the F2 region. The efficiency of the algorithm is evaluated by computing the mean and the standard deviation of the differences between inverted parameter values and true values obtained from both vertical and oblique incidence sounding. Test results clearly manifest that the method we have developed outputs more accurate electron density profiles due to improvements to acquire the profiles of the layers below the F2 region. Our study can further improve the current BSI inversion methods on the reconstruction of 2-D electron density distribution in a vertical plane aligned with the direction of sounding.

  11. Atomically Thin Graphene Windows That Enable High Contrast Electron Microscopy without a Specimen Vacuum Chamber.

    PubMed

    Han, Yimo; Nguyen, Kayla X; Ogawa, Yui; Park, Jiwoong; Muller, David A

    2016-12-14

    Scanning electron microscopes (SEMs) require a high vacuum environment to generate and shape an electron beam for imaging; however, the vacuum conditions greatly limit the nature of specimens that can be examined. From a purely scattering physics perspective, it is not necessary to place the specimen inside the vacuum chamber-the mean free paths (MFPs) for electron scattering in air at typical SEM beam voltages are 50-100 μm. This is the idea behind the airSEM, which removes the specimen vacuum chamber from the SEM and places the sample in air. The thickness of the gas layer is less than a MFP from an electron-transparent window to preserve the shape and resolution of the incident beam, resulting in comparable imaging quality to an all-vacuum SEM. Present silicon nitride windows scatter far more strongly than the air gap and are currently the contrast and resolution limiting factor in the airSEM. Graphene windows have been used previously to wrap or seal samples in vacuum for imaging. Here we demonstrate the use of a robust bilayer graphene window for sealing the electron optics from the room environment, providing an electron transparent window with only a 2% drop in contrast. There is a 5-fold-increase in signal/noise ratio for imaging compared to multi-MFP-thick silicon nitride windows, enabling high contrast in backscattered, transmission, and surface imaging modes for the new airSEM geometry.

  12. Structure of the Global Nanoscience and Nanotechnology Research Literature

    DTIC Science & Technology

    2006-01-01

    Transistors, Nature, 424 (6949): 654-657, 2003. Joannopoulos, JD, Meade, RD, Winn, JN, Photonic Crystals: Molding the Flow of Light, Princeton...1.27 Force Microscopy 40 0.10 0.00 Electron Spectroscopy 40 0.10 0.00 Rutherford backscattering spectrometry 38 0.10 0.00 flow cytometry 36 0.09...Backscattering Spectroscopy/Spectrometry • Flow Cytometry • Spectrophotometry (UV-Visible) • Deep Level Transient Spectroscopy • Inductively

  13. Chaotic density fluctuations in L-mode plasmas of the DIII-D tokamak

    DOE PAGES

    Maggs, J. E.; Rhodes, Terry L.; Morales, G. J.

    2015-03-05

    Analysis of the time series obtained with the Doppler backscattering system (DBS) in the DIII-D tokamak shows that intermediate wave number plasma density fluctuations in low confinement (L-mode) tokamak plasmas are chaotic. Here, the supporting evidence is based on the shape of the power spectrum; the location of the signal in the complexity-entropy plane (C-H plane); and the population of the corresponding Bandt-Pompe probability distributions.

  14. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate

    DOE PAGES

    Liu, Peng; Zhang, Yanwen; Xue, Haizhou; ...

    2016-01-09

    Understanding irradiation effects induced by elastic energy loss to atomic nuclei and inelastic energy loss to electrons in a crystal, as well as the coupled effect between them, is a scientific challenge. Damage evolution in LiNbO 3 irradiated by 0.9 and 21 MeV Si ions at 300 K has been studied utilizing Rutherford backscattering spectrometry in channeling mode. During the low-energy ion irradiation process, damage accumulation produced due to elastic collisions is described utilizing a disorder accumulation model. Moreover, low electronic energy loss is shown to induce observable damage that increases with ion fluence. For the same electronic energy loss,more » the velocity of the incident ion could affect the energy and spatial distribution of excited electrons, and therefore effectively modify the diameter of the ion track. Furthermore, nonlinear additive phenomenon of irradiation damage induced by high electronic energy loss in pre-damaged LiNbO 3 has been observed. The result indicates that pre-existing damage induced from nuclear energy loss interacts synergistically with inelastic electronic energy loss to promote the formation of amorphous tracks and lead to rapid phase transformation, much more efficient than what is observed in pristine crystal solely induced by electronic energy loss. As a result, this synergistic effect is attributed to the fundamental mechanism that the defects produced by the elastic collisions result in a decrease in thermal conductivity, increase in the electron-phonon coupling, and further lead to higher intensity in thermal spike from intense electronic energy deposition along high-energy ion trajectory.« less

  15. In Situ Observation of Kinetic Processes of Lath Bainite Nucleation and Growth by Laser Scanning Confocal Microscope in Reheated Weld Metals

    NASA Astrophysics Data System (ADS)

    Mao, Gaojun; Cao, Rui; Guo, Xili; Jiang, Yong; Chen, Jianhong

    2017-12-01

    The kinetic processes of nucleation and growth of bainite laths in reheated weld metals are observed and analyzed by a combination of a laser confocal scanning microscope and an electron backscattering diffraction with a field emission scanning electron microscope. The results indicate that the surface relief induced by phase transformation is able to reveal the real microstructural morphologies of bainite laths when viewed from various angles. Five nucleation modes and six types of growth behaviors of bainite laths are revealed. The bainite lath growth rates are measured to vary over a wide range, from 2 μm/s to higher than 2000 μm/s. The orientations of the bainite laths within a prior austenite grain are examined and denoted as different variants. On the basis of variant identification, the reason is analyzed for various growth rates which are demonstrated to be affected by (1) the density of the high-angle misorientation in it, (2) the included angle between habit planes of different variants, and (3) the direction of lath growth with respect to the free (polished) surface.

  16. Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Song, Jiupeng; Yan, Binyou; Wang, Yingmin; Wang, Jianbao; Chen, Jiming

    2017-12-01

    The effects of the addition of Y2O3 and hot-deformation on the mechanical properties of tungsten (W) have been studied. The processing route comprises a doping technique for the distribution of Y2O3 particles in a tungsten matrix, conventional sintering in a hydrogen environment, and high-energy-rate forging (HERF). The microstructure of the composite was characterized by using transmission electron microscopy and electron backscattering diffraction imaging technique, and its mechanical properties were studied by means of tensile testing. The thermal shock response of the HERF processed W-Y2O3 was evaluated by applying edge-localized mode-like loads (100 pulses) with a pulse duration of 1 ms and an absorbed power density of up to 1 GW m-2 at various temperatures between room temperature and 200 °C. HERF processing has produced elongated W grains with preferred orientations and a high density of structure defects in the composite. The composite material exhibits high tensile strength and good ductility, and a thermal shock cracking threshold lower than 100 °C.

  17. Backscatter dose effects for high atomic number materials being irradiated in the presence of a magnetic field: A Monte Carlo study for the MRI linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Syed Bilal

    Purpose: To quantify and explain the backscatter dose effects for clinically relevant high atomic number materials being irradiated in the presence of a 1.5 T transverse magnetic field. Methods: Interface effects were investigated using Monte Carlo simulation techniques. We used GPUMCD (v5.1) and GEANT4 (v10.1) for this purpose. GPUMCD is a commercial software written for the Elekta AB, MRI linac. Dose was scored using GPUMCD in cubic voxels of side 1 and 0.5 mm, in two different virtual phantoms of dimensions 20 × 20 × 20 cm and 5 × 5 × 13.3 cm, respectively. A photon beam was generatedmore » from a point 143.5 cm away from the isocenter with energy distribution sampled from a histogram representing the true Elekta, MRI linac photon spectrum. A slab of variable thickness and position containing either bone, aluminum, titanium, stainless steel, or one of the two different dental filling materials was inserted as an inhomogeneity in the 20 × 20 × 20 cm phantom. The 5 × 5 × 13.3 cm phantom was used as a clinical test case in order to explain the dose perturbation effects for a head and neck cancer patient. The back scatter dose factor (BSDF) was defined as the ratio of the doses at a given depth with and without the presence of the inhomogeneity. Backscattered electron fluence was calculated at the inhomogeneity interface using GEANT4. A 1.5 T magnetic field was applied perpendicular to the direction of the beam in both phantoms, identical to the geometry in the Elekta MRI linac. Results: With the application of a 1.5 T magnetic field, all the BSDF’s were reduced by 12%–47%, compared to the no magnetic field case. The corresponding backscattered electron fluence at the interface was also reduced by 45%–64%. The reduction in the BSDF at the interface, due to the application of the magnetic field, is manifested in a different manner for each material. In the case of bone, the dose drops at the interface contrary to the expected increase when no magnetic field is applied. In the case of aluminum, the dose at the interface is the same with and without the presence of the aluminum. For all of the other materials the dose increases at the interface. Conclusions: The reduction in dose at the interface, in the presence of the magnetic field, is directly related to the reduction in backscattered electron fluence. This reduction occurs due to two different reasons. First, the electron spectrum hitting the interface is changed when the magnetic field is turned on, which results in changes in the electron scattering probability. Second, some electrons that have curved trajectories due to the presence of the magnetic field are absorbed by the higher density side of the interface and no longer contribute to the backscattered electron fluence.« less

  18. An experimental attenuation plate to improve the dose distribution in intraoperative electron beam radiotherapy for breast cancer.

    PubMed

    Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K

    2009-06-07

    Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.

  19. Influence of modes of metal transfer on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Manidipto; Saha, Saptarshi; Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com

    2015-04-15

    The present study elaborately discussed the effect of different modes of metal transfer (i.e., short circuit mode, spray mode and pulse mode) on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals. Electron backscattered diffraction (EBSD) analysis was used to study the grain growth direction and grain structure in weld metals. The changes in grain structure and grain growth direction were found to be essentially varied with the weld pool shape and acting forces induced by modes of metal transfer at a constant welding speed. Short circuit mode of metal transfer owing to highermore » Marangoni force (M{sub a}) and low electromagnetic force (R{sub m}) promotes the lower weld pool volume (Γ) and higher weld pool maximum radius (r{sub m}). Short circuit mode also shows curved and tapered columnar grain structures and the grain growth preferentially occurred in <001> direction. In contrast, spray mode of metal transfer increases the Γ and reduces the r{sub m} values due to very high R{sub m} and typically reveals straight and broad columnar grain structures with preferential growth direction in <111>. In the pulse mode of metal transfer relatively high M{sub a} and R{sub m} simultaneously increase the weld pool width and the primary penetration which might encourage relatively complex grain growth directions in the weld pool and cause a shift of major intensity from <001> to <111> direction. It can also be concluded that the fusion zone grain structure and direction of grain growth are solely dependent on modes of metal transfer and remain constant for a particular mode of metal transfer irrespective of filler wire used. - Highlights: • Welded joints of LNiASS were prepared by varying modes of metal transfer. • Weld pool shape, grain structure and grain growth direction were studied. • Short circuit mode shows curved and tapered grain growth in <001> direction. • Spray mode shows straight and broad columnar grain growth in <111> direction. • Pulse mode shows complex grain growth with a shift in growth direction.« less

  20. An analytical model for light backscattering by coccoliths and coccospheres of Emiliania huxleyi.

    PubMed

    Fournier, Georges; Neukermans, Griet

    2017-06-26

    We present an analytical model for light backscattering by coccoliths and coccolithophores of the marine calcifying phytoplankter Emiliania huxleyi. The model is based on the separation of the effects of diffraction, refraction, and reflection on scattering, a valid assumption for particle sizes typical of coccoliths and coccolithophores. Our model results match closely with results from an exact scattering code that uses complex particle geometry and our model also mimics well abrupt transitions in scattering magnitude. Finally, we apply our model to predict changes in the spectral backscattering coefficient during an Emiliania huxleyi bloom with results that closely match in situ measurements. Because our model captures the key features that control the light backscattering process, it can be generalized to coccoliths and coccolithophores of different morphologies which can be obtained from size-calibrated electron microphotographs. Matlab codes of this model are provided as supplementary material.

  1. Development of an analytical method for crystalline content determination in amorphous solid dispersions produced by hot-melt extrusion using transmission Raman spectroscopy: A feasibility study.

    PubMed

    Netchacovitch, L; Dumont, E; Cailletaud, J; Thiry, J; De Bleye, C; Sacré, P-Y; Boiret, M; Evrard, B; Hubert, Ph; Ziemons, E

    2017-09-15

    The development of a quantitative method determining the crystalline percentage in an amorphous solid dispersion is of great interest in the pharmaceutical field. Indeed, the crystalline Active Pharmaceutical Ingredient transformation into its amorphous state is increasingly used as it enhances the solubility and bioavailability of Biopharmaceutical Classification System class II drugs. One way to produce amorphous solid dispersions is the Hot-Melt Extrusion (HME) process. This study reported the development and the comparison of the analytical performances of two techniques, based on backscattering and transmission Raman spectroscopy, determining the crystalline remaining content in amorphous solid dispersions produced by HME. Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression were performed on preprocessed data and tended towards the same conclusions: for the backscattering Raman results, the use of the DuoScan™ mode improved the PCA and PLS results, due to a larger analyzed sampling volume. For the transmission Raman results, the determination of low crystalline percentages was possible and the best regression model was obtained using this technique. Indeed, the latter acquired spectra through the whole sample volume, in contrast with the previous surface analyses performed using the backscattering mode. This study consequently highlighted the importance of the analyzed sampling volume. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Determination of the force constant of a single-beam gradient trap by measurement of backscattered light

    NASA Astrophysics Data System (ADS)

    Friese, M. E. J.; Rubinsztein-Dunlop, H.; Heckenberg, N. R.; Dearden, E. W.

    1996-12-01

    A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1 4- m-diameter polystyrene spheres in a single-beam gradient trap using measurements of backscattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10 6 and 4 10 6 N m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction.

  3. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berecz, Tibor, E-mail: berecz@eik.bme.hu; Jenei, Péter, E-mail: jenei@metal.elte.hu; Csóré, András, E-mail: csorean@gmail.com

    2016-03-15

    The microstructure and the dislocation density in as-quenched ferrous lath martensite were studied by different methods. The blocks, packets and variants formed due to martensitic transformation were identified and their sizes were determined by electron backscatter diffraction (EBSD). Concomitant transmission electron microscopy (TEM) investigation revealed that the laths contain subgrains with the size between 50 and 100 nm. A novel evaluation procedure of EBSD images was elaborated for the determination of the density and the space distribution of geometrically necessary dislocations from the misorientation distribution. The total dislocation density obtained by X-ray diffraction line profile analysis was in good agreementmore » with the value determined by EBSD, indicating that the majority of dislocations formed due to martensitic transformation during quenching are geometrically necessary dislocations.« less

  4. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    NASA Astrophysics Data System (ADS)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  5. Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking.

    PubMed

    Chen, Wen-Jie; Hang, Zhi Hong; Dong, Jian-Wen; Xiao, Xiao; Wang, He-Zhou; Chan, C T

    2011-07-08

    A strategy is proposed to realize robust transport in a time reversal invariant photonic system. Using numerical simulation and a microwave experiment, we demonstrate that a chiral guided mode in the channel of a three-dimensional dielectric layer-by-layer photonic crystal is immune to the scattering of a square patch of metal or dielectric inserted to block the channel. The chirality based robust transport can be realized in nonmagnetic dielectric materials without any external field.

  6. Equations for normal-mode statistics of sound scattering by a rough elastic boundary in an underwater waveguide, including backscattering.

    PubMed

    Morozov, Andrey K; Colosi, John A

    2017-09-01

    Underwater sound scattering by a rough sea surface, ice, or a rough elastic bottom is studied. The study includes both the scattering from the rough boundary and the elastic effects in the solid layer. A coupled mode matrix is approximated by a linear function of one random perturbation parameter such as the ice-thickness or a perturbation of the surface position. A full two-way coupled mode solution is used to derive the stochastic differential equation for the second order statistics in a Markov approximation.

  7. Rapid contrast evaluation method based on affinity beads and backscattered electron imaging for the screening of electron stains.

    PubMed

    Kaku, Hiroki; Inoue, Kanako; Muranaka, Yoshinori; Park, Pyoyun; Ikeda, Kenichi

    2015-10-01

    Uranyl salts are toxic and radioactive; therefore, several studies have been conducted to screen for substitutes of electron stains. In this regard, the contrast evaluation process is time consuming and the results obtained are inconsistent. In this study, we developed a novel contrast evaluation method using affinity beads and a backscattered electron image (BSEI), obtained using scanning electron microscopy. The contrast ratios of BSEI in each electron stain treatment were correlated with those of transmission electron microscopic images. The affinity beads bound to cell components independently. Protein and DNA samples were enhanced by image contrast treated with electron stains; however, this was not observed for sugars. Protein-conjugated beads showed an additive effect of image contrast when double-stained with lead. However, additive effect of double staining was not observed in DNA-conjugated beads. The varying chemical properties of oligopeptides showed differences in image contrast when treated with each electron stain. This BSEI-based evaluation method not only enables screening for alternate electron stains, but also helps analyze the underlying mechanisms of electron staining of cellular structures. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Twinning behaviors of a rolled AZ31 magnesium alloy under multidirectional loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dewen

    The microstructure and texture evolution of an AZ31 magnesium rolled sheet during quasi-static compression at strain rates of 10{sup −3} s{sup −1} has been investigated by in situ electron backscattered diffraction. The influence of the initial and pre-deformed texture on the predominant deformation mechanisms during compression has been examined. It has been found that extensive grain reorientation due to (10 − 12) tensile twinning appeared when compressed along transverse direction. Tensile twin variants were observed under this loading condition, and different variants will cause an effect to the following deformation. Several twinning modes occurred with continuative loading along rolling direction.more » - Highlights: •Twinning behaviors were investigated through in situ multidirectional compressive tests. •Deformation behavior was affected by the twin variants. •Four types of twinning behaviors were observed during deformation process.« less

  9. Microstructural and opto-electrical properties of chromium nitride films implanted with vanadium ions

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Traverse, A.; Popović, M.; Lieb, K. P.; Zhang, K.; Bibić, N.

    2012-07-01

    We report on modifications of 280-nm thin polycrystalline CrN layers caused by vanadium ion implantation. The CrN layers were deposited at 150°C by d.c. reactive sputtering on Si(100) wafers and then implanted at room temperature with 80-keV V+ ions to fluences of 1×1017 and 2×1017 ions/cm2. Rutherford backscattering spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction were used to characterize changes in the structural properties of the films. Their optical and electrical properties were analyzed by infrared spectroscopy in reflection mode and electrical resistivity measurements. CrN was found to keep its cubic structure under the conditions of vanadium ion implantation used here. The initially partially non-metallic CrN layer displays metallic character under implantation, which may be related to the possible formation of Cr1-x V x N.

  10. Topological sound in active-liquid metamaterials

    NASA Astrophysics Data System (ADS)

    Souslov, Anton; van Zuiden, Benjamin C.; Bartolo, Denis; Vitelli, Vincenzo

    2017-11-01

    Liquids composed of self-propelled particles have been experimentally realized using molecular, colloidal or macroscopic constituents. These active liquids can flow spontaneously even in the absence of an external drive. Unlike spontaneous active flow, the propagation of density waves in confined active liquids is not well explored. Here, we exploit a mapping between density waves on top of a chiral flow and electrons in a synthetic gauge field to lay out design principles for artificial structures termed topological active metamaterials. We design metamaterials that break time-reversal symmetry using lattices composed of annular channels filled with a spontaneously flowing active liquid. Such active metamaterials support topologically protected sound modes that propagate unidirectionally, without backscattering, along either sample edges or domain walls and despite overdamped particle dynamics. Our work illustrates how parity-symmetry breaking in metamaterial structure combined with microscopic irreversibility of active matter leads to novel functionalities that cannot be achieved using only passive materials.

  11. Backscattering and absorption coefficients for electrons: Solutions of invariant embedding transport equations using a method of convergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, C.; Brizuela, H.; Heluani, S. P.

    2014-05-21

    The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types ofmore » approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams.« less

  12. Magnetic dipole excitations of 50Cr

    NASA Astrophysics Data System (ADS)

    Pai, H.; Beck, T.; Beller, J.; Beyer, R.; Bhike, M.; Derya, V.; Gayer, U.; Isaak, J.; Krishichayan, Kvasil, J.; Löher, B.; Nesterenko, V. O.; Pietralla, N.; Martínez-Pinedo, G.; Mertes, L.; Ponomarev, V. Yu.; Reinhard, P.-G.; Repko, A.; Ries, P. C.; Romig, C.; Savran, D.; Schwengner, R.; Tornow, W.; Werner, V.; Wilhelmy, J.; Zilges, A.; Zweidinger, M.

    2016-01-01

    The low-lying M 1 strength of the open-shell nucleus 50Cr has been studied with the method of nuclear resonance fluorescence up to 9.7 MeV using bremsstrahlung at the superconducting Darmstadt linear electron accelerator S-DALINAC and Compton backscattered photons at the High Intensity γ -ray Source (HI γ S ) facility between 6 and 9.7 MeV of the initial photon energy. Fifteen 1+ states have been observed between 3.6 and 9.7 MeV. Following our analysis the lowest 1+ state at 3.6 MeV can be considered as an isovector orbital mode with some spin admixture. The obtained results generally match the estimations and trends typical for the scissors-like mode. Detailed calculations within the Skyrme quasiparticle random-phase-approximation method and the large-scale shell model justify our conclusions. The calculated distributions of the orbital current for the lowest 1+-state suggest the schematic view of Lipparini and Stringari (isovector rotation-like oscillations inside the rigid surface) rather than the scissors-like picture of Lo Iudice and Palumbo. The spin M 1 resonance is shown to be mainly generated by spin-flip transitions between the orbitals of the f p shell.

  13. Evaluation of a nuclear gage for controlling the consolidation of fresh concrete : final report.

    DOT National Transportation Integrated Search

    1981-01-01

    Evaluated was an approach to controlling the consolidation of in-place portland cement concrete on the basis of densities obtained with a Troxler 3411 nuclear gage. The gage was used in the backscatter mode on low-slump concrete bridge deck overlays ...

  14. Few-mode fiber detection for tissue characterization in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Eugui, Pablo; Lichtenegger, Antonia; Augustin, Marco; Harper, Danielle J.; Fialová, Stanislava; Wartak, Andreas; Hitzenberger, Christoph K.; Baumann, Bernhard

    2017-07-01

    A few-mode fiber based detection for OCT systems is presented. The capability of few-mode fibers for delivering light through different fiber paths enables the application of these fibers for angular scattering tissue character- ization. Since the optical path lengths traveled in the fiber change between the fiber modes, the OCT image information will be reconstructed at different depth positions, separating the directly backscattered light from the light scattered at other angles. Using the proposed method, the relation between the angle of reflection from the sample and the respective modal intensity distribution was investigated. The system was demonstrated for imaging ex-vivo brain tissue samples of patients with Alzheimer's disease.

  15. Fractography of composite delamination

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.

    1989-01-01

    Delamination is a major failure mode of carbon fiber organic matrix composites. It can occur under a variety of loading conditions. Efforts to develop predictive models of the delamination of carbon fiber composites are hampered by a lack of information about the micromechanics of impact damage and delamination growth. Crack formation and propagation in these materials cannot be observed in sufficient detail to determine micro-damage using currently available nondestructive methods such as acoustic backscattering or x ray imaging. Consequently, destructive methods are required. Delamination of composites in Mode I, Mode II and after low energy impact loads were investigated using metallographic techniques of potting the failed specimens, sectioning and examining the cut sections for damage modes.

  16. Some new results on electron transport in the atmosphere. [Monte Carlo calculation of penetration, diffusion, and slowing down of electron beams in air

    NASA Technical Reports Server (NTRS)

    Berger, M. J.; Seltzer, S. M.; Maeda, K.

    1972-01-01

    The penetration, diffusion and slowing down of electrons in a semi-infinite air medium has been studied by the Monte Carlo method. The results are applicable to the atmosphere at altitudes up to 300 km. Most of the results pertain to monoenergetic electron beams injected into the atmosphere at a height of 300 km, either vertically downwards or with a pitch-angle distribution isotropic over the downward hemisphere. Some results were also obtained for various initial pitch angles between 0 deg and 90 deg. Information has been generated concerning the following topics: (1) the backscattering of electrons from the atmosphere, expressed in terms of backscattering coefficients, angular distributions and energy spectra of reflected electrons, for incident energies T(o) between 2 keV and 2 MeV; (2) energy deposition by electrons as a function of the altitude, down to 80 km, for T(o) between 2 keV and 2 MeV; (3) the corresponding energy depostion by electron-produced bremsstrahlung, down to 30 km; (4) the evolution of the electron flux spectrum as function of the atmospheric depth, for T(o) between 2 keV and 20 keV. Energy deposition results are given for incident electron beams with exponential and power-exponential spectra.

  17. Acquisition of a High Resolution Field Emission Scanning Electron Microscope for the Analysis of Returned Samples

    NASA Technical Reports Server (NTRS)

    Nittler, Larry R.

    2003-01-01

    This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.

  18. Angle-resolved investigation of Auger electrons from Cu and Au adsorbed on W(110)

    NASA Astrophysics Data System (ADS)

    Koshikawa, T.; Von Dem Hagen, T.; Bauer, E.

    1981-08-01

    The angular distribution of Cu M 2,3VV and Au N 6,7VV Auger electrons from Cu and Au mono- and double layers on W(110) is measured with the goal of obtaining information on the contribution of the backscattered wave on the angular distribution of Auger electrons from adsorbed atoms.

  19. Polarization rotation enhancement and scattering mechanisms in waveguide magnetophotonic crystals

    NASA Astrophysics Data System (ADS)

    Levy, Miguel; Li, Rong

    2006-09-01

    Intermodal coupling in photonic band gap optical channels in magnetic garnet films is found to leverage the nonreciprocal polarization rotation. Forward fundamental-mode to high-order mode backscattering yields the largest rotations. The underlying mechanism is traced to the dependence of the grating-coupling constant on the modal refractive index and profile of the propagating beam. Large changes in polarization near the band edges are observed in first and second orders. Extreme sensitivity to linear birefringence exists in second order.

  20. About the contrast of δ' precipitates in bulk Al-Cu-Li alloys in reflection mode with a field-emission scanning electron microscope at low accelerating voltage.

    PubMed

    Brodusch, Nicolas; Voisard, Frédéric; Gauvin, Raynald

    2017-11-01

    Characterising the impact of lithium additions in the precipitation sequence in Al-Li-Cu alloys is important to control the strengthening of the final material. Since now, transmission electron microscopy (TEM) at high beam voltage has been the technique of choice to monitor the size and spatial distribution of δ' precipitates (Al 3 Li). Here we report on the imaging of the δ' phase in such alloys using backscattered electrons (BSE) and low accelerating voltage in a high-resolution field-emission scanning electron microscope. By applying low-energy Ar + ion milling to the surface after mechanical polishing (MP), the MP-induced corroded layers were efficiently removed and permitted the δ's to be visible with a limited impact on the observed microstructure. The resulting BSE contrast between the δ's and the Al matrix was compared with that obtained using Monte Carlo modelling. The artefacts possibly resulting from the sample preparation procedure were reviewed and discussed and permitted to confirm that these precipitates were effectively the metastable δ's. The method described in this report necessitates less intensive sample preparation than that required for TEM and provides a much larger field of view and an easily interpretable contrast compared to the transmission techniques. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection.

    PubMed

    Wierzchos, Jacek; Sancho, Leopoldo García; Ascaso, Carmen

    2005-04-01

    In some zones of Antarctica's cold and dry desert, the extinction of cryptoendolithic microorganisms leaves behind inorganic traces of microbial life. In this paper, we examine the transition from live microorganisms, through their decay, to microbial fossils using in situ microscopy (transmission electron microscopy, scanning electron microscopy in back-scattered electron mode) and microanalytical (energy dispersive X-ray spectroscopy) techniques. Our results demonstrate that, after their death, endolithic microorganisms inhabiting Commonwealth Glacier sandstone from the Antarctica McMurdo Dry Valleys become mineralized. In some cases, epicellular deposition of minerals and/or simply filling up of empty moulds by minerals leads to the formation of cell-shaped structures that may be considered biomarkers. The continuous deposition of allochthonous clay minerals and sulfate-rich salts fills the sandstone pores. This process can give rise to microbial fossils with distinguishable cell wall structures. Often, fossilized cell interiors were of a different chemical composition to the mineralized cell walls. We propose that the microbial fossil formation observed was induced by mineral precipitation resulting from inorganic processes occurring after the death of cryptoendolithic microorganisms. Nevertheless, it must have been the organic template that provoked the diffusion of mineral elements and gave rise to their characteristic distribution pattern inside the fossilized cells.

  2. An optimized methodology to analyze biopolymer capsules by environmental scanning electron microscopy.

    PubMed

    Conforto, Egle; Joguet, Nicolas; Buisson, Pierre; Vendeville, Jean-Eudes; Chaigneau, Carine; Maugard, Thierry

    2015-02-01

    The aim of this paper is to describe an optimized methodology to study the surface characteristics and internal structure of biopolymer capsules using scanning electron microscopy (SEM) in environmental mode. The main advantage of this methodology is that no preparation is required and, significantly, no metallic coverage is deposited on the surface of the specimen, thus preserving the original capsule shape and its surface morphology. This avoids introducing preparation artefacts which could modify the capsule surface and mask information concerning important feature like porosities or roughness. Using this method gelatin and mainly fatty coatings, difficult to be analyzed by standard SEM technique, unambiguously show fine details of their surface morphology without damage. Furthermore, chemical contrast is preserved in backscattered electron images of unprepared samples, allowing visualizing the internal organization of the capsule, the quality of the envelope, etc... This study provides pointers on how to obtain optimal conditions for the analysis of biological or sensitive material, as this is not always studied using appropriate techniques. A reliable evaluation of the parameters used in capsule elaboration for research and industrial applications, as well as that of capsule functionality is provided by this methodology, which is essential for the technological progress in this domain. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A digital instrument for nondestructive measurements of coating thicknesses by beta backscattering

    NASA Astrophysics Data System (ADS)

    Farcasiu, D. M.; Apostolescu, T.; Bozdog, H.; Badescu, E.; Bohm, V.; Stanescu, S. P.; Jianu, A.; Bordeanu, C.; Cracium, M. V.

    1992-02-01

    The elements of nondestructive gauging of coatings applied on various metal bases are presented. The intensity of the backscattered beta radiations is related to the thickness of the coating. With a fixed measuring geometry and radioactive sources (147Pm, 204Tl, 90Sr+90Y) the intensity of the backscattered beta particles is dependent on the following parameters: coating thickness, atomic number of the coating material and of the base, the beta particle energy and the surface finish. It can be used for the measurement of a wide range of coating thicknesses provided that the difference between the coating and the support atomic numbers is at least 20%. Fields of application include electronics, electrotechnique and so on.

  4. Auger electron spectroscopy and Rutherford backscattering studies of copper in 2024-T3 aluminum following electrochemical anodization in phosphoric acid

    NASA Astrophysics Data System (ADS)

    Solomon, J. S.

    1981-05-01

    The effects of the electrochemical anodization of dioxidized 2024-T3 aluminum on copper were characterized by Auger electron spectroscopy and Rutherford backscattering. Anodization was performed in phosphoric acid at constant potential. Data is presented which shows that constant potential anodization of 2024-T3 is more efficient than aluminum in terms of oxide growth rates for short anodization times. However the maximum anodic oxide thickness achievable on the alloy is less than the pure metal. Copper is shown to be enriched at the oxide metal interface because of its diffusion from the bulk during anodization. The presence of copper at the oxide-metal interface is shown to affect oxide morphology.

  5. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    PubMed

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.

  6. Backscattering and extinction cross sections of two swimbladdered fishes at the lowest resonance, as modeled by the boundary-element method

    NASA Astrophysics Data System (ADS)

    Foote, Kenneth G.; Francis, David T. I.

    2003-04-01

    The boundary-element method has been applied to backscattering and extinction of sound by swimbladdered fish at the lowest, breathing-mode resonance. Corresponding cross sections have been computed for specimens of two representative kinds of swimbladder-bearing fish, namely physostomes and physoclists, which, respectively, possess and lack an external duct. The respective fishes are herring (Clupea harengus) and pollack (Pollachius pollachius), for which swimbladder morphometric data are available. The depth dependences of the cross sections are computed over the range 0-500 m. Comparisons are made with measurements and other modeled results for a number of species. [Work supported by ONR.

  7. Optical wet steam monitor

    DOEpatents

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  8. Optical wet steam monitor

    DOEpatents

    Maxey, Lonnie C.; Simpson, Marc L.

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  9. Significance of including field non-uniformities such as the heel effect and beam scatter in the determination of the skin dose distribution during interventional fluoroscopic procedures

    NASA Astrophysics Data System (ADS)

    Rana, Vijay; Gill, Kamaljit; Rudin, Stephen; Bednarek, Daniel R.

    2012-03-01

    The current version of the real-time skin-dose-tracking system (DTS) we have developed assumes the exposure is contained within the collimated beam and is uniform except for inverse-square variation. This study investigates the significance of factors that contribute to beam non-uniformity such as the heel effect and backscatter from the patient to areas of the skin inside and outside the collimated beam. Dose-calibrated Gafchromic film (XR-RV3, ISP) was placed in the beam in the plane of the patient table at a position 15 cm tube-side of isocenter on a Toshiba Infinix C-Arm system. Separate exposures were made with the film in contact with a block of 20-cm solid water providing backscatter and with the film suspended in air without backscatter, both with and without the table in the beam. The film was scanned to obtain dose profiles and comparison of the profiles for the various conditions allowed a determination of field non-uniformity and backscatter contribution. With the solid-water phantom and with the collimator opened completely for the 20-cm mode, the dose profile decreased by about 40% on the anode side of the field. Backscatter falloff at the beam edge was about 10% from the center and extra-beam backscatter decreased slowly with distance from the field, being about 3% of the beam maximum at 6 cm from the edge. Determination of the magnitude of these factors will allow them to be included in the skin-dose-distribution calculation and should provide a more accurate determination of peak-skin dose for the DTS.

  10. Dosimetric distribution of the surroundings of different dental crowns and implants during LINAC photon irradiation

    NASA Astrophysics Data System (ADS)

    Chang, Kwo-Ping; Lin, Wei-Ting; Shiau, An-Cheng; Chie, Yu-Huang

    2014-11-01

    In radiotherapy of the head and neck, metal dentures or implants will increase the risk of complications such as mucositis and osteoradionecrosis. The aim of this study is to explore the back scatter effect of commercially available dental metal alloys on the mucosa and bone under 6 MV LINAC irradiation. The Monte Carlo method has been employed to calculate the dose distribution in the heterogeneous media of the designed oral phantom based on the oral cavity geometry. Backscatter dose increases up to a maximum of 53%, and is primarily dependent on the physical density and electron density of the metal crown alloy. Ceramic metal crowns have been quantified to increase backscatter dose up to 10% on mucosa. Ceramic serves as an inherent shield of mucosa. The backscatter dose will be greater for a small field size if the tumor is located at a deeper region. Titanium implants will increase the backscatter dose by 13% to bone but will not affect the mucosa. QC-20 (polystyrene resin) is recommended as a shield material (3 mm) to eliminate the backscatter dose on mucosa due to the high density metals.

  11. Response of Helical Luttinger Liquid in InAs/GaSb Edges to a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Li, Tingxin; Tong, Bingbing; Liu, Xiaoxue; Han, Zhongdong; Zhang, Chi; Sullivan, Gerard; Du, Rui-Rui

    Electron-electron interactions have been shown to play an important role in InAs/GaSb quantum spin Hall (QSH) edge states, leading to power-law behaviors of the helical edge conductance as a function of temperature and bias voltage (Li et al., Phys. Rev. Lett. 115 136804). A variety of inelastic and/or multiparticle backscattering processes could occur in helical edges when taking electron-electron interactions into account. On the other hand, in the presence of an external magnetic field, single-particle elastic backscattering is also allowed in QSH edge due to the breaking of time-reversal symmetry (TRS). It would be interesting to pursue experimental investigations for the combined effect of electron-electron interactions and TRS breaking on QSH edge transport. We report work in progress for low temperature conductance measurements of the helical edge in InAs/GaSb under perpendicular or in-plane magnetic fields. We found that the magnetic field responses are generally correlated with the interaction strength in the edge states. The work at Peking University were supported by NBRPC Grants (No. 2012CB921301 and No. 2014CB920901), and by Collaborative Innovation Center of Quantum Matter.

  12. User expectations for multibeam echo sounders backscatter strength data-looking back into the future

    NASA Astrophysics Data System (ADS)

    Lucieer, Vanessa; Roche, Marc; Degrendele, Koen; Malik, Mashkoor; Dolan, Margaret; Lamarche, Geoffroy

    2018-06-01

    With the ability of multibeam echo sounders (MBES) to measure backscatter strength (BS) as a function of true angle of insonification across the seafloor, came a new recognition of the potential of backscatter measurements to remotely characterize the properties of the seafloor. Advances in transducer design, digital electronics, signal processing capabilities, navigation, and graphic display devices, have improved the resolution and particularly the dynamic range available to sonar and processing software manufacturers. Alongside these improvements the expectations of what the data can deliver has also grown. In this paper, we identify these user-expectations and explore how MBES backscatter is utilized by different communities involved in marine seabed research at present, and the aspirations that these communities have for the data in the future. The results presented here are based on a user survey conducted by the GeoHab (Marine Geological and Biological Habitat Mapping) association. This paper summarises the different processing procedures employed to extract useful information from MBES backscatter data and the various intentions for which the user community collect the data. We show how a range of backscatter output products are generated from the different processing procedures, and how these results are taken up by different scientific disciplines, and also identify common constraints in handling MBES BS data. Finally, we outline our expectations for the future of this unique and important data source for seafloor mapping and characterisation.

  13. Formation of artificial plasma disturbances in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Bakhmet'eva, N. V.; Frolov, V. L.; Vyakhirev, V. D.; Kalinina, E. E.; Bolotin, I. A.; Akchurin, A. D.; Zykov, E. Yu.

    2012-06-01

    We present the results of experiments on sounding the disturbed ionospheric region produced by the high-power RF radiation of the "Sura" heating facility, which were performed simultaneously at two observation points. One point is located on the territory of the heating facility the other, and the other, at the observatory of Kazan State University (the "Observatory" point) in 170 km to the East from the facility. The experiments were aimed at studying the mechanism of formation of artificial disturbances in the lower ionosphere in the case of reflection of a high-power wave in the F region and determining the parameters of the signals of backscattering from artificial electron density irregularities which are formed as a result of ionospheric perturbations. The ionosphere was modified by a high-power RF O-mode wave, which was emitted by the transmitters of the "Sura" facility, in sessions several seconds or minutes long. The disturbed region was sounded using the vertical-sounding technique at the "Vasil'sursk" laboratory by the partial-reflection facility at a frequency of 2.95 MHz, and by the modified ionospheric station "Tsiklon" at ten frequencies ranged from 2 to 6.5 MHz at the "Observatory" point. At the same time, vertical-sounding ionograms were recorded in the usual regime. At the reception points, simultaneous changes in the amplitudes of the vertical-sounding signals and the aspect backscattering signals were recorded. These records correlate with the periods of operation of the heating facility. The characteristics and dynamics of the signals are discussed.

  14. Effects of Ion-ion Collisions and Inhomogeneity in Two-dimensional Simulations of Stimulated Brillouin Backscattering*

    NASA Astrophysics Data System (ADS)

    Cohen, B. I.

    2005-10-01

    Two-dimensional simulations of stimulated Brillouin backscattering (SBBS) with the BZOHAR^1 code have been extended to include ion-ion collisions and spatial nonuniformity in the mean ion flow. BZOHAR hybrid simulations (particle-in-cell kinetic ions and Boltzmann fluid electrons) have shown^2 that SBBS saturation is dominated by ion trapping effects and secondary instability of the primary ion wave (decay into subharmonic ion waves and ion quasi-modes). Here we address the effects of ion collisions^3 on SBBS saturation and employ the efficient Langevin ion collision algorithm of Ref. 4 and the Fokker-Planck collision operator of Ref. 5. We also report simulations of SBBS with a linear gradient in the mean ion drift, which in conjunction with the nonlinear frequency shift due to ion trapping can introduce auto-resonance effects that may enhance reflectivities.^6 For SBBS in a high-gain limit with ion collisions or inhomogeneity, we find that ion trapping and secondary ion wave instabilities are robust saturation mechanisms. *Work performed for US DOE by UC LLNL under Contr. W-7405-ENG-48. ^1B.I. Cohen, et al., Phys. Plasmas 4, 956 (1997). ^2B.I. Cohen, et al., Phys. Plasmas, 12, 052703 (2005),. ^ 3P.W. Rambo, et al., Phys. Rev. Lett. 79, 83 (1997). ^ 4M.E. Jones, et al., J. Comp. Phys. 123, 169, (1996). ^ 5W. M. Manheimer, et al., J. Comp. Phys. 138, 563 (1997). ^ 6E.A. Williams, et al., Phys. Plasmas 11, 231 (2004).

  15. Analysis of the Spectral Backscattering Coefficient Variability on the Northeastern shelf of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gallegos, S. C.; Gould, R. W.; Arnone, R. A.; Teague, W. J.; Mitchell, D. A.; Ko, D.

    2005-05-01

    The continental shelf of the northeastern Gulf of Mexico between 87.5 W and 88.5 W is an ideal place to study coastal processes. In this region, the shelf slopes gently down to depths of 100 m, and then increases rapidly to depths greater than a mile. The Naval Research Laboratory at Stennis Space Center in Mississippi is currently undertaking an intensive measurement and modeling program to determine the cross-shelf exchange processes and their relation to the optical parameters of this area. In this study, we report our efforts to quantify the variability of the spectral backscattering coefficient derived from SeaWiFS imagery via empirical orthogonal functions. We compare the most relevant modes with the spatial distribution of Eddy Kinetic Energy (EKE) computed by the Inter Americas Seas (IAS) model and in-situ measurements by acoustic Doppler current profilers deployed between May 2004 and May 2005. The results indicate that most of the backscattering variability is contained in areas north of 29.2N which coincides with the edge of the continental shelf (100 m depth). Sporadic increases in backscattering are observed as far south as 29.0 N and to the east of 88.1W. These increases can be explained by fluctuations in surface EKE.

  16. Retrievals of aerosol microphysics from simulations of spaceborne multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Whiteman, David N.; Pérez-Ramírez, Daniel; Veselovskii, Igor; Colarco, Peter; Buchard, Virginie

    2018-01-01

    In support of the Aerosol, Clouds, Ecosystems mission, simulations of a spaceborne multiwavelength lidar are performed based on global model simulations of the atmosphere along a satellite orbit track. The yield for aerosol microphysical inversions is quantified and comparisons are made between the aerosol microphysics inherent in the global model and those inverted from both the model's optical data and the simulated three backscatter and two extinction lidar measurements, which are based on the model's optical data. We find that yield can be significantly increased if inversions based on a reduced optical dataset of three backscatter and one extinction are acceptable. In general, retrieval performance is better for cases where the aerosol fine mode dominates although a lack of sensitivity to particles with sizes less than 0.1 μm is found. Lack of sensitivity to coarse mode cases is also found, in agreement with earlier studies. Surface area is generally the most robustly retrieved quantity. The work here points toward the need for ancillary data to aid in the constraints of the lidar inversions and also for joint inversions involving lidar and polarimeter measurements.

  17. Retrievals of Aerosol Microphysics from Simulations of Spaceborne Multiwavelength Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Perez-Ramírez, Daniel; Veselovskii, Igor; Colarco, Peter; Buchard, Virginie

    2017-01-01

    In support of the Aerosol, Clouds, Ecosystems mission, simulations of a spaceborne multiwavelength lidar are performed based on global model simulations of the atmosphere along a satellite orbit track. The yield for aerosol microphysical inversions is quantified and comparisons are made between the aerosol microphysics inherent in the global model and those inverted from both the model's optical data and the simulated three backscatter and two extinction lidar measurements, which are based on the model's optical data. We find that yield can be significantly increased if inversions based on a reduced optical dataset of three backscatter and one extinction are acceptable. In general, retrieval performance is better for cases where the aerosol fine mode dominates although a lack of sensitivity to particles with sizes less than 0.1 microns is found. Lack of sensitivity to coarse mode cases is also found, in agreement with earlier studies. Surface area is generally the most robustly retrieved quantity. The work here points toward the need for ancillary data to aid in the constraints of the lidar inversions and also for joint inversions involving lidar and polarimeter measurements.

  18. Characterization of Multilayered Multipass Friction Stir Weld on ASTM A572 G50 Steel

    DOE PAGES

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; ...

    2014-01-01

    A multilayered multipass friction stir weld (MM-FSW) on ASTM A572 Grade 50 steel was characterized to understand its potential application for thick-section structures. The 15-mm-thick section was fabricated by stacking up three steel plates and then friction stir welding the plates together in a total of 5 passes. The unique butt/lap joint configuration encountered in the multilayer weld was examined to understand the effect of tool rotation direction on the joint quality especially the formation of hooking defect. Charpy V-notch impact toughness tests showed generally higher impact toughness energy for the stir zone than the base metal with a ductilemore » fracture mode. The microhardness value was measured from 195 to 220 HV in the stir zone, while the base metal showed an average value of 170 HV. The microstructure in the stir zone and the adjacent heat affected zone was quantified using Optical and Scanning Electron Microscopy (SEM) including Electron Backscatter Diffraction (EBSD). The increased toughness and hardness were correlated with the refined microstructure in stir zone, resulting from severe plastic deformation and subsequent dynamic recrystallization during friction stir welding.« less

  19. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.

    PubMed

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-06-03

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.

  20. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    PubMed Central

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-01-01

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility. PMID:28772975

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinteck, N., E-mail: swinteck@email.arizona.edu; Matsuo, S.; Runge, K.

    Recent progress in electronic and electromagnetic topological insulators has led to the demonstration of one way propagation of electron and photon edge states and the possibility of immunity to backscattering by edge defects. Unfortunately, such topologically protected propagation of waves in the bulk of a material has not been observed. We show, in the case of sound/elastic waves, that bulk waves with unidirectional backscattering-immune topological states can be observed in a time-dependent elastic superlattice. The superlattice is realized via spatial and temporal modulation of the stiffness of an elastic material. Bulk elastic waves in this superlattice are supported by amore » manifold in momentum space with the topology of a single twist Möbius strip. Our results demonstrate the possibility of attaining one way transport and immunity to scattering of bulk elastic waves.« less

  2. Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas.

    PubMed

    Froula, D H; Divol, L; Meezan, N B; Dixit, S; Moody, J D; Neumayer, P; Pollock, B B; Ross, J S; Glenzer, S H

    2007-02-23

    We demonstrate that a blue (3omega, 351 nm) laser beam with an intensity of 2 x 10(15) W cm(-2) propagates nearly within the original beam cone through a millimeter scale, T(e)=3.5 keV high density (n(e)=5 x 10(20) cm(-3)) plasma. The beam produced less than 1% total backscatter at these high temperatures and densities; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.

  3. Back-scattered electron imaging of a non-vertebral case of hypervitaminosis A in a cat.

    PubMed

    Franch, J; Pastor, J; Franch, B; Durall, I; Manzanares, M C

    2000-03-01

    We describe a clinical case of hypervitaminosis A in a cat. The main lesions were bony fusions of both the hip and stifle joints, without spinal involvement. A post-mortem study using back-scattered scanning electron microscopy (BEI-SEM) revealed that exostoses had formed around the joints without articular surface involvement. The more recently formed areas of bony proliferation were composed mainly of chondroid tissue surrounded by different degrees of woven bone. As the bony reaction occurred, remodelling of the trabeculae was observed which lead to progressive substitution of chondroid tissue by woven bone surrounded by apposition of lamellar bone. No traces of calcified cartilage were observed in any of the bone sections evaluated. Copyright 2000 European Society of Feline Medicine.

  4. Short communication on Kinetics of grain growth and particle pinning in U-10 wt.% Mo

    NASA Astrophysics Data System (ADS)

    Frazier, William E.; Hu, Shenyang; Overman, Nicole; Lavender, Curt; Joshi, Vineet V.

    2018-01-01

    The alloy U-10 wt% Mo was annealed at temperatures ranging from 700 °C to 900 °C for periods lasting up to 24 h. Annealed microstructures were examined using Electron Backscattered Diffraction (EBSD) to obtain average grain sizes and grain size distributions. From the temporal evolution of the average grain size, the activation energy of grain growth was determined to be 172.4 ± 0.961 kJ/mol. Grain growth over the annealing period stagnated after a period of 1-4 h. This stagnation is apparently caused by the pinning effect of second-phase particles in the materials. Back-scattered electron imaging (BSE) was used to confirm that these particles do not appreciably coarsen or dissolve during annealing at the aforementioned temperatures.

  5. Electron-cloud updated simulation results for the PSR, and recent results for the SNS

    NASA Astrophysics Data System (ADS)

    Pivi, M.; Furman, M. A.

    2002-05-01

    Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code.

  6. Waveguide-mode polarization gaps in square spiral photonic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Rong-Juan; John, Sajeev; Li, Zhi-Yuan

    2015-09-01

    We designed waveguide channels in two types of square spiral photonic crystals. Wide polarization gaps, in which only one circular polarization wave is allowed while the other counter-direction circular polarization wave is forbidden, can be opened up on the waveguide modes within the fundamental photonic band gap according to the calculation of band structures and transmission spectra. This phenomenon is ascribed to the chirality of the waveguide and is independent of the chirality of the background photonic crystal. Moreover, the transmission spectra show a good one-way property of the waveguide channels. The chiral quality factor demonstrates the handedness of the allowed and impeded chiral waveguide modes, and further proved the property of the waveguide-mode polarization gap. Such waveguides with waveguide-mode polarization gap are a good candidate for one-way waveguides with robust backscattering-immune transport.

  7. Identifying Planar Deformation Features Using EBSD and FIB

    NASA Astrophysics Data System (ADS)

    Pickersgill, A. E.; Lee, M. R.

    2015-09-01

    Planar deformation features in quartz grains from the Gow Lake impact structure have been successfully identified and indexed using electron backscatter diffraction in combination with focused ion beam milling.

  8. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers.

    PubMed

    Wan, Q; Masters, R C; Lidzey, D; Abrams, K J; Dapor, M; Plenderleith, R A; Rimmer, S; Claeyssens, F; Rodenburg, C

    2016-12-01

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.

    PubMed

    Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H

    2008-02-01

    We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.

  10. Effects of ethylenediaminetetraacetic, etidronic and peracetic acid irrigation on human root dentine and the smear layer.

    PubMed

    Lottanti, S; Gautschi, H; Sener, B; Zehnder, M

    2009-04-01

    To evaluate the effects of ethylenediaminetetraacetic (EDTA), etidronic (EA) and peracetic acid (PA) when used in conjunction with sodium hypochlorite (NaOCl) as root canal irrigants on calcium eluted from canals, smear layer, and root dentine demineralization after instrumentation/irrigation. Single-rooted human premolars were irrigated as follows (n = 12 per group): (1) 1% NaOCl during instrumentation, deionized water after instrumentation, (2) 1% NaOCl during, 17% EDTA after instrumentation, (3) a 1 : 1-mixture of 2% NaOCl and 18% EA during and after instrumentation, and (4) 1% NaOCl during, 2.25% PA after instrumentation. Irrigant volumes and contact times were 10 mL/15 min during and 5 mL/3 min after instrumentation. The evaluated outcomes were eluted calcium by atomic absorption spectroscopy, smear-covered areas by scanning electron microscopy in secondary electron mode and apparent canal wall decalcifications on root transsections in backscatter mode. For the smear layer analysis, sclerotic dentine was taken into consideration. Results were compared using appropriate parametric and nonparametric tests, alpha = 0.05. The statistical comparison of the protocols regarding calcium elution revealed that protocol (1) yielded less calcium than (3), which yielded less than protocols (2) and (4). Most of the instrumented canal walls treated with one of the decalcifying agents were free of smear layer. Protocols (1) and (3) caused no decalcification of root dentine, whilst (2) and (4) showed substance typical demineralization patterns. The decalcifying agents under investigation were all able to remove or prevent a smear layer. However, they eroded the dentine wall differently.

  11. An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Rieder, R.; Wanke, H.; Economou, T.

    1996-09-01

    Mars Pathfinder and the Russian Mars-96 will carry an Alpha Proton X-Ray Spectrometer (APXS) for the determination of the chemical composition of Martian rocks and soil. The instrument will measure the concentration of all major and many minor elements, including C,N and O, at levels above typically 1%. The method employed consist of bombarding a sample of 50 mm diameter with alpha particles from a radioactive source (50 mCi of Cm-244) and measuring: (i) backscattered alpha particles (alpha mode) (ii) protons from (a,p) reactions with some light elements (proton mode) (iii) characteristic X-rays emitted from the sample (X-ray mode). The APXS has a long standing space heritage, going back to Surveyor V,VI and VII (1967/68) and the Soviet Phobos (1988) missions. The present design is the result of an endeavour to reduce mass and power consumption to 600g/ 300mW. It consist of a sensor head containing the alpha sources, a telescope of a silicon detectors for the detection of the alpha particles and protons and a separate X-ray detector with its preamplifier, and an electronics box (80x70x60 mm) containing a microcontroller based multichannel spectrometer. The paper will describe the APXS flight hardware and present results obtained with the flight instrument that will show the instrument capabili- ties and the expected results to be obtained during surface operations on Mars.

  12. Secondary electron imaging of monolayer materials inside a transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cretu, Ovidiu, E-mail: cretu.ovidiu@nims.go.jp; Lin, Yung-Chang; Suenaga, Kazutomo

    2015-08-10

    A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.

  13. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    DOE PAGES

    Pullen, M. G.; Wolter, B.; Le, A. -T.; ...

    2016-06-22

    The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval ofmore » the structure of randomly oriented O 2 and C 2H 2 molecules, with π g and π u symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. As a result, while this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.« less

  14. Estimating random errors due to shot noise in backscatter lidar observations.

    PubMed

    Liu, Zhaoyan; Hunt, William; Vaughan, Mark; Hostetler, Chris; McGill, Matthew; Powell, Kathleen; Winker, David; Hu, Yongxiang

    2006-06-20

    We discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson- distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root mean square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF, uncertainties can be reliably calculated from or for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar and tested using data from the Lidar In-space Technology Experiment.

  15. Estimating Random Errors Due to Shot Noise in Backscatter Lidar Observations

    NASA Technical Reports Server (NTRS)

    Liu, Zhaoyan; Hunt, William; Vaughan, Mark A.; Hostetler, Chris A.; McGill, Matthew J.; Powell, Kathy; Winker, David M.; Hu, Yongxiang

    2006-01-01

    In this paper, we discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson-distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root-mean-square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF uncertainties can be reliably calculated from/for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar and tested using data from the Lidar In-space Technology Experiment (LITE). OCIS Codes:

  16. Random fiber lasers based on artificially controlled backscattering fibers

    NASA Astrophysics Data System (ADS)

    Chen, Daru; Wang, Xiaoliang; She, Lijuan; Qiang, Zexuan; Yu, Zhangwei

    2017-10-01

    The random fiber laser (RFL) which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previous RFLs are based on distributed feedback of Rayleigh scattering amplified through stimulated Raman/Brillouin scattering effect in single mode fibers, which required long-distance (tens of kilometers) single mode fibers and high threshold up to watt-level due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open cavity RFL based on a segment of a artificially controlled backscattering SMF(ACB-SMF) with a length of 210m, 310m or 390m. A fiber Bragg grating with the central wavelength of 1530nm and a segment of ACB-SMF forms the half-open cavity. The proposed RFL achieves the threshold of 25mW, 30mW and 30mW, respectively. Random lasing at the wavelength of 1530nm and the extinction ratio of 50dB is achieved when a segment of 5m EDF is pumped by a 980nm LD in the RFL. Another half-open cavity RFL based on a segment of a artificially controlled backscattering EDF(ACBS-EDF) is also demonstrated without an ACB-SMF. The 3m ACB-EDF is fabricated by using the femtosecond laser with pulse energy of 0.34mJ which introduces about 50 reflectors in the EDF. Random lasing at the wavelength of 1530nm is achieved with the output power of 7.5mW and the efficiency of 1.88%. Two novel RFLs with much short cavities have been achieved with low threshold and high efficiency.

  17. Defect formation in MeV H+ implanted GaN and 4H-SiC investigated by cross-sectional Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Jia, Qi; You, Tiangui; Zhang, Shibin; Lin, Jiajie; Zhang, Runchun; Zhou, Min; Yu, Wenjie; Zhang, Bo; Ou, Xin; Wang, Xi

    2017-09-01

    Cross-sectional Raman spectroscopy is used to characterize the defect formation and the defect recovery in MeV H+ implanted bulk GaN and 4H-SiC in the high energy MeV ion-cut process. The Raman intensity decreases but the forbidden modes are activated at the damage region, and the intensity decrease is proportional to the damage level. The Raman spectrum is quite sensitive to detect the damage recovery after annealing. The main peak intensity increases and the forbidden mode disappears in both annealed GaN and 4H-SiC samples. The Raman spectra of GaN samples annealed at different temperatures suggest that higher annealing temperature is more efficient for damage recovery. While, the Raman spectra of SiC indicate that higher implantation temperature results in heavier lattice damage and other polytype clusters might be generated by high annealing temperature in the annealed SiC samples. The cross-sectional Raman spectroscopy is a straightforward method to characterize lattice damage and damage recovery in high energy ion-cut process. It can serve as a fast supplementary measurement technique to Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA) and transmission electron microscope (TEM) for the defect characterizations.

  18. Thick target bremsstrahlung spectra for 1.00-, 1.25-, and 1.40-Mev electrons

    USGS Publications Warehouse

    Miller, W.; Motz, J.W.; Cialella, C.

    1954-01-01

    The spectrum of radiation produced by 1.0-, 1.25-, and 1.40-Mev electrons incident on a thick tungsten target was measured at 0A????and 90A????with the incident beam by a method involving the magnetic analysis of Compton electrons. The effects of electron scattering and energy loss in the target preclude any simple interpretation of this data to yield a differential bremsstrahlung cross section. However, an estimate of the spectra to be expected at 0A????and 90A????was obtained by combining the Sauter expression for the bremsstrahlung cross section with the available information on electron scatter and energy loss in the target and backscatter from the target. The reliability of the estimate is limited because the Sauter formula was calculated by using the Born approximation, the electron scattering calculations are applicable to an infinite medium only, and the backscatter was estimated empirically from Bothe's experimental data which were obtained with lower energy electrons (370 kev). Furthermore electron energy straggling was neglected. Nevertheless, the predicted spectral shapes at 0A????and 90A????and the relative intensities at these two angles are in qualitative agreement with the measured values. The absolute magnitudes of the measured intensities at both angles are about a factor of two greater than the predicted values. ?? 1954 The American Physical Society.

  19. Challenges in characterization of photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Borzycki, Krzysztof; Kobelke, Jens; Mergo, Pawel; Schuster, Kay

    2011-05-01

    We present experience with photonic crystal fiber (PCF) characterization during COST Action 299, focusing on phenomena causing errors and ways to mitigate them. PCFs developed at IPHT Jena (Germany; UMCS Lublin, Poland), designed for single mode operation were coupled to test instruments by fusion splicing to intermediate lengths of telecom single mode fibers (SMF). PCF samples were short (0.5-100 m), with 20-70 dB/km attenuation at 1310 nm and 1550 nm. Optical Time Domain Reflectometer (OTDR) was best for measuring loss as most PCFs produced strong backscattering, while variable splice losses and difficulties with PCF cleaving for optical power measurements made cutback and insertion loss measurements inaccurate. Experience with PCF handling and cleaving is also reviewed. Quality of splices to fiber under test was critical. Excitation of higher order modes produced strong "noise" during measurements of polarization parameters like PMD or PDL. Multimode propagation and vibration-induced interference precluded testing of fine dependence of PMD on temperature or strain, causing random variations comparable to true changes of PMD. OTDR measurements were not affected, but testing of short fiber sections with very different backscattering intensities puts special demands on instrument performance. Temperature testing of liquid-infiltrated PCF was time-consuming, as settling of parameters after temperature change took up to 40 minutes. PCFs were fragile, breaking below 2% linear expansion, sometimes in unusual way when twisted.

  20. 78 FR 34990 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... living organisms, cellular constructs, viruses, bacteria, and single-celled organisms, as well as... samples, and back-scattered electron detection of colloidal gold particles. Experiments will also require...

  1. Backscattered Electron Microscopy as an Advanced Technique in Petrography.

    ERIC Educational Resources Information Center

    Krinsley, David Henry; Manley, Curtis Robert

    1989-01-01

    Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)

  2. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers

    NASA Astrophysics Data System (ADS)

    Kotthaus, Simone; O'Connor, Ewan; Münkel, Christoph; Charlton-Perez, Cristina; Haeffelin, Martial; Gabey, Andrew M.; Grimmond, C. Sue B.

    2016-08-01

    Ceilometer lidars are used for cloud base height detection, to probe aerosol layers in the atmosphere (e.g. detection of elevated layers of Saharan dust or volcanic ash), and to examine boundary layer dynamics. Sensor optics and acquisition algorithms can strongly influence the observed attenuated backscatter profiles; therefore, physical interpretation of the profiles requires careful application of corrections. This study addresses the widely deployed Vaisala CL31 ceilometer. Attenuated backscatter profiles are studied to evaluate the impact of both the hardware generation and firmware version. In response to this work and discussion within the CL31/TOPROF user community (TOPROF, European COST Action aiming to harmonise ground-based remote sensing networks across Europe), Vaisala released new firmware (versions 1.72 and 2.03) for the CL31 sensors. These firmware versions are tested against previous versions, showing that several artificial features introduced by the data processing have been removed. Hence, it is recommended to use this recent firmware for analysing attenuated backscatter profiles. To allow for consistent processing of historic data, correction procedures have been developed that account for artefacts detected in data collected with older firmware. Furthermore, a procedure is proposed to determine and account for the instrument-related background signal from electronic and optical components. This is necessary for using attenuated backscatter observations from any CL31 ceilometer. Recommendations are made for the processing of attenuated backscatter observed with Vaisala CL31 sensors, including the estimation of noise which is not provided in the standard CL31 output. After taking these aspects into account, attenuated backscatter profiles from Vaisala CL31 ceilometers are considered capable of providing valuable information for a range of applications including atmospheric boundary layer studies, detection of elevated aerosol layers, and model verification.

  3. A hybrid asymptotic-modal analysis of the EM scattering by an open-ended S-shaped rectangular waveguide cavity

    NASA Technical Reports Server (NTRS)

    Law, P. H.; Burkholder, R. J.; Pathak, P. H.

    1988-01-01

    The electromagnetic fields (EM) backscatter from a 3-dimensional perfectly conducting S-shaped open-ended cavity with a planar interior termination is analyzed when it is illuminated by an external plane wave. The analysis is based on a self-consistent multiple scattering method which accounts for the multiple wave interactions between the open end and the interior termination. The scattering matrices which described the reflection and transmission coefficients of the waveguide modes reflected and transmitted at each junction between the different waveguide sections, as well at the scattering from the edges at the open end are found via asymptotic high frequency methods such as the geometrical and physical theories of diffraction used in conjunction with the equivalent current method. The numerical results for an S-shaped inlet cavity are compared with the backscatter from a straight inlet cavity; the backscattered patterns are different because the curvature of an S-shaped inlet cavity redistributes the energy reflected from the interior termination in a way that is different from a straight inlet cavity.

  4. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    NASA Astrophysics Data System (ADS)

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  5. Evaluation of dual polarization scattering matrix radar rain backscatter measurements in the X- and Q-bands

    NASA Astrophysics Data System (ADS)

    Agrawal, A. P.; Carnegie, D. W.; Boerner, W.-M.

    This paper presents an evaluation of polarimetric rain backscatter measurements collected with coherent dual polarization radar systems in the X (8.9 GHz) and Q (45GHz) bands, the first being operated in a pulsed mode and the second being a FM-CW system. The polarimetric measurement data consisted for each band of fifty files of time-sequential scattering matrix measurements expressed in terms of a linear (H, V) antenna polarization state basis. The rain backscattering takes place in a rain cell defined by the beam widths and down range distances of 275 ft through 325 ft and the scattering matrices were measured far below the hydrometeoric scattering center decorrelation time so that ensemble averaging of time-sequential scattering matrices may be applied. In the data evaluation great care was taken in determining: (1) polarimetric Doppler velocities associated with the motion of descending oscillating raindrops and/or eddies within the moving swaths of coastal rain showers, and (2) also the properties of the associated co/cross-polarization rain clutter nulls and their distributions on the Poincare polarization sphere.

  6. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited).

    PubMed

    Vann, R G L; Brunner, K J; Ellis, R; Taylor, G; Thomas, D A

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  7. Observation of auroral secondary electrons in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Mcnutt, Ralph L., Jr.; Bagenal, Fran; Thorne, Richard M.

    1990-01-01

    Localized enhancements in the flux of suprathermal electrons were observed by the Voyager 1 Plasma Science instrument near the outer boundary of the Io plasma torus between L = 7.5 and l = 10. This localization, which occurs within the general region of hot electrons noted by Sittler and Strobel (1987), and the spectral characteristics of the observed electrons are consistent with secondary (backscattered) electron production by intense Jovian auroral energetic particle precipitation and support the hypothesis that such electrons may contribute to the processes that heat the plasma in this region of the magnetosphere.

  8. Three-dimensional reconstruction of root cells and interdental cells in the rat inner ear by serial section scanning electron microscopy.

    PubMed

    Shodo, Ryusuke; Hayatsu, Manabu; Koga, Daisuke; Horii, Arata; Ushiki, Tatsuo

    2017-01-01

    In the cochlea, a high K + environment in the endolymph is essential for the maintenance of normal hearing function, and the transport of K + ions through gap junctions of the cochlear epithelium is thought to play an important role in endolymphatic homeostasis. The aim of the present study was to demonstrate the three-dimensional (3D) ultrastructure of spiral ligament root cells and interdental cells, which are located at both ends of the gap junction system of the cochlea epithelium. Serial semi-thin sections of plastic-embedded rat cochlea were mounted on glass slides, stained with uranyl acetate and lead citrate, and observed by scanning electron microscopy (SEM) using the backscattered electron (BSE) mode. 3D reconstruction of BSE images of serial sections revealed that the root cells were linked together to form a branched structure like an elaborate "tree root" in the spiral ligament. The interdental cells were also connected to each other, forming a comb-shaped cellular network with a number of cellular strands in the spiral limbus. Furthermore, TEM studies of ultra-thin sections revealed the rich presence of gap junctions in both root cells and interdental cells. These findings suggest the possibility that both root cells and interdental cells contribute to K + circulation as the end portion of the epithelial cell gap junction system of the cochlea.

  9. Correlation of electron backscatter diffraction and piezoresponse force microscopy for the nanoscale characterization of ferroelectric domains in polycrystalline lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Burnett, T. L.; Weaver, P. M.; Blackburn, J. F.; Stewart, M.; Cain, M. G.

    2010-08-01

    The functional properties of ferroelectric ceramic bulk or thin film materials are strongly influenced by their nanostructure, crystallographic orientation, and structural geometry. In this paper, we show how, by combining textural analysis, through electron backscattered diffraction, with piezoresponse force microscopy, quantitative measurements of the piezoelectric properties can be made at a scale of 25 nm, smaller than the domain size. The combined technique is used to obtain data on the domain-resolved effective single crystal piezoelectric response of individual crystallites in Pb(Zr0.4Ti0.6)O3 ceramics. The results offer insight into the science of domain engineering and provide a tool for the future development of new nanostructured ferroelectric materials for memory, nanoactuators, and sensors based on magnetoelectric multiferroics.

  10. Large Area Stress Distribution in Crystalline Materials Calculated from Lattice Deformation Identified by Electron Backscatter Diffraction

    NASA Astrophysics Data System (ADS)

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-08-01

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.

  11. Large area stress distribution in crystalline materials calculated from lattice deformation identified by electron backscatter diffraction.

    PubMed

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-08-05

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.

  12. Large Area Stress Distribution in Crystalline Materials Calculated from Lattice Deformation Identified by Electron Backscatter Diffraction

    PubMed Central

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-01-01

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data. PMID:25091314

  13. A Micropulse eye-safe all-fiber molecular backscatter coherent temperature lidar

    NASA Astrophysics Data System (ADS)

    Abari, Cyrus F.; Chu, Xinzhao; Mann, Jakob; Spuler, Scott

    2016-06-01

    In this paper, we analyze the performance of an all-fiber, micropulse, 1.5 μm coherent lidar for remote sensing of atmospheric temperature. The proposed system benefits from the recent advances in optics/electronics technology, especially an all-fiber image-reject homodyne receiver, where a high resolution spectrum in the baseband can be acquired. Due to the presence of a structured spectra resulting from the spontaneous Rayleigh-Brillouine scattering, associated with the relevant operating regimes, an accurate estimation of the temperature can be carried out. One of the main advantages of this system is the removal of the contaminating Mie backscatter signal by electronic filters at the baseband (before signal conditioning and amplification). The paper presents the basic concepts as well as a Monte-Carlo system simulation as the proof of concept.

  14. Three dimensional X-ray Diffraction Contrast Tomography Reconstruction of Polycrystalline Strontium Titanate during Sintering and Electron Backscatter Diffraction Validation

    NASA Astrophysics Data System (ADS)

    Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.

    The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.

  15. SU-C-BRC-05: Monte Carlo Calculations to Establish a Simple Relation of Backscatter Dose Enhancement Around High-Z Dental Alloy to Its Atomic Number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsunomiya, S; Kushima, N; Katsura, K

    Purpose: To establish a simple relation of backscatter dose enhancement around a high-Z dental alloy in head and neck radiation therapy to its average atomic number based on Monte Carlo calculations. Methods: The PHITS Monte Carlo code was used to calculate dose enhancement, which is quantified by the backscatter dose factor (BSDF). The accuracy of the beam modeling with PHITS was verified by comparing with basic measured data namely PDDs and dose profiles. In the simulation, a high-Z alloy of 1 cm cube was embedded into a tough water phantom irradiated by a 6-MV (nominal) X-ray beam of 10 cmmore » × 10 cm field size of Novalis TX (Brainlab). The ten different materials of high-Z alloys (Al, Ti, Cu, Ag, Au-Pd-Ag, I, Ba, W, Au, Pb) were considered. The accuracy of calculated BSDF was verified by comparing with measured data by Gafchromic EBT3 films placed at from 0 to 10 mm away from a high-Z alloy (Au-Pd-Ag). We derived an approximate equation to determine the relation of BSDF and range of backscatter to average atomic number of high-Z alloy. Results: The calculated BSDF showed excellent agreement with measured one by Gafchromic EBT3 films at from 0 to 10 mm away from the high-Z alloy. We found the simple linear relation of BSDF and range of backscatter to average atomic number of dental alloys. The latter relation was proven by the fact that energy spectrum of backscatter electrons strongly depend on average atomic number. Conclusion: We found a simple relation of backscatter dose enhancement around high-Z alloys to its average atomic number based on Monte Carlo calculations. This work provides a simple and useful method to estimate backscatter dose enhancement from dental alloys and corresponding optimal thickness of dental spacer to prevent mucositis effectively.« less

  16. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    PubMed

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  17. The airborne Laser Absorption Spectrometer - A new instrument of remote measurement of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.

    1978-01-01

    The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.

  18. Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE.

    PubMed

    Karlušić, Marko; Fazinić, Stjepko; Siketić, Zdravko; Tadić, Tonči; Cosic, Donny Domagoj; Božičević-Mihalić, Iva; Zamboni, Ivana; Jakšić, Milko; Schleberger, Marika

    2017-09-06

    The aim of this work is to investigate the feasibility of ion beam analysis techniques for monitoring swift heavy ion track formation. First, the use of the in situ Rutherford backscattering spectrometry in channeling mode to observe damage build-up in quartz SiO₂ after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO₃, quartz SiO₂, a-SiO₂, and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO₂, surface stoichiometry remained unchanged. Third, the usability of high resolution particle induced X-ray spectroscopy for observation of electronic dynamics during early stages of ion track formation is shown.

  19. Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE

    PubMed Central

    Karlušić, Marko; Fazinić, Stjepko; Siketić, Zdravko; Tadić, Tonči; Cosic, Donny Domagoj; Božičević-Mihalić, Iva; Zamboni, Ivana; Jakšić, Milko; Schleberger, Marika

    2017-01-01

    The aim of this work is to investigate the feasibility of ion beam analysis techniques for monitoring swift heavy ion track formation. First, the use of the in situ Rutherford backscattering spectrometry in channeling mode to observe damage build-up in quartz SiO2 after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO3, quartz SiO2, a-SiO2, and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO2, surface stoichiometry remained unchanged. Third, the usability of high resolution particle induced X-ray spectroscopy for observation of electronic dynamics during early stages of ion track formation is shown. PMID:28878186

  20. Defect Facilitated Phonon Transport through Kinks in Boron Carbide Nanowires

    DOE PAGES

    Zhang, Qian; Cui, Zhiguang; Wei, Zhiyong; ...

    2017-05-08

    Nanowires of complex morphologies, such as kinked wires, have been recently synthesized and demonstrated for novel devices and applications. However, the effects of these morphologies on thermal transport have not been well studied. Through systematic experimental measurements, we show in this paper that single-crystalline, defect-free kinks in boron carbide nanowires can pose a thermal resistance up to ~30 times larger than that of a straight wire segment of equivalent length. Analysis suggests that this pronounced resistance can be attributed to the combined effects of backscattering of highly focused phonons and required mode conversion at the kink. Interestingly, it is alsomore » found that instead of posing resistance, structural defects in the kink can actually assist phonon transport through the kink and reduce its resistance. Finally, given the common kink-like wire morphology in nanoelectronic devices and required low thermal conductivity for thermoelectric devices, these findings have important implications in precise thermal management of electronic devices and thermoelectrics.« less

  1. Defect Facilitated Phonon Transport through Kinks in Boron Carbide Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qian; Cui, Zhiguang; Wei, Zhiyong

    Nanowires of complex morphologies, such as kinked wires, have been recently synthesized and demonstrated for novel devices and applications. However, the effects of these morphologies on thermal transport have not been well studied. Through systematic experimental measurements, we show in this paper that single-crystalline, defect-free kinks in boron carbide nanowires can pose a thermal resistance up to ~30 times larger than that of a straight wire segment of equivalent length. Analysis suggests that this pronounced resistance can be attributed to the combined effects of backscattering of highly focused phonons and required mode conversion at the kink. Interestingly, it is alsomore » found that instead of posing resistance, structural defects in the kink can actually assist phonon transport through the kink and reduce its resistance. Finally, given the common kink-like wire morphology in nanoelectronic devices and required low thermal conductivity for thermoelectric devices, these findings have important implications in precise thermal management of electronic devices and thermoelectrics.« less

  2. Delafossite structure of heterogenite polytypes (HCoO2) by Raman and infrared micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Burlet, C.; Goethals, H.; Vanbrabant, Y.

    2016-04-01

    Heterogenite is commonly referred in mineralogy literature as a cobalt oxy-hydroxide CoO(OH). However, detailed analysis of Raman and infrared spectra acquired on particularly well-crystallized natural samples of heterogenite suggests that the mineral can be characterized by a delafossite-type structure, with a general chemical formula ABO2. Indeed, the Raman spectrum of heterogenite, along the one with grimaldiite (HCrO2), lacks visible free OH-group vibrational modes, while the infrared spectrum shows strong hydrogen bond absorption bands. HCoO2 is thus a better formulation of heterogenite that describes more clearly its vibrational behavior and avoids the confusion in literature. Electronic backscattered diffraction (EBSD) is then used to distinguish and map the 2H and 3R heterogenite natural polytypes for the first time. The comparison of EBSD and Raman mappings clearly indicates that the 2H polytype is characterized by an additional peak at 1220 cm- 1. The presence/absence is therefore an efficient tool to distinguish both polytypes.

  3. The role of grain boundary chemistry and structure in the environmentally-assisted intergranular cracking of nickel-base alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, G.S.

    1992-07-01

    Stress corrosion cracking tests in constant extension rate tensile (CERT) and constant load tensile (CLT) tests were conducted on Ni-xCr- 9Fe-yC in Ar, water, and a LiOH-boric acid solution. Cr and C improve the resistance of Ni-base alloys to IG cracking in both Ar and water at 360C. Since creep plays a role in IG cracking, one possible explanation for the role of the environment involves its effect on the creep. Experiments were conducted on the role of C in the deformation behavior and failure mode of Ni-16Cr-9Fe. Constant load experiments were conducted on Ni-16Cr-9Fe to determine if the CLTmore » test is more aggressive than CERT. The electron backscattering technique in a SEM is being developed in order to extend the IG cracking studies to grain sizes typical of commercial alloys, 20-30 microns.« less

  4. The role of grain boundary chemistry and structure in the environmentally-assisted intergranular cracking of nickel-base alloys. Progress report, August 1, 1991--July 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, G.S.

    1992-07-01

    Stress corrosion cracking tests in constant extension rate tensile (CERT) and constant load tensile (CLT) tests were conducted on Ni-xCr- 9Fe-yC in Ar, water, and a LiOH-boric acid solution. Cr and C improve the resistance of Ni-base alloys to IG cracking in both Ar and water at 360C. Since creep plays a role in IG cracking, one possible explanation for the role of the environment involves its effect on the creep. Experiments were conducted on the role of C in the deformation behavior and failure mode of Ni-16Cr-9Fe. Constant load experiments were conducted on Ni-16Cr-9Fe to determine if the CLTmore » test is more aggressive than CERT. The electron backscattering technique in a SEM is being developed in order to extend the IG cracking studies to grain sizes typical of commercial alloys, 20-30 microns.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  6. Generating a stationary infinite range tractor force via a multimode optical fibre

    NASA Astrophysics Data System (ADS)

    Ebongue, C. A.; Holzmann, D.; Ostermann, S.; Ritsch, H.

    2017-06-01

    Optical fibres confine and guide light almost unattenuated and thus convey light forces to polarizable nano-particles over very long distances. Radiation pressure forces arise from scattering of guided photons into free space while gradient forces are based on coherent scattering between different fibre modes or propagation directions. Interestingly, even scattering between co-propagating modes induces longitudinal forces as the transverse confinement of the light modes creates mode dependent longitudinal wave-vectors and photon momenta. We generalize a proven scattering matrix based approach to calculate single as well as inter-particle forces to include several forward and backward propagating modes. We show that an injection of the higher order mode only in a two mode fibre will induce a stationary tractor force against the injection direction, when the mode coupling to the lower order mode dominates against backscattering and free space losses. Generically this arises for non-absorbing particles at the centre of a waveguide. The model also gives improved predictions for inter-particle forces in evanescent nanofibre fields as experimentally observed recently. Surprisingly strong tractor forces can also act on whole optically bound arrays.

  7. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  8. Small-Scale Dissipation in Binary-Species Transitional Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2011-01-01

    Motivated by large eddy simulation (LES) modeling of supercritical turbulent flows, transitional states of databases obtained from direct numerical simulations (DNS) of binary-species supercritical temporal mixing layers were examined to understand the subgrid-scale dissipation, and its variation with filter size. Examination of the DSN-scale domain- averaged dissipation confirms previous findings that, out of the three modes of viscous, temperature and species-mass dissipation, the species-mass dissipation is the main contributor to the total dissipation. The results revealed that the percentage of species-mass by total dissipation is nearly invariant across species systems and initial conditions. This dominance of the species-mass dissipation is due to high-density-gradient magnitude (HDGM) regions populating the flow under the supercritical conditions of the simulations; such regions have also been observed in fully turbulent supercritical flows. The domain average being the result of both the local values and the extent of the HDGM regions, the expectations were that the response to filtering would vary with these flow characteristics. All filtering here is performed in the dissipation range of the Kolmogorov spectrum, at filter sizes from 4 to 16 times the DNS grid spacing. The small-scale (subgrid scale, SGS) dissipation was found by subtracting the filtered-field dissipation from the DNS-field dissipation. In contrast to the DNS dissipation, the SGS dissipation is not necessarily positive; negative values indicate backscatter. Backscatter was shown to be spatially widespread in all modes of dissipation and in the total dissipation (25 to 60 percent of the domain). The maximum magnitude of the negative subgrid- scale dissipation was as much as 17 percent of the maximum positive subgrid- scale dissipation, indicating that, not only is backscatter spatially widespread in these flows, but it is considerable in magnitude and cannot be ignored for the purposes of LES modeling. The Smagorinsky model, for example, is unsuited for modeling SGS fluxes in the LES because it cannot render backscatter. With increased filter size, there is only a modest decrease in the spatial extent of backscatter. The implication is that even at large LES grid spacing, the issue of backscatter and related SGS-flux modeling decisions are unavoidable. As a fraction of the total dissipation, the small-scale dissipation is between 10 and 30 percent of the total dissipation for a filter size that is four times the DNS grid spacing, with all OH cases bunched at 10 percent, and the HN cases spanning 24 30 percent. A scale similarity was found in that the domain-average proportion of each small-scale dissipation mode, with respect to the total small-scale dissipation, is very similar to equivalent results at the DNS scale. With increasing filter size, the proportion of the small-scale dissipation in the dissipation increases substantially, although not quite proportionally. When the filter size increases by four-fold, 52 percent for all OH runs, and 70 percent for HN runs, of the dissipation is contained in the subgrid-scale portion with virtually no dependence on the initial conditions of the DNS. The indications from the dissipation analysis are that modeling efforts in LES of thermodynamically supercritical flows should be focused primarily on mass-flux effects, with temperature and viscous effects being secondary. The analysis also reveals a physical justification for scale-similarity type models, although the suitability of these will need to be confirmed in a posteriori studies.

  9. Hot Corrosion Degradation of Metals and Alloys - A Unified Theory

    DTIC Science & Technology

    1979-06-01

    microscope, electron beam microprobe and X-ray diffraction. REULTS AND DMCtESION Hot Corrosion Degradation Sectuence In attempting to develop a unified...Figure 40a. Such ghost images, which can be called corrosion front ghosts , appear as sequential dark and light zones in electron backscatter images... Electronic and Solid State Sciences AUG Ill 1979I Bolling AFB, D.C. 20332 ID PRATT &WHITNEY ARCRAFT GROUP P.O . Box 2861 /Government Products Division wi

  10. FIB-SEM tomography in biology.

    PubMed

    Kizilyaprak, Caroline; Bittermann, Anne Greet; Daraspe, Jean; Humbel, Bruno M

    2014-01-01

    Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.

  11. A didactic proposal about Rutherford backscattering spectrometry with theoretic, experimental, simulation and application activities

    NASA Astrophysics Data System (ADS)

    Corni, Federico; Michelini, Marisa

    2018-01-01

    Rutherford backscattering spectrometry is a nuclear analysis technique widely used for materials science investigation. Despite the strict technical requirements to perform the data acquisition, the interpretation of a spectrum is within the reach of general physics students. The main phenomena occurring during a collision between helium ions—with energy of a few MeV—and matter are: elastic nuclear collision, elastic scattering, and, in the case of non-surface collision, ion stopping. To interpret these phenomena, we use classical physics models: material point elastic collision, unscreened Coulomb scattering, and inelastic energy loss of ions with electrons, respectively. We present the educational proposal for Rutherford backscattering spectrometry, within the framework of the model of educational reconstruction, following a rationale that links basic physics concepts with quantities for spectra analysis. This contribution offers the opportunity to design didactic specific interventions suitable for undergraduate and secondary school students.

  12. Detecting cell death with optical coherence tomography and envelope statistics

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-02-01

    Currently no standard clinical or preclinical noninvasive method exists to monitor cell death based on morphological changes at the cellular level. In our past work we have demonstrated that quantitative high frequency ultrasound imaging can detect cell death in vitro and in vivo. In this study we apply quantitative methods previously used with high frequency ultrasound to optical coherence tomography (OCT) to detect cell death. The ultimate goal of this work is to use these methods for optically-based clinical and preclinical cancer treatment monitoring. Optical coherence tomography data were acquired from acute myeloid leukemia cells undergoing three modes of cell death. Significant increases in integrated backscatter were observed for cells undergoing apoptosis and mitotic arrest, while necrotic cells induced a decrease. These changes appear to be linked to structural changes observed in histology obtained from the cell samples. Signal envelope statistics were analyzed from fittings of the generalized gamma distribution to histograms of envelope intensities. The parameters from this distribution demonstrated sensitivities to morphological changes in the cell samples. These results indicate that OCT integrated backscatter and first order envelope statistics can be used to detect and potentially differentiate between modes of cell death in vitro.

  13. A switchable and stable single-longitudinal-mode, dual-wavelength erbium-doped fiber laser assisted by Rayleigh backscattering in tapered fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jian; Yang, Yanfu, E-mail: yangyanfu@hotmail.com; Zhang, Jianyu

    We have proposed and demonstrated a novel switchable single-longitudinal-mode (SLM), dual-wavelength erbium-doped fiber laser (DWEDFL) assisted by Rayleigh backscattering (RBS) in a tapered fiber in a ring laser configuration. The RBS feedback in a tapered fiber is a key mechanism as linewidth narrowing for laser output. A compound laser cavity ensured that the EDFL operated in the SLM state and a saturable absorber (SA) is employed to form a gain grating for both filtering and improving wavelength stability. The fiber laser can output dual wavelengths simultaneously or operate at single wavelength in a switchable manner. Experiment results show that withmore » the proper SA, the peak power drift was improved from 1–2 dB to 0.31 dB and the optical signal to noise ratio was higher than 60 dB. Under the assistance of RBS feedback, the laser linewidths are compressed by around three times and the Lorentzian 3 dB linewidths of 445 Hz and 425 Hz are obtained at 1550 nm and 1554 nm, respectively.« less

  14. Synthetic Aperture Microwave Imaging (SAMI) of the plasma edge on NSTX-U

    NASA Astrophysics Data System (ADS)

    Vann, Roddy; Taylor, Gary; Brunner, Jakob; Ellis, Bob; Thomas, David

    2016-10-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a unique phased-array microwave camera with a +/-40° field of view in both directions. It can image cut-off surfaces corresponding to frequencies in the range 10-34.5GHz; these surfaces are typically in the plasma edge. SAMI operates in two modes: either imaging thermal emission from the plasma (often modified by its interaction with the plasma edge e.g. via BXO mode conversion) or ``active probing'' i.e. injecting a broad beam at the plasma surface and imaging the reflected/back-scattered signal. SAMI was successfully pioneered on the Mega-Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy. SAMI has now been installed and commissioned on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton Plasma Physics Laboratory. The firmware has been upgraded to include real-time digital filtering, which enables continuous acquisition of the Doppler back-scattered active probing data. In this poster we shall present SAMI's analysis of the plasma edge on NSTX-U including measurements of the edge pitch angle on NSTX-U using SAMI's unique 2-D Doppler-backscattering capability.

  15. Time-frequency analysis to a particular type of scattering problems involving metallic-polymer tubing structures.

    PubMed

    Elhanaoui, Abdelkader; Aassif, Elhoucein; Maze, Gérard; Décultot, Dominique

    2018-01-01

    In this paper, recent studies of backscattered acoustic signals in thinner steel-polymer tubing structures have been presented. Reassigned smoothed pseudo Wigner-Ville (rspWV) analysis has been adopted in order to diminish the cross-term effect, and achieve high resolution spectral. Vibration modes, which are associated to the resonances of circumferential waves, have been determined by using the modal isolation plan representation. At normalized frequencies below 140, an appreciable influence from the polymer coating thickness on the A 0 + and S 0 modes has been noticed. Furthermore, the trajectory of the A 0 - wave has been modified in the normalized frequency band 40-42. Group velocity curves of the A 0 - wave have, then, been graphically illustrated. The findings have shown a particular curvature change at reduced frequency 41 in the case of an immersed two-layer tube in water. Studies of acoustic backscattering involving steel-polymer tubing structures have confirmed the significant coupling of A 0 + and S 0 waves. Besides, the disappearance of the A 0 + resonance trajectory has been observed; which is a very important phenomenon to understand. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Raman tensor elements of β-Ga2O3.

    PubMed

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-11-03

    The Raman spectrum and particularly the Raman scattering intensities of monoclinic β-Ga 2 O 3 are investigated by experiment and theory. The low symmetry of β-Ga 2 O 3 results in a complex dependence of the Raman intensity for the individual phonon modes on the scattering geometry which is additionally affected by birefringence. We measured the Raman spectra in dependence on the polarization direction for backscattering on three crystallographic planes of β-Ga 2 O 3 and modelled these dependencies using a modified Raman tensor formalism which takes birefringence into account. The spectral position of all 15 Raman active phonon modes and the Raman tensor elements of 13 modes were determined and are compared to results from ab-initio calculations.

  17. Raman tensor elements of β-Ga2O3

    PubMed Central

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-01-01

    The Raman spectrum and particularly the Raman scattering intensities of monoclinic β-Ga2O3 are investigated by experiment and theory. The low symmetry of β-Ga2O3 results in a complex dependence of the Raman intensity for the individual phonon modes on the scattering geometry which is additionally affected by birefringence. We measured the Raman spectra in dependence on the polarization direction for backscattering on three crystallographic planes of β-Ga2O3 and modelled these dependencies using a modified Raman tensor formalism which takes birefringence into account. The spectral position of all 15 Raman active phonon modes and the Raman tensor elements of 13 modes were determined and are compared to results from ab-initio calculations. PMID:27808113

  18. Detection of secondary and backscattered electrons for 3D imaging with multi-detector method in VP/ESEM.

    PubMed

    Slówko, Witold; Wiatrowski, Artur; Krysztof, Michał

    2018-01-01

    The paper considers some major problems of adapting the multi-detector method for three-dimensional (3D) imaging of wet bio-medical samples in Variable Pressure/Environmental Scanning Electron Microscope (VP/ESEM). The described method pertains to "single-view techniques", which to create the 3D surface model utilise a sequence of 2D SEM images captured from a single view point (along the electron beam axis) but illuminated from four directions. The basis of the method and requirements resulting from them are given for the detector systems of secondary (SE) and backscattered electrons (BSE), as well as designs of the systems which could work in variable conditions. The problems of SE detection with application of the Pressure Limiting Aperture (PLA) as the signal collector are discussed with respect to secondary electron backscattering by a gaseous environment. However, the authors' attention is turned mainly to the directional BSE detection, realized in two ways. The high take off angle BSE were captured through PLA with use of the quadruple semiconductor detector placed inside the intermediate chamber, while BSE starting at lower angles were detected by the four-folded ionization device working in the sample chamber environment. The latter relied on a conversion of highly energetic BSE into low energetic SE generated on walls and a gaseous environment of the deep discharge gap oriented along the BSE velocity direction. The converted BSE signal was amplified in an ionising avalanche developed in the electric field arranged transversally to the gap. The detector system operation is illustrated with numerous computer simulations and examples of experiments and 3D images. The latter were conducted in a JSM 840 microscope with its combined detector-vacuum equipment which could extend capabilities of this high vacuum instrument toward elevated pressures (over 1kPa) and environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Viewing Integrated-Circuit Interconnections By SEM

    NASA Technical Reports Server (NTRS)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  20. Measuring the Shock Stage of Asteroid Regolith Grains by Electron Back-Scattered Diffraction

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Martinez, James; Sitzman, Scott; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Ozawa, Hikaru; hide

    2018-01-01

    We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction. These techniques would then be available for samples returned from other asteroid regoliths.

  1. Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques.

    PubMed

    Bhaskaran, M; Sriram, S; Holland, A S; Evans, P J

    2009-01-01

    This article discusses the formation and detailed materials characterisation of nickel silicide thin films. Nickel silicide thin films have been formed by thermally reacting electron beam evaporated thin films of nickel with silicon. The nickel silicide thin films have been analysed using Auger electron spectroscopy (AES) depth profiles, secondary ion mass spectrometry (SIMS), and Rutherford backscattering spectroscopy (RBS). The AES depth profile shows a uniform NiSi film, with a composition of 49-50% nickel and 51-50% silicon. No oxygen contamination either on the surface or at the silicide-silicon interface was observed. The SIMS depth profile confirms the existence of a uniform film, with no traces of oxygen contamination. RBS results indicate a nickel silicide layer of 114 nm, with the simulated spectra in close agreement with the experimental data. Atomic force microscopy and transmission electron microscopy have been used to study the morphology of the nickel silicide thin films. The average grain size and average surface roughness of these films was found to be 30-50 and 0.67 nm, respectively. The film surface has also been studied using Kikuchi patterns obtained by electron backscatter detection.

  2. Atomic level characterization of cadmium selenide nanocrystal systems using atomic number contrast scanning transmission electron microscopy and Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    McBride, James R.

    This project involved the characterization of CdSe nanocrystals. Through the use of Atomic Number Contrast Scanning Transmission Electron Microscopy (Z-STEM) and Rutherford Backscattering Spectroscopy (RBS), atomic level structure and chemical information was obtained. Specifically, CdSe nanocrystals produced using a mixture of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) were determined to be spherical compared to nanocrystals produced in TOPO only, which had elongated (101) facets. Additionally, the first Z-STEM images of CdSe/ZnS core/shell nanocrystals were obtained. From these images, the growth mechanism of the ZnS shell was determined and the existence of non-fluorescent ZnS particles was confirmed. Through collaboration with Quantum Dot Corp., core/shell nanocrystals with near unity quantum yield were developed. These core/shell nanocrystals included a US intermediate layer to improve shell coverage.

  3. Electron backscatter diffraction as a domain analysis technique in BiFeO(3)-PbTiO(3) single crystals.

    PubMed

    Burnett, T L; Comyn, T P; Merson, E; Bell, A J; Mingard, K; Hegarty, T; Cain, M

    2008-05-01

    xBiFeO(3)-(1-x)PbTiO(3) single crystals were grown via a flux method for a range of compositions. Presented here is a study of the domain configuration in the 0.5BiFeO(3)-0.5PbTiO(3) composition using electron backscatter diffraction to demonstrate the ability of the technique to map ferroelastic domain structures at the micron and submicron scale. The micron-scale domains exhibit an angle of approximately 85 degrees between each variant, indicative of a ferroelastic domain wall in a tetragonal system with a spontaneous strain, c/a - 1 of 0.10, in excellent agreement with the lattice parameters derived from x-ray diffraction. Contrast seen in forescatter images is attributed to variations in the direction of the electrical polarization vector, providing images of ferroelectric domain patterns.

  4. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    NASA Astrophysics Data System (ADS)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  5. In situ investigation of deformation mechanisms in magnesium-based metal matrix composites

    NASA Astrophysics Data System (ADS)

    Farkas, Gergely; Choe, Heeman; Máthis, Kristián; Száraz, Zoltán; Noh, Yoonsook; Trojanová, Zuzanka; Minárik, Peter

    2015-07-01

    We studied the effect of short fibers on the mechanical properties of a magnesium alloy. In particular, deformation mechanisms in a Mg-Al-Sr alloy reinforced with short alumina fibers were studied in situ using neutron diffraction and acoustic emission methods. The fibers' plane orientation with respect to the loading axis was found to be a key parameter, which influences the acting deformation processes, such as twinning or dislocation slip. Furthermore, the twinning activity was much more significant in samples with parallel fiber plane orientation, which was confirmed by both acoustic emission and electron backscattering diffraction results. Neutron diffraction was also used to assist in analyzing the acoustic emission and electron backscattering diffraction results. The simultaneous application of the two in situ methods, neutron diffraction and acoustic emission, was found to be beneficial for obtaining complementary datasets about the twinning and dislocation slip in the magnesium alloys and composites used in this study.

  6. Application of Electron Backscatter Diffraction to evaluate the ASR risk of concrete aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rößler, C., E-mail: christiane.roessler@uni-weimar.de; Möser, B.; Giebson, C.

    Alkali-Silica Reaction (ASR) is a frequent cause of reduced concrete durability. Eliminating the application of alkali reactive aggregates would reduce the quantity of ASR concrete deterioration in the field. This study introduces an Electron Backscatter Diffraction (EBSD) technique to distinguish the ASR risk of slow-late reacting aggregates by measuring microstructural properties of quartz. Quantifying the amount of quartz grain boundaries and the associated misorientation of grains can thereby be used to differentiate microstructures bearing an ASR risk. It is also shown that dissolution of quartz in high pH environments occurs along quartz grain and subgrain boundaries. Results of EBSD analysismore » are compared with ASR performance testing on concrete prisms and optical light microscopy characterization of quartz microstructure. EBSD opens new possibilities to quantitatively characterize microstructure of quartz in concrete aggregates with respect to ASR. This leads to a better understanding on the actual cause of ASR.« less

  7. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.

    PubMed

    Hsiao, Z-W; Chen, D; Kuo, J-C; Lin, D-Y

    2017-04-01

    This study investigated the influence of deformation on precipitation behaviour and microstructure change during annealing. Here, the prior deformation of high-chromium stainless steel was tensile deformation of 3%, 6% and 10%, and the specimens were then annealed at 700˚C for 10 h. The specimens were subsequently analyzed using backscattered electron image and electron backscattering diffraction measurements with SEM. Compared with the deformation microstructure, the grains revealed no preferred orientation. The precipitates of TiN and NbC were formed homogenously in the grain interior and at grain boundaries after annealing. Fine Laves phase precipitates were observed in grains and along subgrain boundaries as the deformation increased. Furthermore, the volume fraction of Laves phase increased, but the average particle diameter of precipitate was reduced as the deformation increased. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  8. Adaptive characterization of recrystallization kinetics in IF steel by electron backscatter diffraction.

    PubMed

    Kim, Dong-Kyu; Park, Won-Woong; Lee, Ho Won; Kang, Seong-Hoon; Im, Yong-Taek

    2013-12-01

    In this study, a rigorous methodology for quantifying recrystallization kinetics by electron backscatter diffraction is proposed in order to reduce errors associated with the operator's skill. An adaptive criterion to determine adjustable grain orientation spread depending on the recrystallization stage is proposed to better identify the recrystallized grains in the partially recrystallized microstructure. The proposed method was applied in characterizing the microstructure evolution during annealing of interstitial-free steel cold rolled to low and high true strain levels of 0.7 and 1.6, respectively. The recrystallization kinetics determined by the proposed method was found to be consistent with the standard method of Vickers microhardness. The application of the proposed method to the overall recrystallization stages showed that it can be used for the rigorous characterization of progressive microstructure evolution, especially for the severely deformed material. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  9. Modulated Electron Emission by Scattering-Interference of Primary Electrons

    NASA Astrophysics Data System (ADS)

    Valeri, Sergio; di Bona, Alessandro

    We review the effects of scattering-interference of the primary, exciting beam on the electron emission from ordered atomic arrays. The yield of elastically and inelastically backscattered electrons, Auger electrons and secondary electrons shows a marked dependence on the incidence angle of primary electrons. Both the similarity and the relative importance of processes experienced by incident and excident electrons are discussed. We also present recent studies of electron focusing and defocusing along atomic chains. The interplay between these two processes determines the in-depth profile of the primary electron intensity anisotropy. Finally, the potential for surface-structural studies and limits for quantitative analysis are discussed, in comparison with the Auger electron diffraction (AED) and photoelectron diffraction (PD) techniques.

  10. Crystal phase identification

    DOEpatents

    Michael, Joseph R.; Goehner, Raymond P.; Schlienger, Max E.

    2001-01-01

    A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.

  11. Precipitation in a lead calcium tin anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Gonzalez, Francisco A., E-mail: fco.aurelio@inbox.com; Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon; Camurri, Carlos G., E-mail: ccamurri@udec.cl

    Samples from a hot rolled sheet of a tin and calcium bearing lead alloy were solution heat treated at 300 Degree-Sign C and cooled down to room temperature at different rates; these samples were left at room temperature to study natural precipitation of CaSn{sub 3} particles. The samples were aged for 45 days before analysing their microstructure, which was carried out in a scanning electron microscope using secondary and backscattered electron detectors. Selected X-ray spectra analyses were conducted to verify the nature of the precipitates. Images were taken at different magnifications in both modes of observation to locate the precipitatesmore » and record their position within the images and calculate the distance between them. Differential scanning calorimeter analyses were conducted on selected samples. It was found that the mechanical properties of the material correlate with the minimum average distance between precipitates, which is related to the average cooling rate from solution heat treatment. - Highlights: Black-Right-Pointing-Pointer The distance between precipitates in a lead alloy is recorded. Black-Right-Pointing-Pointer The relationship between the distance and the cooling rate is established. Black-Right-Pointing-Pointer It is found that the strengthening of the alloy depends on the distance between precipitates.« less

  12. An automated method of quantifying ferrite microstructures using electron backscatter diffraction (EBSD) data.

    PubMed

    Shrestha, Sachin L; Breen, Andrew J; Trimby, Patrick; Proust, Gwénaëlle; Ringer, Simon P; Cairney, Julie M

    2014-02-01

    The identification and quantification of the different ferrite microconstituents in steels has long been a major challenge for metallurgists. Manual point counting from images obtained by optical and scanning electron microscopy (SEM) is commonly used for this purpose. While classification systems exist, the complexity of steel microstructures means that identifying and quantifying these phases is still a great challenge. Moreover, point counting is extremely tedious, time consuming, and subject to operator bias. This paper presents a new automated identification and quantification technique for the characterisation of complex ferrite microstructures by electron backscatter diffraction (EBSD). This technique takes advantage of the fact that different classes of ferrite exhibit preferential grain boundary misorientations, aspect ratios and mean misorientation, all of which can be detected using current EBSD software. These characteristics are set as criteria for identification and linked to grain size to determine the area fractions. The results of this method were evaluated by comparing the new automated technique with point counting results. The technique could easily be applied to a range of other steel microstructures. © 2013 Published by Elsevier B.V.

  13. Microstructural and microtextural characterization of oxide scale on steel using electron backscatter diffraction.

    PubMed

    Birosca, S; Dingley, D; Higginson, R L

    2004-03-01

    High-temperature oxidation of steel has been extensively studied. The microstructure of iron oxides is, however, not well understood because of the difficulty in imaging it using conventional methods, such as optical or electron microscopy. A knowledge of the oxide microstructure and texture is critical in understanding how the oxide film behaves during high-temperature deformation of steels and more importantly how it can be removed following processing. Recently, electron back-scatter diffraction (EBSD) has proved to be a powerful technique for distinguishing the different phases in scales. This technique gives valuable information both on the microstructure and on the orientation relationships between the steel and the scale layers. In the current study EBSD has been used to investigate the microstructure and microtexture of iron oxide layers grown on interstitial free steel at different times and temperatures. Heat treatments have been carried out under normal oxidation conditions in order to relate the results to real steel manufacturing in industry. The composition, morphologies, microstructure and microtexture of selected conditions have been studied using EBSD.

  14. Effect of Welding Heat Input on Microstructure and Texture of Inconel 625 Weld Overlay Studied Using the Electron Backscatter Diffraction Method

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Suk; Lee, Hae-Woo

    2016-12-01

    The grain size and the texture of three specimens prepared at different heat inputs were determined using optical microscopy and the electron backscatter diffraction method of scanning electron microscopy. Each specimen was equally divided into fusion line zone (FLZ), columnar dendrite zone (CDZ), and surface zone (SZ), according to the location of the weld. Fine dendrites were observed in the FLZ, coarse dendrites in the CDZ, and dendrites grew perpendicular to the FLZ and CDZ. As the heat input increased, the melted zone in the vicinity of the FLZ widened due to the higher Fe content. A lower image quality value was observed for the FLZ compared to the other zones. The results of grain size measurement in each zone showed that the grain size of the SZ became larger as the heat input increased. From the inverse pole figure (IPF) map in the normal direction (ND) and the rolling direction (RD), as the heat input increased, a specific orientation was formed. However, a dominant [001] direction was observed in the RD IPF map.

  15. Three Dimensional Characterization of Tin Crystallography and Cu6Sn5 Intermetallics in Solder Joints by Multiscale Tomography

    NASA Astrophysics Data System (ADS)

    Kirubanandham, A.; Lujan-Regalado, I.; Vallabhaneni, R.; Chawla, N.

    2016-11-01

    Decreasing pitch size in electronic packaging has resulted in a drastic decrease in solder volumes. The Sn grain crystallography and fraction of intermetallic compounds (IMCs) in small-scale solder joints evolve much differently at the smaller length scales. A cross-sectional study limits the morphological analysis of microstructural features to two dimensions. This study utilizes serial sectioning technique in conjunction with electron backscatter diffraction to investigate the crystallographic orientation of both Sn grains and Cu6Sn5 IMCs in Cu/Pure Sn/Cu solder joints in three dimensional (3D). Quantification of grain aspect ratio is affected by local cooling rate differences within the solder volume. Backscatter electron imaging and focused ion beam serial sectioning enabled the visualization of morphology of both nanosized Cu6Sn5 IMCs and the hollow hexagonal morphology type Cu6Sn5 IMCs in 3D. Quantification and visualization of microstructural features in 3D thus enable us to better understand the microstructure and deformation mechanics within these small scale solder joints.

  16. Semiclassical electron transport at the edge of a two-dimensional topological insulator: Interplay of protected and unprotected modes

    NASA Astrophysics Data System (ADS)

    Khalaf, E.; Skvortsov, M. A.; Ostrovsky, P. M.

    2016-03-01

    We study electron transport at the edge of a generic disordered two-dimensional topological insulator, where some channels are topologically protected from backscattering. Assuming the total number of channels is large, we consider the edge as a quasi-one-dimensional quantum wire and describe it in terms of a nonlinear sigma model with a topological term. Neglecting localization effects, we calculate the average distribution function of transmission probabilities as a function of the sample length. We mainly focus on the two experimentally relevant cases: a junction between two quantum Hall (QH) states with different filling factors (unitary class) and a relatively thick quantum well exhibiting quantum spin Hall (QSH) effect (symplectic class). In a QH sample, the presence of topologically protected modes leads to a strong suppression of diffusion in the other channels already at scales much shorter than the localization length. On the semiclassical level, this is accompanied by the formation of a gap in the spectrum of transmission probabilities close to unit transmission, thereby suppressing shot noise and conductance fluctuations. In the case of a QSH system, there is at most one topologically protected edge channel leading to weaker transport effects. In order to describe `topological' suppression of nearly perfect transparencies, we develop an exact mapping of the semiclassical limit of the one-dimensional sigma model onto a zero-dimensional sigma model of a different symmetry class, allowing us to identify the distribution of transmission probabilities with the average spectral density of a certain random-matrix ensemble. We extend our results to other symmetry classes with topologically protected edges in two dimensions.

  17. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    DOE PAGES

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; ...

    2016-09-13

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI’s active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals aremore » directed perpendicular to the density fluctuations, SAMI’s 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. Lastly, the results demonstrate encouraging agreement between SAMI and other independent measurements.« less

  18. Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and microphysical parameters

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Cacciani, Marco; Veselovskii, Igor; Dubovik, Oleg; Kolgotin, Alexey

    2012-04-01

    The Raman lidar system BASIL was operational in Achern (Black Forest) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The system performed continuous measurements over a period of approx. 36 h from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, capturing the signature of a severe Saharan dust outbreak episode. The data clearly reveal the presence of two almost separate aerosol layers: a lower layer located between 1.5 and 3.5 km above ground level (a.g.l.) and an upper layer extending between 3.0 and 6.0 km a.g.l. The time evolution of the dust cloud is illustrated and discussed in the paper in terms of several optical parameters (particle backscatter ratio at 532 and 1064 nm, the colour ratio and the backscatter Angström parameter). An inversion algorithm was used to retrieve particle size and microphysical parameters, i.e., mean and effective radius, number, surface area, volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution (PSD), from the multi-wavelength lidar data of particle backscattering, extinction and depolarization. The retrieval scheme employs Tikhonov's inversion with regularization and makes use of kernel functions for randomly oriented spheroids. Size and microphysical parameters of dust particles are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the presence of a fine mode with radii of 0.1-0.2 μm and a coarse mode with radii of 3-5 μm both in the lower and upper dust layers, and the dominance in the upper dust layer of a coarse mode with radii of 4-5 μm. Effective radius varies with altitude in the range 0.1-1.5 μm, while volume concentration is found to not exceed 92 μm3 cm-3. The real and imaginary part of the complex refractive index vary in the range 1.4-1.6 and 0.004-0.008, respectively.

  19. Plasmon-enhanced electron scattering in nanostructured thin metal films revealed by low-voltage scanning electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailovskii, V., E-mail: v.mikhailovskii@spbu.ru; IRC for Nanotechnology, Research Park, St.-Petersburg State University; Petrov, Yu.

    2016-06-17

    The drastic enhancement of backscattered electrons (BSE) yield from nanostructured thin metal film which exceeded well the one from massive metal was observed at accelerating voltages below 400 V. The dependences of BSE signal from nanostructured gold film on accelerating voltage and on retarding grid potential applied to BSE detector were investigated. It was shown that enhanced BSE signal was formed by inelastic scattered electrons coming from the gaps between nanoparticles. A tentative explanation of the mechanism of BSE signal enhancement was suggested.

  20. Structure Evolution and Distributions of Grain-Boundary Misorientainons in Submicrocrystalline Molybdenum Irradiated with a Pulsed Electron Beam

    NASA Astrophysics Data System (ADS)

    Stepanova, E. N.; Grabovetskaya, G. P.; Teresov, A. D.; Mishin, I. P.

    2018-05-01

    Using the methods of electron backscatter diffraction, electron microscopy and X-ray diffraction analysis, it is demonstrated that irradiation of the surface of a submicrocrystalline molybdenum specimen with a pulsed electron beam in a non-melt regime results in the formation of a gradient structure in its bulk. The irradiation temperature is shown to affect the density of defects, the value of stress, and the distributions of grain-boundary misorientations in the surface and bulk of the submicrocrystalline molybdenum specimens.

  1. Deceleration of probe beam by stage bias potential improves resolution of serial block-face scanning electron microscopic images.

    PubMed

    Bouwer, James C; Deerinck, Thomas J; Bushong, Eric; Astakhov, Vadim; Ramachandra, Ranjan; Peltier, Steven T; Ellisman, Mark H

    2017-01-01

    Serial block-face scanning electron microscopy (SBEM) is quickly becoming an important imaging tool to explore three-dimensional biological structure across spatial scales. At probe-beam-electron energies of 2.0 keV or lower, the axial resolution should improve, because there is less primary electron penetration into the block face. More specifically, at these lower energies, the interaction volume is much smaller, and therefore, surface detail is more highly resolved. However, the backscattered electron yield for metal contrast agents and the backscattered electron detector sensitivity are both sub-optimal at these lower energies, thus negating the gain in axial resolution. We found that the application of a negative voltage (reversal potential) applied to a modified SBEM stage creates a tunable electric field at the sample. This field can be used to decrease the probe-beam-landing energy and, at the same time, alter the trajectory of the signal to increase the signal collected by the detector. With decelerated low landing-energy electrons, we observed that the probe-beam-electron-penetration depth was reduced to less than 30 nm in epoxy-embedded biological specimens. Concurrently, a large increase in recorded signal occurred due to the re-acceleration of BSEs in the bias field towards the objective pole piece where the detector is located. By tuning the bias field, we were able to manipulate the trajectories of the  primary and secondary electrons, enabling the spatial discrimination of these signals using an advanced ring-type BSE detector configuration or a standard monolithic BSE detector coupled with a blocking aperture.

  2. New method for characterizing paper coating structures using argon ion beam milling and field emission scanning electron microscopy.

    PubMed

    Dahlström, C; Allem, R; Uesaka, T

    2011-02-01

    We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  3. Rayleigh scattering in few-mode optical fibers

    PubMed Central

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-01-01

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation. PMID:27775003

  4. Rayleigh scattering in few-mode optical fibers.

    PubMed

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  5. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces

    PubMed Central

    Petoukhoff, Christopher E.; O'Carroll, Deirdre M.

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900

  6. Evaluation of single-band snow-patch mapping using high-resolution microwave remote sensing: an application in the maritime Antarctic

    NASA Astrophysics Data System (ADS)

    Mora, Carla; Jiménez, Juan Javier; Pina, Pedro; Catalão, João; Vieira, Gonçalo

    2017-01-01

    The mountainous and ice-free terrains of the maritime Antarctic generate complex mosaics of snow patches, ranging from tens to hundreds of metres. These can only be accurately mapped using high-resolution remote sensing. In this paper we evaluate the application of radar scenes from TerraSAR-X in High Resolution SpotLight mode for mapping snow patches at a test area on Fildes Peninsula (King George Island, South Shetlands). Snow-patch mapping and characterization of snow stratigraphy were conducted at the time of image acquisition on 12 and 13 January 2012. Snow was wet in all studied snow patches, with coarse-grain and rounded crystals showing advanced melting and with frequent ice layers in the snow pack. Two TerraSAR-X scenes in HH and VV polarization modes were analysed, with the former showing the best results when discriminating between wet snow, lake water and bare soil. However, significant overlap in the backscattering signal was found. Average wet-snow backscattering was -18.0 dB in HH mode, with water showing -21.1 dB and bare soil showing -11.9 dB. Single-band pixel-based and object-oriented image classification methods were used to assess the classification potential of TerraSAR-X SpotLight imagery. The best results were obtained with an object-oriented approach using a watershed segmentation with a support vector machine (SVM) classifier, with an overall accuracy of 92 % and Kappa of 0.88. The main limitation was the west to north-west facing snow patches, which showed significant error, an issue related to artefacts from the geometry of satellite imagery acquisition. The results show that TerraSAR-X in SpotLight mode provides high-quality imagery for mapping wet snow and snowmelt in the maritime Antarctic. The classification procedure that we propose is a simple method and a first step to an implementation in operational mode if a good digital elevation model is available.

  7. Intensity dependence of non-linear kinetic behaviour of stimulated Raman scattering in fusion relevant plasmas

    NASA Astrophysics Data System (ADS)

    Mašek, Martin; Rohlena, Karel

    2015-05-01

    Influence of kinetic effects on 3-wave interaction was examined within the frame of stimulated Raman backward scattering (SRBS) in a rarefied laser corona. The plasma is supposed to be weakly collisional with a negligible density gradient. The model is centred on the physical situation of shock ignition at a large scale direct drive compression experiments. The modelling uses a 1D geometry in a Maxwell-Vlasov model. The method used is a truncated Fourier-Hermite expansion numerically stabilized by a model collisional term with a realistic value of the collision frequency. In parallel, besides the linear theory of SRBS, a coupled mode 3-wave equation system (laser driving wave, Raman back-scattered wave and the daughter forward scattered plasma wave) is solved to demonstrate the correspondence between the full kinetic model and 3-wave interaction with no electron kinetics involved to identify the differences between both the solutions arising due to the electron kinetic effects. We concentrated mainly on the Raman reflectivity, which is one of the important parameters controlling the efficiency of the shock ignition scheme. It was found that the onset of the kinetic effects has a distinct intensity threshold, above which the Raman reflectivity may go down due to the electron kinetics. In addition, we were trying to identify the most important features of the electron phase space behaviour, such as particle trapping in potential minima of the generated plasma wave and its consequences for the 3-wave interaction. The role of the trapped electrons seems to be crucial for a deformation of the plasma wave dispersion curve, as indicated in some earlier work.

  8. Collective backscattering of gyrotron radiation by small-scale plasma density fluctuations in large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharchev, Nikolay; Batanov, German; Petrov, Alexandr

    2008-10-15

    A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.

  9. Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis (Postprint)

    DTIC Science & Technology

    2012-12-19

    remelted five times, being flipped for each melt, and was in a liquid state for about 5 min during each melting event. The pre- pared cigar -shaped...section surfaces using a 136 Vickers diamond pyramid under a 500 g load applied for 20 s. The micro- structure was analyzed by scanning electron ...microscopy (SEM) using a Quanta 600F scanning electron microscope (FEI, North America NanoPort, Hillsboro, OR) equipped with backscatter electron (BSE

  10. Structures of Astromaterials Revealed by EBSD

    NASA Technical Reports Server (NTRS)

    Zolensky, M.

    2018-01-01

    Groups at the Johnson Space Center and the University of Tokyo have been using electron back-scattered diffraction (EBSD) to reveal the crystal structures of extraterrestrial minerals for many years. Even though we also routinely use transmission electron microscopy, synchrotron X-ray diffraction (SXRD), and conventional electron diffraction, we find that EBSD is the most powerful technique for crystal structure elucidation in many instances. In this talk I describe a few of the cases where we have found EBSD to provide crucial, unique information. See attachment.

  11. Modifications to the synthetic aperture microwave imaging diagnostic.

    PubMed

    Brunner, K J; Chorley, J C; Dipper, N A; Naylor, G; Sharples, R M; Taylor, G; Thomas, D A; Vann, R G L

    2016-11-01

    The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. The diagnostic has also been installed on the NSTX-U and is acquiring data since May 2016.

  12. Scanning ion imaging - a potent tool in SIMS U -Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Whitehouse, M. J.; Fedo, C.; Kusiak, M.; Nemchin, A.

    2012-12-01

    The application of high spatial resolution (< 15-20 μm lateral) U-Pb data obtained by sec-ondary ion mass spectrometers (SIMS) coupled with textural information from scanning electron microscope (SEM) based cathodoluminescence (CL) and/or back-scattered elec-tron (BSE) characterisation, has revolutionised geochronology over the past 25 years, re-vealing complexities of crustal evolution from zoned zircons. In addition to ge-ochronology, such studies now commonly form the basis of broader investigations using O- and Hf- isotopes and trace elements obtained from the same growth zone as age, circumventing ambiguities commonly present in bulk-rock isotope studies. The choice of analytical beam diameter is often made to maximise the precision of data obtained from a given area of analysis within an identifiable growth zone. In cases where zircons yield poorly constrained internal structures in SEM, high spatial resolution spot analyses may yield uninterpretable and/or meaningless mixed ages by inadvertent sampling across regions with real age differences. Scanning ion imaging (SII) has the potential to generate accurate and precise geochrono-logical data with a spatial resolution down to ca. 2 μm, much higher than that of a normal spot analysis. SII acquisition utilises a rastered primary beam to image an area of the sample with a spatial resolution dependent on the selected primary beam diameter. On the Cameca ims1270/80 instruments, the primary beam scanning is coupled with the dynamic transfer optical system (DTOS) which deflects the secondary ions back on to the ion optical axis of the instrument regardless of where in the raster illuminated area the ions originated. This feature allows retention of a high field magnification (= high transmission) mode and the ability to operate the mass spectrometer at high mass resolution without any compromise in the quality of the peak shape. Secondary ions may be detected either in a sequential (peak hopping) mono-collection mode or simultaneous multicollection mode using low-noise pulse counting electron multipliers. Regardless of the detection mode, data are acquired over sufficient cycles to generate usable counting statistics from selected sub-areas of the image. In two case studies from southern west Greenland and Antarctica, Pb-isotope maps gen-erated using SII reveal considerable complexities of internal structure, age and isotope systematics that were not predictable from CL imaging of the grains (Fig. 1). Fig. 1. Scanning ion images of the 207Pb/206Pb ratio in zircons from (a) W. Greenland and (b) Antarctica (inset shows rastered area of grain corresponding to the image).

  13. Development of a secondary electron energy analyzer for a transmission electron microscope.

    PubMed

    Magara, Hideyuki; Tomita, Takeshi; Kondo, Yukihito; Sato, Takafumi; Akase, Zentaro; Shindo, Daisuke

    2018-04-01

    A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.

  14. Lead line in rodents: an old sign of lead intoxication turned into a new method for environmental surveillance.

    PubMed

    de Figueiredo, Fellipe Augusto Tocchini; Ramos, Junia; Kawakita, Erika R Hashimoto; Bilal, Alina S; de Sousa, Frederico B; Swaim, William D; Issa, Joao P Mardegan; Gerlach, Raquel F

    2016-11-01

    The "lead line" was described by Henry Burton in 1840. Rodents are used as sentinels to monitor environmental pollution, but their teeth have not been used to determine lead. To determine whether lead deposits can be observed in the teeth of lead-exposed animals, since the gingival deposits known as "lead line" would likely have a correlate in the calcified tissue to which the gums are opposed during life. Male Wistar rats were exposed to lead in the drinking water (30 mg/L) since birth until 60 days-old. Molars and the incisors of each hemimandible were analyzed by scanning electron microscopy (SEM) on regular and backscattered electrons (BSE) mode. Elements were determined using electron dispersive spectroscopy (EDS). Clean cervical margins were observed on control teeth, as opposed to the findings of extensive deposits on lead-exposed animals, even in hemimandibles that had been exhumed after being buried for 90 days. BSE/EDS indicated that those deposits were an exogenous material compatible with lead sulfite. Presence of calcium, phosphorus, magnesium, carbon, lead, and oxygen is presented. Lead-exposed animals presented marked root resorption. The lead deposits characterized here for the first time show that the "lead line" seen in gums has a calcified tissue counterpart, that is detectable post-mortem even in animals exposed to a low dose of lead. This is likely a good method to detect undue lead exposure and will likely have wide application for pollution surveillance using sentinels.

  15. Evaluation of Sentinel-1A Data For Above Ground Biomass Estimation in Different Forests in India

    NASA Technical Reports Server (NTRS)

    Vadrevu, Krishna Prasad

    2017-01-01

    Use of remote sensing data for mapping and monitoring of forest biomass across large spatial scales can aid in addressing uncertainties in carbon cycle. Earlier, several researchers reported on the use of Synthetic Aperture Radar (SAR) data for characterizing forest structural parameters and the above ground biomass estimation. However, these studies cannot be generalized and the algorithms cannot be applied to all types of forests without additional information on the forest physiognomy, stand structure and biomass characteristics. The radar backscatter signal also saturates as forest parameters such as biomass and the tree height increase. It is also not clear how different polarizations (VV versus VH) impact the backscatter retrievals in different forested regions. Thus, it is important to evaluate the potential of SAR data in different landscapes for characterizing forest structural parameters. In this study, the SAR data from Sentinel-1A has been used to characterize forest structural parameters including the above ground biomass from tropical forests of India. Ground based data on tree density, basal area and above ground biomass data from thirty-eight different forested sites has been collected to relate to SAR data. After the pre-processing of Sentinel 1-A data for radiometric calibration, geo-correction, terrain correction and speckle filtering, the variability in the backscatter signal in relation tree density, basal area and above biomass density has been investigated. Results from the curve fitting approach suggested exponential model between the Sentinel-1A backscatter versus tree density and above ground biomass whereas the relationship was almost linear with the basal area in the VV polarization mode. Of the different parameters, tree density could explain most of the variations in backscatter. Both VV and VH backscatter signals could explain only thirty and thirty three percent of variation in above biomass in different forest sites of India. Results also suggested saturation of the Sentinel-1A backscatter signal around hundred tonnes per hectare for VV polarization and one hundred and forty five tonnes per hectare for VH polarization. The presentation will highlight the above results in addition to potentials and limitations of Sentinel-1A data for retrieving forest structural parameters. Also, background information on different forest types of India, biomass variations and forest type mapping efforts in the region will be presented.

  16. A multimodal microcharacterisation of trace-element zonation and crystallographic orientation in natural cassiterite by combining cathodoluminescence, EBSD, EPMA and contribution of confocal Raman-in-SEM imaging.

    PubMed

    Wille, G; Lerouge, C; Schmidt, U

    2018-01-16

    In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE). The presented results show the complementarity of the used analytical techniques. SEM, CL, EBSD, EPMA provide information from the interaction of an electron beam with minerals, leading to atomistic information about their composition, whereas RISE, Raman spectroscopy and imaging completes the studies with information about molecular vibrations, which are sensitive to structural modifications of the minerals. The correlation of Raman bands with the presence/absence of Nb, Ta, Fe (heterovalent substitution) and Ti (homovalent substitution) is established at a submicrometric scale. Combination of the different techniques makes it possible to establish a direct link between chemical and crystallographic data of cassiterite. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  17. Investigation of Synthetic Mg(1.3)V(1.7)O4 Spinel with MgO Inclusions: Case Study of a Spinel with an Apparently occupied Interstitial Site

    NASA Technical Reports Server (NTRS)

    Uchida, Hinako; Righter, Kevin; Lavina, Barbara; Nowell, Matthew M.; Wright, Stuart I.; Downs, Robert T.; Yang, Hexiong

    2007-01-01

    A magnesium vanadate spinel crystal, ideally MgV2O4, synthesized at 1 bar, 1200 C and equilibrated under FMQ + 1.3 log f(sub o2) condition, was investigated using single-crystal X-ray diffraction, electron microprobe, and electron backscatter (EBSD). The initial X-ray structure refinements gave tetrahedral and octahedral site occupancies, along with the presence of 0.053 apfu Mg at an interstitial octahedral site . Back-scattered electron (BSE) images and electron microprobe analyses revealed the existence of an Mg-rich phase in the spinel matrix, which was too small (less than or equal to 3microns) for an accurate chemical determination. The EBSD analysis combined with X-ray energy dispersive spectroscop[y (XEDS) suggested that the Mg-rich inclusions are periclase oriented coherently with the spinel matrix. The final structure refinements were optimized by subtracting the X-ray intensity contributions (approx. 9%) of periclase reflections, which eliminated the interstitial Mg. This study provides insight into possible origins of refined interstitial cations reported in the the literature for spinel, and points to the difficulty of using only X-ray diffraction data to distinguish a spinel with interstitial cations from one with coherently oriented MgO inclusions.

  18. The Use of Backscattered Electron Imaging and Transmission Electron Microscopy to Assess Bone Architecture and Mineral Loci: Effect of Intermittent Slow-Release Sodium Fluoride Therapy

    NASA Astrophysics Data System (ADS)

    Zerwekh, Joseph E.; Bellotto, Dennis; Prostak, Kenneth S.; Hagler, Herbert K.; Pak, Charles Y. C.

    1996-04-01

    Backscattered electron imaging (BEI) and transmission electron microscopy (TEM) were used to examine the effects of treatment with intermittent slow-release sodium fluoride (SRNaF) and continuous calcium citrate on bone architecture and crystallinity. Examination was performed in nondecalcified biopsies obtained from patients following up to four years of therapy (placebo or SRNaF) and compared to pretreatment biopsies from each patient, as well as to bone from young, normal subjects. BEI images disclosed increased areas of recent bone formation following fluoride administration. There was no evidence of a mineralization defect in any biopsy and both cortical and trabecular architecture remained normal. TEM analysis demonstrated intrafibrillar platelike crystals and extrafibrillar needlelike crystals for both the pre- and post-treatment biopsies as well as for the bone from young normal subjects. There was no evidence of increased crystal size or of an increase in extrafibrillar mineral deposition. These observations suggest that intermittent SRNaF and continuous calcium therapy exerts an anabolic action on the skeleton not accompanied by a mineralization defect or an alteration of bone mineral deposition. The use of BEI and TEM holds promise for the study of the pathophysiology and treatment of metabolic bone diseases.

  19. Development of a picosecond CO2 laser system for a high-repetition γ-source

    NASA Astrophysics Data System (ADS)

    Polyanskiy, Mikhail N.; Pogorelsky, Igor V.; Yakimenko, Vitaly E.; Platonenko, Victor T.

    2008-10-01

    The concept of a high-repetition-rate, high-average power γ-source is based on Compton backscattering from the relativistic electron beam inside a picosecond CO2 laser cavity. Proof-of-principle experiments combined with comput

  20. Producing Science-Ready Radar Datasets for the Retrieval of Forest Structure Parameters from Backscatter: Correcting for Terrain Topography and Changes in Vegetation Reflectivity

    NASA Technical Reports Server (NTRS)

    Simard, M.; Riel, Bryan; Hensley, S.; Lavalle, Marco

    2011-01-01

    Radar backscatter data contain both geometric and radiometric distortions due to underlying topography and the radar viewing geometry. Our objective is to develop a radiometric correction algorithm specific to the UAVSAR system configuration that would improve retrieval of forest structure parameters. UAVSAR is an airborne Lband radar capable of repeat?pass interferometry producing images with a spatial resolution of 5m. It is characterized by an electronically steerable antenna to compensate for aircraft attitude. Thus, the computation of viewing angles (i.e. look, incidence and projection) must include aircraft attitude angles (i.e. yaw, pitch and roll) in addition to the antenna steering angle. In this presentation, we address two components of radiometric correction: area projection and vegetation reflectivity. The first correction is applied by normalization of the radar backscatter by the local ground area illuminated by the radar beam. The second is a correction due to changes in vegetation reflectivity with viewing geometry.

  1. Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

    2008-01-01

    The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

  2. Lines of Evidence–Incremental Markings in Molar Enamel of Soay Sheep as Revealed by a Fluorochrome Labeling and Backscattered Electron Imaging Study

    PubMed Central

    Kierdorf, Horst; Kierdorf, Uwe; Frölich, Kai; Witzel, Carsten

    2013-01-01

    We studied the structural characteristics and periodicities of regular incremental markings in sheep enamel using fluorochrome injections for vital labeling of forming enamel and backscattered electron imaging in the scanning electron microscope. Microscopic analysis of mandibular first molars revealed the presence of incremental markings with a daily periodicity (laminations) that indicated successive positions of the forming front of interprismatic enamel. In addition to the laminations, incremental markings with a sub-daily periodicity were discernible both in interprismatic enamel and in enamel prisms. Five sub-daily increments were present between two consecutive laminations. Backscattered electron imaging revealed that each sub-daily growth increment consisted of a broader and more highly mineralized band and a narrower and less mineralized band (line). The sub-daily markings in the prisms of sheep enamel morphologically resembled the (daily) prisms cross striations seen in primate enamel. Incremental markings with a supra-daily periodicity were not observed in sheep enamel. Based on the periodicity of the incremental markings, maximum mean daily apposition rates of 17.0 µm in buccal enamel and of 13.4 µm in lingual enamel were recorded. Enamel extension rates were also high, with maximum means of 180 µm/day and 217 µm/day in upper crown areas of buccal and lingual enamel, respectively. Values in more cervical crown portions were markedly lower. Our results are in accordance with previous findings in other ungulate species. Using the incremental markings present in primate enamel as a reference could result in a misinterpretation of the incremental markings in ungulate enamel. Thus, the sub-daily growth increments in the prisms of ungulate enamel might be mistaken as prism cross striations with a daily periodicity, and the laminations misidentified as striae of Retzius with a supra-daily periodicity. This would lead to a considerable overestimation of crown formation times in ungulate teeth. PMID:24040293

  3. Forward ultrasonic model validation using wavefield imaging methods

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.

    2018-04-01

    The validation of forward ultrasonic wave propagation models in a complex titanium polycrystalline material system is accomplished using wavefield imaging methods. An innovative measurement approach is described that permits the visualization and quantitative evaluation of bulk elastic wave propagation and scattering behaviors in the titanium material for a typical focused immersion ultrasound measurement process. Results are provided for the determination and direct comparison of the ultrasonic beam's focal properties, mode-converted shear wave position and angle, and scattering and reflection from millimeter-sized microtexture regions (MTRs) within the titanium material. The approach and results are important with respect to understanding the root-cause backscatter signal responses generated in aerospace engine materials, where model-assisted methods are being used to understand the probabilistic nature of the backscatter signal content. Wavefield imaging methods are shown to be an effective means for corroborating and validating important forward model predictions in a direct manner using time- and spatially-resolved displacement field amplitude measurements.

  4. Development of a 9.3 micrometer CW LIDAR for the study of atmospheric aerosol

    NASA Technical Reports Server (NTRS)

    Whiteside, B. N.; Schotland, R. M.

    1993-01-01

    This report provides a brief summary of the basic requirements to obtain coherent or heterodyne mixing of the optical radiation backscattered by atmospheric aerosols with that from a fixed frequency source. The continuous wave (CW) mode of operation for a coherent lidar is reviewed along with the associated lidar transfer equation. A complete optical design of the three major subsystems of a CW, coherent lidar is given. Lens design software is implemented to model and optimize receiver performance. Techniques for the opto-mechanical assembly and some of the critical tolerances of the coherent lidar are provided along with preliminary tests of the subsystems. Included in these tests is a comparison of the experimental and the theoretical average power signal-to-noise ratio. The analog to digital software used to evaluate the power spectrum of the backscattered signal is presented in the Appendix of this report.

  5. Improved spatial mapping of rainfall events with spaceborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Brisco, B.; Dobson, C.

    1983-01-01

    The Seasat satellite acquired the first spaceborne synthetic-aperture radar (SAR) images of the earth's surface, in 1978, at a frequency of 1.275 GHz (L-band) in a like-polarization mode at incidence angles of 23 + or - 3 deg. Although this may not be the optimum system configuration for radar remote sensing of soil moisture, interpretation of two Seasat images of Iowa demonstrates the sensitivity of microwave backscatter to soil moisture content. In both scenes, increased image brightness, which represents more radar backscatter, can be related to previous rainfall activity in the two areas. Comparison of these images with ground-based rainfall observations illustrates the increased spatial coverage of the rainfall event that can be obtained from the satellite SAR data. These data can then be color-enhanced by a digital computer to produce aesthetically pleasing output products for the user community.

  6. Delineation of estuarine fronts in the German Bight using airborne laser-induced water Raman backscatter and fluorescence of water column constituents

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1982-01-01

    The acquisition and application of airborne laser induced emission spectra from German Bight water during the 1979 MARSEN experiment is detailed for the synoptic location of estuarine fronts. The NASA Airborne Oceanographic Lidar (AOL) was operated in the fluorosensing mode. A nitrogen laser transmitter at 337.1 nm was used to stimulate the water column to obtain Gelbstoff or organic material fluorescence spectra together with water Raman backscatter. Maps showing the location and relative strength of estuarine fronts are presented. The distribution of the fronts indicates that mixing within the German Bight takes place across a relatively large area. Reasonable agreement between the patterns observed by the AOL and published results are obtained. The limitations and constraints of this technique are indicated and improvements to the AOL fluorosensor are discussed with respect to future ocean mapping applications.

  7. Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS)

    NASA Technical Reports Server (NTRS)

    Guerra, David V.; Schwemmer, Geary K.; Wooten, Albert D., Jr.; Chaudhuri, Sandipan S.; Wilkerson, Thomas D.

    1995-01-01

    A ground-based atmospheric lidar system that utilizes a Holographic Optical Telescope and Scanner has been developed and successfully operated to obtain atmospheric backscatter profiles. The Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing is built around a volume phase reflection Holographic Optical Element. This single optical element both directs and collimates the outgoing laser beam as well as collects, focuses, and filters the atmospheric laser backscatter, while offering significant weight savings over existing telescope mirror technology. Conical scanning is accomplished as the HOE rotates on a turntable sweeping the 1.2 mrad field of view around a 42deg cone. During this technology demonstration, atmospheric aerosol and cloud return signals have been received in both stationary and scanning modes. The success of this program has led to the further development of this technology for integration into airborne and eventually satellite earth observing scanning lidar telescopes.

  8. Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD)

    NASA Astrophysics Data System (ADS)

    Päßler, Jan-Filip; Jarochowska, Emilia; Bestmann, Michel; Munnecke, Axel

    2018-02-01

    Although carbonate-precipitating cyanobacteria are ubiquitous in aquatic ecosystems today, the criteria used to identify them in the geological record are subjective and rarely testable. Differences in the mode of biomineralization between cyanobacteria and eukaryotes, i.e. biologically induced calcification (BIM) vs. biologically controlled calcification (BCM), result in different crystallographic structures which might be used as a criterion to test cyanobacterial affinities. Cyanobacteria are often used as a ‘wastebasket taxon’, to which various microfossils are assigned. The lack of a testable criterion for the identification of cyanobacteria may bias their fossil record severely. We employed electron backscatter diffraction (EBSD) to investigate the structure of calcareous skeletons in two microproblematica widespread in Palaeozoic marine ecosystems: Rothpletzella, hypothesized to be a cyanobacterium, and an incertae sedis microorganism Allonema. We used a calcareous trilobite shell as a BCM reference. The mineralized structure of Allonema has a simple single-layered structure of acicular crystals perpendicular to the surface of the organism. The c-axes of these crystals are parallel to the elongation and thereby normal to the surface of the organism. EBSD pole figures and misorientation axes distribution reveal a fibre texture around the c-axis with a small degree of variation (up to 30°), indicating a highly ordered structure. A comparable pattern was found in the trilobite shell. This structure allows excluding biologically induced mineralization as the mechanism of shell formation in Allonema. In Rothpletzella, the c-axes of the microcrystalline sheath show a broader clustering compared to Allonema, but still reveal crystals tending to be perpendicular to the surface of the organism. The misorientation axes of adjacent crystals show an approximately random distribution. Rothpletzella also shares morphological similarities with extant cyanobacteria. We propose that the occurrence of a strong misorientation relationship between adjacent crystals with misorientation axes clustering around the c-axis can be used as a proxy for the degree of control exerted by an organism on its mineralized structures. Therefore, precisely constrained distributions of misorientations (misorientation angle and misorientation axis) may be used to identify BCM in otherwise problematic fossils and can be used to ground-truth the cyanobacterial affinities commonly proposed for problematic extinct organisms.

  9. Initation of pitting corrosion in martensitic stainless steels. [17-4PH; 13-8Mo; Custom 450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, W.R.; Semarge, R.E.; Bovard, F.S.

    1986-01-01

    The form of localized corrosion known as pitting often initiates preferentially at microstructural inhomogeneities. The pit initiation resistance, therefore, is controlled by the characteristics of the initiation sites, rather than by the bulk material composition. This investigation correlates the pit initiation resistance, as measured by critical pitting potentials, with preferred pit initiation sites for 3 martensitic stainless steels. Pit initiation sites are determined by secondary electron (SE) and backscattered electron (BSE) imaging and energy dispersive and wavelength dispersive spectrometries (EDS and WDS) with a scalling electron microscope (SEM) and an electron probe microanalyzer (EPMA).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, Alejandro Bañón, E-mail: banon@physics.ucla.edu; Jenko, Frank, E-mail: jenko@physics.ucla.edu; Teaca, Bogdan, E-mail: bogdan.teaca@coventry.ac.uk

    For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values formore » the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each perpendicular direction is introduced as well, which shows that the redistribution of energy in the presence of zonal flows is highly anisotropic.« less

  11. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam.

    PubMed

    Kang, Minjung; Han, Heung Nam; Kim, Cheolhee

    2018-04-23

    Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.

  12. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam

    PubMed Central

    Kang, Minjung; Han, Heung Nam

    2018-01-01

    Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility. PMID:29690630

  13. Electron backscatter diffraction analysis of gold nanoparticles on Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−δ}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochmann, A.; Teichert, S., E-mail: steffen.teichert@fh-jena.de; Katzer, C.

    2015-06-07

    It has been shown recently that the incorporation of gold nanoparticles into Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−δ} enhances the superconducting properties of this material in a significant way. Previous XRD and TEM investigations suggest different crystallographic relations of the gold nanoparticles with respect to the epitaxial Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−δ}. Here, detailed investigations of the crystal orientations for a large ensemble of gold nanoparticles with electron backscatter diffraction are reported. The average size of the gold nanoparticles is in the range of 60 nm–80 nm. We identified five different types of heteroepitaxial relationships between the gold nanoparticles and the superconductor film,more » resulting in complex pole figures. The observed different types of crystallographic orientations are discussed based on good lattice matching and the formation of low energy interfaces.« less

  14. Coherent beam combining in atmospheric channels using gated backscatter.

    PubMed

    Naeh, Itay; Katzir, Abraham

    2016-02-01

    This paper introduces the concept of atmospheric channels and describes a possible approach for the coherent beam combining of lasers of an optical phased array (OPA) in a turbulent atmosphere. By using the recently introduced sparse spectrum harmonic augmentation method, a comprehensive simulative investigation was performed and the exceptional properties of the atmospheric channels were numerically demonstrated. Among the interesting properties are the ability to guide light in a confined manner in a refractive channel, the ability to gather different sources to the same channel, and the ability to maintain a constant relative phase within the channel between several sources. The newly introduced guiding properties combined with a suggested method for channel probing and phase measurement by aerosol backscattered radiation allows coherence improvement of the phased array's elements and energy refocusing at the location of the channel in order to increase power in the bucket without feedback from the target. The method relies on the electronic focusing, electronic scanning, and time gating of the OPA, combined with elements of the relative phase measurements.

  15. Using an Electron Scanning Microscope to Assess the Penetrating Abilities of an Experimental Preparation with Features of a Dental Infiltrant: Preliminary Study.

    PubMed

    Skucha-Nowak, Małgorzata; Mertas, Anna; Tanasiewicz, Marta

    2016-01-01

    The resin infiltration technique is one of the micro-invasive methods whose aim is the penetration of demineralized enamel with a low viscosity resin. This technique allows the dentist to avoid the application of mechanical means of treatment. The objective of this preliminary study was to attempt to determine the possibilities of using an electron microscope to assess the penetrating abilities of an experimental preparation with features of a dental infiltrant and to compare the depth of infiltration of the designed experimental preparation with an infiltrant available on the market. A bioactive methacrylate monomer based on PMMAn with built-in metronidazole was synthesized. The commercially available Icon solution (with contrast agent YbF3) and the experimental solution were applied to the relevant parts of teeth. The dissected sections along the long tooth axis and polished surfaces were then examined with use of an electron scanning microscope. The backscattered electron technique gives much better results than the secondary electron method as it makes it possible to localize even very small YbF3 particles. The authors concluded that the backscattered electron technique gives much better results than the secondary electron method as it makes it possible to localize even very small particles of the contrast agent. In order to prevent blockage of decalcified enamel tissue by ytterbium trifluoride (YbF3) grains, a nanoparticle form of that compound should be used (that is, particles with sizes in the range of 10-9 m).

  16. Electron backscatter diffraction applied to lithium sheets prepared by broad ion beam milling.

    PubMed

    Brodusch, Nicolas; Zaghib, Karim; Gauvin, Raynald

    2015-01-01

    Due to its very low hardness and atomic number, pure lithium cannot be prepared by conventional methods prior to scanning electron microscopy analysis. Here, we report on the characterization of pure lithium metallic sheets used as base electrodes in the lithium-ion battery technology using electron backscatter diffraction (EBSD) and X-ray microanalysis using energy dispersive spectroscopy (EDS) after the sheet surface was polished by broad argon ion milling (IM). No grinding and polishing were necessary to achieve the sufficiently damage free necessary for surface analysis. Based on EDS results the impurities could be characterized and EBSD revealed the microsctructure and microtexture of this material with accuracy. The beam damage and oxidation/hydration resulting from the intensive use of IM and the transfer of the sample into the microscope chamber was estimated to be <50 nm. Despite the fact that the IM process generates an increase of temperature at the specimen surface, it was assumed that the milling parameters were sufficient to minimize the heating effect on the surface temperature. However, a cryo-stage should be used if available during milling to guaranty a heating artefact free surface after the milling process. © 2014 Wiley Periodicals, Inc.

  17. Electron back-scattered diffraction and nanoindentation analysis of nanostructured Al tubes processed by multipass tubular-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Mesbah, Mohsen; Faraji, Ghader; Bushroa, A. R.

    2016-03-01

    Microstructural evolution and mechanical properties of nanostructured 1060 aluminum alloy tubes processed by tubular-channel angular pressing (TCAP) process were investigated using electron back-scattered diffraction (EBSD), transmission electron microscopy (TEM) and nanoindentation analyzes. EBSD scans revealed a homogeneous ultrafine grained microstructure after the third passes of the TCAP process. Apart from that the mean grain sizes of the TCAP processed tubes were refined to 566 nm, 500 nm and 480 nm respectively after the first, second and third passes. The results showed that after the three TCAP passes, the grain boundaries with a high angle comprised 78% of all the boundaries. This is in comparison to the first pass processed sample that includes approximately 20% HAGBs. The TEM inspection afforded an appreciation of the role of very low-angle misorientation boundaries in the process of refining microstructure. Nanoindentation results showed that hardness was the smallest form of an unprocessed sample while the largest form of the processed sample after the three passes of TCAP indicated the highest resistant of the material. In addition, the module of elasticity of the TCAP processed samples was greater from that of the unprocessed sample.

  18. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further details of the instrumentation used for insulator measurements and representative measurements of insulating spacecraft materials are provided in other Spacecraft Charging Conference presentations. The NASA Space Environments and Effects Program, the Air Force Office of Scientific Research, the Boeing Corporation, NASA Graduate Research Fellowships, and the NASA Rocky Mountain Space Grant Consortium have provided support.

  19. An Approach for the Visualization of Temperature Distribution in Tissues According to Changes in Ultrasonic Backscattered Energy

    PubMed Central

    Li, Qiang; Liu, Hao-Li; Chen, Wen-Shiang

    2013-01-01

    Previous studies developed ultrasound temperature-imaging methods based on changes in backscattered energy (CBE) to monitor variations in temperature during hyperthermia. In conventional CBE imaging, tracking and compensation of the echo shift due to temperature increase need to be done. Moreover, the CBE image does not enable visualization of the temperature distribution in tissues during nonuniform heating, which limits its clinical application in guidance of tissue ablation treatment. In this study, we investigated a CBE imaging method based on the sliding window technique and the polynomial approximation of the integrated CBE (ICBEpa image) to overcome the difficulties of conventional CBE imaging. We conducted experiments with tissue samples of pork tenderloin ablated by microwave irradiation to validate the feasibility of the proposed method. During ablation, the raw backscattered signals were acquired using an ultrasound scanner for B-mode and ICBEpa imaging. The experimental results showed that the proposed ICBEpa image can visualize the temperature distribution in a tissue with a very good contrast. Moreover, tracking and compensation of the echo shift were not necessary when using the ICBEpa image to visualize the temperature profile. The experimental findings suggested that the ICBEpa image, a new CBE imaging method, has a great potential in CBE-based imaging of hyperthermia and other thermal therapies. PMID:24260041

  20. Detection of preferential particle orientation in the atmosphere. Development of an alternative polarization lidar system

    DOE PAGES

    Geier, Manfred; Arienti, Marco

    2014-07-19

    Increasing interest in polarimetric characterization of atmospheric aerosols has led to the development of complete sample-measuring (Mueller) polarimeters that are capable of measuring the entire backscattering phase matrix of a probed volume. The Mueller polarimeters consist of several moving parts, which limit measurement rates and complicate data analysis. In this paper, we present the concept of a less complex polarization lidar setup for detection of preferential orientation of atmospheric particulates. On the basis of theoretical considerations of data inversion stability and propagation of measurement uncertainties, an optimum optical configuration is established for two modes of operation (with either a linearmore » or a circular polarized incident laser beam). We discovered that the conceptualized setup falls in the category of incomplete sample-measuring polarimeters and uses four detection channels for simultaneous measurement of the backscattered light. Likewise, the expected performance characteristics are discussed through an example of a typical aerosol with a small fraction of particles oriented in a preferred direction. As a result, the theoretical analysis suggests that achievable accuracies in backscatter cross-sections and depolarization ratios are similar to those with conventional two-channel configurations, while in addition preferential orientation can be detected with the proposed four-channel system for a wide range of conditions.« less

  1. Modifications to the synthetic aperture microwave imaging diagnostic

    DOE PAGES

    Brunner, K. J.; Chorley, J. C.; Dipper, N. A.; ...

    2016-09-02

    The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. Finally, the diagnostic has also been installed on the NSTX-U and is acquiring datamore » since May 2016.« less

  2. Self-starting picosecond optical pulse source using stimulated Brillouin scattering in an optical fiber.

    PubMed

    Tang, W W; Shu, C

    2005-02-21

    We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.

  3. Timepix Device Efficiency for Pattern Recognition of Tracks Generated by Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Leroy, Claude; Asbah, Nedaa; Gagnon, Louis-Guilaume; Larochelle, Jean-Simon; Pospisil, Stanislav; Soueid, Paul

    2014-06-01

    A hybrid silicon pixelated TIMEPIX detector (256 × 256 pixels with 55 μm pitch) operated in Time Over Threshold (TOT) mode was exposed to radioactive sources (241Am, 106Ru, 137Cs), protons and alpha-particles after Rutherford Backscattering on a thin gold foil of protons and alpha-particles beams delivered by the Tandem Accelerator of Montreal University. Measurements were also performed with different mixed radiation fields of heavy charged particles (protons and alpha-particles), photons and electrons produced by simultaneous exposure of TIMEPIX to the radioactive sources and to protons beams on top of the radioactive sources. All measurements were performed in vacuum. The TOT mode of operation has allowed the direct measurement of the energy deposited in each pixel. The efficiency of track recognition with this device was tested by comparing the experimental activities (determined from number of tracks measurements) of the radioactive sources with their expected activities. The efficiency of track recognition of incident protons and alpha-particles of different energies as a function of the incidence angle was measured. The operation of TIMEPIX in TOT mode has allowed a 3D mapping of the charge sharing effect in the whole volume of the silicon sensor. The effect of the bias voltage on charge sharing was investigated as the level of charge sharing is related to the local profile of the electric field in the sensor. The results of the present measurements demonstrate the TIMEPIX capability of differentiating between different types of particles species from mixed radiation fields and measuring their energy deposition. Single track analysis gives a good precision (significantly better than the 55 μm size of one detector pixel) on the coordinates of the impact point of protons interacting in the TIMEPIX silicon layer.

  4. Development of diagnostic and manipulation systems for space-charge dominated electron beams and confined electron plasmas in ELTRAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rome, M.; Cavaliere, F.; Maero, G.

    2013-03-19

    Modifications have been implemented in the Penning-Malmberg device ELTRAP aimed at performing studies on the dynamics of space-charge dominated nanosecond electron bunches traveling along the magnetic field. In particular, a Thomson backscattering apparatus has been developed where an infrared (IR) laser pulse collides with the bunched electron beam. The frequency-shifted backscattered radiation, acquired by means of a photomultiplier (PMT), can be exploited to evaluate information on energy, energy spread and density of the bunch. The achievable sensitivity of the diagnostics has been estimated, and valuable information on the main parameters affecting the signal-to-noise (S/N) ratio has been obtained [B. Paroli,more » F. Cavaliere, M. Cavenago, F. De Luca, M. Ikram, G. Maero, C. Marini, R. Pozzoli, and M. Rome, JINST 7, P01008 (2012)]. A series of upgrades are under way, aimed at increasing the S/N ratio through the use of a new laser for the electron source, the insertion of a stray light shield, and the optimization of the detection electronics. Moreover, electromagnetic simulations relevant to the design and implementation of a microwave heating system are presented. The generation of an electron plasma in ELTRAP by means of a low-power radio frequency (RF) drive in the MHz range applied on one of the trap electrodes and under ultra-high vacuum (UHV) conditions has previously been demonstrated [B. Paroli, F. De Luca, G. Maero, F. Pozzoli, and M. Rome, Plasma Sources Sci. Technol. 19, 045013 (2010)]. The new heating system will allow the extension of the RF studies to the GHz range and in particular the production of a more energetic electron plasma via cyclotron resonant excitation.« less

  5. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  6. Rapid three-dimensional analysis of renal biopsy sections by low vacuum scanning electron microscopy.

    PubMed

    Inaga, Sumire; Kato, Masako; Hirashima, Sayuri; Munemura, Chishio; Okada, Sinichi; Kameie, Toshio; Katsumoto, Tetsuo; Nakane, Hironobu; Tanaka, Keiichi; Hayashi, Kazuhiko; Naguro, Tomonori

    2010-01-01

    Renal biopsy paraffin sections were examined by low vacuum scanning electron microscopy (LVSEM) in the backscattered electron (BSE) mode, a novel method for rapid pathological analysis which allowed detailed and efficient three-dimensional observations of glomeruli. Renal samples that had been already diagnosed by light microscopy (LM) as exhibiting IgA nephropathy, minor glomerular abnormalities, and membranous glomerulonephritis (GN) were rapidly processed in the present study. Unstained paraffin sections of biopsy samples on glass slides were deparaffinized, stained with platinum blue (Pt-blue) or periodic acid silver-methenamine (PAM), and directly observed with a LVSEM. Overviews of whole sections and detailed observations of individual glomeruli were immediately performed at arbitrary magnifications between ×50 to ×18,000. Cut surface views and surface views of glomeruli were demonstrated at the same time. On Pt-blue-stained sections, podocytes, endothelia, mesangium, and glomerular basement membranes (GBMs) could be distinguished due to the different yields of BSE signals, and pathological features were investigated in every sample. The abnormal surface appearances of podocytes with foot processes and the varying thicknesses of GBM were revealed three-dimensionally, features difficult to observe under LM and transmission electron microscopy. PAM-positive GBM alterations in membranous GN were distinctly visualized through overlying cells without cell removal under LVSEM at high magnification. Not only prominent spike formation but also slight protrusions were clearly revealed in the side views of GBM. Crater-like or hole-like structures were shown in the en face views of GBM. Accordingly, LVSEM is expected to provide a novel approach to the pathological diagnosis of human glomerular diseases using conventional renal biopsy sections.

  7. Electrostatic waves driven by electron beam in lunar wake plasma

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2018-05-01

    A linear analysis of electrostatic waves propagating parallel to the ambient field in a four component homogeneous, collisionless, magnetised plasma comprising fluid protons, fluid He++, electron beam, and suprathermal electrons following kappa distribution is presented. In the absence of electron beam streaming, numerical analysis of the dispersion relation shows six modes: two electron acoustic modes (modes 1 and 6), two fast ion acoustic modes (modes 2 and 5), and two slow ion acoustic modes (modes 3 and 4). The modes 1, 2 and 3 and modes 4, 5, and 6 have positive and negative phase speeds, respectively. With an increase in electron beam speed, the mode 6 gets affected the most and the phase speed turns positive from negative. The mode 6 thus starts to merge with modes 2 and 3 and generates the electron beam driven fast and slow ion acoustic waves unstable with a finite growth. The electron beam driven slow ion-acoustic waves occur at lower wavenumbers, whereas fast ion-acoustic waves occur at a large value of wavenumbers. The effect of various other parameters has also been studied. We have applied this analysis to the electrostatic waves observed in lunar wake during the first flyby of the ARTEMIS mission. The analysis shows that the low (high) frequency waves observed in the lunar wake could be the electron beam driven slow (fast) ion-acoustic modes.

  8. The electronic stopping powers and angular energy-loss dependence of helium and lithium ions in the silicon crystal

    NASA Astrophysics Data System (ADS)

    Mikšová, R.; Macková, A.; Malinský, P.

    2017-09-01

    We have measured the electronic stopping powers of helium and lithium ions in the channelling direction of the Si〈1 0 0〉 crystal. The energy range used (2.0-8.0 MeV) was changed by 200 and 400-keV steps. The ratio α between the channelling and random stopping powers was determined as a function of the angle for 2, 3 and 4 MeV 4He+ ions and for 3 and 6 MeV 7Li+,2+ ions. The measurements were carried out using the Rutherford backscattering spectrometry in the channelling mode (RBS-C) in a silicon-on-insulator material. The experimental channelling stopping-power values measured in the channelling direction were then discussed in the frame of the random energy stopping predictions calculated using SRIM-2013 code and the theoretical unitary convolution approximation (UCA) model. The experimental channelling stopping-power values decrease with increasing ion energy. The stopping-power difference between channelled and randomly moving ions increases with the enhanced initial ion energy. The ratio between the channelling and random ion stopping powers α as a function of the ion beam incoming angle for 2, 3 and 4 MeV He+ ions and for 3 and 6 MeV Li+,2+ ions was observed in the range 0.5-1.

  9. Study on the crystallographic orientation relationship and formation mechanism of reversed austenite in economical Cr12 super martensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Dong; Li, Shaohong; Li, Jun

    Effect of carbides and crystallographic orientation relationship on the formation mechanism of reversed austenite of economical Cr12 super martensitic stainless steel (SMSS) has been investigated mainly by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The results indicate that the M{sub 23}C{sub 6} precipitation and the formation of the reversed austenite have the interaction effect during tempering process in SMSS. The reversed austenite forms intensively at the sub-block boundary and the lath boundary within a misorientation range of 0–60°. M{sub 23}C{sub 6} has the same crystallographic orientation relationship with reversed austenite. There are two different kinds of formation modesmore » for reversed austenite. One is a nondiffusional shear reversion; the other is a diffusion transformation. Both are strictly limited by crystallographic orientation relationship. The austenite variants are limited to two kinds within one packet and five kinds within one prior austenite grain. - Highlights: • Reversed austenite forms at martensite boundaries with misorientation of 0–60° • M{sub 23}C{sub 6} precipitation and reversed austenite formation have the interaction effect. • Two austenite variants with different orientations can be formed inside a packet. • Two reversed austenite formation modes: shear reversion; diffusion transformation.« less

  10. Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites.

    PubMed

    Long, Wu-Jian; Wei, Jing-Jie; Ma, Hongyan; Xing, Feng

    2017-11-24

    This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM) atomic force microscope (AFM), and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM)/backscattered mode (BSEM) showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP) testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content.

  11. Fractal Characteristics of the Pore Network in Diatomites Using Mercury Porosimetry and Image Analysis

    NASA Astrophysics Data System (ADS)

    Stańczak, Grażyna; Rembiś, Marek; Figarska-Warchoł, Beata; Toboła, Tomasz

    The complex pore space considerably affects the unique properties of diatomite and its significant potential for many industrial applications. The pore network in the diatomite from the Lower Miocene strata of the Skole nappe (the Jawornik deposit, SE Poland) has been investigated using a fractal approach. The fractal dimension of the pore-space volume was calculated using the Menger sponge as a model of a porous body and the mercury porosimetry data in a pore-throat diameter range between 10,000 and 10 nm. Based on the digital analyses of the two-dimensional images from thin sections taken under a scanning electron microscope at the backscattered electron mode at different magnifications, the authors tried to quantify the pore spaces of the diatomites using the box counting method. The results derived from the analyses of the pore-throat diameter distribution using mercury porosimetry have revealed that the pore space of the diatomite has the bifractal structure in two separated ranges of the pore-throat diameters considerably smaller than the pore-throat sizes corresponding to threshold pressures. Assuming that the fractal dimensions identified for the ranges of the smaller pore-throat diameters characterize the overall pore-throat network in the Jawornik diatomite, we can set apart the distribution of the pore-throat volume (necks) and the pore volume from the distribution of the pore-space volume (pores and necks together).

  12. Electronic excitation induced modifications of structural, electrical and optical properties of Cu-C60 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Inani, H.; Singhal, R.; Sharma, P.; Vishnoi, R.; Ojha, S.; Chand, S.; Sharma, G. D.

    2017-09-01

    High energy ion irradiation significantly affects the size and shape of nanoparticles in composites. Low concentration metal fraction embedded in fullerene matrix in form of nanocomposites was synthesized by thermal co-evaporation method. Swift heavy ion irradiation was performed with 120 MeV Au ion beam on Cu-C60 nanocomposites at different fluences 1 × 1012, 3 × 1012, 6 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Absorption spectra demonstrated that absorption intensity of nanocomposite thin film was increased whereas absorption modes of fullerene C60 were diminished with fluence. Rutherford backscattering spectroscopy was also performed to estimate the thickness of the film and atomic metal fraction in matrix and found to be 45 nm and 3%, respectively. Transmission electron microscopy was performed for structural and particle size evaluation of Cu nanoparticles (NPs) in fullerene C60 matrix. A growth of Cu nanoparticles is observed at a fluence of 3 × 1013 ions/cm2 with a bi-modal distribution in fullerene C60. Structural evolution of fullerene C60 matrix with increasing fluence of 120 MeV Au ion beam is studied by Raman spectroscopy which shows the amorphization of matrix (fullerene C60) at lower fluence. The growth of Cu nanoparticles is explained using the phenomena of Ostwald ripening.

  13. Particle Morphology Analysis of Biomass Material Based on Improved Image Processing Method

    PubMed Central

    Lu, Zhaolin

    2017-01-01

    Particle morphology, including size and shape, is an important factor that significantly influences the physical and chemical properties of biomass material. Based on image processing technology, a method was developed to process sample images, measure particle dimensions, and analyse the particle size and shape distributions of knife-milled wheat straw, which had been preclassified into five nominal size groups using mechanical sieving approach. Considering the great variation of particle size from micrometer to millimeter, the powders greater than 250 μm were photographed by a flatbed scanner without zoom function, and the others were photographed using a scanning electron microscopy (SEM) with high-image resolution. Actual imaging tests confirmed the excellent effect of backscattered electron (BSE) imaging mode of SEM. Particle aggregation is an important factor that affects the recognition accuracy of the image processing method. In sample preparation, the singulated arrangement and ultrasonic dispersion methods were used to separate powders into particles that were larger and smaller than the nominal size of 250 μm. In addition, an image segmentation algorithm based on particle geometrical information was proposed to recognise the finer clustered powders. Experimental results demonstrated that the improved image processing method was suitable to analyse the particle size and shape distributions of ground biomass materials and solve the size inconsistencies in sieving analysis. PMID:28298925

  14. Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites

    PubMed Central

    Wei, Jing-Jie; Xing, Feng

    2017-01-01

    This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM) atomic force microscope (AFM), and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM)/backscattered mode (BSEM) showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP) testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content. PMID:29186810

  15. Dose in bone and tissue near bone-tissue interface from electron beam.

    PubMed

    Shiu, A S; Hogstrom, K R

    1991-08-01

    This work has quantitatively studied the variation of dose both within bone and in unit density tissue near bone-tissue interfaces. Dose upstream of a bone-tissue interface is increased because of an increase in the backscattered electrons from the bone. The magnitude of this effect was measured using a thin parallel-plate ionization chamber upstream of a polymethyl methacrylate (PMMA)-hard bone interface. The electron backscatter factor (EBF) increased rapidly with bone thickness until a full EBF was achieved. This occurred at approximately 3.5 mm at 2 MeV and 6 mm at 13.1 MeV. The full EBF at the interface ranged from approximately 1.018 at 13.1 MeV to 1.05 at 2 MeV. It was also observed that the EBF had a dependence on the energy spectrum at the interface. The penetration of the backscattered electrons in the upstream direction of PMMA was also measured. The dose penetration fell off rapidly in the upstream direction of the interface. Dose enhancement to unit density tissue in bone was measured for an electron beam by placing thermoluminescent dosimeters (TLDs) in a PMMA-bone-PMMA phantom. The maximum dose enhancement in bone was approximately 7% of the maximum dose in water. However, the pencil-beam algorithm of Hogstrom et al. predicted an increase of only 1%, primarily owing to the inverse-square correction. Film was also used to measure the dose enhancement in bone. The film plane was aligned either perpendicular or parallel to the central axis of the beam. The film data indicated that the maximum dose enhancement in bone was approximately 8% for the former film alignment (which was similarly predicted by the TLD measurements) and 13% for the latter film alignment. These results confirm that the X ray film is not suitable to be irritated "edge on" in an inhomogeneous phantom without making perturbation corrections resulting from the film acting as a long narrow inhomogeneous cavity within the bone. In addition, the results give the radiotherapist a basis for clinical judgment when electron beams are used to treat lesions behind bone or near bony structures. We feel these data enhance the ability to recognize the shortcomings of the current dose calculation algorithm used clinically.

  16. Plasmonic photonic crystals realized through DNA-programmable assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed withmore » backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (~102) over the visible and near-infrared spectrum.« less

  17. Plasmonic photonic crystals realized through DNA-programmable assembly

    DOE PAGES

    Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.; ...

    2014-12-29

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed withmore » backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (~102) over the visible and near-infrared spectrum.« less

  18. Plasmonic photonic crystals realized through DNA-programmable assembly

    PubMed Central

    Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.; Zhou, Yu; Schatz, George C.; Mirkin, Chad A.

    2015-01-01

    Three-dimensional dielectric photonic crystals have well-established enhanced light–matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry–Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼102) over the visible and near-infrared spectrum. PMID:25548175

  19. Recent Doppler Backscattering results from EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zhou, Chu; Liu, Adi; Zhang, Xiaohui; Hu, Jianqiang; Wang, Mingyuan; Yu, Changxuan; Liu, Wandong; Li, Hong; Lan, Tao; Sun, Xuan; Xie, Jinlin; Ding, Weixing; CAS Key Laboratory of Geospace Environment, University of Science and Technology of China Team; Department of Physics and Astronomy, University of California at Los Angeles Collaboration

    2013-10-01

    A Doppler reflectometer system has recently been installed in the EAST tokamak. It includes two separated systems, one for Q-band and the other for V-band. The optical system consists of a fixed flat mirror and a steerable parabolic mirror, which enabling the measurement of perpendicular wave number in the range of 4-22/cm, with the wave number resolution around 2/cm, while the radial location can cover the whole minor radius for L mode and the whole pedestal for H mode on EAST. A 2D Gaussion Ray tracing code is used to calculate the scattering location, the perpendicular wave number and the resolution. In EAST last experimental campaign the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated. The Er evolution during L-H and H-L transition have also been measured. The two separated systems are also used as a poloidal coherent system together to study the GAM in EAST tokamak.

  20. Plasmonic photonic crystals realized through DNA-programmable assembly.

    PubMed

    Park, Daniel J; Zhang, Chuan; Ku, Jessie C; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2015-01-27

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼10(2)) over the visible and near-infrared spectrum.

  1. Triangular Graphene Grain Growth on Cube-Textured Cu Substrates

    DTIC Science & Technology

    2011-01-01

    rate of CuOx decreases with decreasing H 2 partial pressure. [ 32 ] According to the Cu-O phase diagram, [ 33 ] the eutectic temperature of Cu-CuO and...accelerating voltage of 2 KeV. The electron backscatter diffraction patterns (EBSP) were used to examine recrystallization and grain orientation of

  2. Symposium U: Thermoelectric Power Generation. Held in Boston, Massachusetts on November 26-29, 2007

    DTIC Science & Technology

    2008-04-01

    including X - ray /electron diffraction, TGA analysis, Raman / Fourier Transform Infrared Spectroscopy, electron microscopy, Rutherford back-scattering and...Energy dispersive X - ray analysis were performed on the treated sample. The results revealed that a surface layer (from 10 nm to up to micron in...nanoparticles into a matrix of bulk Bi2Te 3 material via a hot pressing process. These nanocomposites have been examined by SEM and X - ray powder

  3. Observation of a brine layer on an ice surface with an environmental scanning electron microscope at higher pressures and temperatures.

    PubMed

    Krausko, Ján; Runštuk, Jiří; Neděla, Vilém; Klán, Petr; Heger, Dominik

    2014-05-20

    Observation of a uranyl-salt brine layer on an ice surface using backscattered electron detection and ice surface morphology using secondary-electron detection under equilibrium conditions was facilitated using an environmental scanning electron microscope (ESEM) at temperatures above 250 K and pressures of hundreds of Pa. The micrographs of a brine layer over ice grains prepared by either slow or shock freezing provided a complementary picture of the contaminated ice grain boundaries. Fluorescence spectroscopy of the uranyl ions in the brine layer confirmed that the species exists predominately in the solvated state under experimental conditions of ESEM.

  4. Electron backscatter and X-ray diffraction studies on the deformation and annealing textures of austenitic stainless steel 310S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nezakat, Majid, E-mail: majid.nezakat@usask.ca

    We studied the texture evolution of thermo-mechanically processed austenitic stainless steel 310S. This alloy was cold rolled up to 90% reduction in thickness and subsequently annealed at 1050 °C. At the early stages of deformation, strain-induced martensite was formed from deformed austenite. By increasing the deformation level, slip mechanism was found to be insufficient to accommodate higher deformation strains. Our results demonstrated that twinning is the dominant deformation mechanism at higher deformation levels. Results also showed that cold rolling in unidirectional and cross rolling modes results in Goss/Brass and Brass dominant textures in deformed samples, respectively. Similar texture components aremore » observed after annealing. Thus, the annealing texture was greatly affected by texture of the deformed parent phase and martensite did not contribute as it showed an athermal reversion during annealing. Results also showed that when the fraction of martensite exceeds a critical point, its grain boundaries impeded the movement of austenite grain boundaries during annealing. As a result, recrystallization incubation time would increase. This caused an incomplete recrystallization of highly deformed samples, which led to a rational drop in the intensity of the texture components. - Highlights: •Thermo-mechanical processing through different cold rolling modes can induce different textures. •Martensite reversion is athermal during annealing. •Higher fraction of deformation-induced martensite can increase the annealing time required for complete recrystallization. •Annealing texture is mainly influenced by the deformation texture of austenite.« less

  5. Lidar measurements of wildfire smoke aerosols in the atmosphere above Sofia, Bulgaria

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Deleva, Atanaska D.; Dreischuh, Tanja N.; Stoyanov, Dimitar V.

    2016-01-01

    Presented are results of lidar measurements and characterization of wildfire caused smoke aerosols observed in the atmosphere above the city of Sofia, Bulgaria, related to two local wildfires raging in forest areas near the city. A lidar systems based on a frequency-doubled Nd:YAG laser operated at 532 nm and 1064 nm is used in the smoke aerosol observations. It belongs to the Sofia LIDAR Station (at Laser Radars Laboratory, Institute of Electronics, Bulgarian Academy of Sciences), being a part of the European Aerosol Lidar Network. Optical, dynamical, microphysical, and geometrical properties and parameters of the observed smoke aerosol particles and layers are displayed and analyzed, such as: range/height-resolved profiles of the aerosol backscatter coefficient; integral aerosol backscattering; sets of colormaps displaying time series of the height distribution of the aerosol density; topologic, geometric, and volumetric properties of the smoke aerosol layers; time-averaged height profiles of backscatter-related Ångström exponent (BAE). Obtained results of retrieving and profiling smoke aerosols are commented in their relations to available meteorological and air-mass-transport forecasting and modelling data.

  6. Rapid quantitation of atorvastatin in process pharmaceutical powder sample using Raman spectroscopy and evaluation of parameters related to accuracy of analysis.

    PubMed

    Lim, Young-Il; Han, Janghee; Woo, Young-Ah; Kim, Jaejin; Kang, Myung Joo

    2018-07-05

    The purpose of this study was to determine the atorvastatin (ATV) content in process pharmaceutical powder sample using Raman spectroscopy. To establish the analysis method, the influence of the type of Raman measurements (back-scattering or transmission mode), preparation of calibration sample (simple admixing or granulation), sample pre-treatment (pelletization), and spectral pretreatment on the Raman spectra was investigated. The characteristic peak of the active compound was more distinctively detected in transmission Raman mode with a laser spot size of 4mm than in the back-scattering method. Preparation of calibration samples by wet granulation, identical to the actual manufacturing process, provided unchanged spectral patterns for the in process sample, with no changes and/or shifts in the spectrum. Pelletization before Raman analysis remarkably improved spectral reproducibility by decreasing the difference in density between the samples. Probabilistic quotient normalization led to accurate and consistent quantification of the ATV content in the calibration samples (standard error of cross validation: 1.21%). Moreover, the drug content in the granules obtained from five commercial batches were reliably quantified, with no statistical difference (p=0.09) with that obtained by HPLC assay. From these findings, we suggest that transmission Raman analysis may be a fast and non-invasive method for the quantification of ATV in actual manufacturing processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Multiple frequency backscatter observations of heater-induced field-aligned striations in the auroral E region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, S.T.

    1985-01-01

    In September 1983 a series of HF ionospheric modification experiments were conducted in Scandinavia using the heat facility near Tromosoe Norway. The purpose of these experiments was to examine the mechanisms by which high-power HF radio waves produce geomagnetic field-aligned striations (FAS) in the auroral E region. The vast majority of the backscatter observations were made with radars operating at 47 and 144 MHz (STARE Finland). Additionally, limited observations were conducted at 140 (STARE Norway) and 21 MHz (SAFARI). These radars are sensitive to irregularities having scale lengths between 1 and 7 m across the geomagnetic field lines. During periodsmore » of full power O-mode heating, striations having peak cross sections of 40 to 50 dBsm are observed. Striations are not detected during times of X-mode heating. When the heater output is varied, a corresponding change in the cross section is measured. The magnitude of the change is most pronounced for heater level changes in the range 12.5 to 50% of full power. These cross sections are significantly larger than those measured at midlatitudes using the Arecibo heater (approx.10/sup 1/ m/sup 2/). This is consistent with theoretical studies which indicate that it is easier to excite short-scale FAS at places where the geomagnetic dip angle is large. The growth and decay times of the striations are frequency dependent.« less

  8. Rapid quantitation of atorvastatin in process pharmaceutical powder sample using Raman spectroscopy and evaluation of parameters related to accuracy of analysis

    NASA Astrophysics Data System (ADS)

    Lim, Young-Il; Han, Janghee; Woo, Young-Ah; Kim, Jaejin; Kang, Myung Joo

    2018-07-01

    The purpose of this study was to determine the atorvastatin (ATV) content in process pharmaceutical powder sample using Raman spectroscopy. To establish the analysis method, the influence of the type of Raman measurements (back-scattering or transmission mode), preparation of calibration sample (simple admixing or granulation), sample pre-treatment (pelletization), and spectral pretreatment on the Raman spectra was investigated. The characteristic peak of the active compound was more distinctively detected in transmission Raman mode with a laser spot size of 4 mm than in the back-scattering method. Preparation of calibration samples by wet granulation, identical to the actual manufacturing process, provided unchanged spectral patterns for the in process sample, with no changes and/or shifts in the spectrum. Pelletization before Raman analysis remarkably improved spectral reproducibility by decreasing the difference in density between the samples. Probabilistic quotient normalization led to accurate and consistent quantification of the ATV content in the calibration samples (standard error of cross validation: 1.21%). Moreover, the drug content in the granules obtained from five commercial batches were reliably quantified, with no statistical difference (p = 0.09) with that obtained by HPLC assay. From these findings, we suggest that transmission Raman analysis may be a fast and non-invasive method for the quantification of ATV in actual manufacturing processes.

  9. Hyper-Raman and Raman scattering from the polar modes of PbMg1/3Nb2/3O3.

    PubMed

    Hehlen, B; Amouri, A; Al-Zein, A; Khemakhem, H

    2014-01-08

    Microhyper-Raman spectroscopy of PbMg(1/3)Nb(2/3)O(3) (PMN) single crystal is performed at room temperature. The use of an optical microscope working in backscattering geometry significantly reduces the LO signal, highlighting thereby the weak contributions underneath. We clearly identify the highest frequency transverse optic mode (TO3) in addition to the previously observed soft TO-doublet at low frequency and TO2 at intermediate frequency. TO3 exhibits strong inhomogeneous broadening but perfectly fulfils the hyper-Raman cubic selection rules. The analysis shows that hyper-Raman spectroscopy is sensitive to all the vibrations of the average cubic Pm3¯m symmetry group of PMN, the three polar F1u- and the silent F2u-symmetry modes. All these vibrations can be identified in the Raman spectra alongside other vibrational bands likely arising from symmetry breaking in polar nanoregions.

  10. Sputtering Yields of Si and Ni from the Ni1-xSix System Studied by Rutherford Backscattering Spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Su Chol; Yamaguchi, Satoru; Kataoka, Yoshihide; Iwami, Motohiro; Hiraki, Akio; Satou, Mamoru; Fujimoto, Fuminori

    1982-01-01

    Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni1-xSix), including the pure materials (Ni and Si), caused by 5 keV Ar+ ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni1-xSix increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi2 to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni1-xSix which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy.

  11. Vertically-resolved profiles of mass concentrations and particle backscatter coefficients of Asian dust plumes derived from lidar observations of silicon dioxide.

    PubMed

    Noh, Youngmin; Müller, Detlef; Shin, Sung-Kyun; Shin, Dongho; Kim, Young J

    2016-01-01

    This study presents a method to retrieve vertically-resolved profiles of dust mass concentrations by analyzing Raman lidar signals of silicon dioxide (quartz) at 546nm. The observed particle plumes consisted of mixtures of East Asian dust with anthropogenic pollution. Our method for the first time allows for extracting the contribution of the aerosol component "pure dust" contained in the aerosol type "polluted dust". We also propose a method that uses OPAC (Optical Properties of Aerosols and Clouds) and the mass concentrations profiles of dust in order to derive profiles of backscatter coefficients of pure dust in mixed dust/pollution plumes. The mass concentration of silicon dioxide (quartz) in the atmosphere can be estimated from the backscatter coefficient of quartz. The mass concentration of dust is estimated by the weight percentage (38-77%) of mineral quartz in Asian dust. The retrieved dust mass concentrations are classified into water soluble, nucleation, accumulation, mineral-transported and coarse mode according to OPAC. The mass mixing ratio of 0.018, 0.033, 0.747, 0.130 and 0.072, respectively, is used. Dust extinction coefficients at 550nm were calculated by using OPAC and prescribed number concentrations for each of the 5 components. Dust backscatter coefficients were calculated from the dust extinction coefficients on the basis of a lidar ratio of 45±3sr at 532nm. We present results of quartz-Raman measurements carried out on the campus of the Gwangju Institute of Science and Technology (35.10°N, 126.53°E) on 15, 16, and 21 March 2010. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Measurement of the electron beam mode in earth's foreshock

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Holzworth, R. H.

    1990-01-01

    High frequency electric field measurements from the AMPTE IRM plasma wave receiver are used to identify three simultaneously excited electrostatic wave modes in the earth's foreshock region: the electron beam mode, the Langmuir mode, and the ion acoustic mode. A technique is developed which allows the rest frame frequecy and wave number of the electron beam waves to be determined. It is shown that the experimentally determined rest frame frequency and wave number agree well with the most unstable frequency and wave number predicted by linear homogeneous Vlasov theory for a plasma with Maxwellian background electrons and a Lorentzian electron beam. From a comparison of the experimentally determined and theoretical values, approximate limits are put on the electron foreshock beam temperatures. A possible generation mechanism for ion acoustic waves involving mode coupling between the electron beam and Langmuir modes is also discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, G. Q.; Feng, H. Q.; Liu, Q.

    Energetic electrons with power-law spectra are commonly observed in astrophysics. This paper investigates electron cyclotron maser emission (ECME) from the power-law electrons, in which strong pitch-angle anisotropy is emphasized. The electron distribution function proposed in this paper can describe various types of pitch-angle anisotropy. Results show that the emission properties of ECME, including radiation growth, propagation, and frequency properties, depend considerably on the types of electron pitch-angle anisotropy, and different wave modes show different dependences on the pitch angle of electrons. In particular, the maximum growth rate of the X2 mode rapidly decreases with respect to the electron pitch-angle cosinemore » μ {sub 0} at which the electron distribution peaks, while the growth rates for other modes (X1, O1, O2) initially increase before decreasing as μ {sub 0} increases. Moreover, the O mode, as well as the X mode, can be the fastest growth mode, in terms of not only the plasma parameter but also the type of electron pitch-angle distribution. This result presents a significant extension of the recent researches on ECME driven by the lower energy cutoff of power-law electrons, in which the X mode is generally the fastest growth mode.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at themore » microscopic level.« less

  15. Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime.

    PubMed

    Khrennikov, K; Wenz, J; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S

    2015-05-15

    We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17-50 MeV, narrow x-ray spectra peaking at 5-42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.

  16. Development and Application of NUMIT for Realistic Modeling of Deep-Dielectric Spacecraft Charging in the Space Environment

    DTIC Science & Technology

    2014-04-21

    Dixon, a graduate student at the University of New Mexico who introduced us to MCNP . Using what we learned from Dixon, we were able to produce a...curves were produced with MCNP for incident electron energies from 10 to 100 keV in increments of 10 keV, see Figure 9. In this case, the same...the algorithm. Since MCNP does take backscatter into consideration, the comparisons on the vertical scales (energy or number of electrons deposited

  17. Elucidating the Wavelength Dependence of Phonon Scattering in Nanoparticle-Matrix Composites using Phonon Spectroscopy

    DTIC Science & Technology

    2016-07-11

    composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically   Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3

  18. Combined application of electron backscatter diffraction and stereo-photogrammetry in fractography studies.

    PubMed

    Davies, P A; Randle, V

    2001-10-01

    The main aim of this paper is to report on recent experimental developments that have succeeded in combining electron back-scatter diffraction (EBSD) with stereo-photogrammetry, compared with two other methods for study of fracture surfaces, namely visual fractography analysis in the scanning electron microscope (SEM) and EBSD directly from facets. These approaches will be illustrated with data relating to the cleavage plane orientation analysis in a ferritic and C-Mn steel. It is demonstrated that the combined use of EBSD and stereo-photogrammetry represents a significant advance in the methodology for facet crystallography analysis. The results of point counting from fractograph characterization determined that the proportions of intergranular fracture in C-Mn and ferritic steels were 10.4% and 9.4%, respectively. The crystallographic orientation was determined directly from the fracture surface of a ferritic steel sample and produced an orientation distribution with a clear trend towards the [001] plane. A stereo-photogrammetry technique was validated using the known geometry of a Vickers hardness indent. The technique was then successfully employed to measure the macroscopic orientation of individual cleavage facets in the same reference frame as the EBSD measurements. Correlating the results of these measurements indicated that the actual crystallographic orientation of every cleavage facet identified in the steel specimens is [001].

  19. Three-Dimensional Characterization of Microstructure by Electron Back-Scatter Diffraction

    DTIC Science & Technology

    2007-03-28

    Costa LDF, Cesar RM, Cesar J. 2000. Shape Analysis and Classification: Theory and Practice. Boca Raton, FL: CRC Press. 660 pp. 7. Williams RE. 1968...The distribution of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater. 51:3663–74 27. Schaeben H, Apel M, Frank T

  20. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  1. Ocean Remote Sensing from Chinese Spaceborne Microwave Sensors

    NASA Astrophysics Data System (ADS)

    Yang, J.

    2017-12-01

    GF-3 (GF stands for GaoFen, which means High Resolution in Chinese) is the China's first C band multi-polarization high resolution microwave remote sensing satellite. It was successfully launched on Aug. 10, 2016 in Taiyuan satellite launch center. The synthetic aperture radar (SAR) on board GF-3 works at incidence angles ranging from 20 to 50 degree with several polarization modes including single-polarization, dual-polarization and quad-polarization. GF-3 SAR is also the world's most imaging modes SAR satellite, with 12 imaging modes consisting of some traditional ones like stripmap and scanSAR modes and some new ones like spotlight, wave and global modes. GF-3 SAR is thus a multi-functional satellite for both land and ocean observation by switching the different imaging modes. TG-2 (TG stands for TianGong, which means Heavenly Palace in Chinese) is a Chinese space laboratory which was launched on 15 Sep. 2016 from Jiuquan Satellite Launch Centre aboard a Long March 2F rocket. The onboard Interferometric Imaging Radar Altimeter (InIRA) is a new generation radar altimeter developed by China and also the first on orbit wide swath imaging radar altimeter, which integrates interferometry, synthetic aperture, and height tracking techniques at small incidence angles and a swath of 30 km. The InIRA was switch on to acquire data during this mission on 22 September. This paper gives some preliminary results for the quantitative remote sensing of ocean winds and waves from the GF-3 SAR and the TG-2 InIRA. The quantitative analysis and ocean wave spectra retrieval have been given from the SAR imagery. The image spectra which contain ocean wave information are first estimated from image's modulation using fast Fourier transform. Then, the wave spectra are retrieved from image spectra based on Hasselmann's classical quasi-linear SAR-ocean wave mapping model and the estimation of three modulation transfer functions (MTFs) including tilt, hydrodynamic and velocity bunching modulation. The wind speed is retrieved from InIRA data using a Ku-band low incidence backscatter model (KuLMOD), which relates the backscattering coefficients to the wind speeds and incidence angles. The ocean wave spectra are retrieved linearly from image spectra which extracted first from InIRA data, using a similar procedure for GF-3 SAR data.

  2. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    PubMed

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  3. Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime

    NASA Astrophysics Data System (ADS)

    Zhou, H. Y.; Xiao, C. Z.; Zou, D. B.; Li, X. Z.; Yin, Y.; Shao, F. Q.; Zhuo, H. B.

    2018-06-01

    Nonlinear behaviors of stimulated Raman scattering driven by finite bandwidth pumps are studied by one dimensional particle-in-cell simulations. The broad spectral feature of plasma waves and backscattered light reveals the different coupling and growth mechanisms, which lead to the suppression effect before the deep nonlinear stage. It causes nonperiodic plasma wave packets and reduces packet and etching velocities. Based on the negative frequency shift and electron energy distribution, the long-time evolution of instability can be divided into two stages by the relaxation time. It is a critical time after which the alleviation effects of nonlinear frequency shift and hot electrons are replaced by enhancement. Thus, the broadband pump suppresses instability at early time. However, it aggravates in the deep nonlinear stage by lifting the saturation level due to the coupling of the incident pump with each frequency shifted plasma wave. Our simulation results show that the nonlinear effects are valid in a bandwidth range from 2.25% to 3.0%, and the physics are similar within a nearby parameter space.

  4. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun

    2015-02-11

    The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains.more » The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  5. Comparison of quartz crystallographic preferred orientations identified with optical fabric analysis, electron backscatter and neutron diffraction techniques.

    PubMed

    Hunter, N J R; Wilson, C J L; Luzin, V

    2017-02-01

    Three techniques are used to measure crystallographic preferred orientations (CPO) in a naturally deformed quartz mylonite: transmitted light cross-polarized microscopy using an automated fabric analyser, electron backscatter diffraction (EBSD) and neutron diffraction. Pole figure densities attributable to crystal-plastic deformation are variably recognizable across the techniques, particularly between fabric analyser and diffraction instruments. Although fabric analyser techniques offer rapid acquisition with minimal sample preparation, difficulties may exist when gathering orientation data parallel with the incident beam. Overall, we have found that EBSD and fabric analyser techniques are best suited for studying CPO distributions at the grain scale, where individual orientations can be linked to their source grain or nearest neighbours. Neutron diffraction serves as the best qualitative and quantitative means of estimating the bulk CPO, due to its three-dimensional data acquisition, greater sample area coverage, and larger sample size. However, a number of sampling methods can be applied to FA and EBSD data to make similar approximations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  6. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  7. Basic Study for Ultrasound-Based Navigation for Pedicle Screw Insertion Using Transmission and Backscattered Methods

    PubMed Central

    Chen, Ziqiang; Wu, Bing; Zhai, Xiao; Bai, Yushu; Zhu, Xiaodong; Luo, Beier; Chen, Xiao; Li, Chao; Yang, Mingyuan; Xu, Kailiang; Liu, Chengcheng; Wang, Chuanfeng; Zhao, Yingchuan; Wei, Xianzhao; Chen, Kai; Yang, Wu; Ta, Dean; Li, Ming

    2015-01-01

    The purpose of this study was to understand the acoustic properties of human vertebral cancellous bone and to study the feasibility of ultrasound-based navigation for posterior pedicle screw fixation in spinal fusion surgery. Fourteen human vertebral specimens were disarticulated from seven un-embalmed cadavers (four males, three females, 73.14 ± 9.87 years, two specimens from each cadaver). Seven specimens were used to measure the transmission, including tests of attenuation and phase velocity, while the other seven specimens were used for backscattered measurements to inspect the depth of penetration and A-Mode signals. Five pairs of unfocused broadband ultrasonic transducers were used for the detection, with center frequencies of 0.5 MHz, 1 MHz, 1.5 MHz, 2.25 MHz, and 3.5 MHz. As a result, good and stable results were documented. With increased frequency, the attenuation increased (P<0.05), stability of the speed of sound improved (P<0.05), and penetration distance decreased (P>0.05). At about 0.6 cm away from the cortical bone, warning signals were easily observed from the backscattered measurements. In conclusion, the ultrasonic system proved to be an effective, moveable, and real-time imaging navigation system. However, how ultrasonic navigation will benefit pedicle screw insertion in spinal surgery needs to be determined. Therefore, ultrasound-guided pedicle screw implantation is theoretically effective and promising. PMID:25861053

  8. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  9. Autodyne effect in a single-mode Er fibre laser and the possibility of its usage for recognising the evaporated biotissue type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitriev, A K; Konovalov, A N; Ul'yanov, V A

    2015-12-31

    The autodyne signal arising in an Er fibre laser in the course of evaporating biological models of different types is studied and the possibility of recognising the biotissue type using the method of autodyne detection of the backscattered Doppler signal is assessed. In the experiments we modelled the process of surgical intervention using the contact (hole perforation with the Er laser fibre) and noncontact (surface evaporation with the focused radiation) regimes of impact on different biological models. The amplitude – frequency characteristic of the autodyne detection for the Er fibre laser is measured and the initial spectra of the backscatteredmore » Doppler signal arising under the action of laser radiation on the samples of biological models are obtained. The experiments have shown that the spectra of the backscattered Doppler signal, arising in the course of the contact and noncontact action of the Er fibre laser on different biological models, demonstrate clear-cut distinctions. (control of laser radiation parameters)« less

  10. Analysis-Software for Hyperspectral Algal Reflectance Probes v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timlin, Jerilyn A.; Reichardt, Thomas A.; Jenson, Travis J.

    This software provides onsite analysis of the hyperspectral reflectance data acquired on an outdoor algal pond by a multichannel, fiber-coupled spectroradiometer. The analysis algorithm is based on numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a function of the single backscattering albedo, which is dependent on the backscatter and absorption coefficients of the algal culture, which are in turn related to the algal biomass and pigment optical activity, respectively. Prior to the development of this software, while raw multichannel data were displayed in real time, analysis required a post-processing procedure to extract the relevantmore » parameters. This software provides the capability to track the temporal variation of such culture parameters in real time, as raw data are being acquired, or can be run in a post processing mode. The software allows the user to select between different algal species, incorporate the appropriate calibration data, and observe the quality of the resulting model inversions.« less

  11. Performance Enhancement of Bidirectional TWDM-PON by Rayleigh Backscattering Mitigation

    NASA Astrophysics Data System (ADS)

    Elewah, Ibrahim A.; Wadie, Martina N.; Aly, Moustafa H.

    2018-01-01

    A bidirectional time wavelength division multiplexing-passive optical network (TWDM-PON) with a centralized light source (CLS) is designed and evaluated. TWDM-PON is the promising solution for PON future expansion and migration. The most important issue that limits optical fiber transmission length is the interferometric noise caused by Rayleigh backscattering (RB). In this study, we demonstrate a TWDM-PON architecture with subcarrier at the remote node (RN) to mitigate the RB effect. A successful transmission with 8 optical channels is achieved using wavelength division multiplexing (WDM). Each optical channel is splitted into 8 time slots to achieve TWDM. The proposed scheme is operated over 20 km bidirectional single mode fiber (SMF). The proposed system has the advantage of expanding the downstream (DS) capacity to be 160 Gb/s (8 channels×20 Gb/s) and 20 Gb/s (8 channels×2.5 Gb/s) for the upstream (US) transmission capacity. This is accomplished by a remarkable bit error rate (BER) and low complexity.

  12. Suppression of Rayleigh backscattering noise using cascaded-SOA and microwave photonic filter for 10 Gb/s loop-back WDM-PON.

    PubMed

    Feng, Hanlin; Ge, Jia; Xiao, Shilin; Fok, Mable P

    2014-05-19

    In this paper, we present a novel Rayleigh backscattering (RB) noise mitigation scheme based on central carrier suppression for 10 Gb/s loop-back wavelength division multiplexing passive optical network (WDM-PON). Microwave modulated multi-subcarrier optical signal is used as downstream seeding light, while cascaded semiconductor optical amplifier (SOA) are used in the optical network unit (ONU) for suppressing the central carrier of the multi-subcarrier upstream signal. With central carrier suppression, interference generated by carrier RB noise at low frequency region is eliminated successfully. Transmission performance over 45 km single mode fiber (SMF) is studied experimentally, and the optical-signal-to-Rayleigh-noise-ratio (OSRNR) can be reduced to 15 dB with central carrier suppression ratio (CCSR) of 21 dB. Receiver sensitivity is further improved by 6 dB with the use of microwave photonic filter (MPF) for suppressing residual upstream microwave signal and residual carrier RB at high frequency region.

  13. Vapor transport mechanisms

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1978-01-01

    The Raman scattering furnace for investigating vapor transport mechanisms was completed and checked out. Preliminary experiments demonstate that a temperature resolution of plus and minus 5 C is possible with this system operating in a backscatter mode. In the experiments presented with the GeI 4 plus excess Ge system at temperatures up to 600 C, only the GeI4 band at 150 cm superscript minus 1 was observed. Further experiments are in progress to determine if GeI2 does become the major vapor species above 440 C.

  14. Scanning electron microscope observation of dislocations in semiconductor and metal materials.

    PubMed

    Kuwano, Noriyuki; Itakura, Masaru; Nagatomo, Yoshiyuki; Tachibana, Shigeaki

    2010-08-01

    Scanning electron microscope (SEM) image contrasts have been investigated for dislocations in semiconductor and metal materials. It is revealed that single dislocations can be observed in a high contrast in SEM images formed by backscattered electrons (BSE) under the condition of a normal configuration of SEM. The BSE images of dislocations were compared with those of the transmission electron microscope and scanning transmission electron microscope (STEM) and the dependence of BSE image contrast on the tilting of specimen was examined to discuss the origin of image contrast. From the experimental results, it is concluded that the BSE images of single dislocations are attributed to the diffraction effect and related with high-angle dark-field images of STEM.

  15. Modification and benchmarking of MCNP for low-energy tungsten spectra.

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-12-01

    The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.

  16. Microstructural features of carious human enamel imaged with back-scattered electrons.

    PubMed

    Pearce, E I; Nelson, D G

    1989-02-01

    We have used back-scattered electrons (BE) in the scanning electron microscope to produce mineral density images of enamel. Flat surfaces of artificially-carious enamel, softened in an intra-oral experiment, and naturally-carious (white spot) enamel were polished to a high gloss with diamond lapping compound, rendering them almost featureless by secondary electron scanning electron microscopy. They were then examined at 10 to 30 kV in a Philips 505 instrument fitted with a 4-quadrant BE detector. Study of surfaces prepared approximately parallel to the natural surface showed that mineral was lost from both prism core and the interprismatic region, leaving a thin mineral-rich rim at the prism periphery. The same lesions viewed longitudinally on a surface prepared perpendicular to the natural surface showed mineral-rich bands at the prism margins in the outer enamel. Near the advancing front of the lesion, the prism junctions were widened and the prism cores sometimes hypermineralized. Natural lesions sectioned in the prism long axis showed features previously seen with other techniques, e.g., cross-striations and striae of Retzius, but in much greater detail. Mineral enrichment at the prism periphery in the lesion body and a widening of the prism junction at the advancing fronts of lesions in permanent teeth were most obvious. Calculations showed that with an accelerating voltage of 30 kV, the images reflected mineral density up to 4 microns beneath the surface. BE microscopy produces a high-resolution image of mineral loss or gain in carious enamel, with relatively easy sample preparation.

  17. Iodine Vapor Staining for Atomic Number Contrast in Backscattered Electron and X-ray Imaging

    PubMed Central

    Boyde, Alan; Mccorkell, Fergus A; Taylor, Graham K; Bomphrey, Richard J; Doube, Michael

    2014-01-01

    Iodine imparts strong contrast to objects imaged with electrons and X-rays due to its high atomic number (53), and is widely used in liquid form as a microscopic stain and clinical contrast agent. We have developed a simple technique which exploits elemental iodine's sublimation-deposition state-change equilibrium to vapor stain specimens with iodine gas. Specimens are enclosed in a gas-tight container along with a small mass of solid I2. The bottle is left at ambient laboratory conditions while staining proceeds until empirically determined completion (typically days to weeks). We demonstrate the utility of iodine vapor staining by applying it to resin-embedded tissue blocks and whole locusts and imaging them with backscattered electron scanning electron microscopy (BSE SEM) or X-ray microtomography (XMT). Contrast is comparable to that achieved with liquid staining but without the consequent tissue shrinkage, stain pooling, or uneven coverage artefacts associated with immersing the specimen in iodine solutions. Unmineralized tissue histology can be read in BSE SEM images with good discrimination between tissue components. Organs within the locust head are readily distinguished in XMT images with particularly useful contrast in the chitin exoskeleton, muscle and nerves. Here, we have used iodine vapor staining for two imaging modalities in frequent use in our laboratories and on the specimen types with which we work. It is likely to be equally convenient for a wide range of specimens, and for other modalities which generate contrast from electron- and photon-sample interactions, such as transmission electron microscopy and light microscopy. Microsc. Res. Tech. 77:1044–1051, 2014. © 2014 The Authors. Microscopy Research Technique published by Wiley Periodocals, Inc. PMID:25219801

  18. Beyond the Electrostatic Ionosphere: Dynamic Coupling of the Magnetosphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Lysak, R. L.; Song, Y.

    2017-12-01

    Many models of magnetospheric dynamics treat the ionosphere as a height-integrated slab in which the electric fields are electrostatic. However, in dynamic situations, the coupling between magnetosphere and ionosphere is achieved by the propagation of shear Alfvén waves. Hall effects lead to a coupling of shear Alfvén and fast mode waves, resulting in an inductive electric field and a compressional component of the magnetic field. It is in fact this compressional magnetic field that is largely responsible for the magnetic fields seen on the ground. A fully inductive ionosphere model is required to describe this situation. The shear Alfvén waves are affected by the strong gradient in the Alfvén speed above the ionosphere, setting up the ionospheric Alfvén resonator with wave periods in the 1-10 second range. These waves develop a parallel electric field on small scales that can produce a broadband acceleration of auroral electrons, which form the Alfvénic aurora. Since these electrons are relatively low in energy (hundreds of eV to a few keV), they produce auroral emissions as well as ionization at higher altitudes. Therefore, they can produce localized columns of ionization that lead to structuring in the auroral currents due to phase mixing or feedback interactions. This implies that the height-integrated description of the ionosphere is not appropriate in these situations. These considerations suggest that the Alfvénic aurora may, at least in some cases, act as a precursor to the development of a quasi-static auroral arc. The acceleration of electrons and ions produces a density cavity at higher altitudes that favors the formation of parallel electric fields. Furthermore, the precipitating electrons will produce secondary and backscattered electrons that provide a necessary population for the formation of double layers. These interactions strongly suggest that the simple electrostatic boundary condition often assumed is inadequate to describe auroral arc formation.

  19. SAR studies in the Yuma Desert, Arizona: Sand penetration, geology, and the detection of military ordnance debris

    USGS Publications Warehouse

    Schaber, G.G.

    1999-01-01

    Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also Compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).

  20. Electron imaging with an EBSD detector.

    PubMed

    Wright, Stuart I; Nowell, Matthew M; de Kloe, René; Camus, Patrick; Rampton, Travis

    2015-01-01

    Electron Backscatter Diffraction (EBSD) has proven to be a useful tool for characterizing the crystallographic orientation aspects of microstructures at length scales ranging from tens of nanometers to millimeters in the scanning electron microscope (SEM). With the advent of high-speed digital cameras for EBSD use, it has become practical to use the EBSD detector as an imaging device similar to a backscatter (or forward-scatter) detector. Using the EBSD detector in this manner enables images exhibiting topographic, atomic density and orientation contrast to be obtained at rates similar to slow scanning in the conventional SEM manner. The high-speed acquisition is achieved through extreme binning of the camera-enough to result in a 5 × 5 pixel pattern. At such high binning, the captured patterns are not suitable for indexing. However, no indexing is required for using the detector as an imaging device. Rather, a 5 × 5 array of images is formed by essentially using each pixel in the 5 × 5 pixel pattern as an individual scattered electron detector. The images can also be formed at traditional EBSD scanning rates by recording the image data during a scan or can also be formed through post-processing of patterns recorded at each point in the scan. Such images lend themselves to correlative analysis of image data with the usual orientation data provided by and with chemical data obtained simultaneously via X-Ray Energy Dispersive Spectroscopy (XEDS). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. First observations of the midlatitude evening anomaly using Super Dual Auroral Radar Network (SuperDARN) radars

    NASA Astrophysics Data System (ADS)

    de Larquier, S.; Ruohoniemi, J. M.; Baker, J. B. H.; Ravindran Varrier, N.; Lester, M.

    2011-10-01

    Under geomagnetically quiet conditions, the daytime midlatitude ionosphere is mainly influenced by solar radiation: typically, electron densities in the ionosphere peak around solar noon. Previous observations from the Millstone Hill incoherent scatter radar (ISR) have evidenced the presence of evening electron densities higher than daytime densities during the summer. The recent development of midlatitude Super Dual Auroral Radar Network (SuperDARN) radars over North America and Japan has revealed an evening enhancement in ground backscatter during the summer. SuperDARN observations are compared to data from the Millstone Hill ISR, confirming a direct relation between the observed evening enhancements in electron densities and ground backscatter. Statistics over a year of data from the Blackstone radar show that the enhancement occurs during sunset for a few hours from April to September. The evening enhancement observed by both SuperDARN and the Millstone Hill ISR is shown to be related to recent satellite observations reporting an enhancement in electron densities over a wide range of longitudes in the Northern Hemisphere midlatitude sector during summer time. Finally, global results from the International Reference Ionosphere (IRI) and the horizontal wind model (HWM07) are presented in relation with previously published experimental results and proposed mechanisms of the evening enhancement, namely, thermospheric horizontal winds and geomagnetic field configuration. It is shown that the IRI captures the features of the evening enhancement as observed by SuperDARN radars and satellites.

  2. Growth of ring ripple in a collisionless plasma in relativistic-ponderomotive regime and its effect on stimulated Raman backscattering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Priyanka; Purohit, Gunjan, E-mail: gunjan75@gmail.com; Gauniyal, Rakhi

    A theoretical and numerical study has been made of the propagation of a ring rippled laser beam in collisionless plasma with dominant relativistic ponderomotive nonlinearity and its effect on the excitation of electron plasma wave and stimulated Raman backscattering process. The growth of ring ripple, riding on an intense Gaussian laser beam in plasma has also been studied. A paraxial-ray and WKB approximation has been invoked to understand the nature of propagation of the ring rippled Gaussian laser beam in plasma, electron plasma wave and back reflectivity under the influence of both nonlinearities. The growth rate and focusing of amore » ring rippled beam is found to be considerably affected by the power of the main beam and the phase angle between the electric vectors of the main beam and the ring ripple. It has also been observed that the focusing is released by the coupling of relativistic and ponderomotive nonlinearities, which significantly affected the dynamics of the excitation of electron plasma wave and back reflectivity of stimulated Raman scattering (SRS). Due to the strong coupling between ring rippled laser beam and the excited electron plasma wave, back reflectivity of SRS is enhanced. It has been observed from the computational results that the effect of the increased intensity leads to suppression of SRS back reflectivity. The results have been presented for established laser and plasma parameters.« less

  3. A Study of Solar Flare Effects on Mid and High Latitude Radio Wave Propagation using SuperDARN.

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Chakraborty, S.; Baker, J. B.

    2017-12-01

    Over the Horizon (OTH) communication is strongly dependent on the state of the ionosphere, which is sensitive to solar X-ray flares. The Super Dual Auroral Radar Network (SuperDARN), whose working principle is dependent on trans-ionospheric radio communication, uses HF radio waves to remotely sense the ionosphere. The backscatter returns from the terrestrial surface (also known as ground-scatter) transit the ionosphere four times and simulate the operation of an HF communications link. SuperDARN backscatter signal properties are altered (strongly attenuated and changes apparent phase) during a sudden ionospheric disturbance following a solar flare, commonly known as Short-Wave Fadeout or SWF. During an SWF the number of SuperDARN backscatter echoes drops suddenly (≈1 min) and sharply, often to near zero, and recovers within 30 minutes to an hour. In this study HF propagation data (SuperDARN backscatter) obtained during SWF events are analyzed for the purpose of validating and improving the performance of HF absorption models, such as, Space Weather Prediction Center (SWPC) D-region Absorption model (DRAP) and CCMC physics based AbbyNormal model. We will also present preliminary results from a physics based model for the mid and high latitude ionospheric response to flare-driven space weather anomalies, which can be used to estimate different physical parameters of the ionosphere such as electron density, collision frequency, absorption coefficients, response time of D-region etc.

  4. Twinning in magnesium under dynamic loading

    NASA Astrophysics Data System (ADS)

    Dixit, Neha; Hazeli, Kavan; Ramesh, Kaliat T.

    2015-09-01

    Twinning is an important mode of deformation in magnesium (Mg) and its alloys at high strain rates. Twinning in this material leads to important effects such as mechanical anisotropy, texture evolution, tension-compression asymmetry, and sometimes non-Schmid effects. Extension twins in Mg can accommodate significant plastic deformation as they grow, and thus twinning affects the overall rate of plastic deformation. We use an experimental approach to study the deformation twinning mechanism under dynamic loading. We perform normal plate impact recovery experiments (with microsecond pulse durations) on pure polycrystalline Mg specimens. Estimates of average TB velocity under the known impact stress are obtained by characterization of twin sizes and aspect ratios developed within the target during the loading pulse. The measured average TB velocities in our experiments are of the order of several m s-1. These velocities are several orders of magnitude higher than those so far measured in Mg under quasi-static loading conditions. Electron back-scattered diffraction (EBSD) is then used to characterize the nature of the twins and the microstructural evolution. Detailed crystallographic analysis of the twins enables us to understand twin nucleation and growth of twin variants under dynamic loading.

  5. Liquid phase epitaxy of binary III–V nanocrystals in thin Si layers triggered by ion implantation and flash lamp annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wutzler, Rene, E-mail: r.wutzler@hzdr.de; Rebohle, Lars; Prucnal, Slawomir

    2015-05-07

    The integration of III–V compound semiconductors in Si is a crucial step towards faster and smaller devices in future technologies. In this work, we investigate the formation process of III–V compound semiconductor nanocrystals, namely, GaAs, GaSb, and InP, by ion implantation and sub-second flash lamp annealing in a SiO{sub 2}/Si/SiO{sub 2} layer stack on Si grown by plasma-enhanced chemical vapor deposition. Raman spectroscopy, Rutherford Backscattering spectrometry, and transmission electron microscopy were performed to identify the structural and optical properties of these structures. Raman spectra of the nanocomposites show typical phonon modes of the compound semiconductors. The formation process of themore » III–V compounds is found to be based on liquid phase epitaxy, and the model is extended to the case of an amorphous matrix without an epitaxial template from a Si substrate. It is shown that the particular segregation and diffusion coefficients of the implanted group-III and group-V ions in molten Si significantly determine the final appearance of the nanostructure and thus their suitability for potential applications.« less

  6. Welding Behavior of Free Machining Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.

    2000-07-24

    The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metalmore » at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.« less

  7. Optical, structural, and nuclear scientific studies of AlGaN with high Al composition

    NASA Astrophysics Data System (ADS)

    Lin, Tse Yang; Chung, Yee Ling; Li, Lin; Yao, Shude; Lee, Y. C.; Feng, Zhe Chuan; Ferguson, Ian T.; Lu, Weijie

    2010-08-01

    AlGaN epilayers with higher Al-compositions were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on (0001) sapphire. Trimethylgallium (TMGa), trimethylaluminium (TMAl) and NH3 were used as the source precursors for Ga, Al, and N, respectively. A 25 nm AlN nucleation layer was first grown at low-temperature of 590 °C at 300 Torr. Followed, AlxGa1-xN layers were grown at 1080 °C on low-temperature AlN nucleation layers. The heterostructures were characterized by a series of techniques, including x-ray diffraction (XRD), Rutherford backscattering (RBS), photoluminescence (PL), scanning electron microscopy (SEM) and Raman scattering. Precise Al compositions were determined through XRD, RBS, and SEM combined measurements. Room Temperature Raman Scattering spectra shows three major bands from AlGaN alloys, which are AlN-like, A1 longitudinal optical (LO) phonon modes, and E2 transverse optical (TO) band, respectively, plus several peak comes from the substrate. Raman spectral line shape analysis lead to an optical determination of the electrical property free carrier concentration of AlGaN. The optical properties of AlGaN with high Al composition were presented here.

  8. Collection efficiency and acceptance maps of electron detectors for understanding signal detection on modern scanning electron microscopy.

    PubMed

    Agemura, Toshihide; Sekiguchi, Takashi

    2018-02-01

    Collection efficiency and acceptance maps of typical detectors in modern scanning electron microscopes (SEMs) were investigated. Secondary and backscattered electron trajectories from a specimen to through-the-lens and under-the-lens detectors placed on an electron optical axis and an Everhart-Thornley detector mounted on a specimen chamber were simulated three-dimensionally. The acceptance maps were drawn as the relationship between the energy and angle of collected electrons under different working distances. The collection efficiency considering the detector sensitivity was also estimated for the various working distances. These data indicated that the acceptance maps and collection efficiency are keys to understand the detection mechanism and image contrast for each detector in the modern SEMs. Furthermore, the working distance is the dominant parameter because electron trajectories are drastically changed with the working distance.

  9. Occurrence and Distribution of Fe-0 Globules in Lunar Agglutinates

    NASA Technical Reports Server (NTRS)

    Basu, Abhijit; Wentworth, Susan J.; McKay, David S.

    2001-01-01

    High-resolution Backscattered Electron Imaging (BSE) of agglutinitic glass shows immiscible metallic Fe(o) globules (greater than 99% are less than 15 nm; greater than 50% are less than 50 nm) in agglutinitic melt defining flow-lines, occurring in clusters, and rimming clasts (approx. 5%). Additional information is contained in the original extended abstract.

  10. Digital image analysis to quantify carbide networks in ultrahigh carbon steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N., E-mail: ypicard@cmu.edu

    A method has been developed and demonstrated to quantify the degree of carbide network connectivity in ultrahigh carbon steels through digital image processing and analysis of experimental micrographs. It was shown that the network connectivity and carbon content can be correlated to toughness for various ultrahigh carbon steel specimens. The image analysis approach first involved segmenting the carbide network and pearlite matrix into binary contrast representations via a grayscale intensity thresholding operation. Next, the carbide network pixels were skeletonized and parceled into braches and nodes, allowing the determination of a connectivity index for the carbide network. Intermediate image processing stepsmore » to remove noise and fill voids in the network are also detailed. The connectivity indexes of scanning electron micrographs were consistent in both secondary and backscattered electron imaging modes, as well as across two different (50 × and 100 ×) magnifications. Results from ultrahigh carbon steels reported here along with other results from the literature generally showed lower connectivity indexes correlated with higher Charpy impact energy (toughness). A deviation from this trend was observed at higher connectivity indexes, consistent with a percolation threshold for crack propagation across the carbide network. - Highlights: • A method for carbide network analysis in steels is proposed and demonstrated. • ImageJ method extracts a network connectivity index from micrographs. • Connectivity index consistent in different imaging conditions and magnifications. • Impact energy may plateau when a critical network connectivity is exceeded.« less

  11. Characterizing the microbial colonization of a dolostone quarry: implications for stone biodeterioration and response to biocide treatments.

    PubMed

    Cámara, Beatriz; De los Ríos, Asuncion; Urizal, Marta; de Buergo, Mónica Alvarez; Varas, Maria Jose; Fort, Rafael; Ascaso, Carmen

    2011-08-01

    This study examines the microbial colonization of three fronts of an abandoned dolostone quarry (Redueña, Madrid, Spain) exposed to atmospheric conditions for different time periods since Roman times to the present. Through scanning electron microscopy in backscattered electron mode (SEM-BSE), endolithic colonization was predominantly detected in the most recently exposed front, while in the longer exposed quarry fronts, epilithic forms of growth were most often observed. These observations were confirmed by denaturing gradient gel electrophoresis (DGGE) analysis. Based on the distribution pattern of microbial colonization in the different quarry fronts, we then established a sequence of colonization events that took place over this long time frame. Bioalteration processes related to this sequential colonization were also identified. Characterizing these sequential processes can be useful for interpreting biodeterioration processes in historic dolostone monuments, especially those affecting constructions in the area of the Redueña stone quarry. In a second experimental stage, different biocide treatments were tested on this quarry rock to find the best way to avoid the microbial colonization effects identified. Through combined SEM-BSE/DGGE analysis, the efficacy of several biocides against the microorganisms inhabiting the dolostones was assessed after 4 and 16 months treatment. In general, all treatments were effective at reducing around 80% of the lichen cover, although effects on endolithic lithobiontic communities were dependent on how well the rock surface had been mechanically cleaned prior to treatment and gradually disappeared over time.

  12. Design, modeling and simulations of a Cabinet Safe System for a linear particle accelerator of intermediate-low energy by optimization of the beam optics

    NASA Astrophysics Data System (ADS)

    Maidana, Carlos Omar

    As part of an accelerator based Cargo Inspection System, studies were made to develop a Cabinet Safe System by Optimization of the Beam Optics of Microwave Linear Accelerators of the IAC-Varian series working on the S-band and standing wave pi/2 mode. Measurements, modeling and simulations of the main subsystems were done and a Multiple Solenoidal System was designed. This Cabinet Safe System based on a Multiple Solenoidal System minimizes the radiation field generated by the low efficiency of the microwave accelerators by optimizing the RF waveguide system and by also trapping secondaries generated in the accelerator head. These secondaries are generated mainly due to instabilities in the exit window region and particles backscattered from the target. The electron gun was also studied and software for its right mechanical design and for its optimization was developed as well. Besides the standard design method, an optimization of the injection process is accomplished by slightly modifying the gun configuration and by placing a solenoid on the waist position while avoiding threading the cathode with the magnetic flux generated. The Multiple Solenoidal System and the electron gun optimization are the backbone of a Cabinet Safe System that could be applied not only to the 25 MeV IAC-Varian microwave accelerators but, by extension, to machines of different manufacturers as well. Thus, they constitute the main topic of this dissertation.

  13. TH-E-BRE-09: TrueBeam Monte Carlo Absolute Dose Calculations Using Monitor Chamber Backscatter Simulations and Linac-Logged Target Current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A, Popescu I; Lobo, J; Sawkey, D

    2014-06-15

    Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulationsmore » in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the TrueBeam MC literature. This work has been partially funded by Varian Medical Systems.« less

  14. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  15. Linac head scatter factor for asymmetric radiation field

    NASA Astrophysics Data System (ADS)

    Soubra, Mazen Ahmed

    1997-11-01

    The head scatter factor, Sh is an important dosimetric quantity used in radiation therapy dose calculation. It is empirically determined and its field size dependence reflects changes in photon scatter from components in the linac treatment head. In this work a detailed study of the physical factors influencing the determination of Sh was performed with particular attention given to asymmetric field geometries. Ionization measurements for 6 and 18 MV photon beams were made to examine the factors which determine Sh. These include: phantom size and material, collimator backscatter, non-lateral electronic equilibrium (LEE) conditions, electron contamination, collimator-exchange, photon energy, flattening filter and off-axis distance (OAD). Results indicated that LEE is not required for Sh measurements if electron contamination is minimized. Brass caps or polystyrene miniphantoms can both be used in Sh measurements provided the phantom thickness is large enough to stop contaminant electrons. Backscatter radiation effects into the monitor chamber were found to be negligible for the Siemens linac. It was found that the presence and shape of the flattening filter had a significant effect on the empirically determined value of Sh was also shown to be a function of OAD, particularly for small fields. For fields larger than 12×12 cm2/ Sh was independent of OAD. A flattening filter mass model was introduced to explain qualitatively the above results. A detailed Monte Carlo simulation of the Siemens KD2 linac head in 6 MV mode was performed to investigate the sources of head scatter which contribute to the measured Sh. The simulated head components include the flattening filter, the electron beam stopper, the primary collimator, the photon monitor chamber and the secondary collimators. The simulations showed that the scatter from the head of the Siemens linac is a complex function of the head components. On the central axis the flattening filter played the dominant role in the contributing to scatter. However this role was significantly reduced off- axis and other head components, such as the electron beam stopper and the primary collimator, became more important. The role of the mirror and ion chamber was relatively minor. Scatter from the secondary collimators was shown to be a function of the filed size and the position of the collimators in the treatment head. They were also found to play a dual role, both as a scatter source and as an attenuator for scatter produced upstream in the linac head. A closed form model, based on the work of Yu and Slobada, was developed to estimate head scatter factors for on- and off-axis asymmetric fields. The model requires three parameters to fit the measured data. The first, a constant c, has a physical significance and is independent of energy and off-axis distance. The second, g, shows a small variation with the energy and OAD while the third parameter, the primary-to-scatter ratio, is strongly dependent on energy and off-axis distance. Comparison of Sh, predicted by the model, to measurement for a large range of symmetric and asymmetric fields showed excellent agreement. A maximum of 0.7% discrepancy was observed at 12 cm OAD.

  16. Non-invasive measurement of corneal hydration.

    PubMed

    March, W F; Bauer, N J

    2001-01-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noncontact assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea using a microscope objective lens (25x magnification, NA=0.5, f=10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array-detector for rapid spectral data acquisition over a range from 2,890 to 3,590 cm(-1). Raman spectra were recorded from the anterior 100 to 150 microm of the cornea over a period of time before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400 cm(-1) (OH-vibrational mode of water) and 2,940 cm(-1) (CH-vibrational mode of proteins) was used as a measure of corneal hydration. High signal-to-noise ratio (SNR 25) Raman spectra were obtained from the human corneas using 15 mJ of laser light energy. Qualitative changes in the hydration of the anterior-most part of the corneas could be observed as a result of the dehydrating agent. Confocal Raman spectroscopy could potentially be applied clinically as a noncontact tool for the assessment of corneal hydration in vivo.

  17. Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser

    NASA Astrophysics Data System (ADS)

    Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa

    2018-02-01

    A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.

  18. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  19. Plasmon modes of bilayer molybdenum disulfide: a density functional study

    NASA Astrophysics Data System (ADS)

    Torbatian, Z.; Asgari, R.

    2017-11-01

    We explore the collective electronic excitations of bilayer molybdenum disulfide (MoS2) using density functional theory together with random phase approximation. The many-body dielectric function and electron energy-loss spectra are calculated using an ab initio based model involving material-realistic physical properties. The electron energy-loss function of the bilayer MoS2 system is found to be sensitive to either electron or hole doping and this is due to the fact that the Kohn-Sham band dispersions are not symmetric for energies above and below the zero Fermi level. Three plasmon modes are predicted, a damped high-energy mode, one optical mode (in-phase mode) for which the plasmon dispersion exhibits \\sqrt q in the long wavelength limit originating from low-energy electron scattering and finally a highly damped acoustic mode (out-of-phase mode).

  20. Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte- and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany.

    PubMed

    Cadena, Edwin

    2016-01-01

    The Eocene (∾48 Ma) Messel Pit in Germany is a UNESCO World Heritage Site because of its exceptionally preserved fossils, including vertebrates, invertebrates, and plants. Messel fossil vertebrates are typically characterized by their articulated state, and in some cases the skin, hair, feathers, scales and stomach contents are also preserved. Despite the exceptional macroscopic preservation of Messel fossil vertebrates, the microstructural aspect of these fossils has been poorly explored. In particular, soft tissue structures such as hair or feathers have not been chemically analyzed, nor have bone microstructures. I report here the preservation and recovery of osteocyte-like and blood vessel-like microstructures from the bone of Messel Pit specimens, including the turtles Allaeochelys crassesculpta and Neochelys franzeni, the crocodile Diplocynodon darwini, and the pangolin Eomanis krebsi. I used a Field Emission Scanning Electron Microscope (FESEM) and a Phenom ProX desktop scanning electron microscope (LOT-QuantumDesign) equipped with a thermionic CeB6 source and a high sensitivity multi-mode backscatter electron (BSE) for microscopical and elemental characterization of these bone microstructures. Osteocyte-like and blood vessel-like microstructures are constituted by a thin layer (∾50 nm thickness), external and internal mottled texture with slightly marked striations. Circular to linear marks are common on the external surface of the osteocyte-like microstructures and are interpreted as microbial troughs. Iron (Fe) is the most abundant element found in the osteocyte-like and blood vessel-like microstructures, but not in the bone matrix or collagen fibril-like microstructures. The occurrence of well-preserved soft-tissue elements (at least their physical form) establishes a promising background for future studies on preservation of biomolecules (proteins or DNA) in Messel Pit fossils.

  1. A wide bandwidth free-electron laser with mode locking using current modulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kur, E.; Dunning, D. J.; McNeil, B. W. J.

    2011-01-20

    A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.

  2. Crystallography of Magnetite Plaquettes and their Significance as Asymmetric Catalysts for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.

  3. Nanoscale interfacial mixing of Au/Bi layers using MeV ion beams

    NASA Astrophysics Data System (ADS)

    Prusty, Sudakshina; Siva, V.; Ojha, S.; Kabiraj, D.; Sahoo, P. K.

    2017-05-01

    We have studied nanoscale mixing of thermally deposited double bilayer films of Au/Bi after irradiating them by 1.5 MeV Au2+ ions. Post irradiation effects on the morphology and elemental identification in these films are studied by Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). Glancing angle X-ray diffraction (GAXRD) of the samples indicate marginal changes in the irradiated samples due to combined effect of nuclear and electronic energy loss. The interfacial mixing is studied by Rutherford backscattering (RBS).

  4. Energy of auroral electrons and Z mode generation

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  5. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    NASA Astrophysics Data System (ADS)

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-01

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  6. Oriented Nucleation of both Ge-Fresnoite and Benitoite/BaGe4O9 during the Surface Crystallisation of Glass Studied by Electron Backscatter Diffraction

    PubMed Central

    Wisniewski, Wolfgang; Patschger, Marek; Murdzheva, Steliana; Thieme, Christian; Rüssel, Christian

    2016-01-01

    Two glasses of the compositions 2 BaO - TiO2 - 2.75 GeO2 and 2 BaO – TiO2 –3.67 GeO2 (also known as BTG55) are annealed at temperatures from 680 to 970 °C to induce surface crystallization. The resulting samples are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD). Ge-Fresnoite (Ba2TiGe2O8, BTG) is observed at the immediate surface of all samples and oriented nucleation is proven in both compositions. After a very fast kinetic selection, the crystal growth of BTG into the bulk occurs via highly oriented dendrites where the c-axes are oriented perpendicular to the surface. The growth of this oriented layer is finally blocked by dendritc BTG originating from bulk nucleation. The secondary phases BaTiGe3O9 (benitoite) and BaGe4O9 are also identified near the surface by XRD and localized by EBSD which additionally indicates orientation preferences for these phases. This behaviour is in contrast with previous reports from the Ba2TiSi2O8 as well as the Sr2TiSi2O8 systems. PMID:26853738

  7. Correlative multi-scale characterization of a fine grained Nd-Fe-B sintered magnet.

    PubMed

    Sasaki, T T; Ohkubo, T; Hono, K; Une, Y; Sagawa, M

    2013-09-01

    The Nd-rich phases in pressless processed fine grained Nd-Fe-B sintered magnets have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and three dimensional atom probe tomography (3DAP). The combination of the backscattered electron (BSE) and in-lens secondary electron (IL-SE) images in SEM led to an unambiguous identification of four types of Nd-rich phases, NdOx, Ia3 type phase, which is isostructural to Nd₂O₃, dhcp-Nd and Nd₁Fe₄B₄. In addition, the 3DAP analysis of thin Nd-rich grain boundary layer indicate that the coercivity has a close correlation with the chemistry of the grain boundary phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. SU-E-T-82: Comparison of Several Lumbar Intervertebral Fusion Titanium Cages with Respect to Their Backscattering Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Failing, T; Chofor, N; Poppinga, D

    Purpose: Investigating the backscatter dose factor with regards to structure and geometry of the surface material. Methods: The titanium cages used for this study representing both prototypes and well established products are made of a laser-sintered titanium alloy (AditusV GmbH, Berlin, Germany). A set of four radiochromic EBT3 films was used in a stacked geometry to measure the range and the magnitude of the expected surface dose enhancement due to the in comparison to water increased secondary electron release from the material. The measurement geometry and the small thickness of radiochromic EBT3 film allowed the dose measurement at distances ofmore » 0.1 mm, 0.9 mm, 1.7 mm and 2.5 mm from the probe surfaces. Water reference measurements were taken under equal conditions, in order to allow the calculation of the relative dose enhancement at the surface of a probe. Measurements were performed within a water phantom. An Epson Expression 10000 XL flatbed scanner was used for digitization. Results: Sintered titanium showed a dose enhancement factor of 1.22 at the surface of the material. The factor can be reduced to less than 1.10 by utilizing mesh structures. In both cases, the dose enhancement factor decreased to less than 1.03 at a distance of 1.7mm indicating the low energy of scattered electrons. Conclusion: Backscattering of titanium cages should be considered in treatment planning, especially when the cages are located close to organs at risk. While mesh structures were introduced to improve bone fusion with the implant structure, the potentially harmful surface dose enhancement is significantly reduced.« less

  9. Morphology and Chemical Composition of soot particles emitted by Wood-burning Cook-Stoves: a HRTEM, XPS and Elastic backscattering Studies.

    NASA Astrophysics Data System (ADS)

    Carabali-Sandoval, G. A., Sr.; Castro, T.; Peralta, O.; De la Cruz, W.; Días, J.; Amelines, O.; Rivera-Hernández, M.; Varela, A.; Muñoz-Muñoz, F.; Policroniades, R.; Murillo, G.; Moreno, E.

    2014-12-01

    The morphology, microstructure and the chemical composition on surface of soot particles were studied by using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and elastic backscattering spectrometry. In order to obtain freshly soot particles emitted by home-made wood-burning cook stoves, copper grids for Transmission Electron Microscope (TEM) were placed on the last two of an 8-stages MOUDI cascade impactor. The analysis of HRTEM micrographs revealed the nanostructure and the particle size of soot particles. The XPS survey spectra show a large carbon peak around 285 eV and the oxygen signal at 533 eV. Some differences observed in the carbon/oxygen (C/O) ratio of the particles probably depend on the combustion process efficiency of each cook-stove analyzed. The C-1s XPS spectra show an asymmetric broad peak and other with low intensity that corresponds to sp2 and sp3hybridization, which were fitted with a convolution using Gaussian functions. Elastic backscattering technique allows a chemical elemental analysis of samples and confirms the presence of C, O and Si observed by XPS. Additionally, the morphological properties of soot aggregates were analyzed calculating the border-based fractal dimension (Df). Particles exhibit complex shapes with high values of Df. Also, real-time absorption (σabs) and scattering (σsct) coefficients of fine (with aerodynamic diameter < 2.5 µm) soot particles were measured. The trend in σabs and σsct indicate that the cooking process has two important combustion stages which varied in its flaming strength, being vigorous in the first stage and soft in the second one.

  10. New low-dose 1-MeV cargo inspection system with backscatter imaging

    NASA Astrophysics Data System (ADS)

    Sapp, William W., Jr.; Rothschild, Peter J.; Schueller, Richard L.; Mishin, Andrey

    2000-12-01

    A new intermediate energy x-ray source is described which uses a cw electron linear accelerator created specifically for this application. This source has been installed in the hub of a hollow-spoked rotation wheel to form a scanning beam of x-rays. As cargo is transported through the inspection tunnel at speeds up to 6 inches per second it is raster-scanned by this beam to form digital images of the backscattered as well as the transmitted x-rays. The system will be described in detail, and sample images of a heavily loaded 8 foot wide ISO container will be presented. Environmental radiation due to the x-rays scattered from the cargo itself will be discussed in the context of the tradeoffs between penetration, spatial resolution, x-ray energy, and x-ray flux.

  11. Technique to separate lidar signal and sunlight.

    PubMed

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.

  12. Chapter 14: Electron Microscopy on Thin Films for Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie

    2016-07-22

    This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less

  13. Analysis of improvement in performance and design parameters for enhancing resolution in an atmospheric scanning electron microscope.

    PubMed

    Yoon, Yeo Hun; Kim, Seung Jae; Kim, Dong Hwan

    2015-12-01

    The scanning electron microscope is used in various fields to go beyond diffraction limits of the optical microscope. However, the electron pathway should be conducted in a vacuum so as not to scatter electrons. The pretreatment of the sample is needed for use in the vacuum. To directly observe large and fully hydrophilic samples without pretreatment, the atmospheric scanning electron microscope (ASEM) is needed. We developed an electron filter unit and an electron detector unit for implementation of the ASEM. The key of the electron filter unit is that electrons are transmitted while air molecules remain untransmitted through the unit. The electron detector unit collected the backscattered electrons. We conducted experiments using the selected materials with Havar foil, carbon film and SiN film. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1983-01-01

    The evolution of the lunar regolith under solar wind and micrometeorite bombardment is discussed as well as the size distribution of ultrafine iron in lunar soil. The most important characteristics of complex graphite, sulfide, arsenide, palladium, and platinum mineralization in a pegmatoid pyroxenite of the Stillwater Complex in Montana are examined. Oblique reflected light micrographs and backscattered electron SEM images of the graphite associations are included.

  15. Errors in quantitative backscattered electron analysis of bone standardized by energy-dispersive x-ray spectrometry.

    PubMed

    Vajda, E G; Skedros, J G; Bloebaum, R D

    1998-10-01

    Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methylmethacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.

  16. Two-dimensional strain-mapping by electron backscatter diffraction and confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gayle, Andrew J.; Friedman, Lawrence H.; Beams, Ryan; Bush, Brian G.; Gerbig, Yvonne B.; Michaels, Chris A.; Vaudin, Mark D.; Cook, Robert F.

    2017-11-01

    The strain field surrounding a spherical indentation in silicon is mapped in two dimensions (2-D) using electron backscatter diffraction (EBSD) cross-correlation and confocal Raman spectroscopy techniques. The 200 mN indentation created a 4 μm diameter residual contact impression in the silicon (001) surface. Maps about 50 μm × 50 μm area with 128 pixels × 128 pixels were generated in several hours, extending, by comparison, assessment of the accuracy of both techniques to mapping multiaxial strain states in 2-D. EBSD measurements showed a residual strain field dominated by in-surface normal and shear strains, with alternating tensile and compressive lobes extending about three to four indentation diameters from the contact and exhibiting two-fold symmetry. Raman measurements showed a residual Raman shift field, dominated by positive shifts, also extending about three to four indentation diameters from the contact but exhibiting four-fold symmetry. The 2-D EBSD results, in combination with a mechanical-spectroscopic analysis, were used to successfully predict the 2-D Raman shift map in scale, symmetry, and shift magnitude. Both techniques should be useful in enhancing the reliability of microelectromechanical systems (MEMS) through identification of the 2-D strain fields in MEMS devices.

  17. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE PAGES

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun; ...

    2015-02-11

    Here we report that the relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a functionmore » of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  18. In situ electron backscatter diffraction investigation of recrystallization in a copper wire.

    PubMed

    Brisset, François; Helbert, Anne-Laure; Baudin, Thierry

    2013-08-01

    The microstructural evolution of a cold drawn copper wire (reduction area of 38%) during primary recrystallization and grain growth was observed in situ by electron backscatter diffraction. Two thermal treatments were performed, and successive scans were acquired on samples undergoing heating from ambient temperature to a steady state of 200°C or 215°C. During a third in situ annealing, the temperature was continuously increased up to 600°C. Nuclei were observed to grow at the expense of the deformed microstructure. This growth was enhanced by the high stored energy difference between the nuclei and their neighbors (driving energy in recrystallization) and by the presence of high-angle grain boundaries of high mobility. In the early stages of growth, the nuclei twin and the newly created orientations continue to grow to the detriment of the strained copper. At high temperatures, the disappearance of some twins was evidenced by the migration of the incoherent twin boundaries. Thermal grooving of grain boundaries is observed at these high temperatures and affects the high mobile boundaries but tends to preserve the twin boundaries of lower energy. Thus, grooving may contribute to the twin vanishing.

  19. A Fully-Passive Wireless Microsystem for Recording of Neuropotentials using RF Backscattering Methods

    PubMed Central

    Xu, Wencheng; Shekhar, Sameer; Abbaspour-Tamijani, Abbas; Towe, Bruce C.; Miranda, Félix A.; Chae, Junseok

    2011-01-01

    The ability to safely monitor neuropotentials is essential in establishing methods to study the brain. Current research focuses on the wireless telemetry aspect of implantable sensors in order to make these devices ubiquitous and safe. Chronic implants necessitate superior reliability and durability of the integrated electronics. The power consumption of implanted electronics must also be limited to within several milliwatts to microwatts to minimize heat trauma in the human body. In order to address these severe requirements, we developed an entirely passive and wireless microsystem for recording neuropotentials. An external interrogator supplies a fundamental microwave carrier to the microsystem. The microsystem comprises varactors that perform nonlinear mixing of neuropotential and fundamental carrier signals. The varactors generate third-order mixing products that are wirelessly backscattered to the external interrogator where the original neuropotential signals are recovered. Performance of the neuro-recording microsystem was demonstrated by wireless recording of emulated and in vivo neuropotentials. The obtained results were wireless recovery of neuropotentials as low as approximately 500 microvolts peak-to-peak (μVpp) with a bandwidth of 10 Hz to 3 kHz (for emulated signals) and with 128 epoch signal averaging of repetitive signals (for in vivo signals). PMID:22267898

  20. On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction

    DOE PAGES

    Weaver, Jordan S.; Priddy, Matthew W.; McDowell, David L.; ...

    2016-09-01

    Here, spherical nanoindentation combined with electron back-scattered diffraction has been employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti of two different compositions (in two different titanium alloys). Data analyses protocols needed to reliably extract the desired properties of interest are extended and demonstrated in this paper. Specifically, the grain-scale mechanical response is extracted in the form of indentation stress-strain curves for commercially pure (CP-Ti) alpha-Ti and alloyed (Ti-64) titanium from measurements on polycrystalline samples. The results are compared with responses of single crystals and nanoindentation tests (hardness and modulus) from the literature, and the measuredmore » indentation moduli are validated using crystal-elastic finite element simulations. The results obtained in this study show that (i) it is possible to characterize reliably the elastic and plastic anisotropy of alpha-Ti (hcp) of varying alloying contents with spherical nanoindentation stress-strain curves, (ii) the indentation modulus of alpha-Ti-64 is 5–10% less than CP-Ti, and (iii) the indentation yield strength of alpha-Ti-64 is 50–80% higher than CP-Ti.« less

  1. The potential of materials analysis by electron rutherford backscattering as illustrated by a case study of mouse bones and related compounds.

    PubMed

    Vos, Maarten; Tökési, Károly; Benkö, Ilona

    2013-06-01

    Electron Rutherford backscattering (ERBS) is a new technique that could be developed into a tool for materials analysis. Here we try to establish a methodology for the use of ERBS for materials analysis of more complex samples using bone minerals as a test case. For this purpose, we also studied several reference samples containing Ca: calcium carbonate (CaCO(3)) and hydroxyapatite and mouse bone powder. A very good understanding of the spectra of CaCO(3) and hydroxyapatite was obtained. Quantitative interpretation of the bone spectrum is more challenging. A good fit of these spectra is only obtained with the same peak widths as used for the hydroxyapatite sample, if one allows for the presence of impurity atoms with a mass close to that of Na and Mg. Our conclusion is that a meaningful interpretation of spectra of more complex samples in terms of composition is indeed possible, but only if widths of the peaks contributing to the spectra are known. Knowledge of the peak widths can either be developed by the study of reference samples (as was done here) or potentially be derived from theory.

  2. A Dictionary Approach to Electron Backscatter Diffraction Indexing.

    PubMed

    Chen, Yu H; Park, Se Un; Wei, Dennis; Newstadt, Greg; Jackson, Michael A; Simmons, Jeff P; De Graef, Marc; Hero, Alfred O

    2015-06-01

    We propose a framework for indexing of grain and subgrain structures in electron backscatter diffraction patterns of polycrystalline materials. We discretize the domain of a dynamical forward model onto a dense grid of orientations, producing a dictionary of patterns. For each measured pattern, we identify the most similar patterns in the dictionary, and identify boundaries, detect anomalies, and index crystal orientations. The statistical distribution of these closest matches is used in an unsupervised binary decision tree (DT) classifier to identify grain boundaries and anomalous regions. The DT classifies a pattern as an anomaly if it has an abnormally low similarity to any pattern in the dictionary. It classifies a pixel as being near a grain boundary if the highly ranked patterns in the dictionary differ significantly over the pixel's neighborhood. Indexing is accomplished by computing the mean orientation of the closest matches to each pattern. The mean orientation is estimated using a maximum likelihood approach that models the orientation distribution as a mixture of Von Mises-Fisher distributions over the quaternionic three sphere. The proposed dictionary matching approach permits segmentation, anomaly detection, and indexing to be performed in a unified manner with the additional benefit of uncertainty quantification.

  3. An electron back-scattered diffraction study on the microstructure evolution of severely deformed aluminum AI6061 alloy

    NASA Astrophysics Data System (ADS)

    Vaseghi, M.; Karimi Taheri, A.; Kim, H. S.

    2014-08-01

    In this paper dynamic strain ageing behavior in an Al-Mg-Si alloy related to equal channel angular pressing (ECAP) was investigated. In order to examine the combined plastic deformation and ageing effects on microstructure evolutions and strengthening characteristics, the Al6061 alloy were subjected to phi=90° ECAP die for up to 4 passes via route Bc at high temperatures. For investigating the effects of ageing temperature and strain rate in ECAP, Vickers hardness tests were performed. The combination of the ECAP process with dynamic ageing at higher temperatures resulted in a significant increase in hardness. The microstructural evolution of the samples was studied using electron back-scattering diffraction (EBSD). The grains of Al6061 aluminum alloy were refined significantly at 100 and 150 °C with greater pass numbers and the distributions of grain size tended to be more uniform with pass number increasing. Frequency of sub-boundaries and low angle grain boundaries (LAGBs) increased at initial stage of deformation, and sub-boundaries and LAGBs evolved into highangle grain boundaries (HAGBs) with further deformation, which resulted in the high frequency of HAGBs in the alloy after ECAP 4 passes.

  4. Observation of Polar Mesosphere Summer Echoes using the northernmost MST radar at Eureka (80°N)

    NASA Astrophysics Data System (ADS)

    Swarnalingam, N.; Hocking, W.; Janches, D.; Drummond, J.

    2017-09-01

    We investigate long-term Polar Mesosphere Summer Echoes (PMSEs) observations conducted by the northernmost geographically located MST radar at Eureka (80°N, 86°W). While PMSEs are a well recognized summer phenomenon in the polar regions, previous calibrated studies at Resolute Bay and Eureka using 51.5 MHz and 33 MHz radars respectively, showed that PMSE backscatter signal strengths are relatively weak in the polar cap sites, compared to the auroral zone sites (Swarnalingam et al., 2009b; Singer et al., 2010). Complications arise with PMSEs in which the echo strength is controlled by the electrons, which are, in turn, influenced by heavily charged ice particles as well as the variability in the D-region plasma. In recent years, PMSE experiments were conducted inside the polar cap utilizing a 51 MHz radar located at Eureka. In this paper, we investigate calibrated observations, conducted during 2009-2015. Seasonal and diurnal variations of the backscatter signal strengths are discussed and compared to previously published results from the ALOMAR radar, which is a radar of similar design located in the auroral zone at Andenes, Norway (69°N, 16°E). At Eureka, while PMSEs are present with a daily occurrence rate which is comparable to the rate observed at the auroral zone site for at least two seasons, they show a great level of inter-annual variability. The occurrence rate for the strong echoes tends to be low. Furthermore, comparison of the absolute backscatter signal strengths at these two sites clearly indicates that the PMSE backscatter signal strength at Eureka is weak. Although this difference could be caused by several factors, we investigate the intensity of the neutral air turbulence at Eureka from the measurements of the Doppler spectrum of the PMSE backscatter signals. We found that the level of the turbulence intensity at Eureka is weak relative to previously reported results from three high latitude sites.

  5. Observation of Polar Mesosphere Summer Echoes using the Northernmost MST Radar at Eureka (80 deg N)

    NASA Technical Reports Server (NTRS)

    Swarnalingam, N.; Hocking, W.; Janches, D.; Drummond, J.

    2017-01-01

    We investigate long-term Polar Mesosphere Summer Echoes (PMSEs) observations conducted by the northern most geographically located MST radar at Eureka (80 deg N, 86 deg W). While PMSEs are a well recognized summer phenomenon in the polar regions, previous calibrated studies at Resolute Bay and Eureka using 51.5 MHz and33 MHz radars respectively, showed that PMSE backscatter signal strengths are relatively weak in the polar cap sites, compared to the auroral zone sites (Swarnalingam et al., 2009b; Singer et al., 2010). Complications arise with PMSEs in which the echo strength is controlled by the electrons, which are, in turn, influenced by heavily charged ice particles as well as the variability in the D-region plasma. In recent years, PMSE experiments were conducted inside the polar cap utilizing a 51 MHz radar located at Eureka. In this paper, we investigate calibrated observations, conducted during 2009-2015. Seasonal and diurnal variations of the backscatter signal strengths are discussed and compared to previously published results from the ALOMAR radar, which is a radar of similar design located in the auroral zone at Andenes, Norway (69 deg N, 16 deg E). At Eureka, while PMSEs are present with a daily occurrence rate which is comparable to the rate observed at the auroral zone site for at least two seasons, they show a great level of inter-annual variability. The occurrence rate for the strong echoes tends to be low. Furthermore, comparison of the absolute backscatter signal strengths at these two sites clearly indicates that the PMSE backscatter signal strength at Eureka is weak. Although this difference could be caused by several factors, we investigate the intensity of the neutral air turbulence at Eureka from the measurements of the Doppler spectrum of the PMSE backscatter signals. We found that the level of the turbulence intensity at Eureka is weak relative to previously reported results from three high latitude sites.

  6. Development of inorganic resists for electron beam lithography: Novel materials and simulations

    NASA Astrophysics Data System (ADS)

    Jeyakumar, Augustin

    Electron beam lithography is gaining widespread utilization as the semiconductor industry progresses towards both advanced optical and non-optical lithographic technologies for high resolution patterning. The current resist technologies are based on organic systems that are imaged most commonly through chain scission, networking, or a chemically amplified polarity change in the material. Alternative resists based on inorganic systems were developed and characterized in this research for high resolution electron beam lithography and their interactions with incident electrons were investigated using Monte Carlo simulations. A novel inorganic resist imaging scheme was developed using metal-organic precursors which decompose to form metal oxides upon electron beam irradiation that can serve as inorganic hard masks for hybrid bilayer inorganic-organic imaging systems and also as directly patternable high resolution metal oxide structures. The electron beam imaging properties of these metal-organic materials were correlated to the precursor structure by studying effects such as interactions between high atomic number species and the incident electrons. Optimal single and multicomponent precursors were designed for utilization as viable inorganic resist materials for sub-50nm patterning in electron beam lithography. The electron beam imaging characteristics of the most widely used inorganic resist material, hydrogen silsesquioxane (HSQ), was also enhanced using a dual processing imaging approach with thermal curing as well as a sensitizer catalyzed imaging approach. The interaction between incident electrons and the high atomic number species contained in these inorganic resists was also studied using Monte Carlo simulations. The resolution attainable using inorganic systems as compared to organic systems can be greater for accelerating voltages greater than 50 keV due to minimized lateral scattering in the high density inorganic systems. The effects of loading nanoparticles in an electron beam resist was also investigated using a newly developed hybrid Monte Carlo approach that accounts for multiple components in a solid film. The resolution of the nanocomposite resist process was found to degrade with increasing nanoparticle loading. Finally, the electron beam patterning of self-assembled monolayers, which were found to primarily utilize backscattered electrons from the high atomic number substrate materials to form images, was also investigated and characterized. It was found that backscattered electrons limit the resolution attainable at low incident electron energies.

  7. ITER Plasma at Electron Cyclotron Frequency Domain: Stimulated Raman Scattering off Gould-Trivelpiece Modes and Generation of Suprathermal Electrons and Energetic Ions

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2011-04-01

    Stimulated Raman scattering in the electron cyclotron frequency range of the X-Mode and O-Mode driver with the ITER plasma leads to the ``tail heating'' via the generation of suprathermal electrons and energetic ions. The scattering off Trivelpiece-Gould (T-G) modes is studied for the gyrotron frequency of 170GHz; X-Mode and O-Mode power of 24 MW CW; on-axis B-field of 10T. The synergy between the two-plasmon decay and Raman scattering is analyzed in reference to the bulk plasma heating. Supported in part by Nikola TESLA Labs, La Jolla, CA

  8. Experimental investigation of mode transitions in asymmetric capacitively coupled radio-frequency Ne and CF4 plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Gang-Hu; Liu, Yong-Xin; Bai, Li-Shui; Zhao, Kai; Wang, You-Nian

    2018-02-01

    The dependence of the electron density and the emission intensity on external parameters during the transitions of the electron power absorption mode is experimentally studied in asymmetric electropositive (neon) and electronegative (CF4) capacitively coupled radio-frequency plasmas. The spatio-temporal distribution of the emission intensity is measured with phase resolved optical emission spectroscopy and the electron density at the discharge center is measured by utilizing a floating hairpin probe. In neon discharge, the emission intensity increases almost linearly with the rf voltage at all driving frequencies covered here, while the variation of the electron density with the rf voltage behaves differently at different driving frequencies. In particular, the electron density increases linearly with the rf voltage at high driving frequencies, while at low driving frequencies the electron density increases slowly at the low-voltage side and, however, grows rapidly, when the rf voltage is higher than a certain value, indicating a transition from α to γ mode. The rf voltage, at which the mode transition occurs, increases with the decrease of the driving frequency/the working pressure. By contrast, in CF4 discharge, three different electron power absorption modes can be observed and the electron density and emission intensity do not exhibit a simple dependence on the rf voltage. In particular, the electron density exhibits a minimum at a certain rf voltage when the electron power absorption mode is switching from drift-ambipolar to the α/γ mode. A minimum can also be found in the emission intensity at a higher rf voltage when a discharge is switching into the γ mode.

  9. Few-mode fiber based Raman distributed temperature sensing.

    PubMed

    Wang, Meng; Wu, Hao; Tang, Ming; Zhao, Zhiyong; Dang, Yunli; Zhao, Can; Liao, Ruolin; Chen, Wen; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-06

    We proposed and experimentally demonstrated a few mode fiber (FMF) based Raman distributed temperature sensor (RDTS) to extend the sensing distance with enhanced signal-to-noise ratio (SNR) of backscattered anti-Stokes spontaneous Raman scattering. Operating in the quasi-single mode (QSM) with efficient fundamental mode excitement, the FMF allows much larger input pump power before the onset of stimulated Raman scattering compared with the standard single mode fiber (SSMF) and mitigates the detrimental differential mode group delay (DMGD) existing in the conventional multimode fiber (MMF) based RDTS system. Comprehensive theoretical analysis has been conducted to reveal the benefits of RDTS brought by QSM operated FMFs with the consideration of geometric/optical parameters of different FMFs. The measurement uncertainty of FMF based scheme has also been evaluated. Among fibers being investigated and compared (SSMF, 2-mode and 4-mode FMFs, respectively), although an ideal 4-mode FMF based RDTS has the largest SNR enhancement in principle, real fabrication imperfections and larger splicing loss degrade its performance. While the 2-mode FMF based system outperforms in longer distance measurement, which agrees well with the theoretical calculations considering real experimental parameters. Using the conventional RDTS hardware, a 30-ns single pulse at 1550nm has been injected as the pump; the obtained temperature resolutions at 20km distance are estimated to be about 10°C, 7°C and 6°C for the SSMF, 4-mode and 2-mode FMFs, respectively. About 4°C improvement over SSMF on temperature resolution at the fiber end with 3m spatial resolution within 80s measuring time over 20km 2-mode FMFs have been achieved.

  10. Optical memory effect from polarized Laguerre-Gaussian light beam in light-scattering turbid media

    NASA Astrophysics Data System (ADS)

    Shumyatsky, Pavel; Milione, Giovanni; Alfano, Robert R.

    2014-06-01

    Propagation effects of polarized Laguerre-Gaussian light with different orbital angular momentum (L) in turbid media are described. The optical memory effect in scattering media consisting of small and large size (compared to the wavelength) scatterers is investigated for scattered polarized light. Imaging using polarized laser modes with a varying orbital strength L-parameter was performed. The backscattered image quality (contrast) was enhanced by more than an order of magnitude using circularly polarized light when the concentration of scatterers was close to invisibility of the object.

  11. A Fully Implantable, NFC Enabled, Continuous Interstitial Glucose Monitor

    PubMed Central

    Anabtawi, Nijad; Freeman, Sabrina; Ferzli, Rony

    2017-01-01

    This work presents an integrated system-on-chip (SoC) that forms the core of a long-term, fully implantable, battery assisted, passive continuous glucose monitor. It integrates an amperometric glucose sensor interface, a near field communication (NFC) wireless front-end and a fully digital switched mode power management unit for supply regulation and on board battery charging. It uses 13.56 MHz (ISM) band to harvest energy and backscatter data to an NFC reader. System was implemented in 14nm CMOS technology and validated with post layout simulations. PMID:28702512

  12. A Fully Implantable, NFC Enabled, Continuous Interstitial Glucose Monitor.

    PubMed

    Anabtawi, Nijad; Freeman, Sabrina; Ferzli, Rony

    2016-02-01

    This work presents an integrated system-on-chip (SoC) that forms the core of a long-term, fully implantable, battery assisted, passive continuous glucose monitor. It integrates an amperometric glucose sensor interface, a near field communication (NFC) wireless front-end and a fully digital switched mode power management unit for supply regulation and on board battery charging. It uses 13.56 MHz (ISM) band to harvest energy and backscatter data to an NFC reader. System was implemented in 14nm CMOS technology and validated with post layout simulations.

  13. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Fibreoptic distributed temperature sensor with spectral filtration by directional fibre couplers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. G.; Babin, Sergei A.; Shelemba, Ivan S.

    2009-11-01

    We demonstrate a Raman-based all-fibre temperature sensor utilising a pulsed erbium fibre laser. The sensor is made of a standard single-mode telecom fibre, SMF-28, and includes a number of directional couplers as band-pass filters. The temperature profile along a 7-km fibreoptic line is measured with an accuracy of 2oC and a spatial resolution of 10 m. In data processing, we take into account the difference in attenuation between the spectral components of the backscatter signal.

  14. Multiplexed electronically programmable multimode ionization detector for chromatography

    DOEpatents

    Wise, M.B.; Buchanan, M.V.

    1988-05-19

    Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electronically programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity. 6 figs.

  15. Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swamy, Aditya K.; Ganesh, R., E-mail: ganesh@ipr.res.in; Brunner, S.

    2015-07-15

    Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instabilitymore » is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.« less

  16. Skeletal growth phases of the cold-water coral Lophelia pertusa shown by scanning electron microscope and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Mouchi, Vincent; Vonlanthen, Pierre; Verrecchia, Eric P.; Crowley, Quentin G.

    2016-04-01

    Lophelia pertusa is a cold-water coral, which may form reefs by the association of multiple coralites within which a polyp lives. Each individual polyp builds an aragonite skeleton by an initial phase of early mineralization (traditionally referred to as centres of calcification) from which aragonite fibres grow in thickening deposits. The skeleton wall features successive optically opaque and translucent bands previously attributed to different regimes of growth as either uniform in crystal orientation (translucent bands) or with a chaotic organization (opaque bands). The processes involved in any organizational changes are still unknown. Microlayers in the coral wall, which represent separate periods of skeletal growth, have been recently identified and described. These growth patterns are readily visible under scanning electron microscope (SEM) after etching in dilute formic acid, but they do not necessarily form continuously visible structures. Here we present high quality SEM images and electron backscatter diffraction (EBSD) maps to study aragonite fibre orientation across the wall of L. pertusa. Both microlayers and opaque and translucent bands are compared to the crystallographic orientation of the aragonite fibres. EBSD maps and SEM images indicate that aragonite fibres do not exhibit a chaotic orientation, even in opaque bands. The absence of continuity of microlayers is partially explained by an association of multiple crystallographic preferred orientations of aragonite fibres. In the case of L. pertusa, careful textural characterisation is necessary prior to elemental or isotope analysis in order to select a skeletal transect representing a linear and continuous time period.

  17. Mapping Near-Surface Salinization Using Long-wavelength AIRSAR

    NASA Technical Reports Server (NTRS)

    Paine, Jeffery G.

    2003-01-01

    In May 1999, NASA's Jet Propulsion Laboratory acquired airborne synthetic aperture radar (AIRSAR) data over the Hatchel and Montague Test Sites in Texas. We analyzed P- and L-band polarimetric radar data from these AIRSAR missions to assess whether AIRSAR could be used as a rapid and remote platform for screening large areas at risk for near-surface soil and water salinization. Ongoing geological, geophysical, and hydrological studies at the Hatchel Test Site in Runnels County and the Montague Test Site in Montague County have demonstrated the utility of high-resolution airborne electromagnetic (EM) induction in mapping electrical conductivity changes that accompany shallow natural and oil-field related salinization at these sites in the Colorado and Red River basins. We compared AIRSAR and airborne EM data quantitatively by (1) selecting representative flight lines from airborne EM surveys of the Hatchel and Montague sites, (2) extracting measurement locations and apparent conductivities at the highest available EM frequency, (3) identifying and extracting all P- and L-band backscatter intensities for all locations within 5 m of an airborne EM measurement, and (4) examining the spatial and magnitude relationships between apparent conductivity and all radar polarization and polarization-ratio combinations. For both test sites, backscatter intensity in all individual P- and L-band polarizations was slightly negatively correlated with apparent conductivity. In most modes this was manifested as a decrease in the range and magnitude of backscatter intensity as apparent conductivity increased. Select single-band and cross-band polarization ratios exhibited somewhat higher correlation with apparent conductivity by partly diminishing the dominance of the vegetation contribution to V backscatter intensity. The highest correlation with conductivity was obtained using the L-band vertical- to cross-polarization ratio, the P-band vertical- to L-band cross-polarization ratio, and the P-band vertical-to cross-polarization ratio. These correlations were higher for the more arid (and less electrically conductive) Hatchel Test Site than they were for the Montague Test Site.

  18. Effects of different artificial ageing methods on the degradation of adhesive-dentine interfaces.

    PubMed

    Deng, Donglai; Yang, Hongye; Guo, Jingmei; Chen, Xiaohui; Zhang, Weiping; Huang, Cui

    2014-12-01

    To compare the effects of four commonly used artificial ageing methods (water storage, thermocycling, NaOCl storage and pH cycling) on the degradation of adhesive-dentine interfaces. Fifty molars were sectioned parallel to the occlusal plane, polished and randomly divided into two adhesive groups: An etch-and-rinse adhesive Adper SingleBond 2 and a self-etch adhesive G-Bond. After the composite built up, the specimens from each adhesive group were sectioned into beams, which were then assigned to one of the following groups: Group 1 (control), 24h of water storage; Group 2, 6 months of water storage; Group 3, 10,000 runs of thermocycling; Group 4, 1h of 10% NaOCl storage; and Group 5, 15 runs of pH cycling. The microtensile bond strengths were then tested. The failure modes were classified with a stereomicroscope and representative interface was analyzed with a field-emission scanning electron microscopy (FESEM). Nanoleakage expression was evaluated through FESEM in the backscattered mode. The four artificial ageing methods decreased the bonding strength to nearly 50% and increased the nanoleakage expression of both adhesive systems compared with the control treatment. Adhesive failures were the predominant fracture modes in all groups. However, differences in detailed morphology were observed among the different groups. Water storage, thermocycling, NaOCl storage and pH cycling could obtain similar degradation effectiveness through appropriate parameter selection. Each in vitro artificial ageing method had its own mechanisms, characteristics and application scope for degrading the adhesive-dentin interfaces. Water storage is simple, low-cost but time-consuming; thermocycling lacks of a standard agreement; NaOCl storage is time-saving but mainly degrades the organic phase; pH cycling can resemble cariogenic condition but needs further studies. Researchers focusing on bonding durability studies should be deliberate in selecting an appropriate ageing model based on the differences of test material, purpose and time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A note on extracting electronic stopping from energy spectra of backscattered slow ions applying Bragg's rule

    NASA Astrophysics Data System (ADS)

    Bruckner, B.; Roth, D.; Goebl, D.; Bauer, P.; Primetzhofer, D.

    2018-05-01

    Electronic stopping measurements in chemically reactive targets, e.g., transition and rare earth metals are challenging. These metals often contain low Z impurities, which contribute to electronic stopping. In this article, we present two ways how one can correct for the presence of impurities in the evaluation of proton and He stopping in Ni for primary energies between 1 and 100 keV, either considering or ignoring the contribution of the low Z impurities to multiple scattering. We find, that for protons either method leads to concordant results, but for heavier projectiles, e.g. He ions, the influence on multiple scattering must not be neglected.

  20. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    NASA Astrophysics Data System (ADS)

    Haque, Q.; Zakir, U.; Qamar, A.

    2015-12-01

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

Top