Sample records for backscattered light intensity

  1. Observation of coherent backscattering of light in ultracold ^85Rb

    NASA Astrophysics Data System (ADS)

    Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2002-05-01

    We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and our measurements of atomic coherent backscattering. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider scattering orders up to 8 and a Gaussian atom distribution in the MOT. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes.

  2. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    DOEpatents

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  3. The angular distribution of diffusely backscattered light

    NASA Astrophysics Data System (ADS)

    Vera, M. U.; Durian, D. J.

    1997-03-01

    The diffusion approximation predicts the angular distribution of light diffusely transmitted through an opaque slab to depend only on boundary reflectivity, independent of scattering anisotropy, and this has been verified by experiment(M.U. Vera and D.J. Durian, Phys. Rev. E 53) 3215 (1996). Here, by contrast, we demonstrate that the angular distribution of diffusely backscattered light depends on scattering anisotropy as well as boundary reflectivity. To model this observation scattering anisotropy is added to the diffusion approximation by a discontinuity in the photon concentration at the source point that is proportional to the average cosine of the scattering angle. We compare the resulting predictions with random walk simulations and with measurements of diffusely backscattered intensity versus angle for glass frits and aqueous suspensions of polystyrene spheres held in air or immersed in a water bath. Increasing anisotropy and boundary reflectivity each tend to flatten the predicted distributions, and for different combinations of anisotropy and reflectivity the agreement between data and predictions ranges from qualitatively to quantitatively good.

  4. Infrared reflectometry of skin: Analysis of backscattered light from different skin layers

    NASA Astrophysics Data System (ADS)

    Pleitez, Miguel A.; Hertzberg, Otto; Bauer, Alexander; Lieblein, Tobias; Glasmacher, Mathias; Tholl, Hans; Mäntele, Werner

    2017-09-01

    We have recently reported infrared spectroscopy of human skin in vivo using quantum cascade laser excitation and photoacoustic or photothermal detection for non-invasive glucose measurement . Here, we analyze the IR light diffusely reflected from skin layers for spectral contributions of glucose. Excitation of human skin by an external cavity tunable quantum cascade laser in the spectral region from 1000 to 1245 cm- 1, where glucose exhibits a fingerprint absorption, yields reflectance spectra with some contributions from glucose molecules. A simple three-layer model of skin was used to calculate the scattering intensities from the surface and from shallow and deeper layers using the Boltzmann radiation transfer equation. Backscattering of light at wavelengths around 10 μm from the living skin occurs mostly from the Stratum corneum top layers and the shallow layers of the living epidermis. The analysis of the polarization of the backscattered light confirms this calculation. Polarization is essentially unchanged; only a very small fraction (< 3%) is depolarized at 90° with respect to the laser polarization set at 0°. Based on these findings, we propose that the predominant part of the backscattered light is due to specular reflectance and to scattering from layers close to the surface. Diffusely reflected light from deeper layers undergoing one or more scattering processes would appear with significantly altered polarization. We thus conclude that a non-invasive glucose measurement based on backscattering of IR light from skin would have the drawback that only shallow layers containing some glucose at concentrations only weakly related to blood glucose are monitored.

  5. Effects of backscatter of brief high intensity light on physiological responses of instrument-rated pilots and non-pilots.

    DOT National Transportation Integrated Search

    1972-03-01

    Thirty-nine human subjects were exposed to reptitive backscatter light stimulation (off a white wall or fog) from a Grimes capacitance discharge airplane anticollision light flashing at 1.27 Hertz. Both tonic (light stimulus absent) and phasic (light...

  6. Dynamic coherent backscattering mirror

    NASA Astrophysics Data System (ADS)

    Zeylikovich, I.; Xu, M.

    2016-02-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  7. Coherent backscattering of light by an inhomogeneous cloud of cold atoms

    NASA Astrophysics Data System (ADS)

    Labeyrie, Guillaume; Delande, Dominique; Müller, Cord A.; Miniatura, Christian; Kaiser, Robin

    2003-03-01

    When a quasiresonant laser beam illuminates an optically thick cloud of laser-cooled rubidium atoms, the average diffuse intensity reflected off the sample is enhanced in a narrow angular range around the direction of exact backscattering. This phenomenon is known as coherent backscattering (CBS). By detuning the laser from resonance, we are able to modify the light scattering mean-free path inside the sample and we record accordingly the variations of the CBS cone shape. We then compare the experimental data with theoretical calculations and Monte Carlo simulations including the effect of the light polarization and of the internal structure of the atoms. We confirm that the internal structure strongly affects the enhancement factor of the cone and we show that the unusual shape of the atomic medium—approximately a spherically-symmetric, Gaussian density profile—strongly affects the width and shape of the cone.

  8. Window flaw detection by backscatter lighting

    NASA Technical Reports Server (NTRS)

    Crockett, L. K.; Minton, F. R.

    1978-01-01

    Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.

  9. Low-coherence enhanced backscattering of light: characteristics and applications for colon cancer screening

    NASA Astrophysics Data System (ADS)

    Kim, Young L.; Pradhan, Prabhakar; Turzhitsky, Vladimir M.; Subramanian, Hariharan; Liu, Yang; Wali, Ramesh K.; Roy, Hemant K.; Backman, Vadim

    2007-02-01

    The phenomenon of enhanced backscattering (EBS) of light, also known as coherent backscattering (CBS) of light, is a spectacular manifestation of self-interference effects in elastic light scattering, which gives rise to an enhanced scattered intensity in the backward direction. Although EBS has been the object of intensive investigation in non-biological media over the last two decades, there have been only a few attempts to explore EBS for tissue characterization and diagnosis. We have recently made progress in the EBS measurements of biological tissue by taking advantage of lowcoherence (or partially coherent) illumination, which is referred to as low-coherence EBS (LEBS) of light. LEBS possess novel and intriguing properties such as speckle reduction, self-averaging effect, broadening of the EBS width, depth-selectivity, double scattering, and circular polarization memory effect. After we review the current state of research on LEBS, we discuss how these characteristics apply for early cancer detection, especially in colorectal cancer (CRC), which is the second leading cause of cancer mortality in the United States. Although colonoscopy remains the gold standard for CRC screening, resource constraints and potential complications make it impractical to perform colonoscopy on the entire population at risk (age > 50). Thus, identifying patients who are most likely to benefit from colonoscopy is of paramount importance. We demonstrate that LEBS measurements in easily accessible colonoscopically normal mucosa (e.g., in the rectum of the colon) can be used for predicting the risk of CRC, and thus LEBS has the potential to serve as accurate markers of the risk of neoplasia elsewhere in the colon.

  10. Light backscatter fiber optic sensor: a new tool for predicting the stability of pork emulsions containing antioxidative potato protein hydrolysate.

    PubMed

    Nieto, Gema; Xiong, Youling L; Payne, Fred; Castillo, Manuel

    2015-02-01

    The objective of this study was to determine whether light backscatter response from fresh pork meat emulsions is correlated to final product stability indices. A specially designed fiber optic measurement system was used in combination with a miniature fiber optic spectrometer to determine the intensity of light backscatter within the wavelength range 300-1100 nm (UV/VIS/NIR) at different radial distances (2, 2.5 and 3mm) with respect to the light source in pork meat emulsions with two fat levels (15%, 30%) and two levels (0, 2.5%) of the natural antioxidant hydrolyzed potato protein (HPP). Textural parameters (hardness, deformability, cohesiveness and breaking force), cooking loss, TBARS (1, 2, 3, and 7 days of storage at 4 °C) and CIELAB color coordinates of cooked emulsions were measured. The light backscatter was directly correlated with cooking losses, color, breaking force and TBARS. The optical configuration proposed would compensate for the emulsion heterogeneity, maximizing the existing correlation between the optical signal and the emulsion quality metrics.

  11. High Intensity Lights

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Xenon arc lamps developed during the Apollo program by Streamlight, Inc. are the basis for commercial flashlights and emergency handlights. These are some of the brightest portable lights made. They throw a light some 50 times brighter than automobile high beams and are primarily used by police and military. The light penetrates fog and smoke and returns less back-scatter light. They are operated on portable power packs as boat and auto batteries. An infrared model produces totally invisible light for covert surveillance.

  12. Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwabara, H.; Mori, Y.; Kitagawa, Y.

    2013-08-28

    Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects hidden in aluminium containers. Coincident measurements using primary X-rays enable differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals the shapes of the objects, while their material composition can be identified from the modification methods of the energy spectra of backscattered X-ray beams. This achievement is an important step toward more effective homeland security.

  13. Fiber optic backscatter spectroscopic sensor to monitor enamel demineralization and remineralization in vitro

    PubMed Central

    Kishen, Anil; Shrestha, Annie; Rafique, Adeela

    2008-01-01

    In this study, a Fiber Optic Backscatter Spectroscopic Sensor (FOBSS) is used to monitor demineralization and remineralization induced changes in the enamel. A bifurcated fiber optic backscatter probe connected to a visible light source and a high resolution spectrophotometer was used to acquire the backscatter light spectrum from the tooth surface. The experiments were conducted in two parts. In Part 1, experiments were carried out using fiber optic backscatter spectroscopy on (1) sound enamel and dentine sections and (2) sound tooth specimens subjected to demineralization and remineralization. In Part 2, polarization microscopy was conducted to examine the depth of demineralization in tooth specimens. The enamel and dentine specimens from the Part-1 experiments showed distinct backscatter spectra. The spectrum obtained from the enamel-dentine combination and the spectrum generated from the average of the enamel and dentine spectral values were closely similar and showed characteristics of dentine. The experiments in Part 2 showed that demineralization and remineralization processes induced a linear decrease and linear increase in the backscatter light intensity respectively. A negative correlation between the decrease in the backscatter light intensity during demineralization and the depth of demineralization determined using the polarization microscopy was calculated to be p = -0.994. This in vitro experiment highlights the potential benefit of using FOBSS to detect demineralization and remineralization of enamel. PMID:20142887

  14. The use of multibeam backscatter intensity data as a tool for mapping glacial deposits in the Central North Sea, UK

    NASA Astrophysics Data System (ADS)

    Stewart, Heather; Bradwell, Tom

    2014-05-01

    Multibeam backscatter intensity data acquired offshore eastern Scotland and north-eastern England have been used to map drumlin fields, large arcuate moraine ridges, smaller scale moraine ridges, and incised channels on the sea floor. The study area includes the catchments of the previously proposed, but only partly mapped, Strathmore, Forth-Tay, and Tweed palaeo-ice streams. The ice sheet glacial landsystem is extremely well preserved on the sea bed and comprehensive mapping of the seafloor geomorphology has been undertaken. The authors demonstrate the value in utilising not only digital terrain models (both NEXTMap and multibeam bathymetry derived) in undertaking geomorphological mapping, but also examining the backscatter intensity data that is often overlooked. Backscatter intensity maps were generated using FM Geocoder by the British Geological Survey. FM Geocoder corrects the backscatter intensities registered by the multibeam echosounder system, and then geometrically corrects and positions each acoustic sample in a backscatter mosaic. The backscatter intensity data were gridded at the best resolution per dataset (between 2 and 5 m). The strength of the backscattering is dependent upon sediment type, grain size, survey conditions, sea-bed roughness, compaction and slope. A combination of manual interpretation and semi-automated classification of the backscatter intensity data (a predictive method for mapping variations in surficial sea-bed sediments) has been undertaken in the study area. The combination of the two methodologies has produced a robust glacial geomorphological map for the study area. Four separate drumlin fields have been mapped in the study area indicative of fast-flowing and persistent ice-sheet flow configurations. A number of individual drumlins are also identified located outside the fields. The drumlins show as areas of high backscatter intensity compared to the surrounding sea bed, indicating the drumlins comprise mixed sediments of

  15. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets

    NASA Astrophysics Data System (ADS)

    Li, Xu; Chen, Zhigang; Taflove, Allen; Backman, Vadim

    2005-01-01

    We report the phenomenon of ultra-enhanced backscattering of visible light by nanoparticles facilitated by the 3-D photonic nanojet a sub-diffraction light beam appearing at the shadow side of a plane-waveilluminated dielectric microsphere. Our rigorous numerical simulations show that backscattering intensity of nanoparticles can be enhanced up to eight orders of magnitude when locating in the nanojet. As a result, the enhanced backscattering from a nanoparticle with diameter on the order of 10 nm is well above the background signal generated by the dielectric microsphere itself. We also report that nanojet-enhanced backscattering is extremely sensitive to the size of the nanoparticle, permitting in principle resolving sub-nanometer size differences using visible light. Finally, we show how the position of a nanoparticle could be determined with subdiffractional accuracy by recording the angular distribution of the backscattered light. These properties of photonic nanojets promise to make this phenomenon a useful tool for optically detecting, differentiating, and sorting nanoparticles.

  16. Low-frequency acousto-optic backscattering of Bessel light beams

    NASA Astrophysics Data System (ADS)

    Khilo, Nikolai A.; Belyi, Vladimir N.; Khilo, Petr A.; Kazak, Nikolai S.

    2018-05-01

    The use of Bessel light beams, as well as Bessel acoustic beams, substantially enhances the capabilities of acousto-optic methods for control of optical field. We present a theoretical study of the process of optical Bessel beams conversion by means of backward acousto-optic scattering on a Bessel acoustic field in a transversely isotropic crystal. It is shown that, with an appropriate choice of Bessel beams parameters, the backscattering in visible spectral range can be realized at relatively low acoustic frequencies less than one gigahertz. Under conditions of phase matching and transverse spatial synchronism, the efficiency of backscattering is sufficiently high, which is interesting, for example, for construction of acousto-optic spectral analyzers.

  17. Multiple coherent light scattering in ultracold rubidium

    NASA Astrophysics Data System (ADS)

    Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2001-11-01

    We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.

  18. Multiple coherent light scattering in ultracold rubidium

    NASA Astrophysics Data System (ADS)

    Havey, M. D.; Sukenik, C. I.; Kulatunga, P.; Kupriyanov, D. V.; Sokolov, I. M.

    2001-05-01

    We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.

  19. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  20. An analytical model for light backscattering by coccoliths and coccospheres of Emiliania huxleyi.

    PubMed

    Fournier, Georges; Neukermans, Griet

    2017-06-26

    We present an analytical model for light backscattering by coccoliths and coccolithophores of the marine calcifying phytoplankter Emiliania huxleyi. The model is based on the separation of the effects of diffraction, refraction, and reflection on scattering, a valid assumption for particle sizes typical of coccoliths and coccolithophores. Our model results match closely with results from an exact scattering code that uses complex particle geometry and our model also mimics well abrupt transitions in scattering magnitude. Finally, we apply our model to predict changes in the spectral backscattering coefficient during an Emiliania huxleyi bloom with results that closely match in situ measurements. Because our model captures the key features that control the light backscattering process, it can be generalized to coccoliths and coccolithophores of different morphologies which can be obtained from size-calibrated electron microphotographs. Matlab codes of this model are provided as supplementary material.

  1. Thomson-backscattered x rays from laser-accelerated electrons.

    PubMed

    Schwoerer, H; Liesfeld, B; Schlenvoigt, H-P; Amthor, K-U; Sauerbrey, R

    2006-01-13

    We present the first observation of Thomson-backscattered light from laser-accelerated electrons. In a compact, all-optical setup, the "photon collider," a high-intensity laser pulse is focused into a pulsed He gas jet and accelerates electrons to relativistic energies. A counterpropagating laser probe pulse is scattered from these high-energy electrons, and the backscattered x-ray photons are spectrally analyzed. This experiment demonstrates a novel source of directed ultrashort x-ray pulses and additionally allows for time-resolved spectroscopy of the laser acceleration of electrons.

  2. Lidar monitoring of regions of intense backscatter with poorly defined boundaries

    Treesearch

    Vladimir A. Kovalev; Alexander Petkov; Cyle Wold; WeiMin Hao

    2011-01-01

    The upper height of a region of intense backscatter with a poorly defined boundary between this region and a region of clear air above it is found as the maximal height where aerosol heterogeneity is detectable, that is, where it can be discriminated from noise. The theoretical basis behind the retrieval technique and the corresponding lidar-data-processing procedures...

  3. Light intensity compressor

    DOEpatents

    Rushford, Michael C.

    1990-02-06

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  4. Light intensity compressor

    DOEpatents

    Rushford, Michael C.

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  5. Comparison of high intensity focused ultrasound (HIFU) exposures using empirical and backscatter attenuation estimation methods

    NASA Astrophysics Data System (ADS)

    Civale, John; Ter Haar, Gail; Rivens, Ian; Bamber, Jeff

    2005-09-01

    Currently, the intensity to be used in our clinical HIFU treatments is calculated from the acoustic path lengths in different tissues measured on diagnostic ultrasound images of the patient in the treatment position, and published values of ultrasound attenuation coefficients. This yields an approximate value for the acoustic power at the transducer required to give a stipulated focal intensity in situ. Estimation methods for the actual acoustic attenuation have been investigated in large parts of the tissue path overlying the target volume from the backscattered ultrasound signal for each patient (backscatter attenuation estimation: BAE). Several methods have been investigated. The backscattered echo information acquired from an Acuson scanner has been used to compute the diffraction-corrected attenuation coefficient at each frequency using two methods: a substitution method and an inverse diffraction filtering process. A homogeneous sponge phantom was used to validate the techniques. The use of BAE to determine the correct HIFU exposure parameters for lesioning has been tested in ex vivo liver. HIFU lesions created with a 1.7-MHz therapy transducer have been studied using a semiautomated image processing technique. The reproducibility of lesion size for given in situ intensities determined using BAE and empirical techniques has been compared.

  6. Dependence of anti-Stokes/Stokes intensity ratios on substrate optical properties for Brillouin light scattering from ultrathin iron films

    NASA Astrophysics Data System (ADS)

    Cochran, J. F.; From, M.; Heinrich, B.

    1998-06-01

    Brillouin light scattering experiments have been used to investigate the intensity of 5145 Å laser light backscattered from spin waves in 20 monolayer thick Fe(001) films. The experiments have shown that the ratio of frequency upshifted light intensity to frequency downshifted light intensity depends upon the material of the substrate used to support the iron films. For a fixed magnetic field and for a fixed angle of incidence of the laser light this intensity ratio is much larger for an iron film deposited on a sulphur passivated GaAs(001) substrate than for an iron film deposited on a Ag(001) substrate. The data have been compared with a calculation that takes into account multiple scattering of the optical waves in the iron film and in a protective gold overlayer. The observations are in qualitative agreement with the theory, except for angles of incidence greater than 60°.

  7. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns.

    PubMed

    Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E

    2013-08-02

    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  8. Coherent backscattering of light by complex random media of spherical scatterers: numerical solution

    NASA Astrophysics Data System (ADS)

    Muinonen, Karri

    2004-07-01

    Novel Monte Carlo techniques are described for the computation of reflection coefficient matrices for multiple scattering of light in plane-parallel random media of spherical scatterers. The present multiple scattering theory is composed of coherent backscattering and radiative transfer. In the radiative transfer part, the Stokes parameters of light escaping from the medium are updated at each scattering process in predefined angles of emergence. The scattering directions at each process are randomized using probability densities for the polar and azimuthal scattering angles: the former angle is generated using the single-scattering phase function, whereafter the latter follows from Kepler's equation. For spherical scatterers in the Rayleigh regime, randomization proceeds semi-analytically whereas, beyond that regime, cubic spline presentation of the scattering matrix is used for numerical computations. In the coherent backscattering part, the reciprocity of electromagnetic waves in the backscattering direction allows the renormalization of the reversely propagating waves, whereafter the scattering characteristics are computed in other directions. High orders of scattering (~10 000) can be treated because of the peculiar polarization characteristics of the reverse wave: after a number of scatterings, the polarization state of the reverse wave becomes independent of that of the incident wave, that is, it becomes fully dictated by the scatterings at the end of the reverse path. The coherent backscattering part depends on the single-scattering albedo in a non-monotonous way, the most pronounced signatures showing up for absorbing scatterers. The numerical results compare favourably to the literature results for nonabsorbing spherical scatterers both in and beyond the Rayleigh regime.

  9. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Liang; Zhao, Yiqing; Hu, Xiaoyan

    2014-07-15

    Experiments about the observations of stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) in Hohlraum were performed on Shenguang-III (SG-III) prototype facility for the first time in 2011. In this paper, relevant experimental results are analyzed for the first time with a one-dimension spectral analysis code, which is developed to study the coexistent process of SRS and SBS in Hohlraum plasma condition. Spectral features of the backscattered light are discussed with different plasma parameters. In the case of empty Hohlraum experiments, simulation results indicate that SBS, which grows fast at the energy deposition region near the Hohlraum wall, ismore » the dominant instability process. The time resolved spectra of SRS and SBS are numerically obtained, which agree with the experimental observations. For the gas-filled Hohlraum experiments, simulation results show that SBS grows fastest in Au plasma and amplifies convectively in C{sub 5}H{sub 12} gas, whereas SRS mainly grows in the high density region of the C{sub 5}H{sub 12} gas. Gain spectra and the spectra of backscattered light are simulated along the ray path, which clearly show the location where the intensity of scattered light with a certain wavelength increases. This work is helpful to comprehend the observed spectral features of SRS and SBS. The experiments and relevant analysis provide references for the ignition target design in future.« less

  10. Simultaneous detection of rotational and translational motion in optical tweezers by measurement of backscattered intensity.

    PubMed

    Roy, Basudev; Bera, Sudipta K; Banerjee, Ayan

    2014-06-01

    We describe a simple yet powerful technique of simultaneously measuring both translational and rotational motion of mesoscopic particles in optical tweezers by measuring the backscattered intensity on a quadrant photodiode (QPD). While the measurement of translational motion by taking the difference of the backscattered intensity incident on adjacent quadrants of a QPD is well known, we demonstrate that rotational motion can be measured very precisely by taking the difference between the diagonal quadrants. The latter measurement eliminates the translational component entirely and leads to a detection sensitivity of around 50 mdeg at S/N of 2 for angular motion of a driven microrod. The technique is also able to resolve the translational and rotational Brownian motion components of the microrod in an unperturbed trap and can be very useful in measuring translation-rotation coupling of micro-objects induced by hydrodynamic interactions.

  11. Backscatter measurements for NIF ignition targets (invited).

    PubMed

    Moody, J D; Datte, P; Krauter, K; Bond, E; Michel, P A; Glenzer, S H; Divol, L; Niemann, C; Suter, L; Meezan, N; MacGowan, B J; Hibbard, R; London, R; Kilkenny, J; Wallace, R; Kline, J L; Knittel, K; Frieders, G; Golick, B; Ross, G; Widmann, K; Jackson, J; Vernon, S; Clancy, T

    2010-10-01

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  12. Backscattering enhancement factor dependence of a Laguerre-Gaussian laser beam propagating on the location path in the atmosphere on optical turbulence intensity

    NASA Astrophysics Data System (ADS)

    Rytchkov, D. S.

    2017-11-01

    The paper presents the results of a study of the backscattering enhancement factor (BSE) dependence of vortex LaguerreGaussian beams propagating on monostatic location paths in the atmosphere on optical turbulence intensity. The numeric simulation split-step method of laser beam propagation was used to obtain BSE factor values of a laser beam propagated on monostatic location path in the turbulent atmosphere and reflected from a diffuse target. It is shown that BSE factor of the averaged intensity of a backscattered vortex laser beam of any topological charge is less than BSE factor values of backscattered Gaussian beam in arbitrary turbulent conditions.

  13. Statistical Properties of a Ring Laser with Injected Signal and Backscattering

    NASA Astrophysics Data System (ADS)

    Leng, Feng; Zhu, Shi-Qun

    2001-01-01

    The statistical properties of a homogeneously broadened ring laser with an injected signal are investigated and the normalized two-mode intensity auto- and cross-correlation functions are calculated by a full saturation laser theory with backscattering. The theoretical predictions are in good agreement with the experimental measurements. Further investigation reveals that the backscattering can reduce the fluctuations in the system while the full saturation effect plays a major role when the laser is operated above threshold. It is also quite important to notice that the injected signal can drive the weak mode from incoherent light to coherent light. The project supported by National Natural Science Foundation of China (Grant No. 19874046) and Natural Science Foundation of Jiangsu Education Commission of China

  14. Thermosensitive polymer-grafted iron oxide nanoparticles studied by in situ dynamic light backscattering under magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Hemery, Gauvin; Garanger, Elisabeth; Lecommandoux, Sébastien; Wong, Andrew D.; Gillies, Elizabeth R.; Pedrono, Boris; Bayle, Thomas; Jacob, David; Sandre, Olivier

    2015-12-01

    Thermometry at the nanoscale is an emerging area fostered by intensive research on nanoparticles (NPs) that are capable of converting electromagnetic waves into heat. Recent results suggest that stationary gradients can be maintained between the surface of NPs and the bulk solvent, a phenomenon sometimes referred to as ‘cold hyperthermia’. However, the measurement of such highly localized temperatures is particularly challenging. We describe here a new approach to probing the temperature at the surface of iron oxide NPs and enhancing the understanding of this phenomenon. This approach involves the grafting of thermosensitive polymer chains to the NP surface followed by the measurement of macroscopic properties of the resulting NP suspension and comparison to a calibration curve built up by macroscopic heating. Superparamagnetic iron oxide NPs were prepared by the coprecipitation of ferrous and ferric salts and functionalized with amines, then azides using a sol-gel route followed by a dehydrative coupling reaction. Thermosensitive poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) with an alkyne end-group was synthesized by controlled radical polymerization and was grafted using a copper assisted azide-alkyne cycloaddition reaction. Measurement of the colloidal properties by dynamic light scattering (DLS) indicated that the thermosensitive NPs exhibited changes in their Zeta potential and hydrodynamic diameter as a function of pH and temperature due to the grafted PDMAEMA chains. These changes were accompanied by changes in the relaxivities of the NPs, suggesting application as thermosensitive contrast agents for magnetic resonance imaging (MRI). In addition, a new fibre-based backscattering setup enabled positioning of the DLS remote-head as close as possible to the coil of a magnetic heating inductor to afford in situ probing of the backscattered light intensity, hydrodynamic diameter, and temperature. This approach provides a promising platform for

  15. Coherent Multiple Light Scattering in Ultracold Atomic Rb

    NASA Astrophysics Data System (ADS)

    Kulatunga, Pasad; Sukenik, C. I.; Balik, Salim; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2003-05-01

    Wave transport in mesoscopic systems can be strongly influenced by coherent multiple scattering,which can lead to novel magneto-optic, transmission, and backscattering effects of light in atomic vapors. Although related to traditional studies of radiation trapping, in ultracold vapors negligible frequency or phase redistribution takes place in the scattering, and high-order coherent light scattering occurs. Among other things, this leads to enhancement of the influence of otherwise small non-resonant terms in the scattering amplitudes. We report investigation of multiple coherent light scattering from ultracold Rb atoms confined in a magneto-optic trap (MOT). In experimental studies, measurements are made of the angular, spectral, and polarization-dependent coherent backscattering profile of a low-intensity probe beam tuned near the F = 3 - F' = 4 hyperfine transition. The influence of higher probe beam intensity is also studied. In a theoretical study of angular intensity enhancement of backscattered light, we consider scattering orders up to 10 and a realistic and asymmetric Gaussian atom distribution in the MOT. Supported by NSF, NATO, and RFBR.

  16. Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening

    NASA Astrophysics Data System (ADS)

    Kim, Young L.; Liu, Yang; Turzhitsky, Vladimir M.; Roy, Hemant K.; Wali, Ramesh K.; Subramanian, Hariharan; Pradhan, Prabhakar; Backman, Vadim

    2006-07-01

    The phenomenon of enhanced backscattering (EBS) of light, also known as coherent backscattering (CBS) of light, has been the object of intensive investigation in nonbiological media over the last two decades. However, there have been only a few attempts to explore EBS for tissue characterization and diagnosis. We have recently made progress in the EBS measurements in tissue by taking advantage of low spatial coherence illumination, which has led us to the development of low-coherence enhanced backscattering (LEBS) spectroscopy. In this work, we review the current state of research on LEBS. After a brief discussion of the basic principle of EBS and LEBS, we present an overview of the unique features of LEBS for tissue characterization, and show that LEBS enables depth-selective spectroscopic assessment of mucosal tissue. Then, we demonstrate the potential of LEBS spectroscopy for predicting the risk of colon carcinogenesis and colonoscopy-free screening for colorectal cancer (CRC).

  17. Clean image synthesis and target numerical marching for optical imaging with backscattering light

    PubMed Central

    Pu, Yang; Wang, Wubao

    2011-01-01

    Scanning backscattering imaging and independent component analysis (ICA) are used to probe targets hidden in the subsurface of a turbid medium. A new correction procedure is proposed and used to synthesize a “clean” image of a homogeneous host medium numerically from a set of raster-scanned “dirty” backscattering images of the medium with embedded targets. The independent intensity distributions on the surface of the medium corresponding to individual targets are then unmixed using ICA of the difference between the set of dirty images and the clean image. The target positions are localized by a novel analytical method, which marches the target to the surface of the turbid medium until a match with the retrieved independent component is accomplished. The unknown surface property of the turbid medium is automatically accounted for by this method. Employing clean image synthesis and target numerical marching, three-dimensional (3D) localization of objects embedded inside a turbid medium using independent component analysis in a backscattering geometry is demonstrated for the first time, using as an example, imaging a small piece of cancerous prostate tissue embedded in a host consisting of normal prostate tissue. PMID:21483608

  18. Backscattering measuring system for optimization of intravenous laser irradiation dose

    NASA Astrophysics Data System (ADS)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  19. A new technique for high sensitive detection of rotational motion in optical tweezers by a differential measurement of backscattered intensity

    NASA Astrophysics Data System (ADS)

    Roy, Basudev; Bera, Sudipta K.; Mondal, Argha; Banerjee, Ayan

    2014-09-01

    Asymmetric particles, such as biological cells, often experience torque under optical tweezers due to birefringence or unbalanced scattering forces, which makes precise determination of the torque crucial for calibration and control of the particles. The estimate of torque relies on the accurate measurement of rotational motion, which has been achieved by various techniques such as measuring the intensity fluctuations of the forward scattered light, or the polarization component orthogonal to the trapping light polarization in plasmonic nanoparticles and vaterite crystals. Here we present a simple yet high sensitive technique to measure rotation of such an asymmetric trapped particle by detecting the light backscattered onto a quadrant photodiode, and subtracting the signals along the two diagonals of the quadrants. This automatically suppresses the common mode translational signal obtained by taking the difference signal of the adjacent quadrants, while amplifying the rotational signal. Using this technique, we obtain a S/N of 200 for angular displacement of a trapped micro-rod by 5 degrees, which implies a sensitivity of 50 mdeg with S/N of 2. The technique is thus independent of birefringence and polarization properties of the asymmetric particle and depends only on the scattering cross-section.

  20. Light backscattering efficiency and related properties of some phytoplankters

    NASA Astrophysics Data System (ADS)

    Ahn, Yu-Hwan; Bricaud, Annick; Morel, André

    1992-11-01

    By using a set-up that combines an integrating sphere with a spectroradiometer LI-1800 UW, the backscattering properties of nine different phytoplankters grown in culture have been determined experimentally for the wavelengths domain ν = 400 up to 850 nm. Simultaneously, the absorption and attenuation properties, as well as the size distribution function, have been measured. This set of measurements allowed the spectral values of refractive index, and subsequently the volume scattering functions (VSF) of the cells, to be derived, by operating a scattering model previously developed for spherical and homogeneous cells. The backscattering properties, measured within a restricted angular domain (approximately between 132 and 174°), have been compared to theoretical predictions. Although there appear some discrepancies between experimental and predicted values (probably due to experimental errors as well as deviations of actual cells from computational hypotheses), the overall agreement is good; in particular the observed interspecific variations of backscattering values, as well as the backscattering spectral variation typical of each species, are well accounted for by theory. Using the computed VSF, the measured backscattering properties can be converted (assuming spherical and homogeneous cells) into efficiency factors for backscattering ( overlineQbb) . Thhe spectral behavior of overlineQbb appears to be radically different from that for total scattering overlineQb. For small cells, overlineQ (λ) is practically constant over the spectrum, whereas overlineQb(λ) varies approximately according to a power law (λ -2). As the cell size increases, overlineQbb conversely, becomes increasingly featured, whilst overlineQb becomes spectrally flat. The chlorophyll-specific backscattering coefficients ( b b∗ appear highly variable and span nearly two orders of magnitude. The chlorophyll-specific absorption and scattering coefficients, a ∗ and b ∗, are mainly ruled by

  1. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    NASA Astrophysics Data System (ADS)

    Shand, B. A.; Lester, M.; Yeoman, T. K.

    1996-08-01

    A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE). The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s-1, the backscatter intensity (measured in decibels) remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels) and Doppler velocity for velocities between 200 m s-1 and 700 m s-1. At velocities greater than 700 m s-1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  2. Assessment of refractive index of pigments by Gaussian fitting of light backscattering data in context of the liquid immersion method.

    PubMed

    Niskanen, Ilpo; Peiponen, Kai-Erik; Räty, Jukka

    2010-05-01

    Using a multifunction spectrophotometer, the refractive index of a pigment can be estimated by measuring the backscattering of light from the pigment in immersion liquids having slightly different refractive indices. A simple theoretical Gaussian function model related to the optical path distribution is introduced that makes it possible to describe quantitatively the backscattering signal from transparent pigments using a set of only a few immersion liquids. With the aid of the data fitting by a Gaussian function, the measurement time of the refractive index of the pigment can be reduced. The backscattering measurement technique is suggested to be useful in industrial measurement environments of pigments.

  3. Main types of optical beams giving predominant contributions to the light backscatter for the irregular hexagonal columns

    NASA Astrophysics Data System (ADS)

    Shishko, Victor A.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.

    2017-11-01

    This work presents the estimation of contribution of the main types of optical beams to the light backscatter for randomly oriented hexagonal ice column, the right dihedral angle of which was distorted within the range of 0° (regular particle) to 10°. Calculations were obtained within the physical optics approximation. The wavelength was 532 nm and the refractive index was 1.3116. The results showed that the total contribution of the main types of optical beams to the total backscattering cross section reach the value of 85% at small distortion angle of the hexagonal column and at substantial distortion angle the total contribution of the main types of optical beams decrease up to 55% of the total backscattering cross section. The obtained conclusions can significantly reduce the calculation time in the case when there is no need for high accuracy of the calculation.

  4. Interlinking backscatter, grain size and benthic community structure

    NASA Astrophysics Data System (ADS)

    McGonigle, Chris; Collier, Jenny S.

    2014-06-01

    The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p < 0.001). Results for the Clamshell grab for two of the methods have stronger positive correlations; mean backscatter intensity (r2 = 0.619; p < 0.001) and angular response predicted mean grain size (r2 = 0.692; p < 0.001). ANOVA reveals significant differences in mean grain size (Hamon) within acoustic groups for all methods: mean backscatter (p < 0.001), angular response predicted grain size (p < 0.001), and QTC class (p = 0.009). Mean grain size (Clamshell) shows a significant difference between groups for mean backscatter (p = 0.001); other methods were not significant. PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab

  5. Intense X-ray and EUV light source

    DOEpatents

    Coleman, Joshua; Ekdahl, Carl; Oertel, John

    2017-06-20

    An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.

  6. Dependency between light intensity and refractive development under light-dark cycles.

    PubMed

    Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Solomon, Arieh S; Polat, Uri

    2011-01-01

    The emmetropization process involves fine-tuning the refractive state by altering the refractive components toward zero refraction. In this study, we provided light-dark cycle conditions at several intensities and examined the effect of light intensity on the progression of chicks' emmetropization. Chicks under high-, medium-, and low-light intensities (10,000, 500, and 50 lux, respectively) were followed for 90 days by retinoscopy, keratometry, as well as ultrasound measurements. Emmetropization was reached from days 30-50 and from days 50-60 for the low- and medium-intensity groups, respectively. On day 90, most chicks in the low-intensity group were myopic, with a mean refraction of -2.41D (95% confidence interval (CI) -2.9 to -1.8D), whereas no chicks in the high-intensity group developed myopia, but they exhibited a stable mean hyperopia of +1.1D. The medium-intensity group had a mean refraction of +0.03D. The low-intensity group had a deeper vitreous chamber depth and a longer axial length compared with the high-intensity group, and shifted refraction to the myopic side. The low-intensity group had a flatter corneal curvature, a deeper anterior chamber, and a thinner lens compared with the high-intensity group, and shifted refraction to the hyperopic side. In all groups the corneal power was correlated with the three examined levels of log light intensity for all examined times (e.g., day 20 r = 0.6 P < 0.0001, day 90 r = 0.56 P < 0.0001). Thus, under light-dark cycles, light intensity is an environmental factor that modulates the process of emmetropization, and the low intensity of ambient light is a risk factor for developing myopia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. 33 CFR 84.15 - Intensity of lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights will be calculated by using the formula: I = 3.43 × 106...

  8. 33 CFR 84.15 - Intensity of lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights shall be calculated by using the formula: I=3.43×106×T...

  9. 33 CFR 84.15 - Intensity of lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights will be calculated by using the formula: I=3.43×106 ×T...

  10. 33 CFR 84.15 - Intensity of lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights will be calculated by using the formula: I=3.43×106 ×T...

  11. 33 CFR 84.15 - Intensity of lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Intensity of lights. 84.15... NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.15 Intensity of lights. (a) The minimum luminous intensity of lights shall be calculated by using the formula: I=3.43×106×T...

  12. Battery Charge Affects the Stability of Light Intensity from Light-emitting Diode Light-curing Units.

    PubMed

    Tongtaksin, A; Leevailoj, C

    This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was

  13. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  14. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  15. Processing ultrasound backscatter to monitor high-intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay; Bailey, Michael R.

    2005-09-01

    The development of new noninvasive surgical methods such as HIFU for the treatment of cancer and internal bleeding requires simultaneous development of new sensing approaches to guide, monitor, and assess the therapy. Ultrasound imaging using echo amplitude has long been used to map tissue morphology for diagnostic interpretation by the clinician. New quantitative ultrasonic methods that rely on amplitude and phase processing for tissue characterization are being developed for monitoring of ablative therapy. We have been developing the use of full wave ultrasound backscattering for real-time temperature estimation, and to image changes in tissue backscatter spectrum as therapy progresses. Both approaches rely on differential processing of the backscatter signal in time, and precise measurement of phase differences. Noise and artifacts from motion and nonstationary speckle statistics are addressed by constraining inversions for tissue parameters with physical models. We present results of HIFU experiments with static point and scanned HIFU exposures in which temperature rise can be accurately mapped using a new heat transfer equation (HTE) model-constrained inverse approach. We also present results of a recently developed spectral imaging method that elucidates microbubble-mediated nonlinearity not visible as a change in backscatter amplitude. [Work supported by Army MRMC.

  16. Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.

    2011-01-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596

  17. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.

    PubMed

    Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A

    2009-05-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.

  18. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  19. Adaptive focus for deep tissue using diffuse backscatter

    NASA Astrophysics Data System (ADS)

    Kress, Jeremy; Pourrezaei, Kambiz

    2014-02-01

    A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.

  20. The Backscattering Phase Function for a Sphere with a Two-Scale Relief of Rough Surface

    NASA Astrophysics Data System (ADS)

    Klass, E. V.

    2017-12-01

    The backscattering of light from spherical surfaces characterized by one and two-scale roughness reliefs has been investigated. The analysis is performed using the three-dimensional Monte-Carlo program POKS-RG (geometrical-optics approximation), which makes it possible to take into account the roughness of objects under study by introducing local geometries of different levels. The geometric module of the program is aimed at describing objects by equations of second-order surfaces. One-scale roughness is set as an ensemble of geometric figures (convex or concave halves of ellipsoids or cones). The two-scale roughness is modeled by convex halves of ellipsoids, with surface containing ellipsoidal pores. It is shown that a spherical surface with one-scale convex inhomogeneities has a flatter backscattering phase function than a surface with concave inhomogeneities (pores). For a sphere with two-scale roughness, the dependence of the backscattering intensity is found to be determined mostly by the lower-level inhomogeneities. The influence of roughness on the dependence of the backscattering from different spatial regions of spherical surface is analyzed.

  1. Enhanced backscattering of optical waves due to densely distributed scatterers

    NASA Astrophysics Data System (ADS)

    Ma, Yushieh; Varadan, Vijay K.; Varadan, Vasundara V.

    1988-01-01

    Using multiple scattering theory, the T matrix of a pair of scatterers which takes all back-and-forth scattering between the pair members into account and considers multiple scattering effects in the intensity calculation is used to calculate the magnitude and the width of the backscattered intensity peak. Generally, at low concentrations, both the magnitude of the scattered intensity and multiple scattering contributions are not sufficiently strong to reach the enhanced-backscattering threshold. The results obtained are consistent with those yielded by optical experiments.

  2. Incomplete immunity to backscattering in chiral one-way photonic crystals.

    PubMed

    Cheng, Pi-Ju; Tien, Chung-Hao; Chang, Shu-Wei

    2015-04-20

    We show that the propagating modes in a strongly-guided chiral one-way photonic crystal are not backscattering-immune even though they are indeed insensitive to many kinds of scatters. Since these modes are not protected by the nonreciprocity, the backscattering does occur under certain circumstances. We use a perturbative method to derive criteria for the prominent backscattering in such chiral structures. From both our theory and numerical examinations, we find that the amount of backscattering critically depends on the symmetry of scatters. Additionally, for these chiral photonic modes, disturbances at the most intense parts of field profiles do not necessarily lead to the most effective backscattering.

  3. Design of the optical backscatter diagnostic for laser plasma interaction measurements on NIF

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Datte, P.; Ng, E.; Maitland, K.; Hsing, W.; MacGowan, B. J.; Froula, D. H.; Neumayer, P.; Sutter, L.; Meezan, N.; Glenzer, S. H.; Kirkwood, R. K.; Divol, L.; Andrews, S.; Jackson, J.; MacKinnon, A.; Jovanovic, I.; Beeler, R.; Bertolini, L.; Landon, M.; Alvarez, S.; Lee, T.; Watts, P.

    2007-11-01

    We describe the design of the backscatter diagnostic for NIF laser-plasma interaction (LPI) studies. It will initially be used to validate the 280 eV point design hohlraum and select phase plates for the ignition experiments. Backscatter measurements are planned for two separate groups of 4 beams (a quad). One quad is 30^o from the hohlraum axis and the other at 50^o. The backscatter measurement utilizes 2 instruments for each beam quad. The full aperture backscatter system (FABS) measures light backscattered into the final focus lens of each beam in the quad. The near backscatter imager (NBI) measures light backscattered outside of the beam quad. Both instruments must work in conjunction to provide spectrally and temporally resolved backscatter power. We describe the design of the diagnostic and its capabilities as well as plans for calibrating it and analyzing the resulting data. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  4. 14 CFR 23.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities...

  5. 14 CFR 23.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities...

  6. 14 CFR 23.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities...

  7. Dissimilarity of yellow-blue surfaces under neutral light sources differing in intensity: separate contributions of light intensity and chroma.

    PubMed

    Tokunaga, Rumi; Logvinenko, Alexander D; Maloney, Laurence T

    2008-01-01

    Observers viewed two side-by-side arrays each of which contained three yellow Munsell papers, three blue, and one neutral Munsell. Each array was illuminated uniformly and independently of the other. The neutral light source intensities were 1380, 125, or 20 lux. All six possible combinations of light intensities were set as illumination conditions. On each trial, observers were asked to rate the dissimilarity between each chip in one array and each chip in the other by using a 30-point scale. Each pair of surfaces in each illumination condition was judged five times. We analyzed this data using non-metric multi-dimensional scaling to determine how light intensity and surface chroma contributed to dissimilarity and how they interacted. Dissimilarities were captured by a three-dimensional configuration in which one dimension corresponded to differences in light intensity.

  8. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  9. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  10. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  11. Estimation of marine mineral resources abundance using back-scattering intensity of Deep-tow Side Scan Sonar

    NASA Astrophysics Data System (ADS)

    Yoo, C. M.; Joo, J.; Hyeong, K.; Chi, S. B.

    2016-12-01

    Manganese nodule, also known as polymetallic nodule, contains precious elements in high contents and is regarded as one of the most important future mineral resources. It occurs throughout the world oceans, but economically feasible deposits show limited distribution only in several deepsea basins including Clarion-Clipperton Fracture Zone (CCFZ) in northeast equatorial Pacific. Estimation of resources potential is one of the key factors prerequisite for economic feasibility study. Nodule abundance is commonly estimated from direct nodule sampling, however it is difficult to obtain statistically robust data because of highly variable spatial distribution and high cost of direct sampling. Variogram analysis indicates 3.5×3.5km sampling resolution to obtain indicated category of resources data, which requires over 1,000 sampling operations to cover the potential exploitation area with mining life of 20-30 years. High-resolution acoustic survey, bathymetry and back-scattered intensity, can provide high-resolution resources data with the definition of obstacles, such as faults and scarps, for operation of nodule collecting robots. We operated 120 kHz deep-tow side scan sonar (DTSSS) with spatial resolution of 1×1m in a representative area. Sea floor images were also taken continuously by deep-tow camera from selected tracks, converted to nodule abundance using image analysis program and conversion equation, and compared with acoustic data. Back-scattering intensity values could be divided into several group and translated into nodule abundance with high confidence level. Our result indicates that high resolution acoustic survey is appropriate tool for reliable assessment of manganese nodule abundance and definition of minable area.

  12. Bidirectional reflectance distribution function based surface modeling of non-Lambertian using intensity data of light detection and ranging.

    PubMed

    Li, Xiaolu; Liang, Yu; Xu, Lijun

    2014-09-01

    To provide a credible model for light detection and ranging (LiDAR) target classification, the focus of this study is on the relationship between intensity data of LiDAR and the bidirectional reflectance distribution function (BRDF). An integration method based on the built-in-lab coaxial laser detection system was advanced. A kind of intermediary BRDF model advanced by Schlick was introduced into the integration method, considering diffuse and specular backscattering characteristics of the surface. A group of measurement campaigns were carried out to investigate the influence of the incident angle and detection range on the measured intensity data. Two extracted parameters r and S(λ) are influenced by different surface features, which illustrate the surface features of the distribution and magnitude of reflected energy, respectively. The combination of two parameters can be used to describe the surface characteristics for target classification in a more plausible way.

  13. A method for improving the light intensity distribution in dental light-curing units.

    PubMed

    Arikawa, Hiroyuki; Takahashi, Hideo; Minesaki, Yoshito; Muraguchi, Kouichi; Matsuyama, Takashi; Kanie, Takahito; Ban, Seiji

    2011-01-01

    A method for improving the uniformity of the radiation light from dental light-curing units (LCUs), and the effect on the polymerization of light-activated composite resin are investigated. Quartz-tungsten halogen, plasma-arc, and light-emitting diode LCUs were used, and additional optical elements such as a mixing tube and diffusing screen were employed to reduce the inhomogeneity of the radiation light. The distribution of the light intensity from the light guide tip was measured across the guide tip, as well as the distribution of the surface hardness of the light-activated resin emitted with the LCUs. Although the additional optical elements caused 13.2-25.9% attenuation of the light intensity, the uniformity of the light intensity of the LCUs was significantly improved in the modified LCUs, and the uniformity of the surface hardness of the resin was also improved. Our results indicate that the addition of optical elements to the LCU may be a simple and effective method for reducing inhomogeneity in radiation light from the LCUs.

  14. Investigating the spectral characteristics of backscattering from heterogeneous spheroidal nuclei using broadband finite-difference time-domain simulations

    NASA Astrophysics Data System (ADS)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-02-01

    Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.

  15. The Impact of Environmental Light Intensity on Experimental Tumor Growth.

    PubMed

    Suckow, Mark A; Wolter, William R; Duffield, Giles E

    2017-09-01

    Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking. The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells. Animals were housed in individually-ventilated cages placed at the top, middle, or bottom of the rack in a diagonal pattern so that the top cage was closest to the ceiling light source, and cage face light intensity was measured. Following a two-week acclimation period at the assigned cage position, animals were subcutaneously administered either 1.3×10 6 B16F10 melanoma cells or 2.5×10 5 Lewis lung carcinoma cells. Weights of excised tumors were measured following euthanasia 18 days (melanoma) or 21 days (LCC) after tumor cell administration. Cage face light intensity was significantly different depending on the location of the cage, with cages closest to the light source have the greatest intensity. Mean tumor weights were significantly less (p<0.001 for melanoma; p≤0.01 for LCC) in middle light intensity mice compared to high and low light intensity mice. The environmental light intensity to which experimental animals are exposed may vary markedly with cage location and can significantly influence experimental tumor growth, thus supporting the idea that light intensity should be controlled as an experimental variable for animals used in cancer research. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Light intensity modulates corneal power and refraction in the chick eye exposed to continuous light.

    PubMed

    Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Avni, Isaac; Polat, Uri

    2008-09-01

    Continuous exposure of chicks to light was shown to result in severe hyperopia, accompanied by anterior segment changes, such as severe corneal flattening. Since rearing chicks in complete darkness results only in mild hyperopia and minor changes in corneal curvature, we hypothesized that light intensity may play a role in the development of refractive changes under continuous light illumination. To test this hypothesis, we examined the effects of rearing chicks under various continuous light intensities. More specifically, we investigated the refractive parameters of the chicks' eyes, and avoided light cycling effects on ocular development. To this end, thirty-eight chicks were reared under 24-h incandescent illumination, at three different light intensities: 10,000 lux (n=13), 500 lux (n=12), and 50 lux (n=13). Their eyes underwent repeated retinoscopy, keratometry, and ultrasound biometry, as well as caliper measurements of enucleated eyes. Both refraction and corneal refractive power were found to be correlated with light intensity. On day 90 after hatching, exposure to light intensities of 10,000, 500, and 50 lux resulted in hyperopia of +11.97+/-3.7 (mean+/-SD) +7.9+/-4.08 and +0.63+/-3.61 diopters (D), respectively. Under those intensities, corneal refractive power was 46.10+/-3.62, 49.72+/-4.16, and 56.88+/-4.92D, respectively. Axial length did not differ significantly among the groups. The vitreous chamber was significantly deeper in the high than in the low-intensity groups. Thus, during the early life of chicks exposed to continuous lighting, light intensity affects the vitreous chamber depth as well as the anterior segment parameters, most notably the cornea. The higher the intensity, the more severe was the corneal flattening observed and the hyperopia that developed, whereas continuous illumination at low intensities resulted in emmetropia. Thus, light intensity is an important factor that should be taken into account when studying refractive

  17. Perceiving the Intensity of Light

    ERIC Educational Resources Information Center

    Purves, Dale; Williams, S. Mark; Nundy, Surajit; Lotto, R. Beau

    2004-01-01

    The relationship between luminance (i.e., the photometric intensity of light) and its perception (i.e., sensations of lightness or brightness) has long been a puzzle. In addition to the mystery of why these perceptual qualities do not scale with luminance in any simple way, "illusions" such as simultaneous brightness contrast, Mach bands,…

  18. Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Xu, Zhengbin; Song, Qinghai; Konger, Raymond L.; Kim, Young L.

    2010-05-01

    We experimentally study potential mechanisms by which the enhancement factor in low-coherence enhanced backscattering (LEBS) can probe subtle variations in radial intensity distribution in weakly scattering media. We use enhanced backscattering of light by implementing either (1) low spatial coherence illumination or (2) multiple spatially independent detections using a microlens array under spatially coherent illumination. We show that the enhancement factor in these configurations is a measure of the integrated intensity within the localized coherence or detection area, which can exhibit strong dependence on small perturbations in scattering properties. To further evaluate the utility of the LEBS enhancement factor, we use a well-established animal model of cutaneous two-stage chemical carcinogenesis. In this pilot study, we demonstrate that the LEBS enhancement factor can be substantially altered at a stage of preneoplasia. Our animal result supports the idea that early carcinogenesis can cause subtle alterations in the scattering properties that can be captured by the LEBS enhancement factor. Thus, the LEBS enhancement factor has the potential as an easily measurable biomarker in skin carcinogenesis.

  19. Abnormal environmental light exposure in the intensive care environment.

    PubMed

    Fan, Emily P; Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C; Maas, Matthew B

    2017-08-01

    We sought to characterize ambient light exposure in the intensive care unit (ICU) environment to identify patterns of light exposure relevant to circadian regulation. A light monitor was affixed to subjects' bed at eye level in a modern intensive care unit and continuously recorded illuminescence for at least 24h per subject. Blood was sampled hourly and measured for plasma melatonin. Subjects underwent hourly vital sign and bedside neurologic assessments. Care protocols and the ICU environment were not modified for the study. A total of 67,324 30-second epochs of light data were collected from 17 subjects. Light intensity peaked in the late morning, median 64.1 (interquartile range 19.7-138.7) lux. The 75th percentile of light intensity exceeded 100lx only between 9AM and noon, and never exceeded 150lx. There was no correlation between melatonin amplitude and daytime, nighttime or total light exposure (Spearman's correlation coefficients all <0.2 and p>0.5). Patients' environmental light exposure in the intensive care unit is consistently low and follows a diurnal pattern. No effect of nighttime light exposure was observed on melatonin secretion. Inadequate daytime light exposure in the ICU may contribute to abnormal circadian rhythms. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Light Intensity Physical Activity Trial

    ClinicalTrials.gov

    2018-01-30

    Diabetes Mellitus; Physical Exercise; Light Intensity Physical Activity; Arterial Stiffness; Aortic Stiffness; Pulse Wave Velocity; Type2 Diabetes; Sedentary Lifestyle; Artery Disease; Physical Activity

  1. A microwave backscattering model for precipitation

    NASA Astrophysics Data System (ADS)

    Ermis, Seda

    A geophysical microwave backscattering model for space borne and ground-based remote sensing of precipitation is developed and used to analyze backscattering measurements from rain and snow type precipitation. Vector Radiative Transfer (VRT) equations for a multilayered inhomogeneous medium are applied to the precipitation region for calculation of backscattered intensity. Numerical solution of the VRT equation for multiple layers is provided by the matrix doubling method to take into account close range interactions between particles. In previous studies, the VRT model was used to calculate backscattering from a rain column on a sea surface. In the model, Mie scattering theory for closely spaced scatterers was used to determine the phase matrix for each sublayer characterized by a set of parameters. The scatterers i.e. rain drops within the sublayers were modelled as spheres with complex permittivities. The rain layer was bounded by rough boundaries; the interface between the cloud and the rain column as well as the interface between the sea surface and the rain were all analyzed by using the integral equation model (IEM). Therefore, the phase matrix for the entire rain column was generated by the combination of surface and volume scattering. Besides Mie scattering, in this study, we use T-matrix approach to examine the effect of the shape to the backscattered intensities since larger raindrops are most likely oblique in shape. Analyses show that the effect of obliquity of raindrops to the backscattered wave is related with size of the scatterers and operated frequency. For the ground-based measurement system, the VRT model is applied to simulate the precipitation column on horizontal direction. Therefore, the backscattered reflectivities for each unit range of volume are calculated from the backscattering radar cross sections by considering radar range and effective illuminated area of the radar beam. The volume scattering phase matrices for each range interval

  2. Reducing parametric backscattering by polarization rotation

    DOE PAGES

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction,more » it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.« less

  3. 14 CFR 29.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...

  4. 14 CFR 29.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...

  5. 14 CFR 29.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...

  6. 14 CFR 29.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be provided by new equipment with light covers and color filters in place. Intensities must be... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1389...

  7. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  8. 14 CFR 25.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...

  9. 14 CFR 27.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...

  10. 14 CFR 27.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...

  11. 14 CFR 25.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...

  12. 14 CFR 27.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...

  13. 14 CFR 25.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...

  14. 14 CFR 25.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1389 Position...

  15. 14 CFR 27.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... provided by new equipment with light covers and color filters in place. Intensities must be determined with... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1389 Position...

  16. Performance of Arrowroot (Marantha arundinacea) in various light intensities

    NASA Astrophysics Data System (ADS)

    Oktafani, M. B.; Supriyono; Budiastuti, MTh S.; Purnomo, D.

    2018-03-01

    Arrowroot (Marantha arundinacea) is one of the potential food crops to support food security programs. Light intensity is one of the important factors for plant growth. Arrowroot cultivation technology still need further development. Traditionally, arrowroot grows wild under canopy without intentisification of cultivating which have low productivity. The purpose of research was to investigate the suitable light intensity for arrowroot. The experiment was conducted at Jumantono as Experimental Field of Faculty of Agricultural, University of Sebelas Maret Surakarta located in Karanganyar, from March to September 2016. The experiment used a complete randomized block design (CRBD) of light intensity level there are 27400 lux (full sun light), 18900 lux (shaded 31%), 13500 lux (shaded 51%) and 7400 lux (shaded 72%). Each treatment was replicated six times so there were 24 experimental units. The results showed that arrowroot is a low light adaptive plant. Arrowroot under the light intensity 7400 lux (27% full light), the number of leaves and tillers is not significantly different than under full light, although the plant is higher. The highest tuber diameter and length were 1.91 and 25.06 cm, respectively, and tuber weight reached 607.5-651.67 g per plant.

  17. Intensity output and effectiveness of light curing units in dental offices.

    PubMed

    Omidi, Baharan-Ranjbar; Gosili, Armin; Jaber-Ansari, Mona; Mahdkhah, Ailin

    2018-06-01

    The aims of the study were measuring the light intensity of light curing units used in Qazvin's dental offices, determining the relationship between the clinical age of these units and their light intensity, and identifying the reasons for repairing them. In this cross-sectional study, the output intensity of 95 light curing devices was evaluated using a radiometer. The average output intensity was divided up into four categories (less than 200, 200-299, 300-500, and more than 500 mW/cm2). In addition, a questionnaire was designed to obtain information mainly about the type, clinical age, and frequency of maintenance of the units and the reasons for fixing them. Data were analyzed using Kolmogorov-Smirnov, chi-squared, and t-tests ( p < 0.05) on SPSS 24. A total of 95 light curing units were examined, with 61 (64.2%) of them being of the LED type and 34 (35.8%) of the QTH type. While average light intensity in LED units was significantly higher than in QTH devices, the two device types were not significantly different regarding desirable light intensity (i.e., ≥ 300 mw/cm2). A negative correlation was observed between clinical age and light intensity. In addition, bulb replacement in QTH devices was over three times as much as in LED units. Also, repairing QTHs was more than twice as much frequent as fixing LEDs. The most common reason for repair was the breakage of the tip of the device. The light intensity of LED units is significantly higher than that of QTH devices, and the frequency of repairing in QTHs was significantly more than in LEDs. Furthermore, light intensity decreases with aging, and dentists should regularly monitor the conditions of light units. Key words: Light curing unit, radiometer, light intensity, dental equipment, dental offices.

  18. Effects of different light intensities in the morning on dim light melatonin onset.

    PubMed

    Kozaki, Tomoaki; Toda, Naohiro; Noguchi, Hiroki; Yasukouchi, Akira

    2011-01-01

    The present study evaluated the effects of exposure to light intensity in the morning on dim light melatonin onset (DLMO). The tested light intensities were 750 lux, 150 lux, 3000 lux, 6000 lux and 12,000 lux (horizontal illuminance at cornea), using commercial 5000 K fluorescent lamps. Eleven healthy males aged 21-31 participated in 2-day experiments for each light condition. On the first experimental day (day 1), subjects were exposed to dim light (<30 lux) for 3 h in the morning (09:00-12:00). On the same day, saliva samples were taken in dim light (<30 lux) every 30 min from 21:00 to 01:00 to determine the DLMO phase. The subjects were allowed to sleep from 01:00 to 08:00. On the second experimental day (day 2), the subjects were exposed to experimental light conditions for 3 h in the morning. The experimental schedule after light exposure was the same as on day 1. On comparing day 2 with day 1, significant phase advances of DLMO were obtained at 3000 lux, 6000 lux and 12,000 lux. These findings indicate that exposure to a necessary intensity from an ordinary light source, such as a fluorescent lamp, in the morning within one day affects melatonin secretion.

  19. Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions

    NASA Astrophysics Data System (ADS)

    Woźniak, Sławomir B.; Sagan, Sławomir; Zabłocka, Monika; Stoń-Egiert, Joanna; Borzycka, Karolina

    2018-06-01

    The empirical relationships were examined of spectral characteristics of light scattering and backscattering by particles suspended in seawater in relation to the dry mass concentration of particles and the bulk proportions of their organic and inorganic fractions. The analyses were based on empirical data collected in the surface waters of the southern and central Baltic Sea at different times of the year. It was found that the average scattering and backscattering coefficients, normalized to the dry mass concentration of particles for all our Baltic Sea data (i.e. mass-specific optical coefficients), were characterized by large coefficients of variation (CV) of the order of 30% at all the visible light wavelengths analysed. At wavelength 555 nm the average mass-specific scattering coefficient was ca 0.75 m2 g- 1 (CV = 31%); the corresponding value for backscattering was 0.0072 m2 g- 1 (CV = 29%). The analyses confirmed that some of the observed variations could be explained by changes in the proportions of organic and inorganic fractions of suspended matter. The average organic fraction in all the samples was as high as 83% of the total dry mass concentration but in individual cases it varied between < 50% and up to 100%. Simple, two-variable parameterizations of scattering and backscattering coefficients were derived as functions of the organic and inorganic fraction concentrations. The statistical relationship between the backscattering ratio and the ratio of the organic fraction to the total dry mass of suspended matter was also found: this can be used in practical interpretations of in situ optical measurements. In addition, the variability in particle size distributions recorded with a Coulter counter indicated its potentially highly significant influence on the light scattering properties of particles suspended in Baltic Sea waters.

  20. Backscatter spectra measurements of the two beams on the same cone on Shenguang-III laser facility

    NASA Astrophysics Data System (ADS)

    Zha, Weiyi; Yang, Dong; Xu, Tao; Liu, Yonggang; Wang, Feng; Peng, Xiaoshi; Li, Yulong; Wei, Huiyue; Liu, Xiangming; Mei, Yu; Yan, Yadong; He, Junhua; Li, Zhichao; Li, Sanwei; Jiang, Xiaohua; Guo, Liang; Xie, Xufei; Pan, Kaiqiang; Liu, Shenye; Jiang, Shaoen; Zhang, Baohan; Ding, Yongkun

    2018-01-01

    In laser driven hohlraums, laser beams on the same incident cone may have different beam and plasma conditions, causing beam-to-beam backscatter difference and subsequent azimuthal variations in the x-ray drive on the capsule. To elucidate the large variation of backscatter proportion from beam to beam in some gas-filled hohlraum shots on Shenguang-III, two 28.5° beams have been measured with the Stimulated Raman Scattering (SRS) time-resolved spectra. A bifurcated fiber is used to sample two beams and then coupled to a spectrometer and streak camera combination to reduce the cost. The SRS spectra, characterized by a broad wavelength, were further corrected considering the temporal distortion and intensity modulation caused by components along the light path. This measurement will improve the understanding of the beam propagation inside the hohlraum and related laser plasma instabilities.

  1. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, Michael C.

    1989-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

  2. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, M.C.

    1989-03-28

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

  3. A method for removing arm backscatter from EPID images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Brian W.; Greer, Peter B.; School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308

    2013-07-15

    Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager.more » The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.« less

  4. Effects of laryngoscope handle light source on the light intensity from disposable laryngoscope blades.

    PubMed

    Milne, A D; Brousseau, P A; Brousseau, C A

    2014-12-01

    A bench-top study was performed to assess the effects of different laryngoscope handles on the light intensity delivered from disposable metal or plastic laryngoscope blades. The light intensity from both the handle light sources themselves and the combined handle and laryngoscope blade sets was measured using a custom-designed testing system and light meter. Five samples of each disposable blade type were tested and compared with a standard re-usable stainless steel blade using three different handle/light sources (Vital Signs LED, Heine 2.5 V Xenon and 3.5 V Xenon). The light intensity delivered by the disposable blades ranged from 790 to 3846 lux for the different handle types. Overall, the 3.5 V Heine handle delivered the highest light output (p < 0.007) in comparison with the other handles. For the disposable blades, the overall light output was significantly higher from the plastic than the metal blades (p < 0.001). © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  5. Redwood seedling responses to light patterns and intensities

    Treesearch

    Ronald W. Boldenow; Joe R. McBride

    2017-01-01

    Coast redwood (Sequoia sempervirens (D. Don) Endl.) seedlings were grown from seed in controlled environments with 16 hour photoperiods using three light patterns that mimicked full shade (constant light level), intermittent high light such as long duration sun flecks (low light with 15 minutes of intense light every 2 hours), and large...

  6. Light intensity modulation in phototherapy

    NASA Astrophysics Data System (ADS)

    Lukyanovich, P. A.; Zon, B. A.; Kunin, A. A.; Pankova, S. N.

    2015-04-01

    A hypothesis that blocking ATP synthesis is one of the main causes of the stimulating effect is considered based on analysis of the primary photostimulation mechanisms. The light radiation intensity modulation is substantiated and the estimates of such modulation parameters are made. An explanation is offered to the stimulation efficiency decrease phenomenon at the increase of the radiation dose during the therapy. The results of clinical research of the medical treatment in preventive dentistry are presented depending on the spectrum and parameters of the light flux modulation.

  7. Early Birds by Light at Night: Effects of Light Color and Intensity on Daily Activity Patterns in Blue Tits.

    PubMed

    de Jong, Maaike; Caro, Samuel P; Gienapp, Phillip; Spoelstra, Kamiel; Visser, Marcel E

    2017-08-01

    Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits ( Cyanistes caeruleus) exposed to similar intensities of green, red, or white light at night. Birds advanced their onset of activity in the morning under all light colors but more under red and white light than under green light. Offset of activity was slightly delayed in all light colors. The total activity over a 24-h period did not change but birds moved a part of their daily activity into the night. Since the effect of red and white lights are comparable, we tested the influence of light intensity in a follow-up experiment, where we compared the activity of the birds under different intensities of green and white light only. While in the higher range of intensities, the effects of white and green light were comparable; at lower intensities, green light had a less disturbing effect as compared with white light on daily rhythms in blue tits. Our results show that the extent of this disturbance can be mitigated by modulating the spectral characteristics and intensity of outdoor lighting, which is now feasible through the use of LED lighting.

  8. On the Intensity Profile of Electric Lamps and Light Bulbs

    ERIC Educational Resources Information Center

    Bacalla, Xavier; Salumbides, Edcel John

    2013-01-01

    We demonstrate that the time profile of the light intensity from domestic lighting sources exhibits simple yet interesting properties that foster lively student discussions. We monitor the light intensity of an industrial fluorescent lamp (also known as TL) and an incandescent bulb using a photodetector connected to an oscilloscope. The light…

  9. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  10. Light-intensity modulator withstands high heat fluxes

    NASA Technical Reports Server (NTRS)

    Maples, H. G.; Strass, H. K.

    1966-01-01

    Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.

  11. Light-Irradiation Wavelength and Intensity Changes Influence Aflatoxin Synthesis in Fungi

    PubMed Central

    Suzuki, Tadahiro

    2018-01-01

    Fungi respond to light irradiation by forming conidia and occasionally synthesizing mycotoxins. Several light wavelengths, such as blue and red, affect the latter. However, the relationship between light irradiation and mycotoxin synthesis varies depending on the fungal species or strain. This study focused on aflatoxin (AF), which is a mycotoxin, and the types of light irradiation that increase AF synthesis. Light-irradiation tests using the visible region indicated that blue wavelengths in the lower 500 nm region promoted AF synthesis. In contrast, red wavelengths of 660 nm resulted in limited significant changes compared with dark conditions. Irradiation tests with different intensity levels indicated that a low light intensity increased AF synthesis. For one fungal strain, light irradiation decreased the AF synthesis under all wavelength conditions. However, the decrease was mitigated by 525 nm low intensity irradiation. Thus, blue-green low intensity irradiation may increase AF synthesis in fungi. PMID:29304012

  12. Single-backscattering and quasi-single-backscattering of low energy ions from a cold nickel surface: contribution to the ICISS method

    NASA Astrophysics Data System (ADS)

    Soszka, W.

    1992-09-01

    Energy spectra of 5 keV Ne+ and He+ ions backscattered from the cold (100) nickel surface for chosen values of the incidence angles were measured. It was found that the occurrence of the isotope structure of the so-called "single-scattering" peak as well as its position on the energy scale depend on the incidence angle and the target temperature. In comparison to the case of room temperature the "ICISS curve" (the intensity of the single-scattering peak versus the incidence angle) at low temperatures increases up to relatively large angles. The curve in its part shows some structure which is not observed at room temperatures. It has been shown [E.S. Parilis et al., Atomic Collisions in Gases and on Solid Surfaces (FAN, Tashkent, 1988) in Russian] that the doubly scattered ions can have the same energy and exit angle as the singly scattered ions and both components create the quasi-single-scattering peak. The double-scattering component depends in a complex manner on the incidence angle and the target temperature. It is shown that at low temperatures (below 80 K) the intensity of the single-scattering component decreases (a decrease of thermal cross section), and the intensity of the double-scattering component relatively increases. This determines the behaviour of the ICISS curve, which, for low temperatures and light projectiles cannot be treated as a real ICISS curve.

  13. Daytime light intensity affects seasonal timing via changes in the nocturnal melatonin levels

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Rani, Sangeeta; Malik, Shalie; Trivedi, Amit K.; Schwabl, Ingrid; Helm, Barbara; Gwinner, Eberhard

    2007-08-01

    Daytime light intensity can affect the photoperiodic regulation of the reproductive cycle in birds. The actual way by which light intensity information is transduced is, however, unknown. We postulate that transduction of the light intensity information is mediated by changes in the pattern of melatonin secretion. This study, therefore, investigated the effects of high and low daytime light intensities on the daily melatonin rhythm of Afro-tropical stonechats ( Saxicola torquata axillaris) in which seasonal changes in daytime light intensity act as a zeitgeber of the circannual rhythms controlling annual reproduction and molt. Stonechats were subjected to light conditions simulated as closely as possible to native conditions near the equator. Photoperiod was held constant at 12.25 h of light and 11.75 h of darkness per day. At intervals of 2.5 to 3.5 weeks, daytime light intensity was changed from bright (12,000 lux at one and 2,000 lux at the other perch) to dim (1,600 lux at one and 250 lux at the other perch) and back to the original bright light. Daily plasma melatonin profiles showed that they were linked with changes in daytime light intensity: Nighttime peak and total nocturnal levels were altered when transitions between light conditions were made, and these changes were significant when light intensity was changed from dim to bright. We suggest that daytime light intensity could affect seasonal timing via changes in melatonin profiles.

  14. Disruptive effects of light pollution on sleep in free-living birds: Season and/or light intensity-dependent?

    PubMed

    Raap, Thomas; Sun, Jiachen; Pinxten, Rianne; Eens, Marcel

    2017-11-01

    Light pollution or artificial light at night (ALAN) is an increasing anthropogenic environmental pollutant posing an important potential threat for wildlife. Evidence of its effects on animal physiology and behaviour is accumulating. However, in order to effectively mitigate light pollution it is important to determine which factors contribute to the severity of effects of ALAN. In this experimental study we explored whether there are seasonal-dependent effects of ALAN on sleep in free-living great tits (Parus major), an important model species. Additionally, we looked at whether light intensity determined the severity of effects of ALAN on sleep. We therefore exposed animals to artificial light inside the nest box (3lx) in December (winter) and February (pre-breeding season). Results from February were compared with the results from a previous study in February, using a lower light intensity (1.6lx). We found little evidence for a season-dependent response. Effects of ALAN hardly differed between high and low light intensity. ALAN disrupted sleep with as main effect a decrease in sleep duration (≈-40min) as animals woke up earlier (≈-24min). However, compared to a natural dark situation sleep onset was delayed by high but not by low light intensity of ALAN. Our study underlines earlier found disruptive effects of ALAN on sleep of free-living animals. While we found no conclusive evidence for seasonal or light intensity-dependent effects of ALAN, additional experimental work using lower light intensities might show such differences. Examining potential management options is crucial in mitigating disruptive effects of light pollution, which will be an important focus for future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Using turbidity and acoustic backscatter intensity as surrogate measures of suspended sediment concentration in a small subtropical estuary.

    PubMed

    Chanson, Hubert; Takeuchi, Maiko; Trevethan, Mark

    2008-09-01

    The suspended sediment concentration is a key element in stream monitoring, although the turbidity and acoustic Doppler backscattering may be suitable surrogate measures. Herein a series of new experiments were conducted in laboratory under controlled conditions using water and mud samples collected in a small subtropical estuary of Eastern Australia. The relationship between suspended sediment concentration and turbidity exhibited a linear relationship, while the relationships between suspended sediment concentration and acoustic backscatter intensity showed a monotonic increase. The calibration curves were affected by both sediment material characteristics and water quality properties, implying that the calibration of an acoustic Doppler system must be performed with the waters and soil materials of the natural system. The results were applied to some field studies in the estuary during which the acoustic Doppler velocimeter was sampled continuously at high frequency. The data yielded the instantaneous suspended sediment flux per unit area in the estuarine zone. They showed some significant fluctuations in instantaneous suspended mass flux, with a net upstream-suspended mass flux during flood tide and net downstream sediment flux during ebb tide. For each tidal cycle, the integration of the suspended sediment flux per unit area data with respect of time yielded some net upstream sediment flux in average.

  16. Cavitation inception by the backscattering of pressure waves from a bubble interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble.more » The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.« less

  17. Investigation of light scattering characteristics of individual leukocytes using three-dimensional refractive index maps

    NASA Astrophysics Data System (ADS)

    Sung, Kung-Bin; Lin, Yang-Hsien; Lin, Fong-jheng; Hsieh, Chao-Mao; Wu, Shang-Ju

    2017-04-01

    Three-dimensional (3D) refractive-index (RI) microscopy is an emerging technique suitable for live-cell imaging due to its label-free and fast 3D imaging capabilities. We have developed a common-path system to acquire 3D RI microscopic images of cells with excellent speed and stability. After obtaining 3D RI distributions of individual leukocytes, we used a 3D finite-difference time-domain tool to study light scattering properties. Backscattering spectra of lymphocytes, monocytes and neutrophils are different from each other. Backscattering spectra of lymphocytes matched well with those of homogeneous spheres as predicted by Mie theory while backscattering spectra of neutrophils are significantly more intense than those of the other two types. This suggests the possibility of classifying the three types of leukocytes based on backscattering.

  18. Experimental evaluation of effective atomic number of composite materials using back-scattering of gamma photons

    NASA Astrophysics Data System (ADS)

    Singh, Inderjeet; Singh, Bhajan; Sandhu, B. S.; Sabharwal, Arvind D.

    2017-04-01

    A method has been presented for calculation of effective atomic number (Zeff) of composite materials, by using back-scattering of 662 keV gamma photons obtained from a 137Cs mono-energetic radioactive source. The present technique is a non-destructive approach, and is employed to evaluate Zeff of different composite materials, by interacting gamma photons with semi-infinite material in a back-scattering geometry, using a 3″ × 3″ NaI(Tl) scintillation detector. The present work is undertaken to study the effect of target thickness on intensity distribution of gamma photons which are multiply back-scattered from targets (pure elements) and composites (mixtures of different elements). The intensity of multiply back-scattered events increases with increasing target thickness and finally saturates. The saturation thickness for multiply back-scattered events is used to assign a number (Zeff) for multi-element materials. Response function of the 3″ × 3″ NaI(Tl) scintillation detector is applied on observed pulse-height distribution to include the contribution of partially absorbed photons. The reduced value of signal-to-noise ratio interprets the increase in multiply back-scattered data of a response corrected spectrum. Data obtained from Monte Carlo simulations and literature also support the present experimental results.

  19. Monte Carlo study of backscattering of. beta. rays from various monoatomic slabs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, L. N.; Rustgi, M. L.

    1989-07-01

    A Monte Carlo study of the backscattering coefficients and backscatteringintensity of ..beta.. rays from /sup 204/ Tl and /sup 90/ Y sources from slabs of Al,Cu, Sn, Tb, and Pb of different thicknesses is carried out. The results forangles of incidence 0/degree/, 30/degree/, 45/degree/, and 60/degree/ and absorber thicknesses of 3,5, 10, 15, 30, and 50 mg/cm/sup 2/ for /sup 204/ Tl ..beta.. rays and thicknesses of3, 5, 10, 20, 50, 100, 150, and 190 mg/cm/sup 2/ for /sup 90/ Y ..beta.. rays aregiven in tabular form. On using normalization factors good agreement with themeasurements of Sharma and Singh ismore » obtained. A phenomenological attempt toinvestigate a relationship between the backscatter intensity and atomic number/ital Z/ of the backscatterer indicates that the backscattered intensity is alinear function of ln /ital Z/(/ital Z/+1). A partial theoretical justification forthis relationship is given.« less

  20. Microvolume index of refraction determinations by interferometric backscatter

    NASA Astrophysics Data System (ADS)

    Bornhop, Darryl J.

    1995-06-01

    A new method has been applied to the determination of fluid bulk properties in small detection volumes. Through the use of an unfocused He-Ne laser beam and a cylindrical tube of capillary dimensions, relative refractive-index measurements are possible. The backscattered light from the illumination of a tube of capillary dimensions produces an interference pattern that is spatially defined and that contains information related to the bulk properties of the fluid contained in the tube. Positional changes in the intensity-modulated beam profile (interference fringes) are directly related to the refractive index of the fluid in the tube. The determination of dn/n at the 10-7 level is possible in probe volumes of 350 pL. The technique has been applied to tubes as small as 75 mu m inner diameter and as large as 1.0 mm inner diameter. No modification of the simple optical bench is required for facilitating the determination of refractive index for the complete range of tube diameters.

  1. Light-Induced Changes of the Circadian Clock of Humans: Increasing Duration is More Effective than Increasing Light Intensity

    PubMed Central

    Dewan, Karuna; Benloucif, Susan; Reid, Kathryn; Wolfe, Lisa F.; Zee, Phyllis C.

    2011-01-01

    Study Objectives: To evaluate the effect of increasing the intensity and/or duration of exposure on light-induced changes in the timing of the circadian clock of humans. Design: Multifactorial randomized controlled trial, between and within subject design Setting: General Clinical Research Center (GCRC) of an academic medical center Participants: 56 healthy young subjects (20-40 years of age) Interventions: Research subjects were admitted for 2 independent stays of 4 nights/3 days for treatment with bright or dim-light (randomized order) at a time known to induce phase delays in circadian timing. The intensity and duration of the bright light were determined by random assignment to one of 9 treatment conditions (duration of 1, 2, or 3 hours at 2000, 4000, or 8000 lux). Measurements and Results: Treatment-induced changes in the dim light melatonin onset (DLMO) and dim light melatonin offset (DLMOff) were measured from blood samples collected every 20-30 min throughout baseline and post-treatment nights. Comparison by multi-factor analysis of variance (ANOVA) of light-induced changes in the time of the circadian melatonin rhythm for the 9 conditions revealed that changing the duration of the light exposure from 1 to 3 h increased the magnitude of light-induced delays. In contrast, increasing from moderate (2,000 lux) to high (8,000 lux) intensity light did not alter the magnitude of phase delays of the circadian melatonin rhythm. Conclusions: Results from the present study suggest that for phototherapy of circadian rhythm sleep disorders in humans, a longer period of moderate intensity light may be more effective than a shorter exposure period of high intensity light. Citation: Dewan K; Benloucif S; Reid K; Wolfe LF; Zee PC. Light-induced changes of the circadian clock of humans: increasing duration is more effective than increasing light intensity. SLEEP 2011;34(5):593-599. PMID:21532952

  2. Optical-beam wavefront control based on the atmospheric backscatter signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banakh, V A; Razenkov, I A; Rostov, A P

    2015-02-28

    The feasibility of compensating for aberrations of the optical-beam initial wavefront by aperture sounding, based on the atmospheric backscatter signal from an additional laser source with a different wavelength, is experimentally studied. It is shown that the adaptive system based on this principle makes it possible to compensate for distortions of the initial beam wavefront on a surface path in atmosphere. Specifically, the beam divergence decreases, while the level of the detected mean backscatter power from the additional laser source increases. (light scattering)

  3. The effect of light intensity on image quality in endoscopic ear surgery.

    PubMed

    McCallum, R; McColl, J; Iyer, A

    2018-05-16

    Endoscopic ear surgery is a rapidly developing field with many advantages. But endoscopes can reach temperatures of over 110°C at the tip, raising safety concerns. Reducing the intensity of the light source reduces temperatures produced. However, quality of images at lower light intensities has not yet been studied. We set out to study the effect of light intensity on image quality in EES. Prospective study of patients undergoing EES from April to October 2016. Consecutive images of the same operative field at 10%, 30%, 50% and 100% light intensities were taken. Eight international experts were asked to each evaluate 100 anonymised, randomised images. District General Hospital. Twenty patients. Images were evaluated on a 5-point Likert scale (1 = significantly worse than average; 5 = significantly better than average) for detail of anatomy; colour contrast; overall quality; and suitability for operating. Mean scores for photographs at 10%, 30%, 50% and 100% light intensity were 3.22 (SD 0.93), 3.15 (SD 0.84), 3.08 (SD 0.88) and 3.10 (SD 0.86), respectively. In ANOVA models for the scores on each of the scales (anatomy, colour contrast, overall quality and suitability for operating), the effects of rater and patient were highly significant (P < .0005) but light intensity was non-significant (P = .34, .32, .21, .15, respectively). Images taken during surgery by our endoscope and operative camera have no loss of quality when taken at lower light intensities. We recommend the surgeon considers use of lower light intensities in endoscopic ear surgery. © 2018 John Wiley & Sons Ltd.

  4. Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.

  5. 'In a dark place, we find ourselves': light intensity in critical care units.

    PubMed

    Durrington, Hannah J; Clark, Richard; Greer, Ruari; Martial, Franck P; Blaikley, John; Dark, Paul; Lucas, Robert J; Ray, David W

    2017-12-01

    Intensive care units provide specialised care for critically ill patients around the clock. However, intensive care unit patients have disrupted circadian rhythms. Furthermore, disrupted circadian rhythms are associated with worse outcome. As light is the most powerful 're-setter' of circadian rhythm, we measured light intensity on intensive care unit. Light intensity was low compared to daylight during the 'day'; frequent bright light interruptions occurred over 'night'. These findings are predicted to disrupt circadian rhythms and impair entrainment to external time. Bright lighting during daytime and black out masks at night might help maintain biological rhythms in critically ill patients and improve clinical outcomes.

  6. Observation of the enhanced backscattering of light by the end of a tilted dielectric cylinder owing to the caustic merging transition

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Yibing; Thiessen, David B.

    2003-01-01

    The scattering of light by obliquely illuminated circular dielectric cylinders was previously demonstrated to be enhanced by a merger of Airy caustics at a critical tilt angle. [Appl. Opt. 37, 1534 (1998)]. A related enhancement is demonstrated here for backward and near-backward scattering for cylinders cut with a flat end perpendicular to the cylinder's axis. It is expected that merged caustics will enhance the backscattering by clouds of randomly oriented circular cylinders that have appropriately flat ends.

  7. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  8. Accuracy of intensity and inclinometer output of three activity monitors for identification of sedentary behavior and light-intensity activity.

    PubMed

    Carr, Lucas J; Mahar, Matthew T

    2012-01-01

    Purpose. To examine the accuracy of intensity and inclinometer output of three physical activity monitors during various sedentary and light-intensity activities. Methods. Thirty-six participants wore three physical activity monitors (ActiGraph GT1M, ActiGraph GT3X+, and StepWatch) while completing sedentary (lying, sitting watching television, sitting using computer, and standing still) light (walking 1.0 mph, pedaling 7.0 mph, pedaling 15.0 mph) intensity activities under controlled settings. Accuracy for correctly categorizing intensity was assessed for each monitor and threshold. Accuracy of the GT3X+ inclinometer function (GT3X+Incl) for correctly identifying anatomical position was also assessed. Percentage agreement between direct observation and the monitor recorded time spent in sedentary behavior and light intensity was examined. Results. All monitors using all thresholds accurately identified over 80% of sedentary behaviors and 60% of light-intensity walking time based on intensity output. The StepWatch was the most accurate in detecting pedaling time but unable to detect pedal workload. The GT3X+Incl accurately identified anatomical position during 70% of all activities but demonstrated limitations in discriminating between activities of differing intensity. Conclusions. Our findings suggest that all three monitors accurately measure most sedentary and light-intensity activities although choice of monitors should be based on study-specific needs.

  9. A digital instrument for nondestructive measurements of coating thicknesses by beta backscattering

    NASA Astrophysics Data System (ADS)

    Farcasiu, D. M.; Apostolescu, T.; Bozdog, H.; Badescu, E.; Bohm, V.; Stanescu, S. P.; Jianu, A.; Bordeanu, C.; Cracium, M. V.

    1992-02-01

    The elements of nondestructive gauging of coatings applied on various metal bases are presented. The intensity of the backscattered beta radiations is related to the thickness of the coating. With a fixed measuring geometry and radioactive sources (147Pm, 204Tl, 90Sr+90Y) the intensity of the backscattered beta particles is dependent on the following parameters: coating thickness, atomic number of the coating material and of the base, the beta particle energy and the surface finish. It can be used for the measurement of a wide range of coating thicknesses provided that the difference between the coating and the support atomic numbers is at least 20%. Fields of application include electronics, electrotechnique and so on.

  10. Light intensity and the oestrous cycle in albino and normally pigmented mice.

    PubMed

    Donnelly, H; Saibaba, P

    1993-10-01

    The effects of light intensity (15-20 lux & 220-290 lux) on the oestrous cycle of albino and normally pigmented mice were examined. The oestrous cycle of both types of mice was shorter at the lower intensity but the difference was significant only with the black mice. The proportion of albino mice from which embryos were recovered was significantly smaller than the proportion of black mice at 15-20 lux but not at 220-290 lux. No significant differences due to strain or light intensity were found in the number of embryos recovered. We conclude that pigmented mice respond in the same way as albino mice to changes in light intensity within the range normally found in laboratory animal accommodation. That is, increased light intensity prolongs the oestrous cycle and the period of vaginal cornification.

  11. Characteristic Analysis Light Intensity Sensor Based On Plastic Optical Fiber At Various Configuration

    NASA Astrophysics Data System (ADS)

    Arifin, A.; Lusiana; Yunus, Muhammad; Dewang, Syamsir

    2018-03-01

    This research discusses the light intensity sensor based on plastic optical fiber. This light intensity sensor is made of plastic optical fiber consisting of two types, namely which is cladding and without cladding. Plastic optical fiber used multi-mode step-index type made of polymethyl metacrylate (PMMA). The infrared LED emits light into the optical fiber of the plastic and is subsequently received by the phototransistor to be converted to an electric voltage. The sensor configuration is made with three models: straight configuration, U configuration and gamma configuration with cladding and without cladding. The measured light source uses a 30 Watt high power LED with a light intensity of 0 to 10 Klux. The measured light intensity will affect the propagation of light inside the optical fiber sensor. The greater the intensity of the measured light, the greater the output voltage that is read on the computer. The results showed that the best optical fiber sensor characteristics were obtained in U configuration. Sensors with U-configuration without cladding had the best sensitivity and resolution values of 0.0307 volts/Klux and 0.0326 Klux. The advantages of this measuring light intensity based on the plastic optical fiber instrument are simple, easy-to-make operational systems, low cost, high sensitivity and resolution.

  12. Improved detection and mapping of deepwater hydrocarbon seeps: optimizing multibeam echosounder seafloor backscatter acquisition and processing techniques

    NASA Astrophysics Data System (ADS)

    Mitchell, Garrett A.; Orange, Daniel L.; Gharib, Jamshid J.; Kennedy, Paul

    2018-06-01

    Marine seep hunting surveys are a current focus of hydrocarbon exploration surveys due to recent advances in offshore geophysical surveying, geochemical sampling, and analytical technologies. Hydrocarbon seeps are ephemeral, small, discrete, and therefore difficult to sample on the deep seafloor. Multibeam echosounders are an efficient seafloor exploration tool to remotely locate and map seep features. Geophysical signatures from hydrocarbon seeps are acoustically-evident in bathymetric, seafloor backscatter, midwater backscatter datasets. Interpretation of these signatures in backscatter datasets is a fundamental component of commercial seep hunting campaigns. Degradation of backscatter datasets resulting from environmental, geometric, and system noise can interfere with the detection and delineation of seeps. We present a relative backscatter intensity normalization method and an oversampling acquisition technique that can improve the geological resolvability of hydrocarbon seeps. We use Green Canyon (GC) Block 600 in the Northern Gulf of Mexico as a seep calibration site for a Kongsberg EM302 30 kHz MBES prior to the start of the Gigante seep hunting program to analyze these techniques. At GC600, we evaluate the results of a backscatter intensity normalization, assess the effectiveness of 2X seafloor coverage in resolving seep-related features in backscatter data, and determine the off-nadir detection limits of bubble plumes using the EM302. Incorporating these techniques into seep hunting surveys can improve the detectability and sampling of seafloor seeps.

  13. Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light1[OPEN

    PubMed Central

    Suorsa, Marjaana; Rantala, Marjaana; Aro, Eva-Mari

    2015-01-01

    Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, PROTON GRADIENT REGULATION5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery. PMID:25902812

  14. LED intense headband light source for fingerprint analysis

    DOEpatents

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  15. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  16. Sidescan backscatter variations of cold seeps on the Hikurangi Margin (New Zealand): indications for different stages in seep development

    NASA Astrophysics Data System (ADS)

    Dumke, Ines; Klaucke, Ingo; Berndt, Christian; Bialas, Jörg

    2014-06-01

    Cold seeps on the Hikurangi Margin off New Zealand exhibit various seabed morphologies producing different intensity patterns in sidescan backscatter images. Acoustic backscatter characteristics of 25 investigated seep sites fall into four distinct types characterised by variations in backscatter intensity, distribution and inferred structural heights. The types reflect different carbonate morphologies including up to 20-m-high structures (type 1), low-relief crusts (type 2), scattered blocks (type 3) and carbonate-free sites (type 4). Each seep corresponds to a single type; intermediates were not observed. This correlates well with published data on seep fauna at each site, with the four types representing three different faunal habitats of successive stages of seep development. Backscatter signatures in sidescan sonar images of cold seeps may therefore serve as a convenient proxy for variations in faunal habitats.

  17. Measuring Ultrasonic Backscatter in the Presence of Nonlinear Propagation

    NASA Astrophysics Data System (ADS)

    Stiles, Timothy; Guerrero, Quinton

    2011-11-01

    A goal of medical ultrasound is the formation of quantitative ultrasound images in which contrast is determined by acoustic or physical properties of tissue rather than relative echo amplitude. Such images could greatly enhance early detection of many diseases, including breast cancer and liver cirrhosis. Accurate determination of the ultrasonic backscatter coefficient from patients remains a difficult task. One reason for this difficulty is the inherent nonlinear propagation of ultrasound at high intensities used for medical imaging. The backscatter coefficient from several tissue-mimicking samples were measured using the planar reflector method. In this method, the power spectrum from a sample is compared to the power spectrum of an optically flat sample of quartz. The results should be independent of incident pressure amplitude. Results demonstrate that backscatter coefficients can vary by more than an order of magnitude when ultrasound pressure varies from 0.1 MPa to 1.5 MPa at 5.0 MHz. A new method that incorporates nonlinear propagation is proposed to explain these discrepancies.

  18. Stolephorus sp Behavior in Different LED (Light Emitting Diode) Color and Light Intensities

    NASA Astrophysics Data System (ADS)

    Fitri Aristi, D. P.; Ramadanita, I. A.; Hapsari, T. D.; Susanto, A.

    2018-02-01

    This research aims to observe anchovy (Stolephorus sp) behavior under different LED light intensities that affect eye physiology (cell cone structure). The materials used were Stolephorus sp taken from the waters off Jepara and 13 and 10 watt light emitting diode (LED). The research method was an experiment conducted from March through August 2015 in the waters off Jepara. Data analysis of visual histology and fish respond was carried out at the fishing gear material laboratory, anatomy and cultivate. Cone cell structure (mosaic cone) of Stolephorus sp forms a connected regular square pattern with every single cone surrounded by four double cones, which indicate that anchovies are sensitive to light. The 13 watt LED (628 lux) has faster response than the 10 watt LED (531 lux) as it has wider and higher emitting intensity, which also attracts fish to gather quicker.

  19. Current Trends in Intense Pulsed Light

    PubMed Central

    2012-01-01

    Intense pulsed light technologies have evolved significantly since their introduction to the medical community 20 years ago. Now such devices can be used safely and effectively for the cosmetic treatment of many vascular lesions, unwanted hair, and pigmented lesions. Newer technologies often give results equal to those of laser treatments. PMID:22768357

  20. Time-resolved two-window measurement of Wigner functions for coherent backscatter from a turbid medium

    NASA Astrophysics Data System (ADS)

    Reil, Frank; Thomas, John E.

    2002-05-01

    For the first time we are able to observe the time-resolved Wigner function of enhanced backscatter from a random medium using a novel two-window technique. This technique enables us to directly verify the phase-conjugating properties of random media. An incident divergent beam displays a convergent enhanced backscatter cone. We measure the joint position and momentum (x, p) distributions of the light field as a function of propagation time in the medium. The two-window technique allows us to independently control the resolutions for position and momentum, thereby surpassing the uncertainty limit associated with Fourier transform pairs. By using a low-coherence light source in a heterodyne detection scheme, we observe enhanced backscattering resolved by path length in the random medium, providing information about the evolution of optical coherence as a function of penetration depth in the random medium.

  1. Behavioral and physiological photoresponses to light intensity by intertidal microphytobenthos

    NASA Astrophysics Data System (ADS)

    Du, Guoying; Yan, Hongmei; Liu, Chunrong; Mao, Yunxiang

    2018-03-01

    Behavioral and physiological responses to light are the two major mechanisms by which natural microphytobenthic assemblages adapt to the intertidal environment and protect themselves from light stress. The present study investigated these photoresponses with different light intensities over 8 h of illumination, and used a specific inhibitor (Latrunculin A, Lat A) for migration to compare migratory and non-migratory microphytobenthos (MPB). Photosynthetic activity was detected using rapid light curves and induction curves by chlorophyll fluorescence. It showed distinct variation in migratory responses to different light intensities; high light induced downward migration to avoid photoinhibition, and low and medium light (50-250 μmol/(m2·s)) promoted upward migration followed by downward migration after certain period of light exposure. No significant difference in non-photochemical quenching (NPQ) or PSII maximal quantum yield ( F v/ F m) was detected between low and medium light irradiance, possibly indicating that only high light influences the photosynthetic capability of MPB. Decreased photosynthetic activity, indicated by three parameters, the maximum relative electron transport rate (rETR max), minimum saturating irradiance ( E k) and light utilization coefficient ( α), was observed in MPB after exposure to prolonged illumination under low and medium light. Lat A effectively inhibited the migration of MPB in all light treatments and induced lower F v/ F m under high light (500 and 100 μmol/(m2·s)) and prolonged illumination at 250 μmol/(m2·s), but did not significantly influence F v/ F m under low light (0-100 μmol/(m2·s)) or NPQ. The increase of NPQ in Lat A treatments with time implied that the MPB assemblages can recover their physiological photoprotection capacity to adapt to light stress. Non-migratory MPB exhibited lower light use efficiency (lower α) and lower maximum photosynthetic capacity (lower rETR max) than migratory MPB under light

  2. Microbial alignment in flow changes ocean light climate.

    PubMed

    Marcos; Seymour, Justin R; Luhar, Mitul; Durham, William M; Mitchell, James G; Macke, Andreas; Stocker, Roman

    2011-03-08

    The growth of microbial cultures in the laboratory often is assessed informally with a quick flick of the wrist: dense suspensions of microorganisms produce translucent "swirls" when agitated. Here, we rationalize the mechanism behind this phenomenon and show that the same process may affect the propagation of light through the upper ocean. Analogous to the shaken test tubes, the ocean can be characterized by intense fluid motion and abundant microorganisms. We demonstrate that the swirl patterns arise when elongated microorganisms align preferentially in the direction of fluid flow and alter light scattering. Using a combination of experiments and mathematical modeling, we find that this phenomenon can be recurrent under typical marine conditions. Moderate shear rates (0.1 s(-1)) can increase optical backscattering of natural microbial assemblages by more than 20%, and even small shear rates (0.001 s(-1)) can increase backscattering from blooms of large phytoplankton by more than 30%. These results imply that fluid flow, currently neglected in models of marine optics, may exert an important control on light propagation, influencing rates of global carbon fixation and how we estimate these rates via remote sensing.

  3. Lead paint removal with high-intensity light pulses.

    PubMed

    Grapperhaus, Michael J; Schaefer, Raymond B

    2006-12-15

    This paper presents the results of an initial investigation into using high-intensity incoherent light pulses to strip paint. Measurements of light pulse characteristics, the reflectivity of different paints and initial experiments on the threshold for paint removal, and paint removal are presented, along with an approximate model consistent with experimental results. Paint removal tests include lead paint, the reduction of lead levels to below levels required for lead abatement, as well as air and light emissions measurements that are within regulatory guidelines.

  4. Infrared backscattering

    NASA Technical Reports Server (NTRS)

    Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito

    1989-01-01

    All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.

  5. Experimental effective intensity of steady and flashing light emitting diodes for aircraft anti-collision lighting.

    DOT National Transportation Integrated Search

    2013-08-01

    Research was conducted to determine the effective intensity of flashing lights that incorporate light-emitting diodes (LEDs). LEDs require less power and have the ability to flash without the addition of moving parts. Compared with incandescent bulbs...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)

  7. Monte Carlo simulation for coherent backscattering with diverging illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Wenli; Radosevich, Andrew J.; Eshein, Adam; Nguyen, The-Quyen; Backman, Vadim

    2016-03-01

    Diverging beam illumination is widely used in many optical techniques especially in fiber optic applications and coherence phenomenon is one of the most important properties to consider for these applications. Until now, people have used Monte Carlo simulations to study the backscattering coherence phenomenon in collimated beam illumination only. We are the first one to study the coherence phenomenon under the exact diverging beam geometry by taking into account the impossibility of the existence for the exact time-reversed path pairs of photons, which is the main contribution to the backscattering coherence pattern in collimated beam. In this work, we present a Monte Carlo simulation that considers the influence of the illumination numerical aperture. The simulation tracks the electric field for the unique paths of forward path and reverse path in time-reversed pairs of photons as well as the same path shared by them. With this approach, we can model the coherence pattern formed between the pairs by considering their phase difference at the collection plane directly. To validate this model, we use the Low-coherence Enhanced Backscattering Spectroscopy, one of the instruments looking at the coherence pattern using diverging beam illumination, as the benchmark to compare with. In the end, we show how this diverging configuration would significantly change the coherent pattern under coherent light source and incoherent light source. This Monte Carlo model we developed can be used to study the backscattering phenomenon in both coherence and non-coherence situation with both collimated beam and diverging beam setups.

  8. Variation in light intensity with height and time from subsequent lightning return strokes

    NASA Technical Reports Server (NTRS)

    Jordan, D. M.; Uman, M. A.

    1983-01-01

    Photographic measurements of relative light intensity as a function of height and time have been conducted for seven return strokes in two lightning flashes at 7.8 and 8.7 km ranges, using film which possesses an approximately constant spectral response in the 300-670 nm range. The amplitude of the initial light peak is noted to decrease exponentially with height, with a decay constant of 0.6-0.8 km. The logarithm of the peak light intensity near the ground is found to be approximately proportional to the initial peak electric field intensity, implying that the current decrease with height may be much slower than the light decrease. Absolute light intensity is presently estimated through the integration of the photographic signals from individual channel segments, in order to simulate the calibrated, all-sky photoelectric data of Guo and Krider (1982).

  9. Light-intensity and high-intensity interval training improve cardiometabolic health in rats.

    PubMed

    Batacan, Romeo B; Duncan, Mitch J; Dalbo, Vincent J; Connolly, Kylie J; Fenning, Andrew S

    2016-09-01

    Physical activity has the potential to reduce cardiometabolic risk factors but evaluation of different intensities of physical activity and the mechanisms behind their health effects still need to be fully established. This study examined the effects of sedentary behaviour, light-intensity training, and high-intensity interval training on biometric indices, glucose and lipid metabolism, inflammatory and oxidative stress markers, and vascular and cardiac function in adult rats. Rats (12 weeks old) were randomly assigned to 1 of 4 groups: control (CTL; no exercise), sedentary (SED; no exercise and housed in small cages to reduce activity), light-intensity trained (LIT; four 30-min exercise bouts/day at 8 m/min separated by 2-h rest period, 5 days/week), and high-intensity interval trained (HIIT, four 2.5-min work bouts/day at 50 m/min separated by 3-min rest periods, 5 days/week). After 12 weeks of intervention, SED had greater visceral fat accumulation (p < 0.01) and slower cardiac conduction (p = 0.04) compared with the CTL group. LIT and HIIT demonstrated beneficial changes in body weight, visceral and epididymal fat weight, glucose regulation, low-density lipoprotein cholesterol, total cholesterol, and mesenteric vessel contractile response compared with the CTL group (p < 0.05). LIT had significant improvements in insulin sensitivity and cardiac conduction compared with the CTL and SED groups whilst HIIT had significant improvements in systolic blood pressure and endothelium-independent vasodilation to aorta and mesenteric artery compared with the CTL group (p < 0.05). LIT and HIIT induce health benefits by improving traditional cardiometabolic risk factors. LIT improves cardiac health while HIIT promotes improvements in vascular health.

  10. Microemulsion characterization by the use of a noninvasive backscatter fiber optic probe

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Cheung, H. M.; Meyer, William V.

    1993-01-01

    This paper demonstrates the utility of a noninvasive backscatter fiber optic probe for dynamic light-scattering characterization of a microemulsion comprising sodium dodecyl sulfate/1-butanol/ brine/heptane. The fiber probe, comprising two optical fibers precisely positioned in a stainless steel body, is a miniaturized and efficient self-beating dynamic light-scattering system. Accuracy of particle size estimation is better than +/- 2 percent.

  11. Experimental results on the enhanced backscatter phenomenon and its dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Nelson, William; Ko, Jonathan; Davis, Christopher C.

    2014-10-01

    Enhanced backscatter effects have long been predicted theoretically and experimentally demonstrated. The reciprocity of a turbulent channel generates a group of paired rays with identical trajectory and phase information that leads to a region in phase space with double intensity and scintillation index. Though simulation work based on phase screen models has demonstrated the existence of the phenomenon, few experimental results have been published describing its characteristics, and possible applications of the enhanced backscatter phenomenon are still unclear. With the development of commercially available high powered lasers and advanced cameras with high frame rates, we have successfully captured the enhanced backscatter effects from different reflection surfaces. In addition to static observations, we have also tilted and pre-distorted the transmitted beam at various frequencies to track the dynamic properties of the enhanced backscatter phenomenon to verify its possible application in guidance and beam and image correction through atmospheric turbulence. In this paper, experimental results will be described, and discussions on the principle and applications of the phenomenon will be included. Enhanced backscatter effects are best observed in certain levels of turbulence (Cn 2≍10-13 m-2/3), and show significant potential for providing self-guidance in beam correction that doesn't introduce additional costs (unlike providing a beacon laser). Possible applications of this phenomenon include tracking fast moving object with lasers, long distance (>1km) alignment, and focusing a high-power corrected laser beam over long distances.

  12. Lower light intensity reduces larval aggression in matrinxã, Brycon amazonicus.

    PubMed

    Lopes, Ana Caroliny C; Villacorta-Correa, Marle Angélica; Carvalho, Thaís B

    2018-06-01

    Brycon amazonicus shows a high frequency of aggressive behavior, which can be a limiting factor in intensive farming systems. Environmental changes can modulate the social interactions of fish and reduce aggression during the different stages of production. Groups of three larvae at 12 h after hatching (HAH) were subjected to different levels of light intensity: low (17 ± 3 lx), intermediate (204 ± 12.17 lx) and high (1,613.33 ± 499.03 lx), with eight replicates for each level. The lower light intensity reduced the frequency of aggressive interactions and locomotor activity exhibited by the animals. Based on these results, light intensity modulates aggression in B. amazonicus larvae. Manipulation of this factor could improve the social conditions of this species during farming and contribute to the development of new production technologies. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.

    PubMed

    Cui, Liping; Knox, Wayne H

    2010-01-01

    Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.

  14. Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp.

    PubMed

    Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang

    2014-02-01

    A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.

  15. 14 CFR 23.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... prescribed in this section must be provided by new equipment with each light cover and color filter in place... clarity. When the peak intensity of the left and right position lights is more than 100 candles, the... the right and left of the axis of maximum illumination. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as...

  16. Assessing backscatter change due to backscatter gradient over the Greenland ice sheet using Envisat and SARAL altimetry

    NASA Astrophysics Data System (ADS)

    Su, Xiaoli; Luo, Zhicai; Zhou, Zebing

    2018-06-01

    Knowledge of backscatter change is important to accurately retrieve elevation change time series from satellite radar altimetry over continental ice sheets. Previously, backscatter coefficients generated in two cases, namely with and without accounting for backscatter gradient (BG), are used. However, the difference between backscatter time series obtained separately in these two cases and its impact on retrieving elevation change are not well known. Here we first compare the mean profiles of the Ku and Ka band backscatter over the Greenland ice sheet (GrIS), with results illustrating that the Ku-band backscatter is 3 ∼ 5 dB larger than that of the Ka band. We then conduct statistic analysis about time series of backscatter formed separately in the above two cases for both Ku and Ka bands over two regions in the GrIS. It is found that the standard deviation of backscatter time series becomes slightly smaller after removing the BG effect, which suggests that the method for the BG correction is effective. Furthermore, the impact on elevation change from backscatter change due to the BG effect is separately assessed for both Ku and Ka bands over the GrIS. We conclude that Ka band altimetry would benefit from a BG induced backscatter analysis (∼10% over region 2). This study may provide a reference to form backscatter time series towards refining elevation change time series from satellite radar altimetry over ice sheets using repeat-track analysis.

  17. Light-intensity physical activity is associated with insulin resistance in elderly Japanese women independent of moderate-to vigorous-intensity physical activity.

    PubMed

    Gando, Yuko; Murakami, Haruka; Kawakami, Ryoko; Tanaka, Noriko; Sanada, Kiyoshi; Tabata, Izumi; Higuchi, Mitsuru; Miyachi, Motohiko

    2014-02-01

    It is unclear whether light physical activity is beneficially associated with insulin resistance, similar to moderate and/or vigorous physical activity. This cross-sectional study was performed to determine the relationship between the amount of light physical activity, as determined with a triaxial accelerometer, and insulin resistance. A total of 807 healthy men and women participated in this study. Physical activity was measured using a triaxial accelerometer worn for 28 days and summarized as light intensity (1.1-2.9 METs) or moderate to vigorous intensity (≥ 3.0 METs). Insulin resistance was evaluated by HOMA_R (FPG [mg/dL] × IRI [μU/mL]/405). The daily time spent in light physical activity was inversely associated with HOMA_R (r = -0.173, P < 0.05). After adjustment for confounders, the association between light physical activity and HOMA_R remained statistically significant (β = -0.119, P < .05). Light physical activity remained significantly associated with HOMA_R following further adjustment for moderate to vigorous intensity activity (β = -0.125, P < .05). Similar results were observed when light physical activity was modeled as quartiles, especially in elderly women. These cross-sectional data suggest that light-intensity physical activity is beneficially associated with insulin resistance in elderly Japanese women.

  18. Monte Carlo simulations of coherent backscatter for identification of the optical coefficients of biological tissues in vivo

    NASA Astrophysics Data System (ADS)

    Eddowes, M. H.; Mills, T. N.; Delpy, D. T.

    1995-05-01

    A Monte Carlo model of light backscattered from turbid media has been used to simulate the effects of weak localization in biological tissues. A validation technique is used that implies that for the scattering and absorption coefficients and for refractive index mismatches found in tissues, the Monte Carlo method is likely to provide more accurate results than the methods previously used. The model also has the ability to simulate the effects of various illumination profiles and other laboratory-imposed conditions. A curve-fitting routine has been developed that might be used to extract the optical coefficients from the angular intensity profiles seen in experiments on turbid biological tissues, data that could be obtained in vivo.

  19. Determination of the force constant of a single-beam gradient trap by measurement of backscattered light

    NASA Astrophysics Data System (ADS)

    Friese, M. E. J.; Rubinsztein-Dunlop, H.; Heckenberg, N. R.; Dearden, E. W.

    1996-12-01

    A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1 4- m-diameter polystyrene spheres in a single-beam gradient trap using measurements of backscattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10 6 and 4 10 6 N m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction.

  20. Lighting design in the neonatal intensive care unit: practical applications of scientific principles.

    PubMed

    White, Robert D

    2004-06-01

    Meeting the varied lighting needs of infants, caregivers, and families has become more complex as our understanding of visual development and perception and the effect of light on circadian rhythms advances. Optimal lighting strategies are discussed for new unit construction, as well as modifications to consider for existing units. In either case, the key concept is that lighting should be provided for the individual needs of each person, rather than the full-room lighting schemes previously used. Ideas gleaned from nonhospital settings, re-introduction of natural light into the neonatal intensive care unit, and new devices such as light-emitting diodes will dramatically change the lighting and visual environment of future neonatal intensive care units.

  1. Cockpit noise intensity : eleven twin-engine light aircraft.

    DOT National Transportation Integrated Search

    1968-10-01

    Eleven of the most popular twin-engine general-aviation light aircraft were tested for the noise intensity present during normal cruising operations at 2000, 6000, and 10000 feet MSL (mean sea level). Although generally quieter than single-engine pla...

  2. Design of Automatic Intensity Varying Smart Street Lighting System

    NASA Astrophysics Data System (ADS)

    Gupta, Ashutosh; Gupta, Shipra

    2017-08-01

    The paper is proposed with an aim of power conservation. In this era of development, it is essential to develop a streetlight that turns on and off automatically without human interference. To achieve this light sensor have been placed in each panel which turns the street light on and off automatically. For energy conservation cool-white LED’s have been used in street light panel and dimmer modules have been installed which changes the intensity of the streetlight depending on the darkness.

  3. The effect of infection-control barriers on the light intensity of light-cure units and depth of cure of composite.

    PubMed

    Hodson, Nicholas A; Dunne, Stephen M; Pankhurst, Caroline L

    2005-04-01

    Dental curing lights are vulnerable to contamination with oral fluids during routine intra-oral use. This controlled study aimed to evaluate whether or not disposable transparent barriers placed over the light-guide tip would affect light output intensity or the subsequent depth of cure of a composite restoration. The impact on light intensity emitted from high-, medium- and low-output light-cure units in the presence of two commercially available disposable infection-control barriers was evaluated against a no-barrier control. Power density measurements from the three intensity light-cure units were recorded with a radiometer, then converted to a digital image using an intra-oral camera and values determined using a commercial computer program. For each curing unit, the measurements were repeated on ten separate occasions with each barrier and the control. Depth of cure was evaluated using a scrape test in a natural tooth model. At each level of light output, the two disposable barriers produced a significant reduction in the mean power density readings compared to the no-barrier control (P<0.005). The cure sleeve inhibited light output to a greater extent than either the cling film or the control (P<0.005). Only composite restorations light-activated by the high level unit demonstrated a small but significant decrease in the depth of cure compared to the control (P<0.05). Placing disposable barriers over the light-guide tip reduced the light intensity from all three curing lights. There was no impact on depth of cure except for the high-output light, where a small decrease in cure depth was noted but this was not considered clinically significant. Disposable barriers can be recommended for use with light-cure lights.

  4. Cockpit noise intensity : fifteen single-engine light aircraft.

    DOT National Transportation Integrated Search

    1968-09-01

    Fifteen of the most popular single-engine general-aviation light aircraft were tested for the noise intensity present during normal cruising operations at 2000, and 10,000 feet MSL (mean sea level). In comparison with currently accepted DRC (damage-r...

  5. The anomalous depolarization anisotropy in the central backscattering area for turbid medium with Mie scatterers

    NASA Astrophysics Data System (ADS)

    Wang, Xuezhen; Lai, Jiancheng; Song, Yang; Li, Zhenhua

    2018-05-01

    It is generally recognized that circularly polarized light is preferentially maintained over linearly polarized light in turbid medium with Mie scatterers. However, in this work, the anomalous depolarization anisotropy is reported in the backscattering area near the point of illumination. Both experimental and Monte Carlo simulations show preferential retention of linear polarization states compared to circular polarization states in a specific backscattering area. Further analysis indicates that the anomalous depolarization behavior in the specific area is induced by lateral scattering events, which own low circular polarization memory. In addition, it is also found that the size of the anomalous depolarization area is related to the transport mean free path of the turbid medium.

  6. Extraordinary variation of pump light intensity inside a four-level solid-state laser medium

    NASA Astrophysics Data System (ADS)

    Qin, Hua; Fu, Rulian; Wang, Zhaoqi; Liu, Juan

    2008-08-01

    A theoretical investigation of the absorption of the pump light at different intensities through a four-level solid-state laser medium is presented. It is found that the variation of the pump intensity inside the laser medium cannot always simply be dominated by Beer's law. Transmission of the pump light through this laser medium is closely related to the pump intensity itself. In fact, when the pump intensity is relatively low, whose values depend on the characteristics of the medium, the variation of the pump light through the laser medium is consistent with Beer's law. However, while the pump intensity is high enough, the relationship between the transmission of the pump light and its propagation distance is demonstrated to be linear. These theoretical results have been confirmed by the experiment with a medium of YAG:Nd.

  7. Seafloor Characterization from Spatial Variation of Multibeam Backscatter vs. Grazing Angle

    NASA Astrophysics Data System (ADS)

    hou, T.

    2001-12-01

    the asymmetric and skew effects. In order to easily evaluate the spatial variation of the backscatter vs. grazing angle, a graphic interface was developed. With a mouse click, the images based on different subsets of the data can be compared throughout the survey area. The subsets were created using specific beam numbers. These images for different beams show significant variations between nadir and off-nadir beams. These variations allow an interesting interpretation to be made of the images in light of seafloor characteristics, which were derived from ground truth data, such as sediment grain size, density and velocity.

  8. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    NASA Astrophysics Data System (ADS)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  9. Estimation of effective day length at any light intensity using solar radiation data.

    PubMed

    Yokoya, Masana; Shimizu, Hideyasu

    2011-11-01

    The influence of day length on living creatures differs with the photosensitivity of the creature; however, the possible sunshine duration (N(0)) might be an inadequate index of the photoperiod for creatures with low light sensitivity. To address this issue, the authors tried to estimate the effective day length, i.e., the duration of the photoperiod that exceeds a certain threshold of light intensity. Continual global solar radiation observation data were gathered from the baseline surface radiation network (BSRN) of 18 sites from 2004 to 2007 and were converted to illuminance data using a luminous efficiency model. The monthly average of daily photoperiods exceeding each defined intensity (1 lx, 300 lx, … 20,000 lx) were calculated [defined as Ne(() (lux) ())]. The relationships between the monthly average of global solar radiation (Rs), N(0), and Ne(() (lux) ()) were investigated. At low light intensity (<500 lx), Ne(() (lux) ()) were almost the same as N(0). At high light intensity (>10,000 lx), Ne(() (lux) ()) and Rs showed a logarithmic relationship. Using these relationships, empirical models were derived to estimate the effective day length at different light intensities. According to the validation of the model, the effective day length for any light intensity could be estimated with an accuracy of less than 11% of the mean absolute percentage error (MAPE) in the estimation of the monthly base photoperiod. Recently, a number of studies have provided support for a link between day length and some diseases. Our results will be useful in further assessing the relationships between day length and these diseases.

  10. Switchable and non-switchable zero backscattering of dielectric nano-resonators

    DOE PAGES

    Wang, Feng; Wei, Qi -Huo; Htoon, Han

    2015-02-27

    Previous studies have shown that two-dimensional (2D) arrays of high-permittivity dielectric nanoparticles are capable of fully suppressing backward light scattering when the resonant frequencies of electrical and magnetic dipolar modes are coincident. In this paper, we numerically demonstrate that the zero-backscattering of 2D Si nanocuboid arrays can be engineered to be switchable or non-switchable in response to a variation in the environmental refractive index. For each cuboid width/length, there exist certain cuboid heights and orthogonal periodicity ratio for which the electrical and magnetic resonances exhibit similar spectra widths and equivalent sensitivities to the environmental index changes, so that the zero-backscatteringmore » is non-switchable upon environmental change. For some other cuboid heights and certain anisotropic periodicity ratios, the electric and magnetic modes exhibit different sensitivities to environmental index changes, making the zero-backscattering sensitive to environmental changes. We also show that by using two different types of nano-resonators in the unit cell, Fano resonances can be introduced to greatly enhance the switching sensitivity of zero-backscattering.« less

  11. Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension

    NASA Astrophysics Data System (ADS)

    Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.

    2016-06-01

    A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.

  12. Adjustable long duration high-intensity point light source

    NASA Astrophysics Data System (ADS)

    Krehl, P.; Hagelweide, J. B.

    1981-06-01

    A new long duration high-intensity point light source with adjustable light duration and a small light spot locally stable in time has been developed. The principle involved is a stationary high-temperature plasma flow inside a partly constrained capillary of a coaxial spark gap which is viewed end on through a terminating Plexiglas window. The point light spark gap is operated via a resistor by an artificial transmission line. Using two exchangeable inductance sets in the line, two ranges of photoduration 10-130 μs and 100-600 μs can be covered. For a light spot size of 1.5 mm diameter the corresponding peak light output amounts to 5×106 and 1.6×106 candelas, respectively. Within these ranges the duration is controlled by an ignitron crowbar to extinguish the plasma. The adjustable photoduration is very useful for the application of continuous writing rotating mirror cameras, thus preventing multiple exposures. The essentially uniform exposure within the visible spectral range makes the new light source suitable for color cinematography.

  13. 14 CFR 23.1393 - Minimum intensities in any vertical plane of position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in any vertical plane... CATEGORY AIRPLANES Equipment Lights § 23.1393 Minimum intensities in any vertical plane of position lights... above or below the horizontal plane Intensity, l 0° 1.00 0° to 5° 0.90 5° to 10° 0.80 10° to 15° 0.70 15...

  14. 14 CFR 23.1391 - Minimum intensities in the horizontal plane of position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in the horizontal plane of position lights. 23.1391 Section 23.1391 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Equipment Lights § 23.1391 Minimum intensities in the horizontal plane of position...

  15. Light colour and intensity alters reproductive/seasonal responses in Japanese quail.

    PubMed

    Yadav, Suneeta; Chaturvedi, Chandra Mohini

    2015-08-01

    An extensive literature is available on the photoperiodic responses of avian species but studies on light colour and wavelength from light emitting diode (LED) sources on reproduction are limited. Hence, an experiment was designed to study the effect of different colours and intensities of light on the reproductive responses of Japanese quail. Three-week old quail were exposed to five different light conditions with a long photoperiod (LD 16:8): WT (white fluorescent light 100 lux as control), W LED (white light emitting diode, 30 lux), B LED (blue LED, 30 lux), G LED (green LED, 30 lux) and R-LED (red LED, 30 lux). The cloacal gland size, an indicator of androgenic activity, was monitored weekly. The results indicated an early initiation of gonadal growth in WT quail which continued and maintained a plateau throughout the period of study. On the other hand, in general low intensity light, there was a decreased amplitude of the reproductive cycle and the quail exposed to different colour lights (green, red and blue lights) used different incubation times to initiate their gonadal growth and exhibited a gonadal cycle of a different duration up to 15.5 weeks. Thereafter, the gonad of quail of all the LED groups started developing again (including the blue LED exposed quail which remained undeveloped until this age) and attained the increased degree of growth until 26.5 weeks of age. During the second cycle, gonads of green and red light exposed quail continued to increase and maintained a plateau of development similar to WT exposed control while white and blue LED exposed quail exhibited spontaneous regression and attained complete sexual quiescence. Based on our study, it is suggested that long term exposure to blue LED light of low intensity may induce gonadal regression even under long-day conditions (LD 16:8), while exposure to green and red lights appears to maintain a constant photosensitivity after one complete gonadal cycle. Copyright © 2015 Elsevier Inc

  16. Investigating the spectral characteristics of backscattering from heterogeneous spherical nuclei using broadband finite-difference time-domain simulations

    NASA Astrophysics Data System (ADS)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-01-01

    Reflectance spectra measured from epithelial tissue have been used to extract size distribution and refractive index of cell nuclei for noninvasive detection of precancerous changes. Despite many in vitro and in vivo experimental results, the underlying mechanism of sizing nuclei based on modeling nuclei as homogeneous spheres and fitting the measured data with Mie theory has not been fully explored. We describe the implementation of a three-dimensional finite-difference time-domain (FDTD) simulation tool using a Gaussian pulse as the light source to investigate the wavelength-dependent characteristics of backscattered light from a nuclear model consisting of a nucleolus and clumps of chromatin embedded in homogeneous nucleoplasm. The results show that small-sized heterogeneities within the nuclei generate about five times higher backscattering than homogeneous spheres. More interestingly, backscattering spectra from heterogeneous spherical nuclei show periodic oscillations similar to those from homogeneous spheres, leading to high accuracy of estimating the nuclear diameter by comparison with Mie theory. In addition to the application in light scattering spectroscopy, the reported FDTD method could be adapted to study the relations between measured spectral data and nuclear structures in other optical imaging and spectroscopic techniques for in vivo diagnosis.

  17. The role of lasers and intense pulsed light technology in dermatology

    PubMed Central

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  18. Light Intensity is Important for Hydrogen Production in NaHSO3-Treated Chlamydomonas reinhardtii.

    PubMed

    Wei, Lanzhen; Yi, Jing; Wang, Lianjun; Huang, Tingting; Gao, Fudan; Wang, Quanxi; Ma, Weimin

    2017-03-01

    Chlamydomonas reinhardtii is a unicellular green alga that can use light energy to produce H2 from H2O in the background of NaHSO3 treatment. However, the role of light intensity in such H2 production remains elusive. Here, light intensity significantly affected the yield of H2 production in NaHSO3-treated C. reinhardtii, which was consistent with its effects on the content of O2 and the expression and activity of hydrogenase. Further, NaHSO3 was found to be able to remove O2 via a reaction of bisulfite with superoxide anion produced at the acceptor side of PSI, and light intensity affected the reaction rate significantly. Accordingly, high light and strong light but not low light can create an anaerobic environment, which is important to activate hydrogenase and produce H2. Based on the above results, we conclude that light intensity plays an important role in removing O2 and consequently activating hydrogenase and producing H2 in NaHSO3-treated C. reinhardtii. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Differences in the intensity of light-induced fluorescence emitted by resin composites.

    PubMed

    Kim, Bo-Ra; Kang, Si-Mook; Kim, Gyung-Min; Kim, Baek-Il

    2016-03-01

    The aims of this study were to compare the intensities of fluorescence emitted by different resin composites as detected using quantitative light-induced fluorescence (QLF) technology, and to compare the fluorescence intensity contrast with the color contrast between a restored composite and the adjacent region of the tooth. Six brands of light-cured resin composites (shade A2) were investigated. The composites were used to prepare composite discs, and fill holes that had been prepared in extracted human teeth. White-light and fluorescence images of all specimens were obtained using a fluorescence camera based on QLF technology (QLF-D) and converted into 8-bit grayscale images. The fluorescence intensity of the discs as well as the fluorescence intensity contrast and the color contrast between the composite restoration and adjacent tooth region were calculated as grayscale levels. The grayscale levels for the composite discs differed significantly with the brand (p<0.001): DenFil (10.84±0.35, mean±SD), Filtek Z350 (58.28±1.37), Premisa (156.94±1.58), Grandio (177.20±0.81), Charisma (207.05±0.77), and Gradia direct posterior (211.52±1.66). The difference in grayscale levels between a resin restoration and the adjacent tooth was significantly greater in fluorescence images for each brand than in white-light images, except for the Filtek Z350 (p<0.05). However, the Filtek Z350 restoration was distinguishable from the adjacent tooth in a fluorescence image. The intensities of fluorescence detected from the resin composites varied. The differences between the composite and adjacent tooth were greater for the fluorescence intensity contrast than for the colors observed in the white-light images. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Northern Red Oak Seedling Growth Varies by Light Intensity and Seed Source

    Treesearch

    Charles E. McGee

    1968-01-01

    Northern red oak seedlings from each of three seed sources were subjected for one growing season to one of four intensities of light: full light, 70 percent light, 37 percent light, and 8 percent light. Seedlings grown in the open were taller than those grown in the shade and had more, generally heavier leaves. Height and leaf growth decreased as the amount of light...

  1. Advancements in Electromagnetic Wave Backscattering Simulations: Applications in Active Lidar Remote Sensing Involving Aerosols

    NASA Astrophysics Data System (ADS)

    Bi, L.

    2016-12-01

    Atmospheric remote sensing based on the Lidar technique fundamentally relies on knowledge of the backscattering of light by particulate matters in the atmosphere. This talk starts with a review of the current capabilities of electromagnetic wave scattering simulations to determine the backscattering optical properties of irregular particles, such as the backscatterer and depolarization ratio. This will be followed by a discussion of possible pitfalls in the relevant simulations. The talk will then be concluded with reports on the latest advancements in computational techniques. In addition, we summarize the laws of the backscattering optical properties of aerosols with respect to particle geometries, particle sizes, and mixing rules. These advancements will be applied to the analysis of the Lidar observation data to reveal the state and possible microphysical processes of various aerosols.

  2. Effect of Dynamic Light Application on Cognitive Performance and Well-being of Intensive Care Nurses.

    PubMed

    Simons, Koen S; Boeijen, Enzio R K; Mertens, Marlies C; Rood, Paul; de Jager, Cornelis P C; van den Boogaard, Mark

    2018-05-01

    Exposure to bright light has alerting effects. In nurses, alertness may be decreased because of shift work and high work pressure, potentially reducing work performance and increasing the risk for medical errors. To determine whether high-intensity dynamic light improves cognitive performance, self-reported depressive signs and symptoms, fatigue, alertness, and well-being in intensive care unit nurses. In a single-center crossover study in an intensive care unit of a teaching hospital in the Netherlands, 10 registered nurses were randomly divided into 2 groups. Each group worked alternately for 3 to 4 days in patients' rooms with dynamic light and 3 to 4 days in control lighting settings. High-intensity dynamic light was administered through ceiling-mounted fluorescent tubes that delivered bluish white light up to 1700 lux during the daytime, versus 300 lux in control settings. Cognitive performance, self-reported depressive signs and symptoms, fatigue, and well-being before and after each period were assessed by using validated cognitive tests and questionnaires. Cognitive performance, self-reported depressive signs and symptoms, and fatigue did not differ significantly between the 2 light settings. Scores of subjective well-being were significantly lower after a period of working in dynamic light. Daytime lighting conditions did not affect intensive care unit nurses' cognitive performance, perceived depressive signs and symptoms, or fatigue. Perceived quality of life, predominantly in the psychological and environmental domains, was lower for nurses working in dynamic light. © 2018 American Association of Critical-Care Nurses.

  3. Technique for compressing light intensity ranges utilizing a specifically designed liquid crystal notch filter

    DOEpatents

    Rushford, Michael C.

    1988-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten metal in an atomic vapor laser isotope separation (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. To accomplish this, the assembly utilizes the combination of interference filter and a liquid crystal notch filter. The latter which preferably includes a cholesteric liquid crystal arrangement is configured to pass light at all wavelengths, except a relatively narrow wavelength band which defines the filter's notch, and includes means for causing the notch to vary to at least a limited extent with the intensity of light at its light incidence surface.

  4. Light intensity alters the extent of arsenic toxicity in Helianthus annuus L. seedlings.

    PubMed

    Yadav, Geeta; Srivastava, Prabhat Kumar; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2014-06-01

    The present study is aimed at assessing the extent of arsenic (As) toxicity under three different light intensities-optimum (400 μmole photon m(-2) s(-1)), sub-optimum (225 μmole photon m(-2) s(-1)), and low (75 μmole photon m(-2) s(-1))-exposed to Helianthus annuus L. var. DRSF-113 seedlings by examining various physiological and biochemical parameters. Irrespective of the light intensities under which H. annuus L. seedlings were grown, there was an As dose (low, i.e., 6 mg kg(-1) soil, As1; and high, i.e., 12 mg kg(-1) soil, As2)-dependent decrease in all the growth parameters, viz., fresh mass, shoot length, and root length. Optimum light-grown seedlings exhibited better growth performance than the sub-optimum and low light-grown seedlings; however, low light-grown plants had maximum root and shoot lengths. Accumulation of As in the plant tissues depended upon its concentration used, proximity of the plant tissue, and intensity of the light. Greater intensity of light allowed greater assimilation of photosynthates accompanied by more uptake of nutrients along with As from the medium. The levels of chlorophyll a, b, and carotenoids declined with increasing concentrations of As. Seedlings acquired maximum Chl a and b under optimum light which were more compatible to face As1 and As2 doses of As, also evident from the overall status of enzymatic (SOD, POD, CAT, and GST) and non-enzymatic antioxidant (Pro).

  5. Clinical effect of reducing curing times with high-intensity LED lights

    PubMed Central

    Ward, Justin D.; Wolf, Bethany J.; Leite, Luis P.; Zhou, Jing

    2016-01-01

    Objective To evaluate the clinical performance of brackets cured with a high-intensity, light-emitting diode (LED) with a shorter curing time. Materials and Methods Thirty-four patients and a total of 680 brackets were examined using a randomized split-mouth design. The maxillary right and mandibular left quadrants were cured for 6 seconds with a high-intensity LED light (3200 mW/cm2) and the maxillary left and mandibular right quadrants were cured for 20 seconds with a standard-intensity LED light (1200 mW/cm2). Alternating patients had the quadrants inverted for the curing protocol. The number and date of each first-time bracket failure was recorded from 199 to 585 days posttreatment. Results The bracket failure rate was 1.18% for both curing methods. The proportion of bracket failure was not significantly different between curing methods (P = 1.000), genders (P = 1.000), jaws (P = .725), sides (P = .725), or quadrants (P = .547). Posterior teeth exhibited a greater proportion of failures (2.21%) relative to anterior teeth (0.49%), although the difference was not statistically significant (P = .065). Conclusions No difference was found in bond failure rates between the two curing methods. Both methods showed bond failure rates low enough to be considered clinically sufficient. The high-intensity LED light used with a shorter curing time may be considered an advantage due to the reduced chair time. PMID:25760887

  6. Multibeam Sonar Backscatter Data Acquisition and Processing: Guidelines and Recommendations from the GEOHAB Backscatter Working Group

    NASA Astrophysics Data System (ADS)

    Heffron, E.; Lurton, X.; Lamarche, G.; Brown, C.; Lucieer, V.; Rice, G.; Schimel, A.; Weber, T.

    2015-12-01

    Backscatter data acquired with multibeam sonars are now commonly used for the remote geological interpretation of the seabed. The systems hardware, software, and processing methods and tools have grown in numbers and improved over the years, yet many issues linger: there are no standard procedures for acquisition, poor or absent calibration, limited understanding and documentation of processing methods, etc. A workshop organized at the GeoHab (a community of geoscientists and biologists around the topic of marine habitat mapping) annual meeting in 2013 was dedicated to seafloor backscatter data from multibeam sonars and concluded that there was an overwhelming need for better coherence and agreement on the topics of acquisition, processing and interpretation of data. The GeoHab Backscatter Working Group (BSWG) was subsequently created with the purpose of documenting and synthetizing the state-of-the-art in sensors and techniques available today and proposing methods for best practice in the acquisition and processing of backscatter data. Two years later, the resulting document "Backscatter measurements by seafloor-mapping sonars: Guidelines and Recommendations" was completed1. The document provides: An introduction to backscatter measurements by seafloor-mapping sonars; A background on the physical principles of sonar backscatter; A discussion on users' needs from a wide spectrum of community end-users; A review on backscatter measurement; An analysis of best practices in data acquisition; A review of data processing principles with details on present software implementation; and finally A synthesis and key recommendations. This presentation reviews the BSWG mandate, structure, and development of this document. It details the various chapter contents, its recommendations to sonar manufacturers, operators, data processing software developers and end-users and its implication for the marine geology community. 1: Downloadable at https://www.niwa.co.nz/coasts-and-oceans/research-projects/backscatter-measurement-guidelines

  7. Backscattering and Nonparaxiality Arrest Collapse of Damped Nonlinear Waves

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2002-01-01

    The critical nonlinear Schrodinger equation (NLS) models the propagation of intense laser light in Kerr media. This equation is derived from the more comprehensive nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. It is known that if the input power of the laser beam (i.e., L(sub 2) norm of the initial solution) is sufficiently high, then the NLS model predicts that the beam will self-focus to a point (i.e.. collapse) at a finite propagation distance. Mathematically, this behavior corresponds to the formation of a singularity in the solution of the NLS. A key question which has been open for many years is whether the solution to the NLH, i.e., the 'parent' equation, may nonetheless exist and remain regular everywhere, in particular for those initial conditions (input powers) that lead to blowup in the NLS. In the current study, we address this question by introducing linear damping into both models and subsequently comparing the numerical solutions of the damped NLH (boundary-value problem) with the corresponding solutions of the damped NLS (initial-value problem). Linear damping is introduced in much the same way as done when analyzing the classical constant-coefficient Helmholtz equation using the limiting absorption principle. Numerically, we have found that it provides a very efficient tool for controlling the solutions of both the NLH and NHS. In particular, we have been able to identify initial conditions for which the NLS solution does become singular. whereas the NLH solution still remains regular everywhere. We believe that our finding of a larger domain of existence for the NLH than that for the NLS is accounted for by precisely those mechanisms, that have been neglected when deriving the NLS from the NLH, i.e., nonparaxiality and backscattering.

  8. Oil film thickness measurement using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1980-01-01

    The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm-1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

  9. 14 CFR 27.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 27.1395 Section 27.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 27.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...

  10. 14 CFR 25.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 25.1395 Section 25.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 25.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...

  11. 14 CFR 29.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 29.1395 Section 29.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 29.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...

  12. Effects of digital phase-conjugate light intensity on time-reversal imaging through animal tissue.

    PubMed

    Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi

    2018-04-01

    For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.

  13. High Intensity Organic Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  14. Collective stimulated Brillouin backscatter

    NASA Astrophysics Data System (ADS)

    Lushnikov, Pavel; Rose, Harvey

    2007-11-01

    We develop the statistical theory of linear collective stimulated Brillouin backscatter (CBSBS) in spatially and temporally incoherent laser beam. Instability is collective because it does not depend on the dynamics of isolated hot spots (speckles) of laser intensity, but rather depends on averaged laser beam intensity, optic f/#, and laser coherence time, Tc. CBSBS has a much larger threshold than a classical coherent beam's in long-scale-length high temperature plasma. It is a novel regime in which Tc is too large for applicability of well-known statistical theories (RPA) but Tc must be small enough to suppress single speckle processes such as self-focusing. Even if laser Tc is too large for a priori applicability of our theory, collective forward SBS^1, perhaps enhanced by high Z dopant, and its resultant self-induced Tc reduction, may regain the CBSBS regime. We identified convective and absolute CBSBS regimes. The threshold of convective instability is inside the typical parameter region of NIF designs. Well above incoherent threshold, the coherent instability growth rate is recovered. ^1 P.M. Lushnikov and H.A. Rose, Plasma Physics and Controlled Fusion, 48, 1501 (2006).

  15. CO2 lidar backscatter experiment

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Rothermel, Jeffry; Bowdle, David A.; Srivastava, Vandana; Cutten, Dean; Mccaul, Eugene W., Jr.

    1993-01-01

    The Aerosol/Lidar Science Group of the Remote Sensing Branch engages in experimental and theoretical studies of atmospheric aerosol scattering and atmospheric dynamics, emphasizing Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts by in-house personnel, coordinated with similar efforts by university and government institutional researchers. The primary focus of activities related to understanding aerosol scattering is the GLObal Backscatter Experiment (GLOBE) program. GLOBE was initiated by NASA in 1986 to support the engineering design, performance simulation, and science planning for the prospective NASA Laser Atmospheric Wind Sounder (LAWS). The most important GLOBE scientific result has been identified of a background aerosol mode with a surprisingly uniform backscatter mixing ratio (backscatter normalized by air density) throughout a deep tropospheric layer. The backscatter magnitude of the background mode evident from the MSFC CW lidar measurements is remarkably similar to that evident from ground-based backscatter profile climatologies obtained by JPL in Pasadena CA, NOAA/WPL in Boulder CO, and by the Royal Signals and Radar Establishment in the United Kingdom. Similar values for the background mode have been inferred from the conversion of in situ aerosol microphysical measurements to backscatter using Mie theory. Little seasonal or hemispheric variation is evident in the survey mission data, as opposed to large variation for clouds, aerosol plums, and the marine boundary layer. Additional features include: localized aerosol residues from dissipated clouds, occasional regions having mass concentrations of nanograms per cubic meter and very low backscatter, and aerosol plumes extending thousands of kilometers and several kilometers deep. Preliminary comparison with meteorological observations thus far indicate correlation between backscatter and water vapor under high humidity conditions. Limited

  16. Variation in light intensity with height and time from subsequent lightning return strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, D.M.; Uman, M.A.

    1983-08-20

    Relative light intensity has been measured photographically as a function of height and time for seven subsequent return strokes in two lightning flashes at ranges of 7.8 and 8.7 km. The film used was Kodak 5474 Shellburst, which has a roughly constant spectral response between 300 and 670 nm. The time resolution was about 1.0 ..mu..s, and the spatial resolution was about 4 m. The observed light signals consisted of a fast rise to peak, followed by a slower decrease to a relatively constant value. The amplitude of the initial light peak decreases exponentially with height with a decay constantmore » of about 0.6 to 0.8 km. The 20% to 80% rise time of the initial light signal is between 1 and 4 ..mu..s near ground and increases by an additional 1 to 2 ..mu..s by the time the return stroke reaches the cloud base, a height between 1 and 2 km. The light intensity 30 ..mu..s after the initial peak is relatively constant with height and has an amplitude that is 15% to 30% of the initial peak near the ground and 50% to 100% of the initial peak at cloud base. The logarithm of the peak light intensity near the ground is roughly proportional to the initial peak electric field intensity, and this in turn implies that the current decrease with height may be much slower than the light decrease. The absolute light intensity has been estimated by integrating the photographic signals from individual channel segments to simulate the calibrated all-sky photoelectric data of Guo and Krider (1982). Using this method, the authors find that the mean peak radiance near the ground is 8.3 x 10/sup 5/ W/m, with a total range from 1.4 x 10/sup 5/ to 3.8 x 10/sup 6/ W/m. 16 references, 11 figures.« less

  17. Measurement-device-independent quantum key distribution with correlated source-light-intensity errors

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2018-04-01

    We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.

  18. Light alters nociceptive effects of magnetic field shielding in mice: intensity and wavelength considerations

    PubMed Central

    Prato, Frank S; Desjardins-Holmes, Dawn; Keenliside, Lynn D; McKay, Julia C; Robertson, John A; Thomas, Alex W

    2008-01-01

    Previous experiments with mice have shown that repeated 1 hour daily exposure to an ambient magnetic field-shielded environment induces analgesia (antinociception). The exposures were carried out in the dark (less than 2.0×1016 photons s−1 m−2) during the mid-light phase of the diurnal cycle. However, if the mice were exposed in the presence of visible light (2.0×1018 photons s−1 m−2, 400–750 nm), then the analgesic effects of shielding were eliminated. Here, we show that this effect of light is intensity and wavelength dependent. Introduction of red light (peak at 635 nm) had little or no effect, presumably because mice do not have photoreceptors sensitive to red light above 600 nm in their eyes. By contrast, introduction of ultraviolet light (peak at 405 nm) abolished the effect, presumably because mice do have ultraviolet A receptors. Blue light exposures (peak at 465 nm) of different intensities demonstrate that the effect has an intensity threshold of approximately 12% of the blue light in the housing facility, corresponding to 5×1016 photons s−1 m−2 (integral). This intensity is similar to that associated with photoreceptor-based magnetoreception in birds and in mice stimulates photopic/cone vision. Could the detection mechanism that senses ambient magnetic fields in mice be similar to that in bird navigation? PMID:18583276

  19. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing.

    PubMed

    Ma, Rui; Lu, Fan; Bi, Yonghong; Hu, Zhengyu

    2015-08-01

    To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides). Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m(-2) s(-1) than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a. White light at 90 μmol m(-2) s(-1) or blue light 30 μmol m(-2) s(-1) were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.

  20. Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities.

    PubMed

    Krzemińska, Izabela; Piasecka, Agata; Nosalewicz, Artur; Simionato, Diana; Wawrzykowski, Jacek

    2015-11-01

    Chlorella protothecoides is a valuable source of lipids that may be used for biodiesel production. The present work shows analysis of the potential of photoheterotrophic cultivation of C. protothecoides under various light intensities aiming to identify the conditions with maximal biomass and lipid content. An increase in light intensity was associated with an increased specific growth rate and a shortened doubling time. Also, the relative total lipid content increased from 24.8% to 37.5% with increase of light intensity. The composition of fatty acid methyl esters was affected by light intensity with the C16-18 fatty acids increased from 76.97% to 90.24% of total fatty acids. However, the content of linolenic acids decreased with the increase of the culture irradiance. These studies indicate that cultures irradiated with high light intensities achieve the minimal specifications for biodiesel quality on linolenic acids and thus are suitable for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effects of forward and backward transitions in light intensities in tau-illuminance curves of the rat motor activity rhythm under constant dim light.

    PubMed

    Cambras, Trinitat; Díez-Noguera, Antoni

    2012-07-01

    Circadian rhythms are strongly influenced by light intensity, the effects of which may persist beyond the duration of light exposure (aftereffects). Here, the authors constructed period-illuminance curves for the motor activity circadian rhythm of male and female rats by recording the effects of a series of small upward and downward steps in light intensity (illuminance ranging between .01 lux of dim red light and 1 lux of white light) on their activity. In all cases, stepwise changes were made in five logarithmic steps (irradiance: dim red light: .692 µW/cm(2) and white light: .006, .016, .044, .12, and .315 µW/cm(2), corresponding, respectively, to .02, .05, .14, .13, and 1 lux measured at cage level), with changes in intensity every 2 wks. One group of rats (DLD) started in dim red light, moved up to 1 lux white light, and then back down to the original light intensity. Another group (LDL) started at 1 lux, moved down to .01 lux, and then back up to the original intensity. Motor activity data were recorded throughout the experiment and tau values, the percentage of variance explained by the rhythm, and the mean motor activity for each stage and group were calculated. The results show differences in the dynamics of tau values between the DLD and LDL groups and between males and females. In the LDL group, the tau values of both males and females were dependent on light intensity, and were similar for the forward and backward transitions. In other words, no aftereffects were found, and no differences were detected between males and females. In the DLD group, however, differences were found between males and females. Males had a tau value of 24 h 20 min under dim red light, 25 h 40 min under 1 lux, and 24 h 50 min on return to dim red light. It is noticeable that the tau values of the backward branch of the illuminance curve contradicted classical predictions, since at .38 and .14 lux the tau values were shorter than those found under the same intensities after

  2. Multibeam sonar backscatter data processing

    NASA Astrophysics Data System (ADS)

    Schimel, Alexandre C. G.; Beaudoin, Jonathan; Parnum, Iain M.; Le Bas, Tim; Schmidt, Val; Keith, Gordon; Ierodiaconou, Daniel

    2018-06-01

    Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables.

  3. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead.

    PubMed

    Romanowska, E; Wróblewska, B; Drozak, A; Siedlecka, M

    2006-01-01

    The electron transport rates and coupling factor activity in the chloroplasts; adenylate contents, rates of photosynthesis and respiration in the leaves as well as activity of isolated mitochondria were investigated in Pisum sativum L. leaves of plants grown under low or high light intensity and exposed after detachment to 5 mM Pb(NO(3))(2). The presence of Pb(2+) reduced rate of photosynthesis in the leaves from plants grown under the high light (HL) and low light (LL) conditions, whereas the respiration was enhanced in the leaves from HL plants. Mitochondria from Pb(2+) treated HL-leaves oxidized glycine at a higher rate than those isolated from LL leaves. ATP content in the Pb-treated leaves increased to a greater extend in the HL than LL grown plants. Similarly ATP synthase activity increased markedly when chloroplasts isolated from control and Pb-treated leaves of HL and LL grown plants were subjected to high intensity light. The presence of Pb ions was found inhibit ATP synthase activity only in chloroplasts from LL grown plants or those illuminated with low intensity light. Low light intensity during growth also lowered PSI electron transport rates and the Pb(2+) induced changes in photochemical activity of this photosystem were visible only in the chloroplasts isolated from LL grown plants. The activity of PSII was influenced by Pb ions on similar manner in both light conditions. This study demonstrates that leaves from plants grown under HL conditions were more resistant to lead toxicity than those obtained from the LL grown plants. The data indicate that light conditions during growth might play a role in regulation of photosynthetic and respiratory energy conservation in heavy metal stressed plants by increasing the flexibility of the stoichiometry of ATP to ADP production.

  4. Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity.

    PubMed

    Stewart, Jared J; Polutchko, Stephanie K; Adams, William W; Demmig-Adams, Barbara

    2017-11-01

    This study addressed whether ecotypes of Arabidopsis thaliana from Sweden and Italy exhibited differences in foliar acclimation to high versus low growth light intensity, and compared CO 2 uptake under growth conditions with light- and CO 2 -saturated intrinsic photosynthetic capacity and leaf morphological and vascular features. Differential responses between ecotypes occurred mainly at the scale of leaf architecture, with thicker leaves with higher intrinsic photosynthetic capacities and chlorophyll contents per leaf area, but no difference in photosynthetic capacity on a chlorophyll basis, in high light-grown leaves of the Swedish versus the Italian ecotype. Greater intrinsic photosynthetic capacity per leaf area in the Swedish ecotype was accompanied by a greater capacity of vascular infrastructure for sugar and water transport, but this was not associated with greater CO 2 uptake rates under growth conditions. The Swedish ecotype with its thick leaves is thus constructed for high intrinsic photosynthetic and vascular flux capacity even under growth chamber conditions that may not permit full utilization of this potential. Conversely, the Swedish ecotype was less tolerant of low growth light intensity than the Italian ecotype, with smaller rosette areas and lesser aboveground biomass accumulation in low light-grown plants. Foliar vein density and stomatal density were both enhanced by high growth light intensity with no significant difference between ecotypes, and the ratio of water to sugar conduits was also similar between the two ecotypes during light acclimation. These findings add to the understanding of the foliar vasculature's role in plant photosynthetic acclimation and adaptation.

  5. Light intensity affects RNA silencing of a transgene in Nicotiana benthamiana plants.

    PubMed

    Kotakis, Christos; Vrettos, Nicholas; Kotsis, Dimitrios; Tsagris, Mina; Kotzabasis, Kiriakos; Kalantidis, Kriton

    2010-10-12

    Expression of exogenous sequences in plants is often suppressed through one of the earliest described RNA silencing pathways, sense post-transcriptional gene silencing (S-PTGS). This type of suppression has made significant contributions to our knowledge of the biology of RNA silencing pathways and has important consequences in plant transgenesis applications. Although significant progress has been made in recent years, factors affecting the stability of transgene expression are still not well understood. It has been shown before that the efficiency of RNA silencing in plants is influenced by various environmental factors. Here we report that a major environmental factor, light intensity, significantly affects the induction and systemic spread of S-PTGS. Moreover, we show that photoadaptation to high or low light intensity conditions differentially affects mRNA levels of major components of the RNA silencing machinery. Light intensity is one of the previously unknown factors that affect transgene stability at the post-transcriptional level. Our findings demonstrate an example of how environmental conditions could affect RNA silencing.

  6. Australian aerosol backscatter survey

    NASA Technical Reports Server (NTRS)

    Gras, John L.; Jones, William D.

    1989-01-01

    This paper describes measurements of the atmospheric backscatter coefficient in and around Australia during May and June 1986. One set of backscatter measurements was made with a CO2 lidar operating at 10.6 microns; the other set was obtained from calculations using measured aerosol parameters. Despite the two quite different data collection techniques, there is quite good agreement between the two methods. Backscatter values range from near 1 x 10 to the -8th/m per sr near the surface to 4 - 5 x 10 to the -11th/m per sr in the free troposphere at 5-7-km altitude. The values in the free troposphere are somewhat lower than those typically measured at the same height in the Northern Hemisphere.

  7. Backscatter from metal surfaces in diagnostic radiology.

    PubMed

    Kodera, Y; Schmidt, R A; Chan, H P; Doi, K

    1984-01-01

    Backscatter from four commonly used metals (aluminum, lead, copper, and iron) was measured under diagnostic imaging conditions, using screen-film systems as detectors. The results indicate that for an 80-kV filtered beam and Par Speed/XRP system, backscatter increases as aluminum (Al) thickness increases until it reaches a plateau of approximately 12% at 50 mm Al. The amount of backscatter from any of these four metals increases as the tube voltage is raised from 60 to 115 kV. Measured backscatter depends strongly on the screens used, possibly due to their attenuation and energy response. Backscatter from aluminum was significantly greater than that from the other metals tested.

  8. Enhanced backscatter of optical beams reflected in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Nelson, W.; Palastro, J. P.; Wu, C.; Davis, C. C.

    2014-10-01

    Optical beams propagating through the atmosphere acquire phase distortions from turbulent fluctuations in the refractive index. While these distortions are usually deleterious to propagation, beams reflected in a turbulent medium can undergo a local recovery of spatial coherence and intensity enhancement referred to as enhanced backscatter (EBS). Using simulations, we investigate the EBS of optical beams reflected from mirrors, corner cubes, and rough surfaces, and identify the regimes in which EBS is most distinctly observed. Standard EBS detection requires averaging the reflected intensity over many passes through uncorrelated turbulence. Here we present an algorithm called the "tilt-shift method" which allows detection of EBS in static turbulence, improving its suitability for potential applications.

  9. A light intensity monitoring method based on fiber Bragg grating sensing technology and BP neural network

    NASA Astrophysics Data System (ADS)

    Li, Lu-Ming; Zhu, Qian; Zhang, Zhi-Guo; Cai, Zhi-Min; Liao, Zhi-Jun; Hu, Zhen-Yan

    2017-04-01

    In this paper, a light intensity monitoring method based on FBG is proposed. The method establishes a light intensity monitoring model with cantilever beam structure and BP neural network algorithm, which is based on fiber grating sensing technology. The accuracy of the model can meet the requirements of engineering project and it can monitor light intensity in real time. The experimental results show that the method has good stability and high sensitivity.

  10. Development of a digital astronomical intensity interferometer: laboratory results with thermal light

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David; LeBohec, Stephan

    2018-06-01

    We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.

  11. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-03-03

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  12. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-01-01

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  13. Evaluation of light intensity output of QTH and LED curing devices in various governmental health institutions.

    PubMed

    Al Shaafi, Mm; Maawadh, Am; Al Qahtani, Mq

    2011-01-01

    The purpose of this study was to evaluate the light intensity output of quartz-tungsten-halogen (QTH) and light emitting diode (LED) curing devices located at governmental health institutions in Riyadh, Saudi Arabia.Eight governmental institutions were involved in the study. The total number of evaluated curing devices was 210 (120 were QTH and 90 were LED). The reading of the light intensity output for each curing unit was achieved using a digital spectrometer; (Model USB4000 Spectrometer, Ocean Optics Inc, Dunedin, FL, USA). The reading procedure was performed by a single investigator; any recording of light intensity below 300 mW/cm2 was considered unsatisfactory.The result found that the recorded mean values of light intensity output for QTH and LED devices were 260 mW/cm2 and 598 mW/cm2, respectively. The percentage of QTH devices and LED devices considered unsatisfactory was 67.5% and 15.6%, respectively. Overall, the regular assessment of light curing devices using light meters is recommended to assure adequate output for clinical use.

  14. Backscatter from metal surfaces in diagnostic radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodera, Y.; Schmidt, R.A.; Chan, H.P.

    Backscatter from four commonly used metals (aluminum, lead, copper, and iron) was measured under diagnostic imaging conditions, using screen-film systems as detectors. The results indicate that for an 80-kV filtered beam and Par Speed/XRP system, backscatter increases as aluminum (Al) thickness increases until it reaches a plateau of approximately 12% at 50 mm Al. The amount of backscatter from any of these four metals increases as the tube voltage is raised from 60 to 115 kV. Measured backscatter depends strongly on the screens used, possibly due to their attenuation and energy response. Backscatter from aluminum was significantly greater than thatmore » from the other metals tested.« less

  15. 14 CFR 29.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in the horizontal plane of forward and rear position lights. 29.1391 Section 29.1391 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 29.1391 Minimum intensities in the horizontal plane of forward and rear position lights...

  16. 14 CFR 25.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in the horizontal plane of forward and rear position lights. 25.1391 Section 25.1391 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 25.1391 Minimum intensities in the horizontal plane of forward and rear position lights...

  17. 14 CFR 27.1391 - Minimum intensities in the horizontal plane of forward and rear position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in the horizontal plane of forward and rear position lights. 27.1391 Section 27.1391 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 27.1391 Minimum intensities in the horizontal plane of forward and rear position lights...

  18. 14 CFR 27.1393 - Minimum intensities in any vertical plane of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum intensities in any vertical plane of forward and rear position lights. 27.1393 Section 27.1393 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 27.1393 Minimum intensities in any vertical plane of forward and rear position lights...

  19. 14 CFR 29.1393 - Minimum intensities in any vertical plane of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum intensities in any vertical plane of forward and rear position lights. 29.1393 Section 29.1393 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 29.1393 Minimum intensities in any vertical plane of forward and rear position lights...

  20. 14 CFR 25.1393 - Minimum intensities in any vertical plane of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum intensities in any vertical plane of forward and rear position lights. 25.1393 Section 25.1393 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 25.1393 Minimum intensities in any vertical plane of forward and rear position lights...

  1. Increased collection efficiency of LIFI high intensity electrodeless light source

    NASA Astrophysics Data System (ADS)

    Hafidi, Abdeslam; DeVincentis, Marc; Duelli, Markus; Gilliard, Richard

    2008-02-01

    Recently, RF driven electrodeless high intensity light sources have been implemented successfully in the projection display systems for HDTV and videowall applications. This paper presents advances made in the RF waveguide and electric field concentrator structures with the purpose of reducing effective arc size and increasing light collection. In addition, new optical designs are described that further improve system efficiency. The results of this work demonstrate that projection system light throughput is increased relative to previous implementations and performance is optimized for home theater and other front projector applications that maintain multi-year lifetime without re-lamping, complete spectral range, fast start times and high levels of dynamic contrast due to dimming flexibility in the light source system.

  2. C-band backscattering from corn canopies

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.; Biehl, L. L.

    1991-01-01

    A frequency-modulatad continuous-wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck, and backscatter coefficients of corn (Zea mays L.) were acquired as functions of polarizations, view angles, and row directions. As phytomass and green-leaf area index increased, the backscatter also increased. Near anthesis, when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level for view angles of 30 deg or greater. C-band backscatter data could provide information to monitor tillage operations at small view zenith angles and vegetation at large view zenith angles.

  3. Noncoherent-intense-pulsed light for the treatment of relapsing hairy intradermal melanocytic nevus after shave excision.

    PubMed

    Moreno-Arias, G A; Ferrando, J

    2001-01-01

    Few reports about melanocytic lesions treatment by means of noncoherent-intense-pulsed light (NCIPL) have been published. Here we evaluate the clinical results of a relapsing hairy intradermal melanocytic nevus treated with a noncoherent-intense-pulsed light source. A facial repigmented hairy intradermal melanocytic nevus that relapsed after shave excision, received four treatment sessions of a noncoherent-intense-pulsed light source (EpiLight, ESC Medical Systems Ltd, Israel) with the following parameters: 755 nm, a fluence energy of 40-42.5 J/cm(2), triple mode, a pulse width of 3.8 ms, and a delay of 20 ms, at 4-week intervals. Complete pigment clearance and hair removal was obtained. We have neither observed repigmentation nor hair regrowth after a 6 month-follow-up. No side effects were documented. Noncoherent-intense-pulse light is an effective treatment for hairy-pigmented melanocytic nevus. Copyright 2001 Wiley-Liss, Inc.

  4. The influence of reduced light intensity on the response of benthic diatoms to herbicide exposure.

    PubMed

    Wood, Rebecca J; Mitrovic, Simon M; Lim, Richard P; Kefford, Ben J

    2016-09-01

    Herbicide pollution events in aquatic ecosystems often coincide with increased turbidity and reduced light intensity. It is therefore important to determine whether reduced light intensity can influence herbicide toxicity, especially to primary producers such as benthic diatoms. Benthic diatoms collected from 4 rivers were exposed to herbicides in 48 h rapid toxicity tests under high light (100 µmol m(-2)  s(-1) ) and low light (20 µmol m(-2)  s(-1) ) intensities. The effects of 2 herbicides (atrazine and glyphosate) were assessed on 26 freshwater benthic diatom taxa. There was no significant interaction of light and herbicide effects at the community level or on the majority (22 of 26) of benthic diatom taxa. This indicates that low light levels will likely have only a minor influence on the response of benthic diatoms to herbicides. Environ Toxicol Chem 2016;35:2252-2260. © 2016 SETAC. © 2016 SETAC.

  5. Enhanced backscatter of optical beams reflected in turbulent air

    NASA Astrophysics Data System (ADS)

    Nelson, W.; Palastro, J. P.; Wu, C.; Davis, C. C.

    2015-07-01

    Optical beams propagating through air acquire phase distortions from turbulent fluctuations in the refractive index. While these distortions are usually deleterious to propagation, beams reflected in a turbulent medium can undergo a local recovery of spatial coherence and intensity enhancement referred to as enhanced backscatter (EBS). Using a combination of lab-scale experiments and simulations, we investigate the EBS of optical beams reflected from corner cubes and rough surfaces, and identify the regimes in which EBS is most distinctly observed.

  6. A simple backscattering microscope for fast tracking of biological molecules

    PubMed Central

    Sowa, Yoshiyuki; Steel, Bradley C.; Berry, Richard M.

    2010-01-01

    Recent developments in techniques for observing single molecules under light microscopes have helped reveal the mechanisms by which molecular machines work. A wide range of markers can be used to detect molecules, from single fluorophores to micron sized markers, depending on the research interest. Here, we present a new and simple objective-type backscattering microscope to track gold nanoparticles with nanometer and microsecond resolution. The total noise of our system in a 55 kHz bandwidth is ∼0.6 nm per axis, sufficient to measure molecular movement. We found our backscattering microscopy to be useful not only for in vitro but also for in vivo experiments because of lower background scattering from cells than in conventional dark-field microscopy. We demonstrate the application of this technique to measuring the motion of a biological rotary molecular motor, the bacterial flagellar motor, in live Escherichia coli cells. PMID:21133475

  7. Backscatter particle image velocimetry via optical time-of-flight sectioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick

    Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less

  8. Backscatter particle image velocimetry via optical time-of-flight sectioning

    DOE PAGES

    Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick; ...

    2018-01-11

    Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less

  9. A Backscatter-Lidar Forward-Operator

    NASA Astrophysics Data System (ADS)

    Geisinger, Armin; Behrendt, Andreas; Wulfmeyer, Volker; Vogel, Bernhard; Mattis, Ina; Flentje, Harald; Förstner, Jochen; Potthast, Roland

    2015-04-01

    We have developed a forward-operator which is capable of calculating virtual lidar profiles from atmospheric state simulations. The operator allows us to compare lidar measurements and model simulations based on the same measurement parameter: the lidar backscatter profile. This method simplifies qualitative comparisons and also makes quantitative comparisons possible, including statistical error quantification. Implemented into an aerosol-capable model system, the operator will act as a component to assimilate backscatter-lidar measurements. As many weather services maintain already networks of backscatter-lidars, such data are acquired already in an operational manner. To estimate and quantify errors due to missing or uncertain aerosol information, we started sensitivity studies about several scattering parameters such as the aerosol size and both the real and imaginary part of the complex index of refraction. Furthermore, quantitative and statistical comparisons between measurements and virtual measurements are shown in this study, i.e. applying the backscatter-lidar forward-operator on model output.

  10. Suppression of mutants aberrant in light intensity responses of complementary chromatic adaptation.

    PubMed Central

    Casey, E S; Kehoe, D M; Grossman, A R

    1997-01-01

    Complementary chromatic adaptation is a process in which cyanobacteria alter the pigment protein (phycocyanin and phycoerythrin) composition of their light-harvesting complexes, the phycobilisomes, to help optimize the absorbance of prevalent wavelengths of light in the environment. Several classes of mutants that display aberrant complementary chromatic adaptation have been isolated. One of the mutant classes, designated "blue" or FdB, accumulates high levels of the blue chromoprotein phycocyanin in low-intensity green light, a condition that normally suppresses phycocyanin synthesis. We demonstrate here that the synthesis of the phycocyanin protein and mRNA in the FdB mutants can be suppressed by increasing the intensity of green light. Hence, these mutants have a decreased sensitivity to green light with respect to suppression of phycocyanin synthesis. Although we were unable to complement the blue mutants, we did isolate genes that could suppress the mutant phenotype. These genes, which have been identified previously, encode a histidine kinase sensor and response regulator protein that play key roles in controlling complementary chromatic adaptation. These findings are discussed with respect to the mechanism by which light quality and quantity control the biosynthesis of the phycobilisome. PMID:9226271

  11. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    PubMed

    Olofsson, Martin; Vallin, Adrian; Jakobsson, Sven; Wiklund, Christer

    2010-05-24

    Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head. In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  12. Backscatter from metal surfaces in diagnostic radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodera, Y.; Schmidt, R.A.; Chan, H.P.

    Backscatter from four commonly used metals (aluminum, lead, copper, and iron) was measured under diagnostic imaging conditions, using screen-film systems as detectors. The results indicate that for an 80-kV filtered beam and Par Speed/XRP system, backscatter increases as aluminum (Al) thickness increases until it reaches a plateau of approximately 12% at 50 mm Al. The amount of backscatter depends strongly on the screen used, possibly due to their attenuation and energy response. Backscatter from aluminum was significantly greater than that from the other metals tested.

  13. Coherent backscattering enhancement in cavities. Highlights of the role of symmetry.

    PubMed

    Gallot, Thomas; Catheline, Stefan; Roux, Philippe

    2011-04-01

    Through experiments and simulations, the consequences of symmetry on coherent backscattering enhancement (CBE) are studied in cavities. Three main results are highlighted. First, the CBE outside the source is observed: (a) on a single symmetric point in a one-dimensional (1-D) cavity, in a disk and in a symmetric chaotic plate; (b) on three symmetric points in a two-dimensional (2-D) rectangle; and (c) on seven symmetric points in a three-dimensional (3-D) parallelepiped cavity. Second, the existence of enhanced intensity lines and planes in 2-D and 3-D simple-shape cavities is demonstrated. Third, it is shown how the anti-symmetry caused by the special boundary conditions is responsible for the existence of a coherent backscattering decrement with a dimensional dependence of R = (½)(d), with d = 1,2,3 as the dimensionality of the cavity.

  14. Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers

    PubMed Central

    Kim, KyungDuk; Yu, Hyeonseung; Lee, KyeoReh; Park, YongKeun

    2017-01-01

    Here, we present a concept based on the realization that a complex medium can be used as a simple interferometer. Changes in the wavefront of an incident coherent beam can be retrieved by analyzing changes in speckle patterns when the beam passes through a light diffuser. We demonstrate that the spatial intensity correlations of the speckle patterns are independent of the light diffusers, and are solely determined by the phase changes of an incident beam. With numerical simulations using the random matrix theory, and an experimental pressure-driven wavefront-deforming setup using a microfluidic channel, we theoretically and experimentally confirm the universal sensitivity of speckle intensity correlations, which is attributed to the conservation of optical field correlation despite multiple light scattering. This work demonstrates that a light diffuser works as a simple interferometer, and presents opportunities to retrieve phase information of optical fields with a compact scattering layer in various applications in metrology, analytical chemistry, and biomedicine. PMID:28322268

  15. Weak "A" blood subgroup discrimination by a rheo-optical method: a new application of laser backscattering

    NASA Astrophysics Data System (ADS)

    Rasia, Rodolfo J.; Rasia-Valverde, Juana R.; Stoltz, Jean F.

    1996-01-01

    Laser backscattering is an excellent tool to investigate size and concentration of suspended particles. It was successfully applied to the analysis of erythrocyte aggregation. A method is proposed that applies laser backscattering to the evaluation of the strength of the immunologic erythrocyte agglutination by approaching the energy required for the mechanical dissociation of agglutinates. Mills and Snabre have proposed a theory of laser backscattering for erythrocyte aggregation analysis. It is applied here to analyze the dissociation process of erythrocyte agglutinates performed by imposing a constant shear rate to the agglutinate suspension in a couette viscometer until a dispersion of isolated red cells is attained. Experimental verifications of the method were performed on the erythrocytes of the ABO group reacting against an anti-A test serum in twofold series dilutions. Spent energy is approached by a numerical process carried out on the backscattered intensity data registered during mechanical dissociation. Velocities of agglutination and dissociation lead to the calculation of dissociation parameters These values are used to evaluate the strength of the immunological reaction and to discriminate weak subgroups of ABO system.

  16. On the backscatter of solar He II, 304 A radiation from interplanetary He/+/.

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Bowyer, S.

    1973-01-01

    Backscatter of solar He II, 304 A radiation by interplanetary positive helium ions is shown to be insufficient to account for recent observations of this airglow radiation in the night sky at rocket altitudes. In fact, for most viewing directions, the expected intensities probably fall well below the sensitivity threshold of existing extreme ultraviolet instrumentation.

  17. [Effects of light intensity on Quercus liaotungensis seed germination and seedling growth].

    PubMed

    Yan, Xing-fu; Wang, Jian-li; Zhou, Li-biao

    2011-07-01

    This paper studied the effects of different shading (55.4%, 18.9%, 5.5%, 2.2%, 0.5% , and 0.3% natural sunlight) on the seed germination and seedling growth of Quercus liaotungensis. The seed germination rate and germination index were the highest (72.5% and 0.22, respectively) at 55.4% natural sunlight, declined with decreasing light intensity, and were the lowest (42.5% and 0.11, respectively) at 0.3% natural sunlight. Strong light had definite delaying effect on the germination. The index of germination vigor increased with decreasing light intensity, being the maximum at 0.5% natural sunlight. The delay of seed germination under strong light could be the selective tradeoff on varied seed fates. Strong light benefited the basal stem diameter and root system growth and dry mass accumulation of Q. liaotunensis seedling, but resulted in the minimum seedlings height (6.06 cm). Greater morphological plasticity was observed for the seedlings under different shading, which lent support to the higher adaptability of the seedlings to light environment. For example, the specific leaf area, specific shoot length, specific root length, and chlorophyll b and total chlorophyll contents were the maximum at 0.5% natural sunlight, being 142.57 cm2 x g(-1), 156.86 cm x g(-1), 271.87 cm x g(-1), 0.07 g x cm(-2), and 0.24 g x cm(-2), respectively, and the minimum at 55.4% natural sunlight, being 44.89 cm2 x g(-1), 52.84 cm x g(-1), 101.98 cm x g(-1), 0.04 g x cm(-2), and 0.15 g x cm(-2), respectively. The variation of the root/shoot ratio of Q. liaotungensis seedlings under different shading could be the effects of the combination of light intensity and water availability.

  18. Influence of light intensity and water content of medium on total dendrobine of Dendrobium nobile Lindl.

    PubMed

    Li, Jin-Ling; Zhao, Zhi; Liu, Hong-Chang; Luo, Chun-Li; Wang, Hua-Lei

    2017-11-01

    To ascertain the influence of light intensity and water content of medium on the total dendrobine of Dendrobium nobile (D. nobile). The principal component analysis combined with total dendrobine accumulation was conducted to assess the yield and quality of D. nobile in all treatments. In the experiment, D. nobile plants were cultivated in greenhouse as tested materials, and complete test of 9 treatments was adopted with relative light intensities 75.02%, 39.74%, 29.93% and relative water content of medium 50%, 65%, 80%. The plants were treated in June and harvested till December. Indexes including agronomic traits, fresh weight and dry weight of stem and leaf, ash content, extract, and dendrobine were measured. Under the light intensity treatments of 75.02% with 50%, 65%, 80% water content of medium, the basal stems of plants were comparatively thicker with more leaves, and the fresh weight and dry weight of stems and leaves were significantly higher than other 6 treatments. Leaves in all treatments contained dendrobine. Under the light intensity treatments of 75.02% with 50%, 65%, 80% water content of medium, dendrobine content of leaves was lower while dendrobine contents of other treatments were more than 0.60%. After comprehensive assessment through the principal component analysis and total dendrobine accumulation, the results showed that 3 treatments with relative light intensity of 75.02% ranked the top three. In brief, the moderately strong light intensity and water content of medium from low to medium can facilitate the growth and yield of D. nobile plants, while light intensity from moderately weak to weak can enhance the dendrobine content. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  19. Effect of light intensity on ovarian gene expression, reproductive performance and body weight of rabbit does.

    PubMed

    Sun, Liangzhan; Wu, Zhenyu; Li, Fuchang; Liu, Lei; Li, Jinglin; Zhang, Di; Sun, Chaoran

    2017-08-01

    The objective of the experiment was to find the minimum light intensity which could improve reproduction by examining its effect on ovarian gene expression, reproductive performance and body weight of rabbit does with three different light intensities: 60 (L), 80 (M), and 100 (H)lx. A total of 144 Rex-rabbits submitted to a 49-day reproductive regimen were used in this study. Ovaries were collected and relative abundance of mRNA for ovarian proteins of interest was examined with real-time PCR. Amount of protein for proteins of interest was examined by immunohistochemistry. Reproductive performance and doe bodyweight of the first three consecutive reproductive periods after initiation of the light intensity treatments were evaluated. The results provided evidence that light intensity had no effect on relative abundance of estradiol receptor-α (ER-α), follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), gonadotropin releasing hormone receptor 1 (GnRHR1) and progesterone receptor (PGR) mRNA. The relative abundance of growth hormone receptor (GHR) mRNA was, however, greater in Group L than M and H (P<0.05). No difference was observed for all reproductive indices as a result of submission to the three light intensities (P>0.05). The bodyweight of the does in Group L was greater than the other two groups at first insemination, second insemination and the second postpartum period (P<0.05). There was no difference in bodyweight after the second postpartum period (P>0.05). These observations suggest that light intensity between 60 and 100lx has no effect on the reproductive performance of rabbit does, however, the amounts of GHR mRNA and growth hormone (GH) protein were affected and the greater light intensity had a negative effect on bodyweight between the time of the first insemination and the second partum period. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Effects of light intensity on growth and photosynthetic characteristics of Tulipa edulis].

    PubMed

    Xu, Hongjian; Zhu, Zaibiao; Guo, Qiaosheng; Wu, Zhengjun; Ma, Hongliang; Miao, Yuanyuan

    2012-02-01

    Present study was conducted to explore the growth and photosynthetic characteristics of Tulipa edulis under different light conditions (23%, 45%, 63%, 78%, 100% of full sunlight) and to determine the optimum light intensity for growth of T. edulis. The leaf area and biomass indicators as well as reproductive characteristics were measured. The photosynthetic basic parameters and light response curve were determined by a LI-6400XT portable photosynthesis system, and the light response curve characteristic parameters was determined. Additionally, chlorophyll fluorescence parameters were determined by assorted fluorescence leaf chamber of LI-6400XT. The lowest biomass yield was observed in the 23% and 100% of full sunlight treatments while the highest value was found under the 78% of full sunlight conditions. With the reduction of light availability, the success rate of sexual reproduction, light saturation point (LSP) and light compensation point (LCP) reduced, while apparent quantum yield (AQY) increased. 23% and 45% of full sunlight treatments led to lower photosynthesis rate (Pn) and higher apparent quantum yield (AQY) in comparison with other treatents. The highest photosynthesis rate was observed in the 78% and 100% of full sunlight treatments. In addition, 78% of full sunlight treatments led to highest Fv/Fm, Fv'/Fm', PhiPS II, ETR, and qP. T. edulis was able to adapt in a wide range of light intensity, and 78% of full sunlinght was the most suitable light condition for growth of T. edulis.

  1. Effect of light Intensity and photoperiod on growth of Chlorella pyrenoidosa and CO2 Biofixation

    NASA Astrophysics Data System (ADS)

    Gunawan, Teuku Johar; Ikhwan, Yusni; Restuhadi, Fajar; Pato, Usman

    2018-02-01

    Microalgae have been viewed as one of potential solution for CO2 biofixation or CO2 sequestration. However, many factors need to be evaluated to support development of CO2 biofixation. One important environmental factor for the growth of micro algae is related with light requirement. The aim of this study was to evaluate the effect of light intensity and photoperiod on growth of Chlorellapyrenoidosa (C.pyrenoidosa) and CO2 biofixation. Experiments were carried out in 1000 mL semi batch photo bioreactors, purged continuously with air (0.034% CO2). An Experiment of Factorial Design was employed in which the light intensity was evaluated 4 level at 2000, 4000, 6000 and 8000 lux with 3 level of photo period at L/D (light /dark) 8 hours/16 hours; L/D 12 hours/12 hours and L/D 16 hours/8 hours. The result indicated that both light intensity and photo period had significant effect (p< 0.05) on growth of C. pyrenoidosa. However, the photo period showed stronger effect relative to light intensity on growth of C.pyrenoidosa within the range reviewed. The interaction between the two factors was indicative but statistically not significant. Best growth profile sustained at combination of L/D 16 hours/8 hours of photoperiod and light intensity of 8000 lux with the highest average biomass observed at 0.516 ± 0.069gr/L. An increase in CO2biofixation rate of around 2 times was also observed between highest setting (8000 lux; L/D 16/12 hours) relative to that of lowest setting (2000 lux; L/D 8/12 hours).

  2. Displacement analysis of diagnostic ultrasound backscatter: A methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy

    PubMed Central

    Speyer, Gavriel; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.

    2010-01-01

    Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy. The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented. PMID:20649206

  3. Development of a Coded Aperture X-Ray Backscatter Imager for Explosive Device Detection

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; Rothschild, Richard E.; Leblanc, Philippe; McFee, John Elton

    2009-02-01

    Defence R&D Canada has an active research and development program on detection of explosive devices using nuclear methods. One system under development is a coded aperture-based X-ray backscatter imaging detector designed to provide sufficient speed, contrast and spatial resolution to detect antipersonnel landmines and improvised explosive devices. The successful development of a hand-held imaging detector requires, among other things, a light-weight, ruggedized detector with low power requirements, supplying high spatial resolution. The University of California, San Diego-designed HEXIS detector provides a modern, large area, high-temperature CZT imaging surface, robustly packaged in a light-weight housing with sound mechanical properties. Based on the potential for the HEXIS detector to be incorporated as the detection element of a hand-held imaging detector, the authors initiated a collaborative effort to demonstrate the capability of a coded aperture-based X-ray backscatter imaging detector. This paper will discuss the landmine and IED detection problem and review the coded aperture technique. Results from initial proof-of-principle experiments will then be reported.

  4. Effect of Light Intensity and Photoperiod on Growth and Biochemical Composition of a Local Isolate of Nostoc calcicola.

    PubMed

    Khajepour, Fateme; Hosseini, Seyed Abbas; Ghorbani Nasrabadi, Rasoul; Markou, Giorgos

    2015-08-01

    A study was conducted to investigate the effect of light intensity (21, 42, and 63 μmol photons m(-2) s(-1)) and photoperiod (8:16, 12:12, and 16:8 h light/dark) on the biomass production and its biochemical composition (total carotenoids, chlorophyll a, phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC), total protein, and carbohydrates) of a local isolate of Nostoc calcicola. The results revealed that N. calcicola prefers dim light; however, the most of the levels of light intensity and photoperiod investigated did not have a significant impact on biomass production. Increasing light intensity biomass content of chlorophyll a, PE, PC, APC, and total protein decreased, while total carotenoids and carbohydrate increased. The same behavior was observed also when light duration (photoperiod) increased. The interaction effect of increasing light intensity and photoperiod resulted in an increase of carbohydrate and total carotenoids, and to the decrease of chlorophyll a, PE, PC, APC, and total protein content. The results indicate that varying the light regime, it is capable to manipulate the biochemical composition of the local isolate of N. calcicola, producing either valuable phycobiliproteins or proteins under low light intensity and shorter photoperiods, or producing carbohydrates and carotenoids under higher light intensities and longer photoperiods.

  5. The effect of low light intensity on the maintenance of circadian synchrony in human subjects

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Lyman, J.; Beljan, J. R.

    1976-01-01

    Experiments were conducted on six healthy male subjects aged 20-23 yr and exposed for 21 days in a confined regulated environment to 16L:8D light:dark cycle with a view toward determining whether the light environment of 16L:8D at the relatively low light intensity of 15 ft.c. is adequate for the maintenance of circadian synchrony in man. The light intensity was 100 ft.c. during the first seven days, reduced to 15 ft.c. during the next seven days, and increased again to 100 ft.c. during the last seven days. Rectal temperature (RT) and heart rate (HR) were recorded throughout the three phases. In the 100 ft.c. regime, the RT and HR rhythms remained stable and circadian throughout. It is shown that 15 ft.c. light intensity is at or below threshold for maintaining circadian synchrony of human physiologic rhythms marked by instability and internal desynchronization with degradation of performance and well-being.

  6. Spatial variability in acoustic backscatter as an indicator of tissue homogenate production in pulsed cavitational ultrasound therapy.

    PubMed

    Parsons, Jessica E; Cain, Charles A; Fowlkes, J Brian

    2007-03-01

    Spatial variability in acoustic backscatter is investigated as a potential feedback metric for assessment of lesion morphology during cavitation-mediated mechanical tissue disruption ("histotripsy"). A 750-kHz annular array was aligned confocally with a 4.5 MHz passive backscatter receiver during ex vivo insonation of porcine myocardium. Various exposure conditions were used to elicit a range of damage morphologies and backscatter characteristics [pulse duration = 14 micros, pulse repetition frequency (PRF) = 0.07-3.1 kHz, average I(SPPA) = 22-44 kW/cm2]. Variability in backscatter spatial localization was quantified by tracking the lag required to achieve peak correlation between sequential RF A-lines received. Mean spatial variability was observed to be significantly higher when damage morphology consisted of mechanically disrupted tissue homogenate versus mechanically intact coagulation necrosis (2.35 +/- 1.59 mm versus 0.067 +/- 0.054 mm, p < 0.025). Statistics from these variability distributions were used as the basis for selecting a threshold variability level to identify the onset of homogenate formation via an abrupt, sustained increase in spatially dynamic backscatter activity. Specific indices indicative of the state of the homogenization process were quantified as a function of acoustic input conditions. The prevalence of backscatter spatial variability was observed to scale with the amount of homogenate produced for various PRFs and acoustic intensities.

  7. Effects of Light Intensity and Color on the Biomass, Extracellular Red Pigment, and Citrinin Production of Monascus ruber.

    PubMed

    Wang, Liling; Dai, Yang; Chen, Wanping; Shao, Yanchun; Chen, Fusheng

    2016-12-21

    Light is a crucial environmental signal for fungi. In this work, the effects of different light intensities and colors on biomass, Monascus pigments (MPs) and citrinin production of Monascus ruber M7 were investigated. We have demonstrated that low intensity of blue light (500 lx) decreased Monascus biomass, increased MPs accumulation via upregulation of MpigA, MpigB, and MpigJ genes expression, but had no significant influence on citrinin production. High intensity of blue light (1500 lx) decreased citrinin accumulation but had no significant influence on biomass and MPs production after 14 days cultivation. Low intensity of green light (500 lx) stimulated citrinin production via upregulation of pksCT, mrl1, mrl2, and ctnA genes expression. One putative red light photoreceptor and two putative green light photoreceptors were identified in M. ruber M7. These observations will not only guide the practical production of Monascus but also contribute to our understanding light effects on Monascus.

  8. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    PubMed

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  9. Phytoplankton productivity in relation to light intensity: A simple equation

    USGS Publications Warehouse

    Peterson, D.H.; Perry, M.J.; Bencala, K.E.; Talbot, M.C.

    1987-01-01

    A simple exponential equation is used to describe photosynthetic rate as a function of light intensity for a variety of unicellular algae and higher plants where photosynthesis is proportional to (1-e-??1). The parameter ?? (=Ik-1) is derived by a simultaneous curve-fitting method, where I is incident quantum-flux density. The exponential equation is tested against a wide range of data and is found to adequately describe P vs. I curves. The errors associated with photosynthetic parameters are calculated. A simplified statistical model (Poisson) of photon capture provides a biophysical basis for the equation and for its ability to fit a range of light intensities. The exponential equation provides a non-subjective simultaneous curve fitting estimate for photosynthetic efficiency (a) which is less ambiguous than subjective methods: subjective methods assume that a linear region of the P vs. I curve is readily identifiable. Photosynthetic parameters ?? and a are used widely in aquatic studies to define photosynthesis at low quantum flux. These parameters are particularly important in estuarine environments where high suspended-material concentrations and high diffuse-light extinction coefficients are commonly encountered. ?? 1987.

  10. 14 CFR 23.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... overlapping beams, within dihedral angles L, R, and A, and must meet the following requirements: (1... clarity. When the peak intensity of the left and right position lights is more than 100 candles, the... the right and left of the axis of maximum illumination. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as...

  11. Self-pumped Gaussian beam-coupling and stimulated backscatter due to reflection gratings in a photorefractive material

    NASA Astrophysics Data System (ADS)

    Saleh, Mohammad Abu

    2007-05-01

    When overlapping monochromatic light beams interfere in a photorefractive material, the resulting intensity fringes create a spatially modulated charge distribution. The resulting refractive index grating may cause power transfer from one beam (the pump) to the other beam (the signal). In a special case of the reflection grating geometry, the Fresnel reflection of the pump beam from the rear surface of the crystal is used as the signal beam. It has been noted that for this self-pumped, contra-directional two-beam coupling (SPCD-TBC) geometry, the coupling efficiency seems to be strongly dependent on the focal position and spot size, which is attributed to diffraction and the resulting change in the spatial overlaps between the pump and signal. In this work a full diffraction based simulation of SPCD-TBC for a Gaussian beam is developed with a novel algorithm. In a related context involving reflection gratings, a particular phenomenon named six-wave mixing has received some interest in the photorefractive research. The generation of multiple waves during near-oblique incidence of a 532 nm weakly focused laser light on photorefractive iron doped lithium niobate in a typical reflection geometry configuration is studied. It is shown that these waves are produced through two-wave coupling (self-diffraction) and four-wave mixing (parametric diffraction). One of these waves, the stimulated photorefractive backscatter produced from parametric diffraction, contains the self-phase conjugate. The dynamics of six-wave mixing, and their dependence on crystal parameters, angle of incidence, and pump power are analyzed. A novel order analysis of the interaction equations provides further insight into experimental observations in the steady state. The quality of the backscatter is evaluated through image restoration, interference experiments, and visibility measurement. Reduction of two-wave coupling may significantly improve the quality of the self-phase conjugate.

  12. The effect of luminous intensity on the attraction of phlebotomine sand flies to light traps.

    PubMed

    Lima-Neto, Abdias R; Costa-Neta, Benedita M; da Silva, Apoliana Araújo; Brito, Jefferson M; Aguiar, João V C; Ponte, Islana S; Silva, Francinaldo S

    2018-05-04

    To improve the efficiency of light traps in collecting phlebotomine sand flies, the potential effects of luminous intensity on the attraction of these insects to traps were evaluated. Sand flies were collected with Hooper Pugedo (HP) light traps fitted with 5-mm light-emitting diodes (LED) bulbs: green (520 nm wavelength-10,000, 15,000 and 20,000 millicandela (mcd) and blue (470 nm-4,000, 12,000 and 15,000 mcd). A total of 3,264 sand flies comprising 13 species were collected. The collected species were Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae) (52.48%), Evandromyia evandroi (Costa Lima & Antunes, 1939) (Diptera: Psychodidae) (32.90%) and Micropygomyia goiana (Martins, Falcão, & Silva) (Diptera: Psychodidae) (9.76%). An increase in luminous intensity of the LEDs increased the size of the sand fly catch. The lower luminous intensity of green (10,000 mcd) attracted an average of 13.7 ± 2.8 sand flies/trap per night and the other luminous intensities accounted for a mean of 24.1 ± 4.0 (15,000 mcd) and 28.2 ± 5.0 (20,000 mcd) sand flies/trap per night. Regarding the blue wavelength, the lower luminous intensity (4,000 mcd) attracted an average of 27.4 ± 4.1 sand flies/trap per night, followed by 12,000 mcd (37.6 ± 8.7) and 15,000 mcd (40.5 ± 7.3). Based on our data, the luminous intensity of light traps should be considered when developing light traps for monitoring or controlling phlebotomine sand flies.

  13. Observations of Radar Backscatter at Ku and C Bands in the Presence of Large Waves during the Surface Wave Dynamics Experiment

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Li, Fuk K.; Lou, Shu-Hsiang; Neumann, Gregory; McIntosh, Robert E.; Carson, Steven C.; Carswell, James R.; Walsh, Edward J.; Donelan, Mark A.; Drennan, William M.

    1995-01-01

    Ocean radar backscatter in the presence of large waves is investigated using data acquired with the Jet Propulsion Laboratory NUSCAT radar at Ku band for horizontal and vertical polarizations and the University of Massachusetts CSCAT radar at C band for vertical polarization during the Surface Wave Dynamics Experiment. Off-nadir backscatter data of ocean surfaces were obtained in the presence of large waves with significant wave height up to 5.6 m. In moderate-wind cases, effects of large waves are not detectable within the measurement uncertainty and no noticeable correlation between backscatter coefficients and wave height is found. Under high-wave light-wind conditions, backscatter is enhanced significantly at large incidence angles with a weaker effect at small incidence angles. Backscatter coefficients in the wind speed range under consideration are compared with SASS-2 (Ku band), CMOD3-H1 (C band), and Plant's model results which confirm the experimental observations. Variations of the friction velocity, which can give rise to the observed backscatter behaviors in the presence of large waves, are presented.

  14. Light intensity of 5 or 20 lux on broiler behavior, welfare and productivity.

    PubMed

    Rault, Jean-Loup; Clark, Katie; Groves, Peter J; Cronin, Greg M

    2017-04-01

    Light intensity can influence broiler behavior, but discrepancies in the scientific literature remain. Furthermore, few studies have investigated the welfare implications induced by varying light intensity. We investigated the effects of providing 5 or 20 lux light intensity on broiler behavior, welfare and productivity. A total of 1,872 Ross 308 broilers of mixed sex were studied across 2 replicates. Treatments began on d 8 with one of 2 light intensity levels: 5 lux or 20 lux, using LED lights on a 16L:8D photoperiod with 30 min sunrise and sunset periods. Production data, behavioral activity, and plasma samples for corticosterone concentration analysis were collected weekly from 8 to 46 d of age. Eye weight was collected at 42 d of age. Leg strength was assessed at 35, 42 and 45 d of age using the latency to lie test and leg and foot conditions (foot pad dermatitis, hock burn, leg straightness) were assessed at 46 d. Live weight differed between light treatments, with broilers kept at 20 lux being lighter than broilers kept at 5 lux at 46 d of age (males: -5.1%, females: -2.8%, P < 0.0001), despite no significant differences in feed intake. However, broilers kept at 20 lux were more active during the photophase than broilers kept at 5 lux throughout the rearing period (P < 0.0001). Eye weight was also on average 5% lighter for broilers kept at 20 lux compared to 5 lux (P = 0.001). Nonetheless, there was no significant effect of light intensity on other measures of broiler welfare: mortality and culls, plasma corticosterone concentrations, or latency to lie reflective of leg strength. Hence, broilers kept at 20 lux compared to 5 lux were found to be more active, had slower growth, and had lighter eye weight, but other welfare measures reflective of biological functioning or leg health did not show significant changes. © 2016 Poultry Science Association Inc.

  15. Development of Choroidal Neovascularization in rats with Advanced Intense Cyclic Light-induced Retinal Degeneration

    PubMed Central

    Albert, Daniel M.; Neekhra, Aneesh; Wang, Shoujian; Darjatmoko, Soesiawati R.; Sorenson, Christine M.; Dubielzig, Richard R.; Sheibani, Nader

    2010-01-01

    Objective To study the progressive changes of intense cyclic light-induced retinal degeneration and determine whether it results in choroidal neovascularization (CNV). Methods Albino rats were exposed to 12 h of 3000 lux cyclic light for 1, 3, or 6 months. Prior to euthanization, fundus examination, fundus photographs, fluorescein and indocyanine green angiography, and Optical Coherence Tomography (OCT) evaluations were performed. Light exposed animals were euthanized after 1, 3, or 6 months for histopathological evaluation. Retinas were examined for the presence of 4-hydroxy-2-nonenal (HNE) and nitrotyrosine modified proteins by immunofluorescence staining. Results Chronic intense cyclic light exposure resulted in retinal degeneration with loss of the outer segments of photoreceptors and approximately two-thirds of the outer nuclear layer (ONL) and development of sub-retinal pigment epithelium (RPE) neovascularization after 1 month. Almost the entire ONL was absent with the presence of CNV, which penetrated Bruch’s membrane and extended into the outer retina after 3 months. Absence of the ONL, multiple foci of CNV, RPE fibrous metaplasia, and connective tissue bands containing blood vessels extending into the retina were observed after 6 months. All intense light exposed animals showed an increased presence of HNE and nitrotyrosine staining. OCT and angiographic studies confirmed retinal thinning and leakiness of the newly fromed blood vessels. Conclusions Our results suggest albino rats develop progressive stages of retinal degeneration and CNV after chronic intense cyclic light exposure allowing the detailed study of the pathogenesis and treatment of age-related macular degeneration. PMID:20142545

  16. Light intensity related to stand density in mature stands of the western white pine type

    Treesearch

    C. A. Wellner

    1948-01-01

    Where tolerance of forest trees or subordinate vegetation is a factor in management, the forester needs a simple field method of Estimating or forecasting light intensities in forest stands. The following article describes a method developed for estimating light intensity beneath the canopy in western white pine forests which may have application in other types.

  17. 14 CFR 29.1393 - Minimum intensities in any vertical plane of forward and rear position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in any vertical plane... Equipment Lights § 29.1393 Minimum intensities in any vertical plane of forward and rear position lights... above or below the horizontal plane Intensity, I 0° 1.00 0° to 5° .90 5° to 10° .80 10° to 15° .70 15...

  18. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  19. Multisensor Analysis of Ice Crystals Backscatter Peak From 5 Years of Collocated POLDER, MODIS and CALIOP Observations.

    NASA Astrophysics Data System (ADS)

    Riedi, J.; Labonnote, L. C.; Contaut, F.; Platnick, S. E.; Yang, P.

    2016-12-01

    Realistic assumptions for representation of ice crystal optical properties are key in deriving meaningful information on ice clouds from spaceborne observations. With the increasing number of multi-sensor analysis it is also of paramount importance that ice crystal models be consistents for the interpretation of both passive and active observations in the solar and thermal infrared spectral domains. There has been significant evidences in the past few years that roughened particles might represent an overall good proxy for ice crystal models being able to simultaneously explain visible and infrared observations obtained from either active or passive sensors (Holz et al, 2016). Nevertheless, details of the exact phase function remain very informative fingerprints of ice crystal shapes and can also be critical parameters for retrievals performed under specific viewing geometries. Analysis of lidar observation for instance remains very sensitive to details of phase function in and around the backscatter direction. The relative magnitude and width of the backscatter peak intensity that appears in phase functions of ice crystal has been shown to carry useful information for characterization of ice crystal habits (Zhou & Yang, 2015). Based on these theoretical results we are revisiting here our previous analysis of coincident POLDER, MODIS and CALIOP observations whereby we were able to study the angular variability of ice clouds reflectance in and around the exact backscatter direction. Statistics from 5 years of observations of peak intensities derived from POLDER have been established in relation to coincident MODIS cloud optical thickness and effective radius retrievals as well as CALIOP layer integrated depolarization ratio and attenuated backscatter. Those are analyzed in view of the theoretical results from Zhou & Yang (2015). In particular, correlation of peak intensity and width with particle size retrieved from MODIS will be presented and implications for ice

  20. Sound intensity probe for ultrasonic field in water using light-emitting diodes and piezoelectric elements

    NASA Astrophysics Data System (ADS)

    Zeng, Xi; Mizuno, Yosuke; Nakamura, Kentaro

    2017-12-01

    The sound intensity vector provides useful information on the state of an ultrasonic field in water, since sound intensity is a vector quantity expressing the direction and magnitude of the sound field. In the previous studies on sound intensity measurement in water, conventional piezoelectric sensors and metal cables were used, and the transmission distance was limited. A new configuration of a sound intensity probe suitable for ultrasonic measurement in water is proposed and constructed for trial in this study. The probe consists of light-emitting diodes and piezoelectric elements, and the output signals are transmitted through fiber optic cables as intensity-modulated light. Sound intensity measurements of a 26 kHz ultrasonic field in water are demonstrated. The difference in the intensity vector state between the water tank with and without sound-absorbing material on its walls was successfully observed.

  1. An evaluation of light intensity functions for determination of shaded reference stream metabolism.

    PubMed

    Zell, Chris; Hubbart, Jason A

    2012-04-30

    The performance of three single-station whole stream metabolism models were evaluated within three shaded, seasonally hypoxic, Missouri reference streams using high resolution (15-minute) dissolved oxygen (DO), temperature, and light intensity data collected during the summers (July-September) of 2006-2008. The model incorporating light intensity data consistently achieved a lower root mean square error (median RMSE = 0.20 mg L(-1)) relative to models assuming sinusoidal light intensity functions (median RMSE = 0.28 mg L(-1)) and constant diel temperature (median RMSE = 0.53 mg L(-1)). Incorporation of site-specific light intensity into metabolism models better predicted morning DO concentrations and exposure to hypoxic conditions in shaded study streams. Model choice significantly affected (p < 0.05) rate estimates for daily average photosynthesis. Low reaeration (pooled site mean 1.1 day(-1) at 20 °C) coupled with summer temperatures (pooled site mean = 25.8 °C) and low to moderate community respiration (site median 1.0-3.0 g O(2) m(-2) day(-1)) yielded diel dissolved oxygen concentrations near or below critical aquatic life thresholds in studied reference streams. Quantifying these process combinations in best-available or least-disturbed (i.e., reference) systems advances our understanding of regional dissolved oxygen expectations and informs environmental management policy. Additional research is warranted to better link landscape processes with distributed sources that contribute to community respiration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Uncooperative target-in-the-loop performance with backscattered speckle-field effects

    NASA Astrophysics Data System (ADS)

    Kansky, Jan E.; Murphy, Daniel V.

    2007-09-01

    Systems utilizing target-in-the-loop (TIL) techniques for adaptive optics phase compensation rely on a metric sensor to perform a hill climbing algorithm that maximizes the far-field Strehl ratio. In uncooperative TIL, the metric signal is derived from the light backscattered from a target. In cases where the target is illuminated with a laser with suffciently long coherence length, the potential exists for the validity of the metric sensor to be compromised by speckle-field effects. We report experimental results from a scaled laboratory designed to evaluate TIL performance in atmospheric turbulence and thermal blooming conditions where the metric sensors are influenced by varying degrees of backscatter speckle. We compare performance of several TIL configurations and metrics for cases with static speckle, and for cases with speckle fluctuations within the frequency range that the TIL system operates. The roles of metric sensor filtering and system bandwidth are discussed.

  3. 14 CFR 25.1393 - Minimum intensities in any vertical plane of forward and rear position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in any vertical plane... Equipment Lights § 25.1393 Minimum intensities in any vertical plane of forward and rear position lights... above or below the horizontal plane Intensity, l 0° 1.00 0° to 5° 0.90 5° to 10° 0.80 10° to 15° 0.70 15...

  4. 14 CFR 27.1393 - Minimum intensities in any vertical plane of forward and rear position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum intensities in any vertical plane... Equipment Lights § 27.1393 Minimum intensities in any vertical plane of forward and rear position lights... above or below the horizontal plane Intensity, l 0° 1.00 0° to 5° 0.90 5° to 10° 0.80 10° to 15° 0.70 15...

  5. Portable fluorescence meter with reference backscattering channel

    NASA Astrophysics Data System (ADS)

    Kornilin, Dmitriy V.; Grishanov, Vladimir N.; Zakharov, Valery P.; Burkov, Dmitriy S.

    2016-09-01

    Methods based on fluorescence and backscattering are intensively used for determination of the advanced glycation end products (AGE) concentration in the biological tissues. There are strong correlation between the AGE concentration and the severity of such diseases like diabetes, coronary heart disease and renal failure. This fact can be used for diagnostic purposes in medical applications. Only few investigations in this area can be useful for development of portable and affordable in vivo AGE meter because the most of them are oriented on using spectrometers. In this study we describe the design and the results of tests on volunteers of portable fluorescence meter based on two photodiodes. One channel of such fluorimeter is used for measurement of the autofluorescence (AF) intensity, another one - for the intensity of elastically scattered radiation, which can be used as a reference. This reference channel is proposed for normalization of the skin autofluorescence signal to the human skin photo type. The fluorimeter, that was developed is relatively compact and does not contain any expensive optical and electronic components. The experimental results prove that proposed tool can be used for the AGE estimation in human skin.

  6. The Low Backscattering Objects Classification in Polsar Image Based on Bag of Words Model Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Yang, L.; Shi, L.; Li, P.; Yang, J.; Zhao, L.; Zhao, B.

    2018-04-01

    Due to the forward scattering and block of radar signal, the water, bare soil, shadow, named low backscattering objects (LBOs), often present low backscattering intensity in polarimetric synthetic aperture radar (PolSAR) image. Because the LBOs rise similar backscattering intensity and polarimetric responses, the spectral-based classifiers are inefficient to deal with LBO classification, such as Wishart method. Although some polarimetric features had been exploited to relieve the confusion phenomenon, the backscattering features are still found unstable when the system noise floor varies in the range direction. This paper will introduce a simple but effective scene classification method based on Bag of Words (BoW) model using Support Vector Machine (SVM) to discriminate the LBOs, without relying on any polarimetric features. In the proposed approach, square windows are firstly opened around the LBOs adaptively to determine the scene images, and then the Scale-Invariant Feature Transform (SIFT) points are detected in training and test scenes. The several SIFT features detected are clustered using K-means to obtain certain cluster centers as the visual word lists and scene images are represented using word frequency. At last, the SVM is selected for training and predicting new scenes as some kind of LBOs. The proposed method is executed over two AIRSAR data sets at C band and L band, including water, bare soil and shadow scenes. The experimental results illustrate the effectiveness of the scene method in distinguishing LBOs.

  7. Retrieving marine inherent optical properties from satellites using temperature and salinity-dependent backscattering by seawater.

    PubMed

    Werdell, P Jeremy; Franz, Bryan A; Lefler, Jason T; Robinson, Wayne D; Boss, Emmanuel

    2013-12-30

    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

  8. Retrieving Marine Inherent Optical Properties from Satellites Using Temperature and Salinity-dependent Backscattering by Seawater

    NASA Technical Reports Server (NTRS)

    Werdell, Paul J.; Franz, Bryan Alden; Lefler, Jason Travis; Robinson, Wayne D.; Boss, Emmanuel

    2013-01-01

    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

  9. The aCORN backscatter-suppressed beta spectrometer

    DOE PAGES

    Hassan, M. T.; Bateman, F.; Collett, B.; ...

    2017-06-16

    Backscatter of electrons from a beta detector, with incomplete energy deposition, can lead to undesirable effects in many types of experiments. We present and discuss the design and operation of a backscatter-suppressed beta spectrometer that was developed as part of a program to measure the electron–antineutrino correlation coefficient in neutron beta decay (aCORN). An array of backscatter veto detectors surrounds a plastic scintillator beta energy detector. The spectrometer contains an axial magnetic field gradient, so electrons are efficiently admitted but have a low probability for escaping back through the entrance after backscattering. Lastly, the design, construction, calibration, and performance ofmore » the spectrometer are discussed.« less

  10. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  11. Coherent Backscattering and Opposition Effects Observed in Some Atmosphereless Bodies of the Solar System

    NASA Technical Reports Server (NTRS)

    Dlugach, Zh. M.; Mishchenko, M. I.

    2013-01-01

    The results of photometric and polarimetric observations carried out for some bright atmosphere-less bodies of the Solar system near the zero phase angle reveal the simultaneous existence of two spectacular optical phenomena, the so-called brightness and polarization opposition effects. In a number of studies, these phenomena were explained by the influence of coherent backscattering. However, in general, the interference concept of coherent backscattering can be used only in the case where the particles are in the far-field zones of each other, i.e., when the scattering medium is rather rarefied. Because of this, it is important to prove rigorously and to demonstrate that the coherent backscattering effect may also exist in densely packed scattering media like regolith surface layers of celestial bodies. From the results of the computer modeling performed with the use of numerically exact solutions of the macroscopic Maxwell equations for discrete random media with different packing densities of particles, we studied the origin and evolution of all the opposition phenomena predicted by the coherent backscattering theory for low-packing-density media. It has been shown that the predictions of this theory remain valid for rather high-packing densities of particles that are typical, in particular, of regolith surfaces of the Solar system bodies. The results allow us to conclude that both opposition effects observed simultaneously in some high-albedo atmosphereless bodies of the Solar system are caused precisely by coherent backscattering of solar light in the regolith layers composed of microscopic particles.

  12. Corneal backscatter in insulin-dependent and non-insulin-dependent diabetes mellitus patients: a pilot study.

    PubMed

    Calvo-Maroto, Ana M; Pérez-Cambrodí, Rafael J; Esteve-Taboada, José J; García-Lázaro, Santiago; Cerviño, Aleja Ndro

    2017-06-01

    To compare central corneal backscatter obtained from Scheimpflug images between patients with insulin-dependent and non-insulin-dependent diabetes mellitus (IDDM and NIDDM, respectively) and healthy controls. Seven patients with IDDM (7 eyes), eleven patients with NIDDM (11 eyes), and sixteen healthy subjects (16 eyes) were included in this pilot study. Scheimpflug imaging system (Pentacam, Oculus Inc., Germany) was used to obtain optical sections of the cornea. Seven meridians were analyzed for each eye, oriented from 70° to 110°. Optical density values for the central 3-mm and 5-mm zones of the cornea were obtained by image analysis using external software. Corneal backscatter was significantly higher in the diabetic patients than in the controls for the central 3-mm (p=0.016) and 5-mm (p=0.014) zones. No significant differences in corneal backscatter were found between the IDDM and NIDDM groups for either zone (both p>0.05). In the NIDDM group, significant correlations were observed for both central zones between corneal backscatter and age (3 mm: r=0.604, p=0.025; 5 mm: r=0.614, p=0.022) and central corneal thickness (3 mm: r=0.641, p=0.017; 5 mm: r=0.671, p=0.012); this was not found in the IDDM group (p>0.05). The presence of diabetes showed a significant effect on central corneal backscatter (Kruskal-Wallis test, p<0.001). Diabetic patients showed higher values of corneal light backscatter than healthy subjects. Corneal optical density analysis may be a useful tool for monitoring and assessing the ocular changes caused by diabetes.

  13. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm

    NASA Astrophysics Data System (ADS)

    Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian

    2018-04-01

    Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.

  14. Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

    DTIC Science & Technology

    2006-01-01

    coccoliths detached from Emiliania huxleyi , Limnology and Oceanography, 46, 1438−1454, 2001. Gordon, H.R., Backscattering of light from disk-like...the backscattering by coccoliths detached from E. huxleyi ; however, they found that, while the resulting spectral variation of the backscattering...Prescribed by ANSI Std Z39-18 APPROACH I use detached coccoliths from the coccolithophorid E. huxleyi (Figure 1) as a case study for applying non

  15. Electromagnetic backscattering from freak waves in (1 + 1)-dimensional deep-water

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Shen, Tao; William, Perrie; Chen, Wei; Kuang, Hai-Lan

    2010-05-01

    To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1 + 1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles.

  16. Snowcover influence on backscattering from terrain

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Abdelrazik, M.; Stiles, W. H.

    1984-01-01

    The effects of snowcover on the microwave backscattering from terrain in the 8-35 GHz region are examined through the analysis of experimental data and by application of a semiempirical model. The model accounts for surface backscattering contributions by the snow-air and snow-soil interfaces, and for volume backscattering contributions by the snow layer. Through comparisons of backscattering data for different terrain surfaces measured both with and without snowcover, the masking effects of snow are evaluated as a function of snow water equivalent and liquid water content. The results indicate that with dry snowcover it is not possible to discriminate between different types of ground surface (concrete, asphalt, grass, and bare ground) if the snow water equivalent is greater than about 20 cm (or a depth greater than 60 cm for a snow density of 0.3 g/cu cm). For the same density, however, if the snow is wet, a depth of 10 cm is sufficient to mask the underlying surface.

  17. Current indications and new applications of intense pulsed light.

    PubMed

    González-Rodríguez, A J; Lorente-Gual, R

    2015-06-01

    Intense pulsed light (IPL) systems have evolved since they were introduced into medical practice 20 years ago. Pulsed light is noncoherent, noncollimated, polychromatic light energy emitted at different wavelengths that target specific chromophores. This selective targeting capability makes IPL a versatile therapy with many applications, from the treatment of pigmented or vascular lesions to hair removal and skin rejuvenation. Its large spot size ensures a high skin coverage rate. The nonablative nature of IPL makes it an increasingly attractive alternative for patients unwilling to accept the adverse effects associated with other procedures, which additionally require prolonged absence from work and social activities. In many cases, IPL is similar to laser therapy in effectiveness, and its versatility, convenience, and safety will lead to an expanded range of applications and possibilities in coming years. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  18. Relating P-band AIRSAR backscatter to forest stand parameters

    NASA Technical Reports Server (NTRS)

    Wang, Yong; Melack, John M.; Davis, Frank W.; Kasischke, Eric S.; Christensen, Norman L., Jr.

    1993-01-01

    As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and collaborating research teams have conducted multi-season airborne synthetic aperture radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest (Duke, Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest, Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station, Michigan). The major research goals were to improve understanding of the relationships between radar backscatter and phenological variables (e.g. stand density, tree size, etc.), to improve radar backscatter models of tree canopy properties, and to develop a radar-based scheme for monitoring forest phenological changes. In September 1989, AIRSAR backscatter data were acquired over the Duke Forest. As the aboveground biomass of the loblolly pine forest stands at Duke Forest increased, the SAR backscatter at C-, L-, and P-bands increased and saturated at different biomass levels for the C-band, L-band, and P-band data. We only use the P-band backscatter data and ground measurements here to study the relationships between the backscatter and stand density, the backscatter and mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and stand basal area.

  19. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  20. Backscatter from ice growing on shallow tundra lakes near Barrow, Alaska, winter 1991-1992

    NASA Technical Reports Server (NTRS)

    Jeffries, M. O.; Wakabayashi, H.; Weeks, W. F.; Morris, K.

    1993-01-01

    The timing of freeze-up and break-up of Arctic lake ice is a potentially useful environmental indicator that could be monitored using SAR. In order to do this, it is important to understand how the properties and structure of the ice during its growth and decay affect radar backscatter and thus lake ice SAR signatures. The availability of radiometrically and geometrically calibrated digital SAR data time series from the Alaska SAR Facility has made it possible for the first time to quantify lake ice backscatter intensity (sigma(sup o)) variations. This has been done for ice growing on shallow tundra lakes near Barrow, NW Alaska, from initial growth in September 1991 until thawing and decay in June 1992. Field and laboratory observations and measurements of the lake ice were made in late April 1992. The field investigations of the coastal lakes near Barrow confirmed previous findings that, (1) ice frozen to the lake bottom had a dark signature in SAR images, indicating weak backscatter, while, (2) ice that was floating had a bright signature, indicating strong backscatter. At all sites, regardless of whether the ice was grounded or floating, there was a layer of clear, inclusion-free ice overlaying a layer of ice with dense concentrations of vertically oriented tubular bubbles. At some sites, there was a third layer of porous, snow-ice overlaying the clear ice.

  1. Positron Production in Multiphoton Light-by-Light Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koffas, Thomas

    2003-07-28

    We present the results of an experimental study on e{sup +}e{sup -} pair production during the collision of a low emittance 46.6 GeV electron beam with terawatt laser pulses from a Nd:glass laser at 527 nm wavelength and with linear polarization. The experiment was conducted at the Final Focus Test Beam facility in the Stanford Linear Accelerator Center. Results with a 49.1 GeV electron beam are also included. A signal of 106 {+-} 14 positrons for the 46.6 GeV electron beam case and of 22 {+-} 10 positrons for the 49.1 GcV case above background, has been detected. We interpretmore » the positrons as the products of a two-step process during which laser photons are backscattered to high energy gamma photons that absorb in their turn several laser photons in order to produce a e{sup +}e{sup -} pair. The data compare well with the existing theoretical models. This is the first observation in the laboratory of inelastic Light-by-Light scattering with only real photons. Alternatively, the data are interpreted as a manifestation of the spontaneous breakdown of the vacuum under the influence of an intense external alternating electric field.« less

  2. Lidar using the backscatter amplification effect

    NASA Astrophysics Data System (ADS)

    Razenkov, Igor A.; Banakh, Victor A.

    2018-04-01

    Experimental data proving the possibility of lidar measurement of the refractive turbulence strength based on the effect of backscatter amplification (BSA) are reported. It is shown that the values of the amplification factor correlate with the variance of random jitter of optical image of an incoherent light source depending on the value of the structure constant of the air refractive index turbulent fluctuations averaged over the probing path. This paper presents the results of measurements of the BSA factor in comparison with the simultaneous measurements of the BSA peak, which is very narrow and only occurs on the laser beam axis. It is constructed the range-time images of the derivative of the amplification factor gives a comprehensive picture of the location of turbulent zones and their temporal dynamics.

  3. Effects of day-time exposure to different light intensities on light-induced melatonin suppression at night.

    PubMed

    Kozaki, Tomoaki; Kubokawa, Ayaka; Taketomi, Ryunosuke; Hatae, Keisuke

    2015-07-04

    Bright nocturnal light has been known to suppress melatonin secretion. However, bright light exposure during the day-time might reduce light-induced melatonin suppression (LIMS) at night. The effective proportion of day-time light to night-time light is unclear; however, only a few studies on accurately controlling both day- and night-time conditions have been conducted. This study aims to evaluate the effect of different day-time light intensities on LIMS. Twelve male subjects between the ages of 19 and 23 years (mean ± S.D., 20.8 ± 1.1) gave informed consent to participate in this study. They were exposed to various light conditions (<10, 100, 300, 900 and 2700 lx) between the hours of 09:00 and 12:00 (day-time light conditions). They were then exposed to bright light (300 lx) again between 01:00 and 02:30 (night-time light exposure). They provided saliva samples before (00:55) and after night-time light exposure (02:30). A one-tailed paired t test yielded significant decrements of melatonin concentration after night-time light exposure under day-time dim, 100- and 300-lx light conditions. No significant differences exist in melatonin concentration between pre- and post-night-time light exposure under day-time 900- and 2700-lx light conditions. Present findings suggest the amount of light exposure needed to prevent LIMS caused by ordinary nocturnal light in individuals who have a general life rhythm (sleep/wake schedule). These findings may be useful in implementing artificial light environments for humans in, for example, hospitals and underground shopping malls.

  4. SAR backscatter from coniferous forest gaps

    NASA Technical Reports Server (NTRS)

    Day, John L.; Davis, Frank W.

    1992-01-01

    A study is in progress comparing Airborne Synthetic Aperture Radar (AIRSAR) backscatter from coniferous forest plots containing gaps to backscatter from adjacent gap-free plots. Issues discussed are how do gaps in the range of 400 to 1600 sq m (approximately 4-14 pixels at intermediate incidence angles) affect forest backscatter statistics and what incidence angles, wavelengths, and polarizations are most sensitive to forest gaps. In order to visualize the slant-range imaging of forest and gaps, a simple conceptual model is used. This strictly qualitative model has led us to hypothesize that forest radar returns at short wavelengths (eg., C-band) and large incidence angles (e.g., 50 deg) should be most affected by the presence of gaps, whereas returns at long wavelengths and small angles should be least affected. Preliminary analysis of 1989 AIRSAR data from forest near Mt. Shasta supports the hypothesis. Current forest backscatter models such as MIMICS and Santa Barbara Discontinuous Canopy Backscatter Model have in several cases correctly predicted backscatter from forest stands based on inputs of measured or estimated forest parameters. These models do not, however, predict within-stand SAR scene texture, or 'intrinsic scene variability' as Ulaby et al. has referred to it. For instance, the Santa Barbara model, which may be the most spatially coupled of the existing models, is not truly spatial. Tree locations within a simulated pixel are distributed according to a Poisson process, as they are in many natural forests, but tree size is unrelated to location, which is not the case in nature. Furthermore, since pixels of a simulated stand are generated independently in the Santa Barbara model, spatial processes larger than one pixel are not modeled. Using a different approach, Oliver modeled scene texture based on an hypothetical forest geometry. His simulated scenes do not agree well with SAR data, perhaps due to the simple geometric model used. Insofar as texture

  5. Backscatter correction factor for megavoltage photon beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Yida; Zhu, Timothy C.

    2011-10-15

    Purpose: For routine clinical dosimetry of photon beams, it is often necessary to know the minimum thickness of backscatter phantom material to ensure that full backscatter condition exists. Methods: In case of insufficient backscatter thickness, one can determine the backscatter correction factor, BCF(s,d,t), defined as the ratio of absorbed dose measured on the central-axis of a phantom with backscatter thickness of t to that with full backscatter for square field size s and forward depth d. Measurements were performed in SAD geometry for 6 and 15 MV photon beams using a 0.125 cc thimble chamber for field sizes between 10more » x 10 and 30 x 30 cm at depths between d{sub max} (1.5 cm for 6 MV and 3 cm for 15 MV) and 20 cm. Results: A convolution method was used to calculate BCF using Monte-Carlo simulated point-spread kernels generated for clinical photon beams for energies between Co-60 and 24 MV. The convolution calculation agrees with the experimental measurements to within 0.8% with the same physical trend. The value of BCF deviates more from 1 for lower energies and larger field sizes. According to our convolution calculation, the minimum BCF occurs at forward depth d{sub max} and 40 x 40 cm field size, 0.970 for 6 MV and 0.983 for 15 MV. Conclusions: The authors concluded that backscatter thickness is 6.0 cm for 6 MV and 4.0 cm for 15 MV for field size up to 10 x 10 cm when BCF = 0.998. If 4 cm backscatter thickness is used, BCF is 0.997 and 0.983 for field size of 10 x 10 and 40 x 40 cm for 6 MV, and is 0.998 and 0.990 for 10 x 10 and 40 x 40 cm for 15 MV, respectively.« less

  6. Attosecond control of electronic processes by intense light fields.

    PubMed

    Baltuska, A; Udem, Th; Uiberacker, M; Hentschel, M; Goulielmakis, E; Gohle, Ch; Holzwarth, R; Yakovlev, V S; Scrinzi, A; Hänsch, T W; Krausz, F

    2003-02-06

    The amplitude and frequency of laser light can be routinely measured and controlled on a femtosecond (10(-15) s) timescale. However, in pulses comprising just a few wave cycles, the amplitude envelope and carrier frequency are not sufficient to characterize and control laser radiation, because evolution of the light field is also influenced by a shift of the carrier wave with respect to the pulse peak. This so-called carrier-envelope phase has been predicted and observed to affect strong-field phenomena, but random shot-to-shot shifts have prevented the reproducible guiding of atomic processes using the electric field of light. Here we report the generation of intense, few-cycle laser pulses with a stable carrier envelope phase that permit the triggering and steering of microscopic motion with an ultimate precision limited only by quantum mechanical uncertainty. Using these reproducible light waveforms, we create light-induced atomic currents in ionized matter; the motion of the electronic wave packets can be controlled on timescales shorter than 250 attoseconds (250 x 10(-18) s). This enables us to control the attosecond temporal structure of coherent soft X-ray emission produced by the atomic currents--these X-ray photons provide a sensitive and intuitive tool for determining the carrier-envelope phase.

  7. Influence of light intensity on surface free energy and dentin bond strength of core build-up resins.

    PubMed

    Shimizu, Y; Tsujimoto, A; Furuichi, T; Suzuki, T; Tsubota, K; Miyazaki, M; Platt, J A

    2015-01-01

    We examined the influence of light intensity on surface free energy characteristics and dentin bond strength of dual-cure direct core build-up resin systems. Two commercially available dual-cure direct core build-up resin systems, Clearfil DC Core Automix with Clearfil Bond SE One and UniFil Core EM with Self-Etching Bond, were studied. Bovine mandibular incisors were mounted in acrylic resin and the facial dentin surfaces were wet ground on 600-grit silicon carbide paper. Adhesives were applied to dentin surfaces and cured with light intensities of 0 (no irradiation), 200, 400, and 600 mW/cm(2). The surface free energy of the adhesives (five samples per group) was determined by measuring the contact angles of three test liquids placed on the cured adhesives. To determine the strength of the dentin bond, the core build-up resin pastes were condensed into the mold on the adhesive-treated dentin surfaces according to the methods described for the surface free energy measurement. The resin pastes were cured with the same light intensities as those used for the adhesives. Ten specimens per group were stored in water maintained at 37°C for 24 hours, after which they were shear tested at a crosshead speed of 1.0 mm/minute in a universal testing machine. Two-way analysis of variance (ANOVA) and a Tukey-Kramer test were performed, with the significance level set at 0.05. The surface free energies of the adhesive-treated dentin surfaces decreased with an increase in the light intensity of the curing unit. Two-way ANOVA revealed that the type of core build-up system and the light intensity significantly influence the bond strength, although there was no significant interaction between the two factors. The highest bond strengths were achieved when the resin pastes were cured with the strongest light intensity for all the core build-up systems. When polymerized with a light intensity of 200 mW/cm(2) or less, significantly lower bond strengths were observed. CONClUSIONS: The

  8. Sea floor maps showing topography, sun-illuminated topography, and backscatter intensity of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts

    USGS Publications Warehouse

    Valentine, P.C.; Middleton, T.J.; Fuller, S.J.

    2000-01-01

    This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.

  9. Magnetic orientation in birds: non-compass responses under monochromatic light of increased intensity.

    PubMed

    Wiltschko, Wolfgang; Munro, Ursula; Ford, Hugh; Wiltschko, Roswitha

    2003-10-22

    Migratory Australian silvereyes (Zosterops lateralis) were tested under monochromatic light at wavelengths of 424 nm blue and 565 nm green. At a low light level of 7 x 10(15) quanta m(-2) s(-1) in the local geomagnetic field, the birds preferred their seasonally appropriate southern migratory direction under both wavelengths. Their reversal of headings when the vertical component of the magnetic field was inverted indicated normal use of the avian inclination compass. A higher light intensity of 43 x 10(15) quanta m(-2) s(-1), however, caused a fundamental change in behaviour: under bright blue, the silvereyes showed an axial tendency along the east-west axis; under bright green, they showed a unimodal preference of a west-northwesterly direction that followed a shift in magnetic north, but was not reversed by inverting the vertical component of the magnetic field. Hence it is not based on the inclination compass. The change in behaviour at higher light intensities suggests a complex interaction between at least two receptors. The polar nature of the response under bright green cannot be explained by the current models of light-dependent magnetoreception and will lead to new considerations on these receptive processes.

  10. Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees.

    PubMed

    Reber, Therese; Vähäkainu, Antti; Baird, Emily; Weckström, Matti; Warrant, Eric; Dacke, Marie

    2015-05-01

    To control flight, insects rely on the pattern of visual motion generated on the retina as they move through the environment. When light levels fall, vision becomes less reliable and flight control thus becomes more challenging. Here, we investigated the effect of light intensity on flight control by filming the trajectories of free-flying bumblebees (Bombus terrestris, Linnaeus 1758) in an experimental tunnel at different light levels. As light levels fell, flight speed decreased and the flight trajectories became more tortuous but the bees were still remarkably good at centring their flight about the tunnel's midline. To investigate whether this robust flight performance can be explained by visual adaptations in the bumblebee retina, we also examined the response speed of the green-sensitive photoreceptors at the same light intensities. We found that the response speed of the photoreceptors significantly decreased as light levels fell. This indicates that bumblebees have both behavioural (reduction in flight speed) and retinal (reduction in response speed of the photoreceptors) adaptations to allow them to fly in dim light. However, the more tortuous flight paths recorded in dim light suggest that these adaptations do not support flight with the same precision during the twilight hours of the day. © 2015. Published by The Company of Biologists Ltd.

  11. Laissez-Faire : Fully Asymmetric Backscatter Communication

    PubMed Central

    Hu, Pan; Zhang, Pengyu; Ganesan, Deepak

    2016-01-01

    Backscatter provides dual-benefits of energy harvesting and low-power communication, making it attractive to a broad class of wireless sensors. But the design of a protocol that enables extremely power-efficient radios for harvesting-based sensors as well as high-rate data transfer for data-rich sensors presents a conundrum. In this paper, we present a new fully asymmetric backscatter communication protocol where nodes blindly transmit data as and when they sense. This model enables fully flexible node designs, from extraordinarily power-efficient backscatter radios that consume barely a few micro-watts to high-throughput radios that can stream at hundreds of Kbps while consuming a paltry tens of micro-watts. The challenge, however, lies in decoding concurrent streams at the reader, which we achieve using a novel combination of time-domain separation of interleaved signal edges, and phase-domain separation of colliding transmissions. We provide an implementation of our protocol, LF-Backscatter, and show that it can achieve an order of magnitude or more improvement in throughput, latency and power over state-of-art alternatives. PMID:28286885

  12. Atmospheric Backscatter Model Development for CO Sub 2 Wavelengths

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Kent, G.; Yue, G. K.

    1982-01-01

    The results of investigations into the problems of modeling atmospheric backscatter from aerosols, in the lowest 20 km of the atmosphere, at CO2 wavelengths are presented, along with a summary of the relevant aerosol characteristics and their variability, and a discussion of the measurement techniques and errors involved. The different methods of calculating the aerosol backscattering function, both from measured aerosol characteristics and from optical measurements made at other wavelengths, are discussed in detail, and limits are placed on the accuracy of these methods. The effects of changing atmospheric humidity and temperature on the backscatter are analyzed and related to the actual atmosphere. Finally, the results of modeling CO2 backscatter in the atmosphere are presented and the variation with height and geographic location discussed, and limits placed on the magnitude of the backscattering function. Conclusions regarding modeling techniques and modeled atmospheric backscatter values are presented in tabular form.

  13. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Whitaker, Ross (Inventor); Turner, D. Clark (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  14. Effect of light intensity on food detection in captive great fruit-eating bats, Artibeus lituratus (Chiroptera: Phyllostomidae).

    PubMed

    Gutierrez, Eduardo de A; Pessoa, Valdir F; Aguiar, Ludmilla M S; Pessoa, Daniel M A

    2014-11-01

    Bats are known for their well-developed echolocation. However, several experiments focused on the bat visual system have shown evidence of the importance of visual cues under specific luminosity for different aspects of bat biology, including foraging behavior. This study examined the foraging abilities of five female great fruit-eating bats, Artibeus lituratus, under different light intensities. Animals were given a series of tasks to test for discrimination between a food target against an inedible background, under light levels similar to the twilight illumination (18lx), the full moon (2lx) and complete darkness (0lx). We found that the bats required a longer time frame to detect targets under a light intensity similar to twilight, possibly due to inhibitory effects present under a more intense light level. Additionally, bats were more efficient at detecting and capturing targets under light conditions similar to the luminosity of a full moon, suggesting that visual cues were important for target discrimination. These results demonstrate that light intensity affects foraging behavior and enables the use of visual cues for food detection in frugivorous bats. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Purifying synthetic high-strength wastewater by microalgae chlorella vulgaris under various light emitting diode wavelengths and intensities

    PubMed Central

    2013-01-01

    The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity. PMID:24499586

  16. X-ray backscatter imaging of nuclear materials

    DOEpatents

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  17. Effect of light intensity on the total lipid and fatty acid composition of six strains of marine diatoms

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Mai, Kang-Sen; Sun, Shi-Chun; Yu, Dao-Zhan

    2001-09-01

    The effect of light intensity (1500 lx and 5000 lx) on the total lipid and fatty acid composition of six strains of marine diatoms Cylindrotheca fusiformis (B211), Phaeodactylum tricornutum (B114, B118 and B221) Nitzschia closterium (B222) and Chaetoceros gracilis (B13) was investigated. The total lipids of B13, B114, and B211 grown at 5000 lx were lower than those grown at 1500 lx. No evident changes were observed in B118, B221 and B222. Fatty acid composition changed considerably at different light intensity although no consistent correlation between the relative proportion of a single FA and light intensity. The major fatty acids of the 6 strains were 14∶0, 16∶0, 16∶1 (n-7) and 20∶5(n-3). Cylindrotheca fusiformis had high percentage of 20∶4n 6(9.2 10.9%). The total polyunsaturated fatty acid in all 6 strains decreased with increasing light intensity. The percentage of the highly unsaturated fatty acid eicosapentaenoic acid (EPA) decreased with increasing light intensity in all strains except Chaetoceros gracilis.

  18. Acne phototherapy using UV-free high-intensity narrow-band blue light: a three-center clinical study

    NASA Astrophysics Data System (ADS)

    Shalita, Alan R.; Harth, Yoram; Elman, Monica; Slatkine, Michael; Talpalariu, Gerry; Rosenberg, Yitzhak; Korman, Avner; Klein, Arieh

    2001-05-01

    Propionibacterium. acnes is a Gram positive, microaerophilic bacterium which takes a part in the pathogenesis of inflammatory acne. P. acnes is capable to produce high amounts endogenic porphyrins with no need of any trigger molecules. Light in the violet-blue range (407-420 nm) has been shown to exhibit a phototoxic effect on Propionibacterium acnes when irradiated in vitro. The purpose of our study was to test the clinical effects of a high intensity narrowband blue light source on papulo pustular acne. A total of 35 patients in 3 centers were treated twice a week with a high intensity metal halide lamp illuminating the entire face (20x20 cm2) or the back with visible light in the 407-420 nm range at an intensity of 90 mW/cm2 (CureLight Ltd.) for a total of 4 weeks. UV is totally cut off. In each treatment the patient was exposed to light for 8-15 minutes. After 8 treatments, 80% of the patients with mild to moderate papulo-pustular acne showed significant improvement at reducing the numbers of non- inflammatory, inflammatory and total facial lesions. Inflammatory lesion count decrease by a mean of 68%. No side effects to the treatment were noticed. In conclusion, full face or back illumination with the high intensity pure blue light we used exhibits a rapid significant decrease in acne lesions counts in 8 biweekly treatments.

  19. Measurement of the intensity of the beam in the abort gap at the Tevatron utilizing synchrotron light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman-Keup, R.; Lorman, E.; Meyer, T.

    2005-05-01

    This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam.

  20. New findings regarding light intensity and its effects as a zeitgeber in the Sprague-Dawley rat

    NASA Technical Reports Server (NTRS)

    Tischler, A. C.; Winget, C. M.; Holley, D. C.; Deroshia, C. W.; Gott, J.; Mele, G.; Callahan, P. X.

    1993-01-01

    In most mammals, the suprachiasmatic nucleus of the anterior hypothalamus has been implicated as the central driving mechanism of circadian rhythmicity. The photic input from the retina, via the retino-hypothalamic tract, and modulation from the pineal gland help regulate the clock. In this study, we investigated the effects of low light intensity on the circadian system of the Sprague-Dawley rat. A series of light intensity experiments were conducted to determine if a light level of 0.1 Lux will maintain entrained circadian rhythms of feeding, drinking, and locomotor activity.

  1. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  2. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE PAGES

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; ...

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  3. Correlated peak relative light intensity and peak current in triggered lightning subsequent return strokes

    NASA Technical Reports Server (NTRS)

    Idone, V. P.; Orville, R. E.

    1985-01-01

    The correlation between peak relative light intensity L(R) and stroke peak current I(R) is examined for 39 subsequent return strokes in two triggered lightning flashes. One flash contained 19 strokes and the other 20 strokes for which direct measurements were available of the return stroke peak current at ground. Peak currents ranged from 1.6 to 21 kA. The measurements of peak relative light intensity were obtained from photographic streak recordings using calibrated film and microsecond resolution. Correlations, significant at better than the 0.1 percent level, were found for several functional relationships. Although a relation between L(R) and I(R) is evident in these data, none of the analytical relations considered is clearly favored. The correlation between L(R) and the maximum rate of current rise is also examined, but less correlation than between L(R) and I(R) is found. In addition, the peak relative intensity near ground is evaluated for 22 dart leaders, and a mean ratio of peak dart leader to peak return stroke relative light intensity was found to be 0.1 with a range of 0.02-0.23. Using two different methods, the peak current near ground in these dart leaders is estimated to range from 0.1 to 6 kA.

  4. Mode-converted diffuse ultrasonic backscatter.

    PubMed

    Hu, Ping; Kube, Christopher M; Koester, Lucas W; Turner, Joseph A

    2013-08-01

    Diffuse ultrasonic backscatter describes the scattering of elastic waves from interfaces within heterogeneous materials. Previously, theoretical models have been developed for the diffuse backscatter of longitudinal-to-longitudinal (L-L) wave scattering within polycrystalline materials. Following a similar formalism, a mode-conversion scattering model is presented here to quantify the component of an incident longitudinal wave that scatters and is converted to a transverse (shear) wave within a polycrystalline sample. The model is then used to fit experimental measurements associated with a pitch-catch transducer configuration performed using a sample of 1040 steel. From these measurements, an average material correlation length is determined. This value is found to be in agreement with results from L-L scattering measurements and is on the order of the grain size as determined from optical micrographs. Mode-converted ultrasonic backscatter is influenced much less by the front-wall reflection than an L-L measurement and it provides additional microstructural information that is not accessible in any other manner.

  5. Antioxidant capacity reduced in scallions grown under elevated CO 2 independent of assayed light intensity

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang H.; Paré, Paul W.

    2009-10-01

    Long-duration manned space missions mandate the development of a sustainable life support system and effective countermeasures against damaging space radiation. To mitigate the risk of inevitable exposure to space radiation, cultivation of fresh fruits and vegetables rich in antioxidants is an attractive alternative to pharmacological agents. However it has yet to be established whether antioxidant properties of crops can be preserved or enhanced in a space environment where environmental conditions differ from that which plants have acclimated to on earth. Scallion ( Allium fistulosum) rich in antioxidant vitamins C and A, and flavonoids was used as a model plant to study the impact of a range of CO 2 concentrations and light intensities that are likely encountered in a space habitat on food quality traits. Scallions were hydroponically grown in controlled environmental chambers under a combination of 3 CO 2 concentrations of 400, 1200 and 4000 μmol mol -1 and 3 light intensity levels of 150, 300, 450 μmol m -2 s -1. Total antioxidant activity (TAA) of scallion extracts was determined using a radical cation scavenging assay. Both elevated CO 2 and increasing light intensity enhanced biomass accumulation, but effects on TAA (based on dry weight) differed. TAA was reduced for plants grown under elevated CO 2, but remained unchanged with increases in light intensity. Elevated CO 2 stimulated greater biomass production than antioxidants, while an increase in photosynthetic photo flux promoted the synthesis of antioxidant compounds at a rate similar to that of biomass. Consequently light is a more effective stimulus than CO 2 for antioxidant production.

  6. Intensity noise limit in a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    E Alekseev, A.; Tezadov, Ya A.; Potapov, V. T.

    2017-05-01

    In the present paper we perform, for the first time, the analysis of the average intensity noise power level at the output of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source. The origin of the considered intensity noise lies in random phase fluctuations of a semiconductor laser source field. These phase fluctuations are converted to intensity noise in the process of interference of backscattered light. This intensity noise inevitably emerges in every phase-OTDR spatial channel and limits its sensitivity to external phase actions. The analysis of intensity noise in a phase-OTDR was based on the study of a fiber scattered-light interferometer (FSLI) which is treated as the constituent part of OTDR. When considered independently, FSLI has a broad intensity noise spectrum at its output; when FSLI is treated as a part of a phase-OTDR, due to aliasing effect, the wide FSLI noise spectrum is folded within the spectral band, determined by the probe pulse repetition frequency. In the analysis one of the conventional phase-OTDR schemes with rectangular dual-pulse probe signal was considered, the FSLI, which corresponds to this OTDR scheme, has two scattering fiber segments with additional time delay introduced between backscattered fields. The average intensity noise power and resulting noise spectrum at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments and by the additional time delay between the scattering segments. The average intensity noise characteristics at the output of the corresponding phase-OTDR are determined by the analogous parameters: the source coherence, the lengths of the parts constituting the dual-pulse and the time interval which separates the parts of the dual-pulse. In the paper the expression for the average noise power spectral density (NPSD) at the output of FSLI was theoretically derived and

  7. Synchronous Crepuscular Flight of Female Asian Gypsy Moths: Relationships of Light Intensity and Ambient and Body Temperatures

    Treesearch

    Ralph E. Charlton; Ring T. Carde; William E. Wallner; William E. Wallner

    1999-01-01

    Female gypsy moths (Lymantria dispar) of Asian heritage studied in central Siberia and Germany exhibit a highly synchronous flight at dusk, after light intensity falls to about 2 lux. This critical light intensity sets the timing of flight behaviors independent of ambient temperature. Flight follows several minutes of preflight wing fanning during which females in...

  8. CALIOP near-real-time backscatter products compared to EARLINET data

    NASA Astrophysics Data System (ADS)

    Grigas, T.; Hervo, M.; Gimmestad, G.; Forrister, H.; Schneider, P.; Preißler, J.; Tarrason, L.; O'Dowd, C.

    2015-03-01

    The expedited near-real-time Level 1.5 Cloud-Aerosol Lidar (Light Detection and Ranging) with Orthogonal Polarization (CALIOP) products were evaluated against data from the ground-based European Aerosol Research Lidar Network (EARLINET). Over a period of three years, lidar data from 48 CALIOP overpasses with ground tracks within a 100 km distance from an operating EARLINET station were deemed suitable for analysis and they included a valid aerosol classification type (e.g. dust, polluted dust, clean marine, clean continental, polluted continental, mixed and/or smoke/biomass burning). For the complete dataset comprising both PBL and FT data, the correlation coefficient was 0.86, and when separated into separate layers, the PBL and FT correlation coefficients were 0.6 and 0.85 respectively. The presence of FT layers with high attenuated backscatter led to poor agreement in PBL backscatter profiles between the CALIOP and EARLINET measurements and prompted a further analysis filtering out such cases. However, the correlation coefficient value for the complete dataset decreased marginally from 0.86 to 0.84 while the PBL coefficient increased from 0.6 up to 0.65 and the FT coefficient also decreased from 0.85 to 0.79. For specific aerosol types, the correlation coefficient between CALIOP backscatter profiles and ground-based lidar data ranged from 0.37 for polluted continental aerosol in the planetary boundary layer (PBL) to 0.57 for dust in the free troposphere (FT). The results suggest different levels of agreement based on the location of the dominant aerosol layer and the aerosol type.

  9. Effects of plant size, temperature, and light intensity on flowering of Phalaenopsis hybrids in Mediterranean greenhouses.

    PubMed

    Paradiso, Roberta; De Pascale, Stefania

    2014-01-01

    Mediterranean greenhouses for cultivation of Phalaenopsis orchids reproduce the warm, humid, and shaded environment of tropical underbrush. Heating represents the highest production cost, due to the high thermal requirements and the long unproductive phase of juvenility, in which plants attain the critical size for flowering. Our researches aimed to investigate the effect of plant size, temperature, and light intensity, during the phase of flower induction, on flowering of modern genotypes selected for Mediterranean greenhouses. Three experiments were carried out to compare (i) plant size: reduced size versus size considered optimal for flowering (hybrids "Sogo Yukidian," "Chain Xen Diamond," and "Pinlong"); (ii) temperature: moderate reduction of temperature versus standard thermal regime (hybrid "Premium"); (iii) light intensity: supplemental lighting versus reference light intensity (hybrid "Premium"). The premature exposure of plants to the inductive treatment delayed the beginning of flowering and reduced the flower stem quality, in all the tested hybrids. In "Premium," the lower temperature did not affect flowering earliness and commercial quality of flower stems compared to the standard regime, whereas it promoted stem branching. In the same hybrid, supplemental lighting anticipated flowering and promoted the emission of the second stem and the stem branching, compared to the reference light regime.

  10. The ultrastructure of rabbit sclera after scleral crosslinking with riboflavin and blue light of different intensities.

    PubMed

    Karl, Anett; Makarov, Felix N; Koch, Christian; Körber, Nicole; Schuldt, Carsten; Krüger, Martin; Reichenbach, Andreas; Wiedemann, Peter; Bringmann, Andreas; Iseli, Hans Peter; Francke, Mike

    2016-08-01

    We aimed to determine the ultrastructural changes of collagen fibrils and cells in the rabbit sclera after scleral crosslinking using riboflavin and blue light of different intensities. Scleral crosslinking is known to increase scleral stiffness and may inhibit the axial elongation of progressive myopic eyes. The equatorial parts of the sclera of one eye of six adult albino rabbits were treated with topical riboflavin solution (0.5 %) followed by irradiation with blue light (200, 400, 650 mW/cm(2)) for 20 min. After 3 weeks, the ultrastructure of scleral cells and the abundance of small- (10-100 nm) and large-diameter (>100 nm) collagen fibrils in fibril bundles of different scleral layers were examined with electron microscopy. In the scleral stroma of control eyes, the thickness of collagen fibrils showed a bimodal distribution. The abundance of small-diameter collagen fibrils decreased from the inner towards the outer sclera, while the amount of large-diameter fibrils and the scleral collagen content did not differ between different stroma layers. Treatment with riboflavin and blue light at 200 mW/cm(2) did not induce ultrastructural changes of cells and collagen fibrils in the scleral stroma. Treatment with blue light of higher intensities induced scleral cell activation in a scleral layer-dependent manner. In addition, outer scleral layers contained phagocytes that engulfed collagen fibrils and erythrocytes. Blue light of the highest intensity induced a reduction of the scleral collagen content, a decreased abundance of large-diameter collagen fibrils, and an increased amount of small-diameter fibrils in the whole scleral stroma. The data indicate that in rabbits, scleral crosslinking with riboflavin and blue light of 200 mW/cm(2) for 20 min is relatively safe and does not induce ultrastructural alterations of scleral cells and of the collagen composition of the scleral stroma. Irradiation with blue light of intensities between 200 and 400 mW/cm(2

  11. An energy-dependent electron backscattering coefficient

    NASA Astrophysics Data System (ADS)

    Williamson, W., Jr.; Antolak, A. J.; Meredith, R. J.

    1987-05-01

    An energy-dependent electron backscattering coefficient is derived based on the continuous slowing down approximation and the Bethe stopping power. Backscattering coefficients are given for 10-50-keV electrons incident on bulk and thin-film aluminum, silver, and gold targets. The results are compared with the Everhart theory and empirical fits to experimental data. The energy-dependent theory agrees better with experimental work.

  12. Application of HARLIE Measurements in Mesoscale Studies: Measurements of Aerosol Backscatter and Winds During A Gust Front

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Miller, David; Schwemmer, Geary; Starr, David OC (Technical Monitor)

    2001-01-01

    Lidar atmospheric systems have required large telescope for receiving atmospheric backscatter signals. Thus, the relative complexity in size and ease of operation has limited their wider use in the atmospheric science and meteorology community. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) uses a scanning holographic receiver and demonstrates that these issues can be overcome. HARLIE participated at the DOE-ARM Southern Great Plains site (CART) during the Water Vapor Intensive Operation Period (WVIOP2000) held September-October 2000. It provided exceptional high temporal and spatial resolution measurements of aerosol and cloud backscatter in three dimensions. HARLIE recorded over 110 hours of data were recorded on 16 days between 17 September and 6 October 2000. Placed in a ground-based trailer for upward looking scanning measurements of clouds and aerosols, HARLIE provided a unique record of time-resolved atmospheric backscatter at 1-micron wavelength. The conical scanning lidar measures atmospheric backscatter on the surface of an inverted 90 degree (full angle) cone up to an altitude of 20 km, 360-degree scans having spatial resolutions of 20 meters in the vertical and 1 degree in azimuth were obtained every 36 seconds during the daily, operating period. In this study we present highlights of HARLIE-based measurements of the boundary layer and cloud parameters as well as atmospheric wind vectors where there is sufficiently resolved structure in the backscatter. In particular we present data and discussions from a bore-front case observed on 23 September 2000.

  13. Interaction-induced backscattering in short quantum wires

    DOE PAGES

    Rieder, M. -T.; Micklitz, T.; Levchenko, A.; ...

    2014-10-06

    We study interaction-induced backscattering in clean quantum wires with adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady state only on length scales exponentially large in the ratio of bandwidth of excitations and temperature. Here in this paper we focus on shorter wires in which full equilibration is not accomplished. Signatures of relaxation then are due to backscattering of hole excitations close to the band bottom which perform a diffusive motion in momentum space while scattering from excitations at the Fermi level. This is reminiscent to the first passage problem of amore » Brownian particle and, regardless of the interaction strength, can be described by an inhomogeneous Fokker-Planck equation. From general solutions of the latter we calculate the hole backscattering rate for different wire lengths and discuss the resulting length dependence of interaction-induced correction to the conductance of a clean single channel quantum wire.« less

  14. Enhanced backscatter of optical beams reflected in turbulent air.

    PubMed

    Nelson, W; Palastro, J P; Wu, C; Davis, C C

    2015-07-01

    Optical beams propagating through air acquire phase distortions from turbulent fluctuations in the refractive index. While these distortions are usually deleterious to propagation, beams reflected in a turbulent medium can undergo a local recovery of spatial coherence and intensity enhancement referred to as enhanced backscatter (EBS). Here we validate the commonly used phase screen simulation with experimental results obtained from lab-scale experiments. We also verify theoretical predictions of the dependence of the turbulence strength on EBS. Finally, we present a novel algorithm called the "tilt-shift method" which allows detection of EBS in frozen turbulence, reducing the time required to detect the EBS signal.

  15. Analysis of the backscatter spectrum in an ionospheric modification experiment

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.; Harker, K. J.

    1974-01-01

    Predictions of the backscatter spectrum, including effects of ionospheric inhomogeneity, are compared with experimental observations of incoherent backscatter from an artificially heated region. Our calculations show that the strongest backscatter echo received is not from the reflection level, but from a region some distance below. Certain asymmetrical features are explained of the up-shifted and down-shifted plasma lines in the backscatter spectrum, and the several satellite peaks accompanying them.

  16. Influence of chirp on laser-pulse amplification in Brillouin backscattering schemes

    NASA Astrophysics Data System (ADS)

    Lehmann, Goetz; Schluck, Friedrich; Spatschek, Karl-Heinz

    2015-11-01

    Plasma-based amplification of laser pulses is currently discussed as a key component for the next generation of high-intensity laser systems, possibly enabling the generation of ultra-short pulses in the exawatt-zetawatt regime. In these scenarios the energy of a long pump pulse (several ps to ns of duration) is transferred to a short seed pulse via a plasma oscillation. Weakly- and strongly-coupled (sc) Brillouin backscattering have been identified as potential candidates for robust amplification scenarios. With the help of three-wave interaction models, we investigate the influence of a chirp of the pump beam on the seed amplification. We show that chirp can mitigate deleterious spontaneous Raman backscattering of the pump off noise and that at the same time the amplification dynamics due to Brillouin scattering is still intact. For the experimentally very interesting case of sc-Brillouin we find a dependence of the efficiency on the sign of the chirp. Funding provided by project B10 of SFB TR18 of the Deutsche Forschungsgemeinschaft (DFG).

  17. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration.

    PubMed

    Kashani, Alireza G; Olsen, Michael J; Parrish, Christopher E; Wilson, Nicholas

    2015-11-06

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record "intensity", loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of "normalization", "correction", or "calibration" techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

  18. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus.

    PubMed

    Ferreira, V S; Pinto, R F; Sant'Anna, C

    2016-03-01

    Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.

  19. Complementary use of ion beam elastic backscattering and recoil detection analysis for the precise determination of the composition of thin films made of light elements

    NASA Astrophysics Data System (ADS)

    Climent-Font, A.; Cervera, M.; Hernández, M. J.; Muñoz-Martín, A.; Piqueras, J.

    2008-04-01

    Rutherford backscattering spectrometry (RBS) is a well known powerful technique to obtain depth profiles of the constituent elements in a thin film deposited on a substrate made of lighter elements. In its standard use the probing beam is typically 2 MeV He. Its capabilities to obtain precise composition profiles are severely diminished when the overlaying film is made of elements lighter than the substrate. In this situation the analysis of the energy of the recoiled element from the sample in the elastic scattering event, the ERDA technique may be advantageous. For the detection of light elements it is also possible to use beams at specific energies producing elastic resonances with these light elements to be analyzed, with a much higher scattering cross sections than the Rutherford values. This technique may be called non-RBS. In this work we report on the complementary use of ERDA with a 30 MeV Cl beam and non-RBS with 1756 keV H ions to characterize thin films made of boron, carbon and nitrogen (BCN) deposited on Si substrates.

  20. The growth and decay of equatorial backscatter plumes

    NASA Astrophysics Data System (ADS)

    Tsunoda, R. T.

    1980-02-01

    During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.

  1. The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Lojpur, Vesna; Mitrić, Miodrag; Validžić, Ivana Lj

    2018-05-01

    We report here an optic/lens system that we used so far, for cooling the surface of solar cells, the reduction of light intensity and the change of light distribution that reaches the surface of the solar cell. The objective was to improve photovoltaic characteristics under very low light illumination, as well as to understand the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. It was found that for all so far designed thin-film solar cells made and based on the synthesized Sb2S3, optics/lens system causes an increase in open circuit voltage (VOC) and short circuit current (ISC) and thus the efficiencies of made solar devices. Values of energy gaps for the thin-films made devices were in the range from 1.4 to 2 eV. Improvements of the photovoltaic response of the designed devices are found to be better at the lower light intensity (5% sun), than at higher intensities of light. For the same intensity of light used optic/lens improves the efficiency of the devices, by changing the light distribution. Other processes that are related to the optics/lens system, leading to an increase in ISC and VOC and consequently to an increase in efficiencies of the designed devices, are investigated.

  2. Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.)

    PubMed Central

    Cheng, Lingyun; Tang, Xiaoyan; Vance, Carroll P.; White, Philip J.; Zhang, Fusuo; Shen, Jianbo

    2014-01-01

    Light intensity affects photosynthetic carbon (C) fixation and the supply of carbon to roots. To evaluate interactions between carbon supply and phosphorus (P) supply, effects of light intensity on sucrose accumulation, root growth, cluster root formation, carboxylate exudation, and P uptake capacity were studied in white lupin (Lupinus albus L.) grown hydroponically with either 200 µmol m–2 s–1 or 600 µmol m–2 s–1 light and a sufficient (50 µM P) or deficient (1 µM P) P supply. Plant biomass and root:shoot ratio increased with increasing light intensity, particularly when plants were supplied with sufficient P. Both low P supply and increasing light intensity increased the production of cluster roots and citrate exudation. Transcripts of a phosphoenol pyruvate carboxylase gene (LaPEPC3) in cluster roots (which is related to the exudation of citrate), transcripts of a phosphate transporter gene (LaPT1), and P uptake all increased with increasing light intensity, under both P-sufficient and P-deficient conditions. Across all four experimental treatments, increased cluster root formation and carboxylate exudation were associated with lower P concentration in the shoot and greater sucrose concentration in the roots. It is suggested that C in excess of shoot growth capabilities is translocated to the roots as sucrose, which serves as both a nutritional signal and a C-substrate for carboxylate exudation and cluster root formation. PMID:24723402

  3. Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.).

    PubMed

    Cheng, Lingyun; Tang, Xiaoyan; Vance, Carroll P; White, Philip J; Zhang, Fusuo; Shen, Jianbo

    2014-07-01

    Light intensity affects photosynthetic carbon (C) fixation and the supply of carbon to roots. To evaluate interactions between carbon supply and phosphorus (P) supply, effects of light intensity on sucrose accumulation, root growth, cluster root formation, carboxylate exudation, and P uptake capacity were studied in white lupin (Lupinus albus L.) grown hydroponically with either 200 µmol m(-2) s(-1) or 600 µmol m(-2) s(-1) light and a sufficient (50 µM P) or deficient (1 µM P) P supply. Plant biomass and root:shoot ratio increased with increasing light intensity, particularly when plants were supplied with sufficient P. Both low P supply and increasing light intensity increased the production of cluster roots and citrate exudation. Transcripts of a phosphoenol pyruvate carboxylase gene (LaPEPC3) in cluster roots (which is related to the exudation of citrate), transcripts of a phosphate transporter gene (LaPT1), and P uptake all increased with increasing light intensity, under both P-sufficient and P-deficient conditions. Across all four experimental treatments, increased cluster root formation and carboxylate exudation were associated with lower P concentration in the shoot and greater sucrose concentration in the roots. It is suggested that C in excess of shoot growth capabilities is translocated to the roots as sucrose, which serves as both a nutritional signal and a C-substrate for carboxylate exudation and cluster root formation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Monitoring evolution of HIFU-induced lesions with backscattered ultrasound

    NASA Astrophysics Data System (ADS)

    Anand, Ajay; Kaczkowski, Peter J.

    2003-04-01

    Backscattered radio frequency (rf) data from a modified commercial ultrasound scanner were collected in a series of in vitro experiments in which high intensity focused ultrasound (HIFU) was used to create lesions in freshly excised bovine liver tissue. Two signal processing approaches were used to visualize the temporal evolution of lesion formation. First, apparent tissue motion due to temperature rise was detected using cross-correlation techniques. Results indicate that differential processing of travel time can provide temperature change information throughout the therapy delivery phase and after HIFU has been turned off, over a relatively large spatial region. Second, changes in the frequency spectrum of rf echoes due to changes in the scattering properties of the heated region were observed well before the appearance of hyper-echogenic spots in the focal zone. Furthermore, the increase in attenuation in the lesion zone changes the measured backscatter spectrum from regions distal to it along the imaging beam. Both effects were visualized using spectral processing and display techniques that provide a color spatial map of these features for the clinician. Our results demonstrate potential for these ultrasound-based techniques in targeting and monitoring of HIFU therapy, and perhaps post-treatment visualization of HIFU-induced lesions.

  5. Light Intensity and Carbon Dioxide Availability Impact Antioxidant Activity in Green Onions (Allium fistulosumm L)

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang; Bisbee, Patricia; Pare, Paul

    The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.

  6. X-ray backscatter imaging for radiography by selective detection and snapshot: Evolution, development, and optimization

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel

    more inclusive theory of the factors affecting CBI contrast generation has tied together the past work of LMR with the more recent research in RSD. A variety of factors that induce changes in the backscatter photon field intensity (resulting in contrast changes in images) include: changes in the electron density field, attenuation changes along the entrance and exit paths, changes in the relative geometric positioning of the target, feature, illumination beam, and detectors. Understanding the interplay of how changes in each of these factors affects image contrast becomes essential to utilizing and optimizing RSD for different applications.

  7. External quantum efficiency enhancement by photon recycling with backscatter evasion.

    PubMed

    Nagano, Koji; Perreca, Antonio; Arai, Koji; Adhikari, Rana X

    2018-05-01

    The nonunity quantum efficiency (QE) in photodiodes (PD) causes deterioration of signal quality in quantum optical experiments due to photocurrent loss as well as the introduction of vacuum fluctuations into the measurement. In this paper, we report that the external QE enhancement of a PD was demonstrated by recycling the reflected photons. The external QE for an InGaAs PD was increased by 0.01-0.06 from 0.86-0.92 over a wide range of incident angles. Moreover, we confirmed that this technique does not increase backscattered light when the recycled beam is properly misaligned.

  8. Three-beam aerosol backscatter correlation lidar for wind profiling

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  9. The Cause of the Hot Spot in Vegetation Canopies and Soils: Shadow-Hiding Versus Coherent Backscatter

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce; DiMucci, Dominick; Nelson, Robert; Smythe, William

    1996-01-01

    Two different mechanisms, shadow-hiding and coherent backscatter, can cause a hot spot, or opposition effect, in the bidirectional reflectance of vegetation and soils. Because the two mechanisms sample different properties, it is important to know which one is primarily responsible in a given medium. This question can be answered by measuring the bidirectional reflectance in circularly polarized light. If the results of the limited experiments reported here can be extrapolated to a wider range of materials, it appears that the primary cause of the hot spot in most vegetation canopies and in moist, clumpy soils is shadow-hiding. However, in vegetation with large numbers of wavelength-sized structures, such as mosses, and in dry, fine-grained soils, the hot spot is dominated by coherent backscatter.

  10. Weak Localization of Light in a Disordered Microcavity

    NASA Astrophysics Data System (ADS)

    Gurioli, M.; Bogani, F.; Cavigli, L.; Gibbs, H.; Khitrova, G.; Wiersma, D. S.

    2005-05-01

    We report the observation of weak localization of light in a semiconductor microcavity. The intrinsic disorder in a microcavity leads to multiple scattering and hence to static speckle. We show that averaging over realizations of the disorder reveals a coherent backscattering cone that has a coherent enhancement factor ≥2, as required by reciprocity. The coherent backscattering cone is observed along a ring-shaped pattern due to confinement by the microcavity.

  11. Auxin-to-Gibberellin Ratio as a Signal for Light Intensity and Quality in Regulating Soybean Growth and Matter Partitioning

    PubMed Central

    Yang, Feng; Fan, Yuanfang; Wu, Xiaoling; Cheng, Yajiao; Liu, Qinlin; Feng, Lingyang; Chen, Junxu; Wang, Zhonglin; Wang, Xiaochun; Yong, Taiwen; Liu, Weiguo; Liu, Jiang; Du, Junbo; Shu, Kai; Yang, Wenyu

    2018-01-01

    The intensity and quality (red to far-red (R/Fr) ratio) of light directly affect growth of plant under shading. Gibberellins (GAs) and auxin [indole-3-acetic acid (IAA)] play important roles in mediating the shading adaptive responses of plants. Thus, the intensity and quality of the uncoupling light from shading were assessed to identify the influence of each component on the morphology and matter distribution of the leaf, stem, and petiole. This assessment was based on the changes in endogenous Gibberellin 1 (GA1) and IAA levels. Soybean plants were grown in a growth chamber with four treatments [normal (N), N+Fr, low (L), and L+Fr light]. Results revealed that the reductions in photosynthetically active radiation (PAR) and R/Fr ratio equally increased height and stem mass fractions (SMFs) of the soybean seedling. The light intensity significantly influenced the dry mass per unit area and mass fraction of soybean leaves, whereas the light quality regulated the petiole elongation and mass fraction. Low R/Fr ratio (high Fr light) increased the soybean biomass by improving the photosynthetic assimilation rate and quantum yield of photosystem II. In addition, the IAA and GA1 levels in the leaf, stem, and petiole did not reflect the growth response trends of each tissue toward light intensity and quality; however, trends of the IAA-to-GA1 content ratios were similar to those of the growth and matter allocation of each soybean tissue under different light environments. Therefore, the response of growth and matter allocation of soybean to light intensity and quality may be regulated by the IAA-to-GA1 content ratio in the tissues of the soybean plant. PMID:29441084

  12. The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production.

    PubMed

    Yin, Yehu; Yu, Changjiang; Yu, Li; Zhao, Jinshan; Sun, Changjiang; Ma, Yubin; Zhou, Gongke

    2015-01-01

    Duckweed has been considered as a valuable feedstock for bioethanol production due to its high biomass and starch production. To investigate the effects of light conditions on duckweed biomass and starch production, Lemna aequinoctialis 6000 was cultivated at different photoperiods (12:12, 16:8 and 24:0h) and light intensities (20, 50, 80, 110, 200 and 400μmolm(-2)s(-1)). The results showed that the duckweed biomass and starch production was increased with increasing light intensity and photoperiod except at 200 and 400μmolm(-2)s(-1). Considering the light cost, 110μmolm(-2)s(-1) was optimum light condition for starch accumulation with the highest maximum growth rate, biomass and starch production of 8.90gm(-2)day(-1), 233.25gm(-2) and 98.70gm(-2), respectively. Moreover, the results suggested that high light induction was a promising method for duckweed starch accumulation. This study provides optimized light conditions for future industrial large-scale duckweed cultivation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce.

    PubMed

    Zhang, Yanzhao; Xu, Shuzhen; Cheng, Yanwei; Peng, Zhengfeng; Han, Jianming

    2018-01-01

    Red leaf lettuce ( Lactuca sativa L.) is popular due to its high anthocyanin content, but poor leaf coloring often occurs under low light intensity. In order to reveal the mechanisms of anthocyanins affected by light intensity, we compared the transcriptome of L. sativa L. var. capitata under light intensities of 40 and 100 μmol m -2 s -1 . A total of 62,111 unigenes were de novo assembled with an N50 of 1,681 bp, and 48,435 unigenes were functionally annotated in public databases. A total of 3,899 differentially expressed genes (DEGs) were detected, of which 1,377 unigenes were up-regulated and 2,552 unigenes were down-regulated in the high light samples. By Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the DEGs were significantly enriched in 14 pathways. Using gene annotation and phylogenetic analysis, we identified seven anthocyanin structural genes, including CHS , CHI , F3H , F3'H , DFR , ANS , and 3GT , and two anthocyanin transport genes, GST and MATE . In terms of anthocyanin regulatory genes, five MYBs and one bHLH gene were identified. An HY5 gene was discovered, which may respond to light-signaling and regulate anthocyanin structural genes. These genes showed a log2FC of 2.7-9.0 under high irradiance, and were validated using quantitative real-time-PCR. In conclusion, our results indicated transcriptome variance in red leaf lettuce under low and high light intensity, and observed a anthocyanin biosynthesis and regulation pattern. The data should further help to unravel the molecular mechanisms of anthocyanins influenced by light intensity.

  14. Low-intensity blue-enriched white light (750 lux) and standard bright light (10,000 lux) are equally effective in treating SAD. A randomized controlled study.

    PubMed

    Meesters, Ybe; Dekker, Vera; Schlangen, Luc J M; Bos, Elske H; Ruiter, Martine J

    2011-01-28

    Photoreceptor cells containing melanopsin play a role in the phase-shifting effects of short-wavelength light. In a previous study, we compared the standard light treatment (SLT) of SAD with treatment using short-wavelength blue-enriched white light (BLT). Both treatments used the same illuminance (10,000 lux) and were equally highly effective. It is still possible, however, that neither the newly-discovered photoreceptor cells, nor the biological clock play a major role in the therapeutic effects of light on SAD. Alternatively, these effects may at least be partly mediated by these receptor cells, which may have become saturated as a result of the high illuminances used in the therapy. This randomized controlled study compares the effects of low-intensity BLT to those of high-intensity SLT. In a 22-day design, 22 patients suffering from a major depression with a seasonal pattern (SAD) were given light treatment (10,000 lux) for two weeks on workdays. Subjects were randomly assigned to either of the two conditions, with gender and age evenly distributed over the groups. Light treatment either consisted of 30 minutes SLT (5000 °K) with the EnergyLight® (Philips, Consumer Lifestyle) with a vertical illuminance of 10,000 lux at eye position or BLT (17,000 °K) with a vertical illuminance of 750 lux using a prototype of the EnergyLight® which emitted a higher proportion of short-wavelengths. All participants completed questionnaires concerning mood, activation and sleep quality on a daily basis. Mood and energy levels were also assessed on a weekly basis by means of the SIGH-SAD and other assessment tools. On day 22, SIGH-SAD ratings were significantly lower than on day 1 (SLT 65.2% and BLT 76.4%). On the basis of all assessments no statistically significant differences were found between the two conditions. With sample size being small, conclusions can only be preliminary. Both treatment conditions were found to be highly effective. The therapeutic effects of low-intensity

  15. Fundamental study for scattering suppression in biological tissue using digital phase-conjugate light with intensity modulation

    NASA Astrophysics Data System (ADS)

    Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi

    2017-04-01

    For transillumination imaging of an animal body, we have attempted to suppress the scattering effect in a turbid medium. It is possible to restore the optical image before scattering using phase-conjugate light. We examined the effect of intensity information as well as the phase information for the restoration of the original light distribution. In an experimental analysis using animal tissue, the contributions of the phase- and the intensity-information to the image restoration through turbid medium were demonstrated.

  16. The Influence of Low Intensities of Light Pollution on Bat Communities in a Semi-Natural Context

    PubMed Central

    Lacoeuilhe, Aurelie; Machon, Nathalie; Julien, Jean-François; Le Bocq, Agathe; Kerbiriou, Christian

    2014-01-01

    Anthropogenic light pollution is an increasingly significant issue worldwide. Over the past century, the use of artificial lighting has increased in association with human activity. Artificial lights are suspected to have substantial effects on the ecology of many species, e.g., by producing discontinuities in the territories of nocturnal animals. We analyzed the potential influence of the intensity and type of artificial light on bat activity in a semi-natural landscape in France. We used a species approach, followed by a trait-based approach, to light sensitivity. We also investigated whether the effect of light could be related to foraging traits. We performed acoustic surveys at sites located along a gradient of light intensities to assess the activity of 15 species of bats. We identified 2 functional response groups of species: one group that was light-tolerant and one group that was light-intolerant. Among the species in the latter group that appear to be disadvantaged by lighting conditions, many are rare and threatened in Europe, whereas the species from the former group are better able to thrive in disturbed habitats such as lighted areas and may actually benefit from artificial lighting. Finally, several methods of controlling light pollution are suggested for the conservation of bat communities. Recommendations for light management and the creation of dim-light corridors are proposed; these strategies may play an important role in protecting against the impact of light pollution on nocturnal animals. PMID:25360638

  17. The influence of low intensities of light pollution on bat communities in a semi-natural context.

    PubMed

    Lacoeuilhe, Aurelie; Machon, Nathalie; Julien, Jean-François; Le Bocq, Agathe; Kerbiriou, Christian

    2014-01-01

    Anthropogenic light pollution is an increasingly significant issue worldwide. Over the past century, the use of artificial lighting has increased in association with human activity. Artificial lights are suspected to have substantial effects on the ecology of many species, e.g., by producing discontinuities in the territories of nocturnal animals. We analyzed the potential influence of the intensity and type of artificial light on bat activity in a semi-natural landscape in France. We used a species approach, followed by a trait-based approach, to light sensitivity. We also investigated whether the effect of light could be related to foraging traits. We performed acoustic surveys at sites located along a gradient of light intensities to assess the activity of 15 species of bats. We identified 2 functional response groups of species: one group that was light-tolerant and one group that was light-intolerant. Among the species in the latter group that appear to be disadvantaged by lighting conditions, many are rare and threatened in Europe, whereas the species from the former group are better able to thrive in disturbed habitats such as lighted areas and may actually benefit from artificial lighting. Finally, several methods of controlling light pollution are suggested for the conservation of bat communities. Recommendations for light management and the creation of dim-light corridors are proposed; these strategies may play an important role in protecting against the impact of light pollution on nocturnal animals.

  18. Backscatter-to-Extinction Ratios in the Top Layers of Tropical Mesoscale Convective Systems and in Isolated Cirrus from LITE Observations

    NASA Technical Reports Server (NTRS)

    Platt, C. M. R.; Winker, D. M.; Vaughan, M. A.; Miller, S. D.

    1999-01-01

    Cloud-integrated attenuated backscatter from observations with the Lidar In-Space Technology Experiment (LITE) was studied over a range of cirrus clouds capping some extensive mesoscale convective systems (MCSS) in the Tropical West Pacific. The integrated backscatter when the cloud is completely attenuating, and when corrected for multiple scattering, is a measure of the cloud particle backscatter phase function. Four different cases of MCS were studied. The first was very large, very intense, and fully attenuating, with cloud tops extending to 17 km and a maximum lidar pulse penetration of about 3 km. It also exhibited the highest integrated attenuated isotropic backscatter, with values in the 532-nm channel of up to 2.5 near the center of the system, falling to 0.6 near the edges. The second MCS had cloud tops that extended to 14.8 km. Although MCS2 was almost fully attenuating, the pulse penetration into the cloud was up to 7 km and the MCS2 had a more diffuse appearance than MCS1. The integrated backscatter values were much lower in this system but with some systematic variations between 0.44 and 0.75. The third MCS was Typhoon Melissa. Values of integrated backscatter in tt-ds case varied from 1.64 near the eye of the typhoon to between 0.44 and 1.0 in the areas of typhoon outflow and in the 532-nm channel. Mean pulse penetration through the cloud top was 2-3 km, the lowest penetration of any of the systems. The fourth MCS consisted of a region of outflow from Typhoon Melissa. The cloud was semitransparent for more than half of the image time. During that time, maximum cloud depth was about 7 km. The integrated backscatter varied from about 0.38 to 0.63 in the 532-nm channel when the cloud was fully attenuating. In some isolated cirrus between the main systems, a plot of integrated backscatter against one minus the two-way transmittance gave a linear dependence with a maximum value of 0.35 when the clouds were fully attenuating. The effective backscatter

  19. Laser remote sensing of backscattered light from a target sample

    DOEpatents

    Sweatt, William C [Albuquerque, NM; Williams, John D [Albuquerque, NM

    2008-02-26

    A laser remote sensing apparatus comprises a laser to provide collimated excitation light at a wavelength; a sensing optic, comprising at least one optical element having a front receiving surface to focus the received excitation light onto a back surface comprising a target sample and wherein the target sample emits a return light signal that is recollimated by the front receiving surface; a telescope for collecting the recollimated return light signal from the sensing optic; and a detector for detecting and spectrally resolving the return light signal. The back surface further can comprise a substrate that absorbs the target sample from an environment. For example the substrate can be a SERS substrate comprising a roughened metal surface. The return light signal can be a surface-enhanced Raman signal or laser-induced fluorescence signal. For fluorescence applications, the return signal can be enhanced by about 10.sup.5, solely due to recollimation of the fluorescence return signal. For SERS applications, the return signal can be enhanced by 10.sup.9 or more, due both to recollimation and to structuring of the SERS substrate so that the incident laser and Raman scattered fields are in resonance with the surface plasmons of the SERS substrate.

  20. Optical backscattering properties of the "clearest" natural waters

    NASA Astrophysics Data System (ADS)

    Twardowski, M. S.; Claustre, H.; Freeman, S. A.; Stramski, D.; Huot, Y.

    2007-11-01

    During the BIOSOPE field campaign October-December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over 8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10-5, 5×10-6, and 2×10-6 m-1 sr-1, respectively. These values were approximately 6%, 3%, and 3% of the volume scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: - distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; - Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; - accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1+0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and - closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: -The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; -Distributions of

  1. Optical backscattering properties of the "clearest" natural waters

    NASA Astrophysics Data System (ADS)

    Twardowski, M. S.; Claustre, H.; Freeman, S. A.; Stramski, D.; Huot, Y.

    2007-07-01

    During the BIOSOPE field campaign October-December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over ~8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10-5, 5×10-6, and 2×10-6 m-1 sr-1, respectively. These values were approximately 6%, 3%, and 3% of the scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: - bbp distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; - Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; - accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1 + 0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and - closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: - The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; - Distributions of

  2. LED Lighting - Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity.

    PubMed

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  3. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration

    PubMed Central

    Kashani, Alireza G.; Olsen, Michael J.; Parrish, Christopher E.; Wilson, Nicholas

    2015-01-01

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record “intensity”, loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of “normalization”, “correction”, or “calibration” techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration. PMID:26561813

  4. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.

    PubMed

    Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu

    2015-09-01

    In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.

  5. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator

    NASA Astrophysics Data System (ADS)

    Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu

    2015-09-01

    In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.

  6. Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies.

    PubMed

    Patil, Basavaprabhu L; Fauquet, Claude M

    2015-06-01

    RNA silencing is a sequence-specific post-transcriptional gene inactivation mechanism that operates in diverse organisms and that can extend beyond its site of initiation, owing to the movement of the silencing signal, called non-autonomous gene silencing. Previous studies have shown that several factors manifest the movement of the silencing signal, such as the size (21 or 24 nucleotides) of the secondary small interfering RNA (siRNA) produced, the steady-state concentration of siRNAs and their cognate messenger RNA (mRNA) or a change in the sink-source status of plant parts affecting phloem translocation. Our study shows that both light intensity and temperature have a significant impact on the systemic movement of the silencing signal in transient agroinfiltration studies in Nicotiana benthamiana. At higher light intensities (≥ 450 μE/m(2)/s) and higher temperatures (≥ 30 °C), gene silencing was localized to leaf tissue that was infiltrated, without any systemic spread. Interestingly, in these light and temperature conditions (≥ 450 μE/m(2) /s and ≥ 30 °C), the N. benthamiana plants showed recovery from the viral symptoms. However, the reduced systemic silencing and reduced viral symptom severity at higher light intensities were caused by a change in the sink-source status of the plant, ultimately affecting the phloem translocation of small RNAs or the viral genome. In contrast, at lower light intensities (<300 μE/m(2)/s) with a constant temperature of 25 °C, there was strong systemic movement of the silencing signal in the N. benthamiana plants and reduced recovery from virus infections. The accumulation of gene-specific siRNAs was reduced at higher temperature as a result of a reduction in the accumulation of transcript on transient agroinfiltration of RNA interference (RNAi) constructs, mostly because of poor T-DNA transfer activity of Agrobacterium, possibly also accompanied by reduced phloem translocation. © 2014 BSPP AND JOHN WILEY & SONS

  7. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    NASA Astrophysics Data System (ADS)

    Gales, S.; Zamfir, N. V.

    2015-02-01

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  8. High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms

    NASA Astrophysics Data System (ADS)

    Wagner, Karoline; Bengtsson, Mia M.; Findlay, Robert H.; Battin, Tom J.; Ulseth, Amber J.

    2017-07-01

    Changes in the riparian vegetation along stream channels, diurnal light availability, and longitudinal fluctuations in the local light regime in streams influence primary production and carbon (C) cycling in benthic stream biofilms. To investigate the influence of light availability on the uptake dynamics of autochthonous and allochthonous dissolved organic carbon (DOC) in benthic biofilms, we experimentally added 13C-labeled allochthonous DOC to biofilms grown under light intensities ranging from 5 to 152 μmol photons m-2 s-1. We calculated the net C flux, which showed that benthic biofilms released autochthonous DOC across the entire light gradient. Light availability and diurnal light patterns influenced C uptake by benthic biofilms. More allochthonous DOC was respired under low light availability and at night, whereas under high light availability and during the day mainly autochthonous C was respired by the benthic biofilm community. Furthermore, phenol oxidase activity (indicative of allochthonous DOC uptake) was more elevated under low light availability, whereas beta-glucosidase activity (indicative of autochthonous DOC use) increased with light intensity. Collectively, our results suggest that biofilms exposed to high light inputs preferentially used autochthonous DOC, whereas biofilms incubated at attenuated levels showed greater use of allochthonous DOC. This has implications for the spatial dynamics of DOC uptake in streams and speaks against the occurrence of priming effects in algal-dominated stream biofilms.

  9. Physiological characteristics, dry matter, and active component accumulation patterns of Changium smyrnioides in response to a light intensity gradient.

    PubMed

    Wang, Chang-Lin; Guo, Qiao-Sheng; Zhu, Zai-Biao; Cheng, Bo-Xing

    2017-12-01

    Changium smyrnioides Wolff (Apiaceae) is an endangered medicinal plant with numerous pharmacological uses. To investigate the effect of light intensity levels on the growth and accumulation of secondary metabolites of C. smyrnioides, cultivated seedlings were subjected to different relative light intensities via sun-shading. Changium smyrnioides seedlings were subjected to five irradiance treatments (100, 60.54, 44.84, 31.39, and 10.56% sunlight) in glasshouse for 9 months. Enzymatic and non-enzymatic antioxidants with spectrophotometric method, photosynthetic parameters with Li-6400XT, dry matter accumulation and active component contents in the root with spectrophotometric and HPLC method were analyzed. With an increase in relative light intensity levels, activities of enzymatic and non-enzymatic antioxidants, and malondialdehyde (MDA) contents were increased overall, while net photosynthetic rate (P n ) and dry matter accumulation patter first increased and then declined. The highest net photosynthetic rate (30.68 μmol/m 2 ·s) and dry root weight (5.07 g) were achieved under 60.54% sunlight. Lower relative light intensity levels stimulated the accumulation levels of bioactive compounds in the roots so that the highest contents of mannitol (1.35%) and choline (405.58 μg/g) were recorded under 31.39% sunlight, and the highest polysaccharide content (10.80%) were achieved under 44.84% sunlight. With a decrease in the relative light intensity levels, the water-soluble component content increased first and then decreased. The results revealed that 31.39-60.54% sunlight serve as appropriate relative light intensity conditions for cultivated C. smyrnioides.

  10. Light illumination intensity dependence of photovoltaic parameter in polymer solar cells with ammonium heptamolybdate as hole extraction layer.

    PubMed

    Liu, Zhiyong; Niu, Shengli; Wang, Ning

    2018-01-01

    A low-temperature, solution-processed molybdenum oxide (MoO X ) layer and a facile method for polymer solar cells (PSCs) is developed. The PSCs based on a MoO X layer as the hole extraction layer (HEL) is a significant advance for achieving higher photovoltaic performance, especially under weaker light illumination intensity. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) measurements show that the (NH 4 ) 6 Mo 7 O 24 molecule decomposes and forms the molybdenum oxide (MoO X ) molecule when undergoing thermal annealing treatment. In this study, PSCs with the MoO X layer as the HEL exhibited better photovoltaic performance, especially under weak light illumination intensity (from 100 to 10mWcm -2 ) compared to poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)-based PSCs. Analysis of the current density-voltage (J-V) characteristics at various light intensities provides information on the different recombination mechanisms in the PSCs with a MoO X and PEDOT:PSS layer as the HEL. That the slopes of the open-circuit voltage (V OC ) versus light illumination intensity plots are close to 1 unity (kT/q) reveals that bimolecular recombination is the dominant and weaker monomolecular recombination mechanism in open-circuit conditions. That the slopes of the short-circuit current density (J SC ) versus light illumination intensity plots are close to 1 reveals that the effective charge carrier transport and collection mechanism of the MoO X /indium tin oxide (ITO) anode is the weaker bimolecular recombination in short-circuit conditions. Our results indicate that MoO X is an alternative candidate for high-performance PSCs, especially under weak light illumination intensity. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Device to color modulate a stationary light beam gives high intensity

    NASA Technical Reports Server (NTRS)

    Gantz, W. A.

    1966-01-01

    Signal controlled system color modulates a beam of light while also providing high intensity and a stationary beam, either collimated or focused. The color modulation acquired by the presented system can be compatible with any color film by employing color filters formed to provide a color wedge having a color distribution compatible with the films color sensitivity.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyzemore » theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.« less

  13. Electron backscattering simulation in Geant4

    NASA Astrophysics Data System (ADS)

    Dondero, Paolo; Mantero, Alfonso; Ivanchencko, Vladimir; Lotti, Simone; Mineo, Teresa; Fioretti, Valentina

    2018-06-01

    The backscattering of electrons is a key phenomenon in several physics applications which range from medical therapy to space including AREMBES, the new ESA simulation framework for radiation background effects. The importance of properly reproducing this complex interaction has grown considerably in the last years and the Geant4 Monte Carlo simulation toolkit, recently upgraded to the version 10.3, is able to comply with the AREMBES requirements in a wide energy range. In this study a validation of the electron Geant4 backscattering models is performed with respect to several experimental data. In addition a selection of the most recent validation results on the electron scattering processes is also presented. Results of our analysis show a good agreement between simulations and data from several experiments, confirming the Geant4 electron backscattering models to be robust and reliable up to a few tens of electronvolts.

  14. Metabolic Reprogramming in Leaf Lettuce Grown Under Different Light Quality and Intensity Conditions Using Narrow-Band LEDs.

    PubMed

    Kitazaki, Kazuyoshi; Fukushima, Atsushi; Nakabayashi, Ryo; Okazaki, Yozo; Kobayashi, Makoto; Mori, Tetsuya; Nishizawa, Tomoko; Reyes-Chin-Wo, Sebastian; Michelmore, Richard W; Saito, Kazuki; Shoji, Kazuhiro; Kusano, Miyako

    2018-05-21

    Light-emitting diodes (LEDs) are an artificial light source used in closed-type plant factories and provide a promising solution for a year-round supply of green leafy vegetables, such as lettuce (Lactuca sativa L.). Obtaining high-quality seedlings using controlled irradiation from LEDs is critical, as the seedling health affects the growth and yield of leaf lettuce after transplantation. Because key molecular pathways underlying plant responses to a specific light quality and intensity remain poorly characterised, we used a multi-omics-based approach to evaluate the metabolic and transcriptional reprogramming of leaf lettuce seedlings grown under narrow-band LED lighting. Four types of monochromatic LEDs (one blue, two green and one red) and white fluorescent light (control) were used at low and high intensities (100 and 300 μmol·m -2 ·s -1 , respectively). Multi-platform mass spectrometry-based metabolomics and RNA-Seq were used to determine changes in the metabolome and transcriptome of lettuce plants in response to different light qualities and intensities. Metabolic pathway analysis revealed distinct regulatory mechanisms involved in flavonoid and phenylpropanoid biosynthetic pathways under blue and green wavelengths. Taken together, these data suggest that the energy transmitted by green light is effective in creating a balance between biomass production and the production of secondary metabolites involved in plant defence.

  15. Pigment variations in Emiliania huxleyi (CCMP370) as a response to changes in light intensity or quality.

    PubMed

    Garrido, José L; Brunet, Christophe; Rodríguez, Francisco

    2016-12-01

    Many studies on photoacclimation examine the pigment responses to changes in light intensity, but variations in light climate in the aquatic environment are also related to changes in spectral composition. We have employed a high-performance liquid chromatography method with improved resolution towards chlorophyll c and fucoxanthin-related xanthophylls to examine the pigment composition of Emiliania huxleyi CCMP 370 under different light intensities and spectral qualities. To maintain its photosynthetic performance, E. huxleyi CCMP370 promotes drastic pigment changes that can be either the interconversion of pigments in pools with the same basic chromophoric structure (Fucoxanthin type or chlorophyll c type), or the ex novo synthesis (Diatoxanthin). These changes are linked either to variations in light quality (Fucoxanthin related xanthophylls) or in light intensity (chlorophyll c 3 /Monovinyl chlorophyll c 3 , Diadinoxanthin/Diatoxanthin, β,ɛ-carotene/ β,β-carotene). Fucoxanthin and 19'-hexanoyloxyfucoxanthin proportions were highly dependent on spectral conditions. Whereas Fucoxanthin dominated in green and red light, 19'-hexanoyloxyfucoxanthin prevailed under blue spectral conditions. Our results suggest that the huge pigment diversity enhanced the photoacclimative capacities of E. huxleyi to efficiently perform under changing light environments. The ubiquity and success in the global ocean as well as the capacity of E. huxleyi to form large surface blooms might be associated to the plasticity described here. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.

    PubMed

    Sazgarnia, Ameneh; Shanei, Ahmad; Shanei, Mohammad Mahdi

    2014-01-01

    One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400-500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Light intensity dependence of open-circuit voltage and short-circuit current of polymer/fullerene solar cells

    NASA Astrophysics Data System (ADS)

    Koster, L. Jan A.; Mihailetchi, Valentin D.; Ramaker, Robert; Xie, Hangxing; Blom, Paul W. M.

    2006-04-01

    The open-circuit voltage (Voc) of polymer/fullerene bulk heterojunction solar cells is investigated as a function of light intensity for different temperatures. The observed photogenerated current and V oc are at variance with classical p-n junctionbased models. The influence of light intensity and recombination strength on V oc is consistently explained by a model based on the notion that the quasi-Fermi levels are constant throughout the device, including both drift and diffusion of charge carriers. The light intensity dependence of the short-circuit current density (J sc) is also addressed. A typical feature of polymer/fullerene based solar cells is that Jsc does not scale exactly linearly with light intensity (I). Instead, a power law relationship is found given by Jsc~ Iα, where α ranges from 0.9 to 1. In a number of reports this deviation from unity is attributed to the occurrence of bimolecular recombination. We demonstrate that the dependence of the photocurrent in bulk heterojunction solar cells is governed by the build-up of space charge in the device. The occurrence of space-charge stems from the difference in charge carrier mobility of electrons and holes. In blends of poly(3-hexylthiophene) and 6,6- phenyl C61-butyric acid methyl ester this mobility difference can be tuned in between one and three orders of magnitude, depending on the annealing conditions. This allows us to experimentally verify the relation between space charge build-up and intensity dependence of Jsc. Model calculations confirm that bimolecular recombination leads only to a typical loss of 1% of all free charge carriers at Jsc for these devices. Therefore, bimolecular recombination plays only a minor role as compared to the effect of space charge in the intensity dependence of J sc.

  18. Simulation of double-pass stimulated Raman backscattering

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Chen, Q.; Morozov, A.; Suckewer, S.

    2018-04-01

    Experiments on Stimulated Raman Backscattering (SRBS) in plasma have demonstrated significantly higher energy conversion in a double-pass amplifier where the laser pulses go through the plasma twice compared with a single-pass amplifier with double the plasma length of a single pass. In this paper, the improvement in understanding recent experimental results is presented by considering quite in detail the effects of plasma heating on the modeling of SRBS. Our simulation results show that the low efficiency of single-pass amplifiers can be attributed to Landau damping and the frequency shift of Langmuir waves. In double-pass amplifiers, these issues can be avoided, to some degree, because pump-induced heating could be reduced, while the plasma cools down between the passes. Therefore, double-pass amplifiers yield considerably enhanced energy transfer from the pump to the seed, hence the output pulse intensity.

  19. Analysis of the backscatter spectrum in an ionospheric modification experiment

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.; Harker, K. J.

    1976-01-01

    The purpose of this study is to compare predictions of the backscatter spectrum, including effects of ionospheric inhomogeneity, with experimental observations of incoherent backscatter from an artificially heated region. Our calculations show that the strongest backscatter echo received is not from the reflection level but from a region some distance below (about 900-1100 m for an experiment carried out at Arecibo). By taking the standing wave pattern of the pump properly into account the present theory explains certain asymmetrical features of the upshifted and downshifted plasma lines in the backscatter spectrum.

  20. Effect of intense pulsed light on immature burn scars: A clinical study

    PubMed Central

    Sarkar, Arindam; Dewangan, Yatindra Kumar; Bain, Jayanta; Rakshit, Pritha; Dhruw, Krishnanand; Basu, Sandip Kanti; Saha, Jayanta Kumar; Majumdar, Bijay Kumar

    2014-01-01

    Introduction: As intense pulsed light (IPL) is widely used to treat cutaneous vascular malformations and also used as non-ablative skin rejunuvation to remodel the skin collagen. A study has been undertaken to gauze the effect of IPL on immature burn scars with regard to vascularity, pliability and height. Materials and Methods: This study was conducted between June 2013 and May 2014, among patients with immature burn scars that healed conservatively within 2 months. Photographic evidence of appearance of scars and grading and rating was done with Vancouver Scar Scale parameters. Ratings were done for both case and control scar after the completion of four IPL treatment sessions and were compared. Results: Out of the 19 cases, vascularity, pliability and height improved significantly (P < 0.05) in 13, 14 and 11 scars respectively following IPL treatment. Conclusions: Intense pulsed light was well-tolerated by patients, caused good improvement in terms of vascularity, pliability, and height of immature burn scar. PMID:25593424

  1. Criteria of backscattering in chiral one-way photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  2. Looking for light in the din: An examination of the circadian-disrupting properties of a medical intensive care unit.

    PubMed

    Danielson, Samantha J; Rappaport, Charles A; Loher, Michael K; Gehlbach, Brian K

    2018-06-01

    Critically ill patients exhibit profound disturbances of circadian rhythmicity, most commonly in the form of a phase delay. We investigated the specific zeitgeber properties of a medical intensive care unit to develop a model that explained these abnormalities. Prospective, observational study conducted during 2013-2014. Twenty-four-hour ambient light (lux, 672 hours) and sound pressure levels (dBA, 504 hours) were measured in patient rooms. Patients and families were surveyed regarding their perceptions of the environment. University-based adult medical intensive care unit. The timing and intensity of the ambient light-dark cycle and sound environment and the relationship of these measurements to patient/family perceptions. Twenty-four-hour light-dark cycles were extremely weak and phase delayed relative to the solar cycle. Morning light averaged 12.1 (4.8, 37.2) lux, when only 24.9% ± 10.9% of available light was utilised; yet patients and families did not identify low daytime light levels as problematic. Median noise levels were invariably excessive (nighttime 47.9 [45.0, 51.3] dBA) with minimal variation, consistent with the absence of a defined rest period. The intensive care unit functions as a near-constant routine protocol disconnected from solar time. Behavioural interventions to promote entrainment should be supported by objective measurements of light and sound. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Optical memory effect from polarized Laguerre-Gaussian light beam in light-scattering turbid media

    NASA Astrophysics Data System (ADS)

    Shumyatsky, Pavel; Milione, Giovanni; Alfano, Robert R.

    2014-06-01

    Propagation effects of polarized Laguerre-Gaussian light with different orbital angular momentum (L) in turbid media are described. The optical memory effect in scattering media consisting of small and large size (compared to the wavelength) scatterers is investigated for scattered polarized light. Imaging using polarized laser modes with a varying orbital strength L-parameter was performed. The backscattered image quality (contrast) was enhanced by more than an order of magnitude using circularly polarized light when the concentration of scatterers was close to invisibility of the object.

  4. Health Benefits of Light-Intensity Physical Activity: A Systematic Review of Accelerometer Data of the National Health and Nutrition Examination Survey (NHANES).

    PubMed

    Füzéki, Eszter; Engeroff, Tobias; Banzer, Winfried

    2017-09-01

    The health effects of light-intensity physical activity (PA) are not well known today. We conducted a systematic review to assess the association of accelerometer-measured light-intensity PA with modifiable health outcomes in adults and older adults. A systematic literature search up to March 2016 was performed in the PubMed, EMBASE, Web of Science and Google Scholar electronic databases, without language limitations, for studies of modifiable health outcomes in adults and older adults in the National Health and Nutrition Examination Survey accelerometer dataset. Overall, 37 cross-sectional studies and three longitudinal studies were included in the analysis, with considerable variation observed between the studies with regard to their operationalization of light-intensity PA. Light-intensity PA was found to be beneficially associated with obesity, markers of lipid and glucose metabolism, and mortality. Few data were available on musculoskeletal outcomes and results were mixed. Observational evidence that light-intensity PA can confer health benefits is accumulating. Currently inactive or insufficiently active people should be encouraged to engage in PA of any intensity. If longitudinal and intervention studies corroborate our findings, the revision of PA recommendations to include light-intensity activities, at least for currently inactive populations, might be warranted.

  5. Lighting, sleep and circadian rhythm: An intervention study in the intensive care unit.

    PubMed

    Engwall, Marie; Fridh, Isabell; Johansson, Lotta; Bergbom, Ingegerd; Lindahl, Berit

    2015-12-01

    Patients in an intensive care unit (ICU) may risk disruption of their circadian rhythm. In an intervention research project a cycled lighting system was set up in an ICU room to support patients' circadian rhythm. Part I aimed to compare experiences of the lighting environment in two rooms with different lighting environments by lighting experiences questionnaire. The results indicated differences in advantage for the patients in the intervention room (n=48), in perception of daytime brightness (p=0.004). In nighttime, greater lighting variation (p=0.005) was found in the ordinary room (n=52). Part II aimed to describe experiences of lighting in the room equipped with the cycled lighting environment. Patients (n=19) were interviewed and the results were presented in categories: "A dynamic lighting environment", "Impact of lighting on patients' sleep", "The impact of lighting/lights on circadian rhythm" and "The lighting calms". Most had experiences from sleep disorders and half had nightmares/sights and circadian rhythm disruption. Nearly all were pleased with the cycled lighting environment, which together with daylight supported their circadian rhythm. In night's actual lighting levels helped patients and staff to connect which engendered feelings of calm. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity.

    PubMed

    Baird, Emily; Fernandez, Diana C; Wcislo, William T; Warrant, Eric J

    2015-01-01

    Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion-a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus.

  7. Removal of the blue component of light significantly decreases retinal damage after high intensity exposure.

    PubMed

    Vicente-Tejedor, Javier; Marchena, Miguel; Ramírez, Laura; García-Ayuso, Diego; Gómez-Vicente, Violeta; Sánchez-Ramos, Celia; de la Villa, Pedro; Germain, Francisco

    2018-01-01

    Light causes damage to the retina (phototoxicity) and decreases photoreceptor responses to light. The most harmful component of visible light is the blue wavelength (400-500 nm). Different filters have been tested, but so far all of them allow passing a lot of this wavelength (70%). The aim of this work has been to prove that a filter that removes 94% of the blue component may protect the function and morphology of the retina significantly. Three experimental groups were designed. The first group was unexposed to light, the second one was exposed and the third one was exposed and protected by a blue-blocking filter. Light damage was induced in young albino mice (p30) by exposing them to white light of high intensity (5,000 lux) continuously for 7 days. Short wavelength light filters were used for light protection. The blue component was removed (94%) from the light source by our filter. Electroretinographical recordings were performed before and after light damage. Changes in retinal structure were studied using immunohistochemistry, and TUNEL labeling. Also, cells in the outer nuclear layer were counted and compared among the three different groups. Functional visual responses were significantly more conserved in protected animals (with the blue-blocking filter) than in unprotected animals. Also, retinal structure was better kept and photoreceptor survival was greater in protected animals, these differences were significant in central areas of the retina. Still, functional and morphological responses were significantly lower in protected than in unexposed groups. In conclusion, this blue-blocking filter decreases significantly photoreceptor damage after exposure to high intensity light. Actually, our eyes are exposed for a very long time to high levels of blue light (screens, artificial light LED, neons…). The potential damage caused by blue light can be palliated.

  8. Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound.

    PubMed

    Sheet, Debdoot; Karamalis, Athanasios; Eslami, Abouzar; Noël, Peter; Chatterjee, Jyotirmoy; Ray, Ajoy K; Laine, Andrew F; Carlier, Stephane G; Navab, Nassir; Katouzian, Amin

    2014-01-01

    Intravascular Ultrasound (IVUS) is a predominant imaging modality in interventional cardiology. It provides real-time cross-sectional images of arteries and assists clinicians to infer about atherosclerotic plaques composition. These plaques are heterogeneous in nature and constitute fibrous tissue, lipid deposits and calcifications. Each of these tissues backscatter ultrasonic pulses and are associated with a characteristic intensity in B-mode IVUS image. However, clinicians are challenged when colocated heterogeneous tissue backscatter mixed signals appearing as non-unique intensity patterns in B-mode IVUS image. Tissue characterization algorithms have been developed to assist clinicians to identify such heterogeneous tissues and assess plaque vulnerability. In this paper, we propose a novel technique coined as Stochastic Driven Histology (SDH) that is able to provide information about co-located heterogeneous tissues. It employs learning of tissue specific ultrasonic backscattering statistical physics and signal confidence primal from labeled data for predicting heterogeneous tissue composition in plaques. We employ a random forest for the purpose of learning such a primal using sparsely labeled and noisy samples. In clinical deployment, the posterior prediction of different lesions constituting the plaque is estimated. Folded cross-validation experiments have been performed with 53 plaques indicating high concurrence with traditional tissue histology. On the wider horizon, this framework enables learning of tissue-energy interaction statistical physics and can be leveraged for promising clinical applications requiring tissue characterization beyond the application demonstrated in this paper. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Influence of environmental temperature and light intensity on growth performance and blood physiological parameters of broilers grown to heavy weight

    USDA-ARS?s Scientific Manuscript database

    In a study of temperature and light intensity, 9 treatments consisted of 3 levels (Low=15.6, Moderate=21.1, High=26.7 °C) of temperatures and 3 levels (0.5, 3.0, 20 lx) of light intensities from d 8 to 56 d of age. Across all light levels at d 56, broilers subjected to high temperature significantly...

  10. Associations of Low- and High-Intensity Light Activity with Cardiometabolic Biomarkers.

    PubMed

    Howard, Bethany; Winkler, Elisabeth A H; Sethi, Parneet; Carson, Valerie; Ridgers, Nicola D; Salmon, J O; Healy, Genevieve N; Owen, Neville; Dunstan, David W

    2015-10-01

    Light-intensity physical activity (LIPA) accounts for much of adults' waking hours (≈40%) and substantially contributes to overall daily energy expenditure. Encompassing activity behaviors of low intensity (standing with little movement) to those of higher intensity (slow walking), LIPA is ubiquitous, yet little is known about how associations with health may vary depending on its intensity. We examined the associations of objectively assessed LIPA (categorized as either low LIPA [LLPA] or high LIPA [HLPA]) and moderate- to vigorous-intensity activity with cardiometabolic risk biomarkers. Cardiometabolic biomarkers were measured in 4614 US adults (47 ± 17 yr) who participated in the 2003-2004 and 2005-2006 National Health and Nutrition Examination Survey cycles. Multiple linear regression analyses examined the associations of three accelerometer-derived physical activity (SD increment per day) intensity categories (LLPA, 100-761 counts per minute; HLPA, 762-1951 counts per minute; moderate-intensity physical activity [MPA], 1952-5724 counts per minute; vigorous-intensity physical activity [VPA], ≥5725 counts per minute) with cardiometabolic biomarkers, adjusting for potential sociodemographic, behavioral, and medical confounders. All intensities of physical activity were beneficially associated with waist circumference, C-reactive protein, triglycerides, fasting insulin, β-cell function, and insulin sensitivity (P < 0.05); only some activity intensities showed significant associations with systolic blood pressure (LLPA), body mass index, HDL cholesterol, fasting glucose, and 2-h plasma glucose (HLPA, MPA, and VPA). Generally, effect size increased with intensity of physical activity. Overall, further adjustment for waist circumference attenuated associations with MPA and VPA to a greater extent than associations with LLPA and HLPA. The cross-sectional findings provide novel evidence for the potential benefits of increasing both LLPA and HLPA. They further

  11. Morning bright light exposure has no influence on self-chosen exercise intensity and mood in overweight individuals - A randomized controlled trial.

    PubMed

    Knaier, Raphael; Klenk, Christopher; Königstein, Karsten; Hinrichs, Timo; Rossmeissl, Anja; Infanger, Denis; Cajochen, Christian; Schmidt-Trucksäss, Arno

    2018-04-01

    Overweight is a worldwide increasing public health issue. Physical exercise is a useful countermeasure. Overweight individuals choose rather low exercise intensities, but especially high exercise intensities lead to higher energy expenditure and show beneficial health effects compared to lower exercise intensities. However, especially in the morning higher exercise intensities are likely to be avoided due to higher subjective effort. Bright light exposure has shown to increase maximum performance. The aim of this study was to investigate if bright light exposure can also increase self-chosen exercise intensity. We hypothesized that morning bright light exposure increases self-chosen exercise intensity of subsequent exercise through increased mood and reduced sleepiness in overweight individuals. In this randomized controlled single-blind parallel group design, 26 overweight individuals (11 males, 15 females; age 25 ± 5.7 years; body mass index 28.9 ± 2.1 kg/m 2 ) underwent three measurement appointments. On the first appointment, subjects performed a cardiopulmonary exercise test to measure maximum oxygen uptake (VO2max). Two days later a 30-min exercise session with self-chosen exercise intensity was performed for familiarization. Then subjects were randomly allocated to bright light (~4400 lx) or a control light (~230 lx) condition. Three to seven days later, subjects were exposed to light for 30 min starting at 8:00 am, immediately followed by a 30-min exercise session with persisting light exposure. Multidimensional mood questionnaires were filled out before and after the light exposure and after the exercise session. The primary outcome was the mean power output during the exercise session and the secondary outcome the rating on the three domains (i.e. good-bad; awake-tired; calm-nervous) of the multidimensional mood questionnaire. Mean power output during the exercise session was 92 ± 19 W in bright light and 80 ± 37 W in control light

  12. Light intensity of curved laryngoscope blades in Philadelphia emergency departments.

    PubMed

    Levitan, Richard M; Kelly, John J; Kinkle, William C; Fasano, Charles

    2007-09-01

    Laryngoscopy and tracheal intubation requires laryngeal exposure and illumination. The objective of this study is to assess variation in laryngoscope lights across different emergency departments (EDs). A convenience sample of 3 Mac #4 blade and handle pairs in each of 17 Philadelphia area EDs was tested with a digital light meter to derive the median lux at the distal tip. For each blade tested, we characterized blade design (American, English, or German) and light type (fiber-illuminated versus conventional bulb-on-blade) and measured light-to-tip distance. A total of 50 blades and handle pairs were tested (one ED had only 2 Mac #4 blades). American designs were the most common (38/50), followed by English (6/50) and German (3/50) designs. Three blades had hybrid design features and acrylic light-conducting fibers. Median luminance varied from 11 lux to 5,627 lux. The glass fiber-illuminated blades (n=13) produced greater luminance (median 1,205 lux; interquartile range [IQR] 726 to 2,176 lux) than bulb-on-blade designs (median 689 lux; IQR 290 to 906 lux). German fiber-illuminated blades produced the highest luminance (median 1,937 lux; IQR 1,453 to 3,782 lux). English bulb-on-blade designs produced more luminance (median 915 lux; IQR 745 to 1270 lux) than American (median 689 lux; IQR 269 to 807 lux). German and English blades had shorter light-to-tip distances (median 51 mm and 47 mm, respectively) than American blades (65 mm). Curved laryngoscope blades in different EDs have marked variation in light intensity. The contribution of luminance to laryngoscopy performance warrants investigation.

  13. Ocean backscatter across the Gulf Stream sea surface temperature front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nghiem, S.V.; Li, F.K.

    1997-06-01

    Ocean backscatter was measured by the Jet Propulsion Laboratory, with the airborne NUSCAT K{sub u}-band scatterometer, across the Gulf Stream sea surface temperature front during the Surface Wave Dynamics Experiment off the coast of Virginia and Maryland in the winter of 1991. Backscatter across the front between the National Oceanic and Atmospheric Administration experimental coastal buoy A (44024) on the cold side and Discus C buoy (44023) on the warm side shows a difference of more than 5 dB for vertical polarization in many cases. This large frontal backscatter change is observed in all upwind, downwind, and crosswind directions. Themore » sea surface temperature difference measured by the buoys was about 9{degrees}C. The corresponding difference in wind speed cannot account for the large backscatter change in view of geophysical model functions depending only on neutral wind velocity such as SASS. The measured backscatter also has larger upwind-downwind and upwind-crosswind ratios compared to the model results. Furthermore, NUSCAT data reveal that upwind backscatter on the cold side was smaller than or close to crosswind backscatter on the warm side for incidence angles between 30{degrees} to 50{degrees}. This suggests that the temperature front can be detected by the scatterometer at these incidence angles for different wind directions in the cold and warm sides.« less

  14. Using digital inpainting to estimate incident light intensity for the calculation of red blood cell oxygen saturation from microscopy images.

    PubMed

    Sové, Richard J; Drakos, Nicole E; Fraser, Graham M; Ellis, Christopher G

    2018-05-25

    Red blood cell oxygen saturation is an important indicator of oxygen supply to tissues in the body. Oxygen saturation can be measured by taking advantage of spectroscopic properties of hemoglobin. When this technique is applied to transmission microscopy, the calculation of saturation requires determination of incident light intensity at each pixel occupied by the red blood cell; this value is often approximated from a sequence of images as the maximum intensity over time. This method often fails when the red blood cells are moving too slowly, or if hematocrit is too large since there is not a large enough gap between the cells to accurately calculate the incident intensity value. A new method of approximating incident light intensity is proposed using digital inpainting. This novel approach estimates incident light intensity with an average percent error of approximately 3%, which exceeds the accuracy of the maximum intensity based method in most cases. The error in incident light intensity corresponds to a maximum error of approximately 2% saturation. Therefore, though this new method is computationally more demanding than the traditional technique, it can be used in cases where the maximum intensity-based method fails (e.g. stationary cells), or when higher accuracy is required. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Influence of light intensity and spectral composition of artificial light at night on melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus.

    PubMed

    Brüning, Anika; Hölker, Franz; Franke, Steffen; Kleiner, Wibke; Kloas, Werner

    2018-02-01

    In this study we investigated the influence of artificial light at night (ALAN) of different intensities (0, 1, 10, 100 lx) and different colours (blue, green, red) on the daily melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus, a ubiquitous cyprinid, which occur in standing and moderately flowing freshwater habitats of central Europe. Melatonin concentrations were significantly lowered under nocturnal white light already at 1 lx. Low intensity blue, green and red ALAN lowered the melatonin levels significantly in comparison to a dark control. We conclude that ALAN can disturb melatonin rhythms in roach at very low intensities and at different wavelengths and thus light pollution in urban waters has the potential to impact biological rhythms in fish. However, mRNA expression of gonadotropins was not affected by ALAN during the period of the experiments. Thus, suspected implications of ALAN on reproduction of roach could not be substantiated.

  16. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity

    PubMed Central

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B.; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity. PMID:29780400

  17. Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a Kalman filter.

    PubMed

    Rocadenbosch, F; Soriano, C; Comerón, A; Baldasano, J M

    1999-05-20

    A first inversion of the backscatter profile and extinction-to-backscatter ratio from pulsed elastic-backscatter lidar returns is treated by means of an extended Kalman filter (EKF). The EKF approach enables one to overcome the intrinsic limitations of standard straightforward nonmemory procedures such as the slope method, exponential curve fitting, and the backward inversion algorithm. Whereas those procedures are inherently not adaptable because independent inversions are performed for each return signal and neither the statistics of the signals nor a priori uncertainties (e.g., boundary calibrations) are taken into account, in the case of the Kalman filter the filter updates itself because it is weighted by the imbalance between the a priori estimates of the optical parameters (i.e., past inversions) and the new estimates based on a minimum-variance criterion, as long as there are different lidar returns. Calibration errors and initialization uncertainties can be assimilated also. The study begins with the formulation of the inversion problem and an appropriate atmospheric stochastic model. Based on extensive simulation and realistic conditions, it is shown that the EKF approach enables one to retrieve the optical parameters as time-range-dependent functions and hence to track the atmospheric evolution; the performance of this approach is limited only by the quality and availability of the a priori information and the accuracy of the atmospheric model used. The study ends with an encouraging practical inversion of a live scene measured at the Nd:YAG elastic-backscatter lidar station at our premises at the Polytechnic University of Catalonia, Barcelona.

  18. Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat.

    PubMed

    Seo, Seong-Hyun; Ha, Ji-San; Yoo, Chan; Srivastava, Ankita; Ahn, Chi-Yong; Cho, Dae-Hyun; La, Hyun-Joon; Han, Myung-Soo; Oh, Hee-Mock

    2017-11-01

    The optimal culture conditions are critical factors for high microalgal biomass and lipid productivity. To optimize the photoautotrophic culture conditions, combination of the pH (regulated by CO 2 supply), dilution rate, and light intensity was systematically investigated for Ettlia sp. YC001 cultivation in a chemostat during 143days. The biomass productivity increased with the increase in dilution rate and light intensity, but decreased with increasing pH. The average lipid content was 19.8% and statistically non-variable among the tested conditions. The highest biomass and lipid productivities were 1.48gL -1 d -1 and 291.4mgL -1 d -1 with a pH of 6.5, dilution rate of 0.78d -1 , and light intensity of 1500μmolphotonsm -2 s -1 . With a sufficient supply of CO 2 and nutrients, the light intensity was the main determinant of the photosynthetic rate. Therefore, the surface-to-volume ratio of a photobioreactor should enable efficient light distribution to enhance microalgal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Multiwavelength Comparison of Modeled and Measured Remote Tropospheric Aerosol Backscatter Over Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Pueschel, R. F.; Srivastava, V.; Clarke, A. D.; Rothermel, J.; Spinhirne, J. D.; Menzies, R. T.

    1996-01-01

    Aerosol concentrations and size distributions in the middle and upper troposphere over the remote Pacific Ocean were measured with a forward scattering spectrometer probe (FSSP) on the NASA DC-8 aircraft during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. The FSSP size channels were recalibrated based on refractive index estimates from flight-level aerosol volatility measurements with a collocated laser optical particle counter (LOPC). The recalibrated FSSP size distributions were averaged over 100-s intervals, fitted with lo-normal distributions and used to calculate aerosol backscatter coefficients at selected wavelengths. The FSSP-derived backscatter estimates were averaged over 300-s intervals to reduce large random fluctuations. The smoothed FSSP aerosol backscatter coefficients were then compared with LOPC-derived backscatter values and with backscatter measured at or near flight level from four lidar systems operating at 0.53, 1.06, 9.11, 9.25, and 10.59 micrometers. Agreement between FSSP-derived and lidar-measured backscatter was generally best at flight level in homogeneous aerosol fields and at high backscatter values. FSSP data often underestimated low backscatter values especially at the longer wavelengths due to poor counting statistics for larger particles (greater than 0.8 micrometers diameter) that usually dominate aerosol backscatter at these wavelengths. FSSP data also underestimated backscatter at shorter wavelengths when particles smaller than the FSSP lower cutoff diameter (0.35 micrometers) made significant contributions to the total backscatter.

  20. A Backscattering Enhanced Microwave Canopy Scattering Model Based On MIMICS

    NASA Astrophysics Data System (ADS)

    Shen, X.; Hong, Y.; Qin, Q.; Chen, S.; Grout, T.

    2010-12-01

    For modeling microwave scattering of vegetated areas, several microwave canopy scattering models, based on the vectorized radiative transfer equation (VRT) that use different solving techniques, have been proposed in the past three decades. As an iterative solution of VRT at low orders, the Michigan Microwave Canopy Scattering Model (MIMICS) gives an analytical expression for calculating scattering as long as the volume scattering is not too strong. The most important usage of such models is to predict scattering in the backscattering direction. Unfortunately, the simplified assumption of MIMICS is that the scattering between the ground and trunk layers only includes the specular reflection. As a result, MIMICS includes a dominant coherent term which vanishes in the backscattering direction because this term contains a delta function factor of zero in this direction. This assumption needs reconsideration for accurately calculating the backscattering. In the framework of MIMICS, any incoherent terms that involve surface scattering factors must at least undergo surface scattering twice and volume scattering once. Therefore, these incoherent terms are usually very weak. On the other hand, due to the phenomenon of backscattering enhancement, the surface scattering in the backscattering direction is very strong compared to most other directions. Considering the facts discussed above, it is reasonable to add a surface backscattering term to the last equation of the boundary conditions of MIMICS. More terms appear in the final result including a backscattering coherent term which enhances the backscattering. The modified model is compared with the original MIMICS (version 1.0) using JPL/AIRSAR data from NASA Campaign Soil Moisture Experimental 2003 (SMEX03) and Washita92. Significant improvement is observed.

  1. COMPARISON OF PIONEER 10, VOYAGER 1, AND VOYAGER 2 ULTRAVIOLET OBSERVATIONS WITH ANTI-SOLAR LYMAN-ALPHA BACKSCATTER SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayock, B.; Zank, G. P.; Heerikhuisen, J., E-mail: brian.fayock@gmail.com, E-mail: garyp.zank@gmail.com, E-mail: jacob.heerikhuisen@uah.edu

    Observations made by ultraviolet (UV) detectors on board Pioneer 10, Voyager 1, and Voyager 2 can be used to analyze the distribution of neutral hydrogen throughout the heliosphere, including the interaction regions of the solar wind and local interstellar medium. Previous studies of the long-term trend of decreasing intensity with increasing heliocentric distance established the need for more sophisticated heliospheric models. Here we use state-of-the-art three-dimensional (3D) magnetohydrodynamic (MHD) neutral models to simulate Lyman-alpha backscatter as would be seen by the three spacecrafts, exploiting a new 3D Monte Carlo radiative transfer code under solar minimum conditions. Both observations and simulationsmore » of the UV backscatter intensity are normalized for each spacecraft flight path at {approx}15 AU, and we focus on the slope of decreasing intensity over an increasing heliocentric distance. Comparisons of simulations with Voyager 1 Lyman-alpha data results in a very close match, while the Pioneer 10 comparison is similar due to normalization, but not considered to be in agreement. The deviations may be influenced by a low resolution of photoionization in the 3D MHD-neutral model, a lack of solar cycle activity in our simulations, and possibly issues with instrumental sensitivity. Comparing the slope of Voyager 2 and the simulated intensities yields an almost identical match. Our results predict a large increase in the Lyman-alpha intensity as the hydrogen wall is approached, which would signal an imminent crossing of the heliopause.« less

  2. High resolution energy-angle correlation measurement of hard x rays from laser-Thomson backscattering.

    PubMed

    Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U

    2013-09-13

    Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.

  3. Unconventional use of intense pulsed light.

    PubMed

    Piccolo, D; Di Marcantonio, D; Crisman, G; Cannarozzo, G; Sannino, M; Chiricozzi, A; Chimenti, S

    2014-01-01

    According to the literature, intense pulsed light (IPL) represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne), due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases), port-wine stain (PWS) (10 cases), disseminated porokeratosis (10 cases), pilonidal cyst (3 cases), seborrheic keratosis (10 cases), hypertrophic scar (5 cases) and keloid scar (5 cases), Becker's nevus (2 cases), hidradenitis suppurativa (2 cases), and sarcoidosis (1 case). Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator's experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre). Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness.

  4. Lidar backscattering measurements of background stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Northam, G. B.; Butler, C. F.

    1979-01-01

    A comparative lidar-dustsonde experiment was conducted in San Angelo, Texas, in May 1974 in order to estimate the uncertainties in stratospheric-aerosol backscatter for the NASA Langley 48-inch lidar system. The lidar calibration and data-analysis procedures are discussed. Results from the Texas experiment indicate random and systematic uncertainties of 35 and 63 percent, respectively, in backscatter from a background stratospheric-aerosol layer at 20 km.

  5. Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua

    2017-10-01

    A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.

  6. Interactive effects of photoperiod and light intensity on blood physiological and biochemical reactions of broilers grown to heavy weights.

    PubMed

    Olanrewaju, H A; Purswell, J L; Collier, S D; Branton, S L

    2013-04-01

    The effects of photoperiod, light intensity, and their interaction on blood acid-base balance, metabolites, and electrolytes in broiler chickens under environmentally controlled conditions were examined in 2 trials. A 3 × 3 factorial experiment in a randomized complete block design was used in this study. In each trial, all treatment groups were provided 23L:1D with 20 lx of intensity from placement to 7 d, and then subjected to the treatments. The 9 treatments consisted of 3 photoperiods [long/continuous (23L:1D) from d 8 to 56, regular/intermittent (2L:2D), and short/nonintermittent (8L:16D) from d 8 to 48 and 23L:1D from d 49 to 56, respectively] and exposure to 3 light intensities (10, 5.0, and 0.5 lx) from d 8 through d 56 at 50% RH. Feed and water were provided ad libitum. Venous blood samples were collected on d 7, 14, 28, 42, and 56. Main effects indicated that short/nonintermittent photoperiod significantly (P < 0.05) reduced BW, pH, partial pressure of O2, saturated O2, Na(+), K(+), Ca(2+), Cl(-), osmolality, triiodothyronine (T3), and total protein along with significantly (P < 0.05) elevated partial pressure of CO2, hematocrit, hemoglobin, and lactate concentrations. In addition, there were no effects of photoperiod on HCO3(-), glucose, anion gap, and thyroxine (T4). Plasma corticosterone was not affected by photoperiod, light intensity, or their interaction. There was no effect of light intensity on most of the blood variables examined. Acid-base regulation during photoperiod and light intensity exposure did not deteriorate despite a lower pH and higher partial pressure of CO2 with normal HCO3(-). These results indicate that continuous exposure of broiler chickens to varying light intensities had a minor effect on blood physiological variables, whereas the short photoperiod markedly affected most blood physiological variables without inducing physiological stress in broilers.

  7. Ca²⁺ signal contributing to the synthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia'.

    PubMed

    Hu, Zenghui; Li, Tianjiao; Zheng, Jian; Yang, Kai; He, Xiangfeng; Leng, Pingsheng

    2015-06-01

    The floral scent is an important part of plant volatile compounds, and is influenced by environmental factors. The emission of monoterpenes of Lilium 'siberia' is regulated by light intensity, but the mechanism is large unknown. In this study, the expression of Li-mTPS, a monoterpene synthase gene in the tepals of Lilium 'siberia', and net Ca(2+) flux were investigated after exposure to different levels of light intensity (0, 100, 300, 600, 1000, and 1500 μmol m(-2) s(-1)). Moreover the effect of LaCl3 and ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) on the Li-mTPS expression, monoterpene emission, and net Ca(2+) flux were examined at 600 μmol m(-2) s(-1). The results showed that along with the enhancement of light intensity, the expression level of Li-mTPS increased gradually, and the net Ca(2+) influx was also enhanced showing a similar pattern. It was found that LaCl3 and EGTA effectively inhibited the increase in expression of Li-mTPS and the net Ca(2+) influx induced by light treatment. Moreover, the release amounts of monoterpenes decreased significantly after treatment with LaCl3 and EGTA. So it can be concluded that Ca(2+) signal contributed to the biosynthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia' tepals. The increased light intensity firstly triggered the Ca(2+) influx to cytoplasm, and then the gene expression of monoterpene synthases downstream was activated to regulate the biosynthesis and emission of monoterpenes. But in the signaling pathway other mechanisms were thought to be involved in the emission of monoterpenes regulated by light intensity, which need to be investigated in future research. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Fast algal eco-toxicity assessment: Influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU.

    PubMed

    Camuel, Alexandre; Guieysse, Benoit; Alcántara, Cynthia; Béchet, Quentin

    2017-06-01

    In order to develop a rapid assay suitable for algal eco-toxicity assessments under conditions representative of natural ecosystems, this study evaluated the short-term (<1h) response of algae exposed to atrazine and DCMU using oxygen productivity measurements. When Chlorella vulgaris was exposed to these herbicides under 'standard' low light intensity (as prescribed by OECD201 guideline), the 20min-EC 50 values recorded via oxygen productivity (atrazine: 1.32±0.07μM; DCMU: 0.31±0.005μM) were similar the 96-h EC 50 recorded via algal growth (atrazine: 0.56μM; DCMU: 0.41μM), and within the range of values reported in the literature. 20min-EC50 values increased by factors of 3.0 and 2.1 for atrazine and DCMU, respectively, when light intensity increased from 60 to 1400μmolm -2 s -1 of photosynthetically active radiation, or PAR. Further investigation showed that exposure time significantly also impacted the sensitivity of C. vulgaris under high light intensity (>840μmolm -2 s -1 as PAR) as the EC 50 for atrazine and DCMU decreased by up to 6.2 and 2.1 folds, respectively, after 50min of exposure at a light irradiance of 1400μmolm -2 s -1 as PAR. This decrease was particularly marked at high light intensities and low algae concentrations and is explained by the herbicide disruption of the electron transfer chain triggering photo-inhibition at high light intensities. Eco-toxicity assessments aiming to understand the potential impact of toxic compounds on natural ecosystems should therefore be performed over sufficient exposure times (>20min for C. vulgaris) and under light intensities relevant to these ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity

    PubMed Central

    Baird, Emily; Fernandez, Diana C.; Wcislo, William T.; Warrant, Eric J.

    2015-01-01

    Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion—a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus. PMID:26578977

  10. Computer simulation of backscattering spectra from paint

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Silva, T. F.

    2017-09-01

    To study the role of lateral non-homogeneity on backscattering analysis of paintings, a simplified model of paint consisting of randomly distributed spherical pigment particles embedded in oil/binder has been developed. Backscattering spectra for lead white pigment particles in linseed oil have been calculated for 3 MeV H+ at a scattering angle of 165° for pigment volume concentrations ranging from 30 vol.% to 70 vol.% using the program STRUCTNRA. For identical pigment volume concentrations the heights and shapes of the backscattering spectra depend on the diameter of the pigment particles: This is a structural ambiguity for identical mean atomic concentrations but different lateral arrangement of materials. Only for very small pigment particles the resulting spectra are close to spectra calculated supposing atomic mixing and assuming identical concentrations of all elements. Generally, a good fit can be achieved when evaluating spectra from structured materials assuming atomic mixing of all elements and laterally homogeneous depth distributions. However, the derived depth profiles are inaccurate by a factor of up to 3. The depth range affected by this structural ambiguity ranges from the surface to a depth of roughly 0.5-1 pigment particle diameters. Accurate quantitative evaluation of backscattering spectra from paintings therefore requires taking the correct microstructure of the paint layer into account.

  11. Identification of major backscattering sources in trees and shrubs at 10 GHz

    NASA Technical Reports Server (NTRS)

    Zoughi, R.; Wu, L. K.; Moore, R. K.

    1986-01-01

    A short-range very-fine-resolution FM-CW radar scatterometer has been used to identify the primary contributors to 10-GHz radar backscatter from pine, pin oak, American sycamore and sugar maple trees, and from creeping juniper shrubs. This system provided a range resolution of 11 cm and gave a 16-cm diameter illumination area at the target range of about 4 m. For a pine tree, the needles caused the strongest backscatter as well as the strongest attenuation in the radar signal. Cones, although insignificant contributors to the total backscatter, were more important for backscattering than for attenuation. For the rest of the trees, leaves were the strongest cause of backscattering and attenuation. However, in the absence of leaves, the petioles, small twigs, and branches gave relatively strong backscatter. For American sycamore and sugar maple trees, the fruits did not affect the total backscatter unless they were packed in clusters. For creeping juniper the backscattered energy and attenuation in the radar signal were mainly due to the top two layers of the evergreen scales. The contribution of the tree trunks was not determined.

  12. Analysis of nanoparticles using photonic nanojet

    NASA Astrophysics Data System (ADS)

    Li, Xu; Chen, Zhigang; Siegel, Michael P.; Taflove, Allen; Backman, Vadim

    2005-04-01

    A photonic nanojet is a local field enhancement generated in the vicinity of a properly chosen microsphere or microcylinder illuminated by a collimated light beam. These photonic nanojets have waists smaller than the diffraction limit and propagate over several optical wavelengths without significant diffraction. We investigate the properties of photonic nanojets using rigorous solutions of Maxwell"s equations. A remarkable property we have found is that they can significantly enhance the backscattering of light by nanometer-scale particles (as small as ~1 nm) located within the jets. The enhancement factor for the backscattering intensity can be as high as five to six orders of magnitude. As a result, the observed intensity of the backscattered light from the dielectric microsphere can be substantially altered due to the presence of a nanoparticle within the light jet. Furthermore, the intensity and angular distribution of the backscattered signal is extremely sensitive to the size of the nanoparticle, which may enable differentiating particles with accuracy up to 1 nm. These properties of photonic nanojets make them an ideal tool for detecting, differentiating and sorting nanoparticles, which is of immense necessity for the field of nano-biotechnology. For example, they could yield potential novel ultramicroscopy techniques using visible light for detecting proteins, viral particles, and even single molecules; and monitoring molecular synthesis and aggregation processes of importance in many areas of biology, chemistry, material sciences, and tissue engineering.

  13. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gales, S., E-mail: sydney.gales@eli-np.ro; Zamfir, N. V., E-mail: sydney.gales@eli-np.ro

    2015-02-24

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as themore » science, applications and future perspectives will be discussed.« less

  14. White noise analysis of Phycomyces light growth response system. I. Normal intensity range.

    PubMed Central

    Lipson, E D

    1975-01-01

    The Wiener-Lee-Schetzen method for the identification of a nonlinear system through white gaussian noise stimulation was applied to the transient light growth response of the sporangiophore of Phycomyces. In order to cover a moderate dynamic range of light intensity I, the imput variable was defined to be log I. The experiments were performed in the normal range of light intensity, centered about I0 = 10(-6) W/cm2. The kernels of the Wierner functionals were computed up to second order. Within the range of a few decades the system is reasonably linear with log I. The main nonlinear feature of the second-order kernel corresponds to the property of rectification. Power spectral analysis reveals that the slow dynamics of the system are of at least fifth order. The system can be represented approximately by a linear transfer function, including a first-order high-pass (adaptation) filter with a 4 min time constant and an underdamped fourth-order low-pass filter. Accordingly a linear electronic circuit was constructed to simulate the small scale response characteristics. In terms of the adaptation model of Delbrück and Reichardt (1956, in Cellular Mechanisms in Differentiation and Growth, Princeton University Press), kernels were deduced for the dynamic dependence of the growth velocity (output) on the "subjective intensity", a presumed internal variable. Finally the linear electronic simulator above was generalized to accommodate the large scale nonlinearity of the adaptation model and to serve as a tool for deeper test of the model. PMID:1203444

  15. Bruce Thompson: Adventures and advances in ultrasonic backscatter

    NASA Astrophysics Data System (ADS)

    Margetan, Frank J.

    2012-05-01

    Over the course of his professional career Dr. R. Bruce Thompson published several hundred articles on non-destructive evaluation, the majority dealing with topics in ultrasonics. One longtime research interest of Dr. Thompson, with applications both to microstructure characterization and defect detection, was backscattered grain noise in metals. Over a 20 year period he led a revolving team of staff members and graduate students investigating various aspects of ultrasonic backscatter. As a member of that team I had the privilege of working along side Dr. Thompson for many years, serving as a sort of Dr. Watson to Bruce's Sherlock Holmes. This article discusses Dr. Thompson's general approaches to modeling backscatter, the research topics he chose to explore to systematically elucidate a better understanding of the phenomena, and the many contributions to the field achieved under his leadership. The backscatter work began in earnest around 1990, motivated by a need to improve inspections of aircraft engine components. At that time Dr. Thompson launched two research efforts. The first led to the heuristic Independent Scatterer Model which could be used to estimate the average grain noise level that would be seen in any given ultrasonic inspection. There the contribution from the microstructure was contained in a measureable parameter known as the Figure-of-Merit or FOM. The second research effort, spearheaded by Dr. Jim Rose, led to a formal relationship between FOM and details of the metal microstructure. The combination of the Independent Scattering Model and Rose's formalism provided a powerful tool for investigating backscatter in metals. In this article model developments are briefly reviewed and several illustrative applications are discussed. These include: the determination of grain size and shape from ultrasonic backscatter; grain noise variability in engine-titanium billets and forgings; and the design of ultrasonic inspection systems to improve defect

  16. Numerical study of the light output intensity of the bilayer organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lu, Feiping

    2017-02-01

    The structure of organic light-emitting diodes (OLEDs) is one of most important issues that influence the light output intensity (LOI) of OLEDs. In this paper, based on a simple but accurate optical model, the influences of hole and electron transport layer thickness on the LOI of bilayer OLEDs, which with N,N0- bis(naphthalen-1-yl)-N,N0- bis(phenyl)- benzidine (NPB) or N,N'- diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4-diamine (TPD) as hole transport layer, with tris(8-hydroxyquinoline) aluminum (Alq3) as electron transport and light emitting layers, were investigated. The laws of LOI for OLEDs under different organic layer thickness values were obtained. The results show that the LOI of devices varies in accordance with damped cosine or sine function as the increasing of organic layer thickness, and the results show that the bilayer OLEDs with the structure of Glass/ITO/NPB (55 nm)/Alq3 (75 nm)/Al and Glass/ITO/TPB (60 nm)/Alq3 (75 nm)/Al have most largest LOI. When the thickness of Alq3 is less than 105 nm, the OLEDs with TPD as hole transport layer have larger LOI than that with NPB as hole transport layer. The results obtained in this paper can present an in-depth understanding of the working mechanism of OLEDs and help ones fabricate high efficiency OLEDs.

  17. Method and apparatus for measuring the intensity and phase of an ultrashort light pulse

    DOEpatents

    Kane, Daniel J.; Trebino, Rick P.

    1998-01-01

    The pulse shape I(t) and phase evolution x(t) of ultrashort light pulses are obtained using an instantaneously responding nonlinear optical medium to form a signal pulse. A light pulse, such a laser pulse, is split into a gate pulse and a probe pulse, where the gate pulse is delayed relative to the probe pulse. The gate pulse and the probe pulse are combined within an instantaneously responding optical medium to form a signal pulse functionally related to a temporal slice of the gate pulse corresponding to the time delay of the probe pulse. The signal pulse is then input to a wavelength-selective device to output pulse field information comprising intensity vs. frequency for a first value of the time delay. The time delay is varied over a range of values effective to yield an intensity plot of signal intensity vs. wavelength and delay. In one embodiment, the beams are overlapped at an angle so that a selected range of delay times is within the intersection to produce a simultaneous output over the time delays of interest.

  18. Effects of soil and canopy characteristics on microwave backscattering of vegetation

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.

    1991-01-01

    A frequency modulated continuous wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck and backscatter coefficients of corn were acquired as functions of polarizations, view angles, and row directions. As phytomass and green leaf area index increased, the backscatter also increased. Near anthesis when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level. C-band backscatter data could provide information to monitor vegetation at large view zenith angles.

  19. Proteomic Study Related to Vascular Connections in Watermelon Scions Grafted onto Bottle-Gourd Rootstock under Different Light Intensities

    PubMed Central

    Muneer, Sowbiya; Ko, Chung Ho; Soundararajan, Prabhakaran; Manivnnan, Abinaya; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) ‘Sambok Honey’ and ‘Speed’ as the scion and bottle gourd (Lagenaria siceraria Stanld.) ‘RS Dongjanggun’ as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m−2 s−1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in ‘Sambok Honey’ and ‘Speed’, respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m−2 s−1 results in better protein expression responses in grafted seedlings. PMID:25789769

  20. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities.

    PubMed

    Muneer, Sowbiya; Ko, Chung Ho; Soundararajan, Prabhakaran; Manivnnan, Abinaya; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) 'Sambok Honey' and 'Speed' as the scion and bottle gourd (Lagenaria siceraria Stanld.) 'RS Dongjanggun' as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m-2 s-1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in 'Sambok Honey' and 'Speed', respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m-2 s-1 results in better protein expression responses in grafted seedlings.

  1. Ku-band ocean radar backscatter observations during SWADE

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Li, F. K.; Lou, S. H.; Neumann, G.

    1993-01-01

    We present results obtained by an airborne Ku-band scatterometer during the Surface Wave Dynamics Experiment (SWADE). The specific objective of this study is to improve our understanding of the relationship between ocean radar backscatter and near surface winds. The airborne scatterometer, NUSCAT, was flown on the NASA Ames C-130 over an instrumented oceanic area near 37 deg N and 74 deg W. A total of 10 flights from 27 Feb. to 9 Mar. 1991 were conducted. Radar backscatter at incidence angles of 0 to 60 deg were obtained. For each incidence angle, the NUSCAT antenna was azimuthally scanned in multiple complete circles to measure the azimuthal backscatter modulations. Both horizontal and vertical polarization backscatter measurements were made. In some of the flights, the cross-polarization backscatter was measured as well. Internal calibrations were carried out throughout each of the flights. Preliminary results indicate that the radar was stable to +/-0.3 dB for each flight. In this paper, we present studies of the backscatter measurements over several crossings of the Gulf Stream. In these crossings, large air-sea temperature differences were encountered and substantial changes in the radar cross section were observed. We summarize the observations and compare them to the changes of several wind variables across the Gulf Stream boundary. In one of the flights, the apparent wind near the cold side of the Gulf Stream was very low (less than 3 m/s). The behavior of the radar cross sections at such low wind speeds and a comparison with models are presented. A case study of the effects of swell on the absolute cross section and the azimuthal modulation pattern is presented. Significant wave heights larger than m were observed during SWADE. The experimentally observed effects of the swell on the radar backscatter are discussed. The effects are used to assess the uncertainties in wind retrieval due to underlying waves. A summary of azimuthal modulation from our ten

  2. Development of acousto-optic spatial light modulator unit for effective control of light beam intensity and diffraction angle in 3D holographic display applications

    NASA Astrophysics Data System (ADS)

    Kondalkar, Vijay V.; Ryu, Geonhee; Lee, Yongbeom; Lee, Keekeun

    2018-07-01

    An acousto-optic (AO) based holographic display unit was developed using surface acoustic wave (SAW) with different wavelength to modulate the diffraction angles, intensities, and phases of light. The new configurations were employed to control two beams simultaneously by using a single chirp inter-digital transducer (IDT), and a micro-lens array was integrated at the end of the waveguide layer to focus the diffracted light on to the screen. Two incident light beams were simultaneously modulated by using different refractive grating periods generated from chirp IDT. A diffraction angle of about 5° was obtained by using a SAW with a frequency of 430 MHz. The increase in the SAW input power enhances the diffraction efficiency of the light beam at the exit. The obtained maximum diffraction efficiency is ~70% at a frequency of 430 MHz. The sloped shape of the waveguide entrance and a tall rounded Ni poles help in coupling the incident light to the waveguide layer. The diffracted beam was collected through the lens, which increased the intensity of light in the viewing plane. COMSOL multi-physics and coupling of mode (COM) modeling were performed to predict the device performance and compared with the experimental results.

  3. Measure of Backscatter for small particles of atmosphere by lasers

    NASA Astrophysics Data System (ADS)

    Abud, Mariam M.

    2018-05-01

    It developed a program for the atmosphere to study the backscattering for contents gas and molecules, aerosol, fog, clouds and rain droplets. By using Rayleigh, Mie and geometric scattering. The aim of research, using different types of lasers from various optical region, is to calculate differential cross scatter section and backscatter of atmosphere component in one layer from height 10-2000m. 180° is backscattering angle using ISA standard sea level condition P=1013.25 (kpa) at t0=15 ° C.and then calculated the density of molecules and water vapor molecules represented D in kg/m3. Results reflected index consist of the large value of the real part and imaginary m=1.463-0.028i.this research diff. scatter cross section of different component of atmosphere layer decreased vs. wavelengths. The purpose of lider research to find backscatter from UV to IR laser within the optical range in the atmosphere and measurement of excitation and analysis of backscatter signals. Recently, the atmosphere of Iraq has become full of dust and pollution, so by knowing the differential cross scatter section and backscatter of atmosphere. Relation between total Rayleigh scatter coefficient & type of particles include fog and clouds, aerosols and water droplets (-0.01, 0.025,- 0.005) m-1/sr-1.

  4. Snowfall retrieval at X, Ka and W bands: consistency of backscattering and microphysical properties using BAECC ground-based measurements

    NASA Astrophysics Data System (ADS)

    Tecla Falconi, Marta; von Lerber, Annakaisa; Ori, Davide; Silvio Marzano, Frank; Moisseev, Dmitri

    2018-05-01

    Radar-based snowfall intensity retrieval is investigated at centimeter and millimeter wavelengths using co-located ground-based multi-frequency radar and video-disdrometer observations. Using data from four snowfall events, recorded during the Biogenic Aerosols Effects on Clouds and Climate (BAECC) campaign in Finland, measurements of liquid-water-equivalent snowfall rate S are correlated to radar equivalent reflectivity factors Ze, measured by the Atmospheric Radiation Measurement (ARM) cloud radars operating at X, Ka and W frequency bands. From these combined observations, power-law Ze-S relationships are derived for all three frequencies considering the influence of riming. Using microwave radiometer observations of liquid water path, the measured precipitation is divided into lightly, moderately and heavily rimed snow. Interestingly lightly rimed snow events show a spectrally distinct signature of Ze-S with respect to moderately or heavily rimed snow cases. In order to understand the connection between snowflake microphysical and multi-frequency backscattering properties, numerical simulations are performed by using the particle size distribution provided by the in situ video disdrometer and retrieved ice particle masses. The latter are carried out by using both the T-matrix method (TMM) applied to soft-spheroid particle models with different aspect ratios and exploiting a pre-computed discrete dipole approximation (DDA) database for rimed aggregates. Based on the presented results, it is concluded that the soft-spheroid approximation can be adopted to explain the observed multi-frequency Ze-S relations if a proper spheroid aspect ratio is selected. The latter may depend on the degree of riming in snowfall. A further analysis of the backscattering simulations reveals that TMM cross sections are higher than the DDA ones for small ice particles, but lower for larger particles. The differences of computed cross sections for larger and smaller particles are

  5. The Intensity Modulation of the Fluorescent Line by a Finite Light Speed Effect in Accretion-powered X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Kitamoto, Shunji; Hoshino, Akio

    2017-11-01

    The X-ray line diagnostic method is a powerful tool for an investigation of plasma around accretion-powered X-ray pulsars. We point out an apparent intensity modulation of emission lines, with their rotation period of neutron stars, due to the finite speed of light (we call this effect the “finite light speed effect”) if the line emission mechanism is a kind of reprocessing, such as fluorescence or recombination after ionization by X-ray irradiation from pulsars. The modulation amplitude is determined by the size of the emission region, which is in competition with the smearing effect by the light crossing time in the emission region. This is efficient if the size of the emission region is roughly comparable to that of the rotation period multiplied by the speed of light. We apply this effect to a symbiotic X-ray pulsar, GX 1+4, where a spin modulation of the intense iron line of which has been reported. The finite light speed effect can explain the observed intensity modulation if its fluorescent region is the size of ˜ {10}12 cm.

  6. [Effects of forest gap size and light intensity on herbaceous plants in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Duan, Wen-Biao; Wang, Li-Xia; Chen, Li-Xin; Du, Shan; Wei, Quan-Shuai; Zhao, Jian-Hui

    2013-03-01

    1 m x 1 m fixed quadrats were parallelly arranged with a space of 2 m in each of six forest gaps in Pinus koraiensis-dominated broadleaved mixed forest, taking the gap center as the starting point and along east-west and south-north directions. In each quadrat, the coverage and abundance of herbaceous plants at different height levels were investigated by estimation method in June and September 2011, and the matrix characteristics within the quadrats were recorded. Canopy analyzer was used to take fish-eye photos in the selected overcast days in each month from June to September, 2011, and the relative light intensity was calculated by using Gap Light Analyzer 2.0 software. The differences in the relative light intensity and herbaceous plants coverage and richness between different gaps as well as the correlations between the coverage of each species and the direct light, diffuse light, and matrix were analyzed. The results showed that in opening areas and under canopy, the relative light intensity in large gaps was higher than that in small gaps, and the variation ranges of diffuse light and direct light from gap center to gap edge were bigger in large gaps than in small gaps. The direct light reaching at the ground both in large gaps and in small gaps was higher in the north than in the south direction. In the Z1, Z2, Z3, and Z4 zones, both the coverage and the richness of herbaceous plants were larger in large gaps than in small gaps, and the differences of species richness between large and small gaps reached significant level. The coverage of the majority of the herbaceous plants had significant correlations with diffuse light and matrix, and only the coverage of a few herbaceous plants was correlated with direct light.

  7. 14 CFR 23.1391 - Minimum intensities in the horizontal plane of position lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white) 110° to...

  8. 14 CFR 23.1391 - Minimum intensities in the horizontal plane of position lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white) 110° to...

  9. 14 CFR 23.1391 - Minimum intensities in the horizontal plane of position lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white) 110° to...

  10. 14 CFR 23.1391 - Minimum intensities in the horizontal plane of position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: Dihedral angle (light included) Angle from right or left of longitudinal axis, measured from dead ahead Intensity (candles) L and R (red and green) 0° to 10°10° to 20° 20° to 110° 4030 5 A (rear white) 110° to...

  11. Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella minutissima.

    PubMed

    Freitas, B C B; Cassuriaga, A P A; Morais, M G; Costa, J A V

    2017-08-01

    High concentrations of carbon, which is considered a necessary element, are required for microalgal growth. Therefore, the identification of alternative carbon sources available in large quantities is increasingly important. This study evaluated the effects of light variation and pentose addition on the carbohydrate content and protein profile of Chlorella minutissima grown in a raceway photobioreactor. The kinetic parameters, carbohydrate content, and protein profile of Chlorella minutissima and its theoretical potential for ethanol production were estimated. The highest cellular concentrations were obtained with a light intensity of 33.75µmol.m -2 .s -1 . Arabinose addition combined with a light intensity of 33.75µmol.m -2 .s -1 increased the carbohydrate content by 53.8% and theoretically produced 39.1mL·100g -1 ethanol. All of the assays showed that a lower light availability altered the protein profile. The luminous intensity affects xylose and arabinose assimilation and augments the carbohydrate content in C. minutissima, making this microalga appropriate for bioethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Differential response of Scots pine seedlings to variable intensity and ratio of red and far-red light.

    PubMed

    Razzak, Abdur; Ranade, Sonali Sachin; Strand, Åsa; García-Gil, M R

    2017-08-01

    We investigated the response to increasing intensity of red (R) and far-R (FR) light and to a decrease in R:FR ratio in Pinus sylvestris L. (Scots pine) seedling. The results showed that FR high-irradiance response for hypocotyl elongation may be present in Scots pine and that this response is enhanced by increasing light intensity. However, both hypocotyl inhibition and pigment accumulation were more strongly affected by the R light compared with FR light. This is in contrast to previous reports in Arabidopsis thaliana (L.) Heynh. In the angiosperm, A. thaliana R light shows an overall milder effect on inhibition of hypocotyl elongation and on pigment biosynthesis compared with FR suggesting conifers and angiosperms respond very differently to the different light regimes. Scots pine shade avoidance syndrome with longer hypocotyls, shorter cotyledons and lower chlorophyll content in response to shade conditions resembles the response observed in A. thaliana. However, anthocyanin accumulation increased with shade in Scots pine, which again differs from what is known in angiosperms. Overall, the response of seedling development and physiology to R and FR light in Scots pine indicates that the regulatory mechanism for light response may differ between gymnosperms and angiosperms. © 2017 John Wiley & Sons Ltd.

  13. Analysis of C and Ku band ocean backscatter measurements under low-wind conditions

    NASA Astrophysics Data System (ADS)

    Carswell, James R.; Donnelly, William J.; McIntosh, Robert E.; Donelan, Mark A.; Vandemark, Douglas C.

    1999-09-01

    Airborne ocean backscatter measurements at C and Ku band wavelengths obtained in low to moderate-wind conditions are presented. The differences between the low-wind backscatter data and the CMOD4 and SASS-II models are reported. The measurements show that the upwind/crosswind backscatter ratio is greater than predicted. These large upwind/crosswind backscatter ratios are attributed to a rapid decrease in the crosswind backscatter at low winds. Qualitative agreement with the composite surface model proposed by Donelan and Pierson suggests the rapid decrease in the crosswind backscatter may be caused by viscous dampening of the Bragg-resonant capillary-gravity waves. We show that for larger antenna footprints typical of satellite-based scatterometers, the variability in the observed wind field smooths out the backscatter response such that the rapid decrease in the crosswind direction is not observed.

  14. Analysis of the Spectral Backscattering Coefficient Variability on the Northeastern shelf of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gallegos, S. C.; Gould, R. W.; Arnone, R. A.; Teague, W. J.; Mitchell, D. A.; Ko, D.

    2005-05-01

    The continental shelf of the northeastern Gulf of Mexico between 87.5 W and 88.5 W is an ideal place to study coastal processes. In this region, the shelf slopes gently down to depths of 100 m, and then increases rapidly to depths greater than a mile. The Naval Research Laboratory at Stennis Space Center in Mississippi is currently undertaking an intensive measurement and modeling program to determine the cross-shelf exchange processes and their relation to the optical parameters of this area. In this study, we report our efforts to quantify the variability of the spectral backscattering coefficient derived from SeaWiFS imagery via empirical orthogonal functions. We compare the most relevant modes with the spatial distribution of Eddy Kinetic Energy (EKE) computed by the Inter Americas Seas (IAS) model and in-situ measurements by acoustic Doppler current profilers deployed between May 2004 and May 2005. The results indicate that most of the backscattering variability is contained in areas north of 29.2N which coincides with the edge of the continental shelf (100 m depth). Sporadic increases in backscattering are observed as far south as 29.0 N and to the east of 88.1W. These increases can be explained by fluctuations in surface EKE.

  15. Analysis of the backscatter spectrum in an ionospheric modification experiment

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1973-01-01

    Predictions of the backscatter spectrum are compared, including effects of ionospheric inhomogeneity with experimental observations of incoherent backscatter from an artificially heated region. Calculations show that the strongest backscatter echo received is not, in fact, from the reflection level, but from a region some distance below (about 0.5 km for an experiment carried out at Arecibo), where the pump wave from a HF transmitter approximately 100 kW) is below the threshold for parametric amplification. By taking the standing wave pattern of the pump into account, asymmetry is explained of the up-shifted and down-shifted plasma lines in the backscatter spectrum, and the several peaks typically observed in the region of the spectrum near the HF transmitter frequency.

  16. Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues.

    PubMed

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-06-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as magnetic resonance diffusion tensor imaging (MR-DTI) or ultrasound elastic tensor imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in a clinical setting. In this study, we propose a new technique, backscatter tensor imaging (BTI), which enables determination of the fiber directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally because of the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotating phased-array probes or 2-D matrix probes for noninvasive evaluation of myocardial fibers.

  17. Ultrasound Backscatter Tensor Imaging (BTI): Analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues

    PubMed Central

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-01-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as Magnetic Resonance (MR) Diffusion Tensor Imaging or Ultrasound Elastic Tensor Imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in clinical setting. In this study, we propose a new technique, the Backscatter Tensor Imaging (BTI) which enables determining the fibers directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally due to the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotative phased-array probes or 2-D matrix probes for non-invasive evaluation of myocardial fibers. PMID:24859662

  18. Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike

    Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less

  19. Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors

    DOE PAGES

    Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike; ...

    2018-01-01

    Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less

  20. GLIDE: a grid-based light-weight infrastructure for data-intensive environments

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Malek, Sam; Beckman, Nels; Mikic-Rakic, Marija; Medvidovic, Nenad; Chrichton, Daniel J.

    2005-01-01

    The promise of the grid is that it will enable public access and sharing of immense amounts of computational and data resources among dynamic coalitions of individuals and institutions. However, the current grid solutions make several limiting assumptions that curtail their widespread adoption. To address these limitations, we present GLIDE, a prototype light-weight, data-intensive middleware infrastructure that enables access to the robust data and computational power of the grid on DREAM platforms.

  1. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOEpatents

    Frank, Alan M.; Edwards, William R.

    1983-01-01

    A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

  2. Quantitative Analysis of Venus Radar Backscatter Data in ArcGIS

    NASA Technical Reports Server (NTRS)

    Long, S. M.; Grosfils, E. B.

    2005-01-01

    Ongoing mapping of the Ganiki Planitia (V14) quadrangle of Venus and definition of material units has involved an integrated but qualitative analysis of Magellan radar backscatter images and topography using standard geomorphological mapping techniques. However, such analyses do not take full advantage of the quantitative information contained within the images. Analysis of the backscatter coefficient allows a much more rigorous statistical comparison between mapped units, permitting first order selfsimilarity tests of geographically separated materials assigned identical geomorphological labels. Such analyses cannot be performed directly on pixel (DN) values from Magellan backscatter images, because the pixels are scaled to the Muhleman law for radar echoes on Venus and are not corrected for latitudinal variations in incidence angle. Therefore, DN values must be converted based on pixel latitude back to their backscatter coefficient values before accurate statistical analysis can occur. Here we present a method for performing the conversions and analysis of Magellan backscatter data using commonly available ArcGIS software and illustrate the advantages of the process for geological mapping.

  3. Intensity and angle-of-arrival spectra of laser light propagating through axially homogeneous buoyancy-driven turbulence.

    PubMed

    Pawar, Shashikant S; Arakeri, Jaywant H

    2016-08-01

    Frequency spectra obtained from the measurements of light intensity and angle of arrival (AOA) of parallel laser light propagating through the axially homogeneous, axisymmetric buoyancy-driven turbulent flow at high Rayleigh numbers in a long (length-to-diameter ratio of about 10) vertical tube are reported. The flow is driven by an unstable density difference created across the tube ends using brine and fresh water. The highest Rayleigh number is about 8×109. The aim of the present work is to find whether the conventional Obukhov-Corrsin scaling or Bolgiano-Obukhov (BO) scaling is obtained for the intensity and AOA spectra in the case of light propagation in a buoyancy-driven turbulent medium. Theoretical relations for the frequency spectra of log amplitude and AOA fluctuations developed for homogeneous isotropic turbulent media are modified for the buoyancy-driven flow in the present case to obtain the asymptotic scalings for the high and low frequency ranges. For low frequencies, the spectra of intensity and vertical AOA fluctuations obtained from measurements follow BO scaling, while scaling for the spectra of horizontal AOA fluctuations shows a small departure from BO scaling.

  4. Investigation of the optimal backscatter for an aSi electronic portal imaging device.

    PubMed

    Ko, Lung; Kim, Jong Oh; Siebers, Jeffrey V

    2004-05-07

    The effects of backscattered radiation on the dosimetric response of the Varian aS500 amorphous silicon electronic portal imaging device (EPID) are studied. Measurements demonstrate that radiation backscattered from the EPID mechanical support structure causes 5% asymmetries in the detected signal. To minimize the effect of backscattered radiation from the support structure, this work proposes adding material downstream of the EPID phosphor which provides uniform backscattering material to the phosphor and attenuates backscatter from the support structure before it reaches the phosphor. Two material locations were studied: downstream of the existing image cassette and within the cassette, immediately downstream of the flat-panel imager glass panel. Monte Carlo simulations were used to determine the thicknesses of water, Pb and Cu backscattering materials required to saturate the backscattered signal response for 6 MV and 18 MV beams for material thicknesses up to 50 mm. Water was unable to saturate the backscattered signal for thicknesses up to 50 mm for both energies. For Pb, to obtain a signal within 1% of saturation, 3 mm was required at 6 MV, and 6.8 mm was required at 18 MV. For Cu, thicknesses of 20.6 mm and 22.6 mm were required for the 6 MV and 18 MV beams, respectively. For saturation thicknesses, at 6 MV, the Cu backscatter enhanced the signal more than for Pb (Cu 1.25, Pb 1.11), but at 18 MV the reverse was found (Cu 1.19, Pb 1.23). This is due to the fact that at 6 MV, the backscattered radiation signal is dominated by low-energy scattered photons, which are readily attenuated by the Pb, while at 18 MV, electron backscatter contributes substantially to the signal. Image blurring caused by backscatter spread was less for Pb than Cu. Placing Pb immediately downstream of the glass panel further reduced the signal spread and increased the backscatter enhancement to 1.20 and 1.39 for the 6 MV and 18 MV beams, respectively. Overall, it is determined that

  5. Modulation transfer function of partial gating detector by liquid crystal auto-controlling light intensity

    NASA Astrophysics Data System (ADS)

    Yang, Xusan; Tang, Yuanhe; Liu, Kai; Liu, Hanchen; Gao, Haiyang; Li, Qing; Zhang, Ruixia; Ye, Na; Liang, Yuan; Zhao, Gaoxiang

    2008-12-01

    Based on the electro-optical properties of liquid crystal, we have designed a novel partial gating detector. Liquid crystal can be taken to change its own transmission according to the light intensity outside. Every single pixel of the image is real-time modulated by liquid crystal, thus the strong light is weakened and low light goes through the detector normally .The purpose of partial-gating strong light (>105lx) can be achieved by this detector. The modulation transfer function (MTF) equations of the main optical sub-systems are calculated in this paper, they are liquid crystal panels, linear fiber panel and CCD array detector. According to the relevant size, the MTF value of this system is fitted out. The result is MTF= 0.518 at Nyquist frequency.

  6. Quantifying Fish Backscattering using SONAR Instrument and Kirchhoff Ray Mode (KRM) Model

    NASA Astrophysics Data System (ADS)

    Manik, Henry M.

    2016-08-01

    Sonar instrument was used to study backscattering from tuna fish. Extraction of target strength, incidence angle, and frequency dependence of the backscattered signal for individual scatterer was important for biological information. For this purpose, acoustic measurement of fish backscatter was conducted in the laboratory. Characteristics and general trends of the target strength of fish with special reference to tuna fish were investigated by using a Kirchhoff Ray Mode (KRM) model. Backscattering strength were calculated for the KRM having typical morphological and physical parameters of actual fish. Those backscattering amplitudes were shown as frequency, body length, backscattering patterns, the density and sound speed dependences, and orientation dependence. These results were compared with experimentally measured target strength data and good agreement was found. Measurement and model showed the target strength from the fish are depend on the presence of swimbladder. Target Strength increase with increasing the frequency and fish length.

  7. Reducing sound and light exposure to improve sleep on the adult intensive care unit: An inclusive narrative review.

    PubMed

    Bion, Victoria; Lowe, Alex Sw; Puthucheary, Zudin; Montgomery, Hugh

    2018-05-01

    Sleep disturbance is common in intensive care units. It is associated with detrimental psychological impacts and has potential to worsen outcome. Irregular exposure to sound and light may disrupt circadian rhythm and cause frequent arousals from sleep. We sought to review the efficacy of environmental interventions to reduce sound and light exposure with the aim of improving patient sleep on adult intensive care units. We searched both PubMed (1966-30 May 2017) and Embase (1974-30 May 2017) for all relevant human (adult) studies and meta-analyses published in English using search terms ((intensive care OR critical care), AND (sleep OR sleep disorders), AND (light OR noise OR sound)). Bibliographies were explored. Articles were included if reporting change in patient sleep in response to an intervention to reduce disruptive intensive care unit sound /light exposure. Fifteen studies were identified. Nine assessed mechanical interventions, four of which used polysomnography to assess sleep. Five studies looked at environmental measures to facilitate sleep and a further two (one already included as assessing a mechanical intervention) studied the use of sound to promote sleep. Most studies found a positive impact of the intervention on sleep. However, few studies used objective sleep assessments, sample sizes were small, methodologies sometimes imperfect and analysis limited. Data are substantially derived from specialist (neurosurgical, post-operative, cardiothoracic and cardiological) centres. Patients were often at the 'less sick' end of the spectrum in a variety of settings (open ward beds or side rooms). Simple measures to reduce intensive care unit patient sound/light exposure appear effective. However, larger and more inclusive high-quality studies are required in order to identify the measures most effective in different patient groups and any impacts on outcome.

  8. Unconventional Use of Intense Pulsed Light

    PubMed Central

    Piccolo, D.; Di Marcantonio, D.; Crisman, G.; Cannarozzo, G.; Sannino, M.; Chiricozzi, A.; Chimenti, S.

    2014-01-01

    According to the literature, intense pulsed light (IPL) represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne), due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases), port-wine stain (PWS) (10 cases), disseminated porokeratosis (10 cases), pilonidal cyst (3 cases), seborrheic keratosis (10 cases), hypertrophic scar (5 cases) and keloid scar (5 cases), Becker's nevus (2 cases), hidradenitis suppurativa (2 cases), and sarcoidosis (1 case). Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator's experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre). Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness. PMID:25276803

  9. Laser measure of sea salinity, temperature and turbidity in depth

    NASA Technical Reports Server (NTRS)

    Hirschberg, J. G.; Wouters, A. W.; Byrne, J. D.

    1974-01-01

    A method is described in which a pulsed laser is used to probe the sea. Backscattered light is analyzed in time, intensity and wavelength. Tyndall, Raman and Brillouin scattering are used to obtain the backscatter turbidity, sound velocity, salinity, and the temperature as a function of depth.

  10. Backscattering Measurement From a Single Microdroplet

    PubMed Central

    Lee, Jungwoo; Chang, Jin Ho; Jeong, Jong Seob; Lee, Changyang; Teh, Shia-Yen; Lee, Abraham; Shung, K. Kirk

    2011-01-01

    Backscattering measurements for acoustically trapped lipid droplets were undertaken by employing a P[VDF-TrFE] broadband transducer of f-number = 1, with a bandwidth of 112%. The wide bandwidth allowed the transmission of the 45 MHz trapping signal and the 15 MHz sensing signal using the same transducer. Tone bursts at 45 MHz were first transmitted by the transducer to hold a single droplet at the focus (or the center of the trap) and separate it from its neighboring droplets by translating the transducer perpendicularly to the beam axis. Subsequently, 15 MHz probing pulses were sent to the trapped droplet and the backscattered RF echo signal received by the same transducer. The measured beam width at 15 MHz was measured to be 120 μm. The integrated backscatter (IB) coefficient of an individual droplet was determined within the 6-dB bandwidth of the transmit pulse by normalizing the power spectrum of the RF signal to the reference spectrum obtained from a flat reflector. The mean IB coefficient for droplets with a 64 μm average diameter (denoted as cluster A) was −107 dB, whereas it was −93 dB for 90-μm droplets (cluster B). The standard deviation was 0.9 dB for each cluster. The experimental values were then compared with those computed with the T-matrix method and a good agreement was found: the difference was as small as 1 dB for both clusters. These results suggest that this approach might be useful as a means for measuring ultrasonic backscattering from a single microparticle, and illustrate the potential of acoustic sensing for cell sorting. PMID:21507767

  11. Post-image acquisition processing approaches for coherent backscatter validation

    NASA Astrophysics Data System (ADS)

    Smith, Christopher A.; Belichki, Sara B.; Coffaro, Joseph T.; Panich, Michael G.; Andrews, Larry C.; Phillips, Ronald L.

    2014-10-01

    Utilizing a retro-reflector from a target point, the reflected irradiance of a laser beam traveling back toward the transmitting point contains a peak point of intensity known as the enhanced backscatter (EBS) phenomenon. EBS is dependent on the strength regime of turbulence currently occurring within the atmosphere as the beam propagates across and back. In order to capture and analyze this phenomenon so that it may be compared to theory, an imaging system is integrated into the optical set up. With proper imaging established, we are able to implement various post-image acquisition techniques to help determine detection and positioning of EBS which can then be validated with theory by inspection of certain dependent meteorological parameters such as the refractive index structure parameter, Cn2 and wind speed.

  12. Acoustic backscatter of the 1995 flood deposit on the Eel shelf

    USGS Publications Warehouse

    Borgeld, J.C.; Hughes-Clarke, John E.; Goff, John A.; Mayer, Larry A.; Curtis, Jennifer A.

    1999-01-01

    Acoustic swath mapping and sediment box coring conducted on the continental shelf near the mouth of the Eel River revealed regional variations in acoustic backscatter that can be related to the shelf sedimentology. The acoustic-backscatter variations observed on the shelf were unusually narrow compared to the response of similar sediment types documented in other areas. However, the acoustic data revealed four principal bottom types on the shelf that can be related to sedimentologic differences observed in cores. The four areas are: (1) low acoustic backscatter associated with the nearshore-sand facies and the prodelta terraces of the Eel and Mad rivers, composed of fine sands and coarse silts with low porosity; (2) high acoustic backscatter associated with fine silts characterized by high porosity and deposited by the 1995 flood of the Eel River; (3) intermediate acoustic backscatter in the outer-shelf muds, where clayey silts are accumulating and the 1995 flood apparently had limited direct effect; and (4) intermediate acoustic backscatter near the fringes of the 1995 flood deposits and in areas where the flood sediments were more disrupted by post-depositional processes. The highest acoustic backscatter was identified in areas where the 1995 flood sediments remained relatively intact and near the shelf surface into the summer of 1995. Cores collected from these areas contained wavy or lenticular bedding. The rapid deposition of the high-porosity muddy layers results in better preservation of incorporated ripple forms than in areas less directly impacted by the flood deposit. The high-porosity muddy layers allow acoustic penetration into the sediments and result in greater acoustic backscatter from incorporated roughness elements.

  13. Correlation of spatial intensity distribution of light reaching the retina and restoration of vision by optogenetic stimulation

    NASA Astrophysics Data System (ADS)

    Shivalingaiah, Shivaranjani; Gu, Ling; Mohanty, Samarendra K.

    2011-03-01

    Stimulation of retinal neuronal cells using optogenetics via use of chanelrhodopsin-2 (ChR2) and blue light has opened up a new direction for restoration of vision with respect to treatment of Retinitis pigmentosa (RP). In addition to delivery of ChR2 to specific retinal layer using genetic engineering, threshold level of blue light needs to be delivered onto the retina for generating action potential and successful behavioral outcome. We report measurement of intensity distribution of light reaching the retina of Retinitis pigmentosa (RP) mouse models and compared those results with theoretical simulations of light propagation in eye. The parameters for the stimulating source positioning in front of eye was determined for optimal light delivery to the retina. In contrast to earlier viral method based delivery of ChR2 onto retinal ganglion cells, in-vivo electroporation method was employed for retina-transfection of RP mice. The behavioral improvement in mice with Thy1-ChR2-YFP transfected retina, expressing ChR2 in retinal ganglion cells, was found to correlate with stimulation intensity.

  14. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Influence of the Rayleigh backscattering on the mode composition of radiation in multimode graded-index waveguides with a quadratic refractive-index profile

    NASA Astrophysics Data System (ADS)

    Esayan, G. L.; Krivoshlykov, S. G.

    1989-08-01

    A method of coherent states is used to describe the process of Rayleigh scattering in a multimode graded-index waveguide with a quadratic refractive-index profile. Explicit expressions are obtained for the coefficients representing excitation of Gaussian-Hermite backscattering modes in two cases of practical importance: excitation of a waveguide by an extended noncoherent light source and selective excitation of different modes at the entry to a waveguide. An analysis is also made of the coefficients of coupling between forward and backward modes. Explicit expressions for the coefficients representing capture of backscattered radiation by a waveguide are obtained for two special cases of excitation (extended light source and zeroth mode).

  15. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats.

    PubMed

    Opperhuizen, Anne-Loes; Stenvers, Dirk J; Jansen, Remi D; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2017-07-01

    Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse health effects with an increased risk of metabolic disorders, including type 2 diabetes. It is well-known that acute exposure to LAN affects biological clock function, hormone secretion and the activity of the autonomic nervous system, but data on the effects of LAN on glucose homeostasis are lacking. This study aimed to investigate the acute effects of LAN on glucose metabolism. Male Wistar rats were subjected to i.v. glucose or insulin tolerance tests while exposed to 2 h of LAN in the early or late dark phase. In subsequent experiments, different light intensities and wavelengths were used. LAN exposure early in the dark phase at ZT15 caused increased glucose responses during the first 20 min after glucose infusion (p < 0.001), whereas LAN exposure at the end of the dark phase, at ZT21, caused increased insulin responses during the first 10 min (p < 0.01), indicating that LAN immediately induces glucose intolerance in rats. Subsequent experiments demonstrated that the effect of LAN was both intensity- and wavelength-dependent. White light of 50 and 150 lx induced greater glucose responses than 5 and 20 lx, whereas all intensities other than 5 lx reduced locomotor activity. Green light induced glucose intolerance, but red and blue light did not, suggesting the involvement of a specific retina-brain pathway. Together, these data show that exposure to LAN has acute adverse effects on glucose metabolism in a time-, intensity- and wavelength-dependent manner.

  16. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  17. HF coherent backscatter in the ionosphere: In situ measurements of SuperDARN backscatter with e-POP RRI

    NASA Astrophysics Data System (ADS)

    Perry, G. W.; James, H. G.; Hussey, G. C.; Howarth, A. D.; Yau, A. W.

    2017-12-01

    We report in situ polarimetry measurements of HF scattering obtained by the Enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) during a coherent backscatter scattering event detected by the Saskatoon Super Dual Auroral Radar Network (SuperDARN). On April 1, 2015, e-POP conducted a 4 minute coordinated experiment with SuperDARN Saskatoon, starting at 3:38:44 UT (21:38:44 LT). Throughout the experiment, SuperDARN was transmitting at 17.5 MHz and e-POP's ground track moved in a northeastward direction, along SuperDARN's field-of-view, increasing in altitude from 331 to 352 km. RRI was tuned to 17.505 MHz, and recorded nearly 12,000 SuperDARN radar pulses during the experiment. In the first half of the experiment, radar pulses recorded by RRI were "well behaved": they retained their transmitted amplitude envelope, and their pulse-to-pulse polarization characteristics were coherent - Faraday rotation was easily measured. During the second half of the experiment the pulses showed clear signs of scattering: their amplitude envelopes became degraded and dispersed, and their pulse-to-pulse polarization characteristics became incoherent - Faraday rotation was difficult to quantify. While these pulses were being received by RRI, SuperDARN Saskatoon detected a latitudinal band of coherent backscatter at e-POP's location, indicating that the scattered pulses measured by RRI may be a signature of HF backscatter. In this presentation, we will outline the polarimetric details of the scattered pulses, and provide an analytic interpretation of RRI's measurements to give new insight into the nature of HF coherent backscatter mechanism taking place in the terrestrial ionosphere.

  18. Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process.

    PubMed

    Zhao, Yongjun; Wang, Juan; Zhang, Hui; Yan, Cheng; Zhang, Yuejin

    2013-05-01

    Biogas is a well-known, primary renewable energy source, but its utilizations are possible only after upgrading. The microalgae-based bag photo-bioreactor utilized in this research could effectively upgrade biogas and simultaneously reduce the nutrient content in digestate. Red light was determined as the optimal light wavelength for microalgae growth, biogas upgrading, and digestate nutrient reduction. In the range of moderate light intensities (i.e., 800, 1200, 1600, and 2000 μmol m(-2) s(-1)), higher light intensities achieved higher biogas upgrade and larger digestate nutrient reduction. Methane content attained the highest value of 92.74±3.56% (v/v). The highest chemical oxygen demand, total nitrogen, and total phosphorus reduction efficiency of digestate were 85.35±1.04%, 77.98±1.84%, and 73.03±2.14%, respectively. Considering the reduction and economic efficiencies of the carbon dioxide content of biogas and digestate nutrient as well as the biogas upgrading standard, the optimal light intensity range was determined to be from 1200 to 1600 μmol m(-2) s(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOEpatents

    Frank, A.M.; Edwards, W.R.

    1983-10-11

    A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision is disclosed. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode. 1 fig.

  20. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOEpatents

    Frank, A.M.; Edwards, W.R.

    1982-03-23

    A long-lifetime light source is discussed with sufficiently low intensity to be used for reading a map or other writing at nightime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

  1. Automatic Suppression of Intense Monochromatic Light in Electro-Optical Sensors

    PubMed Central

    Ritt, Gunnar; Eberle, Bernd

    2012-01-01

    Electro-optical imaging sensors are widely distributed and used for many different tasks. Due to technical improvements, their pixel size has been steadily decreasing, resulting in a reduced saturation capacity. As a consequence, this progress makes them susceptible to intense point light sources. Developments in laser technology have led to very compact and powerful laser sources of any wavelength in the visible and near infrared spectral region, offered as laser pointers. The manifold of wavelengths makes it difficult to encounter sensor saturation over the complete operating waveband by conventional measures like absorption or interference filters. We present a concept for electro-optical sensors to suppress overexposure in the visible spectral region. The key element of the concept is a spatial light modulator in combination with wavelength multiplexing. This approach allows spectral filtering within a localized area in the field of view of the sensor. The system offers the possibility of automatic reduction of overexposure by monochromatic laser radiation. PMID:23202039

  2. Maximum a posteriori classification of multifrequency, multilook, synthetic aperture radar intensity data

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Chellappa, R.

    1993-01-01

    We present a maximum a posteriori (MAP) classifier for classifying multifrequency, multilook, single polarization SAR intensity data into regions or ensembles of pixels of homogeneous and similar radar backscatter characteristics. A model for the prior joint distribution of the multifrequency SAR intensity data is combined with a Markov random field for representing the interactions between region labels to obtain an expression for the posterior distribution of the region labels given the multifrequency SAR observations. The maximization of the posterior distribution yields Bayes's optimum region labeling or classification of the SAR data or its MAP estimate. The performance of the MAP classifier is evaluated by using computer-simulated multilook SAR intensity data as a function of the parameters in the classification process. Multilook SAR intensity data are shown to yield higher classification accuracies than one-look SAR complex amplitude data. The MAP classifier is extended to the case in which the radar backscatter from the remotely sensed surface varies within the SAR image because of incidence angle effects. The results obtained illustrate the practicality of the method for combining SAR intensity observations acquired at two different frequencies and for improving classification accuracy of SAR data.

  3. Exact and near backscattering measurements of the linear depolarisation ratio of various ice crystal habits generated in a laboratory cloud chamber

    NASA Astrophysics Data System (ADS)

    Smith, Helen R.; Connolly, Paul J.; Webb, Ann R.; Baran, Anthony J.

    2016-07-01

    Ice clouds were generated in the Manchester Ice Cloud Chamber (MICC), and the backscattering linear depolarisation ratio, δ, was measured for a variety of habits. To create an assortment of particle morphologies, the humidity in the chamber was varied throughout each experiment, resulting in a range of habits from the pristine to the complex. This technique was repeated at three temperatures: -7 °C, -15 °C and -30 °C, in order to produce both solid and hollow columns, plates, sectored plates and dendrites. A linearly polarised 532 nm continuous wave diode laser was directed through a section of the cloud using a non-polarising 50:50 beam splitter. Measurements of the scattered light were taken at 178°, 179° and 180°, using a Glan-Taylor prism to separate the co- and cross-polarised components. The intensities of these components were measured using two amplified photodetectors and the ratio of the cross- to co-polarised intensities was measured to find the linear depolarisation ratio. In general, it was found that Ray Tracing over-predicts the linear depolarisation ratio. However, by creating more accurate particle models which better represent the internal structure of ice particles, discrepancies between measured and modelled results (based on Ray Tracing) were reduced.

  4. Electromagnetic backscattering from one-dimensional drifting fractal sea surface I: Wave-current coupled model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-06-01

    To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.

  5. Retrieval of Ocean Subsurface Particulate Backscattering Coefficient from Space-Borne CALIOP Lidar Measurement

    NASA Technical Reports Server (NTRS)

    Lu, Xiaomei; Hu, Yongxiang; Pelon, Jacques; Trepte, Chip; Liu, Katie; Rodier, Sharon; Zeng, Shan; Luckher, Patricia; Verhappen, Ron; Wilson, Jamie; hide

    2016-01-01

    A new approach has been proposed to determine ocean subsurface particulate backscattering coefficient bbp from CALIOP 30deg off-nadir lidar measurements. The new method also provides estimates of the particle volume scattering function at the 180deg scattering angle. The CALIOP based layer-integrated lidar backscatter and particulate backscattering coefficients are compared with the results obtained from MODIS ocean color measurements. The comparison analysis shows that ocean subsurface lidar backscatter and particulate backscattering coefficient bbp can be accurately obtained from CALIOP lidar measurements, thereby supporting the use of space-borne lidar measurements for ocean subsurface studies.

  6. [Effect of light intensity on the growth and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicas under two kinds of culture methods].

    PubMed

    Wei, Zi-Zhong; Zhao, Wen

    2014-01-01

    The effects of light intensity (0, 1000, 2000 and 3000 1x) on the growth and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicus under two kinds of culture methods (compound Chinese medicine preparation and microbial preparation) were studied. Results showed that the relative mass gain rate (WGR) and the specific growth rate (SGR) of juvenile sea cucumber were significantly affected by light intensity (P < 0.05) , and the orders of WGR and SGR (form high to low) of juvenile sea cucumber under different light intensities were 2000 1x > 1000 1x > 3000 1x > 0 1x. Under the same light intensity, the growth of juvenile sea cucumber under the two kinds of culture methods were significantly different (P < 0.05), with the WGR and SGR of the Chinese medicine treatment being greater than those of the microbial treatment. The light intensity also significantly affected the digestive enzyme activity of juvenile sea cucumber. The order of amylase and lipase activity was 2000 1x > 1000 1x > 3000 1x > 0 1x, while that of protease activity was 1000 1x > 2000 1x > 0 1x > 3000 1x. Under the same light intensity, the digestive enzyme activities of the Chinese medicine treatment were generally higher than those of the microbial treatment.

  7. Theoretical analysis of the effects of light intensity on the photocorrosion of semiconductor electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, R.M.; Nozik, A.J.

    1985-07-18

    A kinetic model was developed to describe the effects of light intensity on the photocorrosion of n-type semiconductor electrodes. The model is an extension of previous work by Gomes and co-workers that includes the possibility of multiple steps for the oxidation reaction of the reducing agent in the electrolyte. Six cases are considered where the semiconductor decomposition reaction is multistep (each step involves a hole); the oxidation reaction of the reducing agent is multistep (each step after the first involves a hole or a chemical intermediate), and the first steps of the competing oxidation reactions are reversible or irreversible. Itmore » was found, contrary to previous results, that the photostability of semiconductor electrodes could increase with increased light intensity if the desired oxidation reaction of the reducing agent in the electrolyte was multistep with the first step being reversible. 14 references, 5 figures, 1 table.« less

  8. Full Angular Profile of the Coherent Polarization Opposition Effect

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Luck, Jean-Marc; Nieuwenhuizen, Theo M.

    1999-01-01

    We use the rigorous vector theory of weak photon localization for a semi-infinite medium composed of nonabsorbing Rayleigh scatterers to compute the full angular profile of the polarization opposition effect. The latter is caused by coherent backscattering of unpolarized incident light and accompanies the renowned backscattering intensity peak.

  9. Clinical application of intense pulsed light depilation technology in total auricular reconstruction.

    PubMed

    Guo, Ying; Shan, Jing; Zhang, Tianyu

    2017-08-01

    Although ear reconstruction technology has been highly developed in recent years, hair growth on the reconstructed ear has plagued both surgeons and patients. In this paper, the authors introduce a clinical application of intense pulsed light depilation in total auricular reconstruction. From August 2012 to August 2013, 27 patients (28 ears) suffering from congenital microtia were treated by intense pulsed light depilation (650-950-nm filter, initial fluence of 14-16 J/cm 2 and gradually increased, pulse width of 30-50 ms, spot size of 20 × 30 mm 2 , intervals of 6-8 weeks, a total of four sessions) either before or after auricular reconstruction. According to the treatment situation at diagnosis, the patients were divided into two groups: the preoperative group and the postoperative group. There were no differences between the two groups in terms of age or initial fluence for hair removal; however, there were less treatments in the former than in the latter group (preoperative group 4.1 ± 0.3, postoperative group 4.7 ± 0.7, F = 9.10, P = 0.006), and the maximum fluence used for hair removal was lower in the former than in the latter group (preoperative group 18-20 J/cm 2 , postoperative group 19-22 J/cm 2 , F = 22.31, P < 0.001). After follow-up for ≥4-6 months, the effective rate was 100% in the preoperative group, and the effective rate was 80% in the postoperative group. Intense pulsed light depilation technology is a reasonable complementary approach to total auricular reconstruction. And preoperative depilation is recommended over postoperative depilation. The non-invasive modern photonic technology can resolve the problem of postoperative residual hair on the reconstructed auricle, improving auricular shape and increasing patient satisfaction. In addition, an adequately set preoperative hair removal area can provide surface skin that is most similar to normal auricle skin for auricular reconstruction.

  10. Relating multifrequency radar backscattering to forest biomass: Modeling and AIRSAR measurement

    NASA Technical Reports Server (NTRS)

    Sun, Guo-Qing; Ranson, K. Jon

    1992-01-01

    During the last several years, significant efforts in microwave remote sensing were devoted to relating forest parameters to radar backscattering coefficients. These and other studies showed that in most cases, the longer wavelength (i.e. P band) and cross-polarization (HV) backscattering had higher sensitivity and better correlation to forest biomass. This research examines this relationship in a northern forest area through both backscatter modeling and synthetic aperture radar (SAR) data analysis. The field measurements were used to estimate stand biomass from forest weight tables. The backscatter model described by Sun et al. was modified to simulate the backscattering coefficients with respect to stand biomass. The average number of trees per square meter or radar resolution cell, and the average tree height or diameter breast height (dbh) in the forest stand are the driving parameters of the model. The rest of the soil surface, orientation, and size distributions of leaves and branches, remain unchanged in the simulations.

  11. The effect of leaf size on the microwave backscattering by corn

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1986-01-01

    Attema and Ulaby (1978) proposed the cloud model to predict the microwave backscattering properties of vegetation. This paper describes a modification in which the biophysical properties and microwave properties of vegetation are related at the level of the individual scatterer (e.g., the leaf or the stalk) rather than at the level of the aggregated canopy (e.g., the green leaf area index). Assuming that the extinction cross section of an average leaf was proportional to its water content, that a power law relationship existed between the backscattering cross section of an average green corn leaf and its area, and that the backscattering coefficient of the surface was a linear function of its volumetric soil moisture content, it is found that the explicit inclusion of the effects of corn leaf size in the model led to an excellent fit between the observed and predicted backscattering coefficients. Also, an excellent power law relationship existed between the backscattering cross section of a corn leaf and its area.

  12. Probabilities and statistics for backscatter estimates obtained by a scatterometer

    NASA Technical Reports Server (NTRS)

    Pierson, Willard J., Jr.

    1989-01-01

    Methods for the recovery of winds near the surface of the ocean from measurements of the normalized radar backscattering cross section must recognize and make use of the statistics (i.e., the sampling variability) of the backscatter measurements. Radar backscatter values from a scatterometer are random variables with expected values given by a model. A model relates backscatter to properties of the waves on the ocean, which are in turn generated by the winds in the atmospheric marine boundary layer. The effective wind speed and direction at a known height for a neutrally stratified atmosphere are the values to be recovered from the model. The probability density function for the backscatter values is a normal probability distribution with the notable feature that the variance is a known function of the expected value. The sources of signal variability, the effects of this variability on the wind speed estimation, and criteria for the acceptance or rejection of models are discussed. A modified maximum likelihood method for estimating wind vectors is described. Ways to make corrections for the kinds of errors found for the Seasat SASS model function are described, and applications to a new scatterometer are given.

  13. Propagation and scattering of vector light beam in turbid scattering medium

    NASA Astrophysics Data System (ADS)

    Doronin, Alexander; Milione, Giovanni; Meglinski, Igor; Alfano, Robert R.

    2014-03-01

    Due to its high sensitivity to subtle alterations in medium morphology the vector light beams have recently gained much attention in the area of photonics. This leads to development of a new non-invasive optical technique for tissue diagnostics. Conceptual design of the particular experimental systems requires careful selection of various technical parameters, including beam structure, polarization, coherence, wavelength of incident optical radiation, as well as an estimation of how the spatial and temporal structural alterations in biological tissues can be distinguished by variations of these parameters. Therefore, an accurate realistic description of vector light beams propagation within tissue-like media is required. To simulate and mimic the propagation of vector light beams within the turbid scattering media the stochastic Monte Carlo (MC) technique has been used. In current report we present the developed MC model and the results of simulation of different vector light beams propagation in turbid tissue-like scattering media. The developed MC model takes into account the coherent properties of light, the influence of reflection and refraction at the medium boundary, helicity flip of vortexes and their mutual interference. Finally, similar to the concept of higher order Poincaŕe sphere (HOPS), to link the spatial distribution of the intensity of the backscattered vector light beam and its state of polarization on the medium surface we introduced the color-coded HOPS.

  14. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks.

    PubMed

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-06-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model.

  15. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks

    PubMed Central

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-01-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model. PMID:28587171

  16. A novel biometric X-ray backscatter inspection of dangerous materials based on a lobster-eye objective

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wang, Xin; Mu, Baozhong; Zhan, Qi; Xie, Qing; Li, Yaran; Chen, Yifan; He, Yanan

    2016-10-01

    In order to counter drug-related crimes effectively, and to safeguard homeland security as well as public safety, it is important to inspect drugs, explosives and other contraband quickly and accurately from the express mail system, luggage, vehicles and other objects. In this paper, we discuss X-ray backscatter inspection system based on a novel lobster-eye X-ray objective, which is an effective inspection technology for drugs, explosives and other contraband inspection. Low atomic number materials, such as drugs and explosives, leads to strong Compton scattering after irradiated by X-ray, which is much stronger than high atomic number material, such as common metals, etc. By detecting the intensity of scattering signals, it is possible to distinguish between organics and inorganics. The lobster-eye X-ray optical system imitates the reflective eyes of lobsters, which field of view can be made as large as desired and it is practical to achieve spatial resolution of several millimeters for finite distance detection. A novel lobster-eye X-ray objective is designed based on modifying Schmidt geometry by using multi-lens structure, so as to reduce the difference of resolution between the horizontal and vertical directions. The demonstration experiments of X-ray backscattering imaging were carried out. A suitcase, a wooden box and a tire with several typical samples hidden in them were imaged by the X-ray backscattering inspection system based on a lobster-eye X-ray objective. The results show that this X-ray backscattering inspection system can get a resolution of less than five millimeters under the FOV of more than two hundred millimeters with 0.5 meter object distance, which can still be improved.

  17. X-Ray Backscatter Imaging for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel; Edwards, Talion; Toh, Chin

    2011-06-01

    Scatter x-ray imaging (SXI) is a real time, digital, x-ray backscatter imaging technique that allows radiographs to be taken from one side of an object. This x-ray backscatter imaging technique offers many advantages over conventional transmission radiography that include single-sided access and extremely low radiation fields compared to conventional open source industrial radiography. Examples of some applications include the detection of corrosion, foreign object debris, water intrusion, cracking, impact damage and leak detection in a variety of material such as aluminum, composites, honeycomb structures, and titanium.

  18. CO2 lidar backscatter profiles over Hawaii during fall 1988

    NASA Technical Reports Server (NTRS)

    Post, Madison J.; Cupp, Richard E.

    1992-01-01

    Aerosol and cloud backscatter data, obtained over a 24-day period in fall 1988 with the National Oceanic and Atmospheric Administration's Doppler lidar at 10.59-micron wavelength, are analyzed by using a new technique to lessen biases that are due to dropouts. Typical backscatter cross sections were significantly lower than those routinely observed over the continental United States, although episodic backscatter enhancements caused by cirrus and mineral dust also occurred. Implications of these data on the proposed Laser Atmospheric Wind Sounder wind profiling satellite sensor are discussed.

  19. Biocapture of CO₂ by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods.

    PubMed

    Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun

    2018-03-15

    Abstract : Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO₂ in biogas. The microalgae-fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO 2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulga ris - Ganoderma lucidum > Chlorella vulga ris -activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m -2 s -1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology.

  20. Electromagnetic backscattering by corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, C. A.; Griesser, T.

    1986-01-01

    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.

  1. Backscatter and attenuation characterization of ventricular myocardium

    NASA Astrophysics Data System (ADS)

    Gibson, Allyson Ann

    2009-12-01

    This Dissertation presents quantitative ultrasonic measurements of the myocardium in fetal hearts and adult human hearts with the goal of studying the physics of sound waves incident upon anisotropic and inhomogeneous materials. Ultrasound has been used as a clinical tool to assess heart structure and function for several decades. The clinical usefulness of this noninvasive approach has grown with our understanding of the physical mechanisms underlying the interaction of ultrasonic waves with the myocardium. In this Dissertation, integrated backscatter and attenuation analyses were performed on midgestational fetal hearts to assess potential differences in the left and right ventricular myocardium. The hearts were interrogated using a 50 MHz transducer that enabled finer spatial resolution than could be achieved at more typical clinical frequencies. Ultrasonic data analyses demonstrated different patterns and relative levels of backscatter and attenuation from the myocardium of the left ventricle and the right ventricle. Ultrasonic data of adult human hearts were acquired with a clinical imaging system and quantified by their magnitude and time delay of cyclic variation of myocardial backscatter. The results were analyzing using Bayes Classification and ROC analysis to quantify potential advantages of using a combination of two features of cyclic variation of myocardial backscatter over using only one or the other feature to distinguish between groups of subjects. When the subjects were classified based on hemoglobin A1c, the homeostasis model assessment of insulin resistance, and the ratio of triglyceride to high-density lipoprotein-cholesterol, differences in the magnitude and normalized time delay of cyclic variation of myocardial backscatter were observed. The cyclic variation results also suggested a trend toward a larger area under the ROC curve when information from magnitude and time delay of cyclic variation is combined using Bayes classification than when

  2. Site Survey of the Martha's Vineyard Coastal Observatory: Backscatter, Grain Size and Temporal Evolution of Rippled Scour Depressions

    NASA Astrophysics Data System (ADS)

    Goff, J. A.; Mayer, L.; Schwab, B.; Traykovski, P.; Wilkins, R.; Jenkins, C.; Kraft, B.; Evans, R.; Buynevich, I.

    2002-12-01

    The Office of Naval Research's Mine Burial Prediction program has chosen the Martha's Vineyard Coastal Observatory (MVCO) as a natural laboratory for experimental observations of object burial by nearshore processes (e.g., bedform migration, scour). In support of this program, the MVCO has been subject to an intensive site survey program, involving, since early 2001: (1) three swath backscatter and/or bathymetry surveys; (2) three high resolution seismic surveys; (3) ultra-high resolution sector-scanning sonar on pole mounts; (4) in situ geotechnical (velocity and resistivity) measurements, (5) grab sampling, and (6) vibracoring. These efforts are concentrated in water depths between ~8 and 18 m, centered on the site of the MVCO permanent node at ~12 m water depth Rippled scour depressions (RSDs) are pervasive within the MVCO. RSDs are ~shore-perpendicular bands of coarse sands separated by overlying fine sands. The term itself implies that the coarse sands are heavily rippled (~0.5-1 m wavelength, ~0.1 m amplitude) and slightly depressed relative to the fine sands which, in the MVCO, are generally just a few 10's of cm thick. The RSDs are clearly evident on sidescan data as bands of high backscatter. For the most part, grain size measurements confirm a strong positive correspondence between mean grain size and backscatter intensity. However, a critical exception is seen in deeper water where, well within the area of fine sands, backscatter increases noticeably as mean grain size decreases from ~150μ to ~130μ. Topographic expression related to the RSDs is confined primarily to evident scour depressions at the edges. The RSDs are highly asymmetric: backscatter is higher, the coarse/fine transition is more sharply defined, and the scour depression is deeper on one side than the other. This pattern changes within the survey: the higher backscatter edge is always to the west in the western part of the survey, and vice versa to the east. The strike of the RSDs also

  3. Sound Velocity and Diffraction Intensity Measurements Based on Raman-Nath Theory of the Interaction of Light and Ultrasound

    ERIC Educational Resources Information Center

    Neeson, John F.; Austin, Stephen

    1975-01-01

    Describes a method for the measurement of the velocity of sound in various liquids based on the Raman-Nath theory of light-sound interaction. Utilizes an analog computer program to calculate the intensity of light scattered into various diffraction orders. (CP)

  4. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  5. Circularly polarized measurements of radar backscatter from terrain

    NASA Astrophysics Data System (ADS)

    Wilson, E. A.; Brunfeldt, D. R.; Ulaby, F. T.; Holtzman, J. C.

    1980-02-01

    This report documents the design changes to the University of Kansas MAS 8-18/35 scatterometer system required to incorporate a circular polarization capability and a subsequent backscatter measurement program. The modifications enable the MAS 8-18/35 system to acquire both linear (HH, HV, VV) and circular (RR, RL, LL) radar backscatter data over its entire operating range of 8-18 GHz and 35 GHz. The measurement program described herein consisted of measurements of the backscatter coefficient, as a function of the angle of incidence (0-80) at selected frequencies in the 8-18 GHz range using circular polarization. Targets studied included coniferous and deciduous trees, wet and dry asphalt and concrete and bare and plowed ground at various moisture conditions. Coniferous and deciduous tree measurements were taken in both August and November so that seasonal changes could be observed.

  6. Effect of Light Intensity for Optimum Biomass and Lipid Production from Scenedesmus dimorphus (Turpin) Kützing

    NASA Astrophysics Data System (ADS)

    Kurniawati, F. N.; Mahajoeno, E.; Sunarto; Sari, S. L. A.

    2017-07-01

    One source of alternative energy substitute for petroleum raw materials is renewable vegetable oils known as biodiesel. Biodiesel can be produced from microalgae, since it was more efficient and environmentally friendly. Scenedesmus dimorphus (Turpin) Kützing was developed as a source of biodiesel since it had potential of high lipid production. The aims of this research were to know the rate of growth of Scenedesmus dimorphus in different lighting and the optimimum light intensity for biomass and lipid production. This research used a completely randomized design consisting of 3 treatments with 3 replications. Treatments in this research were the light intensity, i.e. 7,500, 10,000, and 12,500 lux. Scenedesmus dimorphus was grew in Bold’s Basal Medium (BBM). Parameters observed in this research were the cell number, biomass and lipid production of S. dimorphus. Data were analyzed by ANOVA followed by DMRT 5%. The results showed that the optimum growth rate of S. dimorphus was in the intensity of 12,500 lux that was 100.80 x 106 cells.ml-1. The optimum production of biomass and lipids was in treatment 12,500 lux i.e; 1.1407 g.L-1 and 0.2520 g.L-1 (22.28% dry weight).

  7. Calculations of radar backscattering coefficient of vegetation-covered soils

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Jackson, T. J. (Principal Investigator)

    1983-01-01

    A model for simulating the measured backscattering coefficient of vegetation-covered soil surfaces includes both coherent and incoherent components of the backscattered radar pulses from a rough sil surface. The effect of vegetation canopy scattering is also incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. Model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. It was found that the coherent scattering component is very important at angles near nadir, while the vegetation volume scattering is dominant at incident angles 30 degrees.

  8. Inhibition of enteric pathogens and surrogates using integrated, high intensity 405nm led light on the surface of almonds

    USDA-ARS?s Scientific Manuscript database

    The disinfecting properties of 405 nm light were investigated against Escherichia coli O157:H7, Salmonella, and their non-pathogenic surrogate bacteria on the surface of almonds. High intensity monochromatic blue light (MBL) was generated from an array of narrow-band 405 nm light-emitting diodes (LE...

  9. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling

    NASA Astrophysics Data System (ADS)

    Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.

    2018-06-01

    Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.

  10. Comparison of radar backscatter from Antarctic and Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Hosseinmostafa, R.; Lytle, V.

    1992-01-01

    Two ship-based step-frequency radars, one at C-band (5.3 GHz) and one at Ku-band (13.9 GHz), measured backscatter from ice in the Weddell Sea. Most of the backscatter data were from first-year (FY) and second-year (SY) ice at the ice stations where the ship was stationary and detailed snow and ice characterizations were performed. The presence of a slush layer at the snow-ice interface masks the distinction between FY and SY ice in the Weddell Sea, whereas in the Arctic the separation is quite distinct. The effect of snow-covered ice on backscattering coefficients (sigma0) from the Weddell Sea region indicates that surface scattering is the dominant factor. Measured sigma0 values were compared with Kirchhoff and regression-analysis models. The Weibull power-density function was used to fit the measured backscattering coefficients at 45 deg.

  11. Polarimetric imaging of turbid inhomogeneous slab media based on backscattering using a pencil beam for illumination: Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Otsuki, Soichi

    2018-04-01

    Polarimetric imaging of absorbing, strongly scattering, or birefringent inclusions is investigated in a negligibly absorbing, moderately scattering, and isotropic slab medium. It was proved that the reduced effective scattering Mueller matrix is exactly calculated from experimental or simulated raw matrices even if the medium is anisotropic and/or heterogeneous, or the outgoing light beam exits obliquely to the normal of the slab surface. The calculation also gives a reasonable approximation of the reduced matrix using a light beam with a finite diameter for illumination. The reduced matrix was calculated using a Monte Carlo simulation and was factorized in two dimensions by the Lu-Chipman polar decomposition. The intensity of backscattered light shows clear and modestly clear differences for absorbing and strongly scattering inclusions, respectively, whereas it shows no difference for birefringent inclusions. Conversely, some polarization parameters, for example, the selective depolarization coefficients exhibit only a slight difference for the absorbing inclusions, whereas they showed clear difference for the strongly scattering or birefringent inclusions. Moreover, these quantities become larger with increasing the difference in the optical properties of the inclusions relative to the surrounding medium. However, it is difficult to recognize inclusions that buried at the depth deeper than 3 mm under the surface. Thus, the present technique can detect the approximate shape and size of these inclusions, and considering the depth where inclusions lie, estimate their optical properties. This study reveals the possibility of the polarization-sensitive imaging of turbid inhomogeneous media using a pencil beam for illumination.

  12. The impact of morning light intensity and environmental temperature on body temperatures and alertness.

    PubMed

    Te Kulve, Marije; Schlangen, Luc J M; Schellen, Lisje; Frijns, Arjan J H; van Marken Lichtenbelt, Wouter D

    2017-06-01

    Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Sci—Fri PM: Dosimetry—05: Megavoltage electron backscatter: EGSnrc results versus 21 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, E. S. M.; The Ottawa Hospital Cancer Centre, Ottawa; Buchenberg, W.

    2014-08-15

    The accuracy of electron backscatter calculations at megavoltage energies is important for many medical physics applications. In this study, EGSnrc calculations of megavoltage electron backscatter (1–22 MeV) are performed and compared to the data from 21 experiments published between 1954 and 1993 for 25 single elements with atomic numbers from 3 to 92. Typical experimental uncertainties are 15%. For EGSnrc simulations, an ideal detector is assumed, and the most accurate electron physics options are employed, for a combined statistical and systematic uncertainty of 3%. The quantities compared are the backscatter coefficient and the energy spectra (in the backward hemisphere andmore » at specific detector locations). For the backscatter coefficient, the overall agreement is within ±2% in the absolute value of the backscatter coefficient (in per cent), and within 11% of the individual backscatter values. EGSnrc results are systematically on the higher end of the spread of the experimental data, which could be partially from systematic experimental errors discussed in the literature. For the energy spectra, reasonable agreement between simulations and experiments is observed, although there are significant variations in the experimental data. At the lower end of the spectra, simulations are higher than some experimental data, which could be due to reduced experimental sensitivity to lower energy electrons and/or over-estimation by EGSnrc for backscattered secondary electrons. In conclusion, overall good agreement is observed between EGSnrc backscatter calculations and experimental measurements for megavoltage electrons. There is a need for high quality experimental data for the energy spectra of backscattered electrons.« less

  14. Theoretical and experimental models of the diffuse radar backscatter from Mars

    NASA Technical Reports Server (NTRS)

    England, A. W.

    1995-01-01

    The general objective for this work was to develop a theoretically and experimentally consistent explanation for the diffuse component of radar backscatter from Mars. The strength, variability, and wavelength independence of Mars' diffuse backscatter are unique among our Moon and the terrestrial planets. This diffuse backscatter is generally attributed to wavelength-scale surface roughness and to rock clasts within the Martian regolith. Through the combination of theory and experiment, the authors attempted to bound the range of surface characteristics that could produce the observed diffuse backscatter. Through these bounds they gained a limited capability for data inversion. Within this umbrella, specific objectives were: (1) To better define the statistical roughness parameters of Mars' surface so that they are consistent with observed radar backscatter data, and with the physical and chemical characteristics of Mars' surface as inferred from Mariner 9, the Viking probes, and Earth-based spectroscopy; (2) To better understand the partitioning between surface and volume scattering in the Mars regolith; (3) To develop computational models of Mars' radio emission that incorporate frequency dependent, surface and volume scattering.

  15. A Geant4 model of backscatter security imaging systems

    NASA Astrophysics Data System (ADS)

    Leboffe, Eric Matthew

    The operating characteristics of x ray security scanner systems that utilize backscatter signal in order to distinguish person borne threats have never been made fully available to the general public. By designing a model using Geant4, studies can be performed which will shed light on systems such as security scanners and allow for analysis of the performance and safety of the system without access to any system data. Despite the fact that the systems are no longer in use at airports in the United States, the ability to design and validate detector models and phenomena is an important capability that can be applied to many current real world applications. The model presented provides estimates for absorbed dose, effective dose and dose depth distribution that are comparable to previously published work and explores imaging capabilities for the system embodiment modeled.

  16. Bathymetry and acoustic backscatter: Estero Bay, California

    USGS Publications Warehouse

    Hartwell, Stephen R.; Finlayson, David P.; Dartnell, Peter; Johnson, Samuel Y.

    2013-01-01

    Between July 30 and August 9, 2012, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from Estero Bay, San Luis Obispo, California, under PCMSC Field Activity ID S-05-12-SC. The survey was done using the R/V Parke Snavely outfitted with a multibeam sonar for swath mapping and highly accurate position and orientation equipment for georeferencing. This report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  17. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prost, L. R.

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  18. SuperDARN elevation angle calibration using HAARP-induced backscatter

    NASA Astrophysics Data System (ADS)

    Shepherd, S. G.; Thomas, E. G.; Palinski, T. J.; Bristow, W.

    2017-12-01

    SuperDARN radars rely on refraction in the ionosphere to make Doppler measurements of backscatter from ionospheric irregularities or the ground/sea, often to ranges of 4000 km or more. Elevation angle measurements of backscattered signals can be important for proper geolocation, mode identification and Doppler velocity corrections to the data. SuperDARN radars are equipped with a secondary array to make elevation angle measurements, however, calibration is often difficult. One method of calibration is presented here, whereby backscatter from HAARP-induced irregularities, at a known location, is used to independently determine the elevation angle of signals. Comparisons are made for several radars with HAARP in their field-of-view in addition to the results obtained fromray-tracing in a model ionosphere.

  19. Calculation of the effects of ice on the backscatter of a ground plane

    NASA Technical Reports Server (NTRS)

    Lambert, K. M.; Peters, L., Jr.

    1988-01-01

    Described is a technique for examining the effect of a rough ice layer on the backscatter of a ground plane. The technique is applied to the special case of a rough ice layer that is periodic in space. By assuming that the roughness is periodic, the backscatter of the ground plane can be found from the backscatter of a single period. Backscatter calculations are presented for a single period in which the thickness of the ice layer has a Gaussian shape.

  20. Replacing backscattering with reduced scattering. A better formulation of reflectance function?

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; McKee, David; Freda, Wlodzimierz

    2014-05-01

    Modern reflectance formulas all involve backscattering coefficient divided by absorption coefficient (bb/a). The backscattering (or backward scattering) coefficient describes how much of the incident radiation is scattered at angles between 90 and 180 deg. However, water leaving photons are not necessarily backscattered because it is possible for a variable fraction to exit after multiple forward scattering events. Therefore the whole angular function of scattering probability (phase function) influences the reflectance signal. This is the reason why phase functions of identical backscattering ratio may result in different reflectance values, contrary to the universally used formula. This creates the question whether there may exist a better formula using a parameter better describing phase function shape than backscattering ratio. The asymmetry parameter g (the average scattering cosine) is commonly used to parametrize phase functions. A replacement for backscattering should decrease with increasing g. Therefore, the simplest candidate to replace backscattering has the form of b(1-g), where b is the scattering coefficient. Such a parameter is well known in biomedical optics under the name of reduced scattering (sometimes transport scattering). It has even been used in parametrizing reflectance in (highly turbid) human tissues. However no attempt has been made to check its usefulness in marine optics. We perform Monte Carlo radiative transfer calculations of reflectance for multiple combinations of inherent optical properties, including different phase functions. The results are used to create a new reflectance formula as a function of reduced scattering and absorption and test its robustness to changes in phase function shape compared to the traditional bb/a formula. We discuss its usefulness as well as advantages and disadvantages compared to the traditional formulation.

  1. A laboratory investigation into microwave backscattering from sea ice. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bredow, Jonathan W.

    1989-01-01

    The sources of scattering of artificial sea ice were determined, backscatter measurements semi-quantitatively were compared with theoretical predictions, and inexpensive polarimetric radars were developed for sea ice backscatter studies. A brief review of the dielectric properties of sea ice and of commonly used surface and volume scattering theories is presented. A description is provided of the backscatter measurements performed and experimental techniques used. The development of inexpensive short-range polarimetric radars is discussed. The steps taken to add polarimetric capability to a simple FM-W radar are considered as are sample polarimetric phase measurements of the radar. Ice surface characterization data and techniques are discussed, including computation of surface rms height and correlation length and air bubble distribution statistics. A method is also presented of estimating the standard deviation of rms height and correlation length for cases of few data points. Comparisons were made of backscatter measurements and theory. It was determined that backscatter from an extremely smooth saline ice surface at C band cannot be attributed only to surface scatter. It was found that snow cover had a significant influence on backscatter from extremely smooth saline ice at C band.

  2. Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris.

    PubMed

    Markou, Giorgos; Muylaert, Koenraad

    2016-09-01

    Herein the effect of increasing light intensity on the degree of ammonia toxicity and its impact on the photosynthetic performance of Arthrospira and Chlorella was investigated using Chl fluorescence as a technique to characterize their photosystem II (PSII) activity. The results revealed that the increase of light intensity amplifies the ammonia toxicity on PSII. Chl fluorescence transients shown that at a given free ammonia (FA) concentration (100mg-N/L), the photochemistry potential decreased by increasing light intensity. The inhibition of the PSII was not reversible either by re-incubating the cells under dark or under decreased FA concentration. Moreover, the decrease of photochemical and non-photochemical quenching (NPQ) of fluorescence suggest that ammonia toxicity decreases the open available PSII centers, as well the inability of PSII to transfer the generated electrons beyond QA. The collapse of NPQ suggests that ammonia toxicity inhibits the photoprotection mechanism(s) and hence renders PSII more sensitive to photoinhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biocapture of CO2 by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods

    PubMed Central

    Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun

    2018-01-01

    Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO2 in biogas. The microalgae–fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulgaris–Ganoderma lucidum > Chlorella vulgaris–activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m−2 s−1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology. PMID:29543784

  4. Backscatter and attenuation properties of mammalian brain tissues

    NASA Astrophysics Data System (ADS)

    Wijekularatne, Pushpani Vihara

    Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.

  5. Detection of internal structure by scattered light intensity: Application to kidney cell sorting

    NASA Technical Reports Server (NTRS)

    Goolsby, C. L.; Kunze, M. E.

    1985-01-01

    Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.

  6. The Effects of Light Intensity, Casing Layers, and Layering Styles on Royal Sun Medicinal Mushroom, Agaricus brasiliensis (Higher Basidiomycetes) Cultivation in Turkey.

    PubMed

    Adanacioglu, Neşe; Boztok, Kaya; Akdeniz, Ramazan Cengiz

    2015-01-01

    The aim of this research is to evaluate the effects of light intensity, casing layers, and layering styles on the production of the culinary-medicinal mushroom Agaricus brasiliensis in Turkey. The experiments were designed in split-split plots and replicated twice. Three different light intensities-I1, 350 lux; I2, 450 lux; and I3, 750 lux-were used in main plots as environmental factors. A mixture of 4 different casing layers- peat (100%), peat-perlite (75%:25%), peat-clinoptilolite (75%:25%), and peat-perlite-clinoptilolite (60%:20%:20%)-were used at split plots and at split plots. S1, a flat, 3-cm casing layer; S2, a flat, 5-cm casing layer; and S3, casing soil ridges 10 cm wide × 4 cm high, 10 cm apart, were deposited on top of 1-cm overall soil casing layers. At the end of the harvest phase, the total yield was estimated per 100 kg of substrate. Biological efficiency (percentage) was determined from the fresh weight of the mushrooms and the dry weight of the compost at the end of the harvesting period. The highest total yield (7.2 kg/100 kg compost) and biological efficiency (27.63%) were achieved from I2 × peat-perlite-clinoptilolite × S2 treatment. Influence of light intensity, casing layer, layering style, and their interaction in treatments with color values (L*, a*, b*, chroma*, and hue*) also were examined. It has been shown that within color values, chroma* (saturation) values of mushroom caps were affected by light intensity, casing layer, and layering style treatments and light intensity × casing layer treatments and the brightness of mushroom caps tended to increase as light intensity increased.

  7. Backscatter Correction Algorithm for TBI Treatment Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Nieto, B.; Sanchez-Doblado, F.; Arrans, R.

    2015-01-15

    The accuracy requirements in target dose delivery is, according to ICRU, ±5%. This is so not only in standard radiotherapy but also in total body irradiation (TBI). Physical dosimetry plays an important role in achieving this recommended level. The semi-infinite phantoms, customarily used for dosimetry purposes, give scatter conditions different to those of the finite thickness of the patient. So dose calculated in patient’s points close to beam exit surface may be overestimated. It is then necessary to quantify the backscatter factor in order to decrease the uncertainty in this dose calculation. The backward scatter has been well studied atmore » standard distances. The present work intends to evaluate the backscatter phenomenon under our particular TBI treatment conditions. As a consequence of this study, a semi-empirical expression has been derived to calculate (within 0.3% uncertainty) the backscatter factor. This factor depends lineally on the depth and exponentially on the underlying tissue. Differences found in the qualitative behavior with respect to standard distances are due to scatter in the bunker wall close to the measurement point.« less

  8. Chronic neuropathic facial pain after intense pulsed light hair removal. Clinical features and pharmacological management.

    PubMed

    Gay-Escoda, Cosme; Párraga-Manzol, Gabriela; Sánchez-Torres, Alba; Moreno-Arias, Gerardo

    2015-10-01

    Intense Pulsed Light (IPL) photodepilation is usually performed as a hair removal method. The treatment is recommended to be indicated by a physician, depending on each patient and on its characteristics. However, the use of laser devices by medical laypersons is frequent and it can suppose a risk of damage for the patients. Most side effects associated to IPL photodepilation are transient, minimal and disappear without sequelae. However, permanent side effects can occur. Some of the complications are laser related but many of them are caused by an operator error or mismanagement. In this work, we report a clinical case of a patient that developed a chronic neuropathic facial pain following IPL hair removal for unwanted hair in the upper lip. The specific diagnosis was painful post-traumatic trigeminal neuropathy, reference 13.1.2.3 according to the International Headache Society (IHS). Neuropathic facial pain, photodepilation, intense pulse light.

  9. Intense pulsed light and laser treatment regimen improves scar evolution after cleft lip repair surgery.

    PubMed

    Peng, Lihong; Tang, Shijie; Li, Qin

    2018-06-19

    To observe the effects of intense pulsed light (IPL) and lattice CO 2 laser treatment on scar evolution following cleft lip repair. Fifty cleft lip repair patients were enrolled in this study. Twenty-five patients used conventional approach with scar cream massage combined with silica gel products after operation. While other 25 patients which received IPL and lattice CO 2 laser treatments. The treatments commenced 1 week after removal of stitches and observation of scar hyperplasia. Scar evolution was evaluated with the Vancouver scar scale (VSS) by postoperative photographs. Relative to the conventional approach, the laser treatments showed improved scar softening and flattening. These differences were reflected in the groups' significantly different VSS scores. Intense pulsed light combined with lattice CO 2 laser treatment can improve cleft lip surgery scar pliability and appearance, while alleviating children from having to endure the pain of scar massage. © 2018 Wiley Periodicals, Inc.

  10. Light intensity distribution optimization for tunnel lamps in different zones of a long tunnel.

    PubMed

    Lai, Wei; Liu, Xianming; Chen, Weimin; Lei, Xiaohua; Cheng, Xingfu

    2014-09-22

    The light distributions in different tunnel zones have different requirements in order to meet the driver's visual system. In this paper, the light intensity distributions of tunnel lamps in different zones of a long tunnel are optimized separately. A common nonlinear optimization approach is proposed to minimize the consuming power as well as satisfy the luminance and glare requirements both on the road surface and on the wall set by International Commission on Illumination (CIE). Compared with that of the reported linear optimization method, the optimization model can save energy from 11% to 57.6% under the same installation conditions.

  11. Modelling the distribution of hard seabed using calibrated multibeam acoustic backscatter data in a tropical, macrotidal embayment: Darwin Harbour, Australia

    NASA Astrophysics Data System (ADS)

    Siwabessy, P. Justy W.; Tran, Maggie; Picard, Kim; Brooke, Brendan P.; Huang, Zhi; Smit, Neil; Williams, David K.; Nicholas, William A.; Nichol, Scott L.; Atkinson, Ian

    2018-06-01

    Spatial information on the distribution of seabed substrate types in high use coastal areas is essential to support their effective management and environmental monitoring. For Darwin Harbour, a rapidly developing port in northern Australia, the distribution of hard substrate is poorly documented but known to influence the location and composition of important benthic biological communities (corals, sponges). In this study, we use angular backscatter response curves to model the distribution of hard seabed in the subtidal areas of Darwin Harbour. The angular backscatter response curve data were extracted from multibeam sonar data and analysed against backscatter intensity for sites observed from seabed video to be representative of "hard" seabed. Data from these sites were consolidated into an "average curve", which became a reference curve that was in turn compared to all other angular backscatter response curves using the Kolmogorov-Smirnov goodness-of-fit. The output was used to generate interpolated spatial predictions of the probability of hard seabed ( p-hard) and derived hard seabed parameters for the mapped area of Darwin Harbour. The results agree well with the ground truth data with an overall classification accuracy of 75% and an area under curve measure of 0.79, and with modelled bed shear stress for the Harbour. Limitations of this technique are discussed with attention to discrepancies between the video and acoustic results, such as in areas where sediment forms a veneer over hard substrate.

  12. Modelling of backscatter from vegetation layers

    NASA Technical Reports Server (NTRS)

    Van Zyl, J. J.; Engheta, N.; Papas, C. H.; Elachi, C.; Zebker, H.

    1985-01-01

    A simple way to build up a library of models which may be used to distinguish between the different types of vegetation and ground surfaces by means of their backscatter properties is presented. The curve of constant power received by the antenna (Gamma sphere) is calculated for the given Stokes Scattering Operator, and model parameters are adopted of the most similar library model Gamma sphere. Results calculated for a single scattering model resembling coniferous trees are compared with the Gamma spheres of a model resembling tropical region trees. The polarization which would minimize the effect of either the ground surface or the vegetation layer can be calculated and used to analyze the backscatter from the ground surface/vegetation layer combination, and enhance the power received from the desired part of the combination.

  13. The effects of light emitting diode therapy following high intensity exercise.

    PubMed

    Denis, Romain; O'Brien, Christopher; Delahunt, Eamonn

    2013-05-01

    To determine the effects of light emitting diode therapy (LEDT) irradiation on blood lactate concentration ([La]) clearance, peak power output and fatigue index (FI) following high intensity fatiguing exercise. Single-blinded randomised cross-over placebo controlled trial. University College Dublin, Institute for Sport and Health, Human performance laboratory. Eighteen healthy male athletes were recruited from field-based sports (including soccer, hockey and rugby union) and participated in the present study. Dependent variables were the peak power output elicited during the Wingate Anaerobic Test (WAnT), FI and [La] before and after each exercise. WAnT performance was measured prior to high intensity fatiguing exercise (Yo-Yo IR2), prior to LEDT or placebo, and following LEDT or placebo. [La] was measured at baseline, immediately after the Yo-Yo IR2, and in the 3rd, 9th, and 15th min following LEDT or placebo condition. No significant group by treatment interactions were observed for any outcome measures (P > 0.05). We conclude that LEDT irradiation applied following high intensity exercise was not effective and has no immediate effect on [La] clearance, peak power and FI, and thus has no significant effect on muscle recovery in athletes at the intensity and irradiation parameters used in the present study. Further research using different parameters is required to determine how LEDT may contribute to post-exercise recovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effect of Light Intensity on the Relative Dominance of Toxigenic and Nontoxigenic Strains of Microcystis aeruginosa ▿

    PubMed Central

    LeBlanc Renaud, Susan; Pick, Frances R.; Fortin, Nathalie

    2011-01-01

    In aquatic ecosystems, the factors that regulate the dominance of toxin-producing cyanobacteria over non-toxin-producing strains of the same species are largely unknown. One possible hypothesis is that limiting resources lead to the dominance of the latter because of the metabolic costs associated with toxin production. In this study, we tested the effect of light intensity on the performance of a microcystin-producing strain of Microcystis aeruginosa (UTCC 300) when grown in mixed cultures with non-microcystin-producing strains with similar intrinsic growth rates (UTCC 632 and UTCC 633). The endpoints measured included culture growth rates, microcystin concentrations and composition, and mcyD gene copy numbers determined using quantitative PCR (Q-PCR). In contrast to the predicted results, under conditions of low light intensity (20 μmol·m−2·s−1), the toxigenic strain became dominant in both of the mixed cultures based on gene copy numbers and microcystin concentrations. When grown under conditions of high light intensity (80 μmol·m−2·s−1), the toxigenic strain still appeared to dominate over nontoxigenic strain UTCC 632 but less so over strain UTCC 633. Microcystins may not be so costly to produce that toxigenic cyanobacteria are at a disadvantage in competition for limiting resources. PMID:21841026

  15. Light scattering by marine algae: two-layer spherical and nonspherical models

    NASA Astrophysics Data System (ADS)

    Quirantes, Arturo; Bernard, Stewart

    2004-11-01

    Light scattering properties of algae-like particles are modeled using the T-matrix for coated scatterers. Two basic geometries have been considered: off-centered coated spheres and centered spheroids. Extinction, scattering and absorption efficiencies, plus scattering in the backward plane, are compared to simpler models like homogeneous (Mie) and coated (Aden-Kerker) models. The anomalous diffraction approximation (ADA), of widespread use in the oceanographic light-scattering community, has also been used as a first approximation, for both homogeneous and coated spheres. T-matrix calculations show that some light scattering values, such as extinction and scattering efficiencies, have little dependence on particle shape, thus reinforcing the view that simpler (Mie, Aden-Kerker) models can be applied to infer refractive index (RI) data from absorption curves. The backscattering efficiency, on the other hand, is quite sensitive to shape. This calls into question the use of light scattering techniques where the phase function plays a pivotal role, and can help explain the observed discrepancy between theoretical and experimental values of the backscattering coefficient in observed in oceanic studies.

  16. Optoelectrofluidic field separation based on light-intensity gradients

    PubMed Central

    Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung

    2010-01-01

    Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82–16 μm) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest. PMID:20697461

  17. Optoelectrofluidic field separation based on light-intensity gradients.

    PubMed

    Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung

    2010-07-14

    Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82-16 mum) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest.

  18. Collective effects in the Thomson back-scattering between a laser pulse and a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Bacci, A.; Maroli, C.; Petrillo, V.; Serafini, L.

    2006-08-01

    Collective effects in the radiation emission via Thomson back-scattering of an intense optical laser pulse by high brightness electron beams are analyzed. The micro-bunching of the electron beam on the scale of the wavelength of the emitted radiation and the consequent free-electron-laser instability may significantly enhance the number of photons emitted. Scaling-laws of the radiation properties, both in the collective and incoherent spontaneous regimes versus laser and electron beam parameters are discussed in the framework of the one-dimensional model.

  19. Effect of varying light intensity on welfare indices of broiler chickens grown to heavy weights

    USDA-ARS?s Scientific Manuscript database

    The effects of varying light-intensity on ocular, immue, fear, and leg health of broiler chickens grown to heavy weights under environmentally controlled conditions were evaluated. Four identical trials were conducted with two replications per trial. In each trial, 600 Ross 308 chicks were randomly ...

  20. Robust flow of light in three-dimensional dielectric photonic crystals.

    PubMed

    Chen, Wen-Jie; Jiang, Shao-Ji; Dong, Jian-Wen

    2013-09-01

    Chiral defect waveguides and waveguide bend geometry were designed in diamond photonic crystal to mold the flow of light in three dimensions. Propagations of electromagnetic waves in chiral waveguides are robust against isotropic obstacles, which would suppress backscattering in waveguides or integrated devices. Finite-difference time-domain simulations demonstrate that high coupling efficiency through the bend corner is preserved in the polarization gap, as it provides an additional constraint on the polarization state of the backscattered wave. Transport robustness is also demonstrated by inserting two metallic slabs into the waveguide bend.