Sample records for backup film cooler

  1. Effects of polyethylene film wrap on cooler shrink and the microbial status of beef carcasses.

    PubMed

    Sampaio, Guilherme S L; Pflanzer-Júnior, Sérgio B; Roça, Roberto de O; Casagrande, Leandro; Bedeschi, Elaine A; Padovani, Carlos R; Miguel, Giulianna Z; Santos, Carolina T; Girão, Lucio V C; Miranda, Zander B; Franco, Robson M

    2015-02-01

    The present study evaluated the use of polyethylene film wrapping of beef half carcasses and its effects on cooler shrink, cooling characteristics and microbial status of the half carcasses. Film wrapping reduced cooler shrink by 55.2%, 43.1%, 36.0% and 30% after 24, 48, 72 and 96 h of cooling, respectively, compared to the unwrapped half carcasses, whereas the surface water activity showed no significant differences among the time periods. The wrapped half carcasses had a lower cooling rate and higher surface and internal temperatures. The highest values of the aerobic mesophiles, Staphylococcus aureus and Enterobacteriaceae were found in the half carcasses wrapped in film. No significant differences were found in the values of Escherichia coli. The polyethylene film was effective in reducing cooler shrink; however, it caused a delay in cooling, thereby enabling greater microbial occurrences and counts and impairing the hygienic and sanitary conditions of the carcasses, which may be an impediment to the practical application of this technology.

  2. Evaporative cooler including one or more rotating cooler louvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlach, David W

    An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.

  3. 14 CFR 25.1107 - Inter-coolers and after-coolers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand any vibration...

  4. 14 CFR 25.1107 - Inter-coolers and after-coolers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand any vibration...

  5. 14 CFR 29.1107 - Inter-coolers and after-coolers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand the vibration...

  6. 14 CFR 25.1107 - Inter-coolers and after-coolers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand any vibration...

  7. 14 CFR 29.1107 - Inter-coolers and after-coolers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand the vibration...

  8. 14 CFR 25.1107 - Inter-coolers and after-coolers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand any vibration...

  9. 14 CFR 29.1107 - Inter-coolers and after-coolers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand the vibration...

  10. 14 CFR 29.1107 - Inter-coolers and after-coolers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand the vibration...

  11. 14 CFR 29.1107 - Inter-coolers and after-coolers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand the vibration...

  12. Strikingly enhanced cooling performance for a micro-cooler using unique Cu nanowire array with high electrical conductivity and fast heat transfer behavior

    NASA Astrophysics Data System (ADS)

    Tan, Ming; Wang, Xiuzhen; Hao, Yanming; Deng, Yuan

    2017-06-01

    It was found that phonons/electrons are less scattered along (1 1 1)-preferred Cu nanowires than in ordinary structure films and that the interface of Cu nanowires electrode and thermoelectric materials are more compatible. Here highly ordered, high-crystal-quality, high-density Cu nanowire array was successfully fabricated by a magnetron sputtering method. The Cu nanowire array was successfully incorporated using mask-assisted deposition technology as electrodes for thin-film thermoelectric coolers, which would greatly improve electrical/thermal transport and enhance performance of micro-coolers. The cooling performance of the micro-cooler with Cu nanowire array electrode is over 200% higher than that of the cooler with ordinary film electrode.

  13. 47 CFR 12.2 - Backup power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Backup power. 12.2 Section 12.2 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL REDUNDANCY OF COMMUNICATIONS SYSTEMS § 12.2 Backup power..., must have an emergency backup power source (e.g., batteries, generators, fuel cells) for all assets...

  14. First evidence for "The backup plan paradox".

    PubMed

    Napolitano, Christopher M; Freund, Alexandra M

    2017-08-01

    This research is a first test of the backup plan paradox. We hypothesized that investing in a backup plan may facilitate the conditions that it was developed to address: Plan A's insufficiency. Five studies provide initial, primarily correlative support for the undermining effect of investing in a backup plan. Study 1 (n= 160) demonstrated that the more participants perceived they had invested in developing a backup plan (preparing a "crib sheet"), the more likely they were to use it, although greater investments were unrelated to backup plan utility. Studies 2-4 used a simulated negotiation task. Study 2 (n = 247) demonstrated that when goal-relevant resources are limited, investing in developing backup plans and perceiving them as highly instrumental can decrease goal performance through the indirect effect of increased means replacing. Study 3 (n = 248) replicated this effect when goal-relevant resources were plentiful. Study 4 (n = 204) used an experimental variant of the simulated negotiation task and demonstrated that simply having a backup plan is not detrimental, but perceiving backup plans to be highly instrumental decreased goal performance, again through the indirect effect of increased means replacing. Study 5 (n = 160) replicated findings from Studies 1-4 using a lab-based motor task (throwing a ball). Together, these results provide first evidence that backup plans can introduce costs that may jeopardize goal performance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Integrated micro thermoelectric cooler: Theory, fabrication and characterization

    NASA Astrophysics Data System (ADS)

    da Silva, Luciana Wasnievski

    The flows of heat and electricity in a column-type micro thermoelectric (TE) cooler that uses telluride compounds for the n- and p-type elements, are analyzed by modeling the various interfacial resistances. Electron (barrier tunneling) and phonon (diffuse mismatch) boundary resistances at the TE/metal interface, and thermal non-equilibrium between electrons and phonons adjacent to this interface (cooling length), increase the thermal conduction resistance and decrease the Seebeck coefficient of the TE elements. These in turn reduce the device cooling performance, which is also affected by the thermal and electrical contact resistances at the TE/metal and the metal/electrical-insulator interfaces. From the device optimization, it is predicted (for an available voltage of 3 V) that a micro TE cooler with 50 TE pairs (Bi2Te3 and Sb2Te3 high performance TE films), column thickness of 4 mum (limited by the current fabrication process), and column cross-section area of 7 mum x 7 mum, should produce a temperature drop of 10 K with a cooling load of 10 mW. This device will operate with a current of 11 mA and will require a power of 34 mW. The coefficient of performance is 0.3. Co-evaporated Bi-Te and Sb-Te films were fabricated at various deposition conditions (evaporation rate of individual species and substrate temperature), and their TE properties (Seebeck coefficient, electrical resistivity, and carrier concentration) were measured, in search of optimal TE performance. The deposition rates were controlled such that the tellurium atomic composition changed from 48 to 74%, and the substrate temperature ranged from 130 to 300°C. The chemical composition and crystal structure of the films were recorded (using a microprobe and a X-ray diffractomer, respectively), analyzed, and compared with standard Bi2Te3 and Sb2Te 3 single crystal samples. High performance TE films had a tellurium atomic concentration around 60% and were deposited at a substrate temperature between 260

  16. Static gas expansion cooler

    DOEpatents

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  17. Miniature Pulse Tube Cooler

    NASA Astrophysics Data System (ADS)

    Tward, E.; Nguyen, T.; Godden, J.; Toma, G.

    2004-06-01

    A high capacity miniature pulse tube cooler for space that is scaled from the High Efficiency Cryocooler (HEC) is being developed. The low mass (1.5 kg) integral pulse tube cryocooler can provide large cooling power over a wide temperature range (e.g., 5 W at 95 K). The cooler is designed to be compatible with the existing HEC flight electronics. A small back-to-back flexure compressor drives a pulse tube cold head which is integrated with the compressor. The cooler has been tested with both linear and coaxial cold heads. A description of the cooler and its performance in both linear and coaxial cold head versions is presented.

  18. Scalp Cooler

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Composite Consulation Concepts, Inc.'s Chemo-cooler, a scalp cooling system based on NASA space suit technology, prevents hair loss in patients undergoing chemotherapy. A head covering is placed over plastic tubing through which cold water is circulated from a cylinder. A controller monitors time and temperature. With chemo-cooler, 63% of patients lost almost no hair; 9% suffered only moderate hair loss. The technique was commercialized by an ex-NASA employee.

  19. Passive cooler

    NASA Technical Reports Server (NTRS)

    Aronson, Albert Irving (Inventor)

    1977-01-01

    A three stage passive cooler for use in a spacecraft for cooling an infra-red detector includes a detector mounting cold plate for mounting the detector directly to the telescope optics. The telescope optics collect and direct the infra-red radiation from the earth, for example, to the infra-red detector, and are mounted directly to the spacecraft. The remaining stages of the cooler are mounted with thermal insulators to each other and to the spacecraft at separate locations from the detector mounting cold plate.

  20. Backup agreements with penalty scheme under supply disruptions

    NASA Astrophysics Data System (ADS)

    Hou, Jing; Zhao, Lindu

    2012-05-01

    This article considers a supply chain for a single product involving one retailer and two independent suppliers, when the main supplier might fail to supply the products, the backup supplier can always supply the products at a higher price. The retailer could use the backup supplier as a regular provider or a stand-by source by reserving some products at the supplier. A backup agreement with penalty scheme is constructed between the retailer and the backup supplier to mitigate the supply disruptions and the demand uncertainty. The expected profit functions and the optimal decisions of the two players are derived through a sequential optimisation process. Then, the sensitivity of two players' expected profits to various input factors is examined through numerical examples. The impacts of the disruption probability and the demand uncertainty on the backup agreement are also investigated, which could provide guideline for how to use each sourcing method.

  1. Applying secret sharing for HIS backup exchange.

    PubMed

    Kuroda, Tomohiro; Kimura, Eizen; Matsumura, Yasushi; Yamashita, Yoshinori; Hiramatsu, Haruhiko; Kume, Naoto; Sato, Atsushi

    2013-01-01

    To secure business continuity is indispensable for hospitals to fulfill its social responsibility under disasters. Although to back up the data of the hospital information system (HIS) at multiple remote sites is a key strategy of business continuity plan (BCP), the requirements to treat privacy sensitive data jack up the cost for the backup. The secret sharing is a method to split an original secret message up so that each individual piece is meaningless, but putting sufficient number of pieces together to reveal the original message. The secret sharing method eases us to exchange HIS backups between multiple hospitals. This paper evaluated the feasibility of the commercial secret sharing solution for HIS backup through several simulations. The result shows that the commercial solution is feasible to realize reasonable HIS backup exchange platform when template of contract between participating hospitals is ready.

  2. Solution for Direct Solar Impingement Problem on Landsat-7 ETM+ Cooler Door During Cooler Outgas in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    1999-01-01

    There was a thermal anomaly of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) radiative cooler cold stage during the cooler outgas phase in flight. With the cooler door in the outgas position and the outgas heaters enabled, the cold stage temperature increased to a maximum of 323 K when the spacecraft was in the sunlight, which was warmer than the 316.3 K upper set point of the outgas heater controller on the cold stage. Also, the outgas heater cycled off when the cold stage was warming up to 323 K. A corrective action was taken before the attitude of the spacecraft was changed during the first week in flight. One orbit before the attitude was changed, the outgas heaters were disabled to cool off the cold stage. The cold stage temperature increase was strongly dependent on the spacecraft roll and yaw. It provided evidence that direct solar radiation entered the gap between the cooler door and cooler shroud. There was a concern that the direct solar radiation could cause polymerization of hydrocarbons, which could contaminate the cooler and lead to a thermal short. After outgas with the cooler door in the outgas position for seven days, the cooler door was changed to the fully open position. With the cooler door fully open, the maximum cold stage temperature was 316.3 K when the spacecraft was in the sunlight, and the duty cycle of the outgas heater in the eclipse was the same as that in the sunlight. It provided more evidence that direct solar radiation had entered the gap between the cooler door and cooler shroud. Cooler outgas continued for seven more days, with the cooler door fully open. The corrective actions had prevented overheating of the cold stage and cold focal plane array (CFPA), which could damage these two components. They also minimized the risk of contamination on the cold stage, which could lead to a thermal short.

  3. Development trends in IR detector coolers

    NASA Astrophysics Data System (ADS)

    Mai, M.; Rühlich, I.; Wiedmann, Th.; Rosenhagen, C.

    2009-05-01

    For different IR application specific cooler requirements are needed to achieve best performance on system level. Handheld applications require coolers with highest efficiency and lowest weight. For application with continuous operation, i.e. border surveillance or homeland security, a very high MTTF is mandatory. Space applications additionally require extremely high reliability. In other application like fighter aircraft sufficient cooling capacity even at extreme high reject temperatures has to be provided. Meeting all this requirements within one cooler design is technically not feasible. Therefore, different coolers designs like integral rotary, split rotary or split linear are being employed. The use of flexure bearings supporting the driving mechanism has generated a new sub-group for the linear coolers; also, the coolers may either use a motor with moving magnet or with moving coil. AIM has mainly focussed on long life linear cooler technology and therefore developed a series of moving magnet flexure bearing compressors which meets MTTF's exceeding 20,000h (up to 50,000h with a Pulse-Tube coldfinger). These compressors have a full flexure bearing support on both sides of the driving mechanism. Cooler designs are being compared in regard to characteristic figures as described above.

  4. Gemini 8 prime and backup crews during press conference

    NASA Image and Video Library

    1966-02-26

    S66-24380 (26 Feb. 1966) --- Gemini-8 prime and backup crews during press conference. Left to right are astronauts David R. Scott, prime crew pilot; Neil A. Armstrong, prime crew command pilot; Charles Conrad Jr., backup crew command pilot; and Richard F. Gordon Jr., backup crew pilot. Photo credit: NASA

  5. VIBRATORY SPIRAL BLANCHER-COOLER

    EPA Science Inventory

    The objective of the demonstration project was to test the commercial feasibility of the vibratory spiral blancher-cooler, a newly designed steam blancher and air cooler that previous small scale tests showed could reduce the wasteload and energy consumption of preparing vegetabl...

  6. Cooler?

    ERIC Educational Resources Information Center

    Firth, Ian

    1971-01-01

    Presents experiments, models, and interpretations of reports that hot water begins to freeze faster than cooler water. Preliminary conclusions show that the surface area, side wall cooling, evaporation, and environment are the most important parameters. (DS)

  7. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...

  8. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...

  9. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...

  10. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...

  11. Reliability Growth of Tactical Coolers at CMC Electronics Cincinnati: 1/5-Watt Cooler Test Report

    NASA Astrophysics Data System (ADS)

    Kuo, D. T.; Lody, T. D.

    2004-06-01

    CMC Electronics Cincinnati (CMC) is conducting a reliability growth program to extend the life of tactical Stirling-cycle cryocoolers. The continuous product improvement processes consist of testing production coolers to failure, determining the root cause, incorporating improvements and verification. The most recent life data for the 1/5-Watt Cooler (Model B512B) is presented with a discussion of leading root causes and potential improvements. The mean time to failure (MTTF) life of the coolers was found to be 22,552 hours with the root cause of failure attributed to the accumulation of methane and carbon dioxide in the cooler and the wear of the piston.

  12. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by-product recovery plants. ...

  13. Development of a Bunched Beam Electron Cooler based on ERL and Circulator Ring Technology for the Jefferson Lab Electron-Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Derbenev, Yaroslav S.; Douglas, David R.

    Jefferson Lab is in the process of designing an electron ion collider with unprecedented luminosity at a 45 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires novel use of bunched-beam cooling. There are two designs for such a cooler. The first uses a conventional Energy Recovery Linac (ERL) with a magnetized beam while the second usesmore » a circulating ring to enhance both peak and average currents experienced by the ion beam. This presentation will describe the design of both the Circulator Cooling Ring (CCR) design and that of the backup option using the stand-alone ERL operated at lower charge but higher repetition rate than the ERL injector required by the CCR-based design.« less

  14. Surface tension confined liquid cryogen cooler

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)

    1989-01-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  15. Lightweight Magnetic Cooler With a Reversible Circulator

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; McCormick, John

    2011-01-01

    GGG disks alternating with thin polymer insulating films. The structured bed reduces flow resistance in the regenerator and therefore the pumping work by the cryogenic circulator. This magnetic cooler will enable cryogenic detectors for sensing infrared, x-ray, gamma-ray, and submillimeter radiation in future science satellites, as well as the detector systems in the Constellation-X (Con-X) and the Single Aperture Far-Infrared observatory (SAFIR). Scientific ap p - lica tions for this innovation include cooling for x-ray micro calorimeter spectrometers used for microanalysis, cryogenic particle detectors, and superconducting tunnel junction de tectors for biomolecule mass spectrometry. The cooler can be scaled to provide very large cooling capacities at very low temperatures, ideal for liquid helium and liquid hydrogen productions.

  16. Mitigation of Syngas Cooler Plugging and Fouling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockelie, Michael J.

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling ofmore » the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  17. Small high cooling power space cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, T. V.; Raab, J.; Durand, D.

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the adventmore » of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.« less

  18. Portable Cooler/Warmers

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Early in the space program, NASA recognized the need to replace bulky coils, compressers, and motors for refrigeration purposes by looking at existing thermoelectric technology. This effort resulted in the development of miniaturized thermoelectric components and packaging to accommodate tight confines of spacecraft. Koolatron's portable electronic refrigerators incorporate this NASA technology. Each of the cooler/warmers employs one or two miniaturized thermoelectric modules. Although each module is only the size of a book of matches, it delivers the cooling power of a 10-pound block of ice. In some models, the cooler can be converted to a warmer. There are no moving parts. The Koolatrons can be plugged into auto cigarette lighters, recreational vehicles, boats or motel outlets.

  19. A SWOT Analysis of the Various Backup Scenarios Used in Electronic Medical Record Systems.

    PubMed

    Seo, Hwa Jeong; Kim, Hye Hyeon; Kim, Ju Han

    2011-09-01

    Electronic medical records (EMRs) are increasingly being used by health care services. Currently, if an EMR shutdown occurs, even for a moment, patient safety and care can be seriously impacted. Our goal was to determine the methodology needed to develop an effective and reliable EMR backup system. Our "independent backup system by medical organizations" paradigm implies that individual medical organizations develop their own EMR backup systems within their organizations. A "personal independent backup system" is defined as an individual privately managing his/her own medical records, whereas in a "central backup system by the government" the government controls all the data. A "central backup system by private enterprises" implies that individual companies retain control over their own data. A "cooperative backup system among medical organizations" refers to a networked system established through mutual agreement. The "backup system based on mutual trust between an individual and an organization" means that the medical information backup system at the organizational level is established through mutual trust. Through the use of SWOT analysis it can be shown that cooperative backup among medical organizations is possible to be established through a network composed of various medical agencies and that it can be managed systematically. An owner of medical information only grants data access to the specific person who gave the authorization for backup based on the mutual trust between an individual and an organization. By employing SWOT analysis, we concluded that a linkage among medical organizations or between an individual and an organization can provide an efficient backup system.

  20. A SWOT Analysis of the Various Backup Scenarios Used in Electronic Medical Record Systems

    PubMed Central

    Seo, Hwa Jeong; Kim, Hye Hyeon

    2011-01-01

    Objectives Electronic medical records (EMRs) are increasingly being used by health care services. Currently, if an EMR shutdown occurs, even for a moment, patient safety and care can be seriously impacted. Our goal was to determine the methodology needed to develop an effective and reliable EMR backup system. Methods Our "independent backup system by medical organizations" paradigm implies that individual medical organizations develop their own EMR backup systems within their organizations. A "personal independent backup system" is defined as an individual privately managing his/her own medical records, whereas in a "central backup system by the government" the government controls all the data. A "central backup system by private enterprises" implies that individual companies retain control over their own data. A "cooperative backup system among medical organizations" refers to a networked system established through mutual agreement. The "backup system based on mutual trust between an individual and an organization" means that the medical information backup system at the organizational level is established through mutual trust. Results Through the use of SWOT analysis it can be shown that cooperative backup among medical organizations is possible to be established through a network composed of various medical agencies and that it can be managed systematically. An owner of medical information only grants data access to the specific person who gave the authorization for backup based on the mutual trust between an individual and an organization. Conclusions By employing SWOT analysis, we concluded that a linkage among medical organizations or between an individual and an organization can provide an efficient backup system. PMID:22084811

  1. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  2. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  3. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  4. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  5. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  6. STS-47 crew and backups at MSFC's Payload Crew Training Complex

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) crewmembers and backup payload specialists stand outside SLJ module mockup at the Payload Crew Training Complex at Marshall SpaceFlight Center (MSFC) in Huntsville, Alabama. From left to right are Payload Specialist Mamoru Mohri, backup Payload Specialist Takao Doi, backup Payload Specialist Chiaki Naito-Mukai, Mission Specialist (MS) Mae C. Jemison, MS N. Jan Davis, backup Payload Specialist Stan Koszelak, and MS and Payload Commander (PLC) Mark C. Lee. The MSFC-managed mission is a joint venture in space-based research between the United States and Japan. Mohri, Doi, and Mukai represent Japan's National Space Development Agency (NASDA). View provided with alternate number 92P-142.

  7. Enhanced networked server management with random remote backups

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2003-08-01

    In this paper, the model is focused on available server management in network environments. The (remote) backup servers are hooked up by VPN (Virtual Private Network) and replace broken main severs immediately. A virtual private network (VPN) is a way to use a public network infrastructure and hooks up long-distance servers within a single network infrastructure. The servers can be represent as "machines" and then the system deals with main unreliable and random auxiliary spare (remote backup) machines. When the system performs a mandatory routine maintenance, auxiliary machines are being used for backups during idle periods. Unlike other existing models, the availability of auxiliary machines is changed for each activation in this enhanced model. Analytically tractable results are obtained by using several mathematical techniques and the results are demonstrated in the framework of optimized networked server allocation problems.

  8. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  9. STS-9 payload specialists and backup in training session

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Two Spacelab 1 payload specialists and a backup for that flight prepare for a training session in the JSC mockup and integration laboratory. Fully decked out in the Shuttle constant wear garments (foreground) are Ulf Merbold, left, and Byron K. Licktenberg, prime crewmembers on the STS-9 team. In civilian clothes is payload specialist backup Michael L. Lampton.

  10. Update on Thales flexure bearing coolers and drive electronics

    NASA Astrophysics Data System (ADS)

    Willems, D.; Benschop, T.; v. d. Groep, W.; Mullié, J.; v. d. Weijden, H.; Tops, M.

    2009-05-01

    Thales Cryogenics has a long background in delivering cryogenic coolers with an MTTF far above 20.000 hrs for military, civil and space programs. Developments in these markets required continuous update of the flexure bearing cooler portfolio for new and emerging applications. The cooling requirements of new application have not only their influence on the size of the compressor, cold finger and cooling technology used but also on the integration and control of the cooler in the application. Thales Cryogenics developed a compact Cooler Drive Electronics based on DSP technology that could be used for driving linear flexure bearing coolers with extreme temperature stability and with additional diagnostics inside the CDE. This CDE has a wide application and can be modified to specific customer requirements. During the presentation the latest developments in flexure bearing cooler technology will be presented both for Stirling and Pulse Tube coolers. Also the relation between the most important recent detector requirements and possible available solutions on cryocooler level will be presented.

  11. Coolers development for the ATHENA X-IFU cryogenic chain

    NASA Astrophysics Data System (ADS)

    Duband, L.; Charles, I.; Duval, J.-M.

    2014-07-01

    The hot and energetic universe has been selected by ESA as the science theme for the L2 mission with a planned launch in 2028. The Athena mission is one the potential mission concept for the next X-rays generation satellite. One of the instruments of this mission is the X-ray Integral Field Unit (X-IFU) which provides spatially resolved high resolution spectroscopy. This low temperature instrument requires high detector sensitivity that can only be achieved using 50 mK cooling. To obtain this temperature level, a careful design of the cryostat and of the cooling chain comprising different stages in cascade is needed. CEA has undertaken development in various areas to contribute to this cryochain including pulse tube coolers and sub-Kelvin coolers. This paper will describe the status of our different cooler developments. High temperature two stage pulse tube can be used for thermal shields cooling, 15 K pulse tube cooler for 2 K JT precooling and 4 K pulse tube cooler for a potential direct cooling of the sub-kelvin cooler. The 50 mK temperature is achieved using a sub-kelvin cooler comprising an adsorption cooler linked to an ADR stage. This elegant solution gives way to a light, compact and reliable cooler which has been validated in the SPICA/SAFARI project. Modified solutions are also under study to accommodate alternative design.

  12. 7 CFR 58.412 - Coolers or curing rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...

  13. 40 CFR 63.1345 - Standards for clinker coolers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for clinker coolers. 63.1345... and Operating Limits § 63.1345 Standards for clinker coolers. (a) No owner or operator of a new or existing clinker cooler at a facility which is a major source subject to the provisions of this subpart...

  14. 7 CFR 58.412 - Coolers or curing rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...

  15. 7 CFR 58.412 - Coolers or curing rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...

  16. 7 CFR 58.412 - Coolers or curing rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...

  17. 7 CFR 58.412 - Coolers or curing rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...

  18. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuelmore » cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.« less

  19. Lifetime test and heritage on orbit of coolers for space use

    NASA Astrophysics Data System (ADS)

    Narasaki, Katsuhiro; Tsunematsu, Shoji; Ootsuka, Kiyomi; Kanao, Kenichi; Okabayashi, Akinobu; Mitsuda, Kazuhisa; Murakami, Hiroshi; Nakagawa, Takao; Kikuchi, Kenichi; Sato, Ryota; Sugita, Hiroyuki; Sato, Youichi; Murakami, Masahide; Kobayashi, Masanori

    2012-04-01

    This report describes the results and operating status of ground lifetime testing and achievements on orbit of coolers for space use. Ground lifetime tests of coolers of three types were conducted to demonstrate their long life and reliability. Three single-stage Stirling coolers were tested for 89,016, 71,871 and 68,273 h from 1998, a two-stage Stirling cooler was tested for 72,906 h, and a 4-K class cooler with a two-stage Stirling cooler and a Joule-Thomson cooler was tested for over 2.5 years. After lifetime tests were completed, a few coolers were investigated to determine the cause of the cooling performance degradation. Additionally, the filled gas of the coolers was analyzed. These coolers have shown good results on orbit. Three single-stage Stirling coolers were carried on the X-ray astronomical satellite "SUZAKU" (launched in July 2005), Japanese lunar polar orbiter "KAGUYA" (launched in September 2007), and the Japanese Venus Climate Orbiter "AKATSUKI" (launched in June 2010). Two units of a two-stage Stirling cooler were carried on the infrared astronomical satellite "AKARI" launched in February 2006. A 4-K class cooler was carried on the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) aboard the Japanese Experiment Module (JEM) of the International Space Station (ISS). SMILES was launched in September 2009.

  20. Fault-tolerant back-up archive using an ASP model for disaster recovery

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Huang, H. K.; Cao, Fei; Documet, Luis; Sarti, Dennis A.

    2002-05-01

    A single point of failure in PACS during a disaster scenario is the main archive storage and server. When a major disaster occurs, it is possible to lose an entire hospital's PACS data. Few current PACS archives feature disaster recovery, but the design is limited at best. These drawbacks include the frequency with which the back-up is physically removed to an offsite facility, the operational costs associated to maintain the back-up, the ease-of-use to perform the backup consistently and efficiently, and the ease-of-use to perform the PACS image data recovery. This paper describes a novel approach towards a fault-tolerant solution for disaster recovery of short-term PACS image data using an Application Service Provider model for service. The ASP back-up archive provides instantaneous, automatic backup of acquired PACS image data and instantaneous recovery of stored PACS image data all at a low operational cost. A back-up archive server and RAID storage device is implemented offsite from the main PACS archive location. In the example of this particular hospital, it was determined that at least 2 months worth of PACS image exams were needed for back-up. Clinical data from a hospital PACS is sent to this ASP storage server in parallel to the exams being archived in the main server. A disaster scenario was simulated and the PACS exams were sent from the offsite ASP storage server back to the hospital PACS. Initially, connectivity between the main archive and the ASP storage server is established via a T-1 connection. In the future, other more cost-effective means of connectivity will be researched such as the Internet 2. A disaster scenario was initiated and the disaster recovery process using the ASP back-up archive server was success in repopulating the clinical PACS within a short period of time. The ASP back-up archive was able to recover two months of PACS image data for comparison studies with no complex operational procedures. Furthermore, no image data loss

  1. Reducing Backups by Utilizing DMF

    NASA Technical Reports Server (NTRS)

    Cardo, Nicholas P.; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    Although a filesystem may be migratable, for a period of time the data blocks are on disk only. When performing system dumps, these data blocks are backed up to tape. If the data blocks are offline or dual resident, then only the inode is backed up. If all online files are made dual resident prior to performing system dumps, the dump time and the amount of resources required can be significantly reduced. The High Speed Processors group at the Numerical Aerodynamics Simulation (NAS) Facility at NASA Ames Research Center developed a tool to make all online files dual resident. The result is that a file whose data blocks are on DMF tape and still assigned to the original inode. Our 150GB filesystem used to take 8 to 12 hours to backup and used 50 to 60 tapes. Now the backup is typically under 10 tapes and completes in under 2 hours. This paper discusses this new tool and advantages gained by using it.

  2. Ngas Multi-Stage Coaxial High Efficiency Cooler (hec)

    NASA Astrophysics Data System (ADS)

    Nguyen, T.; Toma, G.; Jaco, C.; Raab, J.

    2010-04-01

    This paper presents the performance data of the single and two-stage High Efficiency Cooler (HEC) tested with coaxial cold heads. The single stage coaxial cold head has been optimized to operate at temperatures of 40 K and above. The two-stage parallel cold head configuration has been optimized to operate at 30 K and above and provides a long-life, low mass and efficient two-stage version of the Northrop Grumman Aerospace Systems (NGAS) flight qualified single stage HEC cooler. The HEC pulse tube cryocoolers are the latest generation of flight coolers with heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years. This paper presents the performance data of the one and two-stage versions of this cooler under a wide range of heat rejection temperature, cold head temperature and input power.

  3. The Proposed 2 MeV Electron Cooler for COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Juergen; Parkhomchuk, Vasily V.; Reva, Vladimir B.

    2006-03-20

    The design, construction and installation of a 2 MeV electron cooling system for COSY is proposed to further boost the luminosity even with strong heating effects of high-density internal targets. In addition the design of the 2 MeV electron cooler for COSY is intended to test some new features of the high energy electron cooler for HESR at GSI. The design of the 2 MeV electron cooler will be accomplished in cooperation with the Budker Institute of Nuclear Physics in Novosibirsk, Russia. Starting with the boundary conditions of the existing electron cooler at COSY the requirements and a first generalmore » scheme of the 2 MeV electron cooler are described.« less

  4. Clinical experiences with an ASP model backup archive for PACS images

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Cao, Fei; Documet, Luis; Huang, H. K.; Muldoon, Jean

    2003-05-01

    Last year we presented a Fault-Tolerant Backup Archive using an Application Service Provider (ASP) model for disaster recovery. The purpose of this paper is to update and provide clinical experiences related towards implementing the ASP model archive solution for short-term backup of clinical PACS image data as well as possible applications other than disaster recovery. The ASP backup archive provides instantaneous, automatic backup of acquired PACS image data and instantaneous recovery of stored PACS image data all at a low operational cost and with little human intervention. This solution can be used for a variety of scheduled and unscheduled downtimes that occur on the main PACS archive. A backup archive server with hierarchical storage was implemented offsite from the main PACS archive location. Clinical data from a hospital PACS is sent to this ASP storage server in parallel to the exams being archived in the main server. Initially, connectivity between the main archive and the ASP storage server is established via a T-1 connection. In the future, other more cost-effective means of connectivity will be researched such as the Internet 2. We have integrated the ASP model backup archive with a clinical PACS at Saint John's Health Center and has been operational for over 6 months. Pitfalls encountered during integration with a live clinical PACS and the impact to clinical workflow will be discussed. In addition, estimations of the cost of establishing such a solution as well as the cost charged to the users will be included. Clinical downtime scenarios, such as a scheduled mandatory downtime and an unscheduled downtime due to a disaster event to the main archive, were simulated and the PACS exams were sent successfully from the offsite ASP storage server back to the hospital PACS in less than 1 day. The ASP backup archive was able to recover PACS image data for comparison studies with no complex operational procedures. Furthermore, no image data loss was

  5. Researching, Evaluating, and Choosing a Backup Service in the Cloud

    ERIC Educational Resources Information Center

    Hastings, Robin

    2012-01-01

    Backups are a modern fact of life. Every organization that has any kind of computing technology (and that is all of them these days) needs to back up its data in case of technological or user errors. Traditionally, large-scale backups have been done via an internal or external tape drive that takes magnetic tapes (minicassettes, essentially) and…

  6. Gemini 7 backup crew seen in white room during Gemini 7 simulation activity

    NASA Image and Video Library

    1965-11-27

    S65-61837 (27 Nov. 1965) --- The Gemini-7 backup crew seen in the White Room atop Pad 19 during Gemini-7 simulation flight activity. McDonnell Aircraft Corporation technicians assist in the exercise. Astronaut Edward H. White II (in foreground) is the Gemini-7 backup crew command pilot; and astronaut Michael Collins (right background) is the backup crew pilot. Photo credit: NASA

  7. Radiant coolers - Theory, flight histories, design comparisons and future applications

    NASA Technical Reports Server (NTRS)

    Donohoe, M. J.; Sherman, A.; Hickman, D. E.

    1975-01-01

    Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.

  8. Assessment of Drinking Water Quality from Bottled Water Coolers

    PubMed Central

    FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar

    2014-01-01

    Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769

  9. Apollo 16 prime and backup crewmen during geological field trip in New Mexico

    NASA Image and Video Library

    1971-09-09

    Dr. Lee Silver (pointing foregroung), California Institute of Technology, calls a geological feature near Taos, New Mexico, to the attention of Apollo 16 prime and backup crewmen during a geological field trip. The crewmen, from left to right, are Astronauts Charles M. Duke Jr., lunar module pilot; Fred W. Haise Jr., backup commander; Edgar D. Mitchell, backup Lunar Module pilot; and John W. Young, commander.

  10. Fuel cell cooler-humidifier plate

    DOEpatents

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  11. Thermal Strap And Cushion For Thermoelectric Cooler

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Petrick, S. Walter; Bard, Steven

    1991-01-01

    Inexpensive cushioning strap proposed for use as thermal contact between thermoelectric cooler and device to be cooled, such as laser diode, infrared detector, or charge-coupled device for imaging. Provides high thermal conductance while minimizing thermal and mechanical stresses on thermoelectric cooler. Used as alternative to flexible thermal strap made of silver.

  12. Apollo 11 - Prime and Backup Crews - Geology Training - TX

    NASA Image and Video Library

    1969-03-03

    S69-25199 (25 Feb. 1969) --- Two Apollo 11 astronauts study a rock specimen during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas. On the left is James A. Lovell Jr., Apollo 11 backup crew commander; and on the right is Fred W. Haise Jr., backup crew lunar module pilot. Lovell holds a camera which was used in simulating taking pictures of actual lunar samples on the surface of the Moon.

  13. Independent backup mode transfer and mechanism for digital control computers

    NASA Technical Reports Server (NTRS)

    Tulpule, Bhalchandra R. (Inventor); Oscarson, Edward M. (Inventor)

    1992-01-01

    An interrupt is provided to a signal processor having a non-maskable interrupt input, in response to the detection of a request for transfer to backup software. The signal processor provides a transfer signal to a transfer mechanism only after completion of the present machine cycle. Transfer to the backup software is initiated by the transfer mechanism only upon reception of the transfer signal.

  14. 5. RW Meyer Sugar Mill: 18761889. Two sugar coolers ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. RW Meyer Sugar Mill: 1876-1889. Two sugar coolers ca. 1880. View: After the concentrated syrup flowed out of the sorghum pan, it cooled and crystallized in these iron sugar coolers. After the sugar syrup was granulated and cooled it was dug out of the coolers and fed into the centrifugals. The Meyer Mill purchased twelve coolers between 1878 and 1881 costing between $35 and $45 each. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  15. Cool down time optimization of the Stirling cooler

    NASA Astrophysics Data System (ADS)

    Xia, M.; Chen, X. P.; Y Li, H.; Gan, Z. H.

    2017-12-01

    The cooling power is one of the most important performances of a Stirling cooler. However, in some special fields, the cool down time is more important. It is a great challenge to improve the cool down time of the Stirling cooler. A new split Stirling linear cryogenic cooler SCI09H was designed in this study. A new structure of linear motor is used in the compressor, and the machine spring is used in the expander. In order to reduce the cool down time, the stainless-steel mesh of regenerator is optimized. The weight of the cooler is 1.1 kg, the cool down time to 80K is 2 minutes at 296K with a 250J thermal mass, the cooling power is 1.1W at 80K, and the input power is 50W.

  16. Mid Infrared Instrument cooler subsystem test facility overview

    NASA Astrophysics Data System (ADS)

    Moore, B.; Zan, J.; Hannah, B.; Chui, T.; Penanen, K.; Weilert, M.

    2017-12-01

    The Cryocooler for the Mid Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) provides cooling at 6.2K on the instrument interface. The cooler system design has been incrementally documented in previous publications [1][2][3][4][5]. It has components that traverse three primary thermal regions on JWST: Region 1, approximated by 40K; Region 2, approximated by 100K; and Region 3, which is at the allowable flight temperatures for the spacecraft bus. However, there are several sub-regions that exist in the transition between primary regions and at the heat reject interfaces of the Cooler Compressor Assembly (CCA) and Cooler Control Electronics Assembly (CCEA). The design and performance of the test facility to provide a flight representative thermal environment for acceptance testing and characterization of the complete MIRI cooler subsystem are presented.

  17. Cooler-Lower Down

    ERIC Educational Resources Information Center

    Deeson, Eric

    1971-01-01

    Reports a verification that hot water begins to freeze sooner than cooler water. Includes the investigations that lead to the conclusions that convection is a major influence, water content may have some effect, and the melting of the ice under the container makes no difference on the experimental results. (DS)

  18. 47 CFR 12.2 - Backup power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... exchange carriers, including incumbent local exchange carriers and competitive local exchange carriers..., must have an emergency backup power source (e.g., batteries, generators, fuel cells) for all assets... or local law; (2) Risk to safety of life or health; or (3) Private legal obligation or agreement. (c...

  19. The depth of the honeybee's backup sun-compass systems.

    PubMed

    Dovey, Katelyn M; Kemfort, Jordan R; Towne, William F

    2013-06-01

    Honeybees have at least three compass mechanisms: a magnetic compass; a celestial or sun compass, based on the daily rotation of the sun and sun-linked skylight patterns; and a backup celestial compass based on a memory of the sun's movements over time in relation to the landscape. The interactions of these compass systems have yet to be fully elucidated, but the celestial compass is primary in most contexts, the magnetic compass is a backup in certain contexts, and the bees' memory of the sun's course in relation to the landscape is a backup system for cloudy days. Here we ask whether bees have any further compass systems, for example a memory of the sun's movements over time in relation to the magnetic field. To test this, we challenged bees to locate the sun when their known celestial compass systems were unavailable, that is, under overcast skies in unfamiliar landscapes. We measured the bees' knowledge of the sun's location by observing their waggle dances, by which foragers indicate the directions toward food sources in relation to the sun's compass bearing. We found that bees have no celestial compass systems beyond those already known: under overcast skies in unfamiliar landscapes, bees attempt to use their landscape-based backup system to locate the sun, matching the landscapes or skylines at the test sites with those at their natal sites as best they can, even if the matches are poor and yield weak or inconsistent orientation.

  20. Micro-cooler enhancements by barrier interface analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen, A.; Dunn, G. M.; Glover, J.

    A novel gallium arsenide (GaAs) based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT) model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC) model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions onmore » the nanometre scale has shown to produce significant changes in cooler performance.« less

  1. Improving the Quality of Backup Process for Publishing Houses and Printing Houses

    NASA Astrophysics Data System (ADS)

    Proskuriakov, N. E.; Yakovlev, B. S.; Pries, V. V.

    2018-04-01

    The analysis of main types for data threats, used by print media, and their influence on the vitality and security of information is made. The influence of the programs settings for preparing archive files, the types of file managers on the backup process is analysed. We proposed a simple and economical version of the practical implementation of the backup process consisting of 4 components: the command line interpreter, the 7z archiver, the Robocopy utility, and network storage. We recommend that the best option would be to create backup copies, consisting of three local copies of data and two network copies.

  2. [Positional accuracy and quality assurance of Backup JAWs required for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2012-01-01

    The tolerance of the Backup diaphragm (Backup JAW) setting in Elekta linac was specified as 2 mm according to the AAPM TG-142 report. However, the tolerance and the quality assurance procedure for volumetric modulated arc therapy (VMAT) was not provided. This paper describes positional accuracy and quality assurance procedure of the Backup JAWs required for VMAT. It was found that a gap-width error of the Backup JAW by a sliding window test needed to be less than 1.5 mm for prostate VMAT delivery. It was also confirmed that the gap-widths had been maintained with an error of 0.2 mm during the past one year.

  3. 46 CFR 56.50-96 - Keel cooler installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-96 Keel cooler installations. (a) Keel... forming part of the tube and satisfies all of the following: (i) The cooler structure is fabricated from...

  4. Update on MTTF figures for linear and rotary coolers of Thales Cryogenics

    NASA Astrophysics Data System (ADS)

    van de Groep, W.; van der Weijden, H.; van Leeuwen, R.; Benschop, T.; Cauquil, J. M.; Griot, R.

    2012-06-01

    Thales Cryogenics has an extensive background in delivering linear and rotary coolers for military, civil and space programs. During the last years several technical improvements have increased the lifetime of all Thales coolers resulting in significantly higher Mean Time To Failure (MTTF) figures. In this paper not only updated MTTF values for most of the products in our portfolio will be presented but also the methodology used to come to these reliability figures will be explained. The differences between rotary and linear coolers will be highlighted including the different failure modes influencing the lifetime under operational conditions. These updated reliability figures are based on extensive test results for both rotary and linear coolers as well as Weibull analysis, failure mode identifications, various types of lifetime testing and field results of operational coolers. The impact of the cooler selection for typical applications will be outlined. This updated reliability approach will enable an improved tradeoff for cooler selection in applications where MTTF and a correct reliability assessment is key. Improbing on cooler selection and an increased insight in cooler reliability will result in a higher uptime and operability of equipment, less risk on unexpected failures and lower costs of ownership.

  5. RICOR K527 highly reliable linear cooler: applications and model overview

    NASA Astrophysics Data System (ADS)

    Riabzev, Sergey; Nachman, Ilan; Levin, Eli; Perach, Adam; Vainshtein, Igor; Gover, Dan

    2017-05-01

    The K527 linear cooler was developed in order to meet the requirements of reliability, cooling power needs and versatility for a wide range of applications such as hand held, 24/7 and MWS. During the recent years the cooler was incorporated in variety of systems. Some of these systems can be sensitive to vibrations which are induced from the cooler. In order to reduce those vibrations significantly, a Tuned Dynamic Absorber (TDA) was added to the cooler. Other systems, such as the MWS type, are not sensitive to vibrations, but require a robust cooler in order to meet the high demand for environmental vibration and temperature. Therefore various mounting interfaces are designed to meet system requirements. The latest K527 version was designed to be integrated with the K508 cold finger, in order to give it versatility to standard detectors that are already designed and available for the K508 cooler type. The reliability of the cooler is of a high priority. In order to meet the 30,000 working hours target, special design features were implemented. Eight K527 coolers have passed the 19,360 working hours without degradations, and are still running according to our expectations.

  6. A hybrid data compression approach for online backup service

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhou, Ke; Qin, MingKang

    2009-08-01

    With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.

  7. Characterization of a Two-Stage Pulse Tube Cooler for Space Applications

    NASA Astrophysics Data System (ADS)

    Orsini, R.; Nguyen, T.; Colbert, R.; Raab, J.

    2010-04-01

    A two-stage long-life, low mass and efficient pulse tube cooler for space applications has been developed and acceptance tested for flight applications. This paper presents the data collected on four flight coolers during acceptance testing. Flight acceptance test of these cryocoolers includes thermal performance mapping over a range of reject temperatures, launch vibration testing and thermal cycling testing. Designed conservatively for a 10-year life, the coolers are required to provide simultaneous cooling powers at 95 K and 180 K while rejecting to 300 K with less than 187 W input power to the electronics. The total mass of each cooler and electronics system is 8.7 kg. The radiation-hardened and software driven control electronics provides cooler control functions which are fully re-configurable in orbit. These functions include precision temperature control to better than 100 mK p-p. This 2 stage cooler has heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years.

  8. 21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...

  9. 21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...

  10. 21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...

  11. 21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...

  12. 21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...

  13. Backup Warning Signals: Driver Perception and Response

    DOT National Transportation Integrated Search

    1996-08-01

    This report describes the findings of three experiments that concern driver reaction to acoustic signals that might be used for backup warning devices. Intelligent warning devices are under development that will use vehicle-based sensors to warn back...

  14. Mechanization of and experience with a triplex fly-by-wire backup control system

    NASA Technical Reports Server (NTRS)

    Lock, W. P.; Petersen, W. R.; Whitman, G. B.

    1976-01-01

    A redundant three axis analog control system was designed and developed to back up a digital fly by wire control system for an F-8C airplane. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum displacement (force) side stick. The operational reliability of the F-8 digital fly by wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.

  15. The effect of engine operating conditions on exhaust gas recirculation cooler fouling

    DOE PAGES

    Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.; ...

    2018-05-17

    Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less

  16. The effect of engine operating conditions on exhaust gas recirculation cooler fouling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.

    Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less

  17. Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines

    NASA Astrophysics Data System (ADS)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-03-01

    Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.

  18. Refurbishment of the cryogenic coolers for the Skylab earth resources experiment package

    NASA Technical Reports Server (NTRS)

    Smithson, J. C.; Luksa, N. C.

    1975-01-01

    Skylab Earth Resources Experiment Package (EREP) experiments, S191 and S192, required a cold temperature reference for operation of a spectrometer. This cold temperature reference was provided by a subminiature Stirling cycle cooler. However, the failure of the cooler to pass the qualification test made it necessary for additional cooler development, refurbishment, and qualification. A description of the failures and the cause of these failures for each of the coolers is presented. The solutions to the various failure modes are discussed along with problems which arose during the refurbishment program. The rationale and results of various tests are presented. The successful completion of the cryogenic cooler refurbishment program resulted in four of these coolers being flown on Skylab. The system operation during the flight is presented.

  19. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  20. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  1. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  2. Robust design of microchannel cooler

    NASA Astrophysics Data System (ADS)

    He, Ye; Yang, Tao; Hu, Li; Li, Leimin

    2005-12-01

    Microchannel cooler has offered a new method for the cooling of high power diode lasers, with the advantages of small volume, high efficiency of thermal dissipation and low cost when mass-produced. In order to reduce the sensitivity of design to manufacture errors or other disturbances, Taguchi method that is one of robust design method was chosen to optimize three parameters important to the cooling performance of roof-like microchannel cooler. The hydromechanical and thermal mathematical model of varying section microchannel was calculated using finite volume method by FLUENT. A special program was written to realize the automation of the design process for improving efficiency. The optimal design is presented which compromises between optimal cooling performance and its robustness. This design method proves to be available.

  3. Lifetime testing results and diagnostic performance prediction of linear coolers at Thales Cryogenics

    NASA Astrophysics Data System (ADS)

    van der Weijden, H.; Benschop, T.; van de Groep, W.; Willems, D.

    2011-06-01

    Thales Cryogenics (TCBV) has an extensive background in delivering long-life cryogenic coolers for military, civil and space programs. During the last years many technical improvements have increased the lifetime of coolers resulting in significantly higher MTTF's. Lifetime endurance tests are used to validate these performance increases. An update will be given on lifetime test of a selection of TCBV's coolers. MTTF figures indicate the statistical average lifetimes for a large population of coolers. However, for the user of IR camera's and spectrometers a detailed view on the performance of an individual cooler and the possible impact of its performance degradation during its lifetime is very important. Thales Cryogenics is developing Cooler Diagnostic Software (CDS), which can be implemented in the firmware of its DSP based cooler drive electronics. With this implemented software the monitoring of the main cooler parameters during the lifetime in the equipment will be possible, including the prediction of the expected cooler performance availability. Based on this software it will be possible to analyze the status of the cooler inside the equipment and, supported by the lifetime knowledge at Thales Cryogenics, make essential choices on the maintenance of equipment and the replacement of coolers. In the paper, we will give an overview of potential situations in which such a predictive algorithm can be used. We will present the required interaction with future users to make an optimal interaction and interpretation of the generated data possible.

  4. Mechanization of and experience with a triplex fly-by-wire backup control system

    NASA Technical Reports Server (NTRS)

    Lock, W. P.; Petersen, W. R.; Whitman, G. B.

    1975-01-01

    A redundant three-axis analog control system was designed and developed to back up a digital fly-by-wire control system for an F-8C airplane. Forty-two flights, involving 58 hours of flight time, were flown by six pilots. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum-displacement (force) side stick. The operational reliability of the F-8 digital fly-by-wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.

  5. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less

  6. Backup Attitude Control Algorithms for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Ericsson-Jackson, Aprille J.; Flatley, Thomas W.; Ward, David K.; Bay, P. Michael

    1999-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission, studying the early origins of the universe, in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point. Due to limited mass, power, and financial resources, a traditional reliability concept involving fully redundant components was not feasible. This paper will discuss the redundancy philosophy used on MAP, describe the hardware redundancy selected (and why), and present backup modes and algorithms that were designed in lieu of additional attitude control hardware redundancy to improve the odds of mission success. Three of these modes have been implemented in the spacecraft flight software. The first onboard mode allows the MAP Kalman filter to be used with digital sun sensor (DSS) derived rates, in case of the failure of one of MAP's two two-axis inertial reference units. Similarly, the second onboard mode allows a star tracker only mode, using attitude and derived rate from one or both of MAP's star trackers for onboard attitude determination and control. The last backup mode onboard allows a sun-line angle offset to be commanded that will allow solar radiation pressure to be used for momentum management and orbit stationkeeping. In addition to the backup modes implemented on the spacecraft, two backup algorithms have been developed in the event of less likely contingencies. One of these is an algorithm for implementing an alternative scan pattern to MAP's nominal dual-spin science mode using only one or two reaction wheels and thrusters. Finally, an algorithm has been developed that uses thruster one shots while in science mode for momentum management. This algorithm has been developed in case system momentum builds up faster than anticipated, to allow adequate momentum management while minimizing interruptions to science. In this paper, each mode and

  7. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; back-up tax. 48.4082-4..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  8. Fermilab 4.3-MeV Electron Cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaitsev, Sergei; Prost, Lionel; Shemyakin, Alexander

    The Recycler Electron Cooler (REC) was the first cooler working at a relativistic energy (gamma = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. After introducing the physics of electron cooling and the REC system, this paper describes measurements carried out to tune the electron beam and optimize its cooling properties. In particular, we discuss the cooling strategy adopted for maximizing the collider integrated luminosity.

  9. Microsystem Cooler Concept Developed and Being Fabricated

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2005-01-01

    A patented microsystem cooler concept has been developed by the NASA Glenn Research Center. It incorporates diaphragm actuators to produce the Stirling refrigeration cycle within a planar configuration compatible with the thermal management of electronics, sensors, optical and radiofrequency systems, microarrays, and other microsystems. The microsystem cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Johns Hopkins University Applied Physics Laboratory is conducting development testing and fabrication of a prototype under a grant from Glenn.

  10. Rates for backup service under PURPA when the supplying utility has excess generating capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Under PURPA, cogenerators are entitled to receive backup service. It is often said that tariffs for backup service should reflect the low probability that an unscheduled outage will occur during system peak. This memorandum concludes that probabilistic analysis of contribution to coincident peak demand is not relevant under PURPA during periods in which a utility system is experiencing generating capacity surpluses, and that in such situations, backup rates should be designed so that should the customer insist on installing a cogeneration system, that the customer's contribution to fixed costs remains constant. The reason for this is to assure that prospectivemore » cogenerators receive appropriate pricing signals in their assessment of proposed cogeneration projects, and should they decide to install cogeneration facilities requiring backup service, to hold the remaining customers on the system harmless.« less

  11. STS-47 crew & backups pose for portrait in SLJ module at KSC during training

    NASA Image and Video Library

    1992-07-25

    S92-44303 --- STS-47 Endeavour, Orbiter Vehicle (OV) 105, crew members and back-up payload specialists, wearing clean suits, pose for a group portrait in the Spacelab Japan (SLJ) module. The team is at the Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF) to inspect SLJ configuration and OV-105 preparations. Kneeling, from left, are back-up Payload Specialist Chiaki Naito-Mukai; Mission Specialist N. Jan Davis; and backup Payload Specialist Takao Doi. Standing, from the left, are Pilot Curtis L. Brown,Jr; Payload Commander Mark C. Lee; Jerome Apt; Payload Specialist Mamoru Mohri; Commander Robert L. Gibson; Mae C. Jemison; and back-up Payload Specialist Stanely L. Koszelak. Mohri, Mukai, and Doi represent the National Space Development Agency of Japan (NASDA). View provided by KSC with alternate KSC number KSC-92PC-1647. Photo credit: NASA

  12. Multistage Passive Cooler for Spaceborne Instruments

    NASA Technical Reports Server (NTRS)

    Rodriquez, Jose I.

    2007-01-01

    A document describes a three-stage passive radiative cooler for a cryogenic spectrometer to be launched into a low orbit around the Moon. This cooler is relatively lightweight and compact, and its basic design is scalable and otherwise adaptable to other applications in which there are requirements for cooling instrumentation in orbit about planets. The cooler includes multiple lightweight flat radiator blades alternating with cylindrical parabolic infrared reflectors. The radiator blades are oriented at an angle chosen to prevent infrared loading from the Moon limb at the intended orbital altitude and attitude. The reflectors are shaped and oriented to position their foci outside the radiator surfaces. There are six radiator-blade/reflector pairs - two pairs for each stage of cooling. The radiator blades and reflectors are coated on their front and back surfaces with materials having various infrared emissivities, infrared reflectivities, and solar reflectivities so as to maximize infrared radiation to cold outer space and minimize inadvertent solar heating. The radiator blades and reflectors are held in place by a lightweight support structure, the components of which are designed to satisfy a complex combination of thermal and mechanical requirements.

  13. Reliability considerations of a fuel cell backup power system for telecom applications

    NASA Astrophysics Data System (ADS)

    Serincan, Mustafa Fazil

    2016-03-01

    A commercial fuel cell backup power unit is tested in real life operating conditions at a base station of a Turkish telecom operator. The fuel cell system responds to 256 of 260 electric power outages successfully, providing the required power to the base station. Reliability of the fuel cell backup power unit is found to be 98.5% at the system level. On the other hand, a qualitative reliability analysis at the component level is carried out. Implications of the power management algorithm on reliability is discussed. Moreover, integration of the backup power unit to the base station ecosystem is reviewed in the context of reliability. Impact of inverter design on the stability of the output power is outlined. Significant current harmonics are encountered when a generic inverter is used. However, ripples are attenuated significantly when a custom design inverter is used. Further, fault conditions are considered for real world case studies such as running out of hydrogen, a malfunction in the system, or an unprecedented operating scheme. Some design guidelines are suggested for hybridization of the backup power unit for an uninterrupted operation.

  14. The near-source impacts of diesel backup generators in urban environments

    NASA Astrophysics Data System (ADS)

    Tong, Zheming; Zhang, K. Max

    2015-05-01

    Distributed power generation, located close to consumers, plays an important role in the current and future power systems. However, its near-source impacts in complex urban environments are not well understood. In this paper, we focused on diesel backup generators that participate in demand response (DR) programs. We first improved the micro-environmental air quality simulations by employing a meteorology processor, AERMET, to generate site-specific boundary layer parameters for the Large Eddy Simulation (LES) modeling. The modeling structure was then incorporated into the CTAG model to evaluate the environmental impacts of diesel backup generators in near-source microenvironments. We found that the presence of either tall upwind or downwind building can deteriorate the air quality in the near-stack street canyons, largely due to the recirculation zones generated by the tall buildings, reducing the near-stack dispersion. Decreasing exhaust momentum ratio (stack exit velocity/ambient wind velocity) draws more exhaust into the recirculation zone, and reduces the effective stack height, which results in elevated near-ground concentrations inside downwind street canyons. The near-ground PM2.5 concentration for the worst scenarios could well exceed 100 μg m-3, posing potential health risk to people living and working nearby. In general, older diesel backup generators (i.e., Tier 1, 2 or older) without the up-to-date emission control may significantly increase the pollutant concentration in the near-source street canyons if participating in DR programs. Even generators that comply with Tier-4 standards could lead to PM hotspots if their stacks are next to tall buildings. Our study implies that the siting of diesel backup generators stacks should consider not only the interactions of fresh air intake and exhaust outlet for the building housing the backup generators, but also the dispersion of exhaust plumes in the surrounding environment.

  15. Microsystem Cooler Development

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Wesolek, Danielle M.; Berhane, Bruk T.; Rebello, Keith J.

    2004-01-01

    A patented microsystem Stirling cooler is under development with potential application to electronics, sensors, optical and radio frequency (RF) systems, microarrays, and other microsystems. The microsystem Stirling cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include: two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines; and a micro-regenerator that stores and releases thermal energy to the working gas during the Stirling cycle. The use of diaphragms eliminates frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were custom fabricated for initial evaluation: two constructed of porous ceramic, and one made of multiple layers of nickel and photoresist in an offset grating pattern. An additional regenerator was prepared with a random stainless steel fiber matrix commonly used in existing Stirling machines for comparison to the custom fabricated regenerators. The candidate regenerators were tested in a piezoelectric-actuated test apparatus designed to simulate the Stirling refrigeration cycle. In parallel with the regenerator testing, electrostatically-driven comb-drive diaphragm actuators for the prototype device have been designed for deep reactive ion etching (DRIE) fabrication.

  16. Expedition 14 Crew and Backup Crew Training

    NASA Image and Video Library

    2006-05-24

    JSC2006-E-20053 (24 May 2006) --- Astronaut Clayton C. Anderson, Expedition 14 backup flight engineer, participates in Journals experiment overview training in the Flight Operations Facility at Johnson Space Center. This type of training is a presentation format regarding the experiment objectives and tools. Training instructor Lindsay Kirschner assisted Anderson.

  17. Implementation of an ASP model offsite backup archive for clinical images utilizing Internet 2

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Chao, Sander S.; Documet, Jorge; Lee, Jasper; Lee, Michael; Topic, Ian; Williams, Lanita

    2005-04-01

    With the development of PACS technology and an increasing demand by medical facilities to become filmless, there is a need for a fast and efficient method of providing data backup for disaster recovery and downtime scenarios. At the Image Processing Informatics Lab (IPI), an ASP Backup Archive was developed using a fault-tolerant server with a T1 connection to serve the PACS at the St. John's Health Center (SJHC) Santa Monica, California. The ASP archive server has been in clinical operation for more than 18 months, and its performance was presented at this SPIE Conference last year. This paper extends the ASP Backup Archive to serve the PACS at the USC Healthcare Consultation Center II (HCC2) utilizing an Internet2 connection. HCC2 is a new outpatient facility that recently opened in April 2004. The Internet2 connectivity between USC's HCC2 and IPI has been established for over one year. There are two novelties of the current ASP model: 1) Use of Internet2 for daily clinical operation, and 2) Modifying the existing backup archive to handle two sites in the ASP model. This paper presents the evaluation of the ASP Backup Archive based on the following two criteria: 1) Reliability and performance of the Internet2 connection between HCC2 and IPI using DICOM image transfer in a clinical environment, and 2) Ability of the ASP Fault-Tolerant backup archive to support two separate clinical PACS sites simultaneously. The performances of using T1 and Internet2 at the two different sites are also compared.

  18. Quasi Path Restoration: A post-failure recovery scheme over pre-allocated backup resource for elastic optical networks

    NASA Astrophysics Data System (ADS)

    Yadav, Dharmendra Singh; Babu, Sarath; Manoj, B. S.

    2018-03-01

    Spectrum conflict during primary and backup routes assignment in elastic optical networks results in increased resource consumption as well as high Bandwidth Blocking Probability. In order to avoid such conflicts, we propose a new scheme, Quasi Path Restoration (QPR), where we divide the available spectrum into two: (1) primary spectrum (for primary routes allocation) and (2) backup spectrum (for rerouting the data on link failures). QPR exhibits three advantages over existing survivable strategies such as Shared Path Protection (SPP), Primary First Fit Backup Last Fit (PFFBLF), Jointly Releasing and re-establishment Defragmentation SPP (JRDSSPP), and Path Restoration (PR): (1) the conflict between primary and backup spectrum during route assignment is completely eliminated, (2) upon a link failure, connection recovery requires less backup resources compared to SPP, PFFBLF, and PR, and (3) availability of the same backup spectrum on each link improves the recovery guarantee. The performance of our scheme is analyzed with different primary backup spectrum partitions on varying connection-request demands and number of frequency slots. Our results show that QPR provides better connection recovery guarantee and Backup Resources Utilization (BRU) compared to bandwidth recovery of PR strategy. In addition, we compare QPR with Shared Path Protection and Primary First-Fit Backup Last Fit strategies in terms of Bandwidth Blocking Probability (BBP) and average frequency slots per connection request. Simulation results show that BBP of SPP, PFFBLF, and JRDSPP varies between 18.59% and 14.42%, while in QPR, BBP ranges from 2.55% to 17.76% for Cost239, NSFNET, and ARPANET topologies. Also, QPR provides bandwidth recovery between 93.61% and 100%, while in PR, the recovery ranges from 86.81% to 98.99%. It is evident from our analysis that QPR provides a reasonable trade-off between bandwidth blocking probability and connection recoverability.

  19. 150K - 200K miniature pulse tube cooler for micro satellites

    NASA Astrophysics Data System (ADS)

    Chassaing, Clément; Butterworth, James; Aigouy, Gérald; Daniel, Christophe; Crespin, Maurice; Duvivier, Eric

    2014-01-01

    Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention is therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.

  20. 150K - 200K miniature pulse tube cooler for micro satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassaing, Clément; Butterworth, James; Aigouy, Gérald

    Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention ismore » therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.« less

  1. Performance and reliability enhancement of linear coolers

    NASA Astrophysics Data System (ADS)

    Mai, M.; Rühlich, I.; Schreiter, A.; Zehner, S.

    2010-04-01

    Highest efficiency states a crucial requirement for modern tactical IR cryocooling systems. For enhancement of overall efficiency, AIM cryocooler designs where reassessed considering all relevant loss mechanisms and associated components. Performed investigation was based on state-of-the-art simulation software featuring magnet circuitry analysis as well as computational fluid dynamics (CFD) to realistically replicate thermodynamic interactions. As a result, an improved design for AIM linear coolers could be derived. This paper gives an overview on performance enhancement activities and major results. An additional key-requirement for cryocoolers is reliability. In recent time, AIM has introduced linear coolers with full Flexure Bearing suspension on both ends of the driving mechanism incorporating Moving Magnet piston drive. In conjunction with a Pulse-Tube coldfinger these coolers are capable of meeting MTTF's (Mean Time To Failure) in excess of 50,000 hours offering superior reliability for space applications. Ongoing development also focuses on reliability enhancement, deriving space technology into tactical solutions combining both, excelling specific performance with space like reliability. Concerned publication will summarize the progress of this reliability program and give further prospect.

  2. Emergency and backup power supplies at Department of Energy facilities: Augmented Evaluation Team -- Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report documents the results of the Defense Programs (DP) Augmented Evaluation Team (AET) review of emergency and backup power supplies (i.e., generator, uninterruptible power supply, and battery systems) at DP facilities. The review was conducted in response to concerns expressed by former Secretary of Energy James D. Watkins over the number of incidents where backup power sources failed to provide electrical power during tests or actual demands. The AET conducted a series of on-site reviews for the purpose of understanding the design, operation, maintenance, and safety significance of emergency and backup power (E&BP) supplies. The AET found that themore » quality of programs related to maintenance of backup power systems varies greatly among the sites visited, and often among facilities at the same site. No major safety issues were identified. However, there are areas where the AET believes the reliability of emergency and backup power systems can and should be improved. Recommendations for improving the performance of E&BP systems are provided in this report. The report also discusses progress made by Management and Operating (M&O) contractors to improve the reliability of backup sources used in safety significant applications. One area that requires further attention is the analysis and understanding of the safety implications of backup power equipment. This understanding is needed for proper graded-approach implementation of Department of Energy (DOE) Orders, and to help ensure that equipment important to the safety of DOE workers, the public, and the environment is identified, classified, recognized, and treated as such by designers, users, and maintainers. Another area considered important for improving E&BP system performance is the assignment of overall ownership responsibility and authority for ensuring that E&BP equipment performs adequately and that reliability and availability are maintained at acceptable levels.« less

  3. View of backup payload specialist Robert Thirsk during Zero-G training

    NASA Image and Video Library

    1984-07-16

    S84-37532 (18 July 1984) --? Robert B. Thirsk, backup payload specialist for 41-G appears to be shaking hands with an unoccupied extravehicular mobility unit (EMU) during a familiarization flight aboard NASA?s KC-135 aircraft. Thirsk, representing Canada?s National Research Council (NRC), serves as backup to Marc Garneau on the seven-member crew for Challenger?s October 1984 flight. This aircraft is used extensively for training and exposing Shuttle crewmembers to weightlessness as well as for evaluation of equipment and experiments scheduled for future flights.

  4. 30 CFR 56.14132 - Horns and backup alarms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....14132 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14132 Horns and backup alarms. (a) Manually...

  5. 30 CFR 56.14132 - Horns and backup alarms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....14132 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14132 Horns and backup alarms. (a) Manually...

  6. Control methods and systems for indirect evaporative coolers

    DOEpatents

    Woods, Jason; Kozubal, Erik

    2015-09-22

    A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.

  7. Development of a space qualified Surface Tension Confined Liquid Cryogen Cooler (STCLCC)

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1988-01-01

    The Surface Tension Confined Liquid Cryogen Cooler (STCLCC), a new type of cryogenic cooler which is being developed by the NASA-GSFC for spaceflight payloads, is described. The STCLCC will be capable of maintaining instrumentation within the temperature range of 10-120 K and will allow liquid cryogens to be flown in space without the risk of liquid being entrained in the vent gas. A low-density open-cell material in the STCLCC acts as a 'sponge', with the surface tension trapping the liquid cryogen within its pores and keeping the liquid away from the cooler's vent during launch, zero-g operations, and landing. It is emphasized that the STCLCC concept is amenable to a wide variety of applications, whenever a passive low-cost cooler is required or when the on-orbit service of a cooler would increase a mission's lifetime.

  8. Development of muon ring coolers, neutrino factories and supersymmetric Higgs factory

    NASA Astrophysics Data System (ADS)

    Cline, David B.

    2003-08-01

    Over the past few years or so a key new development is the invention of ring coolers for muon cooling. In particular, these rings demonstrate robust cooling of the longitudinal phase space. We discuss the quadrupole or UCLA ring cooler and the prospects to make this a final cooler to reduce the transceiver emittance to the value required for a mu+mu- collider. This will lead to a Higgs factory for the A0/H0 in supersymmetry models.

  9. Development of Muon Ring Coolers, Neutrino Factories and Supersymmetric Higgs Factory

    NASA Astrophysics Data System (ADS)

    Cline, David B.

    2002-12-01

    Over the past few years or so a key new development is the invention of Ring Coolers for muon cooling. In particular these rings demonstrate robust cooling of the longitudinal phase space. We discuss the Quadrupole or UCLA Ring Cooler and the prospects to make this a final cooler to reduce the tranceiver emittance to the value required for a μ+ μ- collider. This will lead to a Higgs Factory for the A0/H0 in supersymmetry models.

  10. Ceramic backup ring prevents undesirable weld-metal buildup

    NASA Technical Reports Server (NTRS)

    Leonard, G. E.

    1971-01-01

    Removable ceramic backup material butted against weld zone back prevents weld metal buildup at that site. Method is successful with manual tungsten-inert gas /TIG/ welding of 316 corrosion resistant steel /CRES/ pieces with 0.76 cm throat diameter and 1.57 cm pipe internal diameter.

  11. Design and Operation of the RHIC 80-K Cooler

    NASA Astrophysics Data System (ADS)

    Nicoletti, A.; Reuter, A.; Sidi-Yekhlef, A.; Talty, P.; Quimby, E.

    2004-06-01

    A stand-alone cryogenic system designed to maintain the magnets of the Relativistic Heavy Ion Collider (RHIC) at between 80 and 100 K during accelerator shutdown periods has been conceived and designed at Brookhaven National Laboratory and built by PHPK Technologies of Columbus, Ohio. Since most thermal contraction occurs above this temperature, this unit, referred to as the 80-K Cooler, will eliminate the stresses associated with thermal cycling. The cooling system will provide the necessary refrigeration by circulating cooled helium gas at approximately 1500 kPA through the RHIC heat shields and magnets. This helium is cooled by heat exchange with liquid nitrogen and circulated via three cold centrifugal pumps. The nominal delivered cooling capacity required to maintain the magnets at temperature is approximately 36 kW, primarily intercepted at the heat shield. The system also has separate heat exchangers for use as a pre-cooler from room temperature to 82 K. Selection of sextant or sextants for pre-cooling is designed into the RHIC cryogenic distribution system. Topics covered include Cooler design decisions, details of the Cooler as built, integration into the existing RHIC cryogenic system and initial operating experience.

  12. Calculations of air cooler for new subsonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Rtishcheva, A. S.

    2017-10-01

    As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.

  13. Mathematical defense method of networked servers with controlled remote backups

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2006-05-01

    The networked server defense model is focused on reliability and availability in security respects. The (remote) backup servers are hooked up by VPN (Virtual Private Network) with high-speed optical network and replace broken main severs immediately. The networked server can be represent as "machines" and then the system deals with main unreliable, spare, and auxiliary spare machine. During vacation periods, when the system performs a mandatory routine maintenance, auxiliary machines are being used for back-ups; the information on the system is naturally delayed. Analog of the N-policy to restrict the usage of auxiliary machines to some reasonable quantity. The results are demonstrated in the network architecture by using the stochastic optimization techniques.

  14. STS-47 Japanese Payload Specialist Mohri and backups during Homestead training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Japanese Payload Specialist Mamoru Mohri (far left), backup Payload Specialist Takao Doi (center), and backup Payload Specialist Chiaki Mukai (right) participate in water survival training at Homestead Air Force Base, Florida. Dockside, Mohri and Mukai wash the salt water from their personalized helmets after a water exercise. The three-day course was attended by the STS-47 prime and alternate payload specialists shortly after they were announced for the scheduled summer of 1992 Spacelab Japan (SLJ) mission. Mohri, Doi, and Mukai all represent the National Space Development Agency of Japan (NASDA).

  15. On the development of co-axial miniature pulse tube coolers for space applications

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Liang, J. T.; Zhu, W. Q.; Cai, J. H.; Ju, Y. L.

    2002-05-01

    Cryocoolers for cooling infrared sensors in space applications require high reliability, long lifetime, low power and minimum weight. In this paper we report work on a miniature pulse tube cooler specifically designed for such applications. A series of engineering model co-axial miniature pulse tube coolers with a flexure bearing linear compressor of 1 cc swept volume have been designed and fabricated in our laboratory. A theoretical model is established based on the analyses of thermodynamic and hydrodynamic behaviors of oscillatory flows in regenerator, for performance prediction, optimization and as a rough guide in the early stages of system design. An experimental apparatus, including a hot wire anemometer, has been set up to study the flow resistance of regenerators under oscillatory flow conditions. The co-axial, multi-bypass, and symmetric nozzle structure has been used in the coolers. We will present here the performance of two sizes of coolers with 9 mm and 8 mm diameter of cold fingers. The 9 mm cooler currently provides 500 mW net cooling power at 80 K with input power of 47 W, and the 8 mm cooler, provides 450 mW at 80 K with 51 W input power with a 65% efficient compressor. The cold fingers of our co-axial pulse tube coolers have the similar size of miniature Stirling coolers and are the only one that could meet the geometry specifications of the Standard Advance Dewar Assembly (SADA) for thermal imaging systems in most military applications.

  16. Cryogenic testing of Planck sorption cooler test facility

    NASA Technical Reports Server (NTRS)

    Zhang, B.; Pearson, D.; Borders, J.; Franklin, B.; Prina, M.; Hardy, J.; Crumb, D.

    2004-01-01

    A test facility has been upgraded in preparation for testing of two hydrogen sorption cryocoolers operating at 18/20 K. these sorption coolers are currently under development at the Jet Propulsion Laboratory. This work summarizes the scope of the test facility upgrade, including design for cryogenic cooling power delivery, system thermal management, insulation schemes, and data acquisition techniques. Ground support equipment for the sorption coolers, structural features of the test chamber, and the vacuum system involved for system testing will also be described in detail.

  17. ATS-F radiant cooler contamination test in a hydrazine thruster exhaust

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1973-01-01

    A test was conducted under simulated space conditions to determine the potential thermal degradation of the ATS-F radiant cooler from any contaminants generated by a 0.44-N(0.1-lbf) hydrazine thruster. The radiant cooler, a 0.44-N(0.1-lbf)hydrazine engine, and an aluminum plate simulating the satellite interface were assembled to simulate their flight configuration. The cooler was provided with platinum sensors for measuring temperature, and its surfaces were instrumented with six quartz crystal microbalance units (QCM) to measure contaminant mass deposits. The complete assembly was tested in the molecular sink vacuum facility (Molsink) at the Jet Propulsion Laboratory. This was the first time that a radiant cooler and a hydrazine engine were tested together in a very-high-vacuum space simulator, and this test was the first successful measurement of detectable deposits from hydrazine rocket engine plumes in a high vacuum. The engine was subjected to an accelerated duty cycle of 1 pulse/min, and after 2-hr of operation, the QCMs began to shift in frequency. The tests continued for several days and, although there was considerable activity in the QCMs, the cooler never experienced thermal degradation.

  18. Control of DC gas flow in a single-stage double-inlet pulse tube cooler

    NASA Astrophysics Data System (ADS)

    Wang, C.; Thummes, G.; Heiden, C.

    The use of double-inlet mode in the pulse tube cooler opens up a possibility of DC gas flow circulating around the regenerator and pulse tube. Numerical analysis shows that effects of DC flow in a single-stage pulse tube cooler are different in some aspects from that in a 4 K pulse tube cooler. For highest cooler efficiency, DC flow should be compensated to a small value, i.e. DC flow over average AC flow at regenerator inlet should be in the range -0.0013 to +0.00016. Dual valves with reversed asymmetric geometries were used for the double-inlet bypass to control the DC flow in this paper. The experiment, performed in a single-stage double-inlet pulse tube cooler, verified that the cooler performance can be significantly improved by precisely controlling the DC flow.

  19. Bacteriological quality of drinking water from dispensers (coolers) and possible control measures.

    PubMed

    Baumgartner, Andreas; Grand, Marius

    2006-12-01

    Three water dispensers (coolers) were bacteriologically monitored over a period of 3 months to evaluate their hygienic status. For this purpose, 174 samples of chilled and unchilled water were analyzed for levels of mesophilic aerobic bacteria and the presence of Escherichia coli and enterococci in 100-ml samples, and the presence of Pseudomonas aeruginosa in 10- and 100-ml samples. Additionally, 12 samples from 20-liter plastic bottles of spring water used to supply the coolers and 36 samples of 12 different brands of noncarbonated bottled mineral water were similarly analyzed. Water from the coolers yielded aerobic plate counts of 3 to 5 log CFU/ml with a geometric mean of 3.86 log CFU/ml, whereas water from the 20-liter bottles had a mean aerobic plate count of 3.3 log CFU/ml. Aerobic plate counts for noncarbonated mineral waters were generally lower (13 samples, < 10 CFU/ml; 6 samples, 10 to 10(2) CFU/ml; 13 samples, 10(2) to 10(3) CFU/ml; 3 samples, 10(3) to 10(4) CFU/ ml; 1 sample, 2 x 10(4) CFU/ml). Although occasional professional cleaning of the coolers did not affect the aerobic plate count, P. aeruginosa was successfully eliminated 2 weeks after cleaning, with only one cooler becoming recolonized. Neither E. coli nor enterococci was found in any of the water samples tested. However, P. aeruginosa was identified in three (25%) of twelve 100-ml samples from 20-liter bottles of spring water; a similar frequency of 24.1% was seen for water samples from coolers. Overall, 35 (21.6%) of 162 water samples (10 ml) from coolers also yielded P. aeruginosa, suggesting potential growth of P. aeruginosa in the dispensers. Pulsed-field gel electrophoresis typing and antibiotic susceptibility testing found 19 P. aeruginosa isolates from the coolers and bottles to be identical, indicating that a single strain originated from the bottled water rather than the surroundings of the coolers. Because P. aeruginosa can cause serious nosocomial infections, its spread should be

  20. Transient Air Infiltration/Exfiltration in Walk-In Coolers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faramarzi, Ramin; Navaz, H. K.; Kamensky, K.

    Walk-in coolers are room-sized, insulated, and refrigerated compartments for food product storage. Walk-ins have areas equal or below 280 m2 (3,000 ft2), and are classified either as coolers operating above 0 degrees C (32 degrees F) (medium-temperature) to store fresh fruit, vegetables, and dairy products, or freezers that operate below 0 degrees C (32 degrees F) (low-temperature) to meet health and safety standards of frozen food products. Walk-ins are typically found in restaurants as well as small- and medium-to-large grocery stores or supermarkets.

  1. STS-55 German payload specialists (and backups) in LESs during JSC training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, German payload specialists and backup (alternate) payload specialists, wearing launch and entry suits (LESs), pose for group portrait outside mockup side hatch in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE. These payload specialists will support the STS-55 Spacelab Deutsche 2 (SL-D2) mission. It is the second dedicated German (Deutsche) Spacelab flight. Left to right are backup Payload Specialists Renate Brummer and Dr. P. Gerhard Thiele, Payload Specialist 1 Ulrich Walter, and Payload Specialist 2 Hans Schlegel.

  2. Onsite and Electric Backup Capabilities at Critical Infrastructure Facilities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Julia A.; Wallace, Kelly E.; Kudo, Terence Y.

    2016-04-01

    The following analysis, conducted by Argonne National Laboratory’s (Argonne’s) Risk and Infrastructure Science Center (RISC), details an analysis of electric power backup of national critical infrastructure as captured through the Department of Homeland Security’s (DHS’s) Enhanced Critical Infrastructure Program (ECIP) Initiative. Between January 1, 2011, and September 2014, 3,174 ECIP facility surveys have been conducted. This study focused first on backup capabilities by infrastructure type and then expanded to infrastructure type by census region.

  3. Dry coolers and air-condensing units (Review)

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  4. Contamination of the GOES-K filter wheel cooler

    NASA Astrophysics Data System (ADS)

    Sanders, Jack T., Jr.; Rosecrans, Glenn P.

    1998-10-01

    The Geostationary Operational Environmental Satellite (GOES) Sounder instrument uses radiant coolers to reduce the operating temperature of the detectors and filter wheel. GOES resides in an equatorial orbit 36,000 kilometers above the earth, and is stationary with respect to it. During the year, all sides of the spacecraft are exposed to the sun; the filter wheel emitter and detector radiators must be shielded form it to adequately cooled these components for nominal operations.Mirror Optical Solar Reflectors are used too reject sunlight before it can strike the radiators. Molecular outgassing from the Sounder instrument cavity, the filter wheel module, and the Sounder vacuum cooler housing have been demonstrated through mass transport modeling to contaminate the filter wheel sunshield panels during the in- orbit Radiant Cooler bakeout. Excessive molecular and particulate contamination can increase solar energy scatter, increase thermal emittance, and increase solar absorptance; all of which can increase the temperature of the components they serve, thus degrading nominal operations. After the GOES-K spacecraft thermal vacuum test, a haze was observed on and around the entrance aperture, and on the inside faces the filter wheel cooler sunshield. This paper documents the inspections, testing, and analysis used to: a) locate the likely sources for the contaminants, b) predict molecular contaminant accumulation on the filter wheel sunshields during the in-orbit bakeout, c) estimate the thermal effects from molecular build-up, and d) assess proposed hardware modifications and show the selection rationale used to maintain functionality for the GOES-K Sounder instrument.

  5. Preliminary design trade-offs for a multi-mission stored cryogen cooler

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1978-01-01

    Preliminary design studies were performed for a multi-mission solid cryogen cooler having a wide range of application for both the shuttle sortie and free flyer missions. This multi-mission cooler (MMC) is designed to be utilized with various solid cryogens to meet a wide range of instrument cooling from 10 K (with solid hydrogen) to 90 K. The baseline cooler utilizes two stages of solid cryogen and incorporates an optional, higher temperature third stage which is cooled by either a passive radiator or a thermoelectric cooler. The MMC has an interface which can accommodate a wide variety of instrument configurations. A shrink fit adapter is incorporated which allows a drop-in instrument integration. The baseline design provides cooling of approximately 1 watt over a 60 to 100 K temperature range and about 0.5 watts from 15 to 60 K for a one year lifetime. For low cooling loads and with use of the optional radiator shield, cooling lifetimes as great as 8 years are predicted.

  6. Investigation of the vibration and EMC characteristics of miniature Stirling electric coolers for space applications

    NASA Astrophysics Data System (ADS)

    Kondratjev, V.; Gostilo, V.; Owens, anb A.

    2017-08-01

    We present the results of an investigation into the detrimental effects that electromechanical coolers can have on the spectral performance of compact, large volume HPGe spectrometers for space applications. Both mechanical vibration and electromagnetic pickup effects were considered, as well as a comparative assessment between three miniature Stirling cycle coolers—two Ricor model K508 coolers and one Thales model RM3 cooler. In spite of the limited number of coolers tested, the following conclusions can be made. There are significant differences in the vibration characteristics not only between the various types of cooler but also between coolers of the same type. It was also found that compared to the noise induced by mechanical vibrations, electromagnetic interference emanating from the embedded controllers does not significantly impact the energy resolution of detectors.

  7. DOMe: A deduplication optimization method for the NewSQL database backups

    PubMed Central

    Wang, Longxiang; Zhu, Zhengdong; Zhang, Xingjun; Wang, Yinfeng

    2017-01-01

    Reducing duplicated data of database backups is an important application scenario for data deduplication technology. NewSQL is an emerging database system and is now being used more and more widely. NewSQL systems need to improve data reliability by periodically backing up in-memory data, resulting in a lot of duplicated data. The traditional deduplication method is not optimized for the NewSQL server system and cannot take full advantage of hardware resources to optimize deduplication performance. A recent research pointed out that the future NewSQL server will have thousands of CPU cores, large DRAM and huge NVRAM. Therefore, how to utilize these hardware resources to optimize the performance of data deduplication is an important issue. To solve this problem, we propose a deduplication optimization method (DOMe) for NewSQL system backup. To take advantage of the large number of CPU cores in the NewSQL server to optimize deduplication performance, DOMe parallelizes the deduplication method based on the fork-join framework. The fingerprint index, which is the key data structure in the deduplication process, is implemented as pure in-memory hash table, which makes full use of the large DRAM in NewSQL system, eliminating the performance bottleneck problem of fingerprint index existing in traditional deduplication method. The H-store is used as a typical NewSQL database system to implement DOMe method. DOMe is experimentally analyzed by two representative backup data. The experimental results show that: 1) DOMe can reduce the duplicated NewSQL backup data. 2) DOMe significantly improves deduplication performance by parallelizing CDC algorithms. In the case of the theoretical speedup ratio of the server is 20.8, the speedup ratio of DOMe can achieve up to 18; 3) DOMe improved the deduplication throughput by 1.5 times through the pure in-memory index optimization method. PMID:29049307

  8. 78 FR 77171 - Proposed Disposal of George H.W. Bush and Clinton Administration Electronic Backup Tapes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION [NARA-2014-011] Proposed Disposal of George H.W. Bush... George H.W. Bush and Clinton Administration Disaster Recovery Backup Tapes; final agency action. SUMMARY... collection of disaster recovery backup tapes from the George H.W. Bush and Clinton administrations under the...

  9. [Russian treadmill BD-1 as a backup of the NASA TVIS].

    PubMed

    Iarmanova, E N; Kozlovskaia, I B; Bogomolov, V V; Rumiantseva, O N; Sukhachev, V I; Mel'nik, K A

    2006-01-01

    Already during the early ISS increments malfunctioning of NASA TVIS (treadmill with vibration isolation system) posed major problems for regular crew training and particularly scamper, one of the key exercises on the Russian physical training program. During ISS increment-3, TVIS unscheduled repairs took virtually all the training time. In search for TVIS backup, Russian and NASA engineers considered jointly Russian treadmill BD-1, originally designed for Russian "shuttle" Buran and accepted it as a suitable backup in case of complete TVIS failure. To enter into the "dialogue" with BD-1, i.e., to record and downlink training data, the treadmill speed indicator, a part of the treadmill stand, was replaced by PC.

  10. Production planning and backup sourcing strategy of a buyer-dominant supply chain with random yield and demand

    NASA Astrophysics Data System (ADS)

    Chen, Kebing; Xiao, Tiaojun

    2015-11-01

    This paper studies the backup sourcing strategy of the buyer and the production planning of the supplier in presence of both random yield and random demand. Since the production is susceptible to the randomness of yield beyond the control of the supplier, the buyer may access to a backup sourcing option for the finished items. We analyse the value of backup sourcing for both the decentralised and centralised channels. Backup sourcing strategy of the buyer may lower the supply chain's performance. We show that the order quantity of the buyer does not change the stocking factor of the supplier's input. Meanwhile, compared with the centralised operation, the decentralised operation is more dependent on the backup sourcing to reduce supply shortage of the contracting supplier. From the channel's perspective, an incentive scheme is developed to facilitate the coordination of both the buyer and the contracting supplier, we show that the proposed option contract can allow the supply chain members to share the respective risks involved in the production and selling processes. Finally, we also provide qualitative insights based on numerical examples of the centralised and decentralised solutions.

  11. Do familiar teammates request and accept more backup? Transactive memory in air traffic control.

    PubMed

    Smith-Jentsch, Kimberly A; Kraiger, Kurt; Cannon-Bowers, Janis A; Salas, Eduardo

    2009-04-01

    The present study investigated factors that explain when and why different groups of teammates are more likely to request and accept backup from one another when needed in an environment characterized by extreme time pressure and severe consequences of error: commercial air traffic control (ATC). Transactive memory theory states that teammates develop consensus regarding the distribution of their relative expertise as well as confidence in that expertise over time and that this facilitates coordination processes. The present study investigated whether this theory could help to explain between-team differences in requesting and accepting backup when needed. The present study used cross-sectional data collected from 51 commercial ATC teams. Hypotheses were tested using multiple regression analysis. Teammates with greater experience working together requested and accepted backup from one another more than those with lesser experience working together. Teammate knowledge consensus and perceived team efficacy appear to have mediated this relationship. Transactive memory theory extends to high-stress environments in which members' expertise is highly overlapping. Teammates' shared mental models about one another increase the likelihood that they will request and accept backup. Teammate familiarity should be considered when choosing among potential replacement team members. Training strategies that accelerate the development of teammate knowledge consensus and team efficacy are warranted.

  12. [Growth inhibition of Vibrio parahaemolyticus in seafood by tabletop dry ice cooler].

    PubMed

    Maruyama, Yumi; Kimura, Bon; Fujii, Tateo; Tokunaga, Yoshinori; Matsubayashi, Megumi; Aikawa, Yasushi

    2005-10-01

    Tabletop dry ice coolers (three types; dome model, cap model and tripod model), which are used in kitchens and hotel banquet halls to refrigerate fresh seafood, were investigated to determine whether growth of Vibrio parahaemolyticus was inhibited by their use. On TSA plates containing 1.8% NaCl and fresh seafood (fillets of squid, pink shrimp and yellowtail), V. parahaemolyticus (O3:K6, TDH+) inoculated at 4 to 5 log CFU/sample and left at ambient temperature (25 degrees C) grew by 1.0 to 2.8 orders in 4 hours. In contrast, with tabletop coolers no significant increase in viable count occurred in 3 to 4 hours, confirming that tabletop coolers inhibited the growth of V. parahaemolyticus. The temperature in each tabletop cooler was kept below 10 degrees C for 80 to 135 min, though the CO2 gas concentration in them remained high for only a short time (0 to 75 min). It was presumed that the refrigeration function mainly contributed to growth inhibition. Our results indicate that tabletop dry ice coolers are helpful for prevention of food-borne disease due to V. parahaemolyticus in food-service locations, such as kitchens and banquet halls.

  13. 46 CFR 128.420 - Keel cooler installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING: EQUIPMENT AND SYSTEMS Design Requirements for Specific Systems § 128.420 Keel cooler...-metallic hose-clamps may be used at machinery connections if— (1) The clamps are of a corrosion-resistant...

  14. 7 CFR 58.311 - Coolers and freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58... further processing. Coolers and freezers shall be kept clean, orderly, free from insects, rodents, and...

  15. 7 CFR 58.311 - Coolers and freezers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58... further processing. Coolers and freezers shall be kept clean, orderly, free from insects, rodents, and...

  16. 7 CFR 58.311 - Coolers and freezers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58... further processing. Coolers and freezers shall be kept clean, orderly, free from insects, rodents, and...

  17. 7 CFR 58.311 - Coolers and freezers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58... further processing. Coolers and freezers shall be kept clean, orderly, free from insects, rodents, and...

  18. 7 CFR 58.311 - Coolers and freezers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58... further processing. Coolers and freezers shall be kept clean, orderly, free from insects, rodents, and...

  19. Storage-ring Electron Cooler for Relativistic Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less

  20. 20 K continuous cycle sorption coolers for the Planck flight mission

    NASA Technical Reports Server (NTRS)

    Bhandari, P.; Prina, M.; Bowman, R. C., Jr.; Paine, C.; Pearson, D.; Nash, A.

    2003-01-01

    In this paper we present the level of maturity of the hydrogen sorption cooler technology at JPL by describing the design and how it has been validated at the subsystem and system levels. In addition, we will describe how such systems could be advantageously used for other space missions with similar needs and cooler attributes.

  1. Operating and Managing a Backup Control Center

    NASA Technical Reports Server (NTRS)

    Marsh, Angela L.; Pirani, Joseph L.; Bornas, Nicholas

    2010-01-01

    Due to the criticality of continuous mission operations, some control centers must plan for alternate locations in the event an emergency shuts down the primary control center. Johnson Space Center (JSC) in Houston, Texas is the Mission Control Center (MCC) for the International Space Station (ISS). Due to Houston s proximity to the Gulf of Mexico, JSC is prone to threats from hurricanes which could cause flooding, wind damage, and electrical outages to the buildings supporting the MCC. Marshall Space Flight Center (MSFC) has the capability to be the Backup Control Center for the ISS if the situation is needed. While the MSFC Huntsville Operations Support Center (HOSC) does house the BCC, the prime customer and operator of the ISS is still the JSC flight operations team. To satisfy the customer and maintain continuous mission operations, the BCC has critical infrastructure that hosts ISS ground systems and flight operations equipment that mirrors the prime mission control facility. However, a complete duplicate of Mission Control Center in another remote location is very expensive to recreate. The HOSC has infrastructure and services that MCC utilized for its backup control center to reduce the costs of a somewhat redundant service. While labor talents are equivalent, experiences are not. Certain operations are maintained in a redundant mode, while others are simply maintained as single string with adequate sparing levels of equipment. Personnel at the BCC facility must be trained and certified to an adequate level on primary MCC systems. Negotiations with the customer were done to match requirements with existing capabilities, and to prioritize resources for appropriate level of service. Because some of these systems are shared, an activation of the backup control center will cause a suspension of scheduled HOSC activities that may share resources needed by the BCC. For example, the MCC is monitoring a hurricane in the Gulf of Mexico. As the threat to MCC

  2. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.

    2007-04-01

    Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.

  3. Auditory backup alarms: distance-at-first-detection via in-situ experimentation on alarm design and hearing protection effects.

    PubMed

    Alali, Khaled; Casali, John G

    2012-01-01

    The purpose of this study was to assess normal hearing listeners' performance in detecting a stationary backup alarm signal and to quantify the linear distance at detection point. Detection distances for 12 participants with normal hearing were measured while they were fitted with 7 hearing protectors and while they were unoccluded (open ear). A standard (narrowband) backup alarm signal and a broadband (pulsed white noise) backup alarm signal from Brigade[1] were used. The method of limits, with distance as the physical measurement variable and threshold detection as the task, was employed to find at which distance the participant could first detect the backup alarms. A within-subject Analysis of Variance (ANOVA) revealed a significant main effect of the listening conditions on the detection distance in feet. Post hoc analyses indicated that the Bilsom L3HV conventional passive earmuff (at 1132.2 ft detection distance) was significantly poorer compared to all other HPDs and the open ear in detection distance achieved, and that there were no statistically-significant differences between the unoccluded ear (1652.3 ft), EB-15-Lo BlastPLGTM (1546.2 ft), EB-15-Hi BlastPLGTM (1543.4 ft), E-A-R/3M Combat ArmsTM earplug-nonlinear, level-dependent state (1507.8 ft), E-A-R/3M HiFiTM earplug (1497.7 ft), and Bilsom ImpactTM dichotic electronic earmuff (1567.2 ft). In addition, the E-A-R/3M Combat ArmsTM earplug-passive steady state resulted in significantly longer detection distances than only the open ear condition, at 1474.1 ft versus 1652.3 ft for the open ear. ANOVA also revealed a significant main effect of the backup alarm type on detection distance. The means were 1600.9 ft for the standard (narrowband) backup alarm signal, and a significantly closer 1379.4 ft was required for the Brigade broadband backup alarm signal. For on-ground workers, it is crucial to detect backup alarm signals as far away as possible rather than at close distances since this will provide them

  4. Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Piotrowska, A.; Chorowski, M.; Dorosz, P.

    2017-02-01

    Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.

  5. Development of the LSF95xx 2nd generation flexure bearing coolers

    NASA Astrophysics Data System (ADS)

    Mullie, J. C.; Bruins, P. C.; Benschop, T.; Meijers, M.

    2005-05-01

    Thales Cryogenics has been working on high reliability cryocoolers since 1997. During this period two cooler series have been developed, the LSF91xx series for cooling powers up to 3W at 80K and the LSF93xx series for cooling powers up to 8W at 80K. As a result of several design improvements, it was possible to decrease the length and mass of our flexure-bearing coolers. These improvements have been applied in the new LSF95xx series. With the length and mass reduction, the LSF95xx complies with the SADA II specification with respect to envelope and mass. Based on this, Thales Cryogenics is the first manufacturer offering a full flexure-bearing supported cooler that fits within the SADA II envelope. By using a moving magnet configuration in all our flexure-bearing coolers, the risk with respect to contamination problems due to out-gassing has been diminished because the coils are not part of the helium circuit. Furthermore, all connections in the LSF95xx are laser-welded, which means that there is no additional locking required inside the cooler. By using a different magnet design, no magnet segments have to be glued together, which decreases the risk of out-gassing and increases the reliability even more. This paper describes the trade-offs that have been considered in the design phase, and gives a detailed overview of the test results, the status of the qualification program and the resulting specification of the LSF95xx cooler series.

  6. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    USGS Publications Warehouse

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  7. BackUp: Development and evaluation of a smart-phone application for coping with suicidal crises

    PubMed Central

    Aerts, Saskia; Muijzers, Ekke; De Jaegere, Eva; van Heeringen, Kees; Portzky, Gwendolyn

    2017-01-01

    Background Suicide is a major public health issue and has large impact on the lives of many people. Innovative technologies such as smartphones could create new possibilities for suicide prevention, such as helping to overcome the barriers and stigma on help seeking in case of suicidal ideation. Due to their omnipresence, smartphone apps can offer suicide prevention tools very fast, they are easily-accessible, low-threshold and can help overcome some of the help-seeking barriers suicidal people experience. This article describes the development, testing and implementation of a mobile application for coping with suicidal crisis: BackUp. Methods Based on the analysis of literature and existing suicide prevention apps several tools were identified as relevant to include in a suicide prevention app. The selected tools (a safety planning tool, a hope box, a coping cards module, and a module to reach out) are evidence based in a face to face context, and could be easily transferred into a mobile app. The testing of existing apps and the literature also revealed important guidelines for the technical development of the application. Results BackUp was developed and tested by an expert panel (n = 9) and a panel of end users (n = 21). Both groups rated BackUp as valuable for suicide prevention. Suicidal ideation of the end user group was measured using the Beck Scale for Suicidal Ideation before and after testing BackUp, and showed a small but non-significant decrease. The majority of the testers used BackUp several times. All tools were evaluated as rather or very useable in times of suicidal crisis. Conclusion BackUp was positively evaluated and indicates that self-help tools can have a positive impact on suicidal ideation. Apps in particular create opportunities in approaching people that are not reached by traditional interventions; on the other hand they can contribute to suicide prevention in addition to regular care. However, more research is needed on the impact and

  8. Experimental investigation on the miniature mixed refrigerant cooler driven by a mini-compressor

    NASA Astrophysics Data System (ADS)

    Chen, Gaofei; Gong, Maoqiong; Wu, Yinong

    2018-05-01

    Three miniature Joule-Thomson cryogenic coolers and a testing set up were built to investigate the cooling performance in this work. Shell-and-tube heat exchanger and plate fin heat exchangers with rectangular micro channels were designed to achieve high specific surface area. The main processing technology of micro mixed refrigerant cooler (MMRC) was described. The design and fabrication processing of the plate fin heat exchangers were also described. The new developed micro plate-fin type heat exchanger shows high compactness with the specific heat surface larger than 1.0x104 m2/m3. The results of experimental investigations on miniature mixed refrigerant J-T cryogenic coolers driven by a Mini-Compressor were discussed. The performance evaluation and comparison of the three coolers was made to find out the features for each type of cooler. Expressions of refrigeration coefficient and exergy efficiency were pointed out. No-load temperature of about 112 K, and the cooling power of 4.0W at 118K with the input power of 120W is achieved. The exergy efficiency of the SJTC is 5.14%.

  9. Close up of backup exciter showing induction motor at left ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up of backup exciter showing induction motor at left and direct current generator at right. View to west - Mystic Lake Hydroelectric Facility, Powerhouse, Along West Rosebud Creek, 1 3/4 miles northeast of Mystic Lake Dam, Fishtail, Stillwater County, MT

  10. MEMS Stirling Cooler Development Update

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Wesolek, Danielle

    2003-01-01

    This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.

  11. Back-Up Childcare: A Quality Alternative to Regular Care Which Fosters Resilience in Infants and Toddlers.

    ERIC Educational Resources Information Center

    La Bar, Nicole J.

    To many in the field of early care and education, back-up child care may be viewed as a stressful disruption that could interfere with attachment and be detrimental to continuity of care. This paper attempts to prove that high-quality back-up child care offered by employers actually fosters the development of resiliency in young children by…

  12. Digital control of magnetic bearings in a cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Feeley, J.; Law, A.; Lind, F.

    1990-01-01

    This paper describes the design of a digital control system for control of magnetic bearings used in a spaceborne cryogenic cooler. The cooler was developed by Philips Laboratories for the NASA Goddard Space Flight Center. Six magnetic bearing assemblies are used to levitate the piston, displacer, and counter-balance of the cooler. The piston and displacer are driven by linear motors in accordance with Stirling cycle thermodynamic principles to produce the desired cooling effect. The counter-balance is driven by a third linear motor to cancel motion induced forces that would otherwise be transmitted to the spacecraft. An analog control system is currently used for bearing control. The purpose of this project is to investigate the possibilities for improved performance using digital control. Areas for potential improvement include transient and steady state control characteristics, robustness, reliability, adaptability, alternate control modes, size, weight, and cost. The present control system is targeted for the Intel 80196 microcontroller family. The eventual introduction of application specific integrated circuit (ASIC) technology to this problem may produce a unique and elegant solution both here and in related industrial problems.

  13. CFD study of a simple orifice pulse tube cooler

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Qiu, L. M.; Gan, Z. H.; He, Y. L.

    2007-05-01

    Pulse tube cooler (PTC) has the advantages of long-life and low vibration over the conventional cryocoolers, such as G-M and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional axis-symmetric computational fluid dynamic (CFD) simulation of a GM-type simple orifice PTC (OPTC). The detailed modeling process and the general results such as the phase difference between velocity and pressure at cold end, the temperature profiles along the wall as well as the temperature oscillations at cold end with different heat loads are presented. Emphases are put on analyzing the complicated phenomena of multi-dimensional flow and heat transfer in the pulse tube under conditions of oscillating pressure. Swirling flow pattern in the pulse tube is observed and the mechanism of formation is analyzed in details, which is further validated by modeling a basic PTC. The swirl causes undesirable mixing in the thermally stratified fluid and is partially responsible for the poor overall performance of the cooler, such as unsteady cold-end temperature.

  14. Modeling of Hydrate Formation Mode in Raw Natural Gas Air Coolers

    NASA Astrophysics Data System (ADS)

    Scherbinin, S. V.; Prakhova, M. Yu; Krasnov, A. N.; Khoroshavina, E. A.

    2018-05-01

    Air cooling units (ACU) are used at all the gas fields for cooling natural gas after compressing. When using ACUs on raw (wet) gas in a low temperature condition, there is a danger of hydrate plug formation in the heat exchanging tubes of the ACU. To predict possible hydrate formation, a mathematical model of the air cooler thermal behavior used in the control system shall adequately calculate not only gas temperature at the cooler's outlet, but also a dew point value, a temperature at which condensation, as well as the gas hydrate formation point, onsets. This paper proposes a mathematical model allowing one to determine the pressure in the air cooler which makes hydrate formation for a given gas composition possible.

  15. Official portrait of STS-65 backup Payload Specialist Jean-Jacques Favier

    NASA Image and Video Library

    1993-09-30

    Official portrait of STS-65 International Microgravity Laboratory 2 (IML-2) backup Payload Specialist Jean-Jacques Favier. Favier is a member of the Centre National D'Etudes Spatiales (CNES), the French space agency.

  16. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  17. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  18. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  19. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  20. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  1. Advances in a high efficiency commercial pulse tube cooler

    NASA Astrophysics Data System (ADS)

    Zhang, Yibing; Li, Haibing; Wang, Xiaotao; Dai, Wei; Yang, Zhaohui; Luo, Ercang

    2017-12-01

    The pulse tube cryocooler has the advantage of no moving part at the cold end and offers a high reliability. To further extend its use in commercial applications, efforts are still needed to improve efficiency, reliability and cost effectiveness. This paper generalizes several key innovations in our newest cooler. The cooler consists of a moving magnet compressor with dual-opposed pistons, and a co-axial cold finger. Ambient displacers are employed to recover the expansion work to increase cooling efficiency. Inside the cold finger, the conventional flow straightener screens are replaced by a tapered throat between the cold heat exchanger and the pulse tube to strengthen its immunity to the working gas contamination as well as to simplify the manufacturing processes. The cold heat exchanger is made by copper forging process which further reduces the cost. Inside the compressor, a new gas bearing design has brought in assembling simplicity and running reliability. Besides the cooler itself, electronic controller is also important for actual application. A dual channel and dual driving mode control mechanism has been selected, which reduces the vibration to a minimum, meanwhile the cool-down speed becomes faster and run-time efficiency is higher. With these innovations, the cooler TC4189 reached a no-load temperature of 44 K and provided 15 W cooling power at 80K, with an input electric power of 244 W and a cooling water temperature of 23 ℃. The efficiency reached 16.9% of Carnot at 80 K. The whole system has a total mass of 4.3 kg.

  2. Simulating cloud environment for HIS backup using secret sharing.

    PubMed

    Kuroda, Tomohiro; Kimura, Eizen; Matsumura, Yasushi; Yamashita, Yoshinori; Hiramatsu, Haruhiko; Kume, Naoto

    2013-01-01

    In the face of a disaster hospitals are expected to be able to continue providing efficient and high-quality care to patients. It is therefore crucial for hospitals to develop business continuity plans (BCPs) that identify their vulnerabilities, and prepare procedures to overcome them. A key aspect of most hospitals' BCPs is creating the backup of the hospital information system (HIS) data at multiple remote sites. However, the need to keep the data confidential dramatically increases the costs of making such backups. Secret sharing is a method to split an original secret message so that individual pieces are meaningless, but putting sufficient number of pieces together reveals the original message. It allows creation of pseudo-redundant arrays of independent disks for privacy-sensitive data over the Internet. We developed a secret sharing environment for StarBED, a large-scale network experiment environment, and evaluated its potential and performance during disaster recovery. Simulation results showed that the entire main HIS database of Kyoto University Hospital could be retrieved within three days even if one of the distributed storage systems crashed during a disaster.

  3. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed onmore » a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.« less

  4. MEMS based shock pulse detection sensor for improved rotary Stirling cooler end of life prediction

    NASA Astrophysics Data System (ADS)

    Hübner, M.; Münzberg, M.

    2018-05-01

    The widespread use of rotary Stirling coolers in high performance thermal imagers used for critical 24/7 surveillance tasks justifies any effort to significantly enhance the reliability and predictable uptime of those coolers. Typically the lifetime of the whole imaging device is limited due to continuous wear and finally failure of the rotary compressor of the Stirling cooler, especially due to failure of the comprised bearings. MTTF based lifetime predictions, even based on refined MTTF models taking operational scenario dependent scaling factors into account, still lack in precision to forecast accurately the end of life (EOL) of individual coolers. Consequently preventive maintenance of individual coolers to avoid failures of the main sensor in critical operational scenarios are very costly or even useless. We have developed an integrated test method based on `Micro Electromechanical Systems', so called MEMS sensors, which significantly improves the cooler EOL prediction. The recently commercially available MEMS acceleration sensors have mechanical resonance frequencies up to 50 kHz. They are able to detect solid borne shock pulses in the cooler structure, originating from e.g. metal on metal impacts driven by periodical forces acting on moving inner parts of the rotary compressor within wear dependent slack and play. The impact driven transient shock pulse analyses uses only the high frequency signal <10kHz and differs therefore from the commonly used broadband low frequencies vibrational analysis of reciprocating machines. It offers a direct indicator of the individual state of wear. The predictive cooler lifetime model based on the shock pulse analysis is presented and results are discussed.

  5. Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-12-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.

  6. 51. VIEW OF CRUSHER ADDITION FROM EAST. SHOWS BAKER COOLER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. VIEW OF CRUSHER ADDITION FROM EAST. SHOWS BAKER COOLER AT LOWER LEFT, AND FOUNDATIONS FOR ROD MILL BETWEEN COOLER AND STEPHENS-ADAMSON INCLINED BUCKET ELEVATOR. THE BELT CONVEYOR TO RIGHT OF ELEVATOR FED ELEVATOR FROM ROD MILL. 100-TON ORE BIN AND DUST COLLECTOR IS BEHIND FRAMING BENT. NOTE CONVEYOR EMERGING FROM BOTTOM OF ORE BIN, THIS AND THE INCLINED ELEVATOR FED THE SYMONS SCREEN (MISSING). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  7. STS-47 Payload Specialist Mohri and Japanese backups pose in SLJ module at KSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 payload specialists representing Japan's National Space Development Agency (NASDA) examine the interior of the Spacelab Japan (SLJ) laboratory module recently installed in Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB). Left to right are Payload Specialist Mamoru Mohri, backup Payload Specialist Chiaki Naito-Mukai, and backup Payload Specialist Takao Doi. The crewmembers visited OV-105, currently undergoing preflight processing in a high bay area of Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF). View provided by KSC with alternate KSC number KSC-92PC-1649.

  8. Mechanical Backup For Fly-By-Wire Control System

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1992-01-01

    Mechanical device eliminates need for redundant fly-by-wire subsystems. Main components are two linkages. One connected to control column in conventional, reversible control system. Other slides inside first linkage and connected to pilot's control wheel. In addition to aircraft applications, design used in control systems in which computer control desirable but safety backup systems required; for example, in boat rudders, engine controls in boats and automobiles, and controls in construction equipment.

  9. STS-55 German payload specialists and backups pose in front of SL-D2 at KSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, German payload specialists and backup (alternate) payload specialists pose in front of the Spacelab Deutsche 2 (SL-D2) science module at a Kennedy Space Center (KSC) processing facility. These four Germans have been assigned to support the STS-55/SL-D2 mission. Left to right are Payload Specialist 2 Hans Schlegel, backup Payload Specialist Dr. P. Gerhard Thiele (kneeling), Payload Specialist 1 Ulrich Walter, and backup Payload Specialist Renate Brummer. Walter and Schlegel are scheduled to fly aboard OV-102 for the mission while Brummer and Thiele will serve as alternates and fill supportive roles on the ground. Clearly visible on the SL-D2 module are the European Space Agency (ESA) insignia, the feedthrough plate, and the D2 insignia.

  10. Low cost split stirling cryogenic cooler for aerospace applications

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Zechtzer, Semeon; Pundak, Nachman; Riabzev, Sergey; Kirckconnel, C.; Freeman, Jeremy

    2012-06-01

    Cryogenic coolers are used in association with sensitive electronics and sensors for military, commercial or scientific space payloads. The general requirements are high reliability and power efficiency, low vibration export and ability to survive launch vibration extremes and long-term exposure to space radiation. A long standing paradigm of using exclusively space heritage derivatives of legendary "Oxford" cryocoolers featuring linear actuators, flexural bearings, contactless seals and active vibration cancellation is so far the best known practice aiming at delivering high reliability components for the critical and usually expensive space missions. The recent tendency of developing mini and micro satellites for the budget constrained missions has spurred attempts to adapt leading-edge tactical cryogenic coolers to meet the space requirements. The authors are disclosing theoretical and practical aspects of a collaborative effort on developing a space qualified cryogenic refrigerator based on the Ricor model K527 tactical cooler and Iris Technology radiation hardened, low cost cryocooler electronics. The initially targeted applications are cost-sensitive flight experiments, but should the results show promise, some long-life "traditional" cryocooler missions may well be satisfied by this approach.

  11. Visibility of children behind 2010-2013 model year passenger vehicles using glances, mirrors, and backup cameras and parking sensors.

    PubMed

    Kidd, David G; Brethwaite, Andrew

    2014-05-01

    This study identified the areas behind vehicles where younger and older children are not visible and measured the extent to which vehicle technologies improve visibility. Rear visibility of targets simulating the heights of a 12-15-month-old, a 30-36-month-old, and a 60-72-month-old child was assessed in 21 2010-2013 model year passenger vehicles with a backup camera or a backup camera plus parking sensor system. The average blind zone for a 12-15-month-old was twice as large as it was for a 60-72-month-old. Large SUVs had the worst rear visibility and small cars had the best. Increases in rear visibility provided by backup cameras were larger than the non-visible areas detected by parking sensors, but parking sensors detected objects in areas near the rear of the vehicle that were not visible in the camera or other fields of view. Overall, backup cameras and backup cameras plus parking sensors reduced the blind zone by around 90 percent on average and have the potential to prevent backover crashes if drivers use the technology appropriately. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Radiation cooler for 10 micrometer wavelength engineering model receiver model no. 7172, serial no. 201

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, fabrication, and testing of a radiative cooler are described. This cooler is an engineering model suitable for bench testing in the laboratory as a part of the 10-micrometer wavelength engineering model receiver, and conforms to the standard radiative cooler configuration, except that the inner stage and its support system were redesigned to accommodate the larger, heavier SAT detector. This radiative cooler will cool the detector to cryogenic temperature levels when the receiver is in a space environment or in a suitable thermal vacuum chamber. Equipment specifications are given along with the results of thermal tests, vibration tests, and electrical integrity tests.

  13. Low vibration microminiature split Stirling cryogenic cooler for infrared aerospace applications

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnel, C.; Freeman, J.; Riabzev, S.

    2011-06-01

    The operation of the thermo-mechanical unit of a cryogenic cooler may originate a resonant excitation of the spacecraft frame, optical bench or components of the optical train. This may result in degraded functionality of the inherently vibration sensitive space-borne infrared imager directly associated with the cooler or neighboring instrumentation typically requiring a quiet micro-g environment. The best practice for controlling cooler induced vibration relies on the principle of active momentum cancellation. In particular, the pressure wave generator typically contains two oppositely actuated piston compressors, while the single piston expander is counterbalanced by an auxiliary active counter-balancer. Active vibration cancellation is supervised by a dedicated DSP feed-forward controller, where the error signals are delivered by the vibration sensors (accelerometers or load cells). This can result in oversized, overweight and overpriced cryogenic coolers with degraded electromechanical performance and impaired reliability. The authors are advocating a reliable, compact, cost and power saving approach capitalizing on the combined application of a passive tuned dynamic absorber and a low frequency vibration isolator. This concept appears to be especially suitable for low budget missions involving mini and micro satellites, where price, size, weight and power consumption are of concern. The authors reveal the results of theoretical study and experimentation on the attainable performance using a fullscale technology demonstrator relying on a Ricor model K527 tactical split Stirling cryogenic cooler. The theoretical predictions are in fair agreement with the experimental data. From experimentation, the residual vibration export is quite suitable for demanding wide range of aerospace applications. The authors give practical recommendations on heatsinking and further maximizing performance.

  14. Improvement of cooldown time of LSF9599 flexure-bearing SADA cooler

    NASA Astrophysics Data System (ADS)

    Mullié, Jeroen; vd Groep, Willem; Bruins, Peter; Benschop, Tonny; de Koning, Arjan; Dam, Jacques

    2006-05-01

    Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing supported cooler that fits within the SADA II envelope, Thales Cryogenics has been selected in several new (military) programs with their LSF coolers. For many of these new programs, the cooldown time requirements are more stringent than in the past, whereas at the same time size, complexity and thus thermal mass of the infrared sensor tends to increase. In order to respond to the need created by the combination of these trends, Thales Cryogenics started a development program to optimize cryogenic performance of the LSF 9599 cooler. The main goal for the development program is to reduce the cooldown time, while maintaining the SADA II compatible interface, and maintaining the robustness and proven reliability of the cooler. Within these constraints, the regenerator was further optimized using among others the experience with mixed-gauze regenerators obtained from our pulse tube research. Using the mixed gauze approach, the heat storage capacity of the regenerator is adapted as a function of the temperature profile over the regenerator, thus giving the optimum balance between heat storage capacity and pressure drop. A novel way of constructing the regenerator further decreases shuttle heat losses and other thermal losses in the regenerator. This paper describes the first results of the trade-offs and gives an overview of impact on cooldown times and efficiency figures achieved after the regenerator and displacer optimization.

  15. Note: Sub-Kelvin refrigeration with dry-coolers on a rotating system.

    PubMed

    Oguri, S; Ishitsuka, H; Choi, J; Kawai, M; Tajima, O

    2014-08-01

    We developed a cryogenic system on a rotating table that achieves sub-Kelvin conditions. The cryogenic system consists of a helium sorption cooler and a pulse tube cooler in a cryostat mounted on a rotating table. Two rotary-joint connectors for electricity and helium gas circulation enable the coolers to be operated and maintained with ease. We performed cool-down tests under a condition of continuous rotation at 20 rpm. We obtained a temperature of 0.23 K with a holding time of more than 24 h, thus complying with catalog specifications. We monitored the system's performance for four weeks; two weeks with and without rotation. A few-percent difference in conditions was observed between these two states. Most applications can tolerate such a slight difference. The technology developed is useful for various scientific applications requiring sub-Kelvin conditions on rotating platforms.

  16. Reliability improvements on Thales RM2 rotary Stirling coolers: analysis and methodology

    NASA Astrophysics Data System (ADS)

    Cauquil, J. M.; Seguineau, C.; Martin, J.-Y.; Benschop, T.

    2016-05-01

    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The cooler reliability is thus one of its most important parameters. This parameter has to increase to answer market needs. To do this, the data for identifying the weakest element determining cooler reliability has to be collected. Yet, data collection based on field are hardly usable due to lack of informations. A method for identifying the improvement in reliability has then to be set up which can be used even without field return. This paper will describe the method followed by Thales Cryogénie SAS to reach such a result. First, a database was built from extensive expertizes of RM2 failures occurring in accelerate ageing. Failure modes have then been identified and corrective actions achieved. Besides this, a hierarchical organization of the functions of the cooler has been done with regard to the potential increase of its efficiency. Specific changes have been introduced on the functions most likely to impact efficiency. The link between efficiency and reliability will be described in this paper. The work on the two axes - weak spots for cooler reliability and efficiency - permitted us to increase in a drastic way the MTTF of the RM2 cooler. Huge improvements in RM2 reliability are actually proven by both field return and reliability monitoring. These figures will be discussed in the paper.

  17. Study of a solid hydrogen cooler for spacecraft instruments and sensors

    NASA Astrophysics Data System (ADS)

    Sherman, A.

    1980-08-01

    The results of tests and studies to investigate the utilization of solid hydrogen for cooling of spacecraft instruments and sensors are presented. The results are presented in two sections; the first describing the tests in which an existing single stage solid cooler was filled and tested with solid hydrogen and the second which describes the analysis and design of a catalytic converter which will be tested in the vent line of the cooler.

  18. Study of a solid hydrogen cooler for spacecraft instruments and sensors

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1980-01-01

    The results of tests and studies to investigate the utilization of solid hydrogen for cooling of spacecraft instruments and sensors are presented. The results are presented in two sections; the first describing the tests in which an existing single stage solid cooler was filled and tested with solid hydrogen and the second which describes the analysis and design of a catalytic converter which will be tested in the vent line of the cooler.

  19. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Shandross, Richard; Weintraub, Daniel

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  20. Simulations of space charge neutralization in a magnetized electron cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerity, James; McIntyre, Peter M.; Bruhwiler, David Leslie

    Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.

  1. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Terry A.; Kariya, Harumichi Arthur; Leick, Michael T.

    This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.

  2. An audible automobile back-up pedestrian warning device--development and evaluation

    DOT National Transportation Integrated Search

    1976-11-01

    The purpose of the study was to develop and field-test an audible back-up warning device for use on automobiles. Detailed criteria of pedestrian age and hearing ability combined with noise characteristics of typical accident sites provide the basis f...

  3. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions

    NASA Astrophysics Data System (ADS)

    Xu, Jiwei; Wu, Huijuan; Xiao, Shunkun

    2014-12-01

    A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1× N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.

  4. Outcomes of nonemergent percutaneous coronary intervention with and without on-site surgical backup: a meta-analysis.

    PubMed

    Singh, Param Puneet; Singh, Mukesh; Bedi, Updesh Singh; Adigopula, Sasikanth; Singh, Sarabjeet; Kodumuri, Vamsi; Molnar, Janos; Ahmed, Aziz; Arora, Rohit; Khosla, Sandeep

    2011-01-01

    Despite major advances in percutaneous coronary intervention (PCI) techniques, the current guidelines recommend against elective PCI at hospitals without on-site cardiac surgery backup. Nonetheless, an increasing number of hospitals without on-site cardiac surgery in the United States have developed programs for elective PCI. Studies evaluating outcome in this setting have yielded mixed results, leaving the question unanswered. Hence, a meta-analysis comparing outcomes of nonemergent PCI in hospitals with and without on-site surgical backup was performed. A systematic review of literature identified four studies involving 6817 patients. Three clinical end points were extracted from each study and included in-hospital death, myocardial infarction, and the need for emergency coronary artery bypass grafting. The studies were homogenous for each outcome studied. Therefore, the combined relative risks (RRs) across all the studies and the 95% confidence intervals (CIs) were computed using the Mantel-Haenszel fixed-effect model. A two-sided alpha error less than 0.05 was considered to be statistically significant. Compared with facilities with on-site surgical backup, the risk of in-hospital death (RR, 2.7; CI, 0.6-12.9; P = 0.18), nonfatal myocardial infarction (RR, 1.3; CI, 0.7- 2.2; P = 0.29), and need of emergent coronary artery bypass grafting (RR, 0.46; CI, 0.06- 3.1; P = 0.43) was similar in those lacking on-site surgical backup. The present meta-analysis suggests that there is no difference in the outcome with regard to risk of nonfatal myocardial infarction, need for emergency coronary artery bypass grafting, and the risk of death in patients undergoing elective PCI in hospitals with and without on-site cardiac surgery backup.

  5. 46 CFR 169.607 - Keel cooler installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...

  6. 46 CFR 169.607 - Keel cooler installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...

  7. 46 CFR 169.607 - Keel cooler installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...

  8. 46 CFR 169.607 - Keel cooler installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...

  9. 46 CFR 169.607 - Keel cooler installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...

  10. Comparative analysis of linear motor geometries for Stirling coolers

    NASA Astrophysics Data System (ADS)

    R, Rajesh V.; Kuzhiveli, Biju T.

    2017-12-01

    Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.

  11. Thermoelectric Coolers with Sintered Silver Interconnects

    NASA Astrophysics Data System (ADS)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  12. STS-9 payload specialist Merbold and backup Ockels in training session

    NASA Technical Reports Server (NTRS)

    1983-01-01

    STS-9 payload specialist Ulf Merbold, right, a West German physicist and backup Wubbo Ockels, a Dutch scientist, are pictured in a training session in JSC's Shuttle mockup and integration laboratory. In this view Ockels appears to be showing Merbold how to operate a camera.

  13. 30 CFR 57.14132 - Horns and backup alarms for surface equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14132 Horns and backup alarms for surface equipment. (a) Manually-operated horns or other audible warning devices provided on self-propelled mobile equipment as a safety device shall be maintained in a functional...

  14. Novel desiccant cooling system using indirect evaporative cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belding, W.A.; Delmas, M.P.F.

    1997-12-31

    An effective desiccant cooling system must efficiently reject adsorption and carryover heat from the process airstream. Rotary heat exchangers are typically used to remove this heat in currently available desiccant equipment, but these devices can leak humid air from the regeneration side of the process into the dry process side, degrading performance. Using a different approach, high cooling capacities and coefficients of performance (COPs) have been achieved in a desiccant cooling system without a heat wheel or bulky stationary heat exchanger. Using a desiccant wheel in conjunction with a compact indirect evaporative cooler and a small air-to-air heat exchanger, amore » cooling system has been developed that eliminates the need for deep dehumidification by the desiccant wheel and at the same time provides 25% to 35% ventilation air to the conditioned space. Using a 0.68 m (27 in.) diameter by 0.2 m (8 in.) deep type 1 M desiccant wheel regenerated at 175 C (347 F), 15.0 kW (4.3 tons) of cooling were achieved with a thermal COP of 0.72. With the addition of a direct evaporative cooler, humidity control over a broad range can be offered by the system. The low desiccant wheel volume and the compact nature of the indirect evaporative coolers result in equipment with a low potential first cost, assuming economies of scale. Equipment presently under development is expected to exceed a gross cooling COP of 0.9.« less

  15. Primary Exhaust Cooler at the Propulsion Systems Laboratory

    NASA Image and Video Library

    1952-09-21

    One of the two primary coolers at the Propulsion Systems Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Engines could be run in simulated altitude conditions inside the facility’s two 14-foot-diameter and 24-foot-long test chambers. The Propulsion Systems Laboratory was the nation’s only facility that could run large full-size engine systems in controlled altitude conditions. At the time of this photograph, construction of the facility had recently been completed. Although not a wind tunnel, the Propulsion Systems Laboratory generated high-speed airflow through the interior of the engine. The air flow was pushed through the system by large compressors, adjusted by heating or refrigerating equipment, and de-moisturized by air dryers. The exhaust system served two roles: reducing the density of the air in the test chambers to simulate high altitudes and removing hot gases exhausted by the engines being tested. It was necessary to reduce the temperature of the extremely hot engine exhaust before the air reached the exhauster equipment. As the air flow exited through exhaust section of the test chamber, it entered into the giant primary cooler seen in this photograph. Narrow fins or vanes inside the cooler were filled with water. As the air flow passed between the vanes, its heat was transferred to the cooling water. The cooling water was cycled out of the system, carrying with it much of the exhaust heat.

  16. The amino acid's backup bone - storage solutions for proteomics facilities.

    PubMed

    Meckel, Hagen; Stephan, Christian; Bunse, Christian; Krafzik, Michael; Reher, Christopher; Kohl, Michael; Meyer, Helmut Erich; Eisenacher, Martin

    2014-01-01

    Proteomics methods, especially high-throughput mass spectrometry analysis have been continually developed and improved over the years. The analysis of complex biological samples produces large volumes of raw data. Data storage and recovery management pose substantial challenges to biomedical or proteomic facilities regarding backup and archiving concepts as well as hardware requirements. In this article we describe differences between the terms backup and archive with regard to manual and automatic approaches. We also introduce different storage concepts and technologies from transportable media to professional solutions such as redundant array of independent disks (RAID) systems, network attached storages (NAS) and storage area network (SAN). Moreover, we present a software solution, which we developed for the purpose of long-term preservation of large mass spectrometry raw data files on an object storage device (OSD) archiving system. Finally, advantages, disadvantages, and experiences from routine operations of the presented concepts and technologies are evaluated and discussed. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013. Published by Elsevier B.V.

  17. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  18. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.

    1983-01-01

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

  19. Apollo 9 backup crew on "Retriever"-Ships

    NASA Image and Video Library

    1968-12-06

    S68-51700 (November 1968) --- The backup crew of the Apollo 9 (Spacecraft 104/ Lunar Module 3/ Saturn 504) space mission stands on the deck of the NASA Motor Vessel Retriever (MVR) prior to participating in water egress training in the Gulf of Mexico. Left to right, are astronauts Charles Conrad Jr. (holding hatch), Richard F. Gordon Jr., and Alan L. Bean. They are standing by the Apollo command module trainer which was used in the exercise. Since this photograph was made, these three astronauts have been named as the prime crew of the Apollo 12 lunar landing mission.

  20. 26 CFR 31.3406-0 - Outline of the backup withholding regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... incorrect name/TIN combination. (2) Definition of account. (3) Definition of business day. (4) Certain exceptions. (c) Notice regarding an incorrect name/TIN combination. (1) In general. (2) Additional... of receipt. (d) Notice from payors of backup withholding due to an incorrect name/TIN combination. (1...

  1. Particle Cooler/Generator Module in the MRM1

    NASA Image and Video Library

    2014-01-13

    ISS038-E-029764 (13 Jan. 2014) --- Russian cosmonaut Oleg Kotov, Expedition 38 commander, sets up the Particle Cooler/Generator Module for the Kaplya-2 experiment in the Rassvet Mini-Research Module 1 (MRM1) of the International Space Station.

  2. CFD analysis of turboprop engine oil cooler duct for best rate of climb condition

    NASA Astrophysics Data System (ADS)

    Kalia, Saurabh; CA, Vinay; Hegde, Suresh M.

    2016-09-01

    Turboprop engines are widely used in commuter category airplanes. Aircraft Design bureaus routinely conduct the flight tests to confirm the performance of the system. The lubrication system of the engine is designed to provide a constant supply of clean lubrication oil to the engine bearings, the reduction gears, the torque-meter, the propeller and the accessory gearbox. The oil lubricates, cools and also conducts foreign material to the oil filter where it is removed from further circulation. Thus a means of cooling the engine oil must be provided and a suitable oil cooler (OC) and ducting system was selected and designed for this purpose. In this context, it is relevant to study and analyse behaviour of the engine oil cooler system before commencing actual flight tests. In this paper, the performance of the oil cooler duct with twin flush NACA inlet housed inside the nacelle has been studied for aircraft best rate of climb (ROC) condition using RANS based SST K-omega model by commercial software ANSYS Fluent 13.0. From the CFD analysis results, it is found that the mass flow rate captured and pressure drop across the oil cooler for the best ROC condition is meeting the oil cooler manufacturer requirements thus, the engine oil temperature is maintained within prescribed limits.

  3. Elimination of Mycobacterium chimaera in a heater cooler device used during on-pump cardiothoracic surgery.

    PubMed

    Nielsen, Conny; Winther, Conni L; Thomsen, Philip K; Andreasen, Jan J

    2017-09-01

    Since 2014, several infections with non-tuberculous mycobacteria (NTM) belonging to the species Mycobacterium ( M.) chimaera have been associated with the use of heater-cooler devices during on-pump cardiothoracic surgery both in European countries and the United States of America. Infections have been detected after surgery, with a delay of a few months and up to five years. Bacterial contamination of heater-cooler devices has also been described without any associated infections. In many centres, it has been a challenging task to eliminate NTM from the heater-cooler devices in order to reduce the risk to patients. In this case-report, we describe how we managed to achieve negative cultures for M. chimaera by changing the cleaning procedure of the Sorin Group Heater-Cooler System with three tanks.

  4. Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks

    NASA Astrophysics Data System (ADS)

    Din, Der-Rong; Huang, Jen-Shen

    2014-03-01

    As networks grow in size and complexity, the chance and the impact of failures increase dramatically. The pre-allocated backup resources cannot provide 100% protection guarantee when continuous failures occur in a network. In this paper, the multicast backup re-provisioning problem (MBRP) for Hamiltonian cycle (HC)-based protection on WDM networks for the link-failure case is studied. We focus on how to recover the protecting capabilities of Hamiltonian cycle against the subsequent link-failures on WDM networks for multicast transmissions, after recovering the multicast trees affected by the previous link-failure. Since this problem is a hard problem, an algorithm, which consists of several heuristics and a genetic algorithm (GA), is proposed to solve it. The simulation results of the proposed method are also given. Experimental results indicate that the proposed algorithm can solve this problem efficiently.

  5. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1994-01-01

    Progress over the past year includes the following: A simplified rotor model with a flexible shaft and backup bearings has been developed. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501. The magnetic bearing test rig is currently floating and dynamics/control tests are being conducted. A paper has been written that documents the work using the T-501 engine model. Work has continued with the simplified model. The finite element model is currently being modified to include the effects of foundation dynamics. A literature search for material on foil bearings has been conducted. A finite element model is being developed for a magnetic bearing in series with a foil backup bearing.

  6. 12. Detail of clutch and backup gasoline engine for powering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail of clutch and backup gasoline engine for powering Stoney gates. Clutch mechanism manufactured by Baldridge Machine Company, Detroit, Michigan, ca. 1910. Instrument to the left records volume of flow through headworks. View looking south towards Stoney gates. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  7. 38 CFR 17.230 - Contingency backup to the Department of Defense.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Contingency backup to the Department of Defense. 17.230 Section 17.230 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... the Department of Defense. (a) Priority care to active duty personnel. The Secretary, during and/or...

  8. 38 CFR 17.230 - Contingency backup to the Department of Defense.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Contingency backup to the Department of Defense. 17.230 Section 17.230 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... the Department of Defense. (a) Priority care to active duty personnel. The Secretary, during and/or...

  9. 38 CFR 17.230 - Contingency backup to the Department of Defense.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Contingency backup to the Department of Defense. 17.230 Section 17.230 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... the Department of Defense. (a) Priority care to active duty personnel. The Secretary, during and/or...

  10. 38 CFR 17.230 - Contingency backup to the Department of Defense.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Contingency backup to the Department of Defense. 17.230 Section 17.230 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... the Department of Defense. (a) Priority care to active duty personnel. The Secretary, during and/or...

  11. 38 CFR 17.230 - Contingency backup to the Department of Defense.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Contingency backup to the Department of Defense. 17.230 Section 17.230 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... the Department of Defense. (a) Priority care to active duty personnel. The Secretary, during and/or...

  12. Clinical experiences utilizing wireless remote control and an ASP model backup archive for a disaster recovery event

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Documet, Luis; Documet, Jorge; Huang, H. K.; Muldoon, Jean

    2004-04-01

    An Application Service Provider (ASP) archive model for disaster recovery for Saint John"s Health Center (SJHC) clinical PACS data has been implemented using a Fault-Tolerant Archive Server at the Image Processing and Informatics Laboratory, Marina del Rey, CA (IPIL) since mid-2002. The purpose of this paper is to provide clinical experiences with the implementation of an ASP model backup archive in conjunction with handheld wireless technologies for a particular disaster recovery scenario, an earthquake, in which the local PACS archive and the hospital are destroyed and the patients are moved from one hospital to another. The three sites involved are: (1) SJHC, the simulated disaster site; (2) IPIL, the ASP backup archive site; and (3) University of California, Los Angeles Medical Center (UCLA), the relocated patient site. An ASP backup archive has been established at IPIL to receive clinical PACS images daily using a T1 line from SJHC for backup and disaster recovery storage. Procedures were established to test the network connectivity and data integrity on a regular basis. In a given disaster scenario where the local PACS archive has been destroyed and the patients need to be moved to a second hospital, a wireless handheld device such as a Personal Digital Assistant (PDA) can be utilized to route images to the second hospital site with a PACS and reviewed by radiologists. To simulate this disaster scenario, a wireless network was implemented within the clinical environment in all three sites: SJHC, IPIL, and UCLA. Upon executing the disaster scenario, the SJHC PACS archive server simulates a downtime disaster event. Using the PDA, the radiologist at UCLA can query the ASP backup archive server at IPIL for PACS images and route them directly to UCLA. Implementation experiences integrating this solution within the three clinical environments as well as the wireless performance are discussed. A clinical downtime disaster scenario was implemented and successfully

  13. Reliability testing of the Hughes temperature controlled 1/4 watt split cycle cryogenic cooler (HD-1045 (V)/UA)

    NASA Astrophysics Data System (ADS)

    Shaffer, James; Dunmire, Howard; Samuels, Raemon; Trively, Martin

    1989-12-01

    The U.S. Army CECOM Center for Night Vision and Electro-Optics (C2NVEO) is responsible for developing cryogenic coolers for all infrared imaging systems for the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers in fielded Army weapon systems such as: M60A3 and M1 Tanks, Bradley Fighting Vehicle (BFV) System, tube-launched, optically tracked, wire-guided (TOW) Missile System, and Army Attack Helicopters. Currently, there are over 30,000 coolers in fielded systems and several thousand more are added each year. C2NVEO conducts development programs and monitors contractor internal research and development efforts to improve cooler performance such as reliability, audio noise, power consumption, and output vibration. The HD-1045 1/4-Watt Split Stirling Cooler was originally designed and developed by the C2NVEO in the early 1970s as a replacement for the gas bottle/cryostat used on the Manportable Common Thermal Night Sights. To date, however, the HD-1045 cooler has been used in the field in the Integrated Sight Unit (ISU) of the BFV System and is currently being used in the Driver Thermal Viewer (DTV) full scale development program. This document describes and reports the results of reliability testing done on Hughes Temperature Controlled 1/4 Watt split Cycle Cryogenic Coolers (HD-1045 (V)/UA), referred to herein as the coolers.

  14. An implantable nerve cooler for the exercising dog.

    PubMed

    Borgdorff, P; Versteeg, P G

    1984-01-01

    An implantable nerve cooler has been constructed to block cervical vago-sympathetic activity in the exercising dog reversibly. An insulated gilt brass container implanted around the nerve is perfused with cooled alcohol via silicone tubes. The flow of alcohol is controlled by an electromagnetic valve to keep nerve temperature at the required value. Nerve temperature is measured by a thermistor attached to the housing and in contact with the nerve. It is shown that, during cooling, temperature at this location differs less than 2 degrees C from nerve core temperature. Measurement of changes in heart rate revealed that complete vagal block in the conscious animal is obtained at a nerve temperature of 2 degrees C and can be achieved within 50 s. During steady-state cooling in the exercising animal nerve temperature varied less than 0.5 degree C. When the coolers after 2 weeks of implantation were removed they showed no oxydation and could be used again.

  15. Development of thermal energy storage units for spacecraft cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Richter, R.; Mahefkey, E. T.

    1980-01-01

    Thermal Energy Storage Units were developed for storing thermal energy required for operating Vuilleumier cryogenic space coolers. In the course of the development work the thermal characteristics of thermal energy storage material was investigated. By three distinctly different methods it was established that ternary salts did not release fusion energy as determined by ideality at the melting point of the eutectic salt. Phase change energy was released over a relatively wide range of temperature with a large change in volume. This strongly affects the amount of thermal energy that is available to the Vuilleumier cryogenic cooler at its operating temperature range and the amount of thermal energy that can be stored and released during a single storage cycle.

  16. Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Zechtzer, S.; Pundak, N.

    2010-04-01

    Split linear cryocoolers find use in a variety of infrared equipment installed in airborne, heliborne, marine and vehicular platforms along with hand held and ground fixed applications. An upcoming generation of portable, high-definition night vision imagers will rely on the high-temperature infrared detectors, operating at elevated temperatures, ranging from 95K to 200K, while being able to show the performance indices comparable with these of their traditional 77K competitors. Recent technological advances in industrial development of such high-temperature detectors initialized attempts for developing compact split Stirling linear cryogenic coolers. Their known advantages, as compared to the rotary integral coolers, are superior flexibility in the system packaging, constant and relatively high driving frequency, lower wideband vibration export, unsurpassed reliability and aural stealth. Unfortunately, such off-the-shelf available linear cryogenic coolers still cannot compete with rotary integral rivals in terms of size, weight and power consumption. Ricor developed the smallest in the range, 1W@95K, linear split Stirling cryogenic cooler for demanding infrared applications, where power consumption, compactness, vibration, aural noise and ownership costs are of concern.

  17. Thin film battery and method for making same

    DOEpatents

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1994-08-16

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

  18. Thin film battery and method for making same

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Gruzalski, Greg R.; Luck, Christopher F.

    1994-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  19. Numerical study on interaction of local air cooler with stratified hydrogen cloud in a large vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Z.; Andreani, M.

    2012-07-01

    Within the framework of the ERCOSAM project, planning calculations are performed to examine sensitivity parameters that can affect the break-up (erosion) of a helium layer by mitigation devices (i.e., cooler, spray, or Passive Autocatalytic Recombiner - PAR). This paper reports the GOTHIC analysis results for the cooler tests to be performed in the PANDA facility. The cooler elevation and geometry, helium layer thickness, steam distribution in the vessel, and the vessel geometry (inter-connected multi-compartments versus a single volume) on the erosion process as well as the cooling capacity are studied. This analysis is valuable because only a limited number ofmore » conditions will be examined in the planned experiments. The study provides a useful understanding of the interaction of a cooler with a stratified atmosphere. (authors)« less

  20. jsc2017e136055 - On a snowy night at Red Square in Moscow, Expedition 54-55 backup crewmember Jeanette Epps of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Looking on are backup

    NASA Image and Video Library

    2017-11-30

    jsc2017e136055 - On a snowy night at Red Square in Moscow, Expedition 54-55 backup crewmember Jeanette Epps of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Looking on are backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left) and Alexander Gerst of the European Space Agency. They are backups to Anton Shkaplerov of Roscosmos, Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), who will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  1. Experimental study of a high intensity radio-frequency cooler

    NASA Astrophysics Data System (ADS)

    Boussaid, Ramzi; Ban, G.; Cam, J. F.

    2015-07-01

    Within the framework of the DESIR/SPIRAL-2 project, a radio-frequency quadrupole cooler named SHIRaC has been studied. SHIRaC is a key device of SPIRAL-2, designed to enhance the beam quality required by DESIR. The preliminary study and development of this device has been carried out at Laboratoire de Physique Corpusculaire de CAEN (LPC Caen), France. The goal of this paper is to present the experimental studies conducted on a SHIRaC prototype. The main peculiarity of this cooler is its efficient handling and cooling of ion beams with currents going up as high as 1 μ A which has never before been achieved in any of the previous coolers. Much effort has been made lately into these studies for development of appropriate optics, vacuum and rf systems which allow cooling of beams of large emittance (˜80 π mm mrad ) and high current. The dependencies of SHIRaC's transmission and the cooled beam parameters in terms of geometrical transverse emittance and the longitudinal energy spread have also been discussed. Investigation of beam purity at optimum cooling condition has also been done. Results from the experiments indicate that an emittance reduction of less than 2.5 π mm mrad and a longitudinal energy spread reduction of less than 4 eV are obtained with more than 70% of ion transmission. The emittance is at expected values whereas the energy spread is not.

  2. Six Sigma methods applied to cryogenic coolers assembly line

    NASA Astrophysics Data System (ADS)

    Ventre, Jean-Marc; Germain-Lacour, Michel; Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Griot, René

    2009-05-01

    Six Sigma method have been applied to manufacturing process of a rotary Stirling cooler: RM2. Name of the project is NoVa as main goal of the Six Sigma approach is to reduce variability (No Variability). Project has been based on the DMAIC guideline following five stages: Define, Measure, Analyse, Improve, Control. Objective has been set on the rate of coolers succeeding performance at first attempt with a goal value of 95%. A team has been gathered involving people and skills acting on the RM2 manufacturing line. Measurement System Analysis (MSA) has been applied to test bench and results after R&R gage show that measurement is one of the root cause for variability in RM2 process. Two more root causes have been identified by the team after process mapping analysis: regenerator filling factor and cleaning procedure. Causes for measurement variability have been identified and eradicated as shown by new results from R&R gage. Experimental results show that regenerator filling factor impacts process variability and affects yield. Improved process haven been set after new calibration process for test bench, new filling procedure for regenerator and an additional cleaning stage have been implemented. The objective for 95% coolers succeeding performance test at first attempt has been reached and kept for a significant period. RM2 manufacturing process is now managed according to Statistical Process Control based on control charts. Improvement in process capability have enabled introduction of sample testing procedure before delivery.

  3. Feasibility analysis of a hydrogen backup power system for Russian telecom market

    NASA Astrophysics Data System (ADS)

    Borzenko, V. I.; Dunikov, D. O.

    2017-11-01

    We performed feasibility analysis of 10 kW hydrogen backup power system (H2BS) consisting of a water electrolyzer, a metal hydride hydrogen storage and a fuel cell. Capital investments in H2BS are mostly determined by the costs of the PEM electrolyzer, the fuel cell and solid state hydrogen storage materials, for single unit or small series manufacture the cost of AB5-type intermetallic compound can reach 50% of total system cost. Today the capital investments in H2BS are 3 times higher than in conventional lead-acid system of the same capacity. Wide distribution of fuel cell hydrogen vehicles, development of hydrogen infrastructure, and mass production of hydrogen power systems will for sure lower capital investments in fuel cell backup power. Operational expenditures for H2BS is only 15% from the expenditures for lead acid systems, and after 4-5 years of exploitation the total cost of ownership will become lower than for batteries.

  4. Report on the status of linear drive coolers for the Department of Defense Standard Advanced Dewar Assembly (SADA)

    NASA Astrophysics Data System (ADS)

    Salazar, William

    2003-01-01

    The Standard Advanced Dewar Assembly (SADA) is the critical module in the Department of Defense (DoD) standardization effort of scanning second-generation thermal imaging systems. DoD has established a family of SADA's to address requirements for high performance (SADA I), mid-to-high performance (SADA II), and compact class (SADA III) systems. SADA's consist of the Infrared Focal Plane Array (IRFPA), Dewar, Command and Control Electronics (C&CE), and the cryogenic cooler. SADA's are used in weapons systems such as Comanche and Apache helicopters, the M1 Abrams Tank, the M2 Bradley Fighting Vehicle, the Line of Sight Antitank (LOSAT) system, the Improved Target Acquisition System (ITAS), and Javelin's Command Launch Unit (CLU). DOD has defined a family of tactical linear drive coolers in support of the family of SADA's. The Stirling linear drive cryo-coolers are utilized to cool the SADA's Infrared Focal Plane Arrays (IRFPAs) to their operating cryogenic temperatures. These linear drive coolers are required to meet strict cool-down time requirements along with lower vibration output, lower audible noise, and higher reliability than currently fielded rotary coolers. This paper will (1) outline the characteristics of each cooler, (2) present the status and results of qualification tests, and (3) present the status and test results of efforts to increase linear drive cooler reliability.

  5. Report of the sensor cooler technology panel

    NASA Technical Reports Server (NTRS)

    Ross, Ronald; Castles, S.; Gautier, N.; Kittel, P.; Ludwigsen, J.

    1991-01-01

    The Sensor Cooler Technology Panel identified three major areas in which technology development must be supported in order to meet the system performance requirements for the Astrotech 21 mission set science objectives. They are: long life vibration free refrigerators; mechanical refrigeration for 2 K to 5 K; and flight testing of emerging prototype refrigerators. A development strategy and schedule were recommended for each of the three areas.

  6. 40 CFR 63.1343 - What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...

  7. 40 CFR 63.1343 - What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...

  8. STS-52 backup Payload Specialist Tryggvason during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, backup Payload Specialist Bjarni V. Tryggvason, wearing launch and entry suit (LES), checks his launch and entry helmet (LEH) fitting prior to participating in emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25-ft deep pool will serve as the ocean during this water landing simulation. Tryggvason represents the Canadian Space Agency (CSA).

  9. MM T for linear resonant cooler. Volume 1. Final report, October 1984-September 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, R.; Silvestro, J.

    1988-02-16

    The three-fold objectives of this contract were to: (1) enhance the producibility and performance of the prototype cooler design developed in a prior contract, (b) qualify the design to the target specification in the contract (basically the HD1045/UA B2 specification amended for 2,500 hour MTTF and low audible noise), and (c) develop and demonstrate a pilot production facility for the cooler. Technical difficulties and cost growth related to objectives (a) and (b) above precluded accomplishing (c) as part of this contract's activities. Nevertheless, performance within or exceeding all major requirements has been demonstrated, and the company is currently producing themore » cooler for use on a U.S. Air Force airborne IR system.« less

  10. Apollo 1 Prime and Backup Crews

    NASA Image and Video Library

    1966-04-01

    S66-30238 (1 April 1966) --- The National Aeronautics and Space Administration (NASA) has named these astronauts as the prime crew of the first manned Apollo Space Flight. Left to right, are Edward H. White II, command module pilot; Virgil I. Grissom, mission commander; and Roger B. Chaffee, lunar module pilot. On the second row are the Apollo 1 backup crew members, astronauts David R. Scott, James A. McDivitt and Russell L. Schweickart. EDITOR'S NOTE: Astronauts Grissom, White and Chaffee lost their lives in a Jan. 27, 1967 fire in the Apollo CM during testing at Cape Canaveral. McDivitt, Scott and Schweickart later served as crewmembers for the Apollo 9 Earth-orbital mission, which was one of the important stair-step missions leading up to the Apollo 11 manned lunar landing mission of July 1969.

  11. 40 CFR 63.1343 - What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker storage...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...

  12. 40 CFR 63.1343 - What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker storage...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...

  13. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuelmore » cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.« less

  14. Qualification campaign of the 50 mK hybrid sorption-ADR cooler for SPICA/SAFARI

    NASA Astrophysics Data System (ADS)

    Duval, J.-M.; Duband, L.; Attard, A.

    2015-12-01

    SAFARI (SpicA FAR-infrared Instrument) is an infrared instrument planned to be part of the SPICA (SPace Infrared telescope for Cosmology and Astrophysics) Satellite. It will offer high spectral resolution in the 30 - 210 μm frequency range. SAFARI will benefit from the cold telescope of SPICA and to obtain the required detectors sensitivity, a temperature of 50 mK is required. This temperature is reached thanks to the use of a hybrid sorption - ADR (Adiabatic Demagnetization Refrigerator) cooler presented here. This cooler provides respectively 14 μW and 0.4 μW of cooling power at 300 mK and 50 mK. The cooler is planned to advantageously use two thermal interfaces of the instrument at 1.8 and 4.9 K. One of the challenges discussed in this paper is the low power available at each intercept. A dedicated laboratory electronic is being designed based on previous development with a particular focus on the 50 mK readout. Temperature regulation at 50 mK is also discussed. This cooler has been designed following flight constraints and will reach a high TRL, including mechanical and environmental tests at the end of the on-going qualification campaign.

  15. STS-47 backup payload specialists participate in JSC WETF bailout exercise

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, backup payload specialists (left to right) Chiaki Naito-Mukai, Takao Doi, and Stan Koszelak, wearing launch and entry suits, sit on the poolside in JSC's Weightless Environment Training Facility (WETF) Bldg 29. These alternates are waiting to participate launch emergency egress (bailout) exercises. The training is conducted in the WETF pool to simulate a water landing.

  16. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Cairelli, James E.; Swec, Diane M.; Doeberling, Thomas J.; Lakatos, Thomas F.; Madi, Frank J.

    1992-01-01

    Free-piston Stirling power converters are candidates for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve the converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. Experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics are described. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.

  17. Utilizing data grid architecture for the backup and recovery of clinical image data.

    PubMed

    Liu, Brent J; Zhou, M Z; Documet, J

    2005-01-01

    Grid Computing represents the latest and most exciting technology to evolve from the familiar realm of parallel, peer-to-peer and client-server models. However, there has been limited investigation into the impact of this emerging technology in medical imaging and informatics. In particular, PACS technology, an established clinical image repository system, while having matured significantly during the past ten years, still remains weak in the area of clinical image data backup. Current solutions are expensive or time consuming and the technology is far from foolproof. Many large-scale PACS archive systems still encounter downtime for hours or days, which has the critical effect of crippling daily clinical operations. In this paper, a review of current backup solutions will be presented along with a brief introduction to grid technology. Finally, research and development utilizing the grid architecture for the recovery of clinical image data, in particular, PACS image data, will be presented. The focus of this paper is centered on applying a grid computing architecture to a DICOM environment since DICOM has become the standard for clinical image data and PACS utilizes this standard. A federation of PACS can be created allowing a failed PACS archive to recover its image data from others in the federation in a seamless fashion. The design reflects the five-layer architecture of grid computing: Fabric, Resource, Connectivity, Collective, and Application Layers. The testbed Data Grid is composed of one research laboratory and two clinical sites. The Globus 3.0 Toolkit (Co-developed by the Argonne National Laboratory and Information Sciences Institute, USC) for developing the core and user level middleware is utilized to achieve grid connectivity. The successful implementation and evaluation of utilizing data grid architecture for clinical PACS data backup and recovery will provide an understanding of the methodology for using Data Grid in clinical image data backup for

  18. Progress in Development of a Miniature Pulse Tube Cooler for Space Applications

    NASA Astrophysics Data System (ADS)

    Gibson, A. S.; Hunt, R.; Charles, I.; Duband, L.; Crook, M. R.; Orlowska, A. H.; Bradshaw, T. W.; Linder, M.

    2004-06-01

    A pulse tube cryocooler is under development for high-reliability spacecraft applications. Recent developments in the assembly and verification of a Miniature Pulse Tube Cooler (MPTC) are presented, including the latest data from the test program. Details of advances related to the compressor, pulse tube and electronics are discussed. The pulse tube cooler achieves high efficiency, optimised through an extensive process of breadboard testing and analysis and is now approaching a more mature Engineering Model (EM) status. A representative pulse tube cold finger has been verified with respect to design changes incorporated following the breadboard test phase. Mass, heat lift and parasitic losses have been improved. A mechanical system mass of 3.1 kg has been achieved. Cold finger tests have demonstrated the ability of the pulse tube to lift 1.5 W at 80 K and to reach <50 K for a PV-work of 25 W. The useful range of operation for the cooler extends below 60 K, where test results indicate 600 mW of heat lift capability.

  19. Using Thermoelectric Coolers to Enhance Loop Heat Pipe Performance

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Butler, Dan; Ottenstein, Laura; Birur, Gajanana

    2005-01-01

    Contents include the following: Loop Heat Pipe (LHP) operating temperature. LHP start-up issues. How Thermoelectric Cooler (TECs) can enhance LHP performance: start-up; operating temperature control. Experimental studies: LHP with one evaporator and one condenser; LHP with two evaporators and two condensers. Conclusion.

  20. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood...

  1. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood...

  2. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood...

  3. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood product...

  4. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood product...

  5. Improvement on Main/backup Controller Switching Device of the Nozzle Throat Area Control System for a Turbofan Aero Engine

    NASA Astrophysics Data System (ADS)

    Li, Jie; Duan, Minghu; Yan, Maode; Li, Gang; Li, Xiaohui

    2014-06-01

    A full authority digital electronic controller (FADEC) equipped with a full authority hydro-mechanical backup controller (FAHMBC) is adopted as the nozzle throat area control system (NTACS) of a turbofan aero engine. In order to ensure the switching reliability of the main/backup controller, the nozzle throat area control switching valve was improved from three-way convex desktop slide valve to six-way convex desktop slide valve. Simulation results show that, if malfunctions of FAEDC occur and abnormal signals are outputted from FADEC, NTACS will be seriously influenced by the main/backup controller switching in several working states, while NTACS will not be influenced by using the improved nozzle throat area control switching valve, thus the controller switching process will become safer and smoother and the working reliability of this turbofan aero engine is improved by the controller switching device improvement.

  6. Performance of the natural cooler to keep the freshness of vegetables and fruits in Medan City

    NASA Astrophysics Data System (ADS)

    Sitorus, T. B.; Ambarita, H.; Ariani, F.; Sitepu, T.

    2018-02-01

    One application in a direct evaporative cooling system was a natural cooler. The advantages of this system were not using the electrical energy and so far also environmentally. This research aims to obtain a performance analysis of the natural cooler as a store for vegetables and fruits in Medan city. The materials for natural cooler consists of teak wood and gunny. This study makes experiments during seven days in the open air. The parameter measurement on the weather was using HOBO devices and to record the temperature changes for vegetables or even fruits is using its acquisition data. The results showed that the maximum efficiency of the natural cooler could be obtained for 43.79% in the average air temperature of 30.51°C, the air humidity average is 85.12% with average solar radiation of 183.98 W/m2. Experimental data were showing that the condition of freshness on vegetables or even on fruits was heavily influenced by weather conditions.

  7. A Mechanical Cryogenic Cooler for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jedrich, Nicholas; Zimbelman, Darell; Swift, Walter; Dolan, Francis; Brumfield, Mark (Technical Monitor)

    2002-01-01

    This paper presents a description of the Hubble Space Telescope (HST) Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (NCC), the cutting edge technology involved, its evolution, performance, and future space applications. The NCC is the primary hardware component of the NICMOS Cooling System comprised of the NCC, an Electronics Support Module, a Capillary Pumped Loop/Radiator, and associated interface harnessing. The system will be installed during extravehicular activities on HST during Servicing Mission 3B scheduled for launch in February 2002. The NCC will be used to revive the NICMOS instrument, which experienced a reduced operational lifetime due to an internal thermal short in its dewar structure, and restore HST scientific infrared capability to operational status. The NCC is a state-of-the-art reverse Turbo-Brayton cycle cooler employing gas bearing micro turbo machinery, driven by advanced power conversion electronics, operating at speeds up to 7300 revolutions per second (rps) to remove heat from the NICMOS instrument.

  8. Computer program for analysis of split-Stirling-cycle cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Brown, M. T.; Russo, S. C.

    1983-01-01

    A computer program for predicting the detailed thermodynamic performance of split-Stirling-cycle refrigerators has been developed. The mathematical model includes the refrigerator cold head, free-displacer/regenerator, gas transfer line, and provision for modeling a mechanical or thermal compressor. To allow for dynamic processes (such as aerodynamic friction and heat transfer) temperature, pressure, and mass flow rate are varied by sub-dividing the refrigerator into an appropriate number of fluid and structural control volumes. Of special importance to modeling of cryogenic coolers is the inclusion of real gas properties, and allowance for variation of thermo-physical properties such as thermal conductivities, specific heats and viscosities, with temperature and/or pressure. The resulting model, therefore, comprehensively simulates the split-cycle cooler both spatially and temporally by reflecting the effects of dynamic processes and real material properties.

  9. Comparison of circular orbit and Fourier power series ephemeris representations for backup use by the upper atmosphere research satellite onboard computer

    NASA Technical Reports Server (NTRS)

    Kast, J. R.

    1988-01-01

    The Upper Atmosphere Research Satellite (UARS) is a three-axis stabilized Earth-pointing spacecraft in a low-Earth orbit. The UARS onboard computer (OBC) uses a Fourier Power Series (FPS) ephemeris representation that includes 42 position and 42 velocity coefficients per axis, with position residuals at 10-minute intervals. New coefficients and 32 hours of residuals are uploaded daily. This study evaluated two backup methods that permit the OBC to compute an approximate spacecraft ephemeris in the event that new ephemeris data cannot be uplinked for several days: (1) extending the use of the FPS coefficients previously uplinked, and (2) switching to a simple circular orbit approximation designed and tested (but not implemented) for LANDSAT-D. The FPS method provides greater accuracy during the backup period and does not require additional ground operational procedures for generating and uplinking an additional ephemeris table. The tradeoff is that the high accuracy of the FPS will be degraded slightly by adopting the longer fit period necessary to obtain backup accuracy for an extended period of time. The results for UARS show that extended use of the FPS is superior to the circular orbit approximation for short-term ephemeris backup.

  10. Recommended high-tank temperatures for maintenance of high-tank backup support, Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greager, O.H.

    1964-05-20

    Purpose of this note is to recommend revised curves for the high-tank temperature required to maintain adequate high-tank backup support at the six small reactors. Compliance with the conditions shown on these curves will ensure adequate high-tank flow rates following the simultaneous loss of electric and steam power.

  11. Low Velocity Airdrop Tests of an X-38 Backup Parachute Design

    NASA Technical Reports Server (NTRS)

    Stein, Jenny M.; Machin, Ricardo A.; Wolf, Dean F.; Hillebrandt, F. David

    2007-01-01

    The NASA Johnson Space Center's X-38 program designed a new backup parachute system to recover the 25,000 lb X-38 prototype for the Crew Return Vehicle spacecraft. Due to weight and cost constraints, the main backup parachute design incorporated rapid and low cost fabrication techniques using off-the-shelf materials. Near the vent, the canopy was constructed of continuous ribbons, to provide more damage tolerance. The remainder of the canopy was a constructed with a continuous ringslot design. After cancellation of the X-38 program, the parachute design was resized, built, and drop tested for Natick Soldiers Center's Low Velocity Air Drop (LVAD) program to deliver cargo loads up to 22,000 lbs from altitudes as low as 500 feet above the ground. Drop tests results showed that the 500-foot LVAD parachute deployment conditions cause severe skirt inversion and inflation problems for large parachutes. The bag strip occurred at a high angle of attack, causing skirt inversion before the parachute could inflate. The addition of a short reefing line prevented the skirt inversion. Using a lower porosity in the vent area, than is normally used in large parachutes, improved inflation. The drop testing demonstrated that the parachute design could be refined to meet the requirements for the 500-foot LVAD mission.

  12. On Problem of Mathematical Modelling of Thermo-Physical Processes in Regenerative Water-Evaporating Coolers

    NASA Astrophysics Data System (ADS)

    Gulevsky, V. A.; Shatsky, V. P.; Osipov, E. I.; Menzhulova, A. S.

    2018-03-01

    For cooling the air environment of industrial premises water-evaporating air, conditioners are being increasingly applied. The simplicity of their construction, ecological safety and low power consumption distinguish them from the coolers of other types. Cooling the processed air is due to the loss of energy for the evaporation of moisture from the surface of the water-wetted plates that form air channels. As a result of this process, cooled air is often saturated with moisture, which limits the possibilities for the operation of the coolers of this type. In these cases, more complex coolers of indirect principle without such drawback should be applied. The most effective modification of indirect cooling is the installation of recuperative principle units. The paper presents a mathematical model of heat-mass transfer in such water-evaporating coolers. The scheme of realization of this model based on an iterative algorithm of solution of the system of finite–difference linear equations that takes into account longitudinal and transverse thermal conductivity of the heat transfer plates is suggested. The possibility of obtaining the optimal values of the redistribution of the main and auxiliary air flows through the substantiation of the aerodynamic resistance of the output grid is proved. This allows refusing the inclusion in the additional system cooling fan unit for discharging an auxiliary stream of air.

  13. Analog neural network control method proposed for use in a backup satellite control mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frigo, J.R.; Tilden, M.W.

    1998-03-01

    The authors propose to use an analog neural network controller implemented in hardware, independent of the active control system, for use in a satellite backup control mode. The controller uses coarse sun sensor inputs. The field of view of the sensors activate the neural controller, creating an analog dead band with respect to the direction of the sun on each axis. This network controls the orientation of the vehicle toward the sunlight to ensure adequate power for the system. The attitude of the spacecraft is stabilized with respect to the ambient magnetic field on orbit. This paper develops a modelmore » of the controller using real-time coarse sun sensor data and a dynamic model of a prototype system based on a satellite system. The simulation results and the feasibility of this control method for use in a satellite backup control mode are discussed.« less

  14. 61. VIEW FROM NORTHEAST OF LAUNDER FROM BAKER COOLER TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. VIEW FROM NORTHEAST OF LAUNDER FROM BAKER COOLER TO MILLING. LAUNDER PIERCES THE SOUTH FOUNDATION WALL BETWEEN MILL SOLUTION TANKS No. 1 AND No. 2. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  15. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    DOEpatents

    Kozubal, Eric Joseph

    2016-12-13

    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  16. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    DOEpatents

    Kozubal, Eric Joseph; Slayzak, Steven Joseph

    2014-07-08

    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  17. AIRS pulse tube cooler system-level and in-space performance comparison

    NASA Technical Reports Server (NTRS)

    Ross, R. G.

    2002-01-01

    This paper presents the derivation of the test and analysis techniques as well as the measured system-level performance of the flight AIRS coolers during instrument-level, spacecraft-level, and in-space operation.

  18. Influence of unbalance levels on nonlinear dynamics of a rotor-backup rolling bearing system

    NASA Astrophysics Data System (ADS)

    Fonseca, Cesar A.; Santos, Ilmar F.; Weber, Hans I.

    2017-04-01

    Rotor drops in magnetic bearing and unbalance in rotors have been objective of study for many years. The combination of these two well-known phenomena led to an interesting chaotic response, when the rotor touches the inner race of the back-up bearing. The present work explores the nonlinear rotor backup bearing dynamics both theoretically and experimentally using a fully instrumented test rig, where the position of shaft, its angular velocity and the contact forces between the shaft and the backup bearing are sampled at 25 kHz. The test rig is built by a removable passive magnetic bearing, which allows for simulation of magnetic bearing failure (loss of carrying capacity and rotor fall). The rotor is studied numerically as well as experimentally. A theoretical approach is given beforehand and supplies the basis of the study. Finally the presented results are commented on the point of view of nonlinear dynamics applied to the practical use. The theoretical and numerical analyses are shown through orbit plots, phase plans, Poincaré maps, force response in time and double sided spectrum. The latter is important to characterize the condition at different levels of unbalance between forward and backward whirl. Our preliminary results indicate that for smaller amount of unbalance the rotor swings at the bottom of the bearing, the more the unbalance increases, other dynamical behavior occur and some can be extremely harmful, since the rotor can be lifted from the contact state and return, starting to impact innumerable times without reaching a steady state.

  19. Thermomagnetic coolers based on Bi and Bi-Sb nanocomposites

    NASA Astrophysics Data System (ADS)

    Huber, Tito E.; Constant, Pierre

    2001-02-01

    Bulk Bi, a semimetal, and Bi-Sb, have the highest thermoelectric figure of merit Z at 100 K. The thermoelectric properties of these materials are strongly anisotropic. The best thermoelectric performance is observed when the electrical current flows along the trigonal axis. However, Bi single crystals are easily cleaved along the trigonal planes. This lack of strength has largely prevented the use of these materials in practical thermoelectric coolers. Composite technology offers the opportunity to increase the toughness of Bi and Bi-Sb. Also, microengineering Bi into composites may lead to a significant improvement in their thermoelectric performance, because of the reduction of phonon conductivity from phonon scattering at the grain boundaries and interfaces. It has been shown theoretically that quantum-wire structures have the potential to significantly improve Z over the bulk value. We have synthesized microwire composites and present measurements of its electrical conductivity and Seebeck coefficient that are very encouraging. The role that a tough thermoelectric cooler could have in extending the lifetime of a space system such as Space InfraRed Telescope Facility (SIRTF) is briefly discussed. .

  20. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes

    NASA Astrophysics Data System (ADS)

    Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.

    2017-09-01

    A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).

  1. STS-45 backup Payload Specialist Chappell during water egress training at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, backup Payload Specialist Charles R. Chappell, wearing launch and entry suit (LES), is suspended via his parachute harness above JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Chappell will be dropped into the pool during the exercise which simulates a parachute landing into a body of water. SCUBA-equipped divers swimming in the pool will assist during the training.

  2. The Unparalleled Systems Engineering of MSL's Backup Entry, Descent, and Landing System: Second Chance

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Chris; Grinblat, Jonathan; Reeves, Glenn

    2013-01-01

    Second Chance (SECC) was a bare bones version of Mars Science Laboratory's (MSL) Entry Descent & Landing (EDL) flight software that ran on Curiosity's backup computer, which could have taken over swiftly in the event of a reset of Curiosity's prime computer, in order to land her safely on Mars. Without SECC, a reset of Curiosity's prime computer would have lead to catastrophic mission failure. Even though a reset of the prime computer never occurred, SECC had the important responsibility as EDL's guardian angel, and this responsibility would not have seen such success without unparalleled systems engineering. This paper will focus on the systems engineering behind SECC: Covering a brief overview of SECC's design, the intense schedule to use SECC as a backup system, the verification and validation of the system's "Do No Harm" mandate, the system's overall functional performance, and finally, its use on the fateful day of August 5th, 2012.

  3. Tracer techniques for urine volume determination and urine collection and sampling back-up system

    NASA Technical Reports Server (NTRS)

    Ramirez, R. V.

    1971-01-01

    The feasibility, functionality, and overall accuracy of the use of lithium were investigated as a chemical tracer in urine for providing a means of indirect determination of total urine volume by the atomic absorption spectrophotometry method. Experiments were conducted to investigate the parameters of instrumentation, tracer concentration, mixing times, and methods for incorporating the tracer material in the urine collection bag, and to refine and optimize the urine tracer technique to comply with the Skylab scheme and operational parameters of + or - 2% of volume error and + or - 1% accuracy of amount of tracer added to each container. In addition, a back-up method for urine collection and sampling system was developed and evaluated. This back-up method incorporates the tracer technique for volume determination in event of failure of the primary urine collection and preservation system. One chemical preservative was selected and evaluated as a contingency chemical preservative for the storage of urine in event of failure of the urine cooling system.

  4. Energy Conservation for Low-Income Households: The Evaporative Cooler Experience.

    ERIC Educational Resources Information Center

    Ridge, Richard S.

    1988-01-01

    An econometric analysis, using a research design based on the nonequivalent control group (NECG), assessed the effectiveness of a program offering free evaporative coolers to low-income families owning air conditioners. The NECG controls for serious threats to internal validity, except for self-selection. The program successfully reduced energy…

  5. Implementation of a new blood cooler insert and tracking technology with educational initiatives and its effect on reducing red blood cell wastage.

    PubMed

    Fadeyi, Emmanuel A; Emery, Wanda; Simmons, Julie H; Jones, Mary Rose; Pomper, Gregory J

    2017-10-01

    The objective was to report a successful implementation of a blood cooler insert and tracking technology with educational initiatives and its effect on reducing red blood cell (RBC) wastage. The blood bank database was used to quantify and categorize total RBC units issued in blood coolers from January 2010 to December 2015 with and without the new inserts throughout the hospital. Radiofrequency identification tags were used with special software to monitor blood cooler tracking. An educational policy on how to handle the coolers was initiated. Data were gathered from the software that provided a real-time location monitoring of the blood coolers with inserts throughout the institution. The implementation of the blood cooler with inserts and tracking device reduced mean yearly RBC wastage by fourfold from 0.64% to 0.17% between 2010 and 2015. The conserved RBCs corresponded to a total cost savings of $167,844 during the 3-year postimplementation period. The implementation of new blood cooler inserts, tracking system, and educational initiatives substantially reduced the mean annual total RBC wastage. The cost to implement this initiative may be small if there is an existing institutional infrastructure to monitor and track hospital equipment into which the blood bank intervention can be adapted when compared to the cost of blood wastage. © 2017 AABB.

  6. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  7. Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir

    NASA Technical Reports Server (NTRS)

    Gedeon, David R. (Inventor)

    2008-01-01

    An improved pulse tube cooler having a resonator tube connected in place of a compliance volume or reservoir. The resonator tube has a length substantially equal to an integer multiple of 1/4 wavelength of an acoustic wave in the working gas within the resonator tube at its operating frequency, temperature and pressure. Preferably, the resonator tube is formed integrally with the inertance tube as a single, integral tube with a length approximately 1/2 of that wavelength. Also preferably, the integral tube is spaced outwardly from and coiled around the connection of the regenerator to the pulse tube at a cold region of the cooler and the turns of the coil are thermally bonded together to improve heat conduction through the coil.

  8. Costs and description of a solar-energy system--Austin, Texas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Heating and cooling system uses Fresnel lens concentrating collectors. Major system components are 36 collectors, 1,500 gallon thermal storage tank, absorption cooler, cooling tower, heating coil, pumps, heat exchanger, and backup heating and air conditioning. Final report includes detailed breakdown of component and installation costs for seven project subsystems.

  9. Solar-Powered Cooler and Heater for an Automobile Interior

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2006-01-01

    The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.

  10. Heat recirculating cooler for fluid stream pollutant removal

    DOEpatents

    Richards, George A.; Berry, David A.

    2008-10-28

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  11. Adaptation of the low-cost and low-power tactical split Stirling cryogenic cooler for aerospace applications

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnell, C.; Freeman, J.; Riabzev, S.

    2011-06-01

    Cryogenic coolers are often used in modern spacecraft in conjunction with sensitive electronics and sensors of military, commercial and scientific instrumentation. The typical space requirements are: power efficiency, low vibration export, proven reliability, ability to survive launch vibration/shock and long-term exposure to space radiation. A long-standing paradigm of exclusively using "space heritage" equipment has become the standard practice for delivering high reliability components. Unfortunately, this conservative "space heritage" practice can result in using outdated, oversized, overweight and overpriced cryogenic coolers and is becoming increasingly unacceptable for space agencies now operating within tough monetary and time constraints. The recent trend in developing mini and micro satellites for relatively inexpensive missions has prompted attempts to adapt leading-edge tactical cryogenic coolers for suitability in the space environment. The primary emphasis has been on reducing cost, weight and size. The authors are disclosing theoretical and practical aspects of a collaborative effort to develop a space qualified cryogenic refrigerator system based on the tactical cooler model Ricor K527 and the Iris Technology radiation hardened Low Cost Cryocooler Electronics (LCCE). The K27/LCCE solution is ideal for applications where cost, size, weight, power consumption, vibration export, reliability and time to spacecraft integration are of concern.

  12. Backup key generation model for one-time password security protocol

    NASA Astrophysics Data System (ADS)

    Jeyanthi, N.; Kundu, Sourav

    2017-11-01

    The use of one-time password (OTP) has ushered new life into the existing authentication protocols used by the software industry. It introduced a second layer of security to the traditional username-password authentication, thus coining the term, two-factor authentication. One of the drawbacks of this protocol is the unreliability of the hardware token at the time of authentication. This paper proposes a simple backup key model that can be associated with the real world applications’user database, which would allow a user to circumvent the second authentication stage, in the event of unavailability of the hardware token.

  13. STS-108 backup crew member Robinson in an M-113

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Astronaut Stephen K. Robinson takes his turn at driving an M-113 armored personnel carrier. Robinson is a backup crew member for the International Space Station Expedition 4 crew, who are flying on Space Shuttle Endeavour as part of mission STS-108. Both the mission crew and Expedition 4 crews are at KSC for Terminal Countdown Demonstration Test activities. The TCDT includes emergency exit from the launch pad and a simulated launch countdown. The 11-day mission will also carry the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. STS-108 is scheduled to launch Nov. 29.

  14. Vaginal contraceptive film gains wider acceptance.

    PubMed

    1992-09-01

    In US health departments and family planning clinics, women are beginning to accept vaginal contraceptive film more widely. Further, direct sales of this method, which is also distributed over the counter, has increased. In fact, in 1991, vaginal contraceptive film was the top selling contraceptive in pharmacies. This 2.5 sq. inch water-soluble film is impregnated with nonoxynol-9. The woman uses her finger to insert the folded square as close as possible to the cervix 5-60 minutes before intercourse. If the time between acts of intercourse is greater than 1 hour, she must insert another square. After it dissolves, it is a firm gel removed by vaginal and cervical fluids. The company realizes that its relatively high cost (about $3.59 for 3 films) prevents some family planning providers from offering the film. It has tried to cut costs by not using extra packaging material and by manufacturing it in the US instead of ain England. A manager of the family planning clinic at R.E. Thomason County Hospital in El Paso, Texas, notes that user compliance is higher with the vaginal contraceptive film than foam. In fact, patients at the Planned Parenthood League of Middlesex County, New Jersey, favor the film because it is less messy than foam. Teenagers in El Paso prefer the film because of the privacy issue and gives them more control to protect themselves from pregnancy. A worker at the New Jersey clinic recommends the film as a backup method for women beginning to use oral contraceptives. She also suggests to patients requesting condoms to also use the film. The company makes the same recommendation. Yet, family planning workers note that some women cannot convince partners to use the condom. 90% of patients at the El Paso clinic are Hispanic, and they tend to not accept condom use. Some providers suggest using 2 applications of the film to defend against sexually transmitted diseases, but there is no evidence that double application actually does so.

  15. Operation of a pond-cooler: the case of Berezovskaya GRES-1

    NASA Astrophysics Data System (ADS)

    Morozova, O. G.; Kamoza, T. L.; Koyupchenko, I. N.; Savelyev, A. S.; Pen, R. Z.; Veselkova, N. S.; Kudryavtsev, M. D.

    2017-08-01

    Pond-coolers at heat and nuclear power stations are natural-technological systems, so the program of their monitoring should include the effect made by the SRPS (state regional power station) on the pond ecosystem, including thermal discharge of cooling water. The objectives of this study were development and implementation of a monitoring program for the cooling pond of Berezovskaya SRPS-1 on the chemical and biological water quality indicators and identification of patterns of the thermal and hydrochemical regime when operating the progressive power plant (from 1996 to 2015). The quality of the cooling water of the pond-cooler BGRES-1 was studied under full-scale conditions by selecting and analyzing the water samples of the pond in accordance with the principles of complexity, systematic observation, and consistency of timing their conduct with the characteristic hydrological phases. Processing of the obtained array of monitoring data by methods of mathematical statistics makes it possible to identify the main factors affecting the water quality of the pond. The data on water quality obtained during their monitoring and mathematical processing over a long time interval are the scientific basis for forecasting the ecological state of the pond, which is necessary to economically ensure the efficient energy production and safety of water use. Recommendations proposed by these authors, including those partially already implemented, have been to prevent the development of eutrophication processes in the pond-cooler: the construction of a dam that cuts off the main peat massif and cleaning the river banks forming the cooling pond.

  16. Heat transfer and evaporative cooling in the function of pot-in-pot coolers

    NASA Astrophysics Data System (ADS)

    Chemin, Arsène; Levy Dit Vehel, Victor; Caussarieu, Aude; Plihon, Nicolas; Taberlet, Nicolas

    2018-03-01

    A pot-in-pot cooler is an affordable electricity-free refrigerator which uses the latent heat of vaporization of water to maintain a low temperature inside an inner compartment. In this article, we experimentally investigate the influence of the main physical parameters in model pot-in-pot coolers. The effect of the wind on the evaporation rate of the cooling fluid is studied in model experiments while the influence of the fluid properties (thermal conductivity, specific heat, and latent heat) is elucidated using a variety of cooling fluids (water, ethanol, and ether). A model based on a simplified heat conduction equation is proposed and is shown to be in good quantitative agreement with the experimental measurements.

  17. Backup of renewable energy for an electrical island: case study of Israeli electricity system--current status.

    PubMed

    Fakhouri, A; Kuperman, A

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources.

  18. 77 FR 28797 - Redundancy of Communications Systems: Backup Power Private Land Mobile Radio Services: Selection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Systems: Backup Power Private Land Mobile Radio Services: Selection and Assignment of Frequencies, and... certain rule provisions that are without current legal effect and obsolete. These nonsubstantive revisions... current legal effect and is deleted as obsolete. 2. This Order also deletes a rule providing that UHF...

  19. 40 CFR 63.1345 - Emissions limits for affected sources other than kilns; in-line kiln/raw mills; clinker coolers...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills, and open clinker piles. 63.1345 Section 63.1345 Protection of Environment... for affected sources other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed...

  20. STS-55 backup Payload Specialist Thiele with technician in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, backup German Payload Specialist Dr. P. Gerhard Thiele, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, seated on the poolside waits his turn to participate in launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Thiele and other crewmembers practiced water bailout procedures. Thiele represents the DLR for the upcoming Spacelab Deutsche 2 (SL-D2) mission.

  1. The LEBIT ion cooler and buncher

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Bollen, G.; Ringle, R.; Savory, J.; Schury, P.

    2016-04-01

    This paper presents a detailed description of the ion cooler and buncher, installed at the Low Energy Beam and Ion Trap Facility (LEBIT) at the National Superconducting Cyclotron Laboratory (NSCL). NSCL uses gas stopping to provide rare isotopes from projectile fragmentation for its low-energy physics program and to the re-accelerator ReA. The LEBIT ion buncher converts the continuous rare-isotope beam, delivered from the gas stopping cell, into short, low-emittance ion pulses, required for high-precision mass measurements with a 9.4 T Penning trap mass spectrometer. Operation at cryogenic temperatures, a simplified electrode structure and dedicated rugged electronics contribute to the high performance and reliability of the device, which have been essential to the successful LEBIT physics program since 2005.

  2. Two-year solid hydrogen cooler for the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument

    NASA Technical Reports Server (NTRS)

    Naes, L. G.; Nast, T. C.; Roche, A. E.; Forney, P. B.

    1983-01-01

    The Cryogenic Limb Array Etalon Spectrometer (CLAES) will be one of thirteen instruments on board the Upper Atmospheric Research Satellite (UARS) in late 1988. CLAES is to be employed for the measurement of stratospheric trace species concentrations affecting the ozone layer balance. It is an earth-limb viewing instrument which requires cryogenic cooling in order to obtain the necessary performance sensitivity. The present investigation is concerned with the solid hydrogen cryogen subsystem which provides the instrument temperature needed. Attention is given to the studies which led to the selection of solid hydrogen as cooling agent, the baseline cooler system, aspects of baseline performance sensitivity, and nominal cooler operations.

  3. Note: Wide-operating-range control for thermoelectric coolers.

    PubMed

    Peronio, P; Labanca, I; Ghioni, M; Rech, I

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  4. Note: Wide-operating-range control for thermoelectric coolers

    NASA Astrophysics Data System (ADS)

    Peronio, P.; Labanca, I.; Ghioni, M.; Rech, I.

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  5. Integral finned heater and cooler for stirling engines

    DOEpatents

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  6. CFD modeling of thermoelectric generators in automotive EGR-coolers

    NASA Astrophysics Data System (ADS)

    Högblom, Olle; Andersson, Ronnie

    2012-06-01

    A large amount of the waste heat in the exhaust gases from diesel engines is removed in the exhaust gas recirculation (EGR) cooler. Introducing a thermoelectric generator (TEG) in an EGR cooler requires a completely new design of the heat exchanger. To accomplish that a model of the TEG-EGR system is required. In this work, a transient 3D CFD model for simulation of gas flow, heat transfer and power generation has been developed. This model allows critical design parameters in the TEG-EGR to be identified and design requirements for the systems to be specified. Besides the prediction of Seebeck, Peltier, Thomson and Joule effects, the simulations also give detailed insight to the temperature gradients in the gas-phase and inside the thermoelectric (TE) elements. The model is a very valuable tool to identify bottlenecks, improve design, select optimal TE materials and operating conditions. The results show that the greatest heat transfer resistance is located in the gas phase and it is critical to reduce this in order to achieve a large temperature difference over the thermoelectric elements without compromising on the maximum allowable pressure drop in the system. Further results from an investigation of the thermoelectric performance during a vehicle test cycle is presented.

  7. Backup of Renewable Energy for an Electrical Island: Case Study of Israeli Electricity System—Current Status

    PubMed Central

    Fakhouri, A.; Kuperman, A.

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources. PMID:24624044

  8. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1994-01-01

    Substantial progress has been made toward the goals of this research effort in the past six months. A simplified rotor model with a flexible shaft and backup bearings has been developed. The model is based upon the work of Ishii and Kirk. Parameter studies of the behavior of this model are currently being conducted. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. The study consists of simulation work coupled with experimental verification. The work is documented in the attached paper. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. The dynamics of this model are currently being studied with the objective of verifying the conclusions obtained from the simpler models. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501.

  9. Performance of a 260 Hz pulse tube cooler with metal fiber as the regenerator material

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Zhang, Shuang; Yu, Guoyao; Dai, Wei; Luo, Ercang

    2014-01-01

    Pulse tube coolers operating at higher frequency lead to a high energy density and result in a more compact system. This paper describes the performance of a 300 Hz pulse tube cooler driven by a linear compressor. Such high frequency operation leads to decreased thermal penetration, which requires a smaller hydraulic diameter and smaller wire diameter in the regenerator. In our previous experiments, the stainless steel mesh with a mesh number of 635 was used as the regenerator material, and a no-load temperature of 63 K was obtained. Both the numerical and experimental results indicate this material causes a large loss in the regenerator. A stainless steel fiber regenerator is introduced and studied in this article. Because this fiber has a wide range of wire diameter and porosity, such material might be more suitable for higher frequency pulse tube coolers. With the fiber as the regenerator material and after a series of optimizations, a no-load temperature of 45 K is acquired in the experiment. Influences of various parameters such as frequency and inertance tube length have been investigated experimentally.

  10. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Walk-in Coolers and Walk-in Freezers § 431.302...; however the terms do not include products designed and marketed exclusively for medical, scientific, or...

  11. Recovery from unusual attitudes: HUD vs. back-up display in a static F/A-18 simulator.

    PubMed

    Huber, Samuel W

    2006-04-01

    Spatial disorientation (SD) remains one of the most important causes of fatal fighter aircraft accidents. The aim of this study was to give a recommendation for the use of the head-up display (HUD) or back-up attitude directional indicator (ADI) in a state of spatial disorientation based on the respective performance in an unusual attitude recovery task. Seven fighter pilots joining a conversion course to the F/A-18 participated in this study. Flight time will be presented as range (and mean in parentheses). Total military flight experience of the subjects was 835-1759 h (1412 h). Flight time on the F/A-18 was 41-123 h (70 h). The study was performed in a fixed base F/A-18D Weapons Tactics Trainer. We tested the recovery from 11 unusual attitudes and analyzed decision time (DT), total recovery time (TRT), and error rates for the HUD or the back-up ADI. We found no differences regarding either reaction times or error rates. For the HUD we found a DT (mean +/- SD) of 1.3 +/- 0.4 s, a TRT of 9.1 +/- 4.1 s, and an error rate of 29%. For the ADI the respective values were a DT of 1.4 +/- 0.4 s, a TRT of 8.3 +/- 3.8 s, and an error rate of 27%. Unusual attitude recoveries are performed equally well using the HUD or the back-up ADI. Switching from one instrument to the other during recovery should be avoided since it would probably result in a loss of time without benefit.

  12. On-chip cooling by superlattice-based thin-film thermoelectrics.

    PubMed

    Chowdhury, Ihtesham; Prasher, Ravi; Lofgreen, Kelly; Chrysler, Gregory; Narasimhan, Sridhar; Mahajan, Ravi; Koester, David; Alley, Randall; Venkatasubramanian, Rama

    2009-04-01

    There is a significant need for site-specific and on-demand cooling in electronic, optoelectronic and bioanalytical devices, where cooling is currently achieved by the use of bulky and/or over-designed system-level solutions. Thermoelectric devices can address these limitations while also enabling energy-efficient solutions, and significant progress has been made in the development of nanostructured thermoelectric materials with enhanced figures-of-merit. However, fully functional practical thermoelectric coolers have not been made from these nanomaterials due to the enormous difficulties in integrating nanoscale materials into microscale devices and packaged macroscale systems. Here, we show the integration of thermoelectric coolers fabricated from nanostructured Bi2Te3-based thin-film superlattices into state-of-the-art electronic packages. We report cooling of as much as 15 degrees C at the targeted region on a silicon chip with a high ( approximately 1,300 W cm-2) heat flux. This is the first demonstration of viable chip-scale refrigeration technology and has the potential to enable a wide range of currently thermally limited applications.

  13. Feasibility and impact of placing water coolers on sales of sugar-sweetened beverages in Dutch secondary school canteens.

    PubMed

    Visscher, Tommy L S; van Hal, Wendy C W; Blokdijk, Lobke; Seidell, Jaap C; Renders, Carry M; Bemelmans, Wanda J E

    2010-01-01

    The aim of this pilot study was to investigate the feasibility and effectiveness of placing water coolers on sugar-sweetened beverage sales at secondary schools (age 12-18 years) in the city of Zwolle, the Netherlands. Six schools, hosting 5,866 pupils, were divided in three intervention and three control schools. In the intervention schools, water coolers were placed in the canteen. Hidden observations were performed in one school to study the intervention's feasibility, and school personnel was interviewed. Beverage sales were monitored before and during the intervention. After the intervention period, 366 class 1 and 2 pupils completed a questionnaire about their drinking habits (response rate 81%). Placement of water coolers appeared to be a feasible intervention at secondary schools. However, it did not affect sales of sugar-sweetened beverages at schools. Although mean intake of sugar-sweetened beverages at school was high, more than 500 ml/day for boys, and more than 250 ml/day for girls, only a minority of these quantities was purchased at school. We conclude that placing water coolers as a single-issue intervention in secondary school canteens should not be prioritized in the combat against obesity. Copyright 2010 S. Karger AG, Basel.

  14. 78 FR 55781 - Energy Conservation Program: Energy Conservation Standards for Walk-In Coolers and Freezers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ...The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and certain commercial and industrial equipment, including walk-in coolers and walk-in freezers. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more-stringent, amended standards would be technologically feasible and economically justified, and would save a significant amount of energy. In this notice, DOE proposes amended energy conservation standards for walk-in coolers and walk-in freezers. The notice also announces a public meeting to receive comment on these proposed standards and associated analyses and results.

  15. Effects of PM fouling on the heat exchange effectiveness of wave fin type EGR cooler for diesel engine use

    NASA Astrophysics Data System (ADS)

    Jang, Sang-Hoon; Hwang, Se-Joon; Park, Sang-Ki; Choi, Kap-Seung; Kim, Hyung-Man

    2012-06-01

    Developing an effective method of reducing nitrogen oxide emissions is an important goal in diesel engine research. The use of cooled exhaust gas recirculation has been considered one of the most effective techniques of reducing nitrogen oxide. However, since the combustion characteristics in a diesel engine involves high temperature and load, the amount of particulate matter emission tends to increase, and there is a trade-off between the amount of nitrogen oxide and particulate matter emissions. In the present study, engine dynamometer experiments are performed to investigate the effects of particulate matter fouling on the heat exchange characteristics of wave fin type exhaust gas recirculation coolers that have four cases of two wave pitch and three fin pitch lengths. To optimize the fin and wave pitches of the EGR cooler, the exhaust gas temperature, pressure drop and heat exchange effectiveness are compared. The experimental results show that the exhaust gas recirculation cooler with a fin pitch of 3.6 mm and a wave pitch of 8.8 mm exhibits better heat exchange characteristics and smaller particulate matter fouling effect than the other coolers.

  16. A Method for Determining Oil-Cooler Performance Requirements in Series Operation

    DTIC Science & Technology

    1945-09-01

    magnitude of this diminution cannot be predicted exactly beoause of nonuniformities of local oil-flow rates within the cooler. Furthermore...N.A.E.S., Philadelphia Navy Yard.) Fig. 4a, b NACA ARR No. L5G18a .8 .7 .6 r % I s Lair 1 /in \\ \\ 80 \\ \\ 0 ^ ^. (0,0

  17. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 C temperature increase from the nominal vapor temperature. The 19 C temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  18. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  19. RELAP5-3D Resolution of Known Restart/Backup Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesina, George L.; Anderson, Nolan A.

    2014-12-01

    The state-of-the-art nuclear reactor system safety analysis computer program developed at the Idaho National Laboratory (INL), RELAP5-3D, continues to adapt to changes in computer hardware and software and to develop to meet the ever-expanding needs of the nuclear industry. To continue at the forefront, code testing must evolve with both code and industry developments, and it must work correctly. To best ensure this, the processes of Software Verification and Validation (V&V) are applied. Verification compares coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions. A form of this, sequentialmore » verification, checks code specifications against coding only when originally written then applies regression testing which compares code calculations between consecutive updates or versions on a set of test cases to check that the performance does not change. A sequential verification testing system was specially constructed for RELAP5-3D to both detect errors with extreme accuracy and cover all nuclear-plant-relevant code features. Detection is provided through a “verification file” that records double precision sums of key variables. Coverage is provided by a test suite of input decks that exercise code features and capabilities necessary to model a nuclear power plant. A matrix of test features and short-running cases that exercise them is presented. This testing system is used to test base cases (called null testing) as well as restart and backup cases. It can test RELAP5-3D performance in both standalone and coupled (through PVM to other codes) runs. Application of verification testing revealed numerous restart and backup issues in both standalone and couple modes. This document reports the resolution of these issues.« less

  20. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  1. 40 CFR 63.1348 - Standards for affected sources other than kilns; in-line kiln/raw mills; clinker coolers; new and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw...; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills. The owner or operator of each new or existing raw material, clinker, or finished product...

  2. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  3. Micro-jitter attenuation of spaceborne cooler by using a blade-type hyperelastic shape memory alloy passive isolator

    NASA Astrophysics Data System (ADS)

    Kwon, Seong-Cheol; Jeon, Young-Hyeon; Oh, Hyun-Ung

    2017-10-01

    In this study, the primary design objective is to develop a passive isolator that can guarantee structural safety of the cooler assembly in a launch vibration environment without a launch locking mechanism, while effectively isolating the cooler-induced micro-jitter during the on-orbit operation of the cooler. To achieve the design objective, we focused on the utilization of characteristics of the hyperelastic shape memory effects. The major advantage of the isolator is that the micro-jitter isolation performance is much less sensitive to the aligned position of the isolator in comparison with the conventional isolator. Moreover, implementation of an additional 0g compensation device during a satellite level on-ground test, such as a jitter measurement test, is not required. In this study, the basic characteristics of the isolator were measured using the torque test and free vibration test. The micro-jitter attenuation capability and position sensitivity of the proposed isolator design were validated by the micro-jitter measurement test.

  4. Flexible thermal apparatus for mounting of thermoelectric cooler

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Bard, Steven (Inventor)

    1991-01-01

    A flexible heat transfer apparatus used to flexibly connect and thermally couple a thermoelectric cooler to an object to be cooled is disclosed. The flexible heat transfer apparatus consists of a pair of flexible corrugated sheets made from high thermal conductivity materials such as copper, aluminum, gold, or silver. The ridges of the corrugated sheets are oriented perpendicular to one another and bonded sandwich-fashion between three plates to define an upper section and a lower section. The upper section provides X flexure, the lower section provides Y flexure, and both sections together provide Z flexure.

  5. An improved patch for radiative coolers

    NASA Astrophysics Data System (ADS)

    Bly, Vincent T.

    1993-09-01

    A unique structure for constructing the emissive patch of a spaceborne radiative cooler is shown. The structure has very high emissivity for all angles up to a designed-in maximum angle and near zero emissivity for greater angles. The structure also allows the use of high emissivity, nonconducting paints while fully complying with the NASA Electrostatic Discharge Susceptibility requirements for spacecraft. To accomplish these tasks, two previous disadvantages of prior art methods are addressed; eliminating background thermal radiation sources and problems concerning the high emissivity paints used in association with the black body radiator. A reflector consisting of an array of parabolic concentrators is separated from a black body element by an electrically conductive spacer. The concentrators serve to limit the field of view while the conductive spacer eliminates the need to use a conductive paint on the emissive element.

  6. An improved patch for radiative coolers

    NASA Astrophysics Data System (ADS)

    Bly, Vincent T.

    1993-01-01

    A unique structure for constructing the emissive patch of a spaceborne radiative cooler is shown. The structure has very high emissivity for all angles up to a designed-in maximum angle and near zero emissivity for greater angles. The structure also allows the use of high emissivity, nonconducting paints while fully complying with the NASA Electrostatic Discharge Susceptibility requirements for spacecraft. To accomplish these tasks, two previous disadvantages of prior art methods are addressed; eliminating background thermal radiation sources and problems concerning the high emissivity paints used in association with the black body radiator. A reflector consisting of an array of parabolic concentrators is separated from a black body element by an electrically conductive spacer. The concentrators serve to limit the field of view while the conductive spacer eliminates the need to use a conductive paint on the emissive element.

  7. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate.

    PubMed

    Johnston, James D; Tuttle, Steven C; Nelson, Morgan C; Bradshaw, Rebecca K; Hoybjerg, Taylor G; Johnson, Julene B; Kruman, Bryce A; Orton, Taylor S; Cook, Ryan B; Eggett, Dennis L; Weber, K Scott

    2016-01-01

    Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr) and summer (July-Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.

  8. Fuel cell cooler assembly and edge seal means therefor

    DOEpatents

    Breault, Richard D.; Roethlein, Richard J.; Congdon, Joseph V.

    1980-01-01

    A cooler assembly for a stack of fuel cells comprises a fibrous, porous coolant tube holder sandwiched between and bonded to at least one of a pair of gas impervious graphite plates. The tubes are disposed in channels which pass through the holder. The channels are as deep as the holder thickness, which is substantially the same as the outer diameter of the tubes. Gas seals along the edges of the holder parallel to the direction of the channels are gas impervious graphite strips.

  9. High-Temperature Polymer Composites Tested for Hypersonic Rocket Combustor Backup Structure

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Shin, E. Eugene; Thesken, John C.; Fink, Jeffrey E.

    2005-01-01

    Significant component weight reductions are required to achieve the aggressive thrust-toweight goals for the Rocket Based Combined Cycle (RBCC) third-generation, reusable liquid propellant rocket engine, which is one possible engine for a future single-stage-toorbit vehicle. A collaboration between the NASA Glenn Research Center and Boeing Rocketdyne was formed under the Higher Operating Temperature Propulsion Components (HOTPC) program and, currently, the Ultra-Efficient Engine Technology (UEET) Project to develop carbon-fiber-reinforced high-temperature polymer matrix composites (HTPMCs). This program focused primarily on the combustor backup structure to replace all metallic support components with a much lighter polymer-matrixcomposite- (PMC-) titanium honeycomb sandwich structure.

  10. On the characteristics of centrifugal-reciprocating machines. [cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1980-01-01

    A method of compressing helium gas for cryogenic coolers is presented which uses centrifugal force to reduce the forces on the connecting rod and crankshaft in the usual reciprocating compressor. This is achieved by rotating the piston-cylinder assembly at a speed sufficient for the centrifugal force on the piston to overcome the compressional force due to the working fluid. The rotating assembly is dynamically braked in order to recharge the working space with fluid. The intake stroke consists of decelerating the rotating piston-cylinder assembly and the exhaust stroke consists of accelerating the assembly.

  11. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate

    PubMed Central

    Johnston, James D.; Tuttle, Steven C.; Nelson, Morgan C.; Bradshaw, Rebecca K.; Hoybjerg, Taylor G.; Johnson, Julene B.; Kruman, Bryce A.; Orton, Taylor S.; Cook, Ryan B.; Eggett, Dennis L.; Weber, K. Scott

    2016-01-01

    Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan–Apr) and summer (July–Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction. PMID:26808528

  12. Prevalence of house dust mite allergens in low-income homes with evaporative coolers in a semiarid climate.

    PubMed

    Johnston, James D; Barney, Taylor P; Crandall, Justin H; Brown, Marinn A; Westover, Tarah R; Paulson, Sterling M; Smith, Madeleine S; Weber, K Scott

    2018-01-02

    House dust mites are typically absent in homes in arid and semiarid climates due to low humidity. Evaporative "swamp" cooling significantly increases indoor humidity in dry climates and is suspected of promoting dust mite survival in these regions. We investigated the prevalence and concentration of mite allergens in dust from low-income homes (N = 22) with evaporative coolers in Utah County, Utah. Overall, 15 homes (68.2%) were positive for either Der p 1 or Der f 1 in at least 1 location. Geometric mean allergen levels in mattresses were 0.107 and 0.087 ug/g dust for Der p 1 and Der f 1, respectively. In furniture, levels were 0.143 and 0.165 ug/g dust for Der p1 and Der f 1, respectively. The percentage of positive homes in this study was much higher than previously reported in larger homes with swamp coolers in the same community. These results suggest socioeconomic factors may play a role in dust mite allergen prevalence in homes with evaporative coolers in dry climates.

  13. Micromachined Joule-Thomson coolers for cooling low-temperature detectors and electronics

    NASA Astrophysics Data System (ADS)

    ter Brake, Marcel; Lerou, P. P. P. M.; Burger, J. F.; Holland, H. J.; Derking, J. H.; Rogalla, H.

    2017-11-01

    The performance of electronic devices can often be improved by lowering the operating temperature resulting in lower noise and larger speed. Also, new phenomena can be applied at low temperatures, as for instance superconductivity. In order to fully exploit lowtemperature electronic devices, the cryogenic system (cooler plus interface) should be `invisible' to the user. It should be small, low-cost, low-interference, and above all very reliable (long-life). The realization of cryogenic systems fulfilling these requirements is the topic of research of the Cooling and Instrumentation group at the University of Twente. A MEMS-based cold stage was designed and prototypes were realized and tested. The cooler operates on basis of the Joule-Thomson effect. Here, a high-pressure gas expands adiabatically over a flow restriction and thus cools and liquefies. Heat from the environment (e.g., an optical detector) can be absorbed in the evaporation of the liquid. The evaporated working fluid returns to the low-pressure side of the system via a counter-flow heat exchanger. In passing this heat exchanger, it takes up heat from the incoming high-pressure gas that thus is precooled on its way to the restriction. The cold stage consists of a stack of three glass wafers. In the top wafer, a high-pressure channel is etched that ends in a flow restriction with a height of typically 300 nm. An evaporator volume crosses the center wafer into the bottom wafer. This bottom wafer contains the lowpressure channel thus forming a counter-flow heat exchanger. A design aiming at a net cooling power of 10 mW at 96 K and operating with nitrogen as the working fluid was optimized based on the minimization of entropy production. The optimum cold finger measures 28 mm x 2.2 mm x 0.8 mm operating with a nitrogen flow of 1 mg/s at a high pressure of 80 bar and a low pressure of 6 bar. The design and fabrication of the coolers will be discussed along with experimental results.

  14. Off gas film cooler cleaner

    DOEpatents

    Dhingra, Hardip S.; Koch, William C.; Burns, David C.

    1997-01-01

    An apparatus for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter.

  15. Off gas film cooler cleaner

    DOEpatents

    Dhingra, H.S.; Koch, W.C.; Burns, D.C.

    1997-08-26

    An apparatus is described for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter. 5 figs.

  16. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.

    PubMed

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.

  17. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less

  18. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

    DOE PAGES

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; ...

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less

  19. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals

    PubMed Central

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J.; Zhang, Yanliang

    2016-01-01

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm2 with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications. PMID:27615036

  20. Industrial Application Study on New-Type Mixed-Flow Fluidized Bed Bottom Ash Cooler

    NASA Astrophysics Data System (ADS)

    Zeng, B.; Lu, X. F.; Liu, H. Z.

    As a key auxiliary device of CFB boiler, the bottom ash cooler (BAC) has a direct influence on secure and economic operation of the boiler. The operating situation of domestic CFB power plant is complex and changeable with a bad coal-fired condition. The principle for designing BAC suitable for the bad coal-fired condition and high parameter CFB boilers was summarized in this paper. Meanwhile, a new-type mixed-flow fluidized bed bottom ash cooler was successfully designed on the basis of the comprehensive investigation on the existing BAC s merits and drawbacks. Using coarse/fine slag separation technology and micro-bubbling fluidization are the significant characteristics of this new BAC. This paper also puts great emphasis on its industrial test in a 460t/h CFB boiler. The results indicate that it achieves significant separation of the coarse/fine slag, an obvious cooling effect, no slag block and coking phenomenon, and continuous stable operation. Figs 7, Tabs 4 and Refs 11.

  1. Healthcare-Associated Mycobacterium chimaera Infection Subsequent to Heater-Cooler Device Exposure During Cardiac Surgery.

    PubMed

    Ninh, Allen; Weiner, Menachem; Goldberg, Andrew

    2017-10-01

    A SERIES of reports in the United States and Europe have linked Mycobacterium chimaera infections to contaminated heater-cooler devices used during cardiac surgery. Heater-cooler devices commonly are used for cardiopulmonary bypass during cardiac surgery. M. chimaera is a slow-growing nontuberculous mycobacterium that has been shown to cause cardiac complications that can lead to fatal disease following cardiac surgery. Given that more than 250,000 cardiothoracic surgical procedures requiring cardiopulmonary bypass take place each year in the United States, the estimated number of patient exposures to M. chimaera has prompted a public health crisis. The goal of this review is to summarize the present status of the M. chimaera outbreak and provide cardiothoracic surgeons, cardiac anesthesiologists, and other clinicians with current approaches to patient management and to discuss risk mitigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    NASA Technical Reports Server (NTRS)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  3. Effect of cooler electrons on a compressive ion acoustic solitary wave in a warm ion plasma — Forbidden regions, double layers, and supersolitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in; Sekar Iyengar, A. N.

    It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%–20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leadsmore » to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.« less

  4. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...

  5. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...

  6. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...

  7. Anomalous thermoelectricity in strained Bi2Te3 films.

    PubMed

    Liu, Yucong; Chen, Jiadong; Deng, Huiyong; Hu, Gujin; Zhu, Daming; Dai, Ning

    2016-09-07

    Bi2Te3-based alloys have been intensively used for thermoelectric coolers and generators due to their high Seebeck coefficient S. So far, efforts to improve the S have been made mostly on changing the structures and components. Herein, we demonstrate an anomalous thermoelectricity in strained Bi2Te3 films, i.e., the value of S is obviously changed after reversing the direction of temperature gradient. Further theoretical and experimental analysis shows that it originates from the coupling of thermoelectric and flexoelectric effects caused by a stress gradient. Our finding provides a new avenue to adjust the S of Bi2Te3-based thermoelectric materials through flexoelectric polarization.

  8. Update on lifetime tests results and analysis carried out on Thales Cryogenics integral coolers (RM family)

    NASA Astrophysics Data System (ADS)

    Cauquil, Jean-Marc; Martin, Jean-Yves; Bruins, Peter; Benschop, A. A. J.

    2003-01-01

    The life time tests realised on the serial production of Rotary Mmonoblock RM2 coolers show a measured MTTF of 4900 hours. The conventional test profile applied to these coolers is representative of operation in typical application. The duration of such life time tests is very long. The results of a design change and its impact on MTTF are available only several months after the assembly of the prototypes. We decided to develop a test method in order to reduce the duration of these life time tests. The principle is to define a test protocol easy to implement, more severe than typical application profile in order to accelerate life time tests. The accelerated test profile was defined and tested successfully. This new technique allows us to reduce life time tests costs and duration and thus the costs involved. As a consequence, we decided to have a screening of our production with this accelerated test. This allows us to master continuously the quality of our serial products and to collect additional data. This paper presents the results of life time tests performed on RM2 coolers according to the conventional and accelerated test profiles as well as the first results on the new RM2 design which show a calculated MTTF of 10000 hours.

  9. Design, construction, and measurement of a large solar powered thermoacoustic cooler

    NASA Astrophysics Data System (ADS)

    Chen, Reh-Lin

    2001-07-01

    A device based on harnessing concentrated solar power in combination with using thermoacoustic principles has been built, instrumented, and tested. Its acoustic power is generated by solar radiation and is subsequently used to pump heat from external loads. The direct conversion between thermal and mechanical energy without going through any electronic stage makes the mechanism simple. Construction of the solar collector is also rather unsophisticated. It was converted from a 10-ft satellite dish with aluminized Mylar glued on the surface. The thermoacoustic device was mounted on the dish with its engine's hot side positioned near the focus of the parabolic dish, about 1 meter above the center of the dish. A 2-dimensional solar tracking system was built, using two servo motors to position the dish at pre-calculated coordinates. The solar powered thermoacoustic cooler is intended to be used where solar power is abundant and electricity may not be available or reliable. The cooler provides cooling during solar availability. Cooling can be maintained by the latent heat of ice when solar power is unattainable. The device has achieved cooling although compromised by gas leakage and thermal losses and was not able to provide temperatures low enough to freeze water. Improvements of the device are expected through modifications suggested herein.

  10. Children's response to a commercial back-up warning device.

    PubMed

    Sapien, R E; Widman Roux, J; Fullerton-Gleason, L

    2003-03-01

    To determine preschool children's response to a commercial back-up warning alarm in a mock setting of an automobile backing up. Preschool parking lot in Albuquerque, New Mexico, USA. With subjects acting as their own controls, 33 preschoolers were asked to walk behind a stationary vehicle twice. The first time, the control, no warning sound was emitted from the vehicle. The second time, the vehicle was placed in reverse gear triggering an alarm. Children's responses were recorded by a hidden video camera. Avoidance behavior by the child was considered a positive response. Location and distance to where the response occurred was measured. Thirty three children, 38-61 months, were studied. None responded to the alarm with avoidance behavior but 18 looked toward the vehicle or hesitated in their gait. Although over half of the children acknowledged the warning alarm, the device did not elicit avoidance behavior. Mere acknowledgment of the warning device would not prevent injury.

  11. Sprawling nursery unveils propane backup for natural gas boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    First, take the most authoritative policy- making body in the pervasive problem area of Southern California air pollution (South Coast Air Quality Management District - SCAQMD). Then apply that organization's recently- enacted regulation prohibiting the use of diesel fuel in boilers to a well-known commercial establishment. The result is an alternative fuel story, that's too engaging to overlook. Monrovia Nursery, a 65-year-old, 500-acre wholesale growing facility in Azusa, Calif., has installed two 200-hp Dixon boilers, a 14 MMBtuh Sam Dick Industries vaporizer, and six 1150-gal. tanks on the property for the use of propane as a backup fuel. While themore » nursery ordinarily uses natural gas for water heating, there are times during the winter when the supply may be curtailed or interrupted. It is then that propane would be used to heat water to keep more than 1200 varieties of plants growing as they should.« less

  12. On the Use of Thermoelectric (TE) Applications Based on Commercial Modules: The Case of TE Generator and TE Cooler

    NASA Astrophysics Data System (ADS)

    Zorbas, K.; Hatzikraniotis, E.; Paraskevopoulos, K. M.; Kyratsi, Th.

    2010-01-01

    In recent years, thermoelectricity sees rapidly increasing usages in applications like portable refrigerators, beverage coolers, electronic component coolers etc. when used as Thermoelectric Cooler (TEC), and Thermoelectric Generators (TEG) which make use of the Seebeck effect in semiconductors for the direct conversion of heat into electrical energy and is of particular interest for systems of highest reliability or for waste heat recovery. In this work, we examine the performance of commercially available TEC and TEG. A prototype TEC-refrigerator has been designed, modeled and constructed for in-car applications. Additionally, a TEG was made, in order to measure the gained power and efficiency. Furthermore, a TEG module was tested on a small size car (Toyota Starlet, 1300 cc), in order to measure the gained power and efficiency for various engine loads. With the use of a modeling approach, we evaluated the thermal contact resistances and their influence on the final device efficiency.

  13. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.

    PubMed

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.

  14. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic

    PubMed Central

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048

  15. Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring

    NASA Astrophysics Data System (ADS)

    Signarbieux, Constant; Toledano, Ester; Sangines, Paula; Fu, Yongshuo; Schlaepfer, Rodolphe; Buttler, Alexandre; Vitasse, Yann

    2017-04-01

    In temperate trees, the timing of plant growth onset and cessation affect biogeochemical cycles, water and energy balance. Currently, phenological studies largely focus on specific phenophases and on their responses to warming. How differently spring phenology responds to the warming and cooling, and affects the subsequent phases, has not been well investigated. Here, we exposed saplings of Fagus sylvatica L. to warmer and cooler climate during the winter 2013-2014 by conducting a reciprocal transplant experiment between two elevations (1340 vs. 371 m.a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of earlier or later budburst on the budset timing, saplings were moved back to their original elevation shortly after the occurrence of budburst in spring 2014. One degree decrease of air temperature resulted in a delay of 10.9 days in budburst dates, whereas one degree of warming advanced the date by 8.8 days. Interestingly, we found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing in autumn: saplings experiencing a cooler winter showed a delay of 31 days in their budset timing compared to the control, whereas saplings experiencing a warmer winter showed 10 days earlier budset. The dependency of spring over autumn phenophases might be partly explained by the building up of the non-structural carbohydrate storage and suggests that the potential delay in growth cessation due to global warming might be smaller than expected. We did not find a significant correlation in budburst dates between 2014 and 2015, indicating that the legacy effects of the different phenophases might be reset during each winter. Adapting phenological models to the whole annual phenological cycle, and considering the different response to cooling and warming, would improve predictions of tree phenology under future climate warming conditions.

  16. A cooler Penning trap for the TITAN mass measurement facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, U.; Kootte, B.; Good, M.

    The TITAN facility at TRIUMF makes use of highly charged ions, charge-bred in an electron beam ion trap, to carry out accurate mass measurements on radioactive isotopes. We report on our progress to develop a cooler Penning trap, CPET, which aims at reducing the energy spread of the ions to ≈ 1 eV/charge prior to injection into the mass measurement trap. In off-line mode, we can now trap electron plasmas for minutes, and we observe the damping of the m = 1 diocotron plasma mode within ≈ 2 s.

  17. SAFARI engineering model 50 mK cooler

    NASA Astrophysics Data System (ADS)

    Duband, L.; Duval, J. M.; Luchier, N.

    2014-11-01

    SAFARI is an infrared instrument developed by a European based consortium to be flown in SPICA, a Japanese led mission. The SAFARI detectors are transition edge sensors (TES) and require temperatures down to 50 mK for their operation. For that purpose we have developed a hybrid architecture based on the combination of a 300 mK sorption stage and a small adiabatic demagnetization stage. An engineering model has been designed to provide net heat lifts of 0.4 and 14 μW respectively at 50 and 300 mK, with an overall cycle duration of 48 h and a duty cycle objective of over 75%. The cooler is self-contained, fits in a volume of 156 × 312 × 182 mm and is expected to weigh 5.1 kg. It has been designed to withstand static loads of 120 g and a random vibration level of 21 g RMS.

  18. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system

    PubMed Central

    Gostimskaya, Irina; Grant, Chris M.

    2016-01-01

    Glutathione is an abundant, low-molecular-weight tripeptide whose biological importance is dependent upon its redox-active free sulphydryl moiety. Its role as the main determinant of thiol-redox control has been challenged such that it has been proposed to play a crucial role in iron–sulphur clusters maturation, and only a minor role in thiol redox regulation, predominantly as a back-up system for the cytoplasmic thioredoxin system. Here, we have tested the importance of mitochondrial glutathione in thiol-redox regulation. Glutathione reductase (Glr1) is an oxidoreductase which converts oxidized glutathione to its reduced form. Yeast Glr1 localizes to both the cytosol and mitochondria and we have used a Glr1M1L mutant that is constitutively localized to the cytosol to test the requirement for mitochondrial Glr1. We show that the loss of mitochondrial Glr1 specifically accounts for oxidant sensitivity of a glr1 mutant. Loss of mitochondrial Glr1 does not influence iron–sulphur cluster maturation and we have used targeted roGFP2 fluorescent probes to show that oxidant sensitivity is linked to an altered redox environment. Our data indicate mitochondrial glutathione is crucial for mitochondrial thiol-redox regulation, and the mitochondrial thioredoxin system provides a back-up system, but cannot bear the redox load of the mitochondria on its own. PMID:26898146

  19. Human-Rated Space Vehicle Backup Flight Systems

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey A.; Busa, Joseph L.

    2004-01-01

    Human rated space vehicles have historically employed a Backup Flight System (BFS) for the main purpose of mitigating the loss of the primary avionics control system. Throughout these projects, however, the underlying philosophy and technical implementation vary greatly. This paper attempts to coalesce each of the past space vehicle program's BFS design and implementation methodologies with the accompanying underlining philosophical arguments that drove each program to such decisions. The focus will be aimed at Mercury, Gemini, Apollo, and Space Shuttle However, the ideologies and implementation of several commercial and military aircraft are incorporated as well to complete the full breadth view of BFS development across the varying industries. In particular to the non-space based vehicles is the notion of deciding not to utilize a BFS. A diverse analysis of BFS to primary system benefits in terms of reliability against all aspects of project development are reviewed and traded. The risk of engaging the BFS during critical stages of flight (e.g. ascent and entry), the level of capability of the BFS (subset capability of main system vs. equivalent system), and the notion of dissimilar hardware and software design are all discussed. Finally, considerations for employing a BFS on future human-rated space missions are reviewed in light of modern avionics architectures and mission scenarios implicit in exploration beyond low Earth orbit.

  20. Anomalous thermoelectricity in strained Bi2Te3 films

    PubMed Central

    Liu, Yucong; Chen, Jiadong; Deng, Huiyong; Hu, Gujin; Zhu, Daming; Dai, Ning

    2016-01-01

    Bi2Te3-based alloys have been intensively used for thermoelectric coolers and generators due to their high Seebeck coefficient S. So far, efforts to improve the S have been made mostly on changing the structures and components. Herein, we demonstrate an anomalous thermoelectricity in strained Bi2Te3 films, i.e., the value of S is obviously changed after reversing the direction of temperature gradient. Further theoretical and experimental analysis shows that it originates from the coupling of thermoelectric and flexoelectric effects caused by a stress gradient. Our finding provides a new avenue to adjust the S of Bi2Te3-based thermoelectric materials through flexoelectric polarization. PMID:27600406

  1. A right hemisphere safety backup at work: hypotheses for deep hypnosis, post-traumatic stress disorder, and dissociation identity disorder.

    PubMed

    Burnand, Gordon

    2013-09-01

    Problem theory points to an a priori relation between six key problems of living, to which people have adapted through evolution. Children are guided through the problems one by one, learning to switch between them automatically and unawares. The first problem of raising hope of certainty (about the environment), is dealt with in the right hemisphere (RH). The second of raising hope of freedom (or power to control), is dealt with in the left hemisphere (LH). Here adventurousness and ignoring the goodness of outcomes potentially create recklessness. When uncertainty rises the RH activates a backup with an override that substitutes immobility, takes over sensory inputs, but allows obedience to parental commands, and a cut-out that stops new work on the freedom problem. Support for the use of the backup by infants is found in the immobility that precedes the crying in strange conditions, and in childhood EEGs. The hypothesis that the backup is active in deep hypnosis imposes accord on findings that appear contradictory. For example it accounts for why observations during deep hypnosis emphasize the activity of the RH, but observations of responsive people not under hypnosis emphasize the activity of the LH. The hypothesis that the backup is active in post-traumatic stress disorder (PTSD) is supported by (a) fMRI observations that could reflect the cut-out, in that part of the precuneus has low metabolism, (b) the recall of motionlessness at the time of the trauma, (c) an argument that playing dead as a defence against predators is illogical, (d) the ease of hypnosis. With dissociative identity disorder (DID), the theory is consistent with up to six alters that have executive control and one trauma identity state where childhood traumas are re-experienced. Support for the cut-out affecting the trauma identity state comes from suppression of part of the precuneus and other parts of the parietal lobe when the trauma identity state is salient and a general script about a

  2. Management of adults with acute streptococcal pharyngitis: minimal value for backup strep testing and overuse of antibiotics.

    PubMed

    Nakhoul, Georges N; Hickner, John

    2013-06-01

    Rapid antigen detection tests (RADT) are commonly used to guide appropriate antibiotic treatment of group A beta-hemolytic streptococcal (GABHS) pharyngitis. In adults, there is controversy about the need for routine backup testing of negative RADT. Estimate the costs and benefits in adults of routine backup testing by DNA Gen-probe of negative RADT (Acceava). Observational follow-up study. All patients aged 18 years and older visiting a Cleveland Clinic generalist physician in 2009 and 2010 with a visit diagnosis of acute pharyngitis (ICD codes 462, 034.0). The patients were identified using the Cleveland Clinic Epic Clarity database. We determined the proportion of false negative RADT, antibiotic prescription patterns and rate of serious suppurative complications within 30 days of the office visit. Of 25,130 patients with acute pharyngitis, 19% had no testing and 81% were tested. Of the 15,555 patients that had a negative RADT and follow-up DNA probe, 6% had a positive DNA probe. Of the 953 patients who had a negative RADT and a positive DNA strep probe, 48% received an antibiotic prescription at the time of the visit and 51% received an antibiotic prescription after an average of 2.3 days. Only one patient with a negative RADT and no follow-up DNA probe developed a peritonsillar abscess. Overall, of the 15,555 DNA probes performed, management was altered in only 3% of the patients at a total cost of $1,757,715. Fifty-six percent received an antibiotic while only 19.5% had a confirmed strep throat diagnosis. The false negative rate of Acceava RADT for the diagnosis of GABHS pharyngitis was 6%. We question the benefit of routine DNA probe backup testing in adults because of its substantial cost, an average delay in antibiotic prescribing of over 2 days, and because suppurative complications are very uncommon. We found a high rate of inappropriate antibiotic prescribing.

  3. Reemergence of Mycobacterium chimaera in Heater-Cooler Units despite Intensified Cleaning and Disinfection Protocol.

    PubMed

    Schreiber, Peter W; Kuster, Stefan P; Hasse, Barbara; Bayard, Cornelia; Rüegg, Christian; Kohler, Philipp; Keller, Peter M; Bloemberg, Guido V; Maisano, Francesco; Bettex, Dominique; Halbe, Maximilian; Sommerstein, Rami; Sax, Hugo

    2016-10-01

    Invasive Mycobacterium chimaera infections after open-heart surgery have been reported internationally. These devastating infections result from aerosols generated by contaminated heater-cooler units used with extracorporeal circulation during surgery. Despite intensified cleaning and disinfection, surveillance samples from factory-new units acquired during 2014 grew nontuberculous mycobacteria after a median of 174 days.

  4. Generalized approach to cooling charge-coupled devices using thermoelectric coolers

    NASA Technical Reports Server (NTRS)

    Petrick, S. Walter

    1987-01-01

    This paper is concerned with the use of thermoelectric coolers (TECs) to cool charge-coupled devices (CCDs). Heat inputs to the CCD from the warmer environment are identified, and generalized graphs are used to approximate the major heat inputs. A method of choosing and estimating the power consumption of the TEC is discussed. This method includes the use of TEC performance information supplied by the manufacturer and equations derived from this information. Parameters of the equations are tabulated to enable the reader to use the TEC performance equations for choosing and estimating the power needed for specific TEC applications.

  5. Clogging in micromachined Joule-Thomson coolers: Mechanism and preventive measures

    NASA Astrophysics Data System (ADS)

    Cao, H. S.; Vanapalli, S.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.

    2013-07-01

    Micromachined Joule-Thomson coolers can be used for cooling small electronic devices. However, a critical issue for long-term operation of these microcoolers is the clogging caused by the deposition of water that is present as impurity in the working fluid. We present a model that describes the deposition process considering diffusion and kinetics of water molecules. In addition, the deposition and sublimation process was imaged, and the experimental observation fits well to the modeling predictions. By changing the temperature profile along the microcooler, the operating time of the microcooler under test at 105 K extends from 11 to 52 h.

  6. Indirect evaporative coolers with enhanced heat transfer

    DOEpatents

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  7. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps

    NASA Astrophysics Data System (ADS)

    Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui

    2017-03-01

    In this paper, a numerical model is developed by combining thermodynamics with heat transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for heat circulation in air gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the heat flowing through air gaps which forms heat circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant heat flux reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with heat source and sink assembly. At constant power dissipation, steady temperatures of heat source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different heat transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and heat flux, heat loss of the device vertical surfaces and measurements.

  8. Reemergence of Mycobacterium chimaera in Heater–Cooler Units despite Intensified Cleaning and Disinfection Protocol

    PubMed Central

    Schreiber, Peter W.; Kuster, Stefan P.; Hasse, Barbara; Bayard, Cornelia; Rüegg, Christian; Kohler, Philipp; Keller, Peter M.; Bloemberg, Guido V.; Maisano, Francesco; Bettex, Dominique; Halbe, Maximilian; Sommerstein, Rami

    2016-01-01

    Invasive Mycobacterium chimaera infections after open-heart surgery have been reported internationally. These devastating infections result from aerosols generated by contaminated heater–cooler units used with extracorporeal circulation during surgery. Despite intensified cleaning and disinfection, surveillance samples from factory-new units acquired during 2014 grew nontuberculous mycobacteria after a median of 174 days. PMID:27649345

  9. Thermal control evaluation of a Shuttle Orbiter solar observatory using Skylab ATM backup hardware

    NASA Technical Reports Server (NTRS)

    Class, C. R.; Presta, G.; Trucks, H.

    1975-01-01

    A study under the sponsorship of Marshall Space Flight Center (MSFC) established the feasibility to utilize the Skylab Apollo Telescope Mount (ATM) backup hardware for early low cost Shuttle Orbiter solar observation missions. A solar inertial attitude and a seven-day, full sun exposure were baselined. As a portion of the study, a series of thermal control evaluations were performed to resolve the problems caused by the relocation of the ATM to the Shuttle Orbiter bay and resulting configuration changes. Thermal control requirements, problems, the use of solar shields, Spacelab supplied fluid cooling and component placement are discussed.

  10. Characteristics of a lithium-thionyl chloride battery as a memory back-up power source

    NASA Astrophysics Data System (ADS)

    Iwamaru, T.; Uetani, Y.

    An Li/SOCl 2 battery of R6 size (ER6C) has been evaluated as a memory back-up power source for CMOS RAM. The working voltage is 3.6 V and the discharge capacity is 1900 mA h on a 1OK-ohm load. The cell exhibits satisfactory working voltage and discharge capacity over the temperature range -40 °C to 85 °C. The discharge reaction mechanism has been elucidated. Cumulative self discharge during 10 years discharge at 20 μA is estimated to be 3.5%. No serious problems have been observed during abuse tests.

  11. Multistage Pulse Tube Refrigeration Characterization of the Northrop Grumman High Capacity Cooler - An Update

    DTIC Science & Technology

    2008-01-01

    Additional information on AIP Conf. Proc. Journal Homepage: http://proceedings.aip.org/ Journal Information: http://proceedings.aip.org/about...coolers would make comparing temperature and load data virtually meaningless. One solution as presented by Razani [4] is to compare exergy vs...P Q ,=η (2) Where exercoolingQ , is the total exergy delivered to all refrigerated reservoirs and

  12. Thermo-Electron Ballistic Coolers or Heaters

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    2003-01-01

    Electronic heat-transfer devices of a proposed type would exploit some of the quantum-wire-like, pseudo-superconducting properties of single-wall carbon nanotubes or, optionally, room-temperature-superconducting polymers (RTSPs). The devices are denoted thermo-electron ballistic (TEB) coolers or heaters because one of the properties that they exploit is the totally or nearly ballistic (dissipation or scattering free) transport of electrons. This property is observed in RTSPs and carbon nanotubes that are free of material and geometric defects, except under conditions in which oscillatory electron motions become coupled with vibrations of the nanotubes. Another relevant property is the high number density of electrons passing through carbon nanotubes -- sufficient to sustain electron current densities as large as 100 MA/square cm. The combination of ballistic motion and large current density should make it possible for TEB devices to operate at low applied potentials while pumping heat at rates several orders of magnitude greater than those of thermoelectric devices. It may also enable them to operate with efficiency close to the Carnot limit. In addition, the proposed TEB devices are expected to operate over a wider temperature range

  13. Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.

  14. How to maintain blood supply during computer network breakdown: a manual backup system.

    PubMed

    Zeiler, T; Slonka, J; Bürgi, H R; Kretschmer, V

    2000-12-01

    Electronic data management systems using computer network systems and client/server architecture are increasingly used in laboratories and transfusion services. Severe problems arise if there is no network access to the database server and critical functions are not available. We describe a manual backup system (MBS) developed to maintain the delivery of blood products to patients in a hospital transfusion service in case of a computer network breakdown. All data are kept on a central SQL database connected to peripheral workstations in a local area network (LAN). Request entry from wards is performed via machine-readable request forms containing self-adhesive specimen labels with barcodes for test tubes. Data entry occurs on-line by bidirectional automated systems or off-line manually. One of the workstations in the laboratory contains a second SQL database which is frequently and incrementally updated. This workstation is run as a stand-alone, read-only database if the central SQL database is not available. In case of a network breakdown, the time-graded MBS is launched. Patient data, requesting ward and ordered tests/requests, are photocopied through a template from the request forms on special MBS worksheets serving as laboratory journal for manual processing and result report (a copy is left in the laboratory). As soon as the network is running again the data from the off-line period are entered into the primary SQL server. The MBS was successfully used at several occasions. The documentation of a 90-min breakdown period is presented in detail. Additional work resulted from the copy work and the belated manual data entry after restoration of the system. There was no delay in issue of blood products or result reporting. The backup system described has been proven to be simple, quick and safe to maintain urgent blood supply and distribution of laboratory results in case of unexpected network breakdown.

  15. Exo-reversible staging of coolers in series and in parallel

    NASA Astrophysics Data System (ADS)

    Maytal, Ben-Zion

    2017-10-01

    Serial and parallel staging of exo-reversible coolers are formulated, analyzed and compared. The parallel staging includes an extensive parameter which is the proportion of combined stages. This extensive free parameter affects the intensive factors of specific power and figure of merit. Serial staging reduces the 1st Law efficiency and parallel staging improves the 2nd Law efficiency. Comparison of a parallel with a serial staging under common cooling capacity and cooling range, shows that it is always possible to find a parallel arrangement of lower specific power and more compact. Some results are demonstrated on staging of Joule-Thomson cryocoolers (below and above the Joule-Thomson inversion temperature).

  16. Simulated-Altitude Investigations of Performance of Tubular Aircraft Oil Coolers

    DTIC Science & Technology

    1948-04-01

    lb/see W. oil flow, lb/rein AP static-~ essure drop, in. water AT temperature change of air across oil cooler, OF v viscosity of air, lb/(ft)(sec) p...K67 17 APEENDIX B PRESSURE-RROP-CORRELATION2JWMXERS IN FLOW TEIKKE3 TU8ES Inasmuch as the air p? essure hop is a function of the wei~ht flow, the...that PO = PI and PL = P2. Cl’ LWa 1.8 () w 2.0 ‘1 PI APO-L =~ () —+1+C2’.Q—. —— - 1 PI P2 P1 P2 (3) Upon entr~oe into the passage, the static ~ essure

  17. Using backup generators for meeting peak electricity demand: a sensitivity analysis on emission controls, location, and health endpoints.

    PubMed

    Gilmore, Elisabeth A; Adams, Peter J; Lave, Lester B

    2010-05-01

    Generators installed for backup power during blackouts could help satisfy peak electricity demand; however, many are diesel generators with nonnegligible air emissions that may damage air quality and human health. The full (private and social) cost of using diesel generators with and without emission control retrofits for fine particulate matter (PM2.5) and nitrogen oxides (NOx) were compared with a new natural gas turbine peaking plant. Lower private costs were found for the backup generators because the capital costs are mostly ascribed to reliability. To estimate the social costs from air quality, the changes in ambient concentrations of ozone (O3) and PM2.5 were modeled using the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) chemical transport model. These air quality changes were translated to their equivalent human health effects using concentration-response functions and then into dollars using estimates of "willingness-to-pay" to avoid ill health. As a case study, 1000 MW of backup generation operating for 12 hr/day for 6 days in each of four eastern U.S. cities (Atlanta, Chicago, Dallas, and New York) was modeled. In all cities, modeled PM2.5 concentrations increased (up to 5 microg/m3) due mainly to primary emissions. Smaller increases and decreases were observed for secondary PM2.5 with more variation between cities. Increases in NOx, emissions resulted in significant nitrate formation (up to 1 microg/m3) in Atlanta and Chicago. The NOx emissions also caused O3 decreases in the urban centers and increases in the surrounding areas. For PM2.5, a social cost of approximately $2/kWh was calculated for uncontrolled diesel generators in highly populated cities but was under 10 cent/kWh with PM2.5 and NOx controls. On a full cost basis, it was found that properly controlled diesel generators are cost-effective for meeting peak electricity demand. The authors recommend NOx and PM2.5 controls.

  18. Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl L.; Tarau, Calin; Schifer, Nicholas A.; Anderson, William G.; Garner, Scott

    2016-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal variable conductance heat pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor by bypassing the heat during stops. In a previous NASA Small Business Innovation Research (SBIR) Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for the Stirling RPS. In 2012, one of these VCHPs was successfully tested at NASA Glenn Research Center with a Stirling convertor as an Advanced Stirling Radioisotope Generator (ASRG) backup cooling system. The prototype; however, was not optimized and did not reflect the final heat rejection path. ACT through further funding has developed a semioptimized prototype with the finalized heat path for testing at Glenn with a Stirling convertor. The semioptimized system features a two-phase radiator and is significantly smaller and lighter than the prior prototype to reflect a higher level of flight readiness. The VCHP is designed to activate and remove heat from the GPHS during stoppage with a small temperature increase from the nominal vapor temperature. This small temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the multilayer insulation (MLI). The VCHP passively allows the Stirling convertor to be turned off multiple times during a mission with potentially unlimited off durations. Having the ability to turn the Stirling off allows for the Stirling to be reset and reduces vibrations on the platform during sensitive measurements or

  19. Expedition 44 backup crew ESA (European Space Agency) astronaut Timothy Peake (left), Russian cosmonaut Yuri Malenchenko (ROSCOSMOS) (center), and NASA astronaut Timothy L. Kopra

    NASA Image and Video Library

    2015-02-19

    JSC2015E053686 (04/30/2015) --- Expedition 44 backup crew ESA (European Space Agency) astronaut Timothy Peake (left), Russian cosmonaut Yuri Malenchenko (ROSCOSMOS) (center), and NASA astronaut Timothy L. Kopra .

  20. Shuttle avionics software development trials: Tribulations and successes, the backup flight system

    NASA Technical Reports Server (NTRS)

    Chevers, E. S.

    1985-01-01

    The development and verification of the Backup Flight System software (BFS) is discussed. The approach taken for the BFS was to develop a very simple and straightforward software program and then test it in every conceivable manner. The result was a program that contained approximately 12,000 full words including ground checkout and the built in test program for the computer. To perform verification, a series of tests was defined using the actual flight type hardware and simulated flight conditions. Then simulated flights were flown and detailed performance analysis was conducted. The intent of most BFS tests was to demonstrate that a stable flightpath could be obtained after engagement from an anomalous initial condition. The extention of the BFS to meet the requirements of the orbital flight test phase is also described.

  1. Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Schwendeman, Carl L.; Schifer, Nicholas A.; Anderson, William G.

    2016-01-01

    Advanced Stirling Radioisotope Generator (ASRG) is an attractive energy system for select space missions, and with the addition of a VCHP, it becomes even more versatile. The ASRG is powered through thermal energy from decaying radioisotopes acting as General Purpose Heat Sources (GPHS). A Stirling engine converts the thermal energy to electrical energy and cools the GPHS [2]. The Stirling convertor must operate continuously to maintain acceptable temperatures of the GPHS and protect their cladding. The addition of alkali metal VCHP allows the Stirling to cycle on and off during a mission and can be used as a backup cooling system. The benefits of being able to turn the Stirling off are: allowing for a restart of the Stirling and reducing vibrations for sensitive measurements. The VCHP addition should also increase the efficiency of the Stirling by providing a uniform temperature distribution at the heat transfer interface into the heater head.

  2. Cooler biologically compatible core body temperatures may prolong longevity and combat neurodegenerative disorders.

    PubMed

    Salerian, Alen J; Saleri, Nansen G

    2006-01-01

    Scientific evidence suggests the critical role of temperature in regulating three mechanisms contributing to cellular damage: Oxidative stress, oxygen demand overload and inflammation. In this article, we propose that the Arrhenius rate law has a profound impact on aging and a variety of neurodegenerative disorders including Alzheimer's disease, and we review the supporting evidence. Published studies suggest empirical correlations between temperature and lifespan of various organisms, bolstering the hypothesis that variations in lifespan may stem from differences in the mitochondrial production rates of radicals - a process also influenced by temperature. Given the exponential temperature dependency of all biochemical factors, cooler body temperatures may promote longevity and combat neurodegenerative disorders. This promises to offer extraordinary yet unexplored weapons against two formidable enemies of the human body: aging and neurodegenerative disorders. Stated in the form of a thesis referred to as Salerian and Saleri Temperature Thesis (SSTT): "Cooler biologically compatible core body temperatures prolong lifespan and are of value to combat illness". Double blind studies of SSTT in therapeutic strategies against amyotrophic lateral sclerosis (ALS) or early-stage Alzheimer's disease may offer a reasonable first stage to validate SSTT. In view of the known rapid progressive neurodegeneration associated with ALS, minute variations in core body temperature may, in fact, demonstrate statistically significant differences in disease progression.

  3. Notes from the Field: Mycobacterium chimaera Contamination of Heater-Cooler Devices Used in Cardiac Surgery - United States.

    PubMed

    Perkins, Kiran M; Lawsin, Adrian; Hasan, Nabeeh A; Strong, Michael; Halpin, Alison L; Rodger, Rachael R; Moulton-Meissner, Heather; Crist, Matthew B; Schwartz, Suzanne; Marders, Julia; Daley, Charles L; Salfinger, Max; Perz, Joseph F

    2016-10-14

    In the spring of 2015, investigators in Switzerland reported a cluster of six patients with invasive infection with Mycobacterium chimaera, a species of nontuberculous mycobacterium ubiquitous in soil and water. The infected patients had undergone open-heart surgery that used contaminated heater-cooler devices during extracorporeal circulation (1). In July 2015, a Pennsylvania hospital also identified a cluster of invasive nontuberculous mycobacterial infections among open-heart surgery patients. Similar to the Swiss report, a field investigation by the Pennsylvania Department of Health, with assistance from CDC, used both epidemiologic and laboratory evidence to identify an association between invasive Mycobacterium avium complex, including M. chimaera, infections and exposure to contaminated Stöckert 3T heater-cooler devices, all manufactured by LivaNova PLC (formerly Sorin Group Deutschland GmbH) (2). M. chimaera was described as a distinct species of M. avium complex in 2004 (3). The results of the field investigation prompted notification of approximately 1,300 potentially exposed patients.* Although heater-cooler devices are used to regulate patients' blood temperature during cardiopulmonary bypass through water circuits that are closed, these reports suggest that aerosolized M. chimaera from the devices resulted in the invasive infections (1,2). The Food and Drug Administration (FDA) and CDC have issued alerts regarding the need to follow updated manufacturer's instructions for use of the devices, evaluate the devices for contamination, remain vigilant for new infections, and continue to monitor reports from the United States and overseas (2).

  4. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    NASA Astrophysics Data System (ADS)

    Mehta, R. N.; Bapat, S. L.; Atrey, M. D.

    2014-01-01

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  5. Cryo Cooler Induced Micro-Vibration Disturbances to the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jedrich, Nick; Zimbelman, Darrell; Turczyn, Mark; Sills, Joel; Voorhees, Carl; Clapp, Brian; Brumfield, Mark (Technical Monitor)

    2002-01-01

    This paper presents an overview of the Hubble Space Telescope (HST) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (MCC) system, a description of the micro-vibration characterization testing performed, and a discussion of the simulated performance. The NCC is a reverse Brayton cycle system that employs micro turbo-machinery to provide cooling to the NICMOS instrument. Extensive testing was conducted to quantify the expected on-orbit disturbances caused by the micro turbo-machinery and provide input to a flexible-body dynamic simulation to demonstrate compliance with the HST 7 milli-arcsecond root mean square jitter requirement.

  6. Management of lactating sows during heat stress: effects of water drip, snout coolers, floor type and a high energy-density diet.

    PubMed

    McGlone, J J; Stansbury, W F; Tribble, L F

    1988-04-01

    Two experiments using 120 sows were conducted to determine the effects during heat stress of two floor types, snout coolers or a water drip system, and a high energy-density diet. During both studies, air temperature was maintained at or above 29 degrees C. Floor types included partially slotted concrete and plastic-coated, expanded metal. In Exp. 1, in addition to floor-type treatments, snout coolers were on or off and the water drip was on for 3 min each 10 min or off. Snout coolers increased (P less than .05) sow feed intake and decreased (P less than .05) sow lactation weight loss. Water drip increased (P less than .002) sow feed intake and reduced lactation weight loss. The drip X floor-type interaction was significant for most measures of piglet performance. Drip was beneficial for piglet weights when piglets were on plastic, whereas drip was detrimental to piglet performance while they were housed on concrete. In Exp. 2, two floor types, drip or no-drip and a high energy-density diet or control diet were examined during heat stress. The high energy-density diet reduced (P less than .01) sow feed intake but provided no measurable increase in piglet performance during heat stress. We conclude that water drip is an effective cooling technique for heat-stressed sows, especially when floors are plastic. Snout coolers, partial concrete slots and high energy-density diets provided only minor benefits to heat-stressed sows and were not of benefit to piglets nursing heat-stressed sows.

  7. Reliability Testing on the CTI-Cryogenic 1 Watt Integral Cooler (HD- 1033C/UA)

    DTIC Science & Technology

    1989-09-01

    SUBJECT TERMS (Continue on reverse if necessary and identify by block numbe) FIELD GROUP SUB- GROUP Cryocooler, Stirling Cycle, Cryogenics 19, ABSTRCT...the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers... controlled high/low temperature chamber. * A microprocessor which was programmed to automatically cycle the temperature in the chamber in accordance

  8. Thermal research of infrared sight thermoelectric cooler control circuit under temperature environment

    NASA Astrophysics Data System (ADS)

    Gao, Youtang; Ding, Huan; Xue, Xiao; Xu, Yuan; Chang, Benkang

    2010-10-01

    Testing device TST-05B, which is suitable for adaptability test of semiconductor devices, electronic products and other military equipment under the condition of the surrounding air temperature rapidly changing, is used here for temperature shock test.Thermal stability technology of thermoelectric cooler control circuit infrared sight under temperature shock is studied in this paper. Model parameters and geometry is configured for ADI devices (ADN8830), welding material and PCB which are used in system. Thermoelectric cooler control circuit packaged by CSP32 distribution are simulated and analyzed by thermal shock and waveform through engineering finite element analysis software ANSYYS. Because solders of the whole model have much stronger stress along X direction than that of other directions, initial stress constraints along X direction are primarily considered when the partial model of single solder is imposed by thermal load. When absolute thermal loads stresses of diagonal nodes with maximum strains are separated from the whole model, interpolation is processed according to thermal loads circulation. Plastic strains and thermal stresses of nodes in both sides of partial model are obtained. The analysis results indicates that with thermal load circulation, maximum forces of each circulation along X direction are increasingly enlarged and with the accumulation of plastic strains of danger point, at the same time structural deformation and the location of maximum equivalent plastic strain in the solder joints at the first and eighth, the composition will become invalid in the end.

  9. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    PubMed

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  10. Changes made on a 2.7-m long superconducting solenoid magnet cryogenic system that allowed the magnet to be kept cold using 4 K pulse tube coolers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M. A.; Pan, H.; Preece, R. M.

    2014-01-29

    Two 2.7-m long solenoid magnets with a cold mass of 1400 kg were fabricated in between 2007 and 2010. The magnet cryostat outside diameter is ∼1.4 meters and the cryostat length is ∼2.73 meters. The magnet warm bore is 0.4 meters. The magnet was designed to be cooled using three 1.5 W two-stage coolers. In both magnets, three coolers could not keep the cryostat filled with liquid helium. The temperatures of the shield and the tops of the HTS leads were too warm. A 140 W single stage cooler was added to magnet 2 to cool the HTS leads, themore » shield and the cold mass support intercepts. When the magnet 2 was retested in 2010, the net cooling at 4.2 K was −1.5 W with first-stage temperatures of the four coolers at ∼42 K. The tops of the HTS leads were <50 K, but the shield and cold mass support intercepts remained too warm. The solenoid cryostat and shield were modified during 2011 and 2012 to reduce the 4.2 K heat load and increase the cooling. This magnet was tested in 2012, with five 1.5 W two-stage coolers and the single stage cooler. The changes made in the magnet are described in this report. As a result of the cryostat and shield changes, and adding 3.0 W of cooling at 4.2 K, the net 4.2 K cooling changed from −1.6 W to +5.0 W. About half of the change in net cooling to this magnet was due changes that reduced the shield temperature. This report demonstrates the importance of running the shield cold (∼40 K) and reducing the heat loads from all sources on both the shield and the cold mass.« less

  11. CALCULATION OF COOLING TOWERS AND INJECTION COOLERS BY MEANS OF AN EVAPORATION METHOD (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangemacher, K.

    1958-05-01

    Calculation and evaluation of cooling towers, as recommended by Merkel, are critically examined. The usual methods of practical calculation are explained as well as a new procedure which combines great accuracy with brevity. Merkel's method is extended to injection coolers for gas and compressed air. It was discussed whether the dimensionless ''evaporation coefficient'' should be called the''Merkel coefficient.'' (tr-auth)

  12. Global Health Estimate of Invasive Mycobacterium chimaera Infections Associated with Heater-Cooler Devices in Cardiac Surgery.

    PubMed

    Sommerstein, Rami; Hasse, Barbara; Marschall, Jonas; Sax, Hugo; Genoni, Michele; Schlegel, Matthias; Widmer, Andreas F

    2018-03-01

    Investigations of a worldwide epidemic of invasive Mycobacterium chimaera associated with heater-cooler devices in cardiac surgery have been hampered by low clinical awareness and challenging diagnoses. Using data from Switzerland, we estimated the burden of invasive M. chimaera to be 156-282 cases/year in 10 major cardiac valve replacement market countries.

  13. Flight qualified solid argon cooler for the BBXRT instrument. [Broad Band X Ray Telescope for ASTRO-1 payload

    NASA Technical Reports Server (NTRS)

    Cygnarowicz, Thomas A.; Schein, Michael E.; Lindauer, David A.; Scarlotti, Roger; Pederson, Robert

    1990-01-01

    A solid argon cooler (SAC) for attached Shuttle payloads has been developed and qualified to meet the need for low cost cooling of flight instruments to the temperature range of 60-120 K. The SACs have been designed and tested with the intent of flying them up to five times. Two coolers, as part of the Broad Band X-ray Telescope (BBXRT) instrument on the ASTRO-1 payload, are awaiting launch on Space Shuttle mission STS-35. This paper describes the design, testing and performance of the SAC and its vacuum maintenance system (VMS), used to maintain the argon as a solid during launch delays of up to 5 days. BBXRT cryogen system design features used to satisfy Shuttle safety requirements are discussed, along with SAC ground servicing equipment (GSE) and procedures used to fill, freeze and subcool the argon.

  14. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, R. N.; Bapat, S. L.; Atrey, M. D.

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of themore » desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.« less

  15. Experimental progress of a 4K VM/PT hybrid cryocooler for pre-cooling 1K sorption cooler

    NASA Astrophysics Data System (ADS)

    Pan, Changzhao; Zhang, Tong; Wang, Jue; Chen, Liubiao; Guo, Jia; Zhou, Yuan; Wang, Junjie

    2017-12-01

    Sub-kelvin refrigerator has many applications in space detector and manned space station, such as for the transition-edge superconducting (TES) bolometers operated in the 50 mK range. In order to meet the requirement of space applications, the high efficient, vibration free and high stability refrigerator need to be designed. VM/PT hybrid cryocooler is a new type cryocooler capable of attaining temperature below 4K. As a low frequency Stirling type cryocooler, it has the advantages of high stability and high efficiency. Combined with the vibration free sorption cooler and ADR refrigerator, a novel sub-kelvin cooling chain can be designed for the TES bolometer. This paper presents the recent experimental progress of the 4K VM/PT hybrid cryocooler in our laboratory. By optimizing of regenerators, phase shifters and heat exchangers, a lowest temperature of 2.6K was attained. Based on this cryocooler, a preliminary sorption cooler could be designed.

  16. Mathematical modeling of processes of heat and mass transfer in channels of water evaporating coolers

    NASA Astrophysics Data System (ADS)

    Gulevsky, V. A.; Ryazantsev, A. A.; Nikulichev, A. A.; Menzhulova, A. S.

    2018-05-01

    The variety of cooling systems is dictated by a wide range of demands placed on them. This is the price, operating costs, quality of work, ecological safety, etc. These requirements in a positive sense are put into correspondence by water evaporating plate coolers. Currently, their widespread use is limited by a lack of theoretical base. To solve this problem, the best method is mathematical modeling.

  17. Global Health Estimate of Invasive Mycobacterium chimaera Infections Associated with Heater–Cooler Devices in Cardiac Surgery

    PubMed Central

    Hasse, Barbara; Marschall, Jonas; Sax, Hugo; Genoni, Michele; Schlegel, Matthias; Widmer, Andreas F.

    2018-01-01

    Investigations of a worldwide epidemic of invasive Mycobacterium chimaera associated with heater–cooler devices in cardiac surgery have been hampered by low clinical awareness and challenging diagnoses. Using data from Switzerland, we estimated the burden of invasive M. chimaera to be 156–282 cases/year in 10 major cardiac valve replacement market countries. PMID:29460746

  18. Thermal energy storage evaluation and life testing

    NASA Astrophysics Data System (ADS)

    Richter, R.

    1983-01-01

    Two thermal energy storage (TES) units which were built under a previous contract were tested with a Hi-Cap Vuilleumier cryogenic cooler in the facility of the Hughes Aircraft Corporation. The objective of the program was the evaluation of the behavior of the TES units as well as the determination of the temperature history of the three cold stages of the Vuilleumier cryogenic cooler during cyclic charging and discharging of the TES units. The test results have confirmed that thermal energy storage can provide the necessary thermal power to the hot cylinders of the Vuilleumier cryogenic cooler at the required operating temperatures. Thereby the continuous cooling capability of the cooler during an eclipse when no electrical power is available is being assured. The cold stage temperature amplitudes during a complete charge discharge cycle of the TES units were only about 10% of the amplitudes which were observed when the Hi-Cap Vuilleumier cryogenic cooler was operating without thermal energy storage backup in a simulated orbit of 54 minutes sun exposure and 18 minutes eclipse time. The themal conductivity of the molten thermal energy storage salt was apparently only a fraction of the thermal conductivity which had been assumed for the prediction of the upper heater temperatures. A redesign of the heater temperatures below 1480 degrees F which is now required for full charging of the TES units within 54 minutes with the present heater design.

  19. The COOLER Code: A Novel Analytical Approach to Calculate Subcellular Energy Deposition by Internal Electron Emitters.

    PubMed

    Siragusa, Mattia; Baiocco, Giorgio; Fredericia, Pil M; Friedland, Werner; Groesser, Torsten; Ottolenghi, Andrea; Jensen, Mikael

    2017-08-01

    COmputation Of Local Electron Release (COOLER), a software program has been designed for dosimetry assessment at the cellular/subcellular scale, with a given distribution of administered low-energy electron-emitting radionuclides in cellular compartments, which remains a critical step in risk/benefit analysis for advancements in internal radiotherapy. The software is intended to overcome the main limitations of the medical internal radiation dose (MIRD) formalism for calculations of cellular S-values (i.e., dose to a target region in the cell per decay in a given source region), namely, the use of the continuous slowing down approximation (CSDA) and the assumption of a spherical cell geometry. To this aim, we developed an analytical approach, entrusted to a MATLAB-based program, using as input simulated data for electron spatial energy deposition directly derived from full Monte Carlo track structure calculations with PARTRAC. Results from PARTRAC calculations on electron range, stopping power and residual energy versus traveled distance curves are presented and, when useful for implementation in COOLER, analytical fit functions are given. Example configurations for cells in different culture conditions (V79 cells in suspension or adherent culture) with realistic geometrical parameters are implemented for use in the tool. Finally, cellular S-value predictions by the newly developed code are presented for different cellular geometries and activity distributions (uniform activity in the nucleus, in the entire cell or on the cell surface), validated against full Monte Carlo calculations with PARTRAC, and compared to MIRD standards, as well as results based on different track structure calculations (Geant4-DNA). The largest discrepancies between COOLER and MIRD predictions were generally found for electrons between 25 and 30 keV, where the magnitude of disagreement in S-values can vary from 50 to 100%, depending on the activity distribution. In calculations for

  20. Operation of Negative Ion Sources at the Cooler Synchrotron COSY/Juelich

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebel, R.; Felden, O.; Maier, R.

    2011-09-26

    The Institute for Nuclear Physics at the Forschungszentrum Juelich is dedicated to fundamental research in the field of hadron, particle and nuclear physics. Main activities are the development of the High Energy Storage Ring for the Facility for Antiproton and Ion Research at Darmstadt and the operation and improvement of the cooler synchrotron COSY at Juelich. The injector, a cyclotron with polarized and unpolarized H{sup -} and D{sup -} sources, has exceeded 7000 hours availability per year, averaged over the last decade. Work in progress is the investigation of production, extraction and transport of the low energy 4.5 keV/u ionmore » beams. A brief overview of the activities is presented.« less

  1. Optimal Integration of Cascade Thermoelectric Cooler into Electronic Housing: Experimental Approach

    NASA Astrophysics Data System (ADS)

    Semeniuk, V.; Protsenko, D.

    2018-06-01

    The problem of the optimal integration of thermoelectrically cooled optoelectronic components into an electronic housing is studied with the emphasis on practical implementation. The lines of 2-stage and 3-stage thermoelectric coolers (TECs) compatible with TO8 housing have been developed, and their parameters are measured in a wide range of heat sink temperatures. The TECs are optimized to receive a temperature difference of 100-110 K under a heat load from 70 mW to 100 mW with minimal power consumption. To fit into a standard housing interior, all the TECs have the same overall dimensions, regardless of the number of stages. Details of the TEC configurations and their performance characteristics are presented and discussed.

  2. Optimal Integration of Cascade Thermoelectric Cooler into Electronic Housing: Experimental Approach

    NASA Astrophysics Data System (ADS)

    Semeniuk, V.; Protsenko, D.

    2018-03-01

    The problem of the optimal integration of thermoelectrically cooled optoelectronic components into an electronic housing is studied with the emphasis on practical implementation. The lines of 2-stage and 3-stage thermoelectric coolers (TECs) compatible with TO8 housing have been developed, and their parameters are measured in a wide range of heat sink temperatures. The TECs are optimized to receive a temperature difference of 100-110 K under a heat load from 70 mW to 100 mW with minimal power consumption. To fit into a standard housing interior, all the TECs have the same overall dimensions, regardless of the number of stages. Details of the TEC configurations and their performance characteristics are presented and discussed.

  3. 75 FR 41103 - Energy Conservation Program: Re-Opening of the Public Comment Period for Walk-In Coolers and Walk...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... DEPARTMENT OF ENERGY 10 CFR Part 431 [Docket No. EERE-2008-BT-STD-0015] RIN 1904-AB86 Energy... preliminary analysis for walk-in coolers and walk-in freezers, and provide docket number EERE-2008-BT-STD-0015...

  4. Thermal electron-tunneling devices as coolers and amplifiers

    NASA Astrophysics Data System (ADS)

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-02-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.

  5. Thermal electron-tunneling devices as coolers and amplifiers

    PubMed Central

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-01-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices. PMID:26893109

  6. Fine thermotactic discrimination between the optimal and slightly cooler temperatures via a TRPV channel in chordotonal neurons.

    PubMed

    Kwon, Young; Shen, Wei L; Shim, Hye-Seok; Montell, Craig

    2010-08-04

    Animals select their optimal environmental temperature, even when faced with alternatives that differ only slightly. This behavior is critical as small differences in temperature of only several degrees can have a profound effect on the survival and rate of development of poikilothermic animals, such as the fruit fly. Here, we demonstrate that Drosophila larvae choose their preferred temperature of 17.5 degrees C over slightly cooler temperatures (14-16 degrees C) through activation of chordotonal neurons. Mutations affecting a transient receptor potential (TRP) vanilloid channel, Inactive (Iav), which is expressed specifically in chordotonal neurons, eliminated the ability to choose 17.5 degrees C over 14-16 degrees C. The impairment in selecting 17.5 degrees C resulted from absence of an avoidance response, which is normally mediated by an increase in turns at the lower temperatures. We conclude that the decision to select the preferred over slightly cooler temperatures requires iav and is achieved by activating chordotonal neurons, which in turn induces repulsive behaviors, due to an increase in high angle turns.

  7. Fine Thermotactic Discrimination between the Optimal and Slightly Cooler Temperatures via a TRPV Channel in Chordotonal Neurons

    PubMed Central

    Kwon, Young; Shen, Wei L.; Shim, Hye-Seok; Montell, Craig

    2012-01-01

    Animals select their optimal environmental temperature, even when faced with alternatives that differ only slightly. This behavior is critical as small differences in temperature of only several degrees can have a profound effect on the survival and rate of development of poikilothermic animals, such as the fruit fly. Here, we demonstrate that Drosophila larvae choose their preferred temperature of 17.5°C over slightly cooler temperatures (14–16°C) through activation of chordotonal neurons. Mutations affecting a transient receptor potential (TRP) vanilloid channel, Inactive (Iav), which is expressed specifically in chordotonal neurons, eliminated the ability to choose 17.5°C over 14–16°C. The impairment in selecting 17.5°C resulted from absence of an avoidance response, which is normally mediated by an increase in turns at the lower temperatures. We conclude that the decision to select the preferred over slightly cooler temperatures requires iav and is achieved by activating chordotonal neurons, which in turn induces repulsive behaviors, due to an increase in high angle turns. PMID:20685989

  8. X-ray transitions studied for decelerated bare and H-like uranium ions at the ESR electron cooler

    NASA Astrophysics Data System (ADS)

    Gumberidze, A.; Stöhlker, Th.; Bednarz, G.; Beyer, H. F.; Bosch, F.; Cai, X.; Hagmann, S.; Klepper, O.; Kozhuharov, C.; Liesen, D.; Ma, X.; Mokler, P. H.; Sierpowski, D.; Stachura, Z.; Steck, M.; Toleikis, S.; Warczak, A.; Zou, Y.

    2003-05-01

    Here we report on X-ray spectra induced by spontaneous capture of free electrons into decelerated bare- and hydrogen-like uranium ions which we measured recently at the cooler section of the ESR storage ring. The most intense lines observed in spectra can be attributed to direct transition of electrons into the K shell of the projectile ions and to characteristic L → K (Lyα) transitions. Radiative recombination lines into the K shell of bare and H-like uranium can be exploited for measuring the two-electron contribution to the ground state binding energy in helium-like uranium. The goal is to probe for high-Z ions bound-state QED corrections which are of the order of α2. Besides the dominant characteristic L → K transitions, the strongly reduced Bremsstrahlung (due to the low cooler voltage applied to the decelerated ions) allowed us to observe for the very first time RR transitions into the L shell as well as the balmer radiation located at the low-energy part of the spectra.

  9. Solubility- and temperature-driven thin film structures of polymeric thiophene derivatives for high performance OFET applications

    NASA Astrophysics Data System (ADS)

    LeFevre, Scott W.; Bao, Zhenan; Ryu, Chang Y.; Siegel, Richard W.; Yang, Hoichang

    2007-09-01

    It has been shown that high charge mobility in solution-processible organic semiconductor-based field effect transistors is due in part to a highly parallel π-π stacking plane orientation of the semiconductors with respect to gate-dielectric. Fast solvent evaporation methods, generally, exacerbate kinetically random crystal orientations in the films deposited, specifically, from good solvents. We have investigated solubility-driven thin film structures of thiophene derivative polymers via spin- and drop-casting with volatile solvents of a low boiling point. Among volatile solvents examined, marginal solvents, which have temperature-dependent solubility for the semiconductors (e.g. methylene chloride for regioregular poly(3-alkylthiophene)s), can be used to direct the favorable crystal orientation regardless of solvent drying time, when the temperature of gate-dielectrics is held to relatively cooler than the warm solution. Grazing-incidence X-ray diffraction and atomic force microscopy strongly support that significant control of crystal orientation and mesoscale morphology using a "cold" substrate holds true for both drop and spin casting. The effects of physiochemical post-modificaiton on film crystal structures and morphologies of poly(9,9-dioctylfluorene-co-bithiophene) have also been investigated.

  10. Study on turbulent flow and heat transfer performance of tubes with internal fins in EGR cooler

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Ling, Xiang; Peng, Hao

    2015-07-01

    In this paper, flow and heat transfer performances of the tubes with internal longitudinal fins in Exhaust Gas Recirculation (EGR ) cooler were investigated by three-dimension computation and experiment . Each test tube was a single-pipe structure, without inner tube. Three-dimension computation was performed to determine the thermal characteristics difference between the two kinds of tubes, that is, the tube with an inner solid staff as a blocked structure and the tube without the blocked structure. The effects of fin width and fin height on heat transfer and flow are examined. For proving the validity of numerical method, the calculated results were compared with corresponding experimental data. The tube-side friction factor and heat transfer coefficient were examined. As a result, the maximum deviations between the numerical results and the experimental data are approximately 5.4 % for friction factor and 8.6 % for heat transfer coefficient, respectively. It is found that two types of internally finned tubes enhance significantly heat transfer. The heat transfer of the tube with blocked structure is better, while the pressure drop of the tube without blocked structure is lower. The comprehensive performance of the unblocked tube is better to applied in EGR cooler.

  11. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.

  12. STS-52 PS MacLean, backup PS Tryggvason, and PI pose on JSC's CCT flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Canadian Payload Specialist (PS) Steven G. MacLean (left) and backup Payload Specialist Bjarni V. Tryggvason (right) take a break from a camera training session in JSC's Crew Compartment Trainer (CCT). The two Canadian Space Agency (CSA) representatives pose on the CCT's aft flight deck with Canadian scientist David Zimick, the principal investigator (PI) for the materials experiment in low earth orbit (MELEO). MELEO is a component of the CANEX-2 experiment package, manifest to fly on the scheduled October 1992 STS-52 mission. The CCT is part of the shuttle Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  13. The data storage grid: the next generation of fault-tolerant storage for backup and disaster recovery of clinical images

    NASA Astrophysics Data System (ADS)

    King, Nelson E.; Liu, Brent; Zhou, Zheng; Documet, Jorge; Huang, H. K.

    2005-04-01

    Grid Computing represents the latest and most exciting technology to evolve from the familiar realm of parallel, peer-to-peer and client-server models that can address the problem of fault-tolerant storage for backup and recovery of clinical images. We have researched and developed a novel Data Grid testbed involving several federated PAC systems based on grid architecture. By integrating a grid computing architecture to the DICOM environment, a failed PACS archive can recover its image data from others in the federation in a timely and seamless fashion. The design reflects the five-layer architecture of grid computing: Fabric, Resource, Connectivity, Collective, and Application Layers. The testbed Data Grid architecture representing three federated PAC systems, the Fault-Tolerant PACS archive server at the Image Processing and Informatics Laboratory, Marina del Rey, the clinical PACS at Saint John's Health Center, Santa Monica, and the clinical PACS at the Healthcare Consultation Center II, USC Health Science Campus, will be presented. The successful demonstration of the Data Grid in the testbed will provide an understanding of the Data Grid concept in clinical image data backup as well as establishment of benchmarks for performance from future grid technology improvements and serve as a road map for expanded research into large enterprise and federation level data grids to guarantee 99.999 % up time.

  14. Moving to alternative refrigerants. Ten case histories. Comfort coolers, industrial process, and commercial refrigeration. Stratospheric ozone protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    Table of Contents: Case Histories: Comfort Coolers; Coventry Management Systems - Texaco Heritage Plaza; New York Life Insurance Company; and Westinghouse Electric Corporation. Case Histories: Industrial Process: Eastman Chemical Company; and DuPont. Case Histories: Commercial Refrigeration: Market Basket Supermarkets; Jitney Jungle Stores of America; Furr's Supermarkets; Emil Villa's Hick'ry Pit Restaurants; and Wawa Convenience Stores.

  15. Mycobacterium chimaera in Heater-Cooler Units in Denmark Related to Isolates from the United States and United Kingdom.

    PubMed

    Svensson, Erik; Jensen, Elsebeth Tvenstrup; Rasmussen, Erik Michael; Folkvardsen, Dorte Bek; Norman, Anders; Lillebaek, Troels

    2017-03-01

    Mycobacterium chimaera was present at high rates (>80%) in heater-cooler units (HCUs) from all 5 thoracic surgery departments in Denmark. Isolates were clonal to HCU-associated isolates from the United States (including some from patients) and United Kingdom. However, M. chimaera from 2 brands of HCU were genetically distinct.

  16. Mycobacterium chimaera Infections Associated With Contaminated Heater-Cooler Devices for Cardiac Surgery: Outbreak Management.

    PubMed

    Marra, Alexandre R; Diekema, Daniel J; Edmond, Michael B

    2017-08-15

    The global outbreak of Mycobacterium chimaera infections associated with heater-cooler devices (HCDs) presents several important, unique challenges for the infection prevention community. The primary focus of this article is to assist hospitals in establishing a rapid response for identification, notification, and evaluation of exposed patients, and management of HCDs with regard to placement and containment, environmental culturing, and disinfection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  17. Taguchi optimization of bismuth-telluride based thermoelectric cooler

    NASA Astrophysics Data System (ADS)

    Anant Kishore, Ravi; Kumar, Prashant; Sanghadasa, Mohan; Priya, Shashank

    2017-07-01

    In the last few decades, considerable effort has been made to enhance the figure-of-merit (ZT) of thermoelectric (TE) materials. However, the performance of commercial TE devices still remains low due to the fact that the module figure-of-merit not only depends on the material ZT, but also on the operating conditions and configuration of TE modules. This study takes into account comprehensive set of parameters to conduct the numerical performance analysis of the thermoelectric cooler (TEC) using a Taguchi optimization method. The Taguchi method is a statistical tool that predicts the optimal performance with a far less number of experimental runs than the conventional experimental techniques. Taguchi results are also compared with the optimized parameters obtained by a full factorial optimization method, which reveals that the Taguchi method provides optimum or near-optimum TEC configuration using only 25 experiments against 3125 experiments needed by the conventional optimization method. This study also shows that the environmental factors such as ambient temperature and cooling coefficient do not significantly affect the optimum geometry and optimum operating temperature of TECs. The optimum TEC configuration for simultaneous optimization of cooling capacity and coefficient of performance is also provided.

  18. Outbreak of scrub typhus in Puducherry & Tamil Nadu during cooler months

    PubMed Central

    Stephen, Selvaraj; Sangeetha, Balakrishnan; Ambroise, Stanley; Sarangapani, Kengamuthu; Gunasekaran, Dhandapany; Hanifah, Mohamed; Somasundaram, Subramanian

    2015-01-01

    Background & objectives: The southern part of India has witnessed an increase in scrub typhus (ST) during the past ten years. ST outbreaks occurred during winter months but at intervals of one to three years. With only a few reports of ST in Puducherry, this study was undertaken to look for the persistence of ST cases in Puducherry and Tamil Nadu in the winter months. Methods: During relatively cooler months of September, 2012 to March, 2013, a total of 45 patients with fever and clinical suspicion of ST and who provided both acute and convalescent blood samples were included. Total WBC, platelet counts, serum creatinine, liver enzymes levels and a rapid immunochromatographic test (RICT) for ST were first done. Paired serum samples were analysed by two specific tests - ST IgM and IgG ELISA- and a non-specific, but widely used Weil-Felix (WF) test. Results: Of the 45 patients, 21 adults and seven children were confirmed as ST based on clinical and laboratory findings, and positivity in specific serological test(s). Setting ST IgM and IgG ELISA as reference, the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for RICT were 91.67, 85.71 per cent; 90.48, 100 per cent; 91.67, 100 per cent and 90.48, 80.95 per cent, respectively. Similarly, for WF the values were 83.33, 75 per cent; 95.24, 100 per cent; 95.24, 100 per cent and 83.33, 70.83 per cent, respectively. Interpretation & conclusions: ST continues to persist in the cooler months in Puducherry and neighbouring Tamil Nadu with fever and myalgia as prominent features. None of the tests evaluated in this study was found to be ideal, but ST IgM/IgG ELISA was useful for batch testing and the non-specific WF test can be used in resource poor settings. PMID:26658595

  19. Back-Up/ Peak Shaving Fuel Cell System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staudt, Rhonda L.

    2008-05-28

    This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated.more » The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards

  20. Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis

    NASA Astrophysics Data System (ADS)

    Kürkçü, Burak; Kasnakoğlu, Coşku

    2018-02-01

    In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.

  1. Backup control airstart performance on a digital electronic engine control-equipped F100-engine

    NASA Technical Reports Server (NTRS)

    Johnson, J. B.

    1984-01-01

    The air start capability of a backup control (BUC) was tested for a digital electronic engine control (DEEC) equipped F100 engine, which was installed in an F-15 aircraft. Two air start schedules were tested. Using the group 1 start schedule, based on a 40 sec timer, an air speed of 300 knots was required to ensure successful 40 and 25% BUC mode spooldown airstarts. If core rotor speed (N2) was less than 40% a stall would occur when the start bleed closed, 40 sec after initiation of the air start. All jet fuel starter (JFS) assisted air starts were successful with the group 1 start schedule. For the group 2 schedule, the time between pressurization and start bleed closure ranged between 50 sec and 72 sec. Idle rps was lower than the desired 65% for air starts at higher altitudes and lower air speeds.

  2. Novel concept for driving the linear compressor of a micro-miniature split Stirling cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Maron, V.; Veprik, A.; Finkelstein, L.; Vilenchik, H.; Ziv, I.; Pundak, N.

    2009-05-01

    New methods of carrying out homeland security and antiterrorist operations call for the development of a new generation of mechanically cooled, portable, battery powered infrared imagers, relying on micro-miniature Stirling cryogenic coolers of rotary or linear types. Since split Stirling linearly driven micro-miniature cryogenic coolers have inherently longer life spans, low vibration export and better aural stealth as compared to their rotary driven rivals, they are more suitable for the above applications. The performance of such cryogenic coolers depends strongly on the efficacy of their electronic drivers. In a traditional approach, the PWM power electronics produce the fixed frequency tonal driving voltage/current, the magnitude of which is modulated via a PID control law so as to maintain the desired focal plane array temperature. The disadvantage of such drivers is that they draw high ripple current from the system's power bus. This results in the need for an oversized DC power supply (battery packs) and power electronic components, low efficiency due to excessive conductive losses and high residual electromagnetic interference which in turn degrades the performance of other systems connected to the same power bus. Without either an active line filter or large and heavy passive filtering, other electronics can not be powered from the same power bus, unless they incorporate heavy filtering at their inputs. The authors present the results of a feasibility study towards developing a novel "pumping" driver consuming essentially constant instant battery power/current without making use of an active or passive filter. In the tested setup, the driver relies on a bidirectional controllable bridge, invertible with the driving frequency, and a fast regulated DC/DC converter which maintains a constant level of current consumed from the DC power supply and thus operates in input current control mode. From the experimental results, the steady-state power consumed by the

  3. Low vibration cooling using a pulse tube cooler and cryostat for the GRAVITY beam combiner instrument at the VLTI

    NASA Astrophysics Data System (ADS)

    Haug, M.; Haussmann, F.; Kellner, S.; Kern, L.; Eisenhauer, F.; Lizon, J.-L.; Dietrich, M.; Thummes, G.

    2014-07-01

    GRAVITY is a second generation VLTI instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band. The cryostat of the beam combiner instrument provides the required temperatures for the various subunits ranging from 40K to 290K with a milli-Kelvin temperature stability for some selected units. The bath cryostat is cooled with liquid nitrogen and makes use of the exhaust gas to cool the main optical bench to an intermediate temperature of 240K. The fringe tracking detector will be cooled separately by a single-stage pulse tube cooler to a temperature of 40K. The pulse tube cooler is optimized for minimum vibrations. In particular its warm side is connected to the 80K reservoir of the LN2 cryostat to minimize the required input power. All temperature levels are actively stabilized by electric heaters. The cold bench is supported separately from the vacuum vessel and the liquid nitrogen reservoir to minimize the transfer of acoustic noise onto the instrument.

  4. STS-90 M.S. Williams and back-up P.S. Mukai, participate in CEIT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Mission Specialist Dafydd 'Dave' Rhys Williams, M.D., with the Canadian Space Agency, and back-up Payload Specialist Chiaki Mukai, M.D., Ph.D., with the National Space Development Agency of Japan, examine items to be used during the Crew Equipment Interface Test (CEIT) in Kennedy Space Center's (KSC's) Operations and Checkout Building, where the Neurolab payload is undergoing processing. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-90 is scheduled to launch aboard the Shuttle Columbia from KSC on April 2. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system.

  5. Dwarfs Cooler Than M: The Definition of Spectral Type L Using Discoveries form the 2-Micron All-Sky Survey (2MASS)

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J.; Reid, I.; Liebert, J.; Cutri, R.; Nelson, B.; Beichan, C.; Dahn, C.; Monet, D.; Gizis, J.; Skrutskie, M.

    2000-01-01

    Because the TiO and VO bands, which dominate the far-optical portions of late-M spectra, disappear in these cooler dwarfs, we define a new spectral class L in wich metallic oxides are replaced by metallic hydrides and neutral alkali metals as the major spectroscopic signatures.

  6. At the Cosmonaut Hotel in Baikonur, Kazakhstan, Expedition 48-49 backup crewmember Peggy Whitson of NASA waters a tree in her name first planted in 2007 during traditional pre-launch activities June 30. Whitson is one of three backups to the prime crewmembers, Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency, who will launch July 7, Baikonur time, on the Soyuz MS-01 spacecraft for a planned four-month mission on the International Space Station...NASA/Alexander Vysotsky.

    NASA Image and Video Library

    2016-06-30

    At the Cosmonaut Hotel in Baikonur, Kazakhstan, Expedition 48-49 backup crewmember Peggy Whitson of NASA waters a tree in her name first planted in 2007 during traditional pre-launch activities June 30. Whitson is one of three backups to the prime crewmembers, Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency, who will launch July 7, Baikonur time, on the Soyuz MS-01 spacecraft for a planned four-month mission on the International Space Station. NASA/Alexander Vysotsky

  7. Polarized Negative Light Ions at the Cooler Synchrotron COSY/Juelich

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebel, R.; Felden, O.; Rossen, P. von

    2005-04-06

    The polarized ion source at the cooler synchrotron facility COSY of the research centre Juelich in Germany delivers negative polarized protons or deuterons for medium energy experiments. The polarized ion source, originally built by the universities of Bonn, Erlangen and Cologne, is based on the colliding beams principle, using after an upgrade procedure an intense pulsed neutralized caesium beam for charge exchange with a pulsed highly polarized hydrogen beam. The source is operated at 0.5 Hz repetition rate with 20 ms pulse length, which is the maximum useful length for the injection into the synchrotron. Routinely intensities of 20 {mu}Amore » are delivered for injection into the cyclotron of the COSY facility. For internal targets the intensity of 2 mA and a polarization up to 90% have been reached. Reliable long-term operation for experiments at COSY for up to 9 weeks has been achieved. Since 2003 polarized deuterons with different combinations of vector and tensor polarization were delivered to experiments.« less

  8. Estimation of the Thermodynamic Efficiency of a Solid-State Cooler Based on the Multicaloric Effect

    NASA Astrophysics Data System (ADS)

    Starkov, A. S.; Pakhomov, O. V.; Rodionov, V. V.; Amirov, A. A.; Starkov, I. A.

    2018-03-01

    The thermodynamic efficiency of using the multicaloric effect (μCE) in solid-state cooler systems has been studied in comparison to single-component caloric effects. This approach is illustrated by example of the Brayton cycle for μCE and magnetocaloric effect (MCE). Based on the results of experiments with Fe48Rh52-PbZr0.53Ti0.47O3 two-layer ferroic composite, the temperature dependence of the relative efficiency is determined and the temperature range is estimated in which the μCE is advantageous to MCE. The proposed theory of μCE is compared to experimental data.

  9. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.; Lv, Q.

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO 2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO 2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO 2 Brayton cycle is that it enablesmore » dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately« less

  10. Development of a para-orthohydrogen catalytic converter for a solid hydrogen cooler

    NASA Technical Reports Server (NTRS)

    Nast, T. C.; Hsu, I. C.

    1984-01-01

    Design features of a tested catalytic converter for altering vented cryogenic parahydrogen used as a coolant on spacecraft into a para-ortho equilibrium for channeling to other cooling functions are described. The hydrogen is expected to be stored in either liquid or solid form. A high surface area Ni-on-Si catalyst was selected for tests at an operating pressure of 2 torr at a ratio of 1000 gr catalyst for a gr/sec hydrogen flow. Cylindrical and radial flow geometries were tried and measurements centered on the converter efficiencies at different operating temperatures when the converter was placed in the vent line of the H2 cooler. Efficiencies ranging from 10-100 percent were obtained for varying flow rates. Further testing is necessary to characterize the converter performance under a wider range of operating temperatures and environments.

  11. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations.

    PubMed

    Iliakis, George; Murmann, Tamara; Soni, Aashish

    2015-11-01

    DNA double strand breaks (DSB) are the most deleterious lesions for the integrity of the genome, as their misrepair can lead to the formation of chromosome translocations. Cells have evolved two main repair pathways to suppress the formation of these genotoxic lesions: homology-dependent, error-free homologous recombination repair (HRR), and potentially error-prone, classical, DNA-PK-dependent non-homologous end-joining (c-NHEJ). The most salient feature of c-NHEJ, speed, will largely suppress chromosome translocation formation, while sequence alterations at the junction remain possible. It is now widely accepted that when c-NHEJ is inactivated, globally or locally, an alternative form of end-joining (alt-EJ) removes DSBs. Alt-EJ operates with speed and fidelity markedly lower than c-NHEJ, causing thus with higher probability chromosome translocations, and generating more extensive sequence alterations at the junction. Our working hypothesis is that alt-EJ operates as a backup to c-NHEJ. Recent results show that alt-EJ can also backup abrogated HRR in G2 phase cells, again at the cost of elevated formation of chromosome translocations. These observations raise alt-EJ to a global rescuing mechanism operating on ends that have lost their chromatin context in ways that compromise processing by HRR or c-NHEJ. While responsible for eliminating from the genome highly cytotoxic DNA ends, alt-EJ provides this function at the price of increased translocation formation. Here, we analyze recent literature on the mechanisms of chromosome translocation formation and propose a functional hierarchy among DSB processing pathways that makes alt-EJ the global backup pathway. We discuss possible ramifications of this model in cellular DSB management and pathway choice, and analyze its implications in radiation carcinogenesis and the design of novel therapeutic approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Method for thermoelectric cooler utilization using manufacturer's technical information

    NASA Astrophysics Data System (ADS)

    Ajiwiguna, Tri Ayodha; Nugroho, Rio; Ismardi, Abrar

    2018-03-01

    Thermoelectric cooler (TEC) module has been widely used for many applications. In this study, a procedure to use TEC module for specific requirement is developed based on manufacturer's technical data. For study case, the cooling system using TEC module is designed and tested to maintain 6.6 liter of water at 24 °C while surrounding temperature is 26 °C. First, cooling load estimation is performed empirically by observing the temperature change when cold water is inside the container. Second, the working temperature on hot side and cold side of TEC are determined. Third, the parameters of Seebeck coefficient, thermal resistance and electrical resistance are predicted by using information from the manufacturer. Fourth, the operating current is determined by the assumption the voltage across the TEC is 12V. Fifth, cooling capacity of TEC module is calculated by using energy balance equation of TEC. Sixth, the cooling load and cooling capacity are compared to determine the number of TEC module needed. The result of these calculations showed that one TEC module is enough for cooling system since the cooling load is 17.5 W while the cooling capacity is 18.87 W. From the experimental result, the set point temperature was achieved using one TEC module as predicted in calculations steps.

  13. Life and Reliability Characteristics of TurboBrayton Coolers

    NASA Technical Reports Server (NTRS)

    Breedlove, Jeff J.; Zagarola, Mark; Nellis, Greg; Dolan, Frank; Swift, Walt; Gibbon, Judith; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    Wear and internal contaminants are two of the primary factors that influence reliable, long-life operation of turbo-Brayton cryocoolers. This paper describes tests that have been conducted and methods that have been developed for turbo-Brayton components and systems to assure reliable operation. The turbomachines used in these coolers employ self-acting gas bearings to support the miniature high-speed shafts, thus providing vibration-free operation. Because the bearings are self-acting, rubbing contact occurs during initial start-up and shutdown of the machines. Bearings and shafts are designed to endure multiple stop/start cycles without producing particles or surface features that would impair the proper operation of the machines. Test results are presented for a variety of turbomachines used in these systems. The tests document extended operating life and start/stop cycling behavior for machines over a range of time and temperature scales. Contaminants such as moisture and other residual gas impurities can be a source of degraded operation if they freeze out in sufficient quantities to block flow passages or if they mechanically affect the operation of the machines. A post-fabrication bakeout procedure has been successfully used to reduce residual internal contamination to acceptable levels in a closed cycle system. The process was developed during space qualification tests on the NICMOS cryocooler. Moisture levels were sampled over a six-month time interval confirming the effectiveness of the technique. A description of the bakeout procedure is presented.

  14. Nanoscale coatings for erosion and corrosion protection of copper microchannel coolers for high powered laser diodes

    NASA Astrophysics Data System (ADS)

    Flannery, Matthew; Fan, Angie; Desai, Tapan G.

    2014-03-01

    High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.

  15. Glutathione and Glutaredoxin Act as a Backup of Human Thioredoxin Reductase 1 to Reduce Thioredoxin 1 Preventing Cell Death by Aurothioglucose*

    PubMed Central

    Du, Yatao; Zhang, Huihui; Lu, Jun; Holmgren, Arne

    2012-01-01

    Thioredoxin reductase 1 (TrxR1) in cytosol is the only known reductant of oxidized thioredoxin 1 (Trx1) in vivo so far. We and others found that aurothioglucose (ATG), a well known active-site inhibitor of TrxR1, inhibited TrxR1 activity in HeLa cell cytosol but had no effect on the viability of the cells. Using a redox Western blot analysis, no change was observed in redox state of Trx1, which was mainly fully reduced with five sulfhydryl groups. In contrast, auranofin killed cells and oxidized Trx1, also targeting mitochondrial TrxR2 and Trx2. Combining ATG with ebselen gave a strong synergistic effect, leading to Trx1 oxidation, reactive oxygen species accumulation, and cell death. We hypothesized that there should exist a backup system to reduce Trx1 when only TrxR1 activity was lost. Our results showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced Trx1 in vitro and that the reaction was strongly stimulated by glutaredoxin1. Simultaneous depletion of TrxR activity by ATG and glutathione by buthionine sulfoximine led to overoxidation of Trx1 and loss of HeLa cell viability. In conclusion, the glutaredoxin system and glutathione have a backup role to keep Trx1 reduced in cells with loss of TrxR1 activity. Monitoring the redox state of Trx1 shows that cell death occurs when Trx1 is oxidized, followed by general protein oxidation catalyzed by the disulfide form of thioredoxin. PMID:22977247

  16. A Continuous Adiabatic Demagnetization Refrigerator for Use with Mechanical Coolers

    NASA Technical Reports Server (NTRS)

    Shirron, P.; Abbondante, N.; Canavan, E.; DiPirro, M.; Grabowski, M.; Hirsch, M.; Jackson, M.; Tuttle, J.

    2000-01-01

    We have begun developing an adiabatic demagnetization refrigerator (ADR) which can produce continuous cooling at temperatures of 50 mK or lower, with high cooling power (goal of 10 PW). The design uses multiple stages to cascade heat from a continuously-cooled stage up to a heat sink. The serial arrangement makes it possible to add stages to extend the operating range to lower temperature, or to raise the heat rejection temperature. Compared to conventional single-shot ADRS, this system achieves higher cooling power per unit mass and is able to reject its heat at a more uniform rate. For operation with a mechanical cryocooler, this latter feature stabilizes the heat sink temperature and allows both the ADR and cryocooler to operate more efficiently. The ADR is being designed to operate with a heat sink as warm as 10-12 K to make it compatible with a wide variety of mechanical coolers as part of a versatile, cryogen-free low temperature cooling system. A two-stage system has been constructed and a proof-of-principle demonstration was conducted at 100 mK. Details of the design and test results, as well as the direction of future work, are discussed.

  17. Flight evaluation of a hydromechanical backup control for the digital electronic engine control system in an F100 engine

    NASA Technical Reports Server (NTRS)

    Walsh, K. R.; Burcham, F. W.

    1984-01-01

    The backup control (BUC) features, the operation of the BUC system, the BUC control logic, and the BUC flight test results are described. The flight test results include: (1) transfers to the BUC at military and maximum power settings; (2) a military power acceleration showing comparisons bvetween flight and simulation for BUC and primary modes; (3) steady-state idle power showing idle compressor speeds at different flight conditions; and (4) idle-to-military power BUC transients showing where cpmpressor stalls occurred for different ramp rates and idle speeds. All the BUC transfers which occur during the DEEC flight program are initiated by the pilot. Automatic transfers to the BUC do not occur.

  18. Overview of a stirling engine test project

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1980-01-01

    Tests were conducted on three Stirling engines ranging in size from 1.33 to 53 horsepower (1 to 40 kW). The tests were directed toward developing alternative, backup component concepts to improve engine efficiency and performance or to reduce costs. Some of the activities included investigating attractive concepts and materials for cooler-regenerator units, installing a jet impingement device on a Stirling engine to determine its potential for improved engine performance, and presenting performance maps for initial characterization of Stirling engines. The experiment results of the tests are presented along with predictions of results of future tests to be conducted on the Stirling engines.

  19. Tear-Film Evaporation Rate from Simultaneous Ocular-Surface Temperature and Tear-Breakup Area.

    PubMed

    Dursch, Thomas J; Li, Wing; Taraz, Baseem; Lin, Meng C; Radke, Clayton J

    2018-01-01

    A corneal heat-transfer model is presented to quantify simultaneous measurements of fluorescein tear-breakup area (TBA) and ocular-surface temperature (OST). By accounting for disruption of the tear-film lipid layer (TFLL), we report evaporation rates through lipid-covered tear. The modified heat-transfer model provides new insights into evaporative dry eye. A quantitative analysis is presented to assess human aqueous tear evaporation rate (TER) through intact TFLLs from simultaneous in vivo measurement of time-dependent infrared OST and fluorescein TBA. We interpret simultaneous OST and TBA measurements using an extended heat-transfer model. We hypothesize that TBAs are ineffectively insulated by the TFLL and therefore exhibit higher TER than does that for a well-insulting TFLL-covered tear. As time proceeds, TBAs increase in number and size, thereby increasing the cornea area-averaged TER and decreasing OST. Tear-breakup areas were assessed from image analysis of fluorescein tear-film-breakup video recordings and are included in the heat-transfer description of OST. Model-predicted OSTs agree well with clinical experiments. Percent reductions in TER of lipid-covered tear range from 50 to 95% of that for pure water, in good agreement with literature. The physical picture of noninsulating or ruptured TFLL spots followed by enhanced evaporation from underlying cooler tear-film ruptures is consistent with the evaporative-driven mechanism for local tear rupture. A quantitative analysis is presented of in vivo TER from simultaneous clinical measurement of transient OST and TBA. The new heat-transfer model accounts for increased TER through expanding TBAs. Tear evaporation rate varies strongly across the cornea because lipid is effectively missing over tear-rupture troughs. The result is local faster evaporation compared with nonruptured, thick lipid-covered tear. Evaporative-driven tear-film ruptures deepen to a thickness where fluorescein quenching commences and local

  20. An experimental investigation on the effects of freestream turbulence intensity on film cooling effectiveness and heat transfer coefficient for an anti-vortex hole

    NASA Astrophysics Data System (ADS)

    Hayes, Stephen Andrew

    Film cooling is used to thermally protect combustor and turbine components by creating a layer of relatively cooler air than the freestream air to insulate the components from the hot freestream gases. This relatively cooler air is taken from upstream in the high-pressure compressor section at a loss to the engine efficiency, and therefore must be used as effectively as possible. The efficiency gained from increasing the turbine inlet temperature outweighs the loss due to extracting air from the compressor section if the cooling air is used effectively. A novel anti-vortex hole (AVH) geometry has been investigated experimentally through a transient infrared thermography technique to study the film cooling effectiveness and surface convective heat transfer coefficients for varying blowing ratio and freestream turbulence intensity. A major concern with the AVH will be how the secondary jets counteract the main counter rotating vortex (CRV) pair at increased freestream turbulence levels. This is the first experimental facility to study the effects of higher freestream turbulence levels on an AVH geometry. Furthermore, this is the first experimental investigation to report centerline film cooling effectiveness and the convective heat transfer coefficient that had not been reported in prior studies. The AVH geometry is designed with two secondary holes stemming from a main cooling hole; these holes attempt to diffuse the coolant jet and mitigate the vorticity produced by conventional straight holes. This geometry shows improved results at low turbulence intensities compared to conventional straight holes. Three freestream turbulence intensities of 1, 7.5, and 11.7% were investigated at blowing ratios of 0.5, 1.0, 1.5, and 2.0 to form a test matrix of twelve different test conditions. Results showed that the higher freestream turbulence conditions were beneficial in the performance of the AVH. Increasing the blowing ratio at all turbulence levels also improved film

  1. Development and fabrication of an advanced liquid cooling garment

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    A tube/fin concept liquid cooling garment head cooler was developed, fabricated and delivered to NASA-ARC. The head cooler was fabricated from polyurethane film which sandwiches the transport fluid tubing and a thermally conductive fin material. The head cooler garment is sewn to form a skull cap and covered with a comfort liner. In addition, two Neonate heating garments were fabricated and supplied to NASA for further finishing and use in medical tests. The resulting garment is flexible, elastic and conforms to the head comfortably. Tests on a tube/fin element of identical construction as the head cooler demonstrated good thermal effectiveness. Use of commercially available materials and development of relatively simple fabrication techniques give the potential for a low garment cost.

  2. Addressing Water Consumption of Evaporative Coolers with Greywater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, Rashmi; Shah, Nihar; Phadke, Amol

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The averagemore » water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.« less

  3. A Novel Wide-Area Backup Protection Based on Fault Component Current Distribution and Improved Evidence Theory

    PubMed Central

    Zhang, Zhe; Kong, Xiangping; Yin, Xianggen; Yang, Zengli; Wang, Lijun

    2014-01-01

    In order to solve the problems of the existing wide-area backup protection (WABP) algorithms, the paper proposes a novel WABP algorithm based on the distribution characteristics of fault component current and improved Dempster/Shafer (D-S) evidence theory. When a fault occurs, slave substations transmit to master station the amplitudes of fault component currents of transmission lines which are the closest to fault element. Then master substation identifies suspicious faulty lines according to the distribution characteristics of fault component current. After that, the master substation will identify the actual faulty line with improved D-S evidence theory based on the action states of traditional protections and direction components of these suspicious faulty lines. The simulation examples based on IEEE 10-generator-39-bus system show that the proposed WABP algorithm has an excellent performance. The algorithm has low requirement of sampling synchronization, small wide-area communication flow, and high fault tolerance. PMID:25050399

  4. Long-life micro vacuum chamber for a micromachined cryogenic cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Haishan, E-mail: H.Cao@utwente.nl, E-mail: HaishanCao@gmail.com; Vermeer, Cristian H.; Vanapalli, Srinivas

    2015-11-15

    Micromachined cryogenic coolers can be used for cooling small electronic devices to improve their performance. However, for reaching cryogenic temperatures, they require a very good thermal insulation from the warm environment. This is established by a vacuum space that for adequate insulation has to be maintained at a pressure of 0.01 Pa or lower. In this paper, the challenge of maintaining a vacuum chamber with a volume of 3.6 × 10{sup −5} m{sup 3} and an inner wall area of 8.1 × 10{sup −3} m{sup 2} at a pressure no higher than 0.01 Pa for five years is theoretically analyzed. The possiblemore » sources of gas, the mechanisms by which these gases enter the vacuum space and their effects on the pressure in the vacuum chamber are discussed. In a long-duration experiment with four stainless steel chambers of the above dimensions and equipped with a chemical getter, the vacuum pressures were monitored for a period of two years. In that period, the measured pressure increase stayed within 0.01 Pa. This study can be used to guide the design of long-lifetime micro vacuum chambers that operate without continuous mechanical pumping.« less

  5. Identification of Mycobacterium chimaera in heater-cooler units in China.

    PubMed

    Zhang, Xiaoxia; Lin, Ji; Feng, Yu; Wang, Xiaohui; McNally, Alan; Zong, Zhiyong

    2018-05-18

    A global outbreak of infections due to Mycobacterium chimaera has been linked to the LivaNova (formerly Sorin) 3 T heater-cooler units (HCUs). We performed a study to investigate M. chimaera from HCUs in China. Water samples were collected from all 3 T HCUs (n = 5) at our hospital in May 2017. Mycobacteria isolates were subjected to genome sequencing using the HiSeq X10 Sequencer. Species were identified based on average nucleotide identity with M. chimaera type strain DSM 44623 T . Paired-end reads of all M. chimaera genomes were retrieved from the SRA database and, together with our isolates, were mapped against the chromosome of M. chimaera reference strain ZUERICH-1 to call SNPs. Mycobacteria grew from three HCUs manufactured in 2009 but not from the two in 2016. The three isolates were identified as M. chimaera and differed from each other by 4 to 6 SNPs, and from ZUERICH-1 by 7 to 10 SNPs. The three isolates belonged to the subgroup 1.1 and were most closely related to strains of the subgroup 1.1 from HCUs or patients in Europe, Australia/New Zealand and USA, suggesting the same common source. This is the first report of M. chimaera from HCUs in China.

  6. Independent Orbiter Assessment (IOA): Assessment of the backup flight system FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Prust, E. E.; Ewell, J. J., Jr.; Hinsdale, L. W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Backup Flight System (BFS) hardware, generating draft failure modes and Potential Critical Items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed NASA Post 51-L FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter BFS hardware. The IOA product for the BFS analysis consisted of 29 failure mode worksheets that resulted in 21 Potential Critical Items (PCI) being identified. This product was originally compared with the proposed NASA BFS baseline and subsequently compared with the applicable Data Processing System (DPS), Electrical Power Distribution and Control (EPD and C), and Displays and Controls NASA CIL items. The comparisons determined if there were any results which had been found by the IOA but were not in the NASA baseline. The original assessment determined there were numerous failure modes and potential critical items in the IOA analysis that were not contained in the NASA BFS baseline. Conversely, the NASA baseline contained three FMEAs (IMU, ADTA, and Air Data Probe) for CIL items that were not identified in the IOA product.

  7. Unified theory for inhomogeneous thermoelectric generators and coolers including multistage devices.

    PubMed

    Gerstenmaier, York Christian; Wachutka, Gerhard

    2012-11-01

    A novel generalized Lagrange multiplier method for functional optimization with inclusion of subsidiary conditions is presented and applied to the optimization of material distributions in thermoelectric converters. Multistaged devices are considered within the same formalism by inclusion of position-dependent electric current in the legs leading to a modified thermoelectric equation. Previous analytical solutions for maximized efficiencies for generators and coolers obtained by Sherman [J. Appl. Phys. 31, 1 (1960)], Snyder [Phys. Rev. B 86, 045202 (2012)], and Seifert et al. [Phys. Status Solidi A 207, 760 (2010)] by a method of local optimization of reduced efficiencies are recovered by independent proof. The outstanding maximization problems for generated electric power and cooling power can be solved swiftly numerically by solution of a differential equation-system obtained within the new formalism. As far as suitable materials are available, the inhomogeneous TE converters can have increased performance by use of purely temperature-dependent material properties in the thermoelectric legs or by use of purely spatial variation of material properties or by a combination of both. It turns out that the optimization domain is larger for the second kind of device which can, thus, outperform the first kind of device.

  8. Negative ion source development at the cooler synchrotron COSY/Jülich

    NASA Astrophysics Data System (ADS)

    Felden, O.; Gebel, R.; Maier, R.; Prasuhn, D.

    2013-02-01

    The Nuclear Physics Institute at the Forschungszentrum Jülich, a member of the Helmholtz Association, conducts experimental and theoretical basic research in the field of hadron, particle, and nuclear physics. It operates the cooler synchrotron COSY, an accelerator and storage ring, which provides unpolarized and polarized proton and deuteron beams with beam momenta of up to 3.7 GeV/c. Main activities of the accelerator division are the design and construction of the high energy storage ring HESR, a synchrotron and part of the international FAIR project, and the operation and development of COSY with injector cyclotron and ion sources. Filament driven volume sources and a charge exchange colliding beams source, based on a nuclear polarized atomic beam source, provide unpolarized and polarized H- or D- routinely for more than 6500 hours/year. Within the Helmholtz Association's initiative Accelerator Research and Development, ARD, the existing sources at COSY, as well as new sources for future programs, are investigated and developed. The paper reports about these plans, improved pulsed beams from the volume sources and the preparation of a source for the ELENA project at CERN.

  9. Mycobacterium chimaera infections associated with heater-cooler units in cardiac surgery.

    PubMed

    Schreiber, Peter W; Sax, Hugo

    2017-08-01

    Mycobacterium chimaera infections following cardiac surgery have been reported from an increasing number of countries. These infections are characterized by a poor prognosis with a case fatality rate around 50% despite treatment. Since the first description in 2013, our understanding has grown steadily. Several outbreak investigations, case series, and experiments with heater-cooler units (HCUs) have been published. This review summarizes the current knowledge. M. chimaera transmission occurs during cardiopulmonary bypass via bioaerosols emitted from contaminated HCU water systems. Manifestations of M. chimaera infection comprise endocarditis, vascular graft infections, surgical site infections, and dissemination. So far, all cases were exposed to a single HCU brand. Samples from the manufacturing site as well as clonality of M. chimaera strains isolated from HCUs and patients suggest a contamination already at time of delivery representing the main source for the outbreak. Nevertheless, HCU contamination in hospitals cannot be excluded. Improved awareness of physicians of M. chimaera infection is crucial to prompt adequate diagnostic workup in patients that have been exposed to HCU presenting with compatible symptoms. For risk mitigation, strict separation between the air volume in contact with HCUs and critical clinical areas such as operating rooms is essential.

  10. Telemedicine in general neurology: use of audiovisual consultation for on call back-up service in an acute care hospital.

    PubMed

    Janssen, Frank; Awadallah, Mohammed; Alhalabi, Awed; Körber, Barbara; Lang, Reinhard; Scibor, Mateusz; Handschu, René

    2018-04-01

    While telemedicine is in expanding use in acute stroke care, little is known about its use in general neurology, especially in acute care. We sought to investigate the feasibility and possible effects of a telemedicine device within the neurological back-up service of an acute care hospital. In a 450 bed academic teaching hospital an experienced neurologist (EN) is on call to support the junior doctor at the hospital. Support was possible whether by standard telephone advice (TA) or by audiovisual consultations (AVC). In AVC the expert used a mobile telemedicine device and so he could establish audiovisual contact from his home to the emergency room and examine newly admitted patients. Technical and patient details including timing and diagnosis were recorded. Video and audio quality as well as impact of AVC on diagnosis was rated by the EN. Out of about 1200 cases in off peak times, during the study period, 164 AVC including remote video examination were done (13.6%). Also 48 cases were documented by pure TA. Video quality was rated to a medium of 1.7, audio quality to 2.1. In 36 cases the audiovisual consultation was influenced by technical issues leading to cessation of AVC in 8 cases. Duration of teleconsultation was 17.3 min in AVC compared to 8.7 min for TA. The consultation diagnosis in AVC was confirmed in 74.4% of all cases compared to 57.7% in TA. AVC was rated as a valuable contribution to the diagnostic workup in 74.3% of all cases seen. In about 40% of all cases AVC was not possible due to technical or organizational reasons. Audiovisual consultation seems to be a feasible and useful support in routine neurology back-up service of an acute care hospital. Better mobility of devices and flexibility of service is needed to improve availability and quality of this valuable tool.

  11. Effect of operating conditions on performance of silica gel-water air-fluidised desiccant cooler

    NASA Astrophysics Data System (ADS)

    Rogala, Zbigniew; Kolasiński, Piotr; Gnutek, Zbigniew

    2017-11-01

    Fluidised desiccant cooling is reported in the literature as an efficient way to provide cooling for air-conditioning purposes. The performance of this technology can be described by electric and thermal Coefficients of Performance (COP) and Specific Cooling Power (SCP). In this paper comprehensive theoretical study was carried out in order to assess the effect of operating conditions such as: superficial air velocity, desiccant particle diameter, bed switching time and desiccant filling height on the performance of fluidised desiccant cooler (FDC). It was concluded that FDC should be filled with as small as possible desiccant particles featuring diameters and should not be operated with shorter switching times than optimum. Moreover in order to efficiently run such systems superficial air velocities during adsorption and desorption should be similar. At last substantial effect of desiccant filling height on performance of FDC was presented.

  12. Method of Minimizing Size of Heat Rejection Systems for Thermoelectric Coolers to Cool Detectors in Space

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2014-01-01

    A thermal design concept of attaching the thermoelectric cooler (TEC) hot side directly to the radiator and maximizing the number of TECs to cool multiple detectors in space is presented. It minimizes the temperature drop between the TECs and radiator. An ethane constant conductance heat pipe transfers heat from the detectors to a TEC cold plate which the cold side of the TECs is attached to. This thermal design concept minimizes the size of TEC heat rejection systems. Hence it reduces the problem of accommodating the radiator within a required envelope. It also reduces the mass of the TEC heat rejection system. Thermal testing of a demonstration unit in vacuum verified the thermal performance of the thermal design concept.

  13. Theoretical and experimental study of a gas-coupled two-stage pulse tube cooler with stepped warm displacer as the phase shifter

    NASA Astrophysics Data System (ADS)

    Pang, Xiaomin; Wang, Xiaotao; Dai, Wei; Li, Haibing; Wu, Yinong; Luo, Ercang

    2018-06-01

    A compact and high efficiency cooler working at liquid hydrogen temperature has many important applications such as cooling superconductors and mid-infrared sensors. This paper presents a two-stage gas-coupled pulse tube cooler system with a completely co-axial configuration. A stepped warm displacer, working as the phase shifter for both stages, has been studied theoretically and experimentally in this paper. Comparisons with the traditional phase shifter (double inlet) are also made. Compared with the double inlet type, the stepped warm displacer has the advantages of recovering the expansion work from the pulse tube hot end (especially from the first stage) and easily realizing an appropriate phase relationship between the pressure wave and volume flow rate at the pulse tube hot end. Experiments are then carried out to investigate the performance. The pressure ratio at the compression space is maintained at 1.37, for the double inlet type, the system obtains 1.1 W cooling power at 20 K with 390 W acoustic power input and the relative Carnot efficiency is only 3.85%; while for the stepped warm displacer type, the system obtains 1.06 W cooling power at 20 K with only 224 W acoustic power input and the relative Carnot efficiency can reach 6.5%.

  14. Elective percutaneous coronary intervention without on-site surgical backup: a community hospital experience.

    PubMed

    Djelmami-Hani, M; Mouanoutoua, Mouatou; Hashim, Abdelazim; Solis, Joaquin; Bergen, Lawrence; Oldridge, Neil; Egbujiobi, Leo C; Allaqaband, Suhail; Akhtar, Masood; Bajwa, Tanvir

    2007-12-01

    The American College of Cardiology guidelines consider elective percutaneous coronary intervention (PCI) without on-site surgical backup (OSB) a Class-III indication. Our objective was to determine the safety of elective PCI without OSB. The study is a prospective analysis of a cohort of patients who underwent elective PCI without OSB at our institution. All patients were at our community satellite institution in Beloit, Wis. Three hundred twenty-one elective interventions were performed (mean age 64 +/-12, 68% male). The prevalence of diabetes and hypertension was 28% and 82.5% respectively. A predefined protocol was designed to transfer patients to a cardiac surgical facility if necessary. An experienced interventional cardiologist reviewed the diagnostic angiograms. Patients with complex lesions were excluded from the study. Any procedure-related death or emergency coronary artery bypass graft surgery. Three hundred eighty-two vessels were stented. Multi-vessel intervention was performed in 61 patients (19%). Only 5% of lesions were type C. Four hundred thirty-seven stents were deployed. IIb-IIIa inhibitors were used in 77 (24%) cases. Procedural success was 99.7%. There were no deaths, myocardial infarctions nor need for urgent target vessel revascularization at 6 months. With careful patient/lesion selection, an experienced interventional cardiologist and a predefined transfer protocol, elective PCI without OSB can be performed safely.

  15. Sorghum Landrace Collections from Cooler Regions of the World Exhibit Magnificent Genetic Differentiation and Early Season Cold Tolerance.

    PubMed

    Maulana, Frank; Weerasooriya, Dilooshi; Tesso, Tesfaye

    2017-01-01

    Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1) to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2) to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp 34, Xtxp 88, and Xtxp 319 as associated with seedling emergence, Xtxp 211 and Xtxp 304 with seedling dry weight, and Xtxp 20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance.

  16. Sorghum Landrace Collections from Cooler Regions of the World Exhibit Magnificent Genetic Differentiation and Early Season Cold Tolerance

    PubMed Central

    Maulana, Frank; Weerasooriya, Dilooshi; Tesso, Tesfaye

    2017-01-01

    Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1) to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2) to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp34, Xtxp88, and Xtxp319 as associated with seedling emergence, Xtxp211 and Xtxp304 with seedling dry weight, and Xtxp20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance. PMID:28536596

  17. jsc2017e136057 - On a snowy night at Red Square Moscow, Expedition 54-55 backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left), Jeanette Epps of NASA (center) and Alexander Gerst of the European Space Agency (right) pay

    NASA Image and Video Library

    2017-11-30

    jsc2017e136057 - On a snowy night at Red Square Moscow, Expedition 54-55 backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left), Jeanette Epps of NASA (center) and Alexander Gerst of the European Space Agency (right) pay homage at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. They are backups to Anton Shkaplerov of Roscosmos, Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), who will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  18. The backup is active in Alzheimer's disease: a hypothesis from problem theory.

    PubMed

    Burnand, Gordon

    2015-03-01

    Problem theory distinguishes between six general problems of everyday life, which people work through in turn during childhood, learning to switch between them. One of them requires the protection of a cut-out and an override. People who develop Alzheimer's disease (AD), and apolipoprotein allele epsilon 4 carriers, are preoccupied with this problem, or readily switch back to it. It is the freedom problem, of raising hope or confidence of freedom or power to control. Here people try to raise hope of success with any task on which attention happens to rest. This indiscriminateness means that there is no basis for giving up on a task, or for avoiding dangerous environments. Thus the cut-out is needed when someone becomes stuck on a mental task and the override is needed so as to help in avoiding danger. Activity relevant to the freedom problem is confined to the left hemisphere and the right hemisphere operates the cut-out and override. In providing these two forms of protection the right hemisphere can be said to act as a backup. Accordingly EEG, metabolism, and atrophy findings indicate that both cut-out and override are active in mild clinical impairment, especially among patients who later develop AD. The pattern of atrophy of AD matches what would be expected from disuse caused by an overactive cut-out followed by an overactive override. A parallel loss of testosterone might contribute to the weakening of resistance to infections leading to autoimmune effects. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  19. BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.

    An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mAmore » - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.« less

  20. Are cooler surfaces a cost-effect mitigation of urban heat islands?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomerantz, Melvin

    Much research has gone into technologies to mitigate urban heat islands by making urban surfaces cooler by increasing their albedos. To be practical, the benefit of the technology must be greater than its cost. Here, this report provides simple methods for quantifying the maxima of some benefits that albedo increases may provide. The method used is an extension of an earlier paper that estimated the maximum possible electrical energy saving achievable in an entire city in a year by a change of albedo of its surfaces. The present report estimates the maximum amounts and monetary savings of avoided CO 2more » emissions and the decreases in peak power demands. As examples, for several warm cities in California, a 0.2 increase in albedo of pavements is found to reduce CO 2 emissions by < 1 kg per m 2 per year. At the current price of CO 2 reduction in California, the monetary saving is < US$ 0.01 per year per m 2 modified. The resulting maximum peak-power reductions are estimated to be < 7% of the base power of the city. In conclusion, the magnitudes of the savings are such that decision-makers should choose carefully which urban heat island mitigation techniques are cost effective.« less

  1. Are cooler surfaces a cost-effect mitigation of urban heat islands?

    DOE PAGES

    Pomerantz, Melvin

    2017-04-20

    Much research has gone into technologies to mitigate urban heat islands by making urban surfaces cooler by increasing their albedos. To be practical, the benefit of the technology must be greater than its cost. Here, this report provides simple methods for quantifying the maxima of some benefits that albedo increases may provide. The method used is an extension of an earlier paper that estimated the maximum possible electrical energy saving achievable in an entire city in a year by a change of albedo of its surfaces. The present report estimates the maximum amounts and monetary savings of avoided CO 2more » emissions and the decreases in peak power demands. As examples, for several warm cities in California, a 0.2 increase in albedo of pavements is found to reduce CO 2 emissions by < 1 kg per m 2 per year. At the current price of CO 2 reduction in California, the monetary saving is < US$ 0.01 per year per m 2 modified. The resulting maximum peak-power reductions are estimated to be < 7% of the base power of the city. In conclusion, the magnitudes of the savings are such that decision-makers should choose carefully which urban heat island mitigation techniques are cost effective.« less

  2. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining

    PubMed Central

    Soni, Aashish; Siemann, Maria; Grabos, Martha; Murmann, Tamara; Pantelias, Gabriel E.; Iliakis, George

    2014-01-01

    In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors. PMID:24748665

  3. Percutaneous coronary intervention with off-site cardiac surgery backup for acute myocardial infarction as a strategy to reduce door-to-balloon time.

    PubMed

    Peels, Hans O; de Swart, Hans; Ploeg, Tjeerd V D; Hautvast, Raymond W; Cornel, Jan H; Arnold, Alf E; Wharton, Thomas P; Umans, Victor A

    2007-11-01

    We investigated whether primary percutaneous coronary intervention (PCI) for patients admitted with an acute ST-segment elevation myocardial infarction could be performed more rapidly and with comparable outcomes in a community hospital versus a tertiary center with cardiac surgery. We started the first PCI with an off-site surgery program in The Netherlands in 2002 and report the results of 439 consecutive patients. In the safety phase, 199 patients presenting with ST-segment elevation myocardial infarction were randomly assigned to treatment at our off-site center versus a more distant cardiac surgery center. In the confirmation phase, 240 consecutive patients were treated in the off-site hospital. Safety and efficacy end points were the rate of an angiographically successful PCI procedure (diameter stenosis <50% and Thrombolysis In Myocardial Infarction grade 3 flow) in the absence of major adverse cardiac and cerebrovascular events at 30 days. The randomization phase showed a 37-minute decrease in door-to-balloon time (p <0.001) with comparable procedural and clinical successes (91% Thrombolysis In Myocardial Infarction grade 3 flow in the 2 groups). In the confirmation phase, the 30-day rate without major adverse cardiac and cerebrovascular events was 95%. None of the 439 patients in the study required emergency surgery for failed primary PCI. In conclusion, time to treatment with primary PCI can be significantly shortened when treating patients in a community hospital setting with off-site cardiac surgery backup compared with transport for PCI to a referral center with on-site surgery. PCI at hospitals with off-site cardiac surgery backup can be considered a needed strategy to improve access to primary PCI for a larger segment of the population and can be delivered with a very favorable safety profile.

  4. Detrimental influence on performance of high temperature incubation in a tropical reptile: is cooler better in the tropics?

    PubMed

    Bell, Kris; Blomberg, Simon; Schwarzkopf, Lin

    2013-01-01

    Global temperatures have risen over the last century, and are forecast to continue rising. Ectotherms may be particularly sensitive to changes in thermal regimes, and tropical ectotherms are more likely than temperate species to be influenced by changes in environmental temperature, because they may have evolved narrow thermal tolerances. Keelback snakes (Tropidonophis mairii) are tropical, oviparous reptiles. To quantify the effects of temperature on the morphology and physiology of hatchling keelbacks, clutches laid by wild-caught females were split and incubated at three temperatures, reflecting the average minimum, overall average and average maximum temperatures recorded at our study site. Upon hatching, the performance of neonates was examined at all three incubation temperatures in a randomized order over consecutive days. Hatchlings from the 'hot' treatment had slower burst swim speeds and swam fewer laps than hatchlings from the cooler incubation temperatures in all three test temperatures, indicating a low thermal optimum for incubation of this tropical species. There were no significant interactions between test temperature and incubation temperature across performance variables, suggesting phenotypic differences caused by incubation temperature did not acclimate this species to post-hatching conditions. Thus, keelback embryos appear evolutionarily adapted to development at cooler temperatures (relative to what is available in their habitat). The considerable reduction in hatchling viability and performance associated with a 3.5 °C increase in incubation temperature, suggests climate change may have significant population-level effects on this species. However, the offspring of three mothers exposed to the hottest incubation temperature were apparently resilient to high temperature, suggesting that this species may respond to selection imposed by thermal regime.

  5. Mycobacterium chimaera Outbreak Associated With Heater-Cooler Devices: Piecing the Puzzle Together.

    PubMed

    Sommerstein, Rami; Schreiber, Peter W; Diekema, Daniel J; Edmond, Michael B; Hasse, Barbara; Marschall, Jonas; Sax, Hugo

    2017-01-01

    An outbreak of invasive Mycobacterium chimaera infections associated with heater-cooler devices (HCDs) has now affected patients in several countries on different continents. Clinical infections are characterized by delayed diagnosis, inadequate treatment response to antimicrobial agents, and poor prognosis. Outbreak investigators found M. chimaera in HCD water circuits and air samples while HCDs were running, suggesting that transmission from the HCD to the surgical site occurs via the airborne route. New HCDs at the manufacturing site were also contaminated with M. chimaera, and recent whole-genome sequencing data suggest a point source. Some guidance on screening for M. chimaera colonization in HCD water and exhaust air is available. In contrast, reliable disinfection procedures are not well described, and it is not yet known whether eradication of M. chimaera from a contaminated HCD can be achieved. Meanwhile, strict separation of the HCD from operating room air is necessary to ensure patient safety, and these efforts may require engineering solutions. While our understanding of the causes and the extent of the M. chimaera outbreak is growing, several aspects of patient management, device handling, and risk mitigation still require clarification. Infect Control Hosp Epidemiol 2016;1-6.

  6. Condensation on Highly Superheated Surfaces: Unstable Thin Films in a Wickless Heat Pipe

    NASA Astrophysics Data System (ADS)

    Kundan, Akshay; Nguyen, Thao T. T.; Plawsky, Joel L.; Wayner, Peter C.; Chao, David F.; Sicker, Ronald J.

    2017-03-01

    A wickless heat pipe was operated on the International Space Station to provide a better understanding of how the microgravity environment might alter the physical and interfacial forces driving evaporation and condensation. Traditional heat pipes are divided into three zones: evaporation at the heated end, condensation at the cooled end, and intermediate or adiabatic in between. The microgravity experiments reported herein show that the situation may be dramatically more complicated. Beyond a threshold heat input, there was a transition from evaporation at the heated end to large-scale condensation, even as surface temperatures exceeded the boiling point by 160 K. The hotter the surface, the more vapor was condensed onto it. The condensation process at the heated end is initiated by thickness and temperature disturbances in the thin liquid film that wet the solid surface. Those disturbances effectively leave the vapor "superheated" in that region. Condensation is amplified and sustained by the high Marangoni stresses that exist near the heater and that drive liquid to cooler regions of the device.

  7. Condensation on Highly Superheated Surfaces: Unstable Thin Films in a Wickless Heat Pipe.

    PubMed

    Kundan, Akshay; Nguyen, Thao T T; Plawsky, Joel L; Wayner, Peter C; Chao, David F; Sicker, Ronald J

    2017-03-03

    A wickless heat pipe was operated on the International Space Station to provide a better understanding of how the microgravity environment might alter the physical and interfacial forces driving evaporation and condensation. Traditional heat pipes are divided into three zones: evaporation at the heated end, condensation at the cooled end, and intermediate or adiabatic in between. The microgravity experiments reported herein show that the situation may be dramatically more complicated. Beyond a threshold heat input, there was a transition from evaporation at the heated end to large-scale condensation, even as surface temperatures exceeded the boiling point by 160 K. The hotter the surface, the more vapor was condensed onto it. The condensation process at the heated end is initiated by thickness and temperature disturbances in the thin liquid film that wet the solid surface. Those disturbances effectively leave the vapor "superheated" in that region. Condensation is amplified and sustained by the high Marangoni stresses that exist near the heater and that drive liquid to cooler regions of the device.

  8. A miniature Joule-Thomson cooler for optical detectors in space.

    PubMed

    Derking, J H; Holland, H J; Tirolien, T; ter Brake, H J M

    2012-04-01

    The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage-detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads. © 2012 American Institute of Physics

  9. An electronic cryoprobe for cryosurgery using heat pipes and thermoelectric coolers: a preliminary report.

    PubMed

    Hamilton, A; Hu, J

    1993-01-01

    A hand-held fully electrically powered and programmable cryoprobe for general-purpose cryosurgery and cryotherapy has been developed. By combining the technologies of thermoelectric cooling and heat pipes, the temperature at the tip of the probe can easily reach -50 to -60 degrees C. It can hold below -40 degrees C when it cools a load of 10 W at the tip. Previous efforts developing cryoprobes made of thermoelectric modules have been hindered by the inherent characteristics of commercially available thermoelectric coolers: low efficiency, size and inflexible shape and very sensitive to heat intensity and thermal insulation. Matching thermoelectrics with heat pipes uses the advantages of both technologies. In the cryoprobe the heat pipe is used to focus and transport the cooling power of multi-thermoelectric modules. The heat flux for the thermoelectric modules is reduced and their efficiencies are increased. The transport of heat by a heat pipe also allows flexible access to treated spots of patients.

  10. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.

    1993-01-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  11. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Swift, Walter L.

    1993-12-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  12. Black Films and Film-Makers.

    ERIC Educational Resources Information Center

    Patterson, Lindsay, Ed.

    The development of black films and the attitudes of the film industry toward black films and black actors are some of the topics examined in this anthology of essays. Section 1, "Nigger to Supernigger," contains such articles as "The Death of Rastus: Negroes in American Films" by Thomas R. Cripps and "Folk Values in a New Medium" by Alain Locke…

  13. Biochemical evidence for Ku-independent backup pathways of NHEJ.

    PubMed

    Wang, Huichen; Perrault, Ange Ronel; Takeda, Yoshihiko; Qin, Wei; Wang, Hongyan; Iliakis, George

    2003-09-15

    Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a non-homologous end joining (NHEJ) apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4 and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with an order of magnitude slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group and frequently joins incorrect ends. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. The present study investigates the role of Ku in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient, error-free, end joining observed in such in vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite the fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA end joining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing end joining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts in line with the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3' or 5' protruding single strands with similar efficiency, but addition of Ku

  14. Biochemical evidence for Ku-independent backup pathways of NHEJ

    PubMed Central

    Wang, Huichen; Perrault, Ange Ronel; Takeda, Yoshihiko; Qin, Wei; Wang, Hongyan; Iliakis, George

    2003-01-01

    Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a non-homologous end joining (NHEJ) apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4 and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with an order of magnitude slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group and frequently joins incorrect ends. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. The present study investigates the role of Ku in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient, error-free, end joining observed in such in vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite the fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA end joining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing end joining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts in line with the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3′ or 5′ protruding single strands with similar efficiency, but addition of

  15. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining.

    PubMed

    Soni, Aashish; Siemann, Maria; Grabos, Martha; Murmann, Tamara; Pantelias, Gabriel E; Iliakis, George

    2014-06-01

    In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Study on a cascade pulse tube cooler with energy recovery: new method for approaching Carnot

    NASA Astrophysics Data System (ADS)

    Wang, L. Y.; Wu, M.; Zhu, J. K.; Jin, Z. Y.; Sun, X.; Gan, Z. H.

    2015-12-01

    A pulse tube cryocooler (PTC) can not achieve Carnot efficiency because the expansion work must be dissipated at the warm end of the pulse tube. How to recover this amount of dissipated work is a key for improving the PTC efficiency. A cascade PTC consists of PTCs those are staged by transmission tubes in between, these can be a two-stage or even more stages, each stage is driven by the recovered work from the last stage by a well-designed long transmission tube. It is shown that the more stages it has, the closer the efficiency will approach the Carnot efficiency. A two-stage cascade pulse tube cooler consisted of a primary and a secondary stage working at 233 K is designed, fabricated and tested in our lab. Experimental results show that the efficiency is improved by 33% compared with the single stage PTC.

  17. What do we do, if some of the MICE magnets can't be kept cold using the two-stage coolers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael A.

    2011-01-26

    Tests of the spectrometer solenoids have not been encouraging in terms of keeping the magnets cold using three 1.5 W (at 4.2 K) coolers. The spectrometer solenoids are being rebuilt with additional cooling capacity at 4.2 K. It is hoped that there will be sufficient 4.2 K cooling to keep the magnets cold. The spectrometer solenoids can be kept cold using liquid helium (up to a boil-off of 20 liters per day). This option does not apply for the other magnets in the MICE cooling channel, because there is not enough liquid helium storage within the magnet cold mass. Itmore » is important that the MICE collaboration ask the question, “How do we keep the MICE cooling channel magnets cold, if there isn’t sufficient cooling from the 4.2 K coolers?” This report discusses the cooling requirements at both 40 K and 4.2 K for all three types of MICE cooling channel magnets. This report discusses the steps that must be taken in the magnet fabrication to permit the magnets to be cooled using a small (20 to 40 W) external 4.2 K Claude cycle refrigerator. One must also ask the question as to whether there is enough excess capacity in the decay solenoid refrigerator to cool some of the MICE magnets. A plan for cooling the magnets using a Linde 1400 series refrigerator is presented. A plan for increasing the 4.4 K refrigeration from the existing decay solenoid refrigerator is also presented.« less

  18. Drought and cooler temperatures are associated with higher nest survival in Mountain Plovers

    USGS Publications Warehouse

    Dreitz, V.J.; Conrey, R.Y.; Skagen, S.K.

    2012-01-01

    Native grasslands have been altered to a greater extent than any other biome in North America. The habitats and resources needed to support breeding performance of grassland birds endemic to prairie ecosystems are currently threatened by land management practices and impending climate change. Climate models for the Great Plains prairie region predict a future of hotter and drier summers with strong multiyear droughts and more frequent and severe precipitation events. We examined how fluctuations in weather conditions in eastern Colorado influenced nest survival of an avian species that has experienced recent population declines, the Mountain Plover (Charadrius montanus). Nest survival averaged 27.2% over a 7-yr period (n = 936 nests) and declined as the breeding season progressed. Nest survival was favored by dry conditions and cooler temperatures. Projected changes in regional precipitation patterns will likely influence nest survival, with positive influences of predicted declines in summer rainfall yet negative effects of more intense rain events. The interplay of climate change and land use practices within prairie ecosystems may result in Mountain Plovers shifting their distribution, changing local abundance, and adjusting fecundity to adapt to their changing environment.

  19. Equivalent model optimization with cyclic correction approximation method considering parasitic effect for thermoelectric coolers.

    PubMed

    Wang, Ning; Chen, Jiajun; Zhang, Kun; Chen, Mingming; Jia, Hongzhi

    2017-11-21

    As thermoelectric coolers (TECs) have become highly integrated in high-heat-flux chips and high-power devices, the parasitic effect between component layers has become increasingly obvious. In this paper, a cyclic correction method for the TEC model is proposed using the equivalent parameters of the proposed simplified model, which were refined from the intrinsic parameters and parasitic thermal conductance. The results show that the simplified model agrees well with the data of a commercial TEC under different heat loads. Furthermore, the temperature difference of the simplified model is closer to the experimental data than the conventional model and the model containing parasitic thermal conductance at large heat loads. The average errors in the temperature difference between the proposed simplified model and the experimental data are no more than 1.6 K, and the error is only 0.13 K when the absorbed heat power Q c is equal to 80% of the maximum achievable absorbed heat power Q max . The proposed method and model provide a more accurate solution for integrated TECs that are small in size.

  20. A Comparison of Performance Characteristics of Multistage Thermoelectric Coolers Based on Different Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Semenyuk, V.

    2014-06-01

    The influence of the thermal properties of the substrate on the performance of cascade thermoelectric coolers (TECs) is studied with an emphasis on a justified choice of substrate material. An analytical model is developed for predicting the thermal resistance of the substrate associated with three-dimensional heat transfer from a smaller cascade area into a larger cooling cascade. The model is used to define the maximum temperature difference for a line of standard multistage TECs based on various substrate materials with different thermal conductivities, including white 96% Al2O3 "Rubalit" ceramic, grey 99.8% Al2O3 "Policor" ceramic, and AlN and BeO ceramics. Two types of multistage TECs are considered, namely with series and series-parallel connection of TE pellets, having from two to five cascades with TE pellet length in the range from 0.3 mm to 2 mm. A comparative analysis of the obtained results is made, and recommendations are formulated concerning the selection of an appropriate substrate material providing the highest performance-to-cost ratio.

  1. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Ivany, Linda C.; Patterson, William P.; Lohmann, Kyger C.

    2000-10-01

    The Eocene/Oligocene boundary, at about 33.7Myr ago, marks one of the largest extinctions of marine invertebrates in the Cenozoic period. For example, turnover of mollusc species in the US Gulf coastal plain was over 90% at this time. A temperature change across this boundary-from warm Eocene climates to cooler conditions in the Oligocene-has been suggested as a cause of this extinction event, but climate reconstructions have not provided support for this hypothesis. Here we report stable oxygen isotope measurements of aragonite in fish otoliths-ear stones-collected across the Eocene/Oligocene boundary. Palaeotemperatures reconstructed from mean otolith oxygen isotope values show little change through this interval, in agreement with previous studies. From incremental microsampling of otoliths, however, we can resolve the seasonal variation in temperature, recorded as the otoliths continue to accrete new material over the life of the fish. These seasonal data suggest that winters became about 4°C colder across the Eocene/Oligocene boundary. We suggest that temperature variability, rather than change in mean annual temperature, helped to cause faunal turnover during this transition.

  2. Thermoelectric Devices Cool, Power Electronics

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Nextreme Thermal Solutions Inc., based in Research Triangle Park, North Carolina, licensed thermoelectric technology from NASA s Jet Propulsion Laboratory. This has allowed the company to develop cutting edge, thin-film thermoelectric coolers that effective remove heat generated by increasingly powerful and tightly packed microchip components. These solid-state coolers are ideal solutions for applications like microprocessors, laser diodes, LEDs, and even potentially for cooling the human body. Nextreme s NASA technology has also enabled the invention of thermoelectric generators capable of powering technologies like medical implants and wireless sensor networks.

  3. Elimination of Acid Cleaning of High Temperature Salt Water Heat Exchangers: Redesigned Pre-Production Full-Scale Heat Pipe Bleed Air Cooler for Shipboard Evaluation

    DTIC Science & Technology

    2011-11-01

    Cleaning of High Temperature Salt Water Heat Exchangers ESTCP WP-200302 Subtitle: Redesigned Pre-production Full-Scale Heat Pipe Bleed Air Cooler For...FINAL 3. DATES COVERED (From - To) 1-Jan-2003 – 1-Oct-2009 4. TITLE AND SUBTITLE Elimination of Acid Cleaning of High Temperature Salt Water Heat...6-5 Figure 6- 6 HP-BAC Tube Sheet Being Immersed in Ultrasonic Cleaning Tank ..................................... 6-6 Figure 6- 7 Heat Pipe

  4. Effect of electronic ANR and conventional hearing protectors on vehicle backup alarm detection in noise.

    PubMed

    Casali, John G; Robinson, Gary S; Dabney, Erika Christian; Gauger, Dan

    2004-01-01

    An experiment was conducted wherein masked thresholds (using ascending method of limits) for a backup alarm were obtained in pink and red noise at 85 and 100 dBA for 12 participants immersed in a probability monitoring task and wearing a conventional passive hearing protection device (HPD, an earmuff or a foam earplug), an active noise reduction (ANR) headset, or no HPD at all (only in 85 dBA noise). Results revealed statistically significant between-HPD differences in red noise (from 2.3 to 3.1 dB) and in the 100-dBA noise level (from 2.6 to 4.3 dB). An additional finding, which corroborates other studies using different protocols, was that masked thresholds in 85-dBA noise were significantly lower (from 3.2 to 4.4 dB) for the occluded conditions (wearing an HPD) than for the open-ear (unoccluded) condition. This result refutes the belief among many normal-hearing workers that the use of HPDs in relatively low levels of noise compromises their ability to hear necessary workplace sounds. Actual or potential applications of this research include (a) the selection of appropriate HPDs for low-frequency-biased noise exposures wherein signal detection is important and (b) gaining insight into the appropriateness of ANR-based HPDs for certain industrial noise environments.

  5. Oestrous behaviour of Holstein cows during cooler and hotter tropical seasons.

    PubMed

    Rodtian, P; King, G; Subrod, S; Pongpiachan, P

    1996-12-02

    Seasonal effects on post-partum ovarian activity, duration and intensity of sexual behaviour were determined for Holstein dairy cattle imported from a temperate climate into a tropical region. Animals were observed continuously during the cooler (temperature-humidity index (THI) < 25) and hotter (THI > 25) seasons for 2 years. They were restricted to a cement footing in the hotter season observation period in Year 1, but had access to both concrete and dirt footing during all other seasons. Sequential milk progesterone profiles provided an indication of when follicular phases occurred, and recorded sexual behaviour was compared with these to determine if oestrous signs accompanied ovulations. Most cows had normal ovarian cycles and ovulated regularly during both seasons, but quiet ovulations occurred with greater frequency during the hotter times of the year (P < 0.05). Demonstrations of sexual behaviour were affected by choice of footing rather than season. The actual time when cows stood passively and allowed herdmates to complete mounting ranged from 5.1 +/- 0.7 to 5.8 +/- 1 h with access to exercise yards and cement or dirt footing, but declined to only 1.3 +/- 1.1 h when animals were confined to cement (P < 0.05). Similarly, the total duration of oestrus and mean number of interactions were significantly (P < 0.05) reduced during the observation period conducted with cows confined to concrete footing. These findings further emphasize that the duration of oestrus in dairy cows in considerably shorter than the commonly quoted 18 h.

  6. Development of a radio-frequency quadrupole cooler for high beam currents

    NASA Astrophysics Data System (ADS)

    Boussaid, Ramzi; Ban, G.; Quéméner, G.; Merrer, Y.; Lorry, J.

    2017-12-01

    The SHIRaC prototype is a recently developed radio-frequency quadrupole (RFQ) beam cooler with an improved optics design to deliver the required beam quality to a high resolution separator (HRS). For an isobaric separation of isotopes, the HRS demands beams with emittance not exceeding 3 π mm mrad and longitudinal energy spread ˜1 eV . Simulation studies showed a significant contribution of the buffer gas diffusion, space charge effect and mainly the rf fringe field to degrade the achieved beam quality at the RFQ exit. A miniature rf quadrupole (μ RFQ ) has been implemented at that exit to remove the degrading effects and provide beams with 1 eV of energy spread and around 1.75 π mm mrad of emittance for 4 Pa gas pressure. This solution enables also to transmit more than 60% of the incoming ions for currents up to 1 μ A . Detailed studies of this development are presented and discussed in this paper. Transport of beams from SHIRaC towards the HRS has been done with an electrostatic quadrupole triplet. Simulations and first experimental tests showed that more than 95% of ions can reach the HRS. Because SPIRAL-2 beams are of high current and very radioactive, the buffer gas will be highly contaminated. Safe maintenance of the SHIRaC beam line needs exceptional treatment of radioactive contaminants. For that, special vinyl sleep should be mounted on elements to be maintained. A detailed maintenance process will be presented.

  7. Response to Alert on Possible Infections with Mycobacterium chimaera From Contaminated Heater-Cooler Devices in Hospitals Participating in the Canadian Nosocomial Infection Surveillance Program (CNISP).

    PubMed

    Mertz, Dominik; Macri, Jennifer; Hota, Susy; Amaratunga, Kanchana; Davis, Ian; Johnston, Lynn; Lee, Bonita; Pelude, Linda; Science, Michelle; Smith, Stephanie; Wong, Alice

    2018-04-01

    Canadian hospitals were made aware of the risk of Mycobacterium chimaera infection associated with heater-cooler units (HCUs) through alerts issued by the US food and Drug Administration (FDA) and the US Centers for Disease Control and Prevention (CDC). In response, most hospitals conducted retrospective reviews for infections, informed exposed patients, and initiated a requirement for informed consent with HCU use. Infect Control Hosp Epidemiol 2018;39:482-484.

  8. Influence of film dimensions on film droplet formation.

    PubMed

    Holmgren, Helene; Ljungström, Evert

    2012-02-01

    Aerosol particles may be generated from rupturing liquid films through a droplet formation mechanism. The present work was undertaken with the aim to throw some light on the influence of film dimensions on droplet formation with possible consequences for exhaled breath aerosol formation. The film droplet formation process was mimicked by using a purpose-built device, where fluid films were spanned across holes of known diameters. As the films burst, droplets were formed and the number and size distributions of the resulting droplets were determined. No general relation could be found between hole diameter and the number of droplets generated per unit surface area of fluid film. Averaged over all film sizes, a higher surface tension yielded higher concentrations of droplets. Surface tension did not influence the resulting droplet diameter, but it was found that smaller films generated smaller droplets. This study shows that small fluid films generate droplets as efficiently as large films, and that droplets may well be generated from films with diameters below 1 mm. This has implications for the formation of film droplets from reopening of closed airways because human terminal bronchioles are of similar dimensions. Thus, the results provide support for the earlier proposed mechanism where reopening of closed airways is one origin of exhaled particles.

  9. Biological preconcentrator

    DOEpatents

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  10. Central-Approach Surgical Repair of Coarctation of the Aorta with a Back-up Left Ventricular Assist Device for an Infant Presenting with Severe Left Ventricular Dysfunction.

    PubMed

    Kim, Tae Hoon; Shin, Yu Rim; Kim, Young Sam; Kim, Do Jung; Kim, Hyohyun; Shin, Hong Ju; Htut, Aung Thein; Park, Han Ki

    2015-12-01

    A two-month-old infant presented with coarctation of the aorta, severe left ventricular dysfunction, and moderate to severe mitral regurgitation. Through median sternotomy, the aortic arch was repaired under cardiopulmonary bypass and regional cerebral perfusion. The patient was postoperatively supported with a left ventricular assist device for five days. Left ventricular function gradually improved, eventually recovering with the concomitant regression of mitral regurgitation. Prompt surgical repair of coarctation of the aorta is indicated for patients with severe left ventricular dysfunction. A central approach for surgical repair with a back-up left ventricular assist device is a safe and effective treatment strategy for these patients.

  11. Film Program Notes from the Current Holdings of the Anthology Film Archives; Outlines of 41 Films.

    ERIC Educational Resources Information Center

    Anthology Film Archives, New York, NY.

    This collection of film program notes includes mixed commentary on some of the films held in the Anthology Film Archives (a film and book library in New York City). Some of the films are described by synopsis of the episodes and others by translation into English of the foreign language subtitles. However, each film noted is identified by full…

  12. jsc2017e136942 - In the town of Baikonur, Kazakhstan, Expedition 54-55 backup crewmembers Jeanette Epps of NASA, Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos) and Alexander Gerst of the European Space Agency lay flowers Dec. 6 at the sta

    NASA Image and Video Library

    2017-12-06

    jsc2017e136942 - In the town of Baikonur, Kazakhstan, Expedition 54-55 backup crewmembers Jeanette Epps of NASA, Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos) and Alexander Gerst of the European Space Agency lay flowers Dec. 6 at the sta

  13. jsc2017e136944 - In the town of Baikonur, Kazakhstan, Expedition 54-55 backup crewmembers Jeanette Epps of NASA, Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos) and Alexander Gerst of the European Space Agency lay flowers Dec. 6 at the sta

    NASA Image and Video Library

    2017-12-06

    jsc2017e136944 - In the town of Baikonur, Kazakhstan, Expedition 54-55 backup crewmembers Jeanette Epps of NASA, Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos) and Alexander Gerst of the European Space Agency lay flowers Dec. 6 at the sta

  14. Radiofrequency quadrupole-based beam cooler and buncher for the CANREB project at TRIUMF

    NASA Astrophysics Data System (ADS)

    Barquest, Brad; Pearson, Matt; Ames, Friedhelm; Dilling, Jens; Gwinner, Gerald; Kanungo, Rituparna; Kruecken, Reiner

    2016-09-01

    A new radiofrequency quadrupole-based ion beam cooler and buncher (BCB) and pulsed drift tube (PDT) have been designed as part of the CANREB project at TRIUMF. The BCB is designed to accept continuous 60 keV rare isotope beams from the ARIEL or ISAC production targets and efficiently deliver low-emittance, bunched beams of up to 107 ions per bunch to an electron beam ion source (EBIS) to charge-breed the bunch for post-acceleration. The PDT will adjust the energy of the bunched beam from 60 keV to 10-14 keV for injection into the EBIS. The injection energy is determined by the acceptance of the post-accelerating RFQ. The design of the BCB is nearing completion, and fabrication and assembly effort will proceed shortly. In addition, a PDT prototype is under development to test that the design concept satisfies the voltage and switching time requirements. Design features of the BCB and PDT will be discussed, and an update on BCB assembly and PDT testing progress will be presented. CANREB is funded by CFI, NSRIT, Manitoba Research and Innovation Fund, AAPS, Saint Mary's U, U of Manitoba and TRIUMF. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  15. Isotopic evidence for cooler and drier conditions in the tropical Andes during the last glacial stage

    NASA Astrophysics Data System (ADS)

    Mora, Germán; Pratt, Lisa M.

    2001-06-01

    Documentation of paleoclimatic conditions during the last glacial stage in the tropical Andes is sparse despite the importance of understanding past climate changes in the tropics. To reconstruct paleoenvironmental conditions in the alpine neotropics, we measured the oxygen (δ18O) and hydrogen (δD) isotopic composition of authigenic kaolinite within weathering profiles of the Bogota basin (Colombia) because of the strong dependence of isotopic values on both surface temperature and rainfall. While kaolinite isotope data from Holocene soils in the basin reflect modern mean annual temperature and mean weighted rainwater isotopic composition of the basin, kaolinite isotope data from paleosols developed during the last glacial stage suggest 6 ± 2 °C cooler temperatures. Moreover, the isotope data indicate higher isotopic values of paleorainwater, interpreted to reflect drier conditions. The combination of reduced rainfall, temperature, and pCO2 significantly affected the distribution of tropical montane flora during the last glacial stage.

  16. Human RECQL5: guarding the crossroads of DNA replication and transcription and providing backup capability.

    PubMed

    Popuri, Venkateswarlu; Tadokoro, Takashi; Croteau, Deborah L; Bohr, Vilhelm A

    2013-01-01

    DNA helicases are ubiquitous enzymes that catalyze unwinding of duplex DNA and function in all metabolic processes in which access to single-stranded DNA is required, including DNA replication, repair, recombination and RNA transcription. RecQ helicases are a conserved family of DNA helicases that display highly specialized and vital roles in the maintenance of genome stability. Mutations in three of the five human RecQ helicases, BLM, WRN and RECQL4 are associated with the genetic disorders Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome that are characterized by chromosomal instability, premature aging and predisposition to cancer. The biological role of human RECQL5 is only partially understood and RECQL5 has not yet been associated with any human disease. Illegitimate recombination and replication stress are hallmarks of human cancers and common instigators for genomic instability and cell death. Recql5 knockout mice are cancer prone and show increased chromosomal instability. Recql5-deficient mouse embryonic fibroblasts are sensitive to camptothecin and display elevated levels of sister chromatid exchanges. Unlike other human RecQ helicases, RECQL5 is recruited to single-stranded DNA breaks and is also proposed to play an essential role in RNA transcription. Here, we review the established roles of RECQL5 at the cross roads of DNA replication, recombination and transcription, and propose that human RECQL5 provides important backup functions in the absence of other DNA helicases.

  17. The National Film Registry: Acquiring Our Film Heritage.

    ERIC Educational Resources Information Center

    Ziegler, Roy A.

    The National Film Registry, which is primarily a designated list of films to be preserved by the Library of Congress, is also a valuable tool for selecting "films that are culturally, historically, and aesthetically significant." Following a brief discussion of the history and selection process of the National Film Registry, Southeast…

  18. A study of a 63 K radiative cooler for the advanced moisture and temperature sounder. [earth-orbiting IR spectrometer for atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Salazar, R.; Evans, N.

    1981-01-01

    A study was performed of cooling methods for a space-borne, earth observing infrared optical instrument, AMTS. Major requirements on the thermal design are an optics temperature below 200 K, a detector array temperature below 75 K, orbital lifetime of 3 to 5 years, a near polar, sun synchronous orbit with altitude near 800 km. Power dissipation of the detectors is 38 mW, in the optics compartment 1.4 W. Large radiative coolers positioned so as to be shielded from sun, spacecraft and earth result in predicted optics temperature of 156 K and detector temperature of 63 K.

  19. Film Reviews.

    ERIC Educational Resources Information Center

    Lance, Larry M.; Atwater, Lynn

    1987-01-01

    Reviews four Human Sexuality films and videos. These are: "Personal Decisions" (Planned Parenthood Federation of America, 1985); "The Touch Film" (Sterling Production, 1986); "Rethinking Rape" (Film Distribution Center, 1985); "Not A Love Story" (National Film Board of Canada, 1981). (AEM)

  20. Film and membrane-model thermodynamics of free thin liquid films.

    PubMed

    Radke, C J

    2015-07-01

    In spite of over 7 decades of effort, the thermodynamics of thin free liquid films (as in emulsions and foams) lacks clarity. Following a brief review of the meaning and measurement of thin-film forces (i.e., conjoining/disjoining pressures), we offer a consistent analysis of thin-film thermodynamics. By carefully defining film reversible work, two distinct thermodynamic formalisms emerge: a film model with two zero-volume membranes each of film tension γ(f) and a membrane model with a single zero-volume membrane of membrane tension 2γ(m). In both models, detailed thermodynamic analysis gives rise to thin-film Gibbs adsorption equations that allow calculation of film and membrane tensions from measurements of disjoining-pressure isotherms. A modified Young-Laplace equation arises in the film model to calculate film-thickness profiles from the film center to the surrounding bulk meniscus. No corresponding relation exists in the membrane model. Illustrative calculations of disjoining-pressure isotherms for water are presented using square-gradient theory. We report considerable deviations from Hamaker theory for films less than about 3 nm in thickness. Such thin films are considerably more attractive than in classical Hamaker theory. Available molecular simulations reinforce this finding. Copyright © 2014 Elsevier Inc. All rights reserved.