Sample records for backup flight control

  1. Mechanization of and experience with a triplex fly-by-wire backup control system

    NASA Technical Reports Server (NTRS)

    Lock, W. P.; Petersen, W. R.; Whitman, G. B.

    1975-01-01

    A redundant three-axis analog control system was designed and developed to back up a digital fly-by-wire control system for an F-8C airplane. Forty-two flights, involving 58 hours of flight time, were flown by six pilots. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum-displacement (force) side stick. The operational reliability of the F-8 digital fly-by-wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.

  2. Mechanization of and experience with a triplex fly-by-wire backup control system

    NASA Technical Reports Server (NTRS)

    Lock, W. P.; Petersen, W. R.; Whitman, G. B.

    1976-01-01

    A redundant three axis analog control system was designed and developed to back up a digital fly by wire control system for an F-8C airplane. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum displacement (force) side stick. The operational reliability of the F-8 digital fly by wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.

  3. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  4. X-wing fly-by-wire vehicle management system

    NASA Technical Reports Server (NTRS)

    Fischer, Jr., William C. (Inventor)

    1990-01-01

    A complete, computer based, vehicle management system (VMS) for X-Wing aircraft using digital fly-by-wire technology controlling many subsystems and providing functions beyond the classical aircraft flight control system. The vehicle management system receives input signals from a multiplicity of sensors and provides commands to a large number of actuators controlling many subsystems. The VMS includes--segregating flight critical and mission critical factors and providing a greater level of back-up or redundancy for the former; centralizing the computation of functions utilized by several subsystems (e.g. air data, rotor speed, etc.); integrating the control of the flight control functions, the compressor control, the rotor conversion control, vibration alleviation by higher harmonic control, engine power anticipation and self-test, all in the same flight control computer (FCC) hardware units. The VMS uses equivalent redundancy techniques to attain quadruple equivalency levels; includes alternate modes of operation and recovery means to back-up any functions which fail; and uses back-up control software for software redundancy.

  5. Flight evaluation of an engine static pressure noseprobe in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Foote, C. H.; Jaekel, R. F.

    1981-01-01

    The flight testing of an inlet static pressure probe and instrumented inlet case produced results consistent with sea-level and altitude stand testing. The F-15 flight test verified the basic relationship of total to static pressure ratio versus corrected airflow and automatic distortion downmatch with the engine pressure ratio control mode. Additionally, the backup control inlet case statics demonstrated sufficient accuracy for backup control fuel flow scheduling, and the station 6 manifolded production probe was in agreement with the flight test station 6 tota pressure probes.

  6. 76 FR 20503 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model ERJ 170 and ERJ...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... of the related balance washer causing a possible ram air turbine (RAT) imbalance event, which may... in loss of power to airplane flight controls hydraulic back-up system. * * * * * Loss of power to the hydraulic back-up system for airplane flight controls could reduce the ability of the flightcrew to maintain...

  7. Flight control systems development of highly maneuverable aircraft technology /HiMAT/ vehicle

    NASA Technical Reports Server (NTRS)

    Petersen, K. L.

    1979-01-01

    The highly maneuverable aircraft technology (HiMAT) program was conceived to demonstrate advanced technology concepts through scaled-aircraft flight tests using a remotely piloted technique. Closed-loop primary flight control is performed from a ground-based cockpit, utilizing a digital computer and up/down telemetry links. A backup flight control system for emergency operation resides in an onboard computer. The onboard systems are designed to provide fail-operational capabilities and utilize two microcomputers, dual uplink receiver/decoders, and redundant hydraulic actuation and power systems. This paper discusses the design and validation of the primary and backup digital flight control systems as well as the unique pilot and specialized systems interfaces.

  8. Flight evaluation of a hydromechanical backup control for the digital electronic engine control system in an F100 engine

    NASA Technical Reports Server (NTRS)

    Walsh, K. R.; Burcham, F. W.

    1984-01-01

    The backup control (BUC) features, the operation of the BUC system, the BUC control logic, and the BUC flight test results are described. The flight test results include: (1) transfers to the BUC at military and maximum power settings; (2) a military power acceleration showing comparisons bvetween flight and simulation for BUC and primary modes; (3) steady-state idle power showing idle compressor speeds at different flight conditions; and (4) idle-to-military power BUC transients showing where cpmpressor stalls occurred for different ramp rates and idle speeds. All the BUC transfers which occur during the DEEC flight program are initiated by the pilot. Automatic transfers to the BUC do not occur.

  9. Pilot simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    DOT National Transportation Integrated Search

    1995-12-01

    Partial failures of aircraft primary flight-control systems and structural : damages to aircraft during flight have led to catastrophic accidents with : subsequent loss of life. These accidents can be prevented if sufficient : alternate control autho...

  10. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  11. Flight evaluation results for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Walsh, K. R.

    1983-01-01

    A digital electronic engine control (DEEC) system on an F100 engine in an F-15 airplane was evaluated in flight. Thirty flights were flown in a four-phase program from June 1981 to February 1983. Significant improvements in the operability and performance of the F100 engine were developed as a result of the flight evaluation: the augmentor envelope was increased by 15,000 ft, the airstart envelope was improved by 75 knots, and the need to periodically trim the engine was eliminated. The hydromechanical backup control performance was evaluated and was found to be satisfactory. Two system failures were encountered in the test program; both were detected and accommodated successfully. No transfers to the backup control system were required, and no automatic transfers occurred. As a result of the successful DEEC flight evaluation, the DEEC system has entered the full-scale development phase.

  12. Apollo 13 MCC - MSC

    NASA Image and Video Library

    1970-04-14

    S70-34986 (14 April 1970) --- A group of six astronauts and two flight controllers monitor the console activity in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) during the problem-plagued Apollo 13 lunar landing mission. Seated, left to right, are MOCR Guidance Officer Raymond F. Teague; astronaut Edgar D. Mitchell, Apollo 14 prime crew lunar module pilot; and astronaut Alan B. Shepard Jr., Apollo 14 prime crew commander. Standing, left to right, are scientist-astronaut Anthony W. England; astronaut Joe H. Engle, Apollo 14 backup crew lunar module pilot; astronaut Eugene A. Cernan, Apollo 14 backup crew commander; astronaut Ronald E. Evans, Apollo 14 backup crew command module pilot; and M.P. Frank, a flight controller. When this picture was made, the Apollo 13 moon landing had already been canceled, and the Apollo 13 crew men were in trans-Earth trajectory attempting to bring their damaged spacecraft back home.

  13. Flight Test of a Propulsion-Based Emergency Control System on the MD-11 Airplane with Emphasis on the Lateral Axis

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Burcham, Frank W., Jr.; Maine, Trindel A.; Feather, John; Goldthorpe, Steven; Kahler, Jeffrey A.

    1996-01-01

    A large, civilian, multi-engine transport MD-11 airplane control system was recently modified to perform as an emergency backup controller using engine thrust only. The emergency backup system, referred to as the propulsion-controlled aircraft (PCA) system, would be used if a major primary flight control system fails. To allow for longitudinal and lateral-directional control, the PCA system requires at least two engines and is implemented through software modifications. A flight-test program was conducted to evaluate the PCA system high-altitude flying characteristics and to demonstrate its capacity to perform safe landings. The cruise flight conditions, several low approaches and one landing without any aerodynamic flight control surface movement, were demonstrated. This paper presents results that show satisfactory performance of the PCA system in the longitudinal axis. Test results indicate that the lateral-directional axis of the system performed well at high attitude but was sluggish and prone to thermal upsets during landing approaches. Flight-test experiences and test techniques are also discussed with emphasis on the lateral-directional axis because of the difficulties encountered in flight test.

  14. Design, analysis and control of large transports so that control of engine thrust can be used as a back-up of the primary flight controls. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Roskam, Jan; Ackers, Deane E.; Gerren, Donna S.

    1995-01-01

    A propulsion controlled aircraft (PCA) system has been developed at NASA Dryden Flight Research Center at Edwards Air Force Base, California, to provide safe, emergency landing capability should the primary flight control system of the aircraft fail. As a result of the successful PCA work being done at NASA Dryden, this project investigated the possibility of incorporating the PCA system as a backup flight control system in the design of a large, ultra-high capacity megatransport in such a way that flight path control using only the engines is not only possible, but meets MIL-Spec Level 1 or Level 2 handling quality requirements. An 800 passenger megatransport aircraft was designed and programmed into the NASA Dryden simulator. Many different analysis methods were used to evaluate the flying qualities of the megatransport while using engine thrust for flight path control, including: (1) Bode and root locus plot analysis to evaluate the frequency and damping ratio response of the megatransport; (2) analysis of actual simulator strip chart recordings to evaluate the time history response of the megatransport; and (3) analysis of Cooper-Harper pilot ratings by two NaSA test pilots.

  15. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  16. jsc2013e048273

    NASA Image and Video Library

    2013-05-22

    Behind the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, the Expedition 36/37 backup and prime crewmembers pose for pictures in front of a Proton rocket statue May 22 following traditional ceremonies. From left to right are backup Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, backup Soyuz Commander Mikhail Tyurin, backup Flight Engineer Rick Mastracchio of NASA, prime Flight Engineer Karen Nyberg of NASA, prime Soyuz Commander Fyodor Yurchikhin and prime Flight Engineer Luca Parmitano of the European Space Agency. Nyberg, Yurchikhin and Parmitano are preparing for their launch May 29, Kazakh time, in the Soyuz TMA-09M spacecraft to begin a 5 ½ month mission on the International Space Station. NASA/Victor Zelentsov

  17. AFTI/F-111 MAW flight control system and redundancy management description

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.

    1987-01-01

    The wing on the NASA F-111 transonic aircraft technology (TACT) airplane was modified to provide flexible leading and trailing edge flaps; this modified wing is known as the mission adaptive wing (MAW). A dual digital primary fly-by-wire flight control system was developed with analog backup reversion for redundancy. This report discusses the functions, design, and redundancy management of the flight control system for these flaps.

  18. jsc2012e094947

    NASA Image and Video Library

    2012-06-20

    At the Gagarin Cosmonaut Training Center in Star City, Russia, the Expedition 32/33 backup crew posed for pictures June 20, 2012 as they participated in the second of two days of Soyuz spacecraft qualification exams. Backup Flight Engineer Chris Hadfield of the Canadian Space Agency (left), backup Flight Engineer Tom Marshburn of NASA (center) and backup Soyuz Commander Roman Romanenko are understudies to the prime crew, NASA Flight Sunita Williams, Aki Hoshide of the Japan Aerospace Exploration Agency and Yuri Malenchenko, who will launch July 15 to the International Space Station in their Soyuz TMA-05M spacecraft from the Baikonur Cosmodrome in Kazakhstan. Credit: NASA/Stephanie Stoll

  19. Expedition 19 State Commission

    NASA Image and Video Library

    2009-03-24

    Spaceflight Participant Charles Simonyi, left, Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt, third from left, backup Expedition 19 flight engineer Maxim Suraev, backup commander Jeffrey Williams and backup spaceflight participant Esther Dyson, far right, are seen in quarantine behind glass during the State Commission meeting on Wednesday, March 25, 2009 in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  20. Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Controls for a B747-400 Jet Transport

    NASA Technical Reports Server (NTRS)

    Bull, John; Mah, Robert; Hardy, Gordon; Sullivan, Barry; Jones, Jerry; Williams, Diane; Soukup, Paul; Winters, Jose

    1997-01-01

    Partial failures of aircraft primary flight control systems and structural damages to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. DC-10, B-747, C-5, B-52, and others). Following the DC-10 accident at Sioux City, Iowa in 1989, the National Transportation Safety Board recommended 'Encourage research and development of backup flight control systems for newly certified wide-body airplanes that utilize an alternate source of motive power separate from that source used for the conventional control system.' This report describes the concept of a propulsion controlled aircraft (PCA), discusses pilot controls, displays, and procedures; and presents the results of a PCA piloted simulation test and evaluation of the B747-400 airplane conducted at NASA Ames Research Center in December, 1996. The purpose of the test was to develop and evaluate propulsion control throughout the full flight envelope of the B747-400 including worst case scenarios of engine failures and out of trim moments. Pilot ratings of PCA performance ranged from adequate to satisfactory. PCA performed well in unusual attitude recoveries at 35,000 ft altitude, performed well in fully coupled ILS approaches, performed well in single engine failures, and performed well at aft cg. PCA performance was primarily limited by out-of-trim moments.

  1. View of backup payload specialist Robert Thirsk during Zero-G training

    NASA Image and Video Library

    1984-07-16

    S84-37532 (18 July 1984) --? Robert B. Thirsk, backup payload specialist for 41-G appears to be shaking hands with an unoccupied extravehicular mobility unit (EMU) during a familiarization flight aboard NASA?s KC-135 aircraft. Thirsk, representing Canada?s National Research Council (NRC), serves as backup to Marc Garneau on the seven-member crew for Challenger?s October 1984 flight. This aircraft is used extensively for training and exposing Shuttle crewmembers to weightlessness as well as for evaluation of equipment and experiments scheduled for future flights.

  2. Design, analysis, and control of a large transport aircraft utilizing selective engine thrust as a backup system for the primary flight control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gerren, Donna S.

    1995-01-01

    A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.

  3. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 2: Flight evaluations

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.

    1982-01-01

    Key problems in single pilot instrument flight operations are in the management of flight data and the processing of cockpit information during conditions of heavy workload. A flight data console was developed to allow simulation of a digital data link to replace the current voice communications stem used in air traffic control. This is a human factors evaluation of a data link communications system to determine how such a system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. The need for a voice channel as backup to a digital link is examined. The evaluations cover both airport terminal area operations and full mission instrument flight. Results show that general aviation pilots operate well with a digital data link communications system. The findings indicate that a data link system for pilot/ATC communications, with a backup voice channel, is well accepted by general aviation pilots and is considered to be safer, more efficient, and result in less workload than the current voice system.

  4. jsc2013e080238

    NASA Image and Video Library

    2013-09-06

    At the Kremlin Wall at Red Square in Moscow, Five of the six Expedition 37/38 prime and backup crewmembers pose for pictures Sept. 6 during the traditional visit to lay flowers at the wall where Russian space icons are interred. With the onion domed spires of St. Basil’s Cathedral in the background, from left to right are backup NASA Flight Engineer Steve Swanson, prime Flight Engineer Michael Hopkins of NASA, prime Soyuz Commander Oleg Kotov, prime Flight Engineer Sergey Ryazanskiy and backup Flight Engineer Oleg Artemyev. Hopkins, Kotov and Ryazanskiy are preparing for their launch to the International Space Station from the Baikonur Cosmodrome in Kazakhstan on Sept. 26, Kazakh time, aboard the Soyuz TMA-10M spacecraft. NASA/Stephanie Stoll

  5. Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Controls for a B747-400 Jet Transport

    DOT National Transportation Integrated Search

    1997-04-01

    This report describes the concept of a propulsion controlled aircraft (PCA), : discusses pilot controls, displays, and procedures; and presents the results of a : PCA piloted simulation test and evaluation of the B747-400 airplane conducted at : NASA...

  6. Thermal control evaluation of a Shuttle Orbiter solar observatory using Skylab ATM backup hardware

    NASA Technical Reports Server (NTRS)

    Class, C. R.; Presta, G.; Trucks, H.

    1975-01-01

    A study under the sponsorship of Marshall Space Flight Center (MSFC) established the feasibility to utilize the Skylab Apollo Telescope Mount (ATM) backup hardware for early low cost Shuttle Orbiter solar observation missions. A solar inertial attitude and a seven-day, full sun exposure were baselined. As a portion of the study, a series of thermal control evaluations were performed to resolve the problems caused by the relocation of the ATM to the Shuttle Orbiter bay and resulting configuration changes. Thermal control requirements, problems, the use of solar shields, Spacelab supplied fluid cooling and component placement are discussed.

  7. Expedition 14 Crew and Backup Crew Training

    NASA Image and Video Library

    2006-05-24

    JSC2006-E-20053 (24 May 2006) --- Astronaut Clayton C. Anderson, Expedition 14 backup flight engineer, participates in Journals experiment overview training in the Flight Operations Facility at Johnson Space Center. This type of training is a presentation format regarding the experiment objectives and tools. Training instructor Lindsay Kirschner assisted Anderson.

  8. SSME digital control design characteristics

    NASA Technical Reports Server (NTRS)

    Mitchell, W. T.; Searle, R. F.

    1985-01-01

    To protect against a latent programming error (software fault) existing in an untried branch combination that would render the space shuttle out of control in a critical flight phase, the Backup Flight System (BFS) was chartered to provide a safety alternative. The BFS is designed to operate in critical flight phases (ascent and descent) by monitoring the activities of the space shuttle flight subsystems that are under control of the primary flight software (PFS) (e.g., navigation, crew interface, propulsion), then, upon manual command by the flightcrew, to assume control of the space shuttle and deliver it to a noncritical flight condition (safe orbit or touchdown). The problems associated with the selection of the PFS/BFS system architecture, the internal BFS architecture, the fault tolerant software mechanisms, and the long term BFS utility are discussed.

  9. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  10. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

  11. Operating and Managing a Backup Control Center

    NASA Technical Reports Server (NTRS)

    Marsh, Angela L.; Pirani, Joseph L.; Bornas, Nicholas

    2010-01-01

    Due to the criticality of continuous mission operations, some control centers must plan for alternate locations in the event an emergency shuts down the primary control center. Johnson Space Center (JSC) in Houston, Texas is the Mission Control Center (MCC) for the International Space Station (ISS). Due to Houston s proximity to the Gulf of Mexico, JSC is prone to threats from hurricanes which could cause flooding, wind damage, and electrical outages to the buildings supporting the MCC. Marshall Space Flight Center (MSFC) has the capability to be the Backup Control Center for the ISS if the situation is needed. While the MSFC Huntsville Operations Support Center (HOSC) does house the BCC, the prime customer and operator of the ISS is still the JSC flight operations team. To satisfy the customer and maintain continuous mission operations, the BCC has critical infrastructure that hosts ISS ground systems and flight operations equipment that mirrors the prime mission control facility. However, a complete duplicate of Mission Control Center in another remote location is very expensive to recreate. The HOSC has infrastructure and services that MCC utilized for its backup control center to reduce the costs of a somewhat redundant service. While labor talents are equivalent, experiences are not. Certain operations are maintained in a redundant mode, while others are simply maintained as single string with adequate sparing levels of equipment. Personnel at the BCC facility must be trained and certified to an adequate level on primary MCC systems. Negotiations with the customer were done to match requirements with existing capabilities, and to prioritize resources for appropriate level of service. Because some of these systems are shared, an activation of the backup control center will cause a suspension of scheduled HOSC activities that may share resources needed by the BCC. For example, the MCC is monitoring a hurricane in the Gulf of Mexico. As the threat to MCC increases, HOSC must begin a phased activation of the BCC, while working resource conflicts with normal HOSC activities. In a long duration outage to the MCC, this could cause serious impacts to the BCC host facility s primary mission support activities. This management of a BCC is worked based on customer expectations and negotiations done before emergencies occur. I.

  12. VISITOR - SULTAN - JSC

    NASA Image and Video Library

    1985-04-04

    S85-29711 (April 1985) --- Ronald C. Epps, right of the training division in the mission operations directorate, briefs the Saudi Arabian payload specialist, Sultan Salman Abdelazize Al-Saud, and his backup, Abdulmohsen Hamad Al-Bassam, in the flight control room (FCR) of the mission control center (MCC). Erlinda Stevenson is also pictured.

  13. Achieving reliability - The evolution of redundancy in American manned spacecraft computers

    NASA Technical Reports Server (NTRS)

    Tomayko, J. E.

    1985-01-01

    The Shuttle is the first launch system deployed by NASA with full redundancy in the on-board computer systems. Fault-tolerance, i.e., restoring to a backup with less capabilities, was the method selected for Apollo. The Gemini capsule was the first to carry a computer, which also served as backup for Titan launch vehicle guidance. Failure of the Gemini computer resulted in manual control of the spacecraft. The Apollo system served vehicle flight control and navigation functions. The redundant computer on Skylab provided attitude control only in support of solar telescope pointing. The STS digital, fly-by-wire avionics system requires 100 percent reliability. The Orbiter carries five general purpose computers, four being fully-redundant and the fifth being soley an ascent-descent tool. The computers are synchronized at input and output points at a rate of about six times a second. The system is projected to cause a loss of an Orbiter only four times in a billion flights.

  14. jsc2012e051224

    NASA Image and Video Library

    2012-05-09

    In the town of Baikonur, Kazakhstan, the Expedition 31/32 backup crew participated in Victory Day celebration activities May 9, 2012 as they took a break from training for the launch of the Soyuz TMA-04M May 15 to the International Space Station. Victory Day commemorates the triumph of Russia over Nazi Germany in World War II, one of Russia’s most solemn occasions. From left to right holding flowers are backup NASA Flight Engineer Kevin Ford, backup Soyuz Commander Oleg Novitskiy and backup Flight Engineer Evgeny Tarelkin. The prime crew, Gennady Padalka, Sergei Revin and NASA’s Joe Acaba, are training for their launch in the Soyuz vehicle on May 15 for a four-month mission on the orbital complex. NASA/Victor Zelentsov

  15. jsc2012e051223

    NASA Image and Video Library

    2012-05-09

    In the town of Baikonur, Kazakhstan, the Expedition 31/32 backup crew participated in Victory Day celebration activities May 9, 2012 as they took a break from training for the launch of the Soyuz TMA-04M May 15 to the International Space Station. Victory Day commemorates the triumph of Russia over Nazi Germany in World War II, one of Russia’s most solemn occasions. From left to right holding flowers are backup NASA Flight Engineer Kevin Ford, backup Soyuz Commander Oleg Novitskiy and backup Flight Engineer Evgeny Tarelkin. The prime crew, Gennady Padalka, Sergei Revin and NASA’s Joe Acaba, are training for their launch in the Soyuz vehicle on May 15 for a four-month mission on the orbital complex. NASA/Victor Zelentsov

  16. Gemini 7 backup crew seen in white room during Gemini 7 simulation activity

    NASA Image and Video Library

    1965-11-27

    S65-61837 (27 Nov. 1965) --- The Gemini-7 backup crew seen in the White Room atop Pad 19 during Gemini-7 simulation flight activity. McDonnell Aircraft Corporation technicians assist in the exercise. Astronaut Edward H. White II (in foreground) is the Gemini-7 backup crew command pilot; and astronaut Michael Collins (right background) is the backup crew pilot. Photo credit: NASA

  17. Saturn Apollo Program

    NASA Image and Video Library

    1966-09-09

    This is the official NASA portrait of astronaut James Lovell. Captain Lovell was selected as an Astronaut by NASA in September 1962. He has since served as backup pilot for the Gemini 4 flight and backup Commander for the Gemini 9 flight, as well as backup Commander to Neil Armstrong for the Apollo 11 lunar landing mission. On December 4, 1965, he and Frank Borman were launched into space on the history making Gemini 7 mission. The flight lasted 330 hours and 35 minutes and included the first rendezvous of two manned maneuverable spacecraft. The Gemini 12 mission, commanded by Lovell with Pilot Edwin Aldrin, began on November 11, 1966 for a 4-day, 59-revolution flight that brought the Gemini program to a successful close. Lovell served as Command Module Pilot and Navigator on the epic six-day journey of Apollo 8, the first manned Saturn V liftoff responsible for allowing the first humans to leave the gravitational influence of Earth. He completed his fourth mission as Spacecraft Commander of the Apollo 13 flight, April 11-17, 1970, and became the first man to journey twice to the moon. The Apollo 13 mission was cut short due to a failure of the Service Module cryogenic oxygen system. Aborting the lunar course, Lovell and fellow crewmen, John L. Swigert and Fred W. Haise, working closely with Houston ground controllers, converted their lunar module, Aquarius, into an effective lifeboat that got them safely back to Earth. Captain Lovell held the record for time in space with a total of 715 hours and 5 minutes until surpassed by the Skylab flights. On March 1, 1973, Captain Lovell retired from the Navy and the Space Program.

  18. Views of the mission control center during STS-9

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The two backup payload specialists for Drs. Byron K. Lichtenberg and Ulf Merbold huddle in the mission control center during day three activity aboard Spacelab. Seated at the Console is Dr. Michael Lampton. Leaning over Lampton's shoulder is Dutch scientist Wubbo Ockels. The two are surrounded by a few of the flight controllers in the payload operations control center (POCC) portion of JSC's mission control center.

  19. STS-9 payload specialists and backup in training session

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Two Spacelab 1 payload specialists and a backup for that flight prepare for a training session in the JSC mockup and integration laboratory. Fully decked out in the Shuttle constant wear garments (foreground) are Ulf Merbold, left, and Byron K. Licktenberg, prime crewmembers on the STS-9 team. In civilian clothes is payload specialist backup Michael L. Lampton.

  20. Integrated Neural Flight and Propulsion Control System

    NASA Technical Reports Server (NTRS)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  1. CREW TRAINING - STS-33/51L (ZERO-G)

    NASA Image and Video Library

    1985-10-16

    S85-42474 (16 Oct. 1985) --- A KC-135 aircraft provides a brief period of weightlessness as a preview for a teacher, in training to fly onboard a space shuttle for the Teacher-in-Space Project, and her backup. Sharon Christa McAuliffe (center frame), STS-51L prime crew member, and Barbara Morgan, her backup, monitor an experiment involving magnetic effects - one of the tests to be performed on the STS-51L flight. The experiment uses a control box, a square receptacle containing rubber tubing, stainless steel rod, a filter with desiccant, soft iron wire and a magnet. Photo credit: NASA

  2. [Aviation medicine laboratory of the North Fleet air base celebrates the 70th anniversary].

    PubMed

    Gavrilov, V V; Mazaĭkin, D N; Buldakov, I M; Pisarev, A A

    2013-05-01

    The article is dedicated to the history of formation and development of the oldest aviation medicine department and its role in a flight safety of the North Fleet naval aviation. The aviation medicine laboratory was created in the years of the Great Patriotic war for medical backup of flights, medical review board, delivering of combat casualty care, prophylaxis of hypothermia and exhaustion of flight and ground crew. In a post-war period the aviation medicine laboratory made a great contribution to development of medical backup of educational and combat activity of the North Fleet aviation. Participation in cosmonaut applicants selection (incl. Yu.A. Gagarin), optimization of flight services during the transmeridian flights, research of carrier-based aircraft habitability and body state of the contingent during the longstanding ship-based aviation, development of treatment methods for functional status of sea-based aviation crew are the achievements of aviation medicine laboratory. Nowadays medicine laboratory is performing a research and practice, methodic and consultative activity with the aim of improving the system of medical backup, aviation medicine, psychology, flight safety, improvement of air crew health, prolong of flying proficiency.

  3. Recent Flight Results of the TRMM Kalman Filter

    NASA Technical Reports Server (NTRS)

    Andrews, Stephen F.; Bilanow, Stephen; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls the roll and pitch attitude based on the Earth Sensor Assembly (ESA) output. TRMM's nominal orbit altitude was 350 km, until raised to 402 km to prolong mission life. During the boost, the ESA experienced a decreasing signal to noise ratio, until sun interference at 393 km altitude made the ESA data unreliable for attitude determination. At that point, the backup attitude determination algorithm, an extended Kalman filter, was enabled. After the boost finished, TRMM reacquired its nadir-pointing attitude, and continued its mission. This paper will briefly discuss the boost and the decision to turn on the backup attitude determination algorithm. A description of the extended Kalman filter algorithm will be given. In addition, flight results from analyzing attitude data and the results of software changes made onboard TRMM will be discussed. Some lessons learned are presented.

  4. Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.

    1983-01-01

    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.

  5. F-8 DFBW simulating STS contro l system - Pilot-induced oscillation (PIO) on landing

    NASA Technical Reports Server (NTRS)

    1978-01-01

    From 1972 to 1985 the NASA Dryden Flight Research Center conducted flight research with an F-8C employing the first digital fly-by-wire flight control system without a mechanical back up. The decision to replace all mechanical control linkages to rudder, ailerons, and other flight control surfaces was made for two reasons. First, it forced the research engineers to focus on the technology and issues that were truly critical for a production fly-by-wire aircraft. Secondly, it would give industry the confidence it needed to apply the technology--confidence it would not have had if the experimental system relied on a mechanical back up. In the first few decades of flight, pilots had controlled aircraft through direct force--moving control sticks and rudder pedals linked to cables and pushrods that pivoted control surfaces on the wings and tails. As engine power and speeds increased, more force was needed and hydraulically boosted controls emerged. Soon, all high-performance and large aircraft had hydraulic-mechanical flight-control systems. These conventional flight control systems restricted designers in the configuration and design of aircraft because of the need for flight stability. As the electronic era grew in the 1960s, so did the idea of aircraft with electronic flight-control systems. Wires replacing mechanical devices would give designers greater flexibility in configuration and in the size and placement of components such as tail surfaces and wings. A fly-by-wire system also would be smaller, more reliable, and in military aircraft, much less vulnerable to battle damage. A fly-by-wire aircraft would also be much more responsive to pilot control inputs. The result would be more efficient, safer aircraft with improved performance and design. The Aircraft By the late 1960s, engineers at Dryden began discussing how to modify an aircraft and create a fly-by-wire testbed. Support for the concept at NASA Headquarters came from Neil Armstrong, former research pilot at Dryden. He served in the Office of Advanced Research and Technology following his historic Apollo 11 lunar landing and knew electronic control systems from his days training in and operating the lunar module. Armstrong supported the proposed Dryden project and backed the transfer of an F-8C Crusader from the U.S. Navy to NASA to become the Digital Fly-By-Wire (DFBW) research aircraft. It was given the tail number 'NASA 802.' Wires from the control stick in the cockpit to the control surfaces on the wings and tail surfaces replaced the entire mechanical flight-control system in the F-8. The heart of the system was an off-the-shelf backup Apollo digital flight-control computer and inertial sensing unit, which transmitted pilot inputs to the actuators on the control surfaces. On May 25, 1972, the highly modified F-8 became the first aircraft to fly completely dependent upon an electronic flight-control system without any mechanical backup. The pilot was Gary Krier. The first phase of the DFBW program validated the fly-by-wire concept and quickly showed that a refined system, especially in large aircraft, would greatly enhance flying qualities by sensing motion changes and applying pilot inputs instantaneously. The Phase 1 system had a backup analog fly-by-wire system in the event of a failure in the Apollo computer unit, but it was never necessary to use the system in flight. In a joint program carried out with the Langley Research Center in the second phase of research, the original Apollo system was replaced with a triply redundant digital system. It would provide backup computer capabilities if a failure occurred. The DFBW program lasted 13 years. The final research flight, the 210th of the program, was made April 2, 1985, with Dryden Research Pilot Ed Schneider at the controls. Research Benefits The F-8 DFBW validated the principal concepts of the all-electric flight control systems now used in a variety of airplanes ranging from the F/A-18 to the Boeing 777 and the space shuttles. A DFBW flight control system also is used on the space shuttles. NASA 802 was the testbed for the sidestick-controller used in the F-16 fighter, the second U.S. high performance aircraft with a DFBW system. In addition to pioneering the space shuttle's fly-by-wire flight-control system, NASA 802 was the testbed that explored Pilot Induced Oscillations (PIO) and validated methods to suppress them. PIOs occur when a pilot over-controls an aircraft and a sustained oscillation results. On the last of five free flights of the prototype Space Shuttle Enterprise during approach and landing tests in l977, a PIO developed as the vehicle settled onto the runway. The problem was duplicated with the F-8 DFBW and a series of PIO suppression filters was developed and tested on the aircraft for the shuttle program office. DFBW research carried out with NASA 802 at Dryden is now considered one of the most significant and successful aeronautical programs in NASA history. In this clip we see NASA research pilot John Manke at the controls of Dryden's F-8 Digital Fly-By-Wire aircraft as it enters a severe pilot induced oscillation or PIO just after completion of a touch-and-go landing while testing for a signal-delay-related problem that occurred during an approach to landing on the shuttle prototype Enterprise.

  6. Shuttle avionics software development trials: Tribulations and successes, the backup flight system

    NASA Technical Reports Server (NTRS)

    Chevers, E. S.

    1985-01-01

    The development and verification of the Backup Flight System software (BFS) is discussed. The approach taken for the BFS was to develop a very simple and straightforward software program and then test it in every conceivable manner. The result was a program that contained approximately 12,000 full words including ground checkout and the built in test program for the computer. To perform verification, a series of tests was defined using the actual flight type hardware and simulated flight conditions. Then simulated flights were flown and detailed performance analysis was conducted. The intent of most BFS tests was to demonstrate that a stable flightpath could be obtained after engagement from an anomalous initial condition. The extention of the BFS to meet the requirements of the orbital flight test phase is also described.

  7. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    NASA Technical Reports Server (NTRS)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  8. A Glossary of Terms, Definitions, Acronyms, and Abbreviations Related to the National Airspace System (NAS)

    DTIC Science & Technology

    1990-06-01

    System ACAS Airborne Collision Avoidance System ACB Adjacent Center Backup ACC ACCumulator ACC Area Control Center ACCAS Alto Cumulus CAtellanuS ACCC...subsystem) FFC For Further Clearance FFF Form, Fit, and Function FFF Form, Fix, and Function FFLT Familiarize FLighT FFM Far Field Monitor (associated with

  9. 76 FR 22298 - Airworthiness Directives; Cessna Aircraft Company (Cessna) Model 172 Airplanes Modified by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... AD requires installing a full authority digital engine control (FADEC) backup battery, replacing the... battery every 12 calendar months. This AD was prompted by an incident where an airplane experienced an in... battery, replacing the supplement pilot's operating handbook and FAA approved airplane flight manual, and...

  10. STS-47 crew and backups at MSFC's Payload Crew Training Complex

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) crewmembers and backup payload specialists stand outside SLJ module mockup at the Payload Crew Training Complex at Marshall SpaceFlight Center (MSFC) in Huntsville, Alabama. From left to right are Payload Specialist Mamoru Mohri, backup Payload Specialist Takao Doi, backup Payload Specialist Chiaki Naito-Mukai, Mission Specialist (MS) Mae C. Jemison, MS N. Jan Davis, backup Payload Specialist Stan Koszelak, and MS and Payload Commander (PLC) Mark C. Lee. The MSFC-managed mission is a joint venture in space-based research between the United States and Japan. Mohri, Doi, and Mukai represent Japan's National Space Development Agency (NASDA). View provided with alternate number 92P-142.

  11. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    NASA Technical Reports Server (NTRS)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  12. Control Room Training for the Hyper-X Project Utilizing Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Lux-Baumann, Jesica; Dees, Ray; Fratello, David

    2006-01-01

    The NASA Dryden Flight Research Center flew two Hyper-X research vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This report describes the technology in the simulation environment and the Mission Control Center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.

  13. Control Room Training for the Hyper-X Program Utilizing Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Lux-Baumann, Jessica R.; Dees, Ray A.; Fratello, David J.

    2006-01-01

    The NASA Dryden Flight Research Center flew two Hyper-X Research Vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions, personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This paper describes the technology in the simulation environment and the mission control center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.

  14. Close up view of the Commander's Seat on the Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. Toward the right of the view and in front of te seat is the commander's Rotational Hand Controller. The pilot station has an identical controller. These control the acceleration in the roll pitch and yaw directions via the reaction control system and/or the orbiter maneuvering system while outside of Earth's atmosphere or via the orbiter's aerosurfaces wile in Earth's atmosphere when the atmospheric density permits the surfaces to be effective. There are a number of switches on the controller, most notably a trigger switch which is a push-to-talk switch for voice communication and a large button on top of the controller which is a switch to engage the backup flight system. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Piloted simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    NASA Technical Reports Server (NTRS)

    Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane

    1995-01-01

    Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.

  16. Air-to-air radar flight testing

    NASA Astrophysics Data System (ADS)

    Scott, Randall E.

    1988-06-01

    This volume in the AGARD Flight Test Techniques Series describes flight test techniques, flight test instrumentation, ground simulation, data reduction and analysis methods used to determine the performance characteristics of a modern air-to-air (a/a) radar system. Following a general coverage of specification requirements, test plans, support requirements, development and operational testing, and management information systems, the report goes into more detailed flight test techniques covering a/a radar capabilities of: detection, manual acquisition, automatic acquisition, tracking a single target, and detection and tracking of multiple targets. There follows a section on additional flight test considerations such as electromagnetic compatibility, electronic countermeasures, displays and controls, degraded and backup modes, radome effects, environmental considerations, and use of testbeds. Other sections cover ground simulation, flight test instrumentation, and data reduction and analysis. The final sections deal with reporting and a discussion of considerations for the future and how they may affect radar flight testing.

  17. An Overview of the NASA F-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Pahle, Joseph W.; Wilson, R. Joseph; Flick, Bradley C.; Rood, Richard L.

    1996-01-01

    This paper gives an overview of the NASA F-18 High Alpha Research Vehicle. The three flight phases of the program are introduced, along with the specific goals and data examples taken during each phase. The aircraft configuration and systems needed to perform the disciplinary and inter-disciplinary research are discussed. The specific disciplines involved with the flight research are introduced, including aerodynamics, controls, propulsion, systems, and structures. Decisions that were made early in the planning of the aircraft project and the results of those decisions are briefly discussed. Each of the three flight phases corresponds to a particular aircraft configuration, and the research dictated the configuration to be flown. The first phase gathered data with the baseline F-18 configuration. The second phase was the thrust-vectoring phase. The third phase used a modified forebody with deployable nose strakes. Aircraft systems supporting these flights included extensive instrumentation systems, integrated research flight controls using flight control hardware and corresponding software, analog interface boxes to control forebody strakes, a thrust-vectoring system using external post-exit vanes around axisymmetric nozzles, a forebody vortex control system with strakes, and backup systems using battery-powered emergency systems and a spin recovery parachute.

  18. Experiment M-6: Bone Demineralization

    NASA Technical Reports Server (NTRS)

    Mack, Pauline B.; Vose, George; Vogt, Fred B.; LaChance, Paul A.

    1966-01-01

    Densitometric evaluations of serial radiographs of "normal" subjects have often shown rather frequent changes in bone mass within relatively short periods of time. For this reason it was decided to make two pre-flight and two post flight radiographs of the Gemini V backup crew. In comparing the changes observed preflight and post flight as the conventional os calcis scanning site between the two crews, it was found that no changes greater than 4 percent were evident in either member of the backup crew. In comparing the changes observed preflight and postflight as the conventional o calcis scanning site between the two crews, it was found that no changes greater than 4 percent were evident in either member of the backup crew. This is in contract to the 15.1 and 8.9 percent losses observed in the prime crew. It has long been known that the skeletal system experiences a general loss of mineral under immobilization or extended bed rest. However, in both Gemini IV and Gemini V studies, bone mass losses were greater in both the os calcis and phalanx than were shown by the TWU bed-rest subjects during the same period of time. Although the bone mass losses in the 8-day Gemini V flight were generally greater than in the 4-day Gemini IV flight, the information to date is still insufficient to conclude that the losses tend to progress linearly with time, or whether a form of physiological adaptation may occur in longer space flights.

  19. STS-45 crewmembers during zero gravity activities onboard KC-135 NASA 930

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, crewmembers and backup payload specialist participate in zero gravity activities onboard KC-135 NASA 930. The crewmembers, wearing flight suits, float and tumble around an inflated globe during the few seconds of microgravity created by parabolic flight. With his hand on the fuselage ceiling is Payload Specialist Dirk D. Frimout. Clockwise from his position are Mission Specialist (MS) C. Michael Foale, Pilot Brian Duffy, backup Payload Specialist Charles R. Chappell, MS and Payload Commander (PLC) Kathryn D. Sullivan (with eye glasses), Commander Charles F. Bolden, and Payload Specialist Byron K. Lichtenberg.

  20. STS-55 German payload specialists (and backups) in LESs during JSC training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, German payload specialists and backup (alternate) payload specialists, wearing launch and entry suits (LESs), pose for group portrait outside mockup side hatch in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE. These payload specialists will support the STS-55 Spacelab Deutsche 2 (SL-D2) mission. It is the second dedicated German (Deutsche) Spacelab flight. Left to right are backup Payload Specialists Renate Brummer and Dr. P. Gerhard Thiele, Payload Specialist 1 Ulrich Walter, and Payload Specialist 2 Hans Schlegel.

  1. A flight investigation of simulated data link communications during single-pilot IFR flight

    NASA Technical Reports Server (NTRS)

    Parker, J. F.; Duffy, J. W.; Christensen, D. G.

    1983-01-01

    A Flight Data Console (FDC) was developed to allow simulation of a digital communications link to replace the current voice communication system used in air traffic control (ATC). The voice system requires manipulation of radio equipment, read-back of clearances, and mental storage of critical information items, all contributing to high workload, particularly during single-pilot operations. This was an inflight study to determine how a digital communications system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. Results show that instrument flight, including approach and landing, can be accomplished quite effectively using a digital data link system for ATC communications. All pilots expressed a need for a back-up voice channel. When included, this channel was used sparingly and principally to confirm any item of information about which there might be uncertainty.

  2. Human-Rated Space Vehicle Backup Flight Systems

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey A.; Busa, Joseph L.

    2004-01-01

    Human rated space vehicles have historically employed a Backup Flight System (BFS) for the main purpose of mitigating the loss of the primary avionics control system. Throughout these projects, however, the underlying philosophy and technical implementation vary greatly. This paper attempts to coalesce each of the past space vehicle program's BFS design and implementation methodologies with the accompanying underlining philosophical arguments that drove each program to such decisions. The focus will be aimed at Mercury, Gemini, Apollo, and Space Shuttle However, the ideologies and implementation of several commercial and military aircraft are incorporated as well to complete the full breadth view of BFS development across the varying industries. In particular to the non-space based vehicles is the notion of deciding not to utilize a BFS. A diverse analysis of BFS to primary system benefits in terms of reliability against all aspects of project development are reviewed and traded. The risk of engaging the BFS during critical stages of flight (e.g. ascent and entry), the level of capability of the BFS (subset capability of main system vs. equivalent system), and the notion of dissimilar hardware and software design are all discussed. Finally, considerations for employing a BFS on future human-rated space missions are reviewed in light of modern avionics architectures and mission scenarios implicit in exploration beyond low Earth orbit.

  3. STS 51-L crewmembers at Ellington AFB for training flight in T-38

    NASA Image and Video Library

    1986-01-08

    S86-25199 (September 1985) --- Three members of the STS-51L prime crew and a backup crew member walk away from the flight line at nearby Ellington Field following flights in the T-38 jet trainers seen in the background. Sharon Christa McAuliffe (center right), payload specialist/citizen observer for the Teacher-in-Space Project, and Barbara R. Morgan (center left), her backup, are flanked by astronauts Francis R. (Dick) Scobee (right), mission commander, and Michael J. Smith, pilot. The photo was taken by Keith Meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  4. jsc2012e096280

    NASA Image and Video Library

    2012-06-22

    With her prime crewmates and backup crewmembers looking on, Expedition 32/33 Flight Engineer Sunita Williams of NASA (first row, center) signed a visitors book at the Gagarin Cosmonaut Training Center museum in Star City, Russia June 22, 2012 as part of traditional activities leading to her launch July 15 to the International Space Station from the Baikonur Cosmodrome in Kazakhstan on the Soyuz TMA-05M spacecraft. Williams will launch along with Aki Hoshide of the Japan Aerospace Exploration Agency (first row, left) and Soyuz Commander Yuri Malenchenko (first row, right). Also participating in the activities were the backup crew on the top row, Flight Engineer Tom Marshburn of NASA (top row, left), Flight Engineer Chris Hadfield of the Canadian Space Agency (top row, center) and Roman Romanenko (top row, right). Credit: NASA/Stephanie Stoll

  5. Backup Attitude Control Algorithms for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Ericsson-Jackson, Aprille J.; Flatley, Thomas W.; Ward, David K.; Bay, P. Michael

    1999-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission, studying the early origins of the universe, in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point. Due to limited mass, power, and financial resources, a traditional reliability concept involving fully redundant components was not feasible. This paper will discuss the redundancy philosophy used on MAP, describe the hardware redundancy selected (and why), and present backup modes and algorithms that were designed in lieu of additional attitude control hardware redundancy to improve the odds of mission success. Three of these modes have been implemented in the spacecraft flight software. The first onboard mode allows the MAP Kalman filter to be used with digital sun sensor (DSS) derived rates, in case of the failure of one of MAP's two two-axis inertial reference units. Similarly, the second onboard mode allows a star tracker only mode, using attitude and derived rate from one or both of MAP's star trackers for onboard attitude determination and control. The last backup mode onboard allows a sun-line angle offset to be commanded that will allow solar radiation pressure to be used for momentum management and orbit stationkeeping. In addition to the backup modes implemented on the spacecraft, two backup algorithms have been developed in the event of less likely contingencies. One of these is an algorithm for implementing an alternative scan pattern to MAP's nominal dual-spin science mode using only one or two reaction wheels and thrusters. Finally, an algorithm has been developed that uses thruster one shots while in science mode for momentum management. This algorithm has been developed in case system momentum builds up faster than anticipated, to allow adequate momentum management while minimizing interruptions to science. In this paper, each mode and algorithm will be discussed, and simulation results presented.

  6. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  7. jsc2012e099593

    NASA Image and Video Library

    2012-07-07

    At the History Museum at the Baikonur Cosmodrome in Kazakhstan, the backup Expedition 32/33 crewmembers share a moment to reflect at the “Gagarin Gazebo” July 7, 2012 where Russian space officials approved Yuri Gagarin to become the first human to fly in space 51 years ago. NASA Flight Engineer Tom Marshburn (left), Russian Soyuz Commander Roman Romanenko (center) and Flight Engineer Chris Hadfield of the Canadian Space Agency are the backups for NASA’s Sunita Williams, Yuri Malenchenko and Aki Hoshide of the Japan Aerospace Exploration Agency, who will launch to the International Space Station July 15 from the Cosmodrome in their Soyuz TMA-05M spacecraft. NASA/Victor Zelentsov

  8. Expedition 19 Crew Training

    NASA Image and Video Library

    2009-03-20

    Spaceflight Participant Charles Simonyi, left, Expedition 19 Commander Gennady I. Padalka, center, and Flight Engineer Michael R. Barratt along with the backup crew and flight doctors walk the grounds of the Cosmonaut Hotel, Saturday, March 21, 2009 in Baikonur, Kazakhstan. (Photo Credit: NASA/Bill Ingalls)

  9. Recovery from unusual attitudes: HUD vs. back-up display in a static F/A-18 simulator.

    PubMed

    Huber, Samuel W

    2006-04-01

    Spatial disorientation (SD) remains one of the most important causes of fatal fighter aircraft accidents. The aim of this study was to give a recommendation for the use of the head-up display (HUD) or back-up attitude directional indicator (ADI) in a state of spatial disorientation based on the respective performance in an unusual attitude recovery task. Seven fighter pilots joining a conversion course to the F/A-18 participated in this study. Flight time will be presented as range (and mean in parentheses). Total military flight experience of the subjects was 835-1759 h (1412 h). Flight time on the F/A-18 was 41-123 h (70 h). The study was performed in a fixed base F/A-18D Weapons Tactics Trainer. We tested the recovery from 11 unusual attitudes and analyzed decision time (DT), total recovery time (TRT), and error rates for the HUD or the back-up ADI. We found no differences regarding either reaction times or error rates. For the HUD we found a DT (mean +/- SD) of 1.3 +/- 0.4 s, a TRT of 9.1 +/- 4.1 s, and an error rate of 29%. For the ADI the respective values were a DT of 1.4 +/- 0.4 s, a TRT of 8.3 +/- 3.8 s, and an error rate of 27%. Unusual attitude recoveries are performed equally well using the HUD or the back-up ADI. Switching from one instrument to the other during recovery should be avoided since it would probably result in a loss of time without benefit.

  10. STS-52 PS MacLean, backup PS Tryggvason, and PI pose on JSC's CCT flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Canadian Payload Specialist (PS) Steven G. MacLean (left) and backup Payload Specialist Bjarni V. Tryggvason (right) take a break from a camera training session in JSC's Crew Compartment Trainer (CCT). The two Canadian Space Agency (CSA) representatives pose on the CCT's aft flight deck with Canadian scientist David Zimick, the principal investigator (PI) for the materials experiment in low earth orbit (MELEO). MELEO is a component of the CANEX-2 experiment package, manifest to fly on the scheduled October 1992 STS-52 mission. The CCT is part of the shuttle Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  11. jsc2012e098231

    NASA Image and Video Library

    2012-07-02

    (2 July, 2012) --- At the Gagarin Cosmonaut Training Center at Star City, Russia on July 2, 2012, the Expedition 32/33 backup and prime crew members pose in front of Vladimir Lenin’s statue as part of their farewell sendoff to the Baikonur Cosmodrome in Kazakhstan. From left to right are backup crew members Tom Marshburn of NASA, Canadian Space Agency astronaut Chris Hadfield, cosmonaut Roman Romanenko, and prime crew members Japan Aerospace Exploration Agency Flight Engineer Aki Hoshide, NASA Flight Engineer Sunita Williams, and Soyuz Commander Yuri Malenchenko. Hoshide, Williams and Malenchenko are scheduled to launch to the space station on July 15 in their Soyuz TMA-05M spacecraft from Baikonur. NASA/Stephanie Stoll.

  12. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, seated left, Expedition 18 Flight Engineer Yuri V. Lonchakov, Expedition 18 Commander Michael Fincke, seated right, back up spaceflight participant Nik Halik, standing left, backup Commander Gennady Padalka and backup Flight Engineer Mike Barratt pose for a photograph for the camera prior to the launch of the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  13. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Flight Engineer Tracy Caldwell Dyson, front left, Expedition 23 Soyuz Commander Alexander Skvortsov, front center, and Expedition 23 Flight Engineer Mikhail Kornienko pose with backup crewmembers NASA Flight Engineer Scott Kelly of the U.S., back left, Flight Engineer Alexander Samokutyayev of Russia, back center, and Flight Engineer Andrei Borisenko of Russia, prior to the crews’ launch onboard a Soyuz rocket to the International Space Station on Friday, April 2, 2010, in Baikonur, Kazakhstan. Photo Credit: (NASA/Carla Cioffi)

  14. Birth control pills - progestin only

    MedlinePlus

    ... pregnant right away. When to Use a Backup Method Use a backup method of birth control, such as a condom, diaphragm, ... body may not absorb it. Use a backup method of birth control, and call your provider. You ...

  15. Birth control pills - combination

    MedlinePlus

    ... or mood swings. When to Use a Backup Method Use a backup method of birth control, such as condom, diaphragm, or ... body may not absorb it. Use a backup method of birth control for the rest of that ...

  16. jsc2012e241353

    NASA Image and Video Library

    2012-12-06

    At the Gagarin Cosmonaut Training Center in Star City, Russia, the Expedition 34/35 prime and backup crewmembers pose for pictures in front of the statue of Vladimir Lenin Dec. 6, 2012 before departing for their launch site at the Baikonur Cosmodrome in Kazakhstan for final training. From left to right are backup crewmembers Karen Nyberg of NASA, Luca Parmitano of the European Space Agency and Russian cosmonaut Fyodor Yurchikhin and prime crewmembers Soyuz Commander Roman Romanenko, Flight Engineer Chris Hadfield of the Canadian Space Agency and Flight Engineer Tom Marshburn of NASA. Romanenko, Hadfield and Marshburn will launch Dec. 19 on their Soyuz TMA-07M spacecraft from Baikonur for a five-month mission on the International Space Station. Photo Credit: NASA/Stephanie Stoll

  17. Apollo display and keyboard unit (DSKY) used on F-8 DFBW

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The display and keyboard (DSKY) unit used on the F-8 Digital Fly-By-Wire (DFBW) aircraft during Phase I of the fly-by-wire program. Warning lights are in the upper left section, displays in the upper right, and the keyboard is in the lower section. The Apollo flight-control system used in Phase I of the DFBW program had been used previously on the Lunar Module and was incredibly reliable. The DSKY was one element of the system. Also part of the fly-by-wire control system was the inertial platform. Both the computer and the inertial platform required a cooling system that used liquid nitrogen to keep the system within temperature limits. Should the primary flight control system fail, a backup system using three analog computers would automatically take over. The F-8 DFBW had no manual backup. The F-8 Digital Fly-By-Wire (DFBW) flight research project validated the principal concepts of all-electric flight control systems now used on nearly all modern high-performance aircraft and on military and civilian transports. The first flight of the 13-year project was on May 25, 1972, with research pilot Gary E. Krier at the controls of a modified F-8C Crusader that served as the testbed for the fly-by-wire technologies. The project was a joint effort between the NASA Flight Research Center, Edwards, California, (now the Dryden Flight Research Center) and Langley Research Center. It included a total of 211 flights. The last flight was December 16, 1985, with Dryden research pilot Ed Schneider at the controls. The F-8 DFBW system was the forerunner of current fly-by-wire systems used in the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient. Electronic fly-by-wire systems replaced older hydraulic control systems, freeing designers to design aircraft with reduced in-flight stability. Fly-by-wire systems are safer because of their redundancies. They are more maneuverable because computers can command more frequent adjustments than a human pilot can. For airliners, computerized control ensures a smoother ride than a human pilot alone can provide. Digital-fly-by-wire is more efficient because it is lighter and takes up less space than the hydraulic systems it replaced. This either reduces the fuel required to fly or increases the number of passengers or pounds of cargo the aircraft can carry. Digital fly-by-wire is currently used in a variety of aircraft ranging from F/A-18 fighters to the Boeing 777. The DFBW research program is considered one of the most significant and most successful NASA aeronautical programs since the inception of the agency. F-8 aircraft were built originally for the U.S. Navy by LTV Aerospace of Dallas, Texas. The aircraft had a wingspan of 35 feet, 2 inches; was 54 feet, 6 inches long; and was powered by a Pratt & Whitney J57 turbojet engine.

  18. Restoring Redundancy to the Wilkinson Microwave Anisotrophy Probe Propulsion System

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Davis, Gary T.; Ward, David K.

    2004-01-01

    The Wilkinson Microwave Anisotropy Probe is a follow-on to the Differential Microwave Radiometer instrument on the Cosmic Background Explorer. Attitude control system engineers discovered sixteen months before launch that configuration changes after the critical design review had resulted in a significant migration of the spacecraft's center of mass. As a result, the spacecraft no longer had a viable backup control mode in the event of a failure of the negative pitch-axis thruster. A tiger team was formed and identified potential solutions to this problem, such as adding thruster-plume shields to redirect thruster torque, adding or removing mass from the spacecraft, adding an additional thruster, moving thrusters, bending thruster nozzles or propellant tubing, or accepting the loss of redundancy. The project considered the impacts on mass, cost, fuel budget, and schedule for each solution, and decided to bend the propellant tubing of the two roll-control thrusters to allow the pair to be used for backup control in the negative pitch axis. This paper discusses the problem and the potential solutions, and documents the hardware and software changes and verification performed. Flight data are presented to show the on-orbit performance of the propulsion system and lessons learned are described.

  19. Expedition 19 Crew Training

    NASA Image and Video Library

    2009-03-20

    Expedition 19 Flight Engineer Michael R. Barratt and backup spaceflight participant Esther Dyson exercise at the Cosmonaut Hotel, Saturday, March 21, 2009 in Baikonur, Kazakhstan. (Photo Credit: NASA/Bill Ingalls)

  20. STS-114: Mission Status/Post MMT Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Paul Hill, STS-114 Lead Shuttle Flight Director, and Wayne Hill, Deputy Manager for the Space Shuttle Program and Chair of the Mission Management Team, discusses with the News media the complete operational success of the STS-114 Flight. Paul Hill mentioned the undocking and flight around did occur right on time that day, and checking out Discovery's entry system in preparation for de-orbit on Monday morning. He summarized the long list of flight operations and activities demonstrated like various forms of inspections on RCC and tile, gap fillers and blanket, imagery and photography, three space walks and re-supply. Wayne Hill talked about flight control check out, pre-entry plans, opportunity landing in Cape Carneval, Florida and back-up landing operations in Edwards Air Force Base, California. He emphasized the concern for crew and public safety during landing. News media focused their questions on public expectations and feelings about the return of the Shuttle to Earth, analysis of mechanical and technical failures, safety of dark or daylight landings.

  1. Testing the Gossamer Albatross II

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here during a test flight at NASA's Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. It was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  2. Apollo experience report: Mission planning for Apollo entry

    NASA Technical Reports Server (NTRS)

    Graves, C. A.; Harpold, J. C.

    1972-01-01

    The problems encountered and the experience gained in the entry mission plans, flight software, trajectory-monitoring procedures, and backup trajectory-control techniques of the Apollo Program should provide a foundation upon which future spacecraft programs can be developed. Descriptions of these entry activities are presented. Also, to provide additional background information needed for discussion of the Apollo entry experience, descriptions of the entry targeting for the Apollo 11 mission and the postflight analysis of the Apollo 10 mission are presented.

  3. Reliability and Maintainability Analysis of Fluidic Back-Up Flight Control System and Components.

    DTIC Science & Technology

    1981-09-01

    industry. 2 r ~~m~ NADC 80227- 60 Maintainability Review of FMEA worksheets indicates that the standard hydraulic components of the servoactuator will...achieved. Procedures for conducting the FMEA and evaluating the 6 & | I NADC 80227- 60 severity of each failure mode are included as Appendix A...KEYSER N62269-81-M-3047 UNCLASSIFIED NADC-80227- 60 NL 66 11111.5 .4 11 6 MICROCOPY RESOLUTION TEST CHART N~ATIONAL BUR[AU Of STANDARDS 1%3A, REPORT

  4. Orion Capsule Handling Qualities for Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Tigges, Michael A.; Bihari, Brian D.; Stephens, John-Paul; Vos, Gordon A.; Bilimoria, Karl D.; Mueller, Eric R.; Law, Howard G.; Johnson, Wyatt; Bailey, Randall E.; Jackson, Bruce

    2011-01-01

    Two piloted simulations were conducted at NASA's Johnson Space Center using the Cooper-Harper scale to study the handling qualities of the Orion Command Module capsule during atmospheric entry flight. The simulations were conducted using high fidelity 6-DOF simulators for Lunar Return Skip Entry and International Space Station Return Direct Entry flight using bank angle steering commands generated by either the Primary (PredGuid) or Backup (PLM) guidance algorithms. For both evaluations, manual control of bank angle began after descending through Entry Interface into the atmosphere until drogue chutes deployment. Pilots were able to use defined bank management and reversal criteria to accurately track the bank angle commands, and stay within flight performance metrics of landing accuracy, g-loads, and propellant consumption, suggesting that the pilotability of Orion under manual control is both achievable and provides adequate trajectory performance with acceptable levels of pilot effort. Another significant result of these analyses is the applicability of flying a complex entry task under high speed entry flight conditions relevant to the next generation Multi Purpose Crew Vehicle return from Mars and Near Earth Objects.

  5. Personnel in Mission Control examine replica of spider habitat from Skylab 3

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Flight Director Neil B. Hutchinson, left, and Astronaut Bruce McCandless II hold up a glass enclosure - home for the spider Arachne, which is the same species as the two spiders carried on the Skylab 3 mission. The real spider is the one barely visible at the upper right corner of the square; the larger one is a projected image on the rear-screen-projected map in the front of the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC). McCandless served as backup pilot for the first manned Skylab mission and was a spacecraft-communicater (CAPCOM) for the second crew.

  6. jsc2012e242601

    NASA Image and Video Library

    2012-12-14

    At the Korolev Museum at the Baikonur Cosmodrome in Kazakhstan, the Expedition 34/35 prime and backup crewmembers reflect the spirit of the holiday season as they pose for pictures in front of a wall mural depicting the cosmos and a model of Sputnik 1, the first satellite launched into orbit in October 1957 during ceremonial activities Dec. 14, 2012. From left to right are backup crewmembers Karen Nyberg of NASA, Luca Parmitano of the European Space Agency and Fyodor Yurchikhin and prime crewmembers Soyuz Commander Roman Romanenko, Flight Engineer Chris Hadfield of the Canadian Space Agency and Flight Engineer Tom Marshburn of NASA. Romanenko, Hadfield and Marshburn will launch Dec. 19 on the Soyuz TMA-07M spacecraft for a five-month mission on the International Space Station. NASA/Victor Zelentsov

  7. Propulsion controls

    NASA Technical Reports Server (NTRS)

    Harkney, R. D.

    1980-01-01

    Increased system requirements and functional integration with the aircraft have placed an increased demand on control system capability and reliability. To provide these at an affordable cost and weight and because of the rapid advances in electronic technology, hydromechanical systems are being phased out in favor of digital electronic systems. The transition is expected to be orderly from electronic trimming of hydromechanical controls to full authority digital electronic control. Future propulsion system controls will be highly reliable full authority digital electronic with selected component and circuit redundancy to provide the required safety and reliability. Redundancy may include a complete backup control of a different technology for single engine applications. The propulsion control will be required to communicate rapidly with the various flight and fire control avionics as part of an integrated control concept.

  8. Assembling the Gossamer Albatross II in hangar

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here being assembled in a hangar at the Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. The aircraft was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  9. Expedition 19 Launch Day

    NASA Image and Video Library

    2009-03-25

    Expedition 19 Flight Engineer Michael R. Barratt, left, laughs with backup commander Jeffrey Williams in the suit up room of building 254, Thursday, March 26, 2009 in Baikonur, Kazakhstan. (Photo Credit: NASA/Bill Ingalls)

  10. Independent Orbiter Assessment (IOA): Assessment of the backup flight system FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Prust, E. E.; Ewell, J. J., Jr.; Hinsdale, L. W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Backup Flight System (BFS) hardware, generating draft failure modes and Potential Critical Items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed NASA Post 51-L FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter BFS hardware. The IOA product for the BFS analysis consisted of 29 failure mode worksheets that resulted in 21 Potential Critical Items (PCI) being identified. This product was originally compared with the proposed NASA BFS baseline and subsequently compared with the applicable Data Processing System (DPS), Electrical Power Distribution and Control (EPD and C), and Displays and Controls NASA CIL items. The comparisons determined if there were any results which had been found by the IOA but were not in the NASA baseline. The original assessment determined there were numerous failure modes and potential critical items in the IOA analysis that were not contained in the NASA BFS baseline. Conversely, the NASA baseline contained three FMEAs (IMU, ADTA, and Air Data Probe) for CIL items that were not identified in the IOA product.

  11. Performance and safety aspects of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Wernicke, K. G.

    1977-01-01

    Aircraft performance is presented illustrating the flexibility and capability of the XV-15 to conduct its planned proof-of-concept flight research in the areas of dynamics, stability and control, and aerodynamics. Additionally, the aircraft will demonstrate mission-type performance typical of future operational aircraft. The aircraft design is described and discussed with emphasis on the safety and fail-operate features of the aircraft and its systems. Two or more levels of redundancy are provided in the dc and ac electrical systems, hydraulics, conversion, flaps, landing gear extension, SCAS, and force-feel. RPM is maintained by a hydro-electrical blade pitch governor that consists of a primary and standby governor with a cockpit wheel control for manual backup. The two engines are interconnected for operation on a single engine. In the event of total loss of power, the aircraft can enter autorotation starting from the airplane as well as the helicopter mode of flight.

  12. The development of the DAST I remotely piloted research vehicle for flight testing an active flutter suppression control system. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Grose, D. L.

    1979-01-01

    The development of the DAST I (drones for aerodynamic and structural testing) remotely piloted research vehicle is described. The DAST I is a highly modified BQM-34E/F Firebee II Supersonic Aerial Target incorporating a swept supercritical wing designed to flutter within the vehicle's flight envelope. The predicted flutter and rigid body characteristics are presented. A description of the analysis and design of an active flutter suppression control system (FSS) designed to increase the flutter boundary of the DAST wing (ARW-1) by a factor of 20% is given. The design and development of the digital remotely augmented primary flight control system and on-board analog backup control system is presented. An evaluation of the near real-time flight flutter testing methods is made by comparing results of five flutter testing techniques on simulated DAST I flutter data. The development of the DAST ARW-1 state variable model used to generate time histories of simulated accelerometer responses is presented. This model uses control surface commands and a Dryden model gust as inputs. The feasibility of the concept of extracting open loop flutter characteristics from closed loop FSS responses was examined. It was shown that open loop characteristics can be determined very well from closed loop subcritical responses.

  13. Expedition 19 Launch Day

    NASA Image and Video Library

    2009-03-25

    Expedition 19 Flight Engineer Michael R. Barratt, left, waves hello to family and colleagues with backup commander Jeffrey Williams in the suit up room of building 254, Thursday, March 26, 2009 in Baikonur, Kazakhstan. (Photo Credit: NASA/Bill Ingalls)

  14. SKYLAB III - POSTLAUNCH (JOKE)

    NASA Image and Video Library

    1973-09-25

    S73-34456 (September 1973) --- Flight Director Neil B. Hutchinson, left, and astronaut Bruce McCandless II hold up a glass enclosure - home for the spider Arachne, which is the same species as the two spiders carried on the Skylab 3 mission. The real spider is the one barely visible at the upper right corner of the square; the larger one is a projected image on the rear-screen-projected map in the front of the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC). McCandless served as backup pilot for the first manned Skylab mission and was a spacecraft communicater (CAPCOM) for the second crew. Photo credit: NASA

  15. A SWOT Analysis of the Various Backup Scenarios Used in Electronic Medical Record Systems.

    PubMed

    Seo, Hwa Jeong; Kim, Hye Hyeon; Kim, Ju Han

    2011-09-01

    Electronic medical records (EMRs) are increasingly being used by health care services. Currently, if an EMR shutdown occurs, even for a moment, patient safety and care can be seriously impacted. Our goal was to determine the methodology needed to develop an effective and reliable EMR backup system. Our "independent backup system by medical organizations" paradigm implies that individual medical organizations develop their own EMR backup systems within their organizations. A "personal independent backup system" is defined as an individual privately managing his/her own medical records, whereas in a "central backup system by the government" the government controls all the data. A "central backup system by private enterprises" implies that individual companies retain control over their own data. A "cooperative backup system among medical organizations" refers to a networked system established through mutual agreement. The "backup system based on mutual trust between an individual and an organization" means that the medical information backup system at the organizational level is established through mutual trust. Through the use of SWOT analysis it can be shown that cooperative backup among medical organizations is possible to be established through a network composed of various medical agencies and that it can be managed systematically. An owner of medical information only grants data access to the specific person who gave the authorization for backup based on the mutual trust between an individual and an organization. By employing SWOT analysis, we concluded that a linkage among medical organizations or between an individual and an organization can provide an efficient backup system.

  16. A SWOT Analysis of the Various Backup Scenarios Used in Electronic Medical Record Systems

    PubMed Central

    Seo, Hwa Jeong; Kim, Hye Hyeon

    2011-01-01

    Objectives Electronic medical records (EMRs) are increasingly being used by health care services. Currently, if an EMR shutdown occurs, even for a moment, patient safety and care can be seriously impacted. Our goal was to determine the methodology needed to develop an effective and reliable EMR backup system. Methods Our "independent backup system by medical organizations" paradigm implies that individual medical organizations develop their own EMR backup systems within their organizations. A "personal independent backup system" is defined as an individual privately managing his/her own medical records, whereas in a "central backup system by the government" the government controls all the data. A "central backup system by private enterprises" implies that individual companies retain control over their own data. A "cooperative backup system among medical organizations" refers to a networked system established through mutual agreement. The "backup system based on mutual trust between an individual and an organization" means that the medical information backup system at the organizational level is established through mutual trust. Results Through the use of SWOT analysis it can be shown that cooperative backup among medical organizations is possible to be established through a network composed of various medical agencies and that it can be managed systematically. An owner of medical information only grants data access to the specific person who gave the authorization for backup based on the mutual trust between an individual and an organization. Conclusions By employing SWOT analysis, we concluded that a linkage among medical organizations or between an individual and an organization can provide an efficient backup system. PMID:22084811

  17. Improvement on Main/backup Controller Switching Device of the Nozzle Throat Area Control System for a Turbofan Aero Engine

    NASA Astrophysics Data System (ADS)

    Li, Jie; Duan, Minghu; Yan, Maode; Li, Gang; Li, Xiaohui

    2014-06-01

    A full authority digital electronic controller (FADEC) equipped with a full authority hydro-mechanical backup controller (FAHMBC) is adopted as the nozzle throat area control system (NTACS) of a turbofan aero engine. In order to ensure the switching reliability of the main/backup controller, the nozzle throat area control switching valve was improved from three-way convex desktop slide valve to six-way convex desktop slide valve. Simulation results show that, if malfunctions of FAEDC occur and abnormal signals are outputted from FADEC, NTACS will be seriously influenced by the main/backup controller switching in several working states, while NTACS will not be influenced by using the improved nozzle throat area control switching valve, thus the controller switching process will become safer and smoother and the working reliability of this turbofan aero engine is improved by the controller switching device improvement.

  18. Electronic/electric technology benefits study. [avionics

    NASA Technical Reports Server (NTRS)

    Howison, W. W.; Cronin, M. J.

    1982-01-01

    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria.

  19. Expedition 19 Press Conference

    NASA Image and Video Library

    2009-03-24

    Expedition 19 Flight Engineer Michael R. Barratt, left, and backup commander Jeffrey Williams are seen in quarantine behind glass during a press conference on Wednesday, March 25, 2009 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  20. NASA Remembers Astronaut Bruce McCandless II

    NASA Image and Video Library

    2017-12-22

    Former NASA Astronaut Bruce McCandless II, best known for his iconic free-floating spacewalk on a 1984 shuttle flight, died on Dec. 21 at the age of 80. A native of Boston, McCandless II attended the U.S. Naval Academy and served as a naval aviator before joining NASA in 1966. He served in support or backup roles during the Apollo and Skylab programs, including serving as the communicator from mission control to the Apollo 11 crew during their historic 1969 moonwalk. On Feb. 7, 1984, during the Space Shuttle Challenger’s STS-41B mission, he made the first, untethered, free flight spacewalk in the Manned Maneuvering Unit. In 1990, McCandless II was part of the crew on Space Shuttle Discovery’s STS-31 mission, which deployed the Hubble Space Telescope.

  1. Re-Educating Jet-Engine-Researchers to Stay Relevant

    NASA Astrophysics Data System (ADS)

    Gal-Or, Benjamin

    2016-06-01

    To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.

  2. Restoring Redundancy to the MAP Propulsion System

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Davis, Gary T.; Ward, David K.; Bauer, F. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe is a follow-on to the Differential Microwave Radiometer instrument on the Cosmic Background Explorer. Sixteen months before launch, it was discovered that from the time of the critical design review, configuration changes had resulted in a significant migration of the spacecraft's center of mass. As a result, the spacecraft no longer had a viable backup control mode in the event of a failure of the negative pitch axis thruster. Potential solutions to this problem were identified, such as adding thruster plume shields to redirect thruster torque, adding mass to, or removing it from, the spacecraft, adding an additional thruster, moving thrusters, bending thrusters (either nozzles or propellant tubing), or accepting the loss of redundancy for the thruster. The impacts of each solution, including effects on the mass, cost, and fuel budgets, as well as schedule, were considered, and it was decided to bend the thruster propellant tubing of the two roll control thrusters, allowing that pair to be used for back-up control in the negative pitch axis. This paper discusses the problem and the potential solutions, and documents the hardware and software changes that needed to be made to implement the chosen solution. Flight data is presented to show the propulsion system on-orbit performance.

  3. Expedition 55 Press Conference

    NASA Image and Video Library

    2018-03-20

    Expedition 55 backup crew member Nick Hague of NASA is seen in quarantine, behind glass, during a press conference, Tuesday, March 20, 2018 a the Cosmonaut Hotel in Baikonur, Kazakhstan. Expedition 55 Soyuz Commander Oleg Artemyev of Roscosmos, flight engineer Ricky Arnold and flight engineer Drew Feustel of NASA are scheduled to launch to the International Space Station aboard the Soyuz MS-08 spacecraft on Wednesday, March, 21. Photo Credit: (NASA/Joel Kowsky)

  4. Expedition 39 Press Conference

    NASA Image and Video Library

    2014-03-24

    Expedition 39 backup crew member Barry Wilmore of NASA is seen in quarantine, behind glass, during the final press conference held ahead of the launch of Expedition 39 prime crew members; Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Flight Engineer Steve Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos, to the International Space Station, Monday, March 24, 2014 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

  5. The Unparalleled Systems Engineering of MSL's Backup Entry, Descent, and Landing System: Second Chance

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Chris; Grinblat, Jonathan; Reeves, Glenn

    2013-01-01

    Second Chance (SECC) was a bare bones version of Mars Science Laboratory's (MSL) Entry Descent & Landing (EDL) flight software that ran on Curiosity's backup computer, which could have taken over swiftly in the event of a reset of Curiosity's prime computer, in order to land her safely on Mars. Without SECC, a reset of Curiosity's prime computer would have lead to catastrophic mission failure. Even though a reset of the prime computer never occurred, SECC had the important responsibility as EDL's guardian angel, and this responsibility would not have seen such success without unparalleled systems engineering. This paper will focus on the systems engineering behind SECC: Covering a brief overview of SECC's design, the intense schedule to use SECC as a backup system, the verification and validation of the system's "Do No Harm" mandate, the system's overall functional performance, and finally, its use on the fateful day of August 5th, 2012.

  6. View of Mission Control Center during the Apollo 13 oxygen cell failure

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Several persons important to the Apollo 13 mission, at consoles in the Mission Operations Control Room of the Mission Control Center (MCC). Seated at consoles, from left to right, are Astronaut Donald K. Slayton, Director of Flight Crew Operations; Astronaut Jack R. Lousma, Shift 3 spacecraft communicator; and Astronaut John W. Young, commander of the Apollo 13 back-up crew. Standing, left to right, are Astronaut Tom K. Mattingly, who was replaced as Apollo 13 command module pilot after it was learned he may come down with measles, and Astronaut Vance D. Brand, Shift 2 spacecraft communicator. Several hours earlier crew members of the Apollo 13 mission reported to MCC that trouble had developed with an oxygen cell in their spacecraft.

  7. View of activity in Mission Control Center during Apollo 15 EVA

    NASA Image and Video Library

    1971-07-30

    S71-41836 (2 Aug. 1971) --- Scientist-astronaut Joseph P. Allen, left, directs the attention of astronaut Richard F. Gordon Jr., to an occurrence out of view at right in the Mission Control Center's (MCC) Mission Operations Control Room (MOCR), while Dr. Donald K. (Deke) Slayton, on right with back to camera, views activity of Apollo 15 on a large screen at the front of the MOCR. Astronauts David R. Scott and James B. Irwin are seen on the screen performing tasks of the mission's third extravehicular activity (EVA), on Aug. 2, 1971. Dr. Slayton is director of Flight Crew Operations, NASA-MSC; Gordon is Apollo 15 backup commander; and Dr. Allen is an Apollo 15 spacecraft communicator.

  8. jsc2011e027535

    NASA Image and Video Library

    2011-03-21

    At the Baikonur Cosmodrome in Kazakhstan, Expedition 27 Flight Engineer Ron Garan of NASA (left), Soyuz Commander Alexander Samokutyaev (center) and Flight Engineer Andrey Borisenko (right) are greeted upon their arrival March 21, 2011 by RSC-Energia Vice-President Nikolai Zelenchikov after their flight to the launch site from Star City, Russia. The trio, and their backups, Anatoly Ivanishin, Anton Shkaplerov and Dan Burbank are in the final weeks of training for their launch April 5 (April 4, U.S. time) on the Soyuz TMA-21 spacecraft to the International Space Station. Credit: NASA/Victor Zelentsov

  9. jsc2012e238542

    NASA Image and Video Library

    2012-11-27

    At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 34/35 NASA Flight Engineer Tom Marshburn signs in for the start of two days of certification exams for flight Nov. 27, 2012 as his crewmates, Soyuz Commander Roman Romanenko (left) and Flight Engineer Chris Hadfield of the Canadian Space Agency (right) look on. Marshburn, Romanenko and Hadfield and their backups are in the final weeks of training for launch on the Soyuz TMA-07M spacecraft from the Baikonur Cosmodrome in Kazakhstan on Dec. 19 for 5 ½ months on the International Space Station. NASA/Stephanie Stoll

  10. Optimization of robustness of interdependent network controllability by redundant design

    PubMed Central

    2018-01-01

    Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy) or DBS (degree based strategy) for node backup and HDF(high degree first) for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability. PMID:29438426

  11. Expedition 38 Press Conference

    NASA Image and Video Library

    2013-11-06

    Expedition 38 backup crew member Reid Wiseman of NASA is seen in quarantine, behind glass, during the final press conference held a day ahead of the launch of Expedition 38 prime crew members; Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, Soyuz Commander Mikhail Tyurin of Roscosmos, and, Flight Engineer Rick Mastracchio of NASA, to the International Space Station, Wednesday, Nov. 6, 2013 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  12. Apollo Operations Handbook Lunar Module (LM 11 and Subsequent) Vol. 2 Operational Procedures

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Apollo Operations Handbook (AOH) is the primary means of documenting LM descriptions and procedures. The AOH is published in two separately bound volumes. This information is useful in support of program management, engineering, test, flight simulation, and real time flight support efforts. This volume contains crew operational procedures: normal, backup, abort, malfunction, and emergency. These procedures define the sequence of actions necessary for safe and efficient subsystem operation.

  13. Expedition 49 Preflight

    NASA Image and Video Library

    2016-09-16

    Expedition 49 backup crew member Mark Vande Hei takes part in spin chair training during media day on Friday, Sept. 16, 2016 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Expedition 49 flight engineer Shane Kimbrough of NASA, flight engineer Andrey Borisenko of Roscosmos, and Soyuz commander Sergey Ryzhikov of Roscosmos are scheduled to launch to the International Space Station in their Soyuz MS-02 spacecraft from the Baikonur Cosmodrome on September 24 Kazakh time. Photo Credit: (NASA/Victor Zelentsov)

  14. Microbial exchange experiment AR-002

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.; Kropp, K. D.; Henney, M. R.; Ekblad, S. S.; Groves, T. O.; Molina, T. C.; Decelle, J. G.; Carmichael, C. F.; Gehring, N. J.; Young, E. L.

    1976-01-01

    Operational aspects associated with the experiment and the activities of medically important microorganisms recovered from the Apollo crewmen are evaluated. A variety of potential pathogens was recovered from each of the prime and backup crew members before and after flight. However, no disease events were reported. Candida albicans and Staphylococcus aureus were shown to be transferred from one crewmember to another during the flight. No other medically significant changes in the microbial population were observed.

  15. Section I Summary

    NASA Technical Reports Server (NTRS)

    2016-01-01

    Shuttle Flight 41-C, the Solar Max Repair mission, took off on April 6, 1984 from Kennedy Space Center in Florida. As with 41-B, the dress rehearsal for this flight, launch was early in the morning. It occurred at 7:58 CST. The landing also took place at KSC the following Friday, April 13, 1984. This was Challenger's fifth flight. There were two prime EMU's and one back-up short EMU stowed for this flight in the Airlock. The two MMU's were again mounted in their Flight Support Stations in the payload bay. Figure 1 shows the EMU functional schematic while Figure 2 shows the hardware which makes up the EMU. The payload bay configuration for the MMU's appears in Figure 3.

  16. Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.

    2017-01-01

    A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.

  17. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-08

    From left to right, Russian Space Forces cosmonaut Yuri Shargin, Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov, Expedition 10 backup Soyuz Commander Valery Tokarev and backup Expedition Commander Bill McArthur speak with officials from behind glass after having conducted a final inspection of their Soyuz TMA-5 spacecraft on Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan in preparation for their launch October 14 to the International Space Station. The Soyuz vehicle will be mated to its booster rocket October 11 in preparation for its rollout to the Central Asian launch pad October 12. Photo Credit: (NASA/Bill Ingalls)

  18. jsc2012e051524

    NASA Image and Video Library

    2012-05-11

    At the historic museum near the launch pad at the Baikonur Cosmodrome in Kazakhstan, the Expedition 31/32 backup and prime crews pose for pictures May 11, 2012 in front of the mural depicting the likeness of Yuri Gagarin, the first human to fly in space. The photo session took place as training for the launch of Soyuz Commander Gennady Padalka, Flight Engineer Joe Acaba of NASA and Flight Engineer Sergei Revin drew to a close for their liftoff May 15 in their Soyuz TMA-04 spacecraft to begin a four-month mission on the International Space Station. From left to right are backup crewmembers Oleg Novitskiy, Kevin Ford of NASA and Evgeny Tarelkin, and the prime crew, Padalka, Revin and Acaba. In the foreground are replicas of the small cottages Gagarin and the Russian space program’s “Great Designer”, Sergei Korolev slept in on the eve of Gagarin’s launch on April 12, 1961. The real cottages are located near the museum in Baikonur. NASA/Victor Zelentsov

  19. Expedition 6 Crew Interviews: Don Pettit, Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 member Don Pettit (Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)) is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. Pettit, who had been training as a backup crewmember, discusses the importance of training backups for ISS missions. He gives details on the goals and significance of the ISS, regarding experiments in various scientific disciplines such as the life sciences and physical sciences. Pettit also comments on the value of conducting experiments under microgravity. He also gives an overview of the ISS program to date, including the ongoing construction, international aspects, and the routines of ISS crewmembers who inhabit the station for four months at a time. He gives a cursory description of crew transfer procedures that will take place when STS-113 docks with ISS to drop off Pettit and the rest of Expedition 6, and retrieve the Expedition 5 crew.

  20. An Alternative Flight Software Trigger Paradigm: Applying Multivariate Logistic Regression to Sense Trigger Conditions Using Inaccurate or Scarce Information

    NASA Technical Reports Server (NTRS)

    Smith, Kelly M.; Gay, Robert S.; Stachowiak, Susan J.

    2013-01-01

    In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles.

  1. An Alternative Flight Software Paradigm: Applying Multivariate Logistic Regression to Sense Trigger Conditions using Inaccurate or Scarce Information

    NASA Technical Reports Server (NTRS)

    Smith, Kelly; Gay, Robert; Stachowiak, Susan

    2013-01-01

    In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles

  2. 75 FR 81417 - Airworthiness Directives; Piper Aircraft, Inc. Model PA-28-161 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... authority digital engine control (FADEC) backup battery, replacing the supplement pilot's operating handbook... installation of a FADEC backup battery, replacement of the supplement pilot's operating handbook and FAA... backup battery 7 work-hours x $85 per $780 $1,375 Not hour = $595. applicable. Authority for This...

  3. STS 51-L crewmembers during training session in flight deck simulation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Shuttle mission simulator (SMS) scene of Astronauts Michael J. Smith, Ellison S. Onizuka, Judith A. Resnik, and Francis R. (Dick) Scobee in their launch and entry positions on the flight deck (46207); Left to right, Backup payload specialist Barbara R. Morgan, Teacher in Space Payload specialist Christa McAuliffe, Hughes Payload specialist Gregory B. Jarvis, and Mission Specialist Ronald E. McNair in the middeck portion of the Shuttle Mission Simulator at JSC (46208).

  4. Expedition 54 Press Conference

    NASA Image and Video Library

    2017-12-16

    Expedition 54 backup crew member Sergey Prokopev is seen in quarantine, behind glass, during a press conference, Saturday, Dec. 16, 2017 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Expedition 54 prime crew members Soyuz Commander Anton Shkaplerov of Roscosmos, flight engineer Scott Tingle of NASA, and flight engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) are scheduled to launch to the International Space Station aboard the Soyuz spacecraft from the Baikonur Cosmodrome on December 17. Photo Credit: (NASA/Joel Kowsky)

  5. Expedition 39 Press Conference

    NASA Image and Video Library

    2014-03-24

    Expedition 39 backup crew member Elena Serova of the Russian Federal Space Agency, Roscosmos, is seen in quarantine, behind glass, during the final press conference held ahead of the launch of Expedition 39 prime crew members; Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Flight Engineer Steve Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos, to the International Space Station, Monday, March 24, 2014 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  6. Expedition 38 Press Conference

    NASA Image and Video Library

    2013-11-06

    Expedition 38 backup crew member Alexander Gerst of the European Space Agency is seen in quarantine, behind glass, during the final press conference held a day ahead of the launch of Expedition 38 prime crew members; Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, Soyuz Commander Mikhail Tyurin of Roscosmos, and, Flight Engineer Rick Mastracchio of NASA, to the International Space Station, Wednesday, Nov. 6, 2013 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  7. Expedition 39 Press Conference

    NASA Image and Video Library

    2014-03-24

    Expedition 39 backup crew member Aleksandr Samokutyaev of the Russian Federal Space Agency, Roscosmos, is seen in quarantine, behind glass, during the final press conference held ahead of the launch of Expedition 39 prime crew members; Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Flight Engineer Steve Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos, to the International Space Station, Monday, March 24, 2014 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  8. UAS Modeling of the Communication Links Study Results

    NASA Technical Reports Server (NTRS)

    Birr, Richard; Murray, Jennifer; Girgis, nancy

    2011-01-01

    There were many links calculated for this and the other scenarios. The rain was analyzed for 99.9% availability with rain rated of none, 20 mm/hr and 90 mm/hr at a height of 5 km out to 25 NM. This was done for each scenario for LOS and for BLOS links for Scenario 5 and 6. Scenario 1 was a LOS-only scenario. Use of two 3 dB Antennas on both ends. The CS2 was unable to maintain a control RF Link during the flight. The largest access gap periods between object top and bottom UA antennae were caused by terrain (ridges and hills). The CS Antenna was changed to High Gain Directional Antenna, all three CS maintained lock on vehicle. There were RF dropouts between the top and bottom UA antennae caused by aircraft obstructions (fuselage, wings, wheel assembles, etc.). Note that for this study antenna locations were placed on top and bottom center of the UA body. Future study should include actual UA antenna locations on the aircraft providing manufactures are willing to provide information. The importance of CS location(s) was demonstrated for primary or backup CS. With a second backup CS placed in a suitable location the UA was able to maintain an overall RF link. The actual location of both backup CSs required the antenna location to be place 150 ft above ground in order to establish a RF link between the UA and CS.

  9. jsc2012e099557

    NASA Image and Video Library

    2012-07-04

    Outside their Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 32 prime crew member Flight Engineer Sunita Williams of NASA (left) and backup Flight Engineer Tom Marshburn of NASA (right) raise the Stars and Stripes on the 4th of July, 2012 in a traditional flag-raising ceremony that was part of the pre-launch activities leading up to the launch of the next crew to the International Space Station. Williams, Soyuz Commander Yuri Malenchenko and Flight Engineer Aki Hoshide of the Japan Aerospace Exploration Agency will launch to the station July 15 from the Baikonur Cosmodrome in their Soyuz TMA-05M spacecraft. NASA/Victor Zelentsov

  10. Motion simulator study of longitudinal stability requirements for large delta wing transport airplanes during approach and landing with stability augmentation systems failed

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Fry, E. B.; Drinkwater, F. J., III; Forrest, R. D.; Scott, B. C.; Benefield, T. D.

    1972-01-01

    A ground-based simulator investigation was conducted in preparation for and correlation with an-flight simulator program. The objective of these studies was to define minimum acceptable levels of static longitudinal stability for landing approach following stability augmentation systems failures. The airworthiness authorities are presently attempting to establish the requirements for civil transports with only the backup flight control system operating. Using a baseline configuration representative of a large delta wing transport, 20 different configurations, many representing negative static margins, were assessed by three research test pilots in 33 hours of piloted operation. Verification of the baseline model to be used in the TIFS experiment was provided by computed and piloted comparisons with a well-validated reference airplane simulation. Pilot comments and ratings are included, as well as preliminary tracking performance and workload data.

  11. U.S. spacewalk on ISS on This Week @NASA - October 10, 2014

    NASA Image and Video Library

    2014-10-10

    Aboard the International Space Station, Expedition 41 Flight Engineers Reid Wiseman of NASA and Alexander Gerst of the European Space Agency donned U.S. spacesuits for an October 7 spacewalk to relocate a failed cooling pump and to install a backup power cable device for the station’s rail car system. The failed pump was replaced with a spare and is being temporarily stowed near the Quest airlock and the back-up power cables are for the unlikely event that the Mobile Transporter rail car on the station’s truss loses power. Also, A comet’s Mars flyby, Brightest pulsar! Total Lunar Eclipse and LADEE wins Popular Mechanics award!

  12. Swanson during EVA 26

    NASA Image and Video Library

    2014-04-23

    ISS039-E-014846 (22 April 2014) --- NASA astronaut Steve Swanson is pictured during a spacewalk to replace a failed backup computer relay box in the S0 truss of the International Space Station on April 22, 2014. He was accompanied on the spacewalk by fellow Flight Engineer Rick Mastracchio of NASA.

  13. Expedition 31 Preflight

    NASA Image and Video Library

    2012-04-24

    Expedition 31 NASA backup crew member Kevin Ford, left, Oleg Novitskiy and Evgeny Tarelkin, third from left, select International Space Station Russian segment event simulation test cards for their final qualification test in preparation for flight, Tuesday, April 24, 2012 at the Gagarin Cosmonaut Training Center in Star City, Russia. Photo Credit: (NASA/Carla Cioffi)

  14. Swanson during EVA Tool Configuration in the A/L

    NASA Image and Video Library

    2014-04-17

    ISS039-E-013091 (17 April 2014) --- NASA astronaut Steve Swanson, Expedition 39 flight engineer, is seen in the Quest airlock of the Earth-orbiting International Space Station. He and NASA astronaut Rick Mastracchio, flight engineer, will conduct a spacewalk in the coming week to replace a failed backup computer relay system on the space station's truss. The activity, designated U.S. EVA 26, will be broadcast live on NASA Television. A pair of NASA extravehicular mobility units (EMU) can be seen in the foreground.

  15. Casualty Risk Assessment Controlled Re-Entry of EPS - Ariane 5ES - ATV Mission

    NASA Astrophysics Data System (ADS)

    Arnal, M.-H.; Laine, N.; Aussilhou, C.

    2012-01-01

    To fulfil its mission of compliance check to the French Space Operations Act, CNES has developed ELECTRA© tool in order to estimate casualty risk induced by a space activity (like rocket launch, controlled or un-controlled re-entry on Earth of a space object). This article describes the application of such a tool for the EPS controlled re-entry during the second Ariane 5E/S flight (Johannes Kepler mission has been launched in February 2011). EPS is the Ariane 5E/S upper composite which is de-orbited from a 260 km circular orbit after its main mission (release of the Automated Transfer Vehicle - ATV). After a brief description of the launcher, the ATV-mission and a description of all the failure cases taken into account in the mission design (which leads to "back-up scenarios" into the flight software program), the article will describe the steps which lead to the casualty risk assessment (in case of failure) with ELECTRA©. In particular, the presence on board of two propulsive means of de-orbiting (main engine of EPS, and 4 ACS longitudinal nozzles in case of main engine failure or exhaustion) leads to a low remaining casualty risk.

  16. KSC-2011-3333

    NASA Image and Video Library

    2011-05-05

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, invited guests tour the blockhouse at Complex 5/6 during a celebration of Alan Shepard's historic flight 50 years ago. From left are Robert Sieck, former shuttle launch director; Andy Anderson, former manager for communications in the Mercury Mission Control Center; Bob Moser, former chief test conductor for the Mercury-Redstone launches; and John Twigg, former backup chief test conductor for the Mercury-Redstone launches. The celebration was held at the launch site of the first U.S. manned spaceflight May 5, 1961, to mark the 50th anniversary of the flight. Fifty years ago, astronaut Alan Shepard lifted off inside the Mercury capsule, "Freedom 7," atop an 82-foot-tall Mercury-Redstone rocket at 9:34 a.m. EST, sending him on a remarkably successful, 15-minute suborbital flight. The event was attended by more than 200 workers from the original Mercury program and included a re-creation of Shepard's flight and recovery, as well as a tribute to his contributions as a moonwalker on the Apollo 14 lunar mission. For more information, visit www.nasa.gov/topics/history/milestones/index.html. Photo credit: NASA/Kim Shiflett

  17. View of Mission Control Center during the Apollo 13 oxygen cell failure

    NASA Image and Video Library

    1970-04-14

    S70-34902 (14 April 1970) --- Several persons important to the Apollo 13 mission, at consoles in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC). Seated at consoles, from left to right, are astronauts Donald K. Slayton, director of flight crew operations; astronaut Jack R. Lousma, Shift 3 spacecraft communicator; and astronaut John W. Young, commander of the Apollo 13 backup crew. Standing, left to right, are astronaut Tom K. Mattingly II, who was replaced as Apollo 13 command module pilot after it was learned he may come down with measles, and astronaut Vance D. Brand, Shift 2 spacecraft communicator. Several hours earlier, in the late evening hours of April 13, crew members of the Apollo 13 mission reported to MCC that trouble had developed with an oxygen cell on their spacecraft.

  18. Mechanical Backup For Fly-By-Wire Control System

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1992-01-01

    Mechanical device eliminates need for redundant fly-by-wire subsystems. Main components are two linkages. One connected to control column in conventional, reversible control system. Other slides inside first linkage and connected to pilot's control wheel. In addition to aircraft applications, design used in control systems in which computer control desirable but safety backup systems required; for example, in boat rudders, engine controls in boats and automobiles, and controls in construction equipment.

  19. jsc2012e238541

    NASA Image and Video Library

    2012-11-27

    At the Gagarin Cosmonaut Training Center (GCTC) in Star City, Russia, the next trio of residents to be launched to the International Space Station began two days of certification exams for flight Nov. 27, 2012. Expedition 34/35 NASA Flight Engineer Tom Marshburn (left), Soyuz Commander Roman Romanenko (center) and Flight Engineer Chris Hadfield of the Canadian Space Agency received preliminary instructions from GCTC Director Sergei Krikalev (far right). Romanenko, Marshburn and Hadfield and their backups are in the final weeks of training for launch on the Soyuz TMA-07M spacecraft from the Baikonur Cosmodrome in Kazakhstan on Dec. 19 for 5 ½ months on the orbital laboratory. NASA/Stephanie Stoll

  20. Analog neural network control method proposed for use in a backup satellite control mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frigo, J.R.; Tilden, M.W.

    1998-03-01

    The authors propose to use an analog neural network controller implemented in hardware, independent of the active control system, for use in a satellite backup control mode. The controller uses coarse sun sensor inputs. The field of view of the sensors activate the neural controller, creating an analog dead band with respect to the direction of the sun on each axis. This network controls the orientation of the vehicle toward the sunlight to ensure adequate power for the system. The attitude of the spacecraft is stabilized with respect to the ambient magnetic field on orbit. This paper develops a modelmore » of the controller using real-time coarse sun sensor data and a dynamic model of a prototype system based on a satellite system. The simulation results and the feasibility of this control method for use in a satellite backup control mode are discussed.« less

  1. Education Program - Teacher in Space

    NASA Image and Video Library

    1985-12-17

    S85-46205 (December 1985) --- Sharon Christa McAuliffe (left), from Concord, New Hampshire, and Barbara R. Morgan of McCall, Idaho, have been named NASA Teacher-in-Space Project prime and backup payload specialists, respectively, for the first citizen observer position of the STS program, scheduled for a Challenger flight in January 1986. Photo credit: NASA

  2. Risk Management in ETS-8 Project

    NASA Astrophysics Data System (ADS)

    Homma, M.

    2002-01-01

    Engineering Test Satellite - 8 (ETS-8) is the Japanese largest geo-synchronous satellite of 3 tons in mass, of which mission is mobile communications and navigation experiment. It is now in the flight model manufacturing phase. This paper introduces the risk management taken in this project as a reference. The mission success criteria of ETS-8 are described at first. All the risk management activities are planned taking these criteria into consideration. ETS-8 consists of many new technologies such as the large deployable antenna (19m x 17m), 64-bit MPU, 100 V solar paddle and so on. We have to pay attention to control these risk through each phase of development. In system design of ETS - 8, almost components have redundancy and there is some back-up function to avoid fatal failure. What kind of back-up function should be taken is one of the hot issues in this project. The consideration process is described as an actual case. In addition to conventional risk management procedure, FMEA and identification of the critical items so on, we conducted the validation experiment in space by use of a scale model that was launched on Ariane 5. The decision to conduct this kind of experiment is taken after evaluation between risk and cost, because it takes a lot of resources of project. The effect of this experiment is also presented. Failure detection, isolation and reconfiguration in the flight software are more important as the satellite system becomes large and complicated. We did the independent verification and validation to the software. Some remarks are noted with respect to its effectiveness.

  3. Independent backup mode transfer and mechanism for digital control computers

    NASA Technical Reports Server (NTRS)

    Tulpule, Bhalchandra R. (Inventor); Oscarson, Edward M. (Inventor)

    1992-01-01

    An interrupt is provided to a signal processor having a non-maskable interrupt input, in response to the detection of a request for transfer to backup software. The signal processor provides a transfer signal to a transfer mechanism only after completion of the present machine cycle. Transfer to the backup software is initiated by the transfer mechanism only upon reception of the transfer signal.

  4. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Image and Video Library

    1986-01-08

    S86-25180 (October 1985) --- Sharon Christa McAuliffe, STS-51L citizen observer/payload specialist, representing the Teacher-in-Space Project, floats forward and upward during a few moments of weightlessness aboard a KC-135 aircraft. The flight is part of her training for the scheduled five-day flight aboard the Challenger in January of next year. Barbara R. Morgan, backup payload specialist for STS-51L, is partially visible in the background. The photo was taken by Keith Meyers of the New York Times. Photo credit: NASA

  5. Swanson and Mastracchio during EMU Fit Check in the A/L

    NASA Image and Video Library

    2014-04-17

    ISS039-E-013152 (17 April 2014) --- Inside the Quest airlock of the International Space Station, NASA astronauts Steve Swanson (left) and Rick Mastracchio, both Expedition 39 flight engineers, participate in a dress rehearsal for an upcoming spacewalk during which they are to replace a failed backup computer relay box in the S0 truss.

  6. 75 FR 78177 - Airworthiness Directives; Cessna Aircraft Company (Cessna) Model 172 Airplanes Modified by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... battery, replacing the supplement pilot's operating handbook and FAA approved airplane flight manual, and replacing the FADEC backup battery every 12 calendar months. This proposed AD was prompted by an incident... allow the FADEC to shut down or reset if the main battery is depleted and the electrical charging system...

  7. Gemini 6 crew during press conference

    NASA Image and Video Library

    1965-04-06

    S65-19406 (6 April 1965) --- Astronauts Thomas P. Stafford (left), pilot; and Walter M. Schirra Jr., command pilot, have been named as the prime crew for the Gemini-Titan 6 spaceflight. Schirra and Stafford served as the GT-3 backup crew. Their selection for the GT-6 flight was announced at an MSC news conference on April 6, 1965.

  8. jsc2012e239102

    NASA Image and Video Library

    2012-11-29

    At the Gagarin Museum at the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 34/35 Soyuz Commander Roman Romanenko (front center) thumbs through a testimonial book Nov. 29, 2012 during ceremonial activities. The book is signed by all Russian and international space travelers prior to their flights. Romanenko, NASA Flight Engineer Tom Marshburn (front left), Flight Engineer Chris Hadfield of the Canadian Space Agency (front right) and their backups, NASA’s Karen Nyberg (rear left), Fyodor Yurchikhin (rear center) and Luca Parmitano (rear right) are training for the launch of Marshburn, Hadfield and Romanenko Dec. 19 to the International Space Station in the Soyuz TMA-07M spacecraft from the Baikonur Cosmodrome in Kazakhstan. NASA/Stephanie Stoll

  9. Investigation of the misfueling of reciprocating piston aircraft engines

    NASA Technical Reports Server (NTRS)

    Scott, J. Holland, Jr.

    1988-01-01

    The Aircraft Misfueling Detection Project was developed by the Goddard Space Flight Center/Wallops Flight Facility at Wallops Island, Virginia. Its purpose was to investigate the misfueling of reciprocating piston aircraft engines by the inadvertent introduction of jet fuel in lieu of or as a contaminant of aviation gasoline. The final objective was the development of a device(s) that will satisfactorily detect misfueling and provide pilots with sufficient warning to avoid injury, fatality, or equipment damage. Two devices have been developed and successfully tested: one, a small contamination detection kit, for use by the pilot, and a second, more sensitive, modified gas chromatograph for use by the fixed-base operator. The gas chromatograph, in addition to providing excellent quality control of the fixed-base operator's fuel handling, is a very good backup for the detection kit in the event it produces negative results. Design parameters were developed to the extent that they may be applied easily to commercial production by the aircraft industry.

  10. jsc2018e050027

    NASA Image and Video Library

    2018-05-19

    jsc2018e050027 - At the Gagarin Cosmonaut Training Center in Star City, Russia, the Expedition 56 prime and backup crewmembers pose for pictures in front of the statue of Vladimir Lenin May 19 before boarding a bus that took them to a nearby airfield for a flight to their launch site at the Baikonur Cosmodrome in Kazakhstan. From left to right are the backup crewmembers, Anne McClain of NASA, Oleg Kononenko of Roscosmos and David Saint-Jacques of the Canadian Space Agency, and the prime crew, Serena Aunon-Chancellor of NASA, Sergey Prokopyev of Roscosmos and Alexander Gerst of the European Space Agency. Aunon-Chancellor, Prokopyev and Gerst will launch June 6 on the Soyuz MS-09 spacecraft from Baikonur for a six-month mission on the International Space Station...NASA/Elizabeth Weissinger.

  11. Apollo 1 Prime and Backup Crews

    NASA Image and Video Library

    1966-04-01

    S66-30238 (1 April 1966) --- The National Aeronautics and Space Administration (NASA) has named these astronauts as the prime crew of the first manned Apollo Space Flight. Left to right, are Edward H. White II, command module pilot; Virgil I. Grissom, mission commander; and Roger B. Chaffee, lunar module pilot. On the second row are the Apollo 1 backup crew members, astronauts David R. Scott, James A. McDivitt and Russell L. Schweickart. EDITOR'S NOTE: Astronauts Grissom, White and Chaffee lost their lives in a Jan. 27, 1967 fire in the Apollo CM during testing at Cape Canaveral. McDivitt, Scott and Schweickart later served as crewmembers for the Apollo 9 Earth-orbital mission, which was one of the important stair-step missions leading up to the Apollo 11 manned lunar landing mission of July 1969.

  12. Expanded R&D by Jet-engine-steering Revolution

    NASA Astrophysics Data System (ADS)

    Gal-Or, Benjamin

    2017-11-01

    Since 1987 [1,2,3,4,5] the global jet engine community is facing the historical fact that jet engine steering is gradually replacing canards and the common, often dangerous and obsolete, aerodynamic-only flight control - a fact that (i) has already affected the defense-industrial complex in the US, Russia, China, Japan, S-Korea and India, (ii) has integrated the traditional jet-engine components R&D with advanced aero-electro-physics, stealth technology, thrust vectoring aerodynamics and material science. Moreover, this military revolution is historically due to expand into the civil transport jets domain, [6,7,8,9]. The historical aim of the JES-Revolution remains the same: Replace the common, stall-spin sensitive canards [6] and Aerodynamic-Only-Obsolete-Flight Control ("AOOF Control"). Invented about 100 years ago for propeller-driven air vehicles, it has already been partially replaced for failure to function in WVR-combat post-stall domain, and for the following reasons: In comparison with complete Tail-Less, Canard-Less, Stealth-JES (Figure 5 and References [1,2,3,4,5,6]), the common AOOF Control increases drag, weight, fuel consumption, complexity, cost, and reduces flight safety, stealth, [Low Detectability] and provides zero post-stall, WVR air combat capability while its CANARDS KILL LD & REDUCE JES. Examples of stealth fighter aircraft that have already replaced canards and AOOF-Control where JES provides at least 64 to 0 KILL-RATIO advantage over AOOF-Controlled conventional fighter aircraft: The U.S. JES F-22 and, apparently, the Russian JES-Su-T-50 & 35S, China 2016-J-31, Indian HAL AMCA & FGFA, Japanese JES IHHI ATD-X, S-Korean JES KF-X. Cf. X-44 in Figure 5. Consequently, the jet engine is no longer defined as providing only brute force forward. Instead, it successfully competes with and wins over the wrong, dominating AOOF-Control, at least as a backup flight control whose sole factual domain is currently a well-established, primary flight controller RE any post-stall, super-agility, [2,3,4,5,6,7,8,9].

  13. Synergistic Allocation of Flight Expertise on the Flight Deck (SAFEdeck): A Design Concept to Combat Mode Confusion, Complacency, and Skill Loss in the Flight Deck

    NASA Technical Reports Server (NTRS)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2016-01-01

    This paper presents a new design and function allocation philosophy between pilots and automation that seeks to support the human in mitigating innate weaknesses (e.g., memory, vigilance) while enhancing their strengths (e.g., adaptability, resourcefulness). In this new allocation strategy, called Synergistic Allocation of Flight Expertise in the Flight Deck (SAFEdeck), the automation and the human provide complementary support and backup for each other. Automation is designed to be compliant with the practices of Crew Resource Management. The human takes a more active role in the normal operation of the aircraft without adversely increasing workload over the current automation paradigm. This designed involvement encourages the pilot to be engaged and ready to respond to unexpected situations. As such, the human may be less prone to error than the current automation paradigm.

  14. View of the Dragon Spacecraft during EVA 26

    NASA Image and Video Library

    2014-04-23

    ISS039-E-014968 (22 April 2014) --- This snapshot of the SpaceX Dragon spacecraft docked to the International Space Station was photographed by one of two spacewalking astronauts on April 22, 2014. NASA astronauts Rick Mastracchio and Steve Swanson, Expediton 39 flight engineers, replaced a failed backup computer relay box in the S0 truss on the orbital outpost.

  15. Expedition 43 Crew Final Exams in Russia

    NASA Image and Video Library

    2015-03-13

    NASA Video File of ISS Expedition 43 final exams in Russia on March 5, 2015 with crewmembers Scott Kelly, Gennady Padalka, and Mikhail Kornienko; and backup crew Jeff Williams, Sergei Volkov and Alexei Ovchinin. Includes footage of final qualification training at the Gagarin Cosmonaut Training Center (GCTC); interview with Emily Nelson, ISS Expedition 46 Lead Flight Director; and scenes from the qualification training.

  16. Expedition 37 Press Conference

    NASA Image and Video Library

    2013-09-24

    NASA backup crewmember Steve Swanson waves hello at a press conference held at the Cosmonaut Hotel, on Tuesday, Sept. 24, 2013, in Baikonur, Kazakhstan. Launch of the Soyuz rocket is scheduled for September 26 and will send Hopkins, Soyuz Commander Oleg Kotov and Russian Flight Engineer Sergei Ryazansky on a five and a half-month mission aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  17. Implementation of NASA Materials and Processes Requirements at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    2009-01-01

    This slide presentation reviews the history and current practices of the Materials Engineering Branch (MEB) at the Goddard Space Flight Center. Included in the presentation is a review of the general Materials and Processes (M&P) requirements in the NASA-STD-6016. The work that the Materials Engineering Branch does to support GSFC Projects is also reviewed. The Materials Engineering Branch capabilities are listed, the expertise that is available to GSFC projects is also listed. Included in the backup slides are forms that the MEB uses to identify the materials in the spacecraft under development.

  18. jsc2012e217765

    NASA Image and Video Library

    2012-09-27

    Expedition 33/34 Flight Engineer Kevin Ford of NASA plants a flower at the Kremlin Wall in Moscow where Russian space icons are interred September 25, 2012 as he, Flight Engineer Evgeny Tarelkin and Soyuz Commander Oleg Novitskiy participated in traditional ceremonies leading to their launch to the International Space Station October 23 in the Soyuz TMA-06M spacecraft from the Baikonur Cosmodrome in Kazakhstan for a five-month mission. In the background, the backup crew, Pavel Vinogradov, Chris Cassidy of NASA and Alexander Misurkin also planted flowers at the Wall, where Russian space icons are interred. NASA/Stephanie Stoll

  19. "Teacher in Space" Participants - Space Food Testing - Orientation Session - JSC

    NASA Image and Video Library

    1985-09-25

    S85-39979 (10 Sept. 1985) --- Two teachers training for participation in the STS-51L flight get their first introduction to space food during an orientation session in the life sciences building at the Johnson Space Center (JSC). Sharon Christa McAuliffe (left) chews on a morsel while Barbara R. Morgan reaches for a bite. Dr. C.T. Bourland of Technology, Incorporated, looks on. McAuliffe was chosen from among ten finalists as prime citizen observer payload specialist and Morgan was named as backup for the STS-51L flight. Photo credit: NASA

  20. jsc2012e241583

    NASA Image and Video Library

    2012-12-09

    In Baikonur, Kazakhstan, Expedition 34/35 backup crewmembers Karen Nyberg of NASA (left) , Fyodor Yurchikhin (center) and Luca Parmitano of the European Space Agency (right) pose for pictures Dec. 9, 2012 in front of a statue of Yuri Gagarin, the first human to fly in space, during a traditional tour of the city. Prime crewmembers Flight Engineer Tom Marshburn of NASA, Soyuz Commander Roman Romanenko and Flight Engineer Chris Hadfield of the Canadian Space Agency will launch Dec. 19 from the Baikonur Cosmodrome in their Soyuz TMA-07M spacecraft for a five-month mission on the International Space Station. Photo Credit: NASA/Victor Zelentsov

  1. Expedition 18 State Commission

    NASA Image and Video Library

    2008-10-10

    A Russian flight surgeon, right, along with the quarantined prime and backup crews listen to the State Commission give the final approval for the launch of the Soyuz TMA-13 spacecraft, Saturday, Oct. 11, 2008 in Baikonur, Kazakhstan. Expedition 18 Commander Michael Fincke, Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott are scheduled to launch Oct. 12 and dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  2. A new stratospheric sounding platform based on unmanned aerial vehicle (UAV) droppable from meteorological balloon

    NASA Astrophysics Data System (ADS)

    Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey

    High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical ozone sonde; d) optical CO2 sensor; e) radioactivity sensor; f) solar radiation sensor. In addition, each payload included temperature sensor, barometric sensor and a GPS receiver. Design features of measurement systems onboard UAV and flight results are presented. Possible applications for atmospheric studies and validation of remote ground-based and space-borne observations is discussed.

  3. Astronaut William Anders Official Portrait

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This is the official NASA portrait of astronaut William Anders. Anders was commissioned in the air Force after graduation from the Naval Academy and served as a fighter pilot in all-weather interception squadrons of the Air Defense Command. Later he was responsible for technical management of nuclear power reactor shielding and radiation effects programs while at the Air Force Weapons Laboratory in New Mexico. In 1964, Anders was selected by the National Aeronautics and Space Administration (NASA) as an astronaut with responsibilities for dosimetry, radiation effects and environmental controls. He was backup pilot for the Gemini XI, Apollo 11 flights, and served as lunar module (LM) pilot for Apollo 8, the first lunar orbit mission in December 1968. He has logged more than 6,000 hours flying time.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1967-09-09

    This is the official NASA portrait of astronaut William Anders. Anders was commissioned in the air Force after graduation from the Naval Academy and served as a fighter pilot in all-weather interception squadrons of the Air Defense Command. Later he was responsible for technical management of nuclear power reactor shielding and radiation effects programs while at the Air Force Weapons Laboratory in New Mexico. In 1964, Anders was selected by the National Aeronautics and Space Administration (NASA) as an astronaut with responsibilities for dosimetry, radiation effects and environmental controls. He was backup pilot for the Gemini XI, Apollo 11 flights, and served as lunar module (LM) pilot for Apollo 8, the first lunar orbit mission in December 1968. He has logged more than 6,000 hours flying time.

  5. jsc2012e239104

    NASA Image and Video Library

    2012-11-29

    At the Gagarin Museum at the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 34/35 Flight Engineer Tom Marshburn of NASA (left) signs a testimonial book Nov. 29, 2012 during ceremonial activities. The book is signed by all Russian and international space travelers prior to their flights. Looking on are Soyuz Commander Roman Romanenko (front center), and Flight Engineer Chris Hadfield of the Canadian Space Agency (front right). In the back row are their backups, NASA’s Karen Nyberg (left), Fyodor Yurchikhin (center) and Luca Parmitano of the European Space Agency (right). Marshburn, Romanenko and Hadfield are scheduled to launch Dec. 19 to the International Space Station in the Soyuz TMA-07M spacecraft from the Baikonur Cosmodrome in Kazakhstan. NASA/Stephanie Stoll

  6. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, Jennifer; Blizzard, Mike; Robertson, Mike

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC)2. The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  7. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, jennifer; Blizzard, Mike; Nicholson, Ann; Robertson, Mika

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC). The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  8. Pathfinder aircraft taking off - setting new solar powered altitude record

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  9. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions

    NASA Astrophysics Data System (ADS)

    Xu, Jiwei; Wu, Huijuan; Xiao, Shunkun

    2014-12-01

    A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1× N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.

  10. Swanson during EVA 26

    NASA Image and Video Library

    2014-04-23

    ISS039-E-014893 (22 April 2014) --- NASA astronaut Steve Swanson is pictured during a spacewalk to replace a failed backup computer relay box in the S0 truss of the International Space Station on April 22, 2014. He was accompanied on the spacewalk by fellow Flight Engineer Rick Mastracchio of NASA, who can be seen as a tiny figure anchored several yards away reflected in Swanson's helmet visor.

  11. Orion MPCV Touchdown Detection Threshold Development and Testing

    NASA Technical Reports Server (NTRS)

    Daum, Jared; Gay, Robert

    2013-01-01

    A robust method of detecting Orion Multi ]Purpose Crew Vehicle (MPCV) splashdown is necessary to ensure crew and hardware safety during descent and after touchdown. The proposed method uses a triple redundant system to inhibit Reaction Control System (RCS) thruster firings, detach parachute risers from the vehicle, and transition to the post ]landing segment of the Flight Software (FSW). The vehicle crew is the prime input for touchdown detection, followed by an autonomous FSW algorithm, and finally a strictly time based backup timer. RCS thrusters must be inhibited before submersion in water to protect against possible damage due to firing these jets under water. In addition, neglecting to declare touchdown will not allow the vehicle to transition to post ]landing activities such as activating the Crew Module Up ]righting System (CMUS), resulting in possible loss of communication and difficult recovery. A previous AIAA paper gAssessment of an Automated Touchdown Detection Algorithm for the Orion Crew Module h concluded that a strictly Inertial Measurement Unit (IMU) based detection method using an acceleration spike algorithm had the highest safety margins and shortest detection times of other methods considered. That study utilized finite element simulations of vehicle splashdown, generated by LS ]DYNA, which were expanded to a larger set of results using a Kriging surface fit. The study also used the Decelerator Systems Simulation (DSS) to generate flight dynamics during vehicle descent under parachutes. Proto ]type IMU and FSW MATLAB models provided the basis for initial algorithm development and testing. This paper documents an in ]depth trade study, using the same dynamics data and MATLAB simulations as the earlier work, to further develop the acceleration detection method. By studying the combined effects of data rate, filtering on the rotational acceleration correction, data persistence limits and values of acceleration thresholds, an optimal configuration was determined. The lever arm calculation, which removes the centripetal acceleration caused by vehicle rotation, requires that the vehicle angular acceleration be derived from vehicle body rates, necessitating the addition of a 2nd order filter to smooth the data. It was determined that using 200 Hz data directly from the vehicle IMU outperforms the 40 Hz FSW data rate. Data persistence counter values and acceleration thresholds were balanced in order to meet desired safety and performance. The algorithm proved to exhibit ample safety margin against early detection while under parachutes, and adequate performance upon vehicle splashdown. Fall times from algorithm initiation were also studied, and a backup timer length was chosen to provide a large safety margin, yet still trigger detection before CMUS inflation. This timer serves as a backup to the primary acceleration detection method. Additionally, these parameters were tested for safety on actual flight test data, demonstrating expected safety margins.

  12. Do familiar teammates request and accept more backup? Transactive memory in air traffic control.

    PubMed

    Smith-Jentsch, Kimberly A; Kraiger, Kurt; Cannon-Bowers, Janis A; Salas, Eduardo

    2009-04-01

    The present study investigated factors that explain when and why different groups of teammates are more likely to request and accept backup from one another when needed in an environment characterized by extreme time pressure and severe consequences of error: commercial air traffic control (ATC). Transactive memory theory states that teammates develop consensus regarding the distribution of their relative expertise as well as confidence in that expertise over time and that this facilitates coordination processes. The present study investigated whether this theory could help to explain between-team differences in requesting and accepting backup when needed. The present study used cross-sectional data collected from 51 commercial ATC teams. Hypotheses were tested using multiple regression analysis. Teammates with greater experience working together requested and accepted backup from one another more than those with lesser experience working together. Teammate knowledge consensus and perceived team efficacy appear to have mediated this relationship. Transactive memory theory extends to high-stress environments in which members' expertise is highly overlapping. Teammates' shared mental models about one another increase the likelihood that they will request and accept backup. Teammate familiarity should be considered when choosing among potential replacement team members. Training strategies that accelerate the development of teammate knowledge consensus and team efficacy are warranted.

  13. jsc2014e049623

    NASA Image and Video Library

    2014-05-21

    11-52-53: At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 40/41 backup crewmember Terry Virts of NASA (left) and prime crewmember and Flight Engineer Alexander Gerst of the European Space Agency (right) try their hand at a game of Ping-Pong May 21 as they head into the homestretch of their pre-launch training. Gerst, Soyuz Commander Max Suraev of the Russian Federal Space Agency (Roscosmos) and NASA Flight Engineer Reid Wiseman will launch on May 29, Kazakh time, on the Soyuz TMA-13M spacecraft from the Baikonur Cosmodrome for a 5 ½ month mission on the International Space Station. NASA/Victor Zelentsov

  14. Expedition 34 Prelaunch photo

    NASA Image and Video Library

    2012-11-27

    At the Gagarin Cosmonaut Training Center in Star City, Russia, the Expedition 34/35 backup crewmembers pose for pictures in front of a Soyuz spacecraft mockup Nov. 27, 2012 at the start of two days of certification exams. NASA Flight Engineer Karen Nyberg (left), Soyuz Commander Fyodor Yurchikhin (center) and Flight Engineer Luca Parmitano of the European Space Agency (right) were joined by prime crew members Tom Marshburn of NASA, cosmonaut Roman Romanenko and Chris Hadfield of the Canadian Space Agency, who are preparing for launch Dec. 19 from the Baikonur Cosmodrome in Kazakhstan in their Soyuz TMA-07M spacecraft for 5 ½ months on the International Space Station. NASA/Stephanie Stoll

  15. Production planning and backup sourcing strategy of a buyer-dominant supply chain with random yield and demand

    NASA Astrophysics Data System (ADS)

    Chen, Kebing; Xiao, Tiaojun

    2015-11-01

    This paper studies the backup sourcing strategy of the buyer and the production planning of the supplier in presence of both random yield and random demand. Since the production is susceptible to the randomness of yield beyond the control of the supplier, the buyer may access to a backup sourcing option for the finished items. We analyse the value of backup sourcing for both the decentralised and centralised channels. Backup sourcing strategy of the buyer may lower the supply chain's performance. We show that the order quantity of the buyer does not change the stocking factor of the supplier's input. Meanwhile, compared with the centralised operation, the decentralised operation is more dependent on the backup sourcing to reduce supply shortage of the contracting supplier. From the channel's perspective, an incentive scheme is developed to facilitate the coordination of both the buyer and the contracting supplier, we show that the proposed option contract can allow the supply chain members to share the respective risks involved in the production and selling processes. Finally, we also provide qualitative insights based on numerical examples of the centralised and decentralised solutions.

  16. Mechanical Component Diagnostic System

    DTIC Science & Technology

    1991-01-01

    Control and Display Unit ( CADU ) executes the system software and controls data acquisition that is carried out by 6 the Data Acquisition Unit (DAU... CADU screen. Displays intended for the CD are also echoed on the CADU in the FDR backup mode. If initialization is successful, clocks are synchronized...and normal MCDS monitoring mode is entered. If there is no display on the CD, the user may manually switch to the backup CD display on the CADU . Hence

  17. Optimal fault-tolerant control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2017-10-01

    For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.

  18. Simulator Investigation of Pilot Aids for Helicopter Terminal Area Operations with One Engine Inoperative

    NASA Technical Reports Server (NTRS)

    Iseler, Laura; Chen, Robert; Dearing, Munro; Decker, William; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Two recent piloted simulation experiments have investigated advanced display concepts applied to civil transport helicopter terminal area operations. Civil Category A helicopter operations apply to multi-engine helicopters wherein a safe recovery (land or fly out) is required in the event of a single engine failure. The investigation used the NASA Ames Research Center Vertical Motion Simulator, which has a full six degrees of freedom, to simulate the flight task as closely as possible. The goal of these experiments was to use advanced cockpit displays to improve flight safety and enhance the mission performance of Category A terminal area operations in confined areas. The first experiment investigated the use of military display formats to assist civil rotorcraft in performing a Category A takeoff in confined terminal areas. Specifically, it addressed how well a difficult hovering backup path could be followed using conventional instruments in comparison to panel mounted integrated displays. The hovering backup takeoff, which enables pilots to land back to the confined area pad in the event of an engine failure, was chosen since it is a difficult task to perform. Seven NASA and Army test pilots participated in the experiment. Evaluations, based on task performance and pilot workload, showed that an integrated display enabled the pilot to consistently achieve adequate or desired performance with reasonable pilot workload. Use of conventional instruments, however, frequently resulted in unacceptable performance (poor flight path tracking), higher pilot workload, and poor situational awareness. Although OEI landbacks were considered a visual task, the improved performance on the backup portion, in conjunction with increased situational awareness resulting from use of integrated displays, enabled the pilots to handle an engine failure and land back safely. In contrast, use of conventional instruments frequently led to excessive rates of sink at touchdown. A second simulation (in progress - July - August) is being conducted to investigate the use of advanced displays to perform vertical and short takeoffs and landings. One Engine Inoperative trajectories, which were optimized based on safety of flight restrictions, are utilized. Based on comments from the first experiment and further analytic development, appropriate fly out and approach guidance was added. Displays include conventional instruments with raw data, and the following integrated displays: multi-view and side-view hover displays based on the Apache Pilot Night Vision System, and variations of the pathway-in-the-sky displays with a flight-path-vector, a leader and flight director modifications. Panel mounted and head-up displays are being evaluated. Engine modifications have been incorporated to simulate 30 second and 2 minute contingency power ratings. Evaluations are based on task performance and pilot workload. NASA, Army, FAA, and industry test pilots participated. Details concerning the design, conduct, and the results of the experiment will be reported in the proposed paper.

  19. Pathfinder aircraft taking off - setting new solar powered altitude record

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The flight was part of the NASA ERAST (Environmental Research Aircraft and Sensor Technology) program. The Pathfinder was designed and built by AeroVironment Inc., Monrovia, California. Solar arrays cover nearly all of the upper wing surface and produce electricity to power the aircraft's six motors. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  20. Data analysis of P sub T/P sub S noseboom probe testing on F100 engine P680072 at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Foote, C. H.

    1980-01-01

    Results from the altitude testing of a P sub T/P sub S noseboom probe on the F100 engine are discused. The results are consistent with sea level test results. The F100 engine altitude test verified automatic downmatch with the engine pressure ratio control, and backup control inlet case static pressure demonstrated sufficient accuracy for backup control fuel flow scheduling. The production P6 probe measured Station 6 pressures accurately for both undistorted and distorted inlet airflows.

  1. Satellite services system analysis study. Volume 4: Service equipment concepts

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Payload deployment equipment is discussed, including payload separation, retention structures, the remote manipulator system, tilt tables, the payload installation and deployment aid, the handling and positioning aid, and spin tables. Close proximity retrieval, and on-orbit servicing equipment is discussed. Backup and contingency equipment is also discussed. Delivery and retrieval of high-energy payloads are considered. Earth return equipment, the aft flight deck, optional, and advanced equipment are also discussed.

  2. The In-Flight Frequency Behavior of Two Ultra-Stable Oscillators Onboard the New Horizons Spacecraft

    DTIC Science & Technology

    2007-11-01

    the other is maintained in a “warm-boot” backup mode. The implementation of the transceiver for noncoherent navigation provides the opportunity for...frequency reference for the REX (Radio science Experiment) instrument and the master oscillator for the communications transceiver and the noncoherent ...byproduct of noncoherent Doppler based 79 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information

  3. The humanation of Mars

    NASA Astrophysics Data System (ADS)

    David, L. W.

    Early developments related to human excursions to Mars are examined, taking into account plans considered by von Braun, and the 'ambitious goal of a manned flight to Mars by the end of the century', proposed at the launch of Apollo 11. In response to public reaction, plans for manned flights to Mars in the immediate future were given up, and unmanned reconnaissance of Mars was continued. An investigation is conducted concerning the advantages of manned exploration of Mars in comparison to a study by unmanned space probes, and arguments regarding a justification for interplanetary flight to Mars are discussed. Attention is given to the possibility to consider Mars as a 'back-up' planet for preserving earth life, an international Mars expedition as a world peace project, the role of Mars in connection with resource utilization considerations, and questions of exploration ethics.

  4. Engineering study for pallet adapting the Apollo laser altimeter and photographic camera system for the Lidar Test Experiment on orbital flight tests 2 and 4

    NASA Technical Reports Server (NTRS)

    Kuebert, E. J.

    1977-01-01

    A Laser Altimeter and Mapping Camera System was included in the Apollo Lunar Orbital Experiment Missions. The backup system, never used in the Apollo Program, is available for use in the Lidar Test Experiments on the STS Orbital Flight Tests 2 and 4. Studies were performed to assess the problem associated with installation and operation of the Mapping Camera System in the STS. They were conducted on the photographic capabilities of the Mapping Camera System, its mechanical and electrical interface with the STS, documentation, operation and survivability in the expected environments, ground support equipment, test and field support.

  5. jsc2014e049621

    NASA Image and Video Library

    2014-05-21

    11-47-48: At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 40/41 backup crewmembers Terry Virts of NASA (left) and Samantha Cristoforetti of the European Space Agency (right) try their hand at a game of billiards May 21 as they head into the homestretch of pre-launch training. Virts, Cristoforetti and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) are backing up the prime crew, Flight Engineer Alexander Gerst of the European Space Agency, Soyuz Commander Max Suraev of Roscosmos and NASA Flight Engineer Reid Wiseman, who will launch on May 29, Kazakh time, on the Soyuz TMA-13M spacecraft from the Baikonur Cosmodrome for a 5 ½ month mission on the International Space Station. NASA/Victor Zelentsov

  6. jsc2012e241584

    NASA Image and Video Library

    2012-12-09

    In Baikonur, Kazakhstan, Expedition 34/35 backup crewmembers Karen Nyberg of NASA (left), Luca Parmitano of the European Space Agency (center) and Fyodor Yurchikhin (right) view an exhibit honoring the Space Shuttle Program Dec. 9, 2012 during a traditional tour of the city. Nyberg flew on the STS-124 mission of the shuttle Discovery in 2008 and Yurchikhin flew on the shuttle Atlantis in 2002. Prime crewmembers Flight Engineer Tom Marshburn of NASA, Soyuz Commander Roman Romanenko and Flight Engineer Chris Hadfield of the Canadian Space Agency will launch Dec. 19 from the Baikonur Cosmodrome in their Soyuz TMA-07M spacecraft for a five-month mission on the International Space Station. Photo Credit: NASA/Victor Zelentsov

  7. jsc2012e241585

    NASA Image and Video Library

    2012-12-09

    In Baikonur, Kazakhstan, Expedition 34/35 backup crewmembers Luca Parmitano of the European Space Agency (left), Fyodor Yurchikhin (center) and Karen Nyberg of NASA (right) enjoy a meal in a Kazakh yurt Dec. 9, 2012 during a traditional tour of the city. A yurt is a portable, wood-framed dwelling structure that was traditionally used by nomads in the steppes of Central Asia but which is still used for ceremonial celebrations. Prime crewmembers Flight Engineer Tom Marshburn of NASA, Soyuz Commander Roman Romanenko and Flight Engineer Chris Hadfield of the Canadian Space Agency will launch Dec. 19 from the Baikonur Cosmodrome in their Soyuz TMA-07M spacecraft for a five-month mission on the International Space Station. Photo Credit: NASA/Victor Zelentsov

  8. Deep Space Networking Experiments on the EPOXI Spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the validation results.

  9. Initial flight results of the TRMM Kalman filter

    NASA Technical Reports Server (NTRS)

    Andrews, Stephen F.; Morgenstern, Wendy M.

    1998-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls attitude based on the Earth Sensor Assembly (ESA) output. After a potential single point failure in the ESA was identified, the contingency attitude determination method chosen to backup the ESA-based system was a sixth-order extended Kalman filter that uses magnetometer and digital sun sensor measurements. A brief description of the TRMM Kalman filter will be given, including some implementation issues and algorithm heritage. Operational aspects of the Kalman filter and some failure detection and correction will be described. The Kalman filter was tested in a sun pointing attitude and in a nadir pointing attitude during the in-orbit checkout period, and results from those tests will be presented. This paper will describe some lessons learned from the experience of the TRMM team.

  10. Initial Flight Results of the TRMM Kalman Filter

    NASA Technical Reports Server (NTRS)

    Andrews, Stephen F.; Morgenstern, Wendy M.

    1998-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls attitude based on the Earth Sensor Assembly (ESA) output. After a potential single point failure in the ESA was identified, the contingency attitude determination method chosen to backup the ESA-based system was a sixth-order extended Kalman filter that uses magnetometer and digital sun sensor measurements. A brief description of the TRMM Kalman filter will be given, including some implementation issues and algorithm heritage. Operational aspects of the Kalman filter and some failure detection and correction will be described. The Kalman filter was tested in a sun pointing attitude and in a nadir pointing attitude during the in-orbit checkout period, and results from those tests will be presented. This paper will describe some lessons learned from the experience of the TRMM team.

  11. Experiment D009: Simple navigation

    NASA Technical Reports Server (NTRS)

    Silva, R. M.; Jorris, T. R.; Vallerie, E. M., III

    1971-01-01

    Space position-fixing techniques have been investigated by collecting data on the observable phenomena of space flight that could be used to solve the problem of autonomous navigation by the use of optical data and manual computations to calculate the position of a spacecraft. After completion of the developmental and test phases, the product of the experiment would be a manual-optical technique of orbital space navigation that could be used as a backup to onboard and ground-based spacecraft-navigation systems.

  12. jsc2012e099525

    NASA Image and Video Library

    2012-07-03

    At the Baikonur Cosmodrome in Kazakhstan, Canadian Space Agency Flight Engineer Chris Hadfield, one of the members of the Expedition 32/33 backup crew, tests out binoculars July 3, 2012 as part of the pre-launch training that will lead to the launch of the prime crew, Yuri Malenchenko, Sunita Williams of NASA and Aki Hoshide of the Japan Aerospace Exploration Agency on July 15 to the International Space Station on the Soyuz TMA-05M spacecraft. NASA/Victor Zelentsov

  13. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Image and Video Library

    1986-01-08

    S86-25191 (for release January 1986) --- The two representatives of the Teacher-in-Space Project continue their training program at the Johnson Space Center with an additional flight aboard NASA?s KC-135 ?zero gravity? aircraft. Sharon Christa McAuliffe, left, is prime crew payload specialist, and Barbara R. Morgan is in training as backup payload specialist. The photo was taken by Keith Meyers of New York Times. Photo credit: NASA

  14. Expedition 52 Red Square Visit

    NASA Image and Video Library

    2017-07-10

    Expedition 52 flight engineers Paolo Nespoli of ESA, left, Randy Bresnik of NASA, Sergey Ryazanskiy of Roscosmos, and backup crew members, Alexander Misurkin of Roscosmos, Mark Vande Hei of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), right, pose for a group photograph in Red Square after having laid roses at the site where Russian space icons are interred as part of traditional pre-launch ceremonies, Monday, July 10, 2017 in Moscow. Photo Credit: (NASA/Bill Ingalls)

  15. Galileo spacecraft power management and distribution system

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.; Smith, R. L.

    1990-01-01

    The Galileo PMAD (power management and distribution system) is described, and the design drivers that established the final as-built hardware are discussed. The spacecraft is powered by two general-purpose heat-source-radioisotope thermoelectric generators. Power bus regulation is provided by a shunt regulator. Galileo PMAD distributes a 570-W beginning of mission (BOM) power source to a user complement of some 137 load elements. Extensive use of pyrotechnics requires two pyro switching subassemblies. They initiate 148 squibs which operate the 47 pyro devices on the spacecraft. Detection and correction of faults in the Galileo PMAD is an autonomous feature dictated by requirements for long life and reliability in the absence of ground-based support. Volatile computer memories in the spacecraft command and data system and attitude control system require a continuous source of backup power during all anticipated power bus fault scenarios. Power for the Jupiter Probe is conditioned, isolated, and controlled by a Probe interface subassembly. Flight performance of the spacecraft and the PMAD has been successful to date, with no major anomalies.

  16. Mathematical defense method of networked servers with controlled remote backups

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2006-05-01

    The networked server defense model is focused on reliability and availability in security respects. The (remote) backup servers are hooked up by VPN (Virtual Private Network) with high-speed optical network and replace broken main severs immediately. The networked server can be represent as "machines" and then the system deals with main unreliable, spare, and auxiliary spare machine. During vacation periods, when the system performs a mandatory routine maintenance, auxiliary machines are being used for back-ups; the information on the system is naturally delayed. Analog of the N-policy to restrict the usage of auxiliary machines to some reasonable quantity. The results are demonstrated in the network architecture by using the stochastic optimization techniques.

  17. Official Portrait of Astronaut Michael Collins

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This is the official NASA portrait of astronaut Michael Collins. Collins chose an Air Force career following graduation from West Point. He served as an experimental flight test officer at the Air Force Flight Test Center, Edwards Air Force Base, California, and, in that capacity, tested performance and stability and control characteristics of Air Force aircraft, primarily jet fighters. Having logged approximately 5,000 hours flying time, Collins was one of the third group of astronauts named by NASA in October 1963. Collins completed two space flights, logging 266 hours in space, of which, 1 hour and 27 minutes was spent in Extra Vehicular Activity (EVA). On July 18, 1966, he served as backup pilot for the Gemini VII mission which included a successful rendezvous and docking with a separately launched Agena target vehicle and, using the power of the Agena, maneuvered the Gemini spacecraft into another orbit for a rendezvous with a second, passive Agena. His skillful performance in completing two periods of EVA included the recovery of a micrometeorite detection experiment from the passive Agena. July 16-24, 1969, Collins served as command module (CM) pilot on Apollo 11, the historic first lunar landing mission. He remained aboard the CM, Columbia, on station in lunar orbit and performed the final re-docking maneuvers following a successful lunar orbit rendezvous with the Lunar Module (LM), Eagle. Collins left NASA in January 1970.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-09

    This is the official NASA portrait of astronaut Michael Collins. Collins chose an Air Force career following graduation from West Point. He served as an experimental flight test officer at the Air Force Flight Test Center, Edwards Air Force Base, California, and, in that capacity, tested performance and stability and control characteristics of Air Force aircraft, primarily jet fighters. Having logged approximately 5,000 hours flying time, Collins was one of the third group of astronauts named by NASA in October 1963. Collins completed two space flights, logging 266 hours in space, of which, 1 hour and 27 minutes was spent in Extra Vehicular Activity (EVA). On July 18, 1966, he served as backup pilot for the Gemini VII mission which included a successful rendezvous and docking with a separately launched Agena target vehicle and, using the power of the Agena, maneuvered the Gemini spacecraft into another orbit for a rendezvous with a second, passive Agena. His skillful performance in completing two periods of EVA included the recovery of a micrometeorite detection experiment from the passive Agena. July 16-24, 1969, Collins served as command module (CM) pilot on Apollo 11, the historic first lunar landing mission. He remained aboard the CM, Columbia, on station in lunar orbit and performed the final re-docking maneuvers following a successful lunar orbit rendezvous with the Lunar Module (LM), Eagle. Collins left NASA in January 1970.

  19. Expedition 11 Press Conference

    NASA Image and Video Library

    2005-04-13

    Expedition 11 backup crew Robert Thirsk of Canada, left, American Dan Tani, Russian Commander Mikhail Tyurin and prime Expedition 11 crew Commander Sergei Krikalev, fourth from left, Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori of Italy, right, talk to the press, Thursday, April 14, 2005, prior to the April 15 launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan. Krikalev and Phillips will spend six months on the Station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  20. Analysis of cache for streaming tape drive

    NASA Technical Reports Server (NTRS)

    Chinnaswamy, V.

    1993-01-01

    A tape subsystem consists of a controller and a tape drive. Tapes are used for backup, data interchange, and software distribution. The backup operation is addressed. During a backup operation, data is read from disk, processed in CPU, and then sent to tape. The processing speeds of a disk subsystem, CPU, and a tape subsystem are likely to be different. A powerful CPU can read data from a fast disk, process it, and supply the data to the tape subsystem at a faster rate than the tape subsystem can handle. On the other hand, a slow disk drive and a slow CPU may not be able to supply data fast enough to keep a tape drive busy all the time. The backup process may supply data to tape drive in bursts. Each burst may be followed by an idle period. Depending on the nature of the file distribution in the disk, the input stream to the tape subsystem may vary significantly during backup. To compensate for these differences and optimize the utilization of a tape subsystem, a cache or buffer is introduced in the tape controller. Most of the tape drives today are streaming tape drives. A streaming tape drive goes into reposition when there is no data from the controller. Once the drive goes into reposition, the controller can receive data, but it cannot supply data to the tape drive until the drive completes its reposition. A controller can also receive data from the host and send data to the tape drive at the same time. The relationship of cache size, host transfer rate, drive transfer rate, reposition, and ramp up times for optimal performance of the tape subsystem are investigated. Formulas developed will also show the advantages of cache watermarks to increase the streaming time of the tape drive, maximum loss due to insufficient cache, tradeoffs between cache and reposition times and the effectiveness of cache on a streaming tape drive due to idle times or interruptions due in host transfers. Several mathematical formulas are developed to predict the performance of the tape drive. Some examples are given illustrating the usefulness of these formulas. Finally, a summary and some conclusions are provided.

  1. Solar power satellite system definition study. Volume 5: Space transportation analysis, phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A small Heavy Lift Launch Vehicle (HLLV) for the Solar Power Satellites (SPS) System was analyzed. It is recommended that the small HLLV with a payload of 120 metric tons be adopted as the SPS launch vehicle. The reference HLLV, a shuttle-derived option with a payload of 400 metric tons, should serve as a backup and be examined further after initial flight experience. The electric orbit transfer vehicle should be retained as the reference orbit-to-orbit cargo system.

  2. Expedition 31 Preflight

    NASA Image and Video Library

    2012-04-23

    Expedition 31 NASA backup crew member Kevin Ford signs for his Soyuz vehicle simulation test card before senior officials at the Gagarin Cosmonaut Training Center, Monday, April 23, 2012 in Star City, Russia, while his fellow crew members Oleg Novitskiy (far left) and Evgeny Tarelkin look on. Expedition 31 prime crew members commander Gennady Padalka, flight engineers Joe Acaba and Sergei Revin practiced similar scenarios nearby in advance of their final approval for launch to the International Space Station, scheduled for May 15, 2012. Photo Credit: (NASA/Carla Cioffi)

  3. PORTRAIT - PRIME AND BACKUP CREWS - ASTRONAUT EDWARD H. WHITE II

    NASA Image and Video Library

    1966-04-01

    S66-30236 (1 April 1966) --- The National Aeronautics and Space Administration (NASA) has named these astronauts as the prime crew of the first manned Apollo Space Flight. Left to right, are Edward H. White II, command module pilot; Virgil I. Grissom, mission commander; and Roger B. Chaffee, lunar module pilot. Editor's Note: Astronauts Grissom, White and Chaffee lost their lives in a Jan. 27, 1967 fire in the Apollo Command Module (CM) during testing at the launch facility.

  4. International Space Station Electrodynamic Tether Reboost Study

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Herrmann, M.

    1998-01-01

    The International Space Station (ISS) will require periodic reboost due to atmospheric aerodynamic drag. This is nominally achieved through the use of thruster firings by the attached Progress M spacecraft. Many Progress flights to the ISS are required annually. Electrodynamic tethers provide an attractive alternative in that they can provide periodic reboost or continuous drag cancellation using no consumables, propellant, nor conventional propulsion elements. The system could also serve as an emergency backup reboost system used only in the event resupply and reboost are delayed for some reason.

  5. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1994-01-01

    Progress over the past year includes the following: A simplified rotor model with a flexible shaft and backup bearings has been developed. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501. The magnetic bearing test rig is currently floating and dynamics/control tests are being conducted. A paper has been written that documents the work using the T-501 engine model. Work has continued with the simplified model. The finite element model is currently being modified to include the effects of foundation dynamics. A literature search for material on foil bearings has been conducted. A finite element model is being developed for a magnetic bearing in series with a foil backup bearing.

  6. Hot gas ingestion effects on fuel control surge recovery and AH-1 rotor drive train torque spikes

    NASA Technical Reports Server (NTRS)

    Tokarski, Frank; Desai, Mihir; Books, Martin; Zagranski, Raymond

    1994-01-01

    This report summarizes the work accomplished through computer simulation to understand the impact of the hydromechanical turbine assembly (TA) fuel control on rocket gas ingestion induced engine surges on the AH-1 (Cobra) helicopter. These surges excite the lightly damped torsional modes of the Cobra rotor drive train and can cause overtorqueing of the tail rotor shaft. The simulation studies show that the hydromechanical TA control has a negligible effect on drive train resonances because its response is sufficiently attenuated at the resonant frequencies. However, a digital electronic control working through the TA control's separate, emergency fuel metering system has been identified as a solution to the overtorqueing problem. State-of-the-art software within the electronic control can provide active damping of the rotor drive train to eliminate excessive torque spikes due to any disturbances including engine surges and aggressive helicopter maneuvers. Modifications to the existing TA hydromechanical control are relatively minor, and existing engine sensors can be utilized by the electronic control. Therefore, it is concluded that the combination of full authority digital electronic control (FADEC) with hydromechanical backup using the existing TA control enhances flight safety, improves helicopter performance, reduces pilot workload, and provides a substantial payback for very little investment.

  7. Tour by Saudi prince Salman Abdelazize Al-Saud prior to mission

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Tour by Saudi prince Salman Abdelazize Al-Saud, payload specialists for STS 51-G mission, prior to mission. Al-Saud and Abdulmohsen Hamad Al-Bassam, the backup payload specialist, man the controls on the flight deck of the crew compartment trainer in the Shuttle mockup and integration laboratory (29788); the Saudi payload specialists share the hatch of the crew compartment trainer (29789); Portrait view of Abdulmohsen Hamad Al-Bassam during a visit to the Shuttle mockup and integraion laboratory (29790); Don Sirroco, left, explains the middeck facilities in the Shuttle mockup and integration laboratory (29791); Portrait view of Sultan Salman Abdelazize Al-Saud in the Shuttle Mockup and Integration laboratory (29792); The Saudi payload specialists witness a space food demonstration in the life sciences laboratory at JSC. Al-Saud (left) and Al-Bassam (second left) listen as Rita M. Rapp, food specialist, discusses three preparations of re-hydratable food for space travelers. Lynn S. Coll

  8. Summary of astronaut inputs on automation and robotics for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1990-01-01

    Astronauts and payload specialists present specific recommendations in the form of an overview that relate to the use of automation and robotics on the Space Station Freedom. The inputs are based on on-orbit operations experience, time requirements for crews, and similar crew-specific knowledge that address the impacts of automation and robotics on productivity. Interview techniques and specific questionnaire results are listed, and the majority of the responses indicate that incorporating automation and robotics to some extent and with human backup can improve productivity. Specific support is found for the use of advanced automation and EVA robotics on the Space Station Freedom and for the use of advanced automation on ground-based stations. Ground-based control of in-flight robotics is required, and Space Station activities and crew tasks should be analyzed to assess the systems engineering approach for incorporating automation and robotics.

  9. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    The prime and backup crew buses are escorted through the Baikonur Cosmodrome as the crew returns to the Cosmonaut Hotel. Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft October 5, 2004 at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station, while Shargin will return to Earth October 24 with the Station’s current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: “NASA/Bill Ingalls”

  10. A Two-Wheel Observing Mode for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; ODonnell, James R., Jr.

    2001-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE). Due to the MAP project's limited mass, power, and budget, a traditional reliability concept including fully redundant components was not feasible. The MAP design employs selective hardware redundancy, along with backup software modes and algorithms, to improve the odds of mission success. This paper describes the effort to develop a backup control mode, known as Observing II, that will allow the MAP science mission to continue in the event of a failure of one of its three reaction wheel assemblies. This backup science mode requires a change from MAP's nominal zero-momentum control system to a momentum-bias system. In this system, existing thruster-based control modes are used to establish a momentum bias about the sun line sufficient to spin the spacecraft up to the desired scan rate. Natural spacecraft dynamics exhibits spin and nutation similar to the nominal MAP science mode with different relative rotation rates, so the two reaction wheels are used to establish and maintain the desired nutation angle from the sun line. Detailed descriptions of the ObservingII control algorithm and simulation results will be presented, along with the operational considerations of performing the rest of MAP's necessary functions with only two wheels.

  11. S-191 sensor performance evaluation

    NASA Technical Reports Server (NTRS)

    Hughes, C. L.

    1975-01-01

    A final analysis was performed on the Skylab S-191 spectrometer data received from missions SL-2, SL-3, and SL-4. The repeatability and accuracy of the S-191 spectroradiometric internal calibration was determined by correlation to the output obtained from well-defined external targets. These included targets on the moon and earth as well as deep space. In addition, the accuracy of the S-191 short wavelength autocalibration was flight checked by correlation of the earth resources experimental package S-191 outputs and the Backup Unit S-191 outputs after viewing selected targets on the moon.

  12. Computers Take Flight: A History of NASA's Pioneering Digital Fly-By-Wire Project

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    2000-01-01

    An overview of the NASA F-8 Fly-by Wire project is presented. The project made two significant contributions to the new technology: (1) a solid design base of techniques that work and those that do not, and (2) credible evidence of good flying qualities and the ability of such a system to tolerate real faults and to continue operation without degradation. In 1972 the F-8C aircraft used in the program became he first digital fly-by-wire aircraft to operate without a mechanical backup system.

  13. Crew Training - STS-33/51L (Zero-G)

    NASA Image and Video Library

    1985-10-16

    S85-42470 (16 Oct. 1985) --- Sharon Christa McAuliffe, right, and Barbara R. Morgan, participating in the Teacher-in-Space Project, team up with Bob Mayfield, a JSC aerospace educations specialist, to preview some experiments in zero-G. A KC-135 aircraft flies a special pattern to provide series of brief periods of weightlessness. McAuliffe, prime crew member for STS-51L, injects a hydroponic solution into a cylinder to review one of the experiments planned for the flight. Morgan is backup for McAuliffe on that mission. Photo credit: NASA

  14. [Space flight/bedrest immobilization and bone. Development a devise to maintain the skeletal muscles in space].

    PubMed

    Shiba, Naoto; Matsuse, Hiroo; Nago, Takeshi; Masayuki, Omoto; Kawaguchi, Takumi; Tagawa, Yoshihiko

    2012-12-01

    We have developed a "hybrid training system" (HTS) that is designed to maintain the musculoskeletal system of astronauts by using an electrically stimulated antagonist to resist the volitional contraction of agonist muscles in weightlessness. In other words, electrical stimulation generates a resistive force instead of gravity. HTS will become a useful back-up for the standard training device in the International Space Station, or a useful training device in the small space ship for the exploration of the Moon and Mars.

  15. jsc2012e094088

    NASA Image and Video Library

    2012-06-19

    (19 June 2012) --- Expedition 32/33 backup crew members Tom Marshburn of NASA (left), Soyuz Commander Roman Romanenko (center) and Chris Hadfield of the Canadian Space Agency walked to a Soyuz simulator as they prepared for their final Soyuz qualification test June 19, 2012 at the Gagarin Cosmonaut Training Center in Star City, Russia. Expedition 32 Soyuz Commander Yuri Malenchenko and Flight Engineers Suni Williams and Aki Hoshide practiced similar scenarios nearby in advance of their final approval for launch to the International Space Station, scheduled for July 15, 2012. Photo credit: NASA

  16. STS-45 crewmembers during LINHOF camera briefing in JSC's Bldg 4 rm 2026A

    NASA Image and Video Library

    1992-01-14

    S92-26522 (Feb 1992) --- Crewmembers assigned to NASA's STS-45 mission are briefed on the use of the Linhof camera in the flight operations facility at the Johnson Space Center (JSC). Charles F. Bolden, mission commander, stands at left. Other crewmembers (seated clockwise around the table from lower left) are Dirk Frimout of Belgium representing the European Space Agency as payload specialist; Charles R. (Rick) Chappell, backup payload specialist; Brian Duffy, pilot; Kathryn D. Sullivan, payload commander; David C. Leestma, mission specialist; Byron K. Lichtenberg, payload specialist; and C. Michael Foale, mission specialist. James H. Ragan (far right), head of the flight equipment section of the flight systems branch in JSC's Man Systems Division, briefs the crewmembers. Donald C. Carico, of the crew training staff and Rockwell International, stands near Bolden. The camera, used for out-the-window observations, is expected to be used frequently on the Atmospheric Laboratory for Applications and Science (ATLAS-1) mission, scheduled for a March date with the Space Shuttle Atlantis.

  17. Clinical experiences utilizing wireless remote control and an ASP model backup archive for a disaster recovery event

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Documet, Luis; Documet, Jorge; Huang, H. K.; Muldoon, Jean

    2004-04-01

    An Application Service Provider (ASP) archive model for disaster recovery for Saint John"s Health Center (SJHC) clinical PACS data has been implemented using a Fault-Tolerant Archive Server at the Image Processing and Informatics Laboratory, Marina del Rey, CA (IPIL) since mid-2002. The purpose of this paper is to provide clinical experiences with the implementation of an ASP model backup archive in conjunction with handheld wireless technologies for a particular disaster recovery scenario, an earthquake, in which the local PACS archive and the hospital are destroyed and the patients are moved from one hospital to another. The three sites involved are: (1) SJHC, the simulated disaster site; (2) IPIL, the ASP backup archive site; and (3) University of California, Los Angeles Medical Center (UCLA), the relocated patient site. An ASP backup archive has been established at IPIL to receive clinical PACS images daily using a T1 line from SJHC for backup and disaster recovery storage. Procedures were established to test the network connectivity and data integrity on a regular basis. In a given disaster scenario where the local PACS archive has been destroyed and the patients need to be moved to a second hospital, a wireless handheld device such as a Personal Digital Assistant (PDA) can be utilized to route images to the second hospital site with a PACS and reviewed by radiologists. To simulate this disaster scenario, a wireless network was implemented within the clinical environment in all three sites: SJHC, IPIL, and UCLA. Upon executing the disaster scenario, the SJHC PACS archive server simulates a downtime disaster event. Using the PDA, the radiologist at UCLA can query the ASP backup archive server at IPIL for PACS images and route them directly to UCLA. Implementation experiences integrating this solution within the three clinical environments as well as the wireless performance are discussed. A clinical downtime disaster scenario was implemented and successfully tested. Radiologists were able to successfully query PACS images utilizing a wireless handheld device from the ASP backup archive at IPIL and route the PACS images directly to a second clinical site at UCLA where they and the patients are located at that time. In a disaster scenario, using a wireless device, radiologists at the disaster health care center can route PACS data from an ASP backup archive server to be reviewed in a live clinical PACS environment at a secondary site. This solution allows Radiologists to use a wireless handheld device to control the image workflow and to review PACS images during a major disaster event where patients must be moved to a secondary site.

  18. Using backup generators for meeting peak electricity demand: a sensitivity analysis on emission controls, location, and health endpoints.

    PubMed

    Gilmore, Elisabeth A; Adams, Peter J; Lave, Lester B

    2010-05-01

    Generators installed for backup power during blackouts could help satisfy peak electricity demand; however, many are diesel generators with nonnegligible air emissions that may damage air quality and human health. The full (private and social) cost of using diesel generators with and without emission control retrofits for fine particulate matter (PM2.5) and nitrogen oxides (NOx) were compared with a new natural gas turbine peaking plant. Lower private costs were found for the backup generators because the capital costs are mostly ascribed to reliability. To estimate the social costs from air quality, the changes in ambient concentrations of ozone (O3) and PM2.5 were modeled using the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) chemical transport model. These air quality changes were translated to their equivalent human health effects using concentration-response functions and then into dollars using estimates of "willingness-to-pay" to avoid ill health. As a case study, 1000 MW of backup generation operating for 12 hr/day for 6 days in each of four eastern U.S. cities (Atlanta, Chicago, Dallas, and New York) was modeled. In all cities, modeled PM2.5 concentrations increased (up to 5 microg/m3) due mainly to primary emissions. Smaller increases and decreases were observed for secondary PM2.5 with more variation between cities. Increases in NOx, emissions resulted in significant nitrate formation (up to 1 microg/m3) in Atlanta and Chicago. The NOx emissions also caused O3 decreases in the urban centers and increases in the surrounding areas. For PM2.5, a social cost of approximately $2/kWh was calculated for uncontrolled diesel generators in highly populated cities but was under 10 cent/kWh with PM2.5 and NOx controls. On a full cost basis, it was found that properly controlled diesel generators are cost-effective for meeting peak electricity demand. The authors recommend NOx and PM2.5 controls.

  19. Open-Loop Pitch Table Optimization for the Maximum Dynamic Pressure Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan A.

    2009-01-01

    NASA has scheduled the retirement of the space shuttle orbiter fleet at the end of 2010. The Constellation program was created to develop the next generation of human spaceflight vehicles and launch vehicles, known as Orion and Ares respectively. The Orion vehicle is a return to the capsule configuration that was used in the Mercury, Gemini, and Apollo programs. This configuration allows for the inclusion of an abort system that safely removes the capsule from the booster in the event of a failure on launch. The Flight Test Office at NASA's Dryden Flight Research Center has been tasked with the flight testing of the abort system to ensure proper functionality and safety. The abort system will be tested in various scenarios to approximate the conditions encountered during an actual Orion launch. Every abort will have a closed-loop controller with an open-loop backup that will direct the vehicle during the abort. In order to provide the best fit for the desired total angle of attack profile with the open-loop pitch table, the table is tuned using simulated abort trajectories. A pitch table optimization program was created to tune the trajectories in an automated fashion. The program development was divided into three phases. Phase 1 used only the simulated nominal run to tune the open-loop pitch table. Phase 2 used the simulated nominal and three simulated off nominal runs to tune the open-loop pitch table. Phase 3 used the simulated nominal and sixteen simulated off nominal runs to tune the open-loop pitch table. The optimization program allowed for a quicker and more accurate fit to the desired profile as well as allowing for expanded resolution of the pitch table.

  20. Progestin-Only Oral Contraceptives

    MedlinePlus

    ... oral contraceptives are a very effective method of birth control, but they do not prevent the spread of ... on another day, use a backup method of birth control (such as a condom and/or a spermicide) ...

  1. LOGIC CIRCUIT

    DOEpatents

    Strong, G.H.; Faught, M.L.

    1963-12-24

    A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)

  2. 47 CFR 12.2 - Backup power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Backup power. 12.2 Section 12.2 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL REDUNDANCY OF COMMUNICATIONS SYSTEMS § 12.2 Backup power..., must have an emergency backup power source (e.g., batteries, generators, fuel cells) for all assets...

  3. First evidence for "The backup plan paradox".

    PubMed

    Napolitano, Christopher M; Freund, Alexandra M

    2017-08-01

    This research is a first test of the backup plan paradox. We hypothesized that investing in a backup plan may facilitate the conditions that it was developed to address: Plan A's insufficiency. Five studies provide initial, primarily correlative support for the undermining effect of investing in a backup plan. Study 1 (n= 160) demonstrated that the more participants perceived they had invested in developing a backup plan (preparing a "crib sheet"), the more likely they were to use it, although greater investments were unrelated to backup plan utility. Studies 2-4 used a simulated negotiation task. Study 2 (n = 247) demonstrated that when goal-relevant resources are limited, investing in developing backup plans and perceiving them as highly instrumental can decrease goal performance through the indirect effect of increased means replacing. Study 3 (n = 248) replicated this effect when goal-relevant resources were plentiful. Study 4 (n = 204) used an experimental variant of the simulated negotiation task and demonstrated that simply having a backup plan is not detrimental, but perceiving backup plans to be highly instrumental decreased goal performance, again through the indirect effect of increased means replacing. Study 5 (n = 160) replicated findings from Studies 1-4 using a lab-based motor task (throwing a ball). Together, these results provide first evidence that backup plans can introduce costs that may jeopardize goal performance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Radiation protection and instrumentation

    NASA Technical Reports Server (NTRS)

    Bailey, J. V.

    1975-01-01

    Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.

  5. RIDE ELEVATOR (CLOSEUP)(GT-4) - ASTRONAUT EDWARD H. WHITE II - MISC.

    NASA Image and Video Library

    1965-06-03

    S65-30266 (29 May 1965) --- In the elevator on the way to the White Room at Pad 19 for simulations on May 29, 1965, astronauts James A. McDivitt (right), command pilot, and Edward H. White II, pilot, are shown with suit technicians Clyde Teague (right center) and Joe Schmitt. The National Aeronautics and Space Administration's two-man Gemini-4 mission is scheduled for 62 revolutions in four days. The backup crew, astronauts Frank Borman and James A. Lovell Jr. (both out of frame), will replace the prime crew if either crewman should become ineligible for the flight.

  6. Command Flight Path Display. Phase I and II.

    DTIC Science & Technology

    1983-09-01

    transmissions over the standard 56K baud interface. The PS-300 was a commercial unit and required some modifications to ensure its reliability in an...1 H7750-AA Battery Backup NADC 5 Oct E2 9 1 LA-12D Decwriter SAI/RtS 4 11ov 82 10 1 BC03M-25 Null Modem Cable SAI/RM0S 4 Nov 82 35 2 ~%*~’ .5°’ 11 1...of about 1200 baud. (The interface hardware is capable of 56K baud transmission, but the standard PS-300 firmware is only able to process input

  7. Exp. 55-56 Qual Exams Video File

    NASA Image and Video Library

    2018-02-22

    Expedition 55-56 Crew Undergoes Final Training Outside Moscow Three crew members preparing for a five-month mission on the International Space Station completed their final training before launch. Expedition 55-56 Soyuz Commander Oleg Artemyev of Roscosmos and Flight Engineers Drew Feustel and Ricky Arnold of NASA and their backups, Alexey Ovchinin of Roscosmos and Nick Hague of NASA, conducted final qualification training at the Gagarin Cosmonaut Training Center in Star City, Russia Feb. 20 and 21. Artemyev, Feustel and Arnold are scheduled to launch aboard the Soyuz MS-08 spacecraft on March 21 from the Baikonur Cosmodrome in Kazakhstan.

  8. Backup control airstart performance on a digital electronic engine control-equipped F100-engine

    NASA Technical Reports Server (NTRS)

    Johnson, J. B.

    1984-01-01

    The air start capability of a backup control (BUC) was tested for a digital electronic engine control (DEEC) equipped F100 engine, which was installed in an F-15 aircraft. Two air start schedules were tested. Using the group 1 start schedule, based on a 40 sec timer, an air speed of 300 knots was required to ensure successful 40 and 25% BUC mode spooldown airstarts. If core rotor speed (N2) was less than 40% a stall would occur when the start bleed closed, 40 sec after initiation of the air start. All jet fuel starter (JFS) assisted air starts were successful with the group 1 start schedule. For the group 2 schedule, the time between pressurization and start bleed closure ranged between 50 sec and 72 sec. Idle rps was lower than the desired 65% for air starts at higher altitudes and lower air speeds.

  9. Sleep Better at Night...Back Up Your Data.

    ERIC Educational Resources Information Center

    Smith, Russell

    1996-01-01

    Discusses the need to back up computer files, and describes the technological evolution of back-up methods. Reviews tape drive and external hard drive back-up products offered by computer companies and presents back-up strategies to use with all back-up methods. A sidebar lists information on the reviewed products. (JMV)

  10. Gemini 8 prime and backup crews during press conference

    NASA Image and Video Library

    1966-02-26

    S66-24380 (26 Feb. 1966) --- Gemini-8 prime and backup crews during press conference. Left to right are astronauts David R. Scott, prime crew pilot; Neil A. Armstrong, prime crew command pilot; Charles Conrad Jr., backup crew command pilot; and Richard F. Gordon Jr., backup crew pilot. Photo credit: NASA

  11. 10 CFR 36.23 - Access control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Access control. 36.23 Section 36.23 Energy NUCLEAR... Requirements for Irradiators § 36.23 Access control. (a) Each entrance to a radiation room at a panoramic... radiation room at a panoramic irradiator must have an independent backup access control to detect personnel...

  12. 10 CFR 36.23 - Access control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Access control. 36.23 Section 36.23 Energy NUCLEAR... Requirements for Irradiators § 36.23 Access control. (a) Each entrance to a radiation room at a panoramic... radiation room at a panoramic irradiator must have an independent backup access control to detect personnel...

  13. 10 CFR 36.23 - Access control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Access control. 36.23 Section 36.23 Energy NUCLEAR... Requirements for Irradiators § 36.23 Access control. (a) Each entrance to a radiation room at a panoramic... radiation room at a panoramic irradiator must have an independent backup access control to detect personnel...

  14. Feasibility study of the solar scientific instruments for Spacelab/Orbiter

    NASA Technical Reports Server (NTRS)

    Leritz, J.; Rasser, T.; Stone, E.; Lockhart, B.; Nobles, W.; Parham, J.; Eimers, D.; Peterson, D.; Barnhart, W.; Schrock, S.

    1981-01-01

    The feasibility and economics of mounting and operating a set of solar scientific instruments in the backup Skylab Apollo Telescope Mount (ATM) hardware was evaluated. The instruments used as the study test payload and integrated into the ATM were: the Solar EUV Telescope/Spectrometer; the Solar Active Region Observing Telescope; and the Lyman Alpha White Light Coronagraph. The backup ATM hardware consists of a central cruciform structure, called the "SPAR', a "Sun End Canister' and a "Multiple Docking Adapter End Canister'. Basically, the ATM hardware and software provides a structural interface for the instruments; a closely controlled thermal environment; and a very accurate attitude and pointing control capability. The hardware is an identical set to the hardware that flow on Skylab.

  15. Vaccine refrigeration

    PubMed Central

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator regulator with a battery back-up power supply and microprocessor control system is also described. PMID:24442209

  16. Vaccine refrigeration: thinking outside of the box.

    PubMed

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator with a battery back-up power supply and microprocessor control system is also described.

  17. High Speed, High Temperature, Fault Tolerant Operation of a Combination Magnetic-Hydrostatic Bearing Rotor Support System for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan

    2004-01-01

    Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.

  18. International Space Station alpha remote manipulator system workstation controls test report

    NASA Astrophysics Data System (ADS)

    Ehrenstrom, William A.; Swaney, Colin; Forrester, Patrick

    1994-05-01

    Previous development testing for the space station remote manipulator system workstation controls determined the need for hardware controls for the emergency stop, brakes on/off, and some camera functions. This report documents the results of an evaluation to further determine control implementation requirements, requested by the Canadian Space Agency (CSA), to close outstanding review item discrepancies. This test was conducted at the Johnson Space Center's Space Station Mockup and Trainer Facility in Houston, Texas, with nine NASA astronauts and one CSA astronaut as operators. This test evaluated camera iris and focus, back-up drive, latching end effector release, and autosequence controls using several types of hardware and software implementations. Recommendations resulting from the testing included providing guarded hardware buttons to prevent accidental actuation, providing autosequence controls and back-up drive controls on a dedicated hardware control panel, and that 'latch on/latch off', or on-screen software, controls not be considered. Generally, the operators preferred hardware controls although other control implementations were acceptable. The results of this evaluation will be used along with further testing to define specific requirements for the workstation design.

  19. International Space Station alpha remote manipulator system workstation controls test report

    NASA Technical Reports Server (NTRS)

    Ehrenstrom, William A.; Swaney, Colin; Forrester, Patrick

    1994-01-01

    Previous development testing for the space station remote manipulator system workstation controls determined the need for hardware controls for the emergency stop, brakes on/off, and some camera functions. This report documents the results of an evaluation to further determine control implementation requirements, requested by the Canadian Space Agency (CSA), to close outstanding review item discrepancies. This test was conducted at the Johnson Space Center's Space Station Mockup and Trainer Facility in Houston, Texas, with nine NASA astronauts and one CSA astronaut as operators. This test evaluated camera iris and focus, back-up drive, latching end effector release, and autosequence controls using several types of hardware and software implementations. Recommendations resulting from the testing included providing guarded hardware buttons to prevent accidental actuation, providing autosequence controls and back-up drive controls on a dedicated hardware control panel, and that 'latch on/latch off', or on-screen software, controls not be considered. Generally, the operators preferred hardware controls although other control implementations were acceptable. The results of this evaluation will be used along with further testing to define specific requirements for the workstation design.

  20. Pathfinder ground preparations prior to altitude record setting flight of 71,500 feet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians make final adjustments on the solar-powered Pathfinder remotely piloted research aircraft prior to the craft's taking off on a flight which established a new unofficial world's altitude record for both propellor-driven and solar-powered aircraft. The new record of more than 71,500 feet was set during a 14 1/2-hour flight July 7, 1997, from the U.S. Navy's Pacific Missile Range Facility (PMRF) at Barking Sands, Kauai, Hawaii. The new altitude record is subject to verification by the National Aeronautics Association. The Pathfinder took off at 8:34 a.m. HDT, passed its previous record altitude of 67,350 feet about 2:45 p.m., and then reached its new mark at about 4 p.m. Controllers on the ground then initiated a slow decent, and Pathfinder landed seven hours later at 11:05 p.m. HDT. The experimental Boeing Condor remotely-piloted aircraft had held the previous record for propellor-driven craft of 67,028 feet. The Pathfinder had exceeded that height on a previous flight on June 9, 1997, but not by a large enough margin to be considered a new record. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  1. The near-source impacts of diesel backup generators in urban environments

    NASA Astrophysics Data System (ADS)

    Tong, Zheming; Zhang, K. Max

    2015-05-01

    Distributed power generation, located close to consumers, plays an important role in the current and future power systems. However, its near-source impacts in complex urban environments are not well understood. In this paper, we focused on diesel backup generators that participate in demand response (DR) programs. We first improved the micro-environmental air quality simulations by employing a meteorology processor, AERMET, to generate site-specific boundary layer parameters for the Large Eddy Simulation (LES) modeling. The modeling structure was then incorporated into the CTAG model to evaluate the environmental impacts of diesel backup generators in near-source microenvironments. We found that the presence of either tall upwind or downwind building can deteriorate the air quality in the near-stack street canyons, largely due to the recirculation zones generated by the tall buildings, reducing the near-stack dispersion. Decreasing exhaust momentum ratio (stack exit velocity/ambient wind velocity) draws more exhaust into the recirculation zone, and reduces the effective stack height, which results in elevated near-ground concentrations inside downwind street canyons. The near-ground PM2.5 concentration for the worst scenarios could well exceed 100 μg m-3, posing potential health risk to people living and working nearby. In general, older diesel backup generators (i.e., Tier 1, 2 or older) without the up-to-date emission control may significantly increase the pollutant concentration in the near-source street canyons if participating in DR programs. Even generators that comply with Tier-4 standards could lead to PM hotspots if their stacks are next to tall buildings. Our study implies that the siting of diesel backup generators stacks should consider not only the interactions of fresh air intake and exhaust outlet for the building housing the backup generators, but also the dispersion of exhaust plumes in the surrounding environment.

  2. Pathfinder aircraft liftoff on altitude record setting flight of 71,500 feet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Pathfinder aircraft has set a new unofficial world record for high-altitude flight of over 71,500 feet for solar-powered aircraft at the U.S. Navy's Pacific Missile Range Facility, Kauai, Hawaii. Pathfinder was designed and manufactured by AeroVironment, Inc, of Simi Valley, California, and was operated by the firm under a jointly sponsored research agreement with NASA's Dryden Flight Research Center, Edwards, California. Pathfinder's record-breaking flight occurred July 7, 1997. The aircraft took off at 11:34 a.m. PDT, passed its previous record altitude of 67,350 feet at about 5:45 p.m. and then reached its new record altitude at 7 p.m. The mission ended with a perfect nighttime landing at 2:05 a.m. PDT July 8. The new record is the highest altitude ever attained by a propellor-driven aircraft. Before Pathfinder, the altitude record for propellor-driven aircraft was 67,028 feet, set by the experimental Boeing Condor remotely piloted aircraft. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  3. Architecture and evolution of Goddard Space Flight Center Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Bedet, Jean-Jacques; Bodden, Lee; Rosen, Wayne; Sherman, Mark; Pease, Phil

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been developed to enhance Earth Science research by improved access to remote sensor earth science data. Building and operating an archive, even one of a moderate size (a few Terabytes), is a challenging task. One of the critical components of this system is Unitree, the Hierarchical File Storage Management System. Unitree, selected two years ago as the best available solution, requires constant system administrative support. It is not always suitable as an archive and distribution data center, and has moderate performance. The Data Archive and Distribution System (DADS) software developed to monitor, manage, and automate the ingestion, archive, and distribution functions turned out to be more challenging than anticipated. Having the software and tools is not sufficient to succeed. Human interaction within the system must be fully understood to improve efficiency to improve efficiency and ensure that the right tools are developed. One of the lessons learned is that the operability, reliability, and performance aspects should be thoroughly addressed in the initial design. However, the GSFC DAAC has demonstrated that it is capable of distributing over 40 GB per day. A backup system to archive a second copy of all data ingested is under development. This backup system will be used not only for disaster recovery but will also replace the main archive when it is unavailable during maintenance or hardware replacement. The GSFC DAAC has put a strong emphasis on quality at all level of its organization. A Quality team has also been formed to identify quality issues and to propose improvements. The DAAC has conducted numerous tests to benchmark the performance of the system. These tests proved to be extremely useful in identifying bottlenecks and deficiencies in operational procedures.

  4. Orion Exploration Flight Test-1 Contingency Drogue Deploy Velocity Trigger

    NASA Technical Reports Server (NTRS)

    Gay, Robert S.; Stochowiak, Susan; Smith, Kelly

    2013-01-01

    As a backup to the GPS-aided Kalman filter and the Barometric altimeter, an "adjusted" velocity trigger is used during entry to trigger the chain of events that leads to drogue chute deploy for the Orion Multi-Purpose Crew Vehicle (MPCV) Exploration Flight Test-1 (EFT-1). Even though this scenario is multiple failures deep, the Orion Guidance, Navigation, and Control (GN&C) software makes use of a clever technique that was taken from the Mars Science Laboratory (MSL) program, which recently successfully landing the Curiosity rover on Mars. MSL used this technique to jettison the heat shield at the proper time during descent. Originally, Orion use the un-adjusted navigated velocity, but the removal of the Star Tracker to save costs for EFT-1, increased attitude errors which increased inertial propagation errors to the point where the un-adjusted velocity caused altitude dispersions at drogue deploy to be too large. Thus, to reduce dispersions, the velocity vector is projected onto a "reference" vector that represents the nominal "truth" vector at the desired point in the trajectory. Because the navigation errors are largely perpendicular to the truth vector, this projection significantly reduces dispersions in the velocity magnitude. This paper will detail the evolution of this trigger method for the Orion project and cover the various methods tested to determine the reference "truth" vector; and at what point in the trajectory it should be computed.

  5. An overview of the technical design of MSAT mobile satellite communications services

    NASA Astrophysics Data System (ADS)

    Davies, N. George

    The Canadian MSAT mobile satellite communications system is being implemented in cooperation with the American Mobile Satellite Consortium (AMSC). Two satellites are to be jointly acquired and each satellite is expected to backup the other. This paper describes the technical concepts of the services to be offered and the baseline planning of the infrastructure for the ground segment. MSAT service requirements are analyzed for mobile radio, telephone, data, and aeronautical services. The MSAT system will use nine beams in a narrow range of L-band frequencies with frequency reuse. Beams may be added to cover flight information areas in the Atlantic and Pacific oceans. The elements of the network architecture are: a network control centre, data hub stations, gateway stations, base stations, mobile terminals, and a signalling system to interconnect the elements of the system. The network control center will manage the network and allocate space segment capacity; data hub stations will support a switched packet mobile data service; the gateway stations will provide interconnection to the public telephone system and data networks; and the base stations will support private circuit switched voice and data services. Several alternative designs for the signalling system are described.

  6. 49 CFR Appendix F to Part 229 - Recommended Practices for Design and Safety Analysis

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... expected order of use; (v) Group similar controls together; (vi) Design for high stimulus-response compatibility (geometric and conceptual); (vii) Design safety-critical controls to require more than one... description of all backup methods of operation; and (s) The configuration/revision control measures designed...

  7. 49 CFR Appendix F to Part 229 - Recommended Practices for Design and Safety Analysis

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... expected order of use; (v) Group similar controls together; (vi) Design for high stimulus-response compatibility (geometric and conceptual); (vii) Design safety-critical controls to require more than one... description of all backup methods of operation; and (s) The configuration/revision control measures designed...

  8. 49 CFR Appendix F to Part 229 - Recommended Practices for Design and Safety Analysis

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... expected order of use; (v) Group similar controls together; (vi) Design for high stimulus-response compatibility (geometric and conceptual); (vii) Design safety-critical controls to require more than one... description of all backup methods of operation; and (s) The configuration/revision control measures designed...

  9. Hardware

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The full complement of EDOMP investigations called for a broad spectrum of flight hardware ranging from commercial items, modified for spaceflight, to custom designed hardware made to meet the unique requirements of testing in the space environment. In addition, baseline data collection before and after spaceflight required numerous items of ground-based hardware. Two basic categories of ground-based hardware were used in EDOMP testing before and after flight: (1) hardware used for medical baseline testing and analysis, and (2) flight-like hardware used both for astronaut training and medical testing. To ensure post-landing data collection, hardware was required at both the Kennedy Space Center (KSC) and the Dryden Flight Research Center (DFRC) landing sites. Items that were very large or sensitive to the rigors of shipping were housed permanently at the landing site test facilities. Therefore, multiple sets of hardware were required to adequately support the prime and backup landing sites plus the Johnson Space Center (JSC) laboratories. Development of flight hardware was a major element of the EDOMP. The challenges included obtaining or developing equipment that met the following criteria: (1) compact (small size and light weight), (2) battery-operated or requiring minimal spacecraft power, (3) sturdy enough to survive the rigors of spaceflight, (4) quiet enough to pass acoustics limitations, (5) shielded and filtered adequately to assure electromagnetic compatibility with spacecraft systems, (6) user-friendly in a microgravity environment, and (7) accurate and efficient operation to meet medical investigative requirements.

  10. Post-flight BET products for the 2nd discovery entry, STS-19 (51-A)

    NASA Technical Reports Server (NTRS)

    Kelly, G. M.; Mcconnell, J. G.; Heck, M. L.; Troutman, P. A.; Waters, L. A.; Findlay, J. T.

    1985-01-01

    The post-flight products for the second Discovery flight, STS-19 (51-A), are summarized. The inertial best estimate trajectory (BET), BT19D19/UN=169750N, was developed using spacecraft dynamic measurements from Inertial Measurement Unit 2 (IMU2) in conjunction with the best tracking coverage available for any of the earlier Shuttle entries. As a consequence of the latter, an anchor epoch was selected which conforms to an initial altitude of greater than a million feet. The Extended BET, ST19BET/UN=274885C, incorporated the previously mentioned inertial reconstructed state information and the Langley Atmospheric Information Retrieval System (LAIRS) atmosphere, ST19MET/UN=712662N, with some minor exceptions. Primary and back-up AEROBET reels are NK0165 and NK0201, respectively. This product was only developed over the lowermost 360 kft altitude range due to atmosphere problems but this relates to altitudes well above meaningful signal in the IMUs. Summary results generated from the AEROBET for this flight are presented with meaningful configuration and statistical comparisons from the previous thirteen flights. Modified maximum likelihood estimation (MMLE) files were generated based on IMU2 and the Rate Gyro Assembly/Accelerometer Assembly (RGA/AA), respectively. Appendices attached define spacecraft and physical constants utilized, show plots of the final tracking data residuals from the post-flight fit, list relevant parameters from the BET at a two second spacing, and retain for archival purpose all relevant input and output tapes and files generated.

  11. A Challenging Trio in Space 'Routine' Operations of the Swarm Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Diekmann, Frank-Jurgen; Clerigo, Ignacio; Albini, Giuseppe; Maleville, Laurent; Neto, Alessandro; Patterson, David; Nino, Ana Piris; Sieg, Detlef

    2016-08-01

    Swarm is the first ESA Earth Observation Mission with three satellites flying in a semi-controlled constellation. The trio is operated from ESA's satellite control centre ESOC in Darmstadt, Germany. The Swarm Flight Operations Segment consists of the typical elements of a satellite control system at ESOC, but had to be carefully tailored for this innovative mission. The main challenge was the multi-satellite system of Swarm, which necessitated the development of a Mission Control System with a multi-domain functionality, both in hardware and software and covering real-time and backup domains. This was driven by the need for extreme flexibility for constellation operations and parallel activities.The three months of commissioning in 2014 were characterized by a very tight and dynamically changing schedule of activities. All operational issues could be solved during that time, including the challenging orbit acquisition phase to achieve the final constellation.Although the formal spacecraft commissioning phase was concluded in spring 2014, the investigations for some payload instruments continue even today. The Electrical Field Instruments are for instance still being tested in order to characterize and improve science data quality. Various test phases also became necessary for the Accelerometers on the Swarm satellites. In order to improve the performance of the GPS Receivers for better scientific exploitation and to minimize the failures due to loss of synchronization, a number of parameter changes were commanded via on-board patches.Finally, to minimize the impact on operations, a new strategy had to be implemented to handle single/multi bit errors in the on-board mass Memories, defining when to ignore and when to restore the memory via a re-initialisation.The poster presentation summarizes the Swarm specific ground segment elements of the FOS and explains some of the extended payload commissioning operations, turning Swarm into a most demanding and challenging mission for the Flight Control Team at ESOC.

  12. High-Rate Communications Outage Recorder Operations for Optimal Payload and Science Telemetry Management Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Shell, Michael T.; McElyea, Richard M. (Technical Monitor)

    2002-01-01

    All International Space Station (ISS) Ku-band telemetry transmits through the High-Rate Communications Outage Recorder (HCOR). The HCOR provides the recording and playback capability for all payload, science, and International Partner data streams transmitting through NASA's Ku-band antenna system. The HCOR is a solid-state memory recorder that provides recording capability to record all eight ISS high-rate data during ISS Loss-of-Signal periods. NASA payloads in the Destiny module are prime users of the HCOR; however, NASDA and ESA will also utilize the HCOR for data capture and playback of their high data rate links from the Kibo and Columbus modules. Marshall Space Flight Center's Payload Operations Integration Center manages the HCOR for nominal functions, including system configurations and playback operations. The purpose of this paper is to present the nominal operations plan for the HCOR and the plans for handling contingency operations affecting payload operations. In addition, the paper will address HCOR operation limitations and the expected effects on payload operations. The HCOR is manifested for ISS delivery on flight 9A with the HCOR backup manifested on flight 11A. The HCOR replaces the Medium-Rate Communications Outage Recorder (MCOR), which has supported payloads since flight 5A.1.

  13. Apollo 16 prime and backup crewmen during geological field trip in New Mexico

    NASA Image and Video Library

    1971-09-09

    Dr. Lee Silver (pointing foregroung), California Institute of Technology, calls a geological feature near Taos, New Mexico, to the attention of Apollo 16 prime and backup crewmen during a geological field trip. The crewmen, from left to right, are Astronauts Charles M. Duke Jr., lunar module pilot; Fred W. Haise Jr., backup commander; Edgar D. Mitchell, backup Lunar Module pilot; and John W. Young, commander.

  14. Orion Splashdown Recovery

    NASA Image and Video Library

    2014-12-05

    NASA's Orion spacecraft floats in the Pacific Ocean after splashdown from its first flight test in Earth orbit. In the background is the USNS Salvor. This U.S. Navy salvage ship was there as a backup in case it was needed. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts.

  15. jsc2012e094089

    NASA Image and Video Library

    2012-06-19

    (19 June 2012) --- Expedition 32/33 backup crew members Chris Hadfield of the Canadian Space Agency (left), Soyuz Commander Roman Romanenko and Tom Marshburn of NASA (right) answer questions from the media at a Soyuz vehicle mockup before their final qualification test June 19, 2012 at the Gagarin Cosmonaut Training Center in Star City, Russia. The prime crew, Expedition 32/33 Soyuz Commander Yuri Malenchenko and Flight Engineers Suni Williams of NASA and Aki Hoshide of the Japan Aerospace Exploration Agency practiced similar scenarios nearby in advance of their final approval for launch to the International Space Station July 15 in their Soyuz TMA-05M spacecraft. Photo credit: NASA

  16. Cost-Effectiveness Analysis of Nasal Continuous Positive Airway Pressure Versus Nasal High Flow Therapy as Primary Support for Infants Born Preterm.

    PubMed

    Huang, Li; Roberts, Calum T; Manley, Brett J; Owen, Louise S; Davis, Peter G; Dalziel, Kim M

    2018-05-01

    To compare the cost-effectiveness of 2 common "noninvasive" modes of respiratory support for infants born preterm. An economic evaluation was conducted as a component of a multicenter, randomized control trial from 2013 to 2015 enrolling infants born preterm at ≥28 weeks of gestation with respiratory distress, <24 hours old, who had not previously received endotracheal intubation and mechanical ventilation or surfactant. The economic evaluation was conducted from a healthcare sector perspective and the time horizon was from birth until death or first discharge. The cost-effectiveness of continuous positive airway pressure (CPAP) vs high-flow with "rescue" CPAP backup and high-flow without rescue CPAP backup (as sole primary support) were analyzed by using the hospital cost of inpatient stay in a tertiary center and the rates of endotracheal intubation and mechanical ventilation during admission. Hospital inpatient cost records for 435 infants enrolled in all Australian centers were obtained. With "rescue" CPAP backup, an incremental cost-effectiveness ratio was estimated of A$179 000 (US$123 000) per ventilation avoided if CPAP was used compared with high flow. Without rescue CPAP backup, cost per ventilation avoided was A$7000 (US$4800) if CPAP was used compared with high flow. As sole primary support, CPAP is highly likely to be cost-effective compared with high flow. Neonatal units choosing to use only one device should apply CPAP as primary respiratory support. Compared with high-flow with rescue CPAP backup, CPAP is unlikely to be cost-effective if willingness to pay per ventilation avoided is less than A$179 000 (US$123 000). Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Backup agreements with penalty scheme under supply disruptions

    NASA Astrophysics Data System (ADS)

    Hou, Jing; Zhao, Lindu

    2012-05-01

    This article considers a supply chain for a single product involving one retailer and two independent suppliers, when the main supplier might fail to supply the products, the backup supplier can always supply the products at a higher price. The retailer could use the backup supplier as a regular provider or a stand-by source by reserving some products at the supplier. A backup agreement with penalty scheme is constructed between the retailer and the backup supplier to mitigate the supply disruptions and the demand uncertainty. The expected profit functions and the optimal decisions of the two players are derived through a sequential optimisation process. Then, the sensitivity of two players' expected profits to various input factors is examined through numerical examples. The impacts of the disruption probability and the demand uncertainty on the backup agreement are also investigated, which could provide guideline for how to use each sourcing method.

  18. X-15 with test pilot Capt. Joe Engle

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Captain Joe Engle is seen here next to the X-15-2 (56-6671) rocket-powered research aircraft after a flight. Engle made 16 flights in the X-15 between October 7, 1963, and October 14, 1965. Three of the flights, on June 29, August 10, and October 14, 1965, were above 50 miles, qualifying him for astronaut wings under the Air Force definition. (NASA followed the international definition of space as starting at 62 miles.) Engle was selected as a NASA astronaut in 1966, making him the only person who had flown in space before being selected as an astronaut. First assigned to the Apollo program, he served on the support crew for Apollo X and then as backup lunar module pilot for Apollo XIV. In 1977, he was commander of one of two crews who were launched from atop a modified Boeing 747 in order to conduct approach and landing tests with the Space Shuttle Enterprise. Then in November 1981, he commanded the second flight of the Shuttle Columbia and manually flew the re-entry--performing 29 flight test maneuvers--from Mach 25 through landing roll out. This was the first and, so far, only time that a winged aerospace vehicle has been manually flown from orbit through landing. He accumulated the last of his 224 hours in space when he commanded the Shuttle Discovery during STS-51-I in August of 1985. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  19. Calibration and Data Efforts of the National Ecological Observatory Network (NEON) Airborne Observation Platform during its Engineering Development Phase

    NASA Astrophysics Data System (ADS)

    Adler, J.; Goulden, T.; Kampe, T. U.; Leisso, N.; Musinsky, J.

    2014-12-01

    The National Ecological Observatory Network (NEON) has collected airborne photographic, lidar, and imaging spectrometer data in 5 of 20 unique ecological climate regions (domains) within the United States. As part of its mission to detect and forecast ecological change at continental scales over multiple decades, NEON Airborne Observation Platform (AOP) will aerially survey the entire network of 60 core and re-locatable terrestrial sites annually, each of which are a minimum of 10km-by-10km in extent. The current effort encompasses three years of AOP engineering test flights; in 2017 NEON will transition to full operational status in all 20 domains. To date the total airborne data collected spans 34 Terabytes, and three of the five sampled domain's L1 data are publically available upon request. The large volume of current data, and the expected data collection over the remaining 15 domains, is challenging NEON's data distribution plans, backup capability, and data discovery processes. To provide the public with the highest quality data, calibration and validation efforts of the camera, lidar, and spectrometer L0 data are implemented to produce L1 datasets. Where available, the collected airborne measurements are validated against ground reference points and surfaces and adjusted for instrumentation and atmospheric effects. The imaging spectrometer data is spectrally and radiometrically corrected using NIST-traceable procedures. This presentation highlights three years of flight operation experiences including:1) Lessons learned on payload re-configuration, data extraction, data distribution, permitting requirements, flight planning, and operational procedures2) Lidar validation through control data comparisons collected at the Boulder Municipal Airport (KBDU), the site of NEON's new hangar facility3) Spectrometer calibration efforts, to include both the laboratory and ground observations

  20. [Positional accuracy and quality assurance of Backup JAWs required for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2012-01-01

    The tolerance of the Backup diaphragm (Backup JAW) setting in Elekta linac was specified as 2 mm according to the AAPM TG-142 report. However, the tolerance and the quality assurance procedure for volumetric modulated arc therapy (VMAT) was not provided. This paper describes positional accuracy and quality assurance procedure of the Backup JAWs required for VMAT. It was found that a gap-width error of the Backup JAW by a sliding window test needed to be less than 1.5 mm for prostate VMAT delivery. It was also confirmed that the gap-widths had been maintained with an error of 0.2 mm during the past one year.

  1. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuelmore » cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.« less

  2. Short rendezvous missions for advanced Russian human spacecraft

    NASA Astrophysics Data System (ADS)

    Murtazin, Rafail F.; Budylov, Sergey G.

    2010-10-01

    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  3. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Air Quality-Surface and... used in atmospheres immediately harmful to life, the presence of at least one other person with backup...

  4. Quasi Path Restoration: A post-failure recovery scheme over pre-allocated backup resource for elastic optical networks

    NASA Astrophysics Data System (ADS)

    Yadav, Dharmendra Singh; Babu, Sarath; Manoj, B. S.

    2018-03-01

    Spectrum conflict during primary and backup routes assignment in elastic optical networks results in increased resource consumption as well as high Bandwidth Blocking Probability. In order to avoid such conflicts, we propose a new scheme, Quasi Path Restoration (QPR), where we divide the available spectrum into two: (1) primary spectrum (for primary routes allocation) and (2) backup spectrum (for rerouting the data on link failures). QPR exhibits three advantages over existing survivable strategies such as Shared Path Protection (SPP), Primary First Fit Backup Last Fit (PFFBLF), Jointly Releasing and re-establishment Defragmentation SPP (JRDSSPP), and Path Restoration (PR): (1) the conflict between primary and backup spectrum during route assignment is completely eliminated, (2) upon a link failure, connection recovery requires less backup resources compared to SPP, PFFBLF, and PR, and (3) availability of the same backup spectrum on each link improves the recovery guarantee. The performance of our scheme is analyzed with different primary backup spectrum partitions on varying connection-request demands and number of frequency slots. Our results show that QPR provides better connection recovery guarantee and Backup Resources Utilization (BRU) compared to bandwidth recovery of PR strategy. In addition, we compare QPR with Shared Path Protection and Primary First-Fit Backup Last Fit strategies in terms of Bandwidth Blocking Probability (BBP) and average frequency slots per connection request. Simulation results show that BBP of SPP, PFFBLF, and JRDSPP varies between 18.59% and 14.42%, while in QPR, BBP ranges from 2.55% to 17.76% for Cost239, NSFNET, and ARPANET topologies. Also, QPR provides bandwidth recovery between 93.61% and 100%, while in PR, the recovery ranges from 86.81% to 98.99%. It is evident from our analysis that QPR provides a reasonable trade-off between bandwidth blocking probability and connection recoverability.

  5. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  6. Evolution of systems concepts for a 100 kWe class Space Nuclear Power System

    NASA Technical Reports Server (NTRS)

    Katucki, R.; Josloff, A.; Kirpich, A.; Florio, F.

    1985-01-01

    Conceptual designs for the SP-100 Space Nuclear Power System have been prepared that meet baseline, backup and growth program scenarios. Near-term advancement in technology was considered in the design of the Baseline Concept. An improved silicon-germanium thermoelectric technique is used to convert the heat from a fast-spectrum, liquid lithium cooled reactor. This system produces a net power of 100 kWe with a 10-year end of life, under the specific constraints of area and volume. Output of the Backup Concept is estimated to be 60 kWe for a 10-year end of life. This system differs from the Baseline Concept because currently available thermoelectric conversion is used from energy supplied by a liquid sodium cooled reactor. The Growth Concept uses Stirling engine conversion to produce 100 kWe within the constraints of mass and volume. The Growth Concept can be scaled up to produce a 1 MWe output that uses the same type reactor developed for the Baseline Concept. Assessments made for each of the program scenarios indicate the key development efforts needed to initiate detailed design and hardware program phases. Development plans were prepared for each scenario that detail the work elements and show the program activities leading to a state of flight readiness.

  7. Flight motor set 360L002 (STS-27R). Volume 5: Nozzle component

    NASA Technical Reports Server (NTRS)

    Meyer, S. A.

    1990-01-01

    A review of the performance and post-flight condition of the STS-27 Redesigned Solid Rocket Motor (RSRM) nozzles is presented. Thermal/Structural instrumentation data is reviewed, and applicable Discrepancy Reports (DRs) and Process Departures (PDs) are presented. The Nozzle Component Program Team (NCPT) performance evaluation and the Redesign Program Review Board (RPRB) assessment is included. The STS-27 nozzle assemblies were flown on the RSRM Second Flight (Space Shuttle Atlantis) on 2 December 1988. The nozzles were a partially submerged convergent and/or divergent movable design with an aft pivot point flexible bearing. The nozzle assemblies incorporated the following features: RSRM forward exit cone with snubber assembly, RSRM fixed housing, Structural backup Outer Boot Ring (OBR), RSRM cowl ring, RSRM nose inlet assembly, RSRM throat assembly, RSRM aft exit cone assembly with Linear-Shaped Charge (LSC), RTV backfill in Joints 1, 3, and 4, Use of EA913 NA adhesive in place of EA913 adhesive, Redesigned nozzle plug, and Carbon Cloth Phenolic (CCP) with 750 ppm sodium content. The CCP material usage for the STS-27 forward nozzle and aft exit cone assemblies is shown.

  8. DAST in Flight

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  9. A Clearer View of Vista Features

    ERIC Educational Resources Information Center

    Descy, Don E.

    2008-01-01

    In this article, the author discusses some features of Windows Vista that may be of interest to teachers and/or their students. These are: (1) User Account Control; (2) Windows Firewall; (3) Windows Backup; (4) Parental Controls; (5) Windows Sidebar and Gadgets; (6) Instant Search; and (7) Windows ReadyBoost.

  10. Disaster recovery plan for HANDI 2000 business management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.E.

    The BMS production implementation will be complete by October 1, 1998 and the server environment will be comprised of two types of platforms. The PassPort Supply and the PeopleSoft Financials will reside on LNIX servers and the PeopleSoft Human Resources and Payroll will reside on Microsoft NT servers. Because of the wide scope and the requirements of the COTS products to run in various environments backup and recovery responsibilities are divided between two groups in Technical Operations. The Central Computer Systems Management group provides support for the LTNIX/NT Backup Data Center, and the Network Infrastructure Systems group provides support formore » the NT Application Server Backup outside the Data Center. The disaster recovery process is dependent on a good backup and recovery process. Information and integrated system data for determining the disaster recovery process is identified from the Fluor Daniel Hanford (FDH) Risk Assessment Plan, Contingency Plan, and Backup and Recovery Plan, and Backup Form for HANDI 2000 BMS.« less

  11. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less

  12. Survival in space. [spacesuit development

    NASA Technical Reports Server (NTRS)

    Webbon, B.

    1981-01-01

    The evolution of space suit design to meet the needs of past and future manned space missions is discussed. Following a brief consideration of the purposes of the space suit in providing an artificial atmosphere and protection from environmental hazards, attention is given to the first high-altitude suits developed in the 1930's for the protection of balloon pilots, and for high-altitude airplane flights. The Mercury project space suit is presented as essentially similar to those for high-altitude military aircraft developed since World War II, providing pressurization and oxygen as a backup to the capsule systems. Modifications to the suit allowing it to be worn without discomfort during work outside the spacecraft, which were stimulated by experience in Gemini missions, are considered, which culminated in the suits of the Apollo and Skylab programs which provided insulation, cooling and life support for periods of up to eight hours. Finally, changes to suit design made necessary by the increasing numbers of men and women to perform Space Shuttle flights and space construction operations are considered.

  13. Flight Mechanics of the Entry, Descent and Landing of the ExoMars Mission

    NASA Technical Reports Server (NTRS)

    HayaRamos, Rodrigo; Boneti, Davide

    2007-01-01

    ExoMars is ESA's current mission to planet Mars. A high mobility rover and a fixed station will be deployed on the surface of Mars. This paper regards the flight mechanics of the Entry, Descent and Landing (EDL) phases used for the mission analysis and design of the Baseline and back-up scenarios of the mission. The EDL concept is based on a ballistic entry, followed by a descent under parachutes and inflatable devices (airbags) for landing. The mission analysis and design is driven by the flexibility in terms of landing site, arrival dates and the very stringent requirement in terms of landing accuracy. The challenging requirements currently imposed to the mission need innovative analysis and design techniques to support system design trade-offs to cope with the variability in entry conditions. The concept of the Global Entry Corridor has been conceived, designed, implemented and successfully validated as a key tool to provide a global picture of the mission capabilities in terms of landing site reachability.

  14. Ramifications of the recent FAA rule for windshear systems on the development of forward-looking systems

    NASA Technical Reports Server (NTRS)

    Adamson, H. Patrick

    1990-01-01

    The recent Federal Aviation Administration (FAA) rule requiring windshear systems with flight guidance may have severe ramifications for the development of infrared and other forward-looking systems. The industry needs to have and can have a more cost effective option through the use of a forward-looking system with a reactive backup instead of a reactive system with flight guidance. However, because of the short time for compliance with the new FAA rule, it is possible that existing transport aircraft will be in full compliance before a comprehensive investigation of all forward-looking systems can be completed. If this occurs, it is possible that the market for forward-looking systems will be severely reduced, thereby eliminating the economic incentive to develop these much needed systems. Thus, to assure that this option is available for the airlines, it beehoves the industry to immediately support an in-service evaluation of all available forward-looking systems.

  15. Friction evaluation of unpaved, gypsum-surface runways at Northrup Strip, White Sands Missile Range, in support of Space Shuttle Orbiter landing and retrieval operations

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Horne, W. B.

    1980-01-01

    Friction measurement results obtained on the gypsum surface runways at Northrup Strip, White Sands Missile Range, N. M., using an instrumented tire test vehicle and a diagonal braked vehicle, are presented. These runways were prepared to serve as backup landing and retrieval sites to the primary sites located at Dryden Flight Research Center for shuttle orbiter during initial test flights. Similar friction data obtained on paved and other unpaved surfaces was shown for comparison and to indicate that the friction capability measured on the dry gypsum surface runways is sufficient for operations with the shuttle orbiter and the Boeing 747 aircraft. Based on these ground vehicle friction measurements, estimates of shuttle orbiter and aircraft tire friction performance are presented and discussed. General observations concerning the gypsum surface characteristics are also included and several recommendations are made for improving and maintaining adequate surface friction capabilities prior to the first shuttle orbiter landing.

  16. A Saturn launched X-ray astronomy experiment. Volume 1: S-027

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The S-027 X-Ray Astronomy Experiment originally proposed in early 1966, was developed to detect X-rays in the 2 keV to 10 keV range. Both a prototype unit and flight unit were constructed with the prototype unit also serving as the engineering model, the qualification test unit, and after refurbishment, as the back-up flight unit. Two Ground Support Equipment consoles were built to verify the experiment operation. A photograph of one experiment package with its Ground Support Equipment is shown. The S-027 experiment was scheduled for launch in 1968/69 and although both units were completed and tested to the extent that either would be ready for the scheduled launch, delays in the space program resulted in a launch date slip of several years. When the 1968/69 launch delay became official, provisions were made for storage of the two experiment packages at SCI Electronics in Huntsville, Alabama until a new launch date could be established.

  17. How Safe Is Control Software

    NASA Technical Reports Server (NTRS)

    Dunn, William R.; Corliss, Lloyd D.

    1991-01-01

    Paper examines issue of software safety. Presents four case histories of software-safety analysis. Concludes that, to be safe, software, for all practical purposes, must be free of errors. Backup systems still needed to prevent catastrophic software failures.

  18. DAST Mated to B-52 on Ramp - Close-up

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Technicians mount a BQM-43 Firebee II drone on the wing pylon of NASA's B-52B launch aircraft. The drone was test flown as part of the Drones for Aerodynamic and Structural Testing (DAST) program. Research flights of drones with modified wings for the DAST program were conducted from 1977 to 1983. After the initial flights of Firebee II 72-1564, it was fitted with the Instrumented Standard Wing (also called the 'Blue Streak' wing). The first free flight attempt on March 7, 1979, was aborted before launch due to mechanical problems with the HH-53 recovery helicopter. The next attempt, on March 9, 1979, was successful. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  19. An Alternative Flight Software Trigger Paradigm: Applying Multivariate Logistic Regression to Sense Trigger Conditions using Inaccurate or Scarce Information

    NASA Technical Reports Server (NTRS)

    Smith, Kelly M.; Gay, Robert S.; Stachowiak, Susan J.

    2013-01-01

    In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter. In order to increase overall robustness, the vehicle also has an alternate method of triggering the drogue parachute deployment based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this velocity-based trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers excellent performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles.

  20. Multi-criteria decision analysis of concentrated solar power with thermal energy storage and dry cooling.

    PubMed

    Klein, Sharon J W

    2013-12-17

    Decisions about energy backup and cooling options for parabolic trough (PT) concentrated solar power have technical, economic, and environmental implications. Although PT development has increased rapidly in recent years, energy policies do not address backup or cooling option requirements, and very few studies directly compare the diverse implications of these options. This is the first study to compare the annual capacity factor, levelized cost of energy (LCOE), water consumption, land use, and life cycle greenhouse gas (GHG) emissions of PT with different backup options (minimal backup (MB), thermal energy storage (TES), and fossil fuel backup (FF)) and different cooling options (wet (WC) and dry (DC). Multicriteria decision analysis was used with five preference scenarios to identify the highest-scoring energy backup-cooling combination for each preference scenario. MB-WC had the highest score in the Economic and Climate Change-Economy scenarios, while FF-DC and FF-WC had the highest scores in the Equal and Availability scenarios, respectively. TES-DC had the highest score for the Environmental scenario. DC was ranked 1-3 in all preference scenarios. Direct comparisons between GHG emissions and LCOE and between GHG emissions and land use suggest a preference for TES if backup is require for PT plants to compete with baseload generators.

  1. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing

    NASA Astrophysics Data System (ADS)

    Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.

    2008-07-01

    Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.

  2. Spacecraft fault tolerance: The Magellan experience

    NASA Technical Reports Server (NTRS)

    Kasuda, Rick; Packard, Donna Sexton

    1993-01-01

    Interplanetary and earth orbiting missions are now imposing unique fault tolerant requirements upon spacecraft design. Mission success is the prime motivator for building spacecraft with fault tolerant systems. The Magellan spacecraft had many such requirements imposed upon its design. Magellan met these requirements by building redundancy into all the major subsystem components and designing the onboard hardware and software with the capability to detect a fault, isolate it to a component, and issue commands to achieve a back-up configuration. This discussion is limited to fault protection, which is the autonomous capability to respond to a fault. The Magellan fault protection design is discussed, as well as the developmental and flight experiences and a summary of the lessons learned.

  3. Children's response to a commercial back-up warning device.

    PubMed

    Sapien, R E; Widman Roux, J; Fullerton-Gleason, L

    2003-03-01

    To determine preschool children's response to a commercial back-up warning alarm in a mock setting of an automobile backing up. Preschool parking lot in Albuquerque, New Mexico, USA. With subjects acting as their own controls, 33 preschoolers were asked to walk behind a stationary vehicle twice. The first time, the control, no warning sound was emitted from the vehicle. The second time, the vehicle was placed in reverse gear triggering an alarm. Children's responses were recorded by a hidden video camera. Avoidance behavior by the child was considered a positive response. Location and distance to where the response occurred was measured. Thirty three children, 38-61 months, were studied. None responded to the alarm with avoidance behavior but 18 looked toward the vehicle or hesitated in their gait. Although over half of the children acknowledged the warning alarm, the device did not elicit avoidance behavior. Mere acknowledgment of the warning device would not prevent injury.

  4. Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.

    2000-01-01

    The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.

  5. Fault-tolerant back-up archive using an ASP model for disaster recovery

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Huang, H. K.; Cao, Fei; Documet, Luis; Sarti, Dennis A.

    2002-05-01

    A single point of failure in PACS during a disaster scenario is the main archive storage and server. When a major disaster occurs, it is possible to lose an entire hospital's PACS data. Few current PACS archives feature disaster recovery, but the design is limited at best. These drawbacks include the frequency with which the back-up is physically removed to an offsite facility, the operational costs associated to maintain the back-up, the ease-of-use to perform the backup consistently and efficiently, and the ease-of-use to perform the PACS image data recovery. This paper describes a novel approach towards a fault-tolerant solution for disaster recovery of short-term PACS image data using an Application Service Provider model for service. The ASP back-up archive provides instantaneous, automatic backup of acquired PACS image data and instantaneous recovery of stored PACS image data all at a low operational cost. A back-up archive server and RAID storage device is implemented offsite from the main PACS archive location. In the example of this particular hospital, it was determined that at least 2 months worth of PACS image exams were needed for back-up. Clinical data from a hospital PACS is sent to this ASP storage server in parallel to the exams being archived in the main server. A disaster scenario was simulated and the PACS exams were sent from the offsite ASP storage server back to the hospital PACS. Initially, connectivity between the main archive and the ASP storage server is established via a T-1 connection. In the future, other more cost-effective means of connectivity will be researched such as the Internet 2. A disaster scenario was initiated and the disaster recovery process using the ASP back-up archive server was success in repopulating the clinical PACS within a short period of time. The ASP back-up archive was able to recover two months of PACS image data for comparison studies with no complex operational procedures. Furthermore, no image data loss was encountered during the recovery.

  6. AeroVironment's Jim Daley, Rik Meininger, Derek Lisoski and Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus.

    NASA Image and Video Library

    2004-09-17

    AeroVironment's test director Jim Daley, backup pilot Rik Meininger, stability and controls engineer Derek Lisoski and pilot Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus solar aircraft from the control station.

  7. 78 FR 77171 - Proposed Disposal of George H.W. Bush and Clinton Administration Electronic Backup Tapes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION [NARA-2014-011] Proposed Disposal of George H.W. Bush... George H.W. Bush and Clinton Administration Disaster Recovery Backup Tapes; final agency action. SUMMARY... collection of disaster recovery backup tapes from the George H.W. Bush and Clinton administrations under the...

  8. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  9. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  10. 12 CFR 201.4 - Availability and terms of credit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... overnight, as a backup source of funding to a depository institution that is in generally sound financial... to a few weeks as a backup source of funding to a depository institution if, in the judgment of the... very short-term basis, usually overnight, as a backup source of funding to a depository institution...

  11. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  12. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  13. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  14. 78 FR 54707 - Self-Regulatory Organizations; The Options Clearing Corporation; Notice of Filing of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Statement Adopted Under Rule 205 Entitled ``Back-up Communication Channel to Internet Access'' August 29... ``Back-up Communication Channel to Internet Access'' requiring clearing members that use the Internet as their primary means to access OCC's information and data systems to maintain a secure back-up means of...

  15. Rates for backup service under PURPA when the supplying utility has excess generating capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Under PURPA, cogenerators are entitled to receive backup service. It is often said that tariffs for backup service should reflect the low probability that an unscheduled outage will occur during system peak. This memorandum concludes that probabilistic analysis of contribution to coincident peak demand is not relevant under PURPA during periods in which a utility system is experiencing generating capacity surpluses, and that in such situations, backup rates should be designed so that should the customer insist on installing a cogeneration system, that the customer's contribution to fixed costs remains constant. The reason for this is to assure that prospectivemore » cogenerators receive appropriate pricing signals in their assessment of proposed cogeneration projects, and should they decide to install cogeneration facilities requiring backup service, to hold the remaining customers on the system harmless.« less

  16. Applying secret sharing for HIS backup exchange.

    PubMed

    Kuroda, Tomohiro; Kimura, Eizen; Matsumura, Yasushi; Yamashita, Yoshinori; Hiramatsu, Haruhiko; Kume, Naoto; Sato, Atsushi

    2013-01-01

    To secure business continuity is indispensable for hospitals to fulfill its social responsibility under disasters. Although to back up the data of the hospital information system (HIS) at multiple remote sites is a key strategy of business continuity plan (BCP), the requirements to treat privacy sensitive data jack up the cost for the backup. The secret sharing is a method to split an original secret message up so that each individual piece is meaningless, but putting sufficient number of pieces together to reveal the original message. The secret sharing method eases us to exchange HIS backups between multiple hospitals. This paper evaluated the feasibility of the commercial secret sharing solution for HIS backup through several simulations. The result shows that the commercial solution is feasible to realize reasonable HIS backup exchange platform when template of contract between participating hospitals is ready.

  17. Experiment Configurations for the DAST

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This image shows three vehicle configurations considered for the Drones for Aerodynamic and Structural Testing (DAST) program, conducted at NASA's Dryden Flight Research Center between 1977 and 1983. The DAST project planned for three wing configurations. These were the Instrumented Standard Wing (ISW), the Aeroelastic Research Wing-1 (ARW-1), and the ARW-2. After the DAST-1 crash, project personnel fitted a second Firebee II with a rebuilt ARW-1 wing. Due to the project's ending, it never flew the ARW-2 wing. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  18. DAST Mated to B-52 in Flight - Close-up from Below

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This photo shows a BQM-34 Firebee II drone being carried aloft under the wing of NASA's B-52 mothership during a 1977 research flight. The Firebee/DAST research program ran from 1977 to 1983 at the NASA Dryden Flight Research Center, Edwards, California. This is the original Firebee II wing. Firebee 72-1564 made three captive flights--on November 25, 1975; May 17, 1976; and June 22, 1977--in preparation for the DAST project with modified wings. These were for checkout of the Firebee's systems and the prelaunch procedures. The first two used a DC-130A aircraft as the launch vehicle, while the third used the B-52. A single free flight using this drone occurred on July 28, 1977. The remote (ground) pilot was NASA research pilot Bill Dana. The launch and flight were successful, and the drone was caught in midair by an HH-53 helicopter. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  19. Wallops Ship Surveillance System

    NASA Technical Reports Server (NTRS)

    Smith, Donna C.

    2011-01-01

    Approved as a Wallops control center backup system, the Wallops Ship Surveillance Software is a day-of-launch risk analysis tool for spaceport activities. The system calculates impact probabilities and displays ship locations relative to boundary lines. It enables rapid analysis of possible flight paths to preclude the need to cancel launches and allow execution of launches in a timely manner. Its design is based on low-cost, large-customer- base elements including personal computers, the Windows operating system, C/C++ object-oriented software, and network interfaces. In conformance with the NASA software safety standard, the system is designed to ensure that it does not falsely report a safe-for-launch condition. To improve the current ship surveillance method, the system is designed to prevent delay of launch under a safe-for-launch condition. A single workstation is designated the controller of the official ship information and the official risk analysis. Copies of this information are shared with other networked workstations. The program design is divided into five subsystems areas: 1. Communication Link -- threads that control the networking of workstations; 2. Contact List -- a thread that controls a list of protected item (ocean vessel) information; 3. Hazard List -- threads that control a list of hazardous item (debris) information and associated risk calculation information; 4. Display -- threads that control operator inputs and screen display outputs; and 5. Archive -- a thread that controls archive file read and write access. Currently, most of the hazard list thread and parts of other threads are being reused as part of a new ship surveillance system, under the SureTrak project.

  20. Storage Media for Microcomputers.

    ERIC Educational Resources Information Center

    Trautman, Rodes

    1983-01-01

    Reviews computer storage devices designed to provide additional memory for microcomputers--chips, floppy disks, hard disks, optical disks--and describes how secondary storage is used (file transfer, formatting, ingredients of incompatibility); disk/controller/software triplet; magnetic tape backup; storage volatility; disk emulator; and…

  1. DAST Being Calibrated for Flight in Hangar

    NASA Technical Reports Server (NTRS)

    1982-01-01

    DAST-2, a modified BQM-34 Firebee II drone, undergoes calibration in a hangar at the NASA Dryden Flight Research Center. After the crash of the first DAST vehicle, project personnel fitted a second Firebee II (serial # 72-1558) with the rebuilt ARW-1 (ARW-1R) wing. The DAST-2 made a captive flight aboard the B-52 on October 29, 1982, followed by a free flight on November 3, 1982. During January and February of 1983, three launch attempts from the B-52 had to be aborted due to various problems. Following this, the project changed the launch aircraft to a DC-130A. Two captive flights occurred in May 1983. The first launch attempt from the DC-130 took place on June 1, 1983. The mothership released the DAST-2, but the recovery system immediately fired without being commanded. The parachute then disconnected from the vehicle, and the DAST-2 crashed into a farm field near Harper Dry Lake. Wags called this the 'Alfalfa Field Impact Test.' These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  2. DAST in Flight Showing Diverging Wingtip Oscillations

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. In this view of DAST-1 (Serial # 72-1557), taken on June 12, 1980, severe wingtip flutter is visible. Moments later, the right wing failed catastrophically and the vehicle crashed near Cuddeback Dry Lake. Before the drone was lost, it had made two captive and two free flights. Its first free flight, on October 2, 1979, was cut short by an uplink receiver failure. The drone was caught in midair by an HH-3 helicopter. The second free flight, on March 12, 1980, was successful, ending in a midair recovery. The third free flight, made on June 12, was to expand the flutter envelope. All of these missions launched from the NASA B-52. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  3. STS-47 crew & backups pose for portrait in SLJ module at KSC during training

    NASA Image and Video Library

    1992-07-25

    S92-44303 --- STS-47 Endeavour, Orbiter Vehicle (OV) 105, crew members and back-up payload specialists, wearing clean suits, pose for a group portrait in the Spacelab Japan (SLJ) module. The team is at the Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF) to inspect SLJ configuration and OV-105 preparations. Kneeling, from left, are back-up Payload Specialist Chiaki Naito-Mukai; Mission Specialist N. Jan Davis; and backup Payload Specialist Takao Doi. Standing, from the left, are Pilot Curtis L. Brown,Jr; Payload Commander Mark C. Lee; Jerome Apt; Payload Specialist Mamoru Mohri; Commander Robert L. Gibson; Mae C. Jemison; and back-up Payload Specialist Stanely L. Koszelak. Mohri, Mukai, and Doi represent the National Space Development Agency of Japan (NASDA). View provided by KSC with alternate KSC number KSC-92PC-1647. Photo credit: NASA

  4. jsc2017e136055 - On a snowy night at Red Square in Moscow, Expedition 54-55 backup crewmember Jeanette Epps of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Looking on are backup

    NASA Image and Video Library

    2017-11-30

    jsc2017e136055 - On a snowy night at Red Square in Moscow, Expedition 54-55 backup crewmember Jeanette Epps of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Looking on are backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left) and Alexander Gerst of the European Space Agency. They are backups to Anton Shkaplerov of Roscosmos, Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), who will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  5. Practical, redundant, failure-tolerant, self-reconfiguring embedded system architecture

    DOEpatents

    Klarer, Paul R.; Hayward, David R.; Amai, Wendy A.

    2006-10-03

    This invention relates to system architectures, specifically failure-tolerant and self-reconfiguring embedded system architectures. The invention provides both a method and architecture for redundancy. There can be redundancy in both software and hardware for multiple levels of redundancy. The invention provides a self-reconfiguring architecture for activating redundant modules whenever other modules fail. The architecture comprises: a communication backbone connected to two or more processors and software modules running on each of the processors. Each software module runs on one processor and resides on one or more of the other processors to be available as a backup module in the event of failure. Each module and backup module reports its status over the communication backbone. If a primary module does not report, its backup module takes over its function. If the primary module becomes available again, the backup module returns to its backup status.

  6. Expedition 24 Docks to ISS

    NASA Image and Video Library

    2010-06-17

    NASA astronaut and Expedition 24 back-up crew member, Cady Coleman, speaks with the crew of Expedition 24 upon their arrival to the International Space Station on Friday, June 18, 2010 at Russian Mission Control Center in Korolev, Russia. Photo Credit: (NASA/Carla Cioffi)

  7. Auditory backup alarms: distance-at-first-detection via in-situ experimentation on alarm design and hearing protection effects.

    PubMed

    Alali, Khaled; Casali, John G

    2012-01-01

    The purpose of this study was to assess normal hearing listeners' performance in detecting a stationary backup alarm signal and to quantify the linear distance at detection point. Detection distances for 12 participants with normal hearing were measured while they were fitted with 7 hearing protectors and while they were unoccluded (open ear). A standard (narrowband) backup alarm signal and a broadband (pulsed white noise) backup alarm signal from Brigade[1] were used. The method of limits, with distance as the physical measurement variable and threshold detection as the task, was employed to find at which distance the participant could first detect the backup alarms. A within-subject Analysis of Variance (ANOVA) revealed a significant main effect of the listening conditions on the detection distance in feet. Post hoc analyses indicated that the Bilsom L3HV conventional passive earmuff (at 1132.2 ft detection distance) was significantly poorer compared to all other HPDs and the open ear in detection distance achieved, and that there were no statistically-significant differences between the unoccluded ear (1652.3 ft), EB-15-Lo BlastPLGTM (1546.2 ft), EB-15-Hi BlastPLGTM (1543.4 ft), E-A-R/3M Combat ArmsTM earplug-nonlinear, level-dependent state (1507.8 ft), E-A-R/3M HiFiTM earplug (1497.7 ft), and Bilsom ImpactTM dichotic electronic earmuff (1567.2 ft). In addition, the E-A-R/3M Combat ArmsTM earplug-passive steady state resulted in significantly longer detection distances than only the open ear condition, at 1474.1 ft versus 1652.3 ft for the open ear. ANOVA also revealed a significant main effect of the backup alarm type on detection distance. The means were 1600.9 ft for the standard (narrowband) backup alarm signal, and a significantly closer 1379.4 ft was required for the Brigade broadband backup alarm signal. For on-ground workers, it is crucial to detect backup alarm signals as far away as possible rather than at close distances since this will provide them more time to react to approaching vehicles. The results of this study suggest that as the attenuation of the hearing protectors increases, precautions should be considered by safety professionals. This is because, as it was the case with the Bilsom passive earmuff and E-A-R/3M Combat ArmsTM earplug-passive steady state, high attenuation minimizes the detection distance and as a result on-foot workers will have less time to react to any approaching vehicle. The main effects of the type of backup alarm signal demonstrated a statistically-significant advantage of the standard backup alarm over the broadband backup alarm on detection distance in feet. The magnitude of the improvement produced by the standard backup alarm was 221.5 feet, a very large margin. For example, with a vehicle backing at 10 mph, the 221.5 ft decrease in detection distance with the Brigade alarm equates to the vehicle arriving 15 seconds sooner at the worker from the point at which its alarm was first heard.

  8. Operation and maintenance of the Sol-Dance Building solar system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaultney, J.R.

    1980-07-29

    A 16,400 square foot general office facility has its primary heating provided by a flat plate solar system using hydronic storage and water-to-air transfer coils for distribution. Backup heat is provided by 10 individually controlled air source heat pumps ranging from 3 tons to 5 tons in capacity. These heat pumps also contain electric resistive elements for use during extremely low ambient temperatures. Cooling is also provided by the heat pumps. Each of the two buildings contains a separate domestic hot water system. Primary heat is provided by a closed loop solar unit with electric elements providing backup heat. Amore » 10,000 gallon black steel water tank provides heat storage.« less

  9. Researching, Evaluating, and Choosing a Backup Service in the Cloud

    ERIC Educational Resources Information Center

    Hastings, Robin

    2012-01-01

    Backups are a modern fact of life. Every organization that has any kind of computing technology (and that is all of them these days) needs to back up its data in case of technological or user errors. Traditionally, large-scale backups have been done via an internal or external tape drive that takes magnetic tapes (minicassettes, essentially) and…

  10. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  11. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  12. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  13. Improving the Quality of Backup Process for Publishing Houses and Printing Houses

    NASA Astrophysics Data System (ADS)

    Proskuriakov, N. E.; Yakovlev, B. S.; Pries, V. V.

    2018-04-01

    The analysis of main types for data threats, used by print media, and their influence on the vitality and security of information is made. The influence of the programs settings for preparing archive files, the types of file managers on the backup process is analysed. We proposed a simple and economical version of the practical implementation of the backup process consisting of 4 components: the command line interpreter, the 7z archiver, the Robocopy utility, and network storage. We recommend that the best option would be to create backup copies, consisting of three local copies of data and two network copies.

  14. Visibility of children behind 2010-2013 model year passenger vehicles using glances, mirrors, and backup cameras and parking sensors.

    PubMed

    Kidd, David G; Brethwaite, Andrew

    2014-05-01

    This study identified the areas behind vehicles where younger and older children are not visible and measured the extent to which vehicle technologies improve visibility. Rear visibility of targets simulating the heights of a 12-15-month-old, a 30-36-month-old, and a 60-72-month-old child was assessed in 21 2010-2013 model year passenger vehicles with a backup camera or a backup camera plus parking sensor system. The average blind zone for a 12-15-month-old was twice as large as it was for a 60-72-month-old. Large SUVs had the worst rear visibility and small cars had the best. Increases in rear visibility provided by backup cameras were larger than the non-visible areas detected by parking sensors, but parking sensors detected objects in areas near the rear of the vehicle that were not visible in the camera or other fields of view. Overall, backup cameras and backup cameras plus parking sensors reduced the blind zone by around 90 percent on average and have the potential to prevent backover crashes if drivers use the technology appropriately. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Coordinated train control and energy management control strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, S.P.; Lehrer, D.G.

    1998-05-01

    The Bay Area Rapid Transit (BART) system, in collaboration with Hughes Aircraft Company and Harmon Industries, as in the process of developing an Advanced Automatic Train Control (AATC) system to replace the current fixed-block automatic system. In the long run, the AATC system is expected to not only allow for safe short headway operation, but also to facilitate coordinated train control and energy management. This new system will employ spread spectrum radios, installed onboard trains, at wayside locations, and at control stations, to determine train locations and reliably transfer control information. Sandia National Laboratories has worked cooperatively with BART tomore » develop a simulator of the train control and the power consumption of the AATC system. The authors are now in the process of developing enhanced train control algorithms to supplement the safety critical controller in order to smooth out train trajectories through coordinated control of multiple trains, and to reduce energy consumption and power infrastructure requirements. The control algorithms so far considered include (1) reducing peak power consumption to avoid voltage sags, especially during an outage or while clearing a backup, (2) rapid and smooth recovery from a backup, (3) avoiding oscillations due to train interference, (4) limiting needle peaks in power demand at substations to some specified level, (5) coasting, and (6) coordinating train movement, e.g., starts/stops and hills.« less

  16. Data processing for water monitoring system

    NASA Technical Reports Server (NTRS)

    Monford, L.; Linton, A. T.

    1978-01-01

    Water monitoring data acquisition system is structured about central computer that controls sampling and sensor operation, and analyzes and displays data in real time. Unit is essentially separated into two systems: computer system, and hard wire backup system which may function separately or with computer.

  17. Back-Up Childcare: A Quality Alternative to Regular Care Which Fosters Resilience in Infants and Toddlers.

    ERIC Educational Resources Information Center

    La Bar, Nicole J.

    To many in the field of early care and education, back-up child care may be viewed as a stressful disruption that could interfere with attachment and be detrimental to continuity of care. This paper attempts to prove that high-quality back-up child care offered by employers actually fosters the development of resiliency in young children by…

  18. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; back-up tax. 48.4082-4..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  19. Clinical experiences with an ASP model backup archive for PACS images

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Cao, Fei; Documet, Luis; Huang, H. K.; Muldoon, Jean

    2003-05-01

    Last year we presented a Fault-Tolerant Backup Archive using an Application Service Provider (ASP) model for disaster recovery. The purpose of this paper is to update and provide clinical experiences related towards implementing the ASP model archive solution for short-term backup of clinical PACS image data as well as possible applications other than disaster recovery. The ASP backup archive provides instantaneous, automatic backup of acquired PACS image data and instantaneous recovery of stored PACS image data all at a low operational cost and with little human intervention. This solution can be used for a variety of scheduled and unscheduled downtimes that occur on the main PACS archive. A backup archive server with hierarchical storage was implemented offsite from the main PACS archive location. Clinical data from a hospital PACS is sent to this ASP storage server in parallel to the exams being archived in the main server. Initially, connectivity between the main archive and the ASP storage server is established via a T-1 connection. In the future, other more cost-effective means of connectivity will be researched such as the Internet 2. We have integrated the ASP model backup archive with a clinical PACS at Saint John's Health Center and has been operational for over 6 months. Pitfalls encountered during integration with a live clinical PACS and the impact to clinical workflow will be discussed. In addition, estimations of the cost of establishing such a solution as well as the cost charged to the users will be included. Clinical downtime scenarios, such as a scheduled mandatory downtime and an unscheduled downtime due to a disaster event to the main archive, were simulated and the PACS exams were sent successfully from the offsite ASP storage server back to the hospital PACS in less than 1 day. The ASP backup archive was able to recover PACS image data for comparison studies with no complex operational procedures. Furthermore, no image data loss was encountered during the recovery. During any clinical downtime scenario, the ASP backup archive server can repopulate a clinical PACS quickly with the majority of studies available for comparison during the interim until the main PACS archive is fully recovered.

  20. KSC-2014-4770

    NASA Image and Video Library

    2014-12-05

    SAN DIEGO, Calif. -- NASA's Orion spacecraft floats in the Pacific Ocean after splashdown from its first flight test in Earth orbit. In the background is the USNS Salvor. This U.S. Navy salvage ship was there as a backup in case it was needed. NASA, the U.S. Navy and Lockheed Martin are coordinating efforts to recover Orion and secure the spacecraft in the well deck of the USS Anchorage. Orion completed a two-orbit, four-and-a-half hour mission, to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program is leading the recovery efforts. For more information, visit www.nasa.gov/orion Photo credit: NASA/Tony Gray

  1. The role of national regulations in RPAS-based mapping projects in the monitoring of natural hazards that could involve infrastructures: the example of the Val Venosta Railway (Northern Italy - Bolzano).

    NASA Astrophysics Data System (ADS)

    Gandolfo, Luca; Busnardo, Enrico; Castellarin, Nicola; Canella, Claudio; Canella, Federico; Stabile, Marco; Curci, Francesco; Petrillo, Giovanni

    2016-04-01

    Italy has adopted National Regulations for the use of RPAS in its country's airspace in December 2013, issued by the Italian Civil Aviation Authority (ENAC). Despite the issued regulations, over the past months an increasing number of unauthorized and unsafe operations have been performed and the attention to safety is growing quickly in the public opinion. For this reason "Critical Operations" is permitted only to those RPAS Operators which have received special authorization by ENAC after a very demanding Aeronautical procedure. According to the Regulations, the flight close to-over urban areas, industrial plants, highways and railways, implies that only authorized RPAS Operators may perform such activities. An example of a "Critical" operation were the RPAS flights performed along the Venosta railway line to evaluate the current situation of two areas affected by geological instability and laid the basis for a future high accurate monitoring. The Venosta Valley is located in the western part of South Tyrol (Norhtern Italy). The valley possesses some unique features compared to the entire Alps, the particularly dry climate and the presence of huge alluvional fans, which give rise to different levels of altitude in the valley. From geological point of view, the Venosta Valley is characterized by the presence of the Austroalpine domain. In particular, there are two different geological units in this area: (i) the crystalline schists of the basement, which includes paragneiss, gneiss, granitoid pegmatites, garnet micaschists, quartzites and phyllites. (ii) The Mesozoic coverage divided into various complexes with successions of phyllites, volcanics and magmatiti. The railway line that runs through the Venosta Valley (Merano - Malles) unfolds along a path of 59,8 kilometers and covers an altitude difference of about 700 meters. In particular, three tunnels characterized the first section, including the M. Giuseppe tunnel, which required extensive consolidations both inside and outside. The mission's scope was to achieve high precision photogrammetry data to reconstruct sub-centimetric 3D models of the retaining wall and the unstable rock mass. Flights have been performed with two different RPAS, a multicopter and an helicopter, controlled by a crew composed by three members: two pilots (Command and Backup Pilot) operating redundant data links for flight control and a payload operator and Aeronautical Flight procedures have been applied. The payload operated the camera to achieve the best images for the data acquisition and 3D model reconstruction. The flights have been conducted with manual piloting flight procedures because of the RPAS on board GPS is significantly affected by the mountain slope proximity. For this reason, for the georeferencing procedure, ground control points have been acquired by using an high precision GPS. Finally, using RPAS data it has been possible to assess the lateral earth pressure on the retaining wall of the railway embankment, while in the second case the aim was to accurately reconstruct the volumes of an unstable rock mass.

  2. Roadside-based communication system and method

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron D. (Inventor)

    2007-01-01

    A roadside-based communication system providing backup communication between emergency mobile units and emergency command centers. In the event of failure of a primary communication, the mobile units transmit wireless messages to nearby roadside controllers that may take the form of intersection controllers. The intersection controllers receive the wireless messages, convert the messages into standard digital streams, and transmit the digital streams along a citywide network to a destination intersection or command center.

  3. 25 CFR 542.10 - What are the minimum internal control standards for keno?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... access to keno balls in play. (v) Back-up keno ball inventories shall be secured in a manner to prevent... procedures that provide at least the level of control described by the standards in this section, as approved.... (4) When it is necessary to void a ticket, the void information shall be inputted in the computer and...

  4. 25 CFR 542.10 - What are the minimum internal control standards for keno?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... access to keno balls in play. (v) Back-up keno ball inventories shall be secured in a manner to prevent... procedures that provide at least the level of control described by the standards in this section, as approved.... (4) When it is necessary to void a ticket, the void information shall be inputted in the computer and...

  5. Microgrid Enabled Distributed Energy Solutions (MEDES) Fort Bliss Military Reservation

    DTIC Science & Technology

    2014-02-01

    Logic Controller PF Power Factor PO Performance Objectives PPA Power Purchase Agreements PV Photovoltaic R&D Research and Development RDSI...controller, algorithms perform power flow analysis, short term optimization, and long-term forecasted planning. The power flow analysis ensures...renewable photovoltaic power and energy storage in this microgrid configuration, the available mission operational time of the backup generator can be

  6. Informal portrait of STS-71/Mir cosmonauts and astronauts

    NASA Image and Video Library

    1994-10-28

    S94-47050 (28 Oct 1994) --- Crew members for the joint Space Shuttle/Russian Mir Space Station missions assemble for an informal portrait during a break in training in the Systems Integration Facility at the Johnson Space Center (JSC). In front (left to right) are astronaut Bonnie J. Dunbar; cosmonauts Aleksandr F. Poleshchuk, Yuriy I. Onufriyenko, Gennadiy M. Strekalov and Vladimir N. Dezhurov. In the rear are astronaut Gregory J. Harbaugh; cosmonaut Anatoliy Y. Solovyev, and astronauts Charles J. Precourt, Robert L. Gibson, Ellen S. Baker and Norman E. Thagard. In a precedent-setting flight, Thagard will be launched as a guest researcher along with Dezhurov, commander, and Strekalov, flight engineer, to Russia's Mir Space Station early next year for a three month mission, designated as Mir 18. Then in late spring, as the assignment of STS-71, the Space Shuttle Atlantis will rendezvous with Mir to pick up the Mir 18 crew and transfer cosmonauts Solovyov and Nikolai M. Budarin to the station for the Mir 19 mission. STS-71 mission specialist Dunbar is training as Thagard's backup.

  7. On modeling human reliability in space flights - Redundancy and recovery operations

    NASA Astrophysics Data System (ADS)

    Aarset, M.; Wright, J. F.

    The reliability of humans is of paramount importance to the safety of space flight systems. This paper describes why 'back-up' operators might not be the best solution, and in some cases, might even degrade system reliability. The problem associated with human redundancy calls for special treatment in reliability analyses. The concept of Standby Redundancy is adopted, and psychological and mathematical models are introduced to improve the way such problems can be estimated and handled. In the past, human reliability has practically been neglected in most reliability analyses, and, when included, the humans have been modeled as a component and treated numerically the way technical components are. This approach is not wrong in itself, but it may lead to systematic errors if too simple analogies from the technical domain are used in the modeling of human behavior. In this paper redundancy in a man-machine system will be addressed. It will be shown how simplification from the technical domain, when applied to human components of a system, may give non-conservative estimates of system reliability.

  8. Multi-User Space Link Extension (SLE) System

    NASA Technical Reports Server (NTRS)

    Perkins, Toby

    2013-01-01

    The Multi-User Space (MUS) Link Extension system, a software and data system, provides Space Link Extension (SLE) users with three space data transfer services in timely, complete, and offline modes as applicable according to standards defined by the Consultative Committee for Space Data Systems (CCSDS). MUS radically reduces the schedule, cost, and risk of implementing a new SLE user system, minimizes operating costs with a lights-out approach to SLE, and is designed to require no sustaining engineering expense during its lifetime unless changes in the CCSDS SLE standards, combined with new provider implementations, force changes. No software modification to MUS needs to be made to support a new mission. Any systems engineer with Linux experience can begin testing SLE user service instances with MUS starting from a personal computer (PC) within five days. For flight operators, MUS provides a familiar-looking Web page for entering SLE configuration data received from SLE. Operators can also use the Web page to back up a space mission's entire set of up to approximately 500 SLE service instances in less than five seconds, or to restore or transfer from another system the same amount of data from a MUS backup file in about the same amount of time. Missions operate each MUS SLE service instance independently by sending it MUS directives, which are legible, plain ASCII strings. MUS directives are usually (but not necessarily) sent through a TCP-IP (Transmission Control Protocol Internet Protocol) socket from a MOC (Mission Operations Center) or POCC (Payload Operations Control Center) system, under scripted control, during "lights-out" spacecraft operation. MUS permits the flight operations team to configure independently each of its data interfaces; not only commands and telemetry, but also MUS status messages to the MOC. Interfaces can use single- or multiple-client TCP/IP server sockets, TCP/IP client sockets, temporary disk files, the system log, or standard in, standard out, or standard error as applicable. By defining MUS templates in ASCII, the flight operations team can include any MUS system variable in telemetry or command headers or footers, and/or in status messages. Data fields can be arranged within messages in different sequences, according to the mission s needs. The only constraints imposed are on the format of MUS directive strings, and some bare minimum logical requirements that must be met in order for MUS to read the mission control center's spacecraft command inputs. The MUS system imposes no limits or constraints on the numbers and combinations of missions and SLE service instances that it will support simultaneously. At any time, flight operators may add, change, delete, bind, connect, or disconnect.

  9. Implementation of an ASP model offsite backup archive for clinical images utilizing Internet 2

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Chao, Sander S.; Documet, Jorge; Lee, Jasper; Lee, Michael; Topic, Ian; Williams, Lanita

    2005-04-01

    With the development of PACS technology and an increasing demand by medical facilities to become filmless, there is a need for a fast and efficient method of providing data backup for disaster recovery and downtime scenarios. At the Image Processing Informatics Lab (IPI), an ASP Backup Archive was developed using a fault-tolerant server with a T1 connection to serve the PACS at the St. John's Health Center (SJHC) Santa Monica, California. The ASP archive server has been in clinical operation for more than 18 months, and its performance was presented at this SPIE Conference last year. This paper extends the ASP Backup Archive to serve the PACS at the USC Healthcare Consultation Center II (HCC2) utilizing an Internet2 connection. HCC2 is a new outpatient facility that recently opened in April 2004. The Internet2 connectivity between USC's HCC2 and IPI has been established for over one year. There are two novelties of the current ASP model: 1) Use of Internet2 for daily clinical operation, and 2) Modifying the existing backup archive to handle two sites in the ASP model. This paper presents the evaluation of the ASP Backup Archive based on the following two criteria: 1) Reliability and performance of the Internet2 connection between HCC2 and IPI using DICOM image transfer in a clinical environment, and 2) Ability of the ASP Fault-Tolerant backup archive to support two separate clinical PACS sites simultaneously. The performances of using T1 and Internet2 at the two different sites are also compared.

  10. Emergency and backup power supplies at Department of Energy facilities: Augmented Evaluation Team -- Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report documents the results of the Defense Programs (DP) Augmented Evaluation Team (AET) review of emergency and backup power supplies (i.e., generator, uninterruptible power supply, and battery systems) at DP facilities. The review was conducted in response to concerns expressed by former Secretary of Energy James D. Watkins over the number of incidents where backup power sources failed to provide electrical power during tests or actual demands. The AET conducted a series of on-site reviews for the purpose of understanding the design, operation, maintenance, and safety significance of emergency and backup power (E&BP) supplies. The AET found that themore » quality of programs related to maintenance of backup power systems varies greatly among the sites visited, and often among facilities at the same site. No major safety issues were identified. However, there are areas where the AET believes the reliability of emergency and backup power systems can and should be improved. Recommendations for improving the performance of E&BP systems are provided in this report. The report also discusses progress made by Management and Operating (M&O) contractors to improve the reliability of backup sources used in safety significant applications. One area that requires further attention is the analysis and understanding of the safety implications of backup power equipment. This understanding is needed for proper graded-approach implementation of Department of Energy (DOE) Orders, and to help ensure that equipment important to the safety of DOE workers, the public, and the environment is identified, classified, recognized, and treated as such by designers, users, and maintainers. Another area considered important for improving E&BP system performance is the assignment of overall ownership responsibility and authority for ensuring that E&BP equipment performs adequately and that reliability and availability are maintained at acceptable levels.« less

  11. A right hemisphere safety backup at work: hypotheses for deep hypnosis, post-traumatic stress disorder, and dissociation identity disorder.

    PubMed

    Burnand, Gordon

    2013-09-01

    Problem theory points to an a priori relation between six key problems of living, to which people have adapted through evolution. Children are guided through the problems one by one, learning to switch between them automatically and unawares. The first problem of raising hope of certainty (about the environment), is dealt with in the right hemisphere (RH). The second of raising hope of freedom (or power to control), is dealt with in the left hemisphere (LH). Here adventurousness and ignoring the goodness of outcomes potentially create recklessness. When uncertainty rises the RH activates a backup with an override that substitutes immobility, takes over sensory inputs, but allows obedience to parental commands, and a cut-out that stops new work on the freedom problem. Support for the use of the backup by infants is found in the immobility that precedes the crying in strange conditions, and in childhood EEGs. The hypothesis that the backup is active in deep hypnosis imposes accord on findings that appear contradictory. For example it accounts for why observations during deep hypnosis emphasize the activity of the RH, but observations of responsive people not under hypnosis emphasize the activity of the LH. The hypothesis that the backup is active in post-traumatic stress disorder (PTSD) is supported by (a) fMRI observations that could reflect the cut-out, in that part of the precuneus has low metabolism, (b) the recall of motionlessness at the time of the trauma, (c) an argument that playing dead as a defence against predators is illogical, (d) the ease of hypnosis. With dissociative identity disorder (DID), the theory is consistent with up to six alters that have executive control and one trauma identity state where childhood traumas are re-experienced. Support for the cut-out affecting the trauma identity state comes from suppression of part of the precuneus and other parts of the parietal lobe when the trauma identity state is salient and a general script about a trauma is listened to. Support also comes from the ease of hypnosis. The cut-out acts independently of the override. It is linked to low metabolism at the same point in the left precuneus by evidence from all three conditions, hypnosis, PTSD and DID. The concept of dissociation is not required with any of the hypotheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Multi-sensor Array for High Altitude Balloon Missions to the Stratosphere

    NASA Astrophysics Data System (ADS)

    Davis, Tim; McClurg, Bryce; Sohl, John

    2008-10-01

    We have designed and built a microprocessor controlled and expandable multi-sensor array for data collection on near space missions. Weber State University has started a high altitude research balloon program called HARBOR. This array has been designed to data log a base set of measurements for every flight and has room for six guest instruments. The base measurements are absolute pressure, on-board temperature, 3-axis accelerometer for attitude measurement, and 2-axis compensated magnetic compass. The system also contains a real time clock and circuitry for logging data directly to a USB memory stick. In typical operation the measurements will be cycled through in sequence and saved to the memory stick along with the clock's time stamp. The microprocessor can be reprogrammed to adapt to guest experiments with either analog or digital interfacing. This system will fly with every mission and will provide backup data collection for other instrumentation for which the primary task is measuring atmospheric pressure and temperature. The attitude data will be used to determine the orientation of the onboard camera systems to aid in identifying features in the images. This will make these images easier to use for any future GIS (geographic information system) remote sensing missions.

  13. APOLLO-SOYUZ TEST PROJECT (ASTP) - CREWMEN - JSC

    NASA Image and Video Library

    1975-07-09

    S75-28361 (9 July 1975) --- These ten American astronauts compose the U.S. prime crew, the backup crew and the crew support team for the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. They are, left to right, Robert L. Crippen, support team; Robert F. Overmyer, support team; Richard H. Truly, support team; Karol J. Bobko, support team; Donald K. Slayton, prime crew docking module pilot; Thomas P. Stafford, prime crew commander; Vance D. Brand, prime crew command module pilot; Jack R. Lousma, backup crew docking module pilot; Ronald E. Evans, backup crew command module pilot; and Alan L. Bean, backup crew commander. They are photographed by the Apollo Mission Simulator console in Building 5 at NASA's Johnson Space Center.

  14. DAST in Flight just after Structural Failure of Right Wing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.

  15. 47 CFR 27.1180 - The cost-sharing formula.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...); towers and/or modifications; back-up power equipment; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs; site acquisition and civil works... as equipment and engineering expenses. There is no cap on the actual costs of relocation. (c) An AWS...

  16. Contributions to the AIAA Guidance, Navigation and Control Conference

    NASA Technical Reports Server (NTRS)

    Campbell, S. D. (Editor)

    2002-01-01

    This report contains six papers presented by the Lincoln Laboratory Air Traffic Control Systems Group at the American Institute of Aeronautics & Astronautics (AIAA) Guidance, Navigation and Control (GNC) conference on 6-9 August 2001 in Montreal, Canada. The work reported was sponsored by the NASA Advanced Air Transportation Technologies (AATT) program and the FAA Free Flight Phase 1 (FFP1) program. The papers are based on studies completed at Lincoln Laboratory in collaboration with staff at NASA Ames Research Center. These papers were presented in the Air Traffic Automation Session of the conference and fall into three major areas: Traffic Analysis & Benefits Studies, Weather/Automation Integration and Surface Surveillance. In the first area, a paper by Andrews & Robinson presents an analysis of the efficiency of runway operations at Dallas/Ft. Worth using a tool called PARO, and a paper by Welch, Andrews & Robinson presents a delay benefit results for the Final Approach Spacing Tool (FAST). In the second area, a paper by Campbell, et al describes a new weather distribution systems for the Center/TRACON Automation System (CTAS) that allows ingestion of multiple weather sources, and a paper by Vandevenne, Lloyd & Hogaboom describes the use of the NOAA Eta model as a backup wind data source for CTAS. Also in this area, a paper by Murphy & Campbell presents initial steps towards integrating weather impacted routes into FAST. In the third area, a paper by Welch, Bussolari and Atkins presents an initial operational concept for using surface surveillance to reduce taxi delays.

  17. F-15 digital electronic engine control system description

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.

  18. Reliability considerations of a fuel cell backup power system for telecom applications

    NASA Astrophysics Data System (ADS)

    Serincan, Mustafa Fazil

    2016-03-01

    A commercial fuel cell backup power unit is tested in real life operating conditions at a base station of a Turkish telecom operator. The fuel cell system responds to 256 of 260 electric power outages successfully, providing the required power to the base station. Reliability of the fuel cell backup power unit is found to be 98.5% at the system level. On the other hand, a qualitative reliability analysis at the component level is carried out. Implications of the power management algorithm on reliability is discussed. Moreover, integration of the backup power unit to the base station ecosystem is reviewed in the context of reliability. Impact of inverter design on the stability of the output power is outlined. Significant current harmonics are encountered when a generic inverter is used. However, ripples are attenuated significantly when a custom design inverter is used. Further, fault conditions are considered for real world case studies such as running out of hydrogen, a malfunction in the system, or an unprecedented operating scheme. Some design guidelines are suggested for hybridization of the backup power unit for an uninterrupted operation.

  19. Flight motor set 36OH005 (STS-28R). Volume 5: (Nozzle component)

    NASA Technical Reports Server (NTRS)

    Smith, Dan M., Jr.

    1990-01-01

    A review of the performance and post flight condition of the STS-28 redesigned solid rocket motor (RSRM) nozzles is presented in this document. Applicable discrepancy reports (DR's) and process departures (PD's) are presented in section 5.0. The nozzle component program team (NCPT) performance evaluation and the redesign program review board (RPRB) assessment is included in section 6.0. The STS-28 nozzle assemblies were flown on the RSRM fifth flight (Space Shuttle Columbia). The nozzles were a partially submerged convergent/divergent movable design with an aft pivot point flexible bearing. The nozzle assemblies incorporated the following features: (1) RSRM forward exit cone with snubber assembly; (2) RSRM fixed housing; (3) structural backup outer boot ring (OBR); (4) RSRM cowl ring; (5) RSRM nose inlet assembly; (6) RSRM throat assembly; (7) RSRM forward nose and aft inlet ring; (8) RSRM aft exit cone assembly with linear-shaped charge (LSC); (9) RTV backfill in joints 1, 3, and 4; (10) use of EA913 NA adhesive in place of EA913; (11) redesigned nozzle plug; and (12) carbon cloth phenolic (CCP) with 750 ppm sodium content. The RSRM fifth flight test objectives are as follows: (1) verify that flexible bearing seals operate within the specified temperature range; (2) verify that flexible bearing maintained a positive gas seal between its internal components; (3) inspect flexible bearing for damage due to water impact; (4) verify performance of the nozzle liner; (5) verify that nozzle parts are reusable; (6) verify through flight demonstration and a postflight inspection that the flexible bearing is reusable; (7) verify by inspection the remaining nozzle ablative thicknesses; and (8) verify the nozzle performance margins of safety.

  20. 40 CFR 92.133 - Required information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stabilized pre-test weight and post-test weight of each particulate sample and back-up filter or pair of...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.133 Required information. (a) The required test data shall be grouped into the following two general categories: (1) Pre...

  1. 40 CFR 92.133 - Required information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stabilized pre-test weight and post-test weight of each particulate sample and back-up filter or pair of...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.133 Required information. (a) The required test data shall be grouped into the following two general categories: (1) Pre...

  2. 40 CFR 92.133 - Required information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stabilized pre-test weight and post-test weight of each particulate sample and back-up filter or pair of...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.133 Required information. (a) The required test data shall be grouped into the following two general categories: (1) Pre...

  3. 40 CFR 92.133 - Required information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stabilized pre-test weight and post-test weight of each particulate sample and back-up filter or pair of...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.133 Required information. (a) The required test data shall be grouped into the following two general categories: (1) Pre...

  4. 40 CFR 92.133 - Required information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stabilized pre-test weight and post-test weight of each particulate sample and back-up filter or pair of...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.133 Required information. (a) The required test data shall be grouped into the following two general categories: (1) Pre...

  5. 25 CFR 543.7 - What are the minimum internal control standards for bingo?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... software upgrades, data storage media replacement, etc.). The information recorded must be used when...., draw objects and back-up draw objects); and (ii) Random number generator software. (Additional information technology security standards can be found in § 543.16 of this part.) (2) The game software...

  6. 25 CFR 543.7 - What are the minimum internal control standards for bingo?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... software upgrades, data storage media replacement, etc.). The information recorded must be used when...., draw objects and back-up draw objects); and (ii) Random number generator software. (Additional information technology security standards can be found in § 543.16 of this part.) (2) The game software...

  7. Hubble Space Telescope Battery Capacity Update

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2007-01-01

    Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008.

  8. A Post-Processing Receiver for the Lunar Laser Communications Demonstration Project

    NASA Technical Reports Server (NTRS)

    Srinivasan, Meera; Birnbaum, Kevin; Cheng, Michael; Quirk, Kevin

    2013-01-01

    The Lunar Laser Communications Demonstration Project undertaken by MIT Lincoln Laboratory and NASA's Goddard Space Flight Center will demonstrate high-rate laser communications from lunar orbit to the Earth. NASA's Jet Propulsion Laboratory is developing a backup ground station supporting a data rate of 39 Mbps that is based on a non-real-time software post-processing receiver architecture. This approach entails processing sample-rate-limited data without feedback in the presence high uncertainty in downlink clock characteristics under low signal flux conditions. In this paper we present a receiver concept that addresses these challenges with descriptions of the photodetector assembly, sample acquisition and recording platform, and signal processing approach. End-to-end coded simulation and laboratory data analysis results are presented that validate the receiver conceptual design.

  9. Onsite and Electric Backup Capabilities at Critical Infrastructure Facilities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Julia A.; Wallace, Kelly E.; Kudo, Terence Y.

    2016-04-01

    The following analysis, conducted by Argonne National Laboratory’s (Argonne’s) Risk and Infrastructure Science Center (RISC), details an analysis of electric power backup of national critical infrastructure as captured through the Department of Homeland Security’s (DHS’s) Enhanced Critical Infrastructure Program (ECIP) Initiative. Between January 1, 2011, and September 2014, 3,174 ECIP facility surveys have been conducted. This study focused first on backup capabilities by infrastructure type and then expanded to infrastructure type by census region.

  10. Apollo 11 - Prime and Backup Crews - Geology Training - TX

    NASA Image and Video Library

    1969-03-03

    S69-25199 (25 Feb. 1969) --- Two Apollo 11 astronauts study a rock specimen during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas. On the left is James A. Lovell Jr., Apollo 11 backup crew commander; and on the right is Fred W. Haise Jr., backup crew lunar module pilot. Lovell holds a camera which was used in simulating taking pictures of actual lunar samples on the surface of the Moon.

  11. Visual Earth observation performance in the space environment. Human performance measurement 4: Flight experiments

    NASA Technical Reports Server (NTRS)

    Huth, John F.; Whiteley, James D.; Hawker, John E.

    1993-01-01

    A wide variety of secondary payloads have flown on the Space Transportation System (STS) since its first flight in the 1980's. These experiments have typically addressed specific issues unique to the zero-gravity environment. Additionally, the experiments use the experience and skills of the mission and payload specialist crew members to facilitate data collection and ensure successful completion. This paper presents the results of the Terra Scout experiment, which flew aboard STS-44 in November 1991. This unique Earth Observation experiment specifically required a career imagery analyst to operate the Spaceborne Direct-View Optical System (SpaDVOS), a folded optical path telescope system designed to mount inside the shuttle on the overhead aft flight deck windows. Binoculars and a small telescope were used as backup optics. Using his imagery background, coupled with extensive target and equipment training, the payload specialist was tasked with documenting the following: (1) the utility of the equipment; (2) his ability to acquire and track ground targets; (3) the level of detail he could discern; (4) the atmospheric conditions; and (5) other in-situ elements which contributed to or detracted from his ability to analyze targets. Special emphasis was placed on the utility of a manned platform for research and development of future spaceborne sensors. The results and lessons learned from Terra Scout will be addressed including human performance and equipment design issues.

  12. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    PubMed Central

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  13. STS-55 German payload specialists and backups pose in front of SL-D2 at KSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, German payload specialists and backup (alternate) payload specialists pose in front of the Spacelab Deutsche 2 (SL-D2) science module at a Kennedy Space Center (KSC) processing facility. These four Germans have been assigned to support the STS-55/SL-D2 mission. Left to right are Payload Specialist 2 Hans Schlegel, backup Payload Specialist Dr. P. Gerhard Thiele (kneeling), Payload Specialist 1 Ulrich Walter, and backup Payload Specialist Renate Brummer. Walter and Schlegel are scheduled to fly aboard OV-102 for the mission while Brummer and Thiele will serve as alternates and fill supportive roles on the ground. Clearly visible on the SL-D2 module are the European Space Agency (ESA) insignia, the feedthrough plate, and the D2 insignia.

  14. Enhanced networked server management with random remote backups

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2003-08-01

    In this paper, the model is focused on available server management in network environments. The (remote) backup servers are hooked up by VPN (Virtual Private Network) and replace broken main severs immediately. A virtual private network (VPN) is a way to use a public network infrastructure and hooks up long-distance servers within a single network infrastructure. The servers can be represent as "machines" and then the system deals with main unreliable and random auxiliary spare (remote backup) machines. When the system performs a mandatory routine maintenance, auxiliary machines are being used for backups during idle periods. Unlike other existing models, the availability of auxiliary machines is changed for each activation in this enhanced model. Analytically tractable results are obtained by using several mathematical techniques and the results are demonstrated in the framework of optimized networked server allocation problems.

  15. Achieving Helicopter Modernization with Advanced Technology Turbine Engines

    DTIC Science & Technology

    1999-04-01

    computer modeling of compressor and turbine aerody- digital engine control ( FADEC ) with manual backup. namics. Modern directionally solidified and single...controlled by a dual RAH.66A M channel FADEC , and features a very simple installation "" Improved Gross Weight and significantly reduced pilot...air separation efficiencies as an "advanced technology" engine. Technological meas- high as 97.5%. The FADEC improves acceleration, ures include but

  16. Astronaut Bruce McCandless tests astronaut maneuvering unit

    NASA Image and Video Library

    1973-08-16

    S72-30704 (1972) --- Astronaut Bruce McCandless II, backup pilot for Skylab 2, tests the balance and control of an astronaut maneuvering unit (AMU) test model at Martin Marietta Corporation's Denver division. The jet-powered backpack can fly for 30 minutes and can be worn over normal clothing or spacesuit. Photo credit: NASA

  17. Bearing system

    DOEpatents

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  18. STS-47 Payload Specialist Mohri and Japanese backups pose in SLJ module at KSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 payload specialists representing Japan's National Space Development Agency (NASDA) examine the interior of the Spacelab Japan (SLJ) laboratory module recently installed in Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB). Left to right are Payload Specialist Mamoru Mohri, backup Payload Specialist Chiaki Naito-Mukai, and backup Payload Specialist Takao Doi. The crewmembers visited OV-105, currently undergoing preflight processing in a high bay area of Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF). View provided by KSC with alternate KSC number KSC-92PC-1649.

  19. Economical Video Monitoring of Traffic

    NASA Technical Reports Server (NTRS)

    Houser, B. C.; Paine, G.; Rubenstein, L. D.; Parham, O. Bruce, Jr.; Graves, W.; Bradley, C.

    1986-01-01

    Data compression allows video signals to be transmitted economically on telephone circuits. Telephone lines transmit television signals to remote traffic-control center. Lines also carry command signals from center to TV camera and compressor at highway site. Video system with television cameras positioned at critical points on highways allows traffic controllers to determine visually, almost immediately, exact cause of traffic-flow disruption; e.g., accidents, breakdowns, or spills, almost immediately. Controllers can then dispatch appropriate emergency services and alert motorists to minimize traffic backups.

  20. PFP Emergency Lighting Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUSCH, M.S.

    2000-02-02

    NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergencymore » Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms. Sufficient light for egress is provided by existing lights located in the hallways.« less

  1. Sixty-four-Channel Inline Cable Tester

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Faults in wiring are a serious concern for the aerospace and aeronautics (commercial, military, and civil) industries. A number of accidents have occurred because faulty wiring created shorts or opens that resulted in the loss of control of the aircraft or because arcing led to fires and explosions. Some of these accidents have resulted in the massive loss of lives (such as in the TWA Flight 800 accident). Circuits on the Space Shuttle have also failed because of faulty insulation on wiring. STS-93 lost power when a primary power circuit in one engine failed and a second engine had a backup power circuit fault. Cables are usually tested on the ground after the crew reports a fault encountered during flight. Often such failures result from vibration and cannot be replicated while the aircraft is stationary. It is therefore important to monitor faults while the aircraft is in operation, when cables are more likely to fail. Work is in progress to develop a cable fault tester capable of monitoring up to 64 individual wires simultaneously. Faults can be monitored either inline or offline. In the inline mode of operation, the monitoring is performed without disturbing the normal operation of the wires under test. That is, the operations are performed unintrusively and are essentially undetectable for the test signal levels are below the noise floor. A cable can be monitored several times per second in the offline mode and once a second in the inline mode. The 64-channel inline cable tester not only detects the occurrence of a fault, but also determines the type of fault (short/open) and the location of the fault. This will enable the detection of intermittent faults that can be repaired before they become serious problems.

  2. Backup Warning Signals: Driver Perception and Response

    DOT National Transportation Integrated Search

    1996-08-01

    This report describes the findings of three experiments that concern driver reaction to acoustic signals that might be used for backup warning devices. Intelligent warning devices are under development that will use vehicle-based sensors to warn back...

  3. Official portrait of STS-65 backup Payload Specialist Jean-Jacques Favier

    NASA Image and Video Library

    1993-09-30

    Official portrait of STS-65 International Microgravity Laboratory 2 (IML-2) backup Payload Specialist Jean-Jacques Favier. Favier is a member of the Centre National D'Etudes Spatiales (CNES), the French space agency.

  4. STS-13 (41-C) BET products

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Mcconnell, J. G.; Heck, M. L.

    1984-01-01

    Results from the STS-13 (41-C) Shuttle entry flight are presented. The entry trajectory was reconstructed from an altitude of 700 kft through rollout on Runway 17 at EAFB. The anchor epoch utilized was April 13, 1984 13(h)1(m)30.(s)0 (46890(s).0) GMT. The final reconstructed inertial trajectory for this flight is BT13M23 under user catalog 169750N. Trajectory reconstruction and Extended BET development are discussed in Section 1 and 2, respectively. The NOAA totem-pole atmosphere extracted from the JSC/TRW BET was adopted in the development of the LaRC Extended BET, namely ST13BET/UN=274885C. The Aerodynamic BET was generated on physical nine track reel NC0728 with a duplicate copy on NC0740 for back-up. Plots of the more relevant parameters from the AEROBET are presented in Section 3. Section 4 discusses the MMLE input files created for STS-13. Appendices are attached which present spacecraft and physical constants utilized (Appendix A), residuals by station and data type (Appendix B), a two second spaced listing of trajectory and air data parameters (Appendix C), and input and output source products for archival (Appendix D).

  5. Methods to assess carbonaceous aerosol sampling artifacts for IMPROVE and other long-term networks.

    PubMed

    Watson, John G; Chow, Judith C; Chen, L W Antony; Frank, Neil H

    2009-08-01

    Volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) adsorb to quartz fiber filters during fine and coarse particulate matter (PM2.5 and PM10, respectively) sampling for thermal/optical carbon analysis that measures organic carbon (OC) and elemental carbon (EC). Particulate SVOCs can evaporate after collection, with a small portion adsorbed within the filter. Adsorbed organic gases are measured as particulate OC, so passive field blanks, backup filters, prefilter organic denuders, and regression methods have been applied to compensate for positive OC artifacts in several long-term chemical speciation networks. Average backup filter OC levels from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network were approximately 19% higher than field blank values. This difference is within the standard deviation of the average and likely results from low SVOC concentrations in the rural to remote environments of most IMPROVE sites. Backup filters from an urban (Fort Meade, MD) site showed twice the OC levels of field blanks. Sectioning backup filters from top to bottom showed nonuniform OC densities within the filter, contrary to the assumption that VOCs and SVOCs on a backup filter equal those on the front filter. This nonuniformity may be partially explained by evaporation and readsorption of vapors in different parts of the front and backup quartz fiber filter owing to temperature, relative humidity, and ambient concentration changes throughout a 24-hr sample duration. OC-PM2.5 regression analysis and organic denuder approaches demonstrate negative sampling artifact from both Teflon membrane and quartz fiber filters.

  6. Cross-layer shared protection strategy towards data plane in software defined optical networks

    NASA Astrophysics Data System (ADS)

    Xiong, Yu; Li, Zhiqiang; Zhou, Bin; Dong, Xiancun

    2018-04-01

    In order to ensure reliable data transmission on the data plane and minimize resource consumption, a novel protection strategy towards data plane is proposed in software defined optical networks (SDON). Firstly, we establish a SDON architecture with hierarchical structure of data plane, which divides the data plane into four layers for getting fine-grained bandwidth resource. Then, we design the cross-layer routing and resource allocation based on this network architecture. Through jointly considering the bandwidth resource on all the layers, the SDN controller could allocate bandwidth resource to working path and backup path in an economical manner. Next, we construct auxiliary graphs and transform the shared protection problem into the graph vertex coloring problem. Therefore, the resource consumption on backup paths can be reduced further. The simulation results demonstrate that the proposed protection strategy can achieve lower protection overhead and higher resource utilization ratio.

  7. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  8. Novel elastic protection against DDF failures in an enhanced software-defined SIEPON

    NASA Astrophysics Data System (ADS)

    Pakpahan, Andrew Fernando; Hwang, I.-Shyan; Yu, Yu-Ming; Hsu, Wu-Hsiao; Liem, Andrew Tanny; Nikoukar, AliAkbar

    2017-07-01

    Ever-increasing bandwidth demands on passive optical networks (PONs) are pushing the utilization of every fiber strand to its limit. This is mandating comprehensive protection until the end of the distribution drop fiber (DDF). Hence, it is important to provide refined protection with an advanced fault-protection architecture and recovery mechanism that is able to cope with various DDF failures. We propose a novel elastic protection against DDF failures that incorporates a software-defined networking (SDN) capability and a bus protection line to enhance the resiliency of the existing Service Interoperability in Ethernet Passive Optical Networks (SIEPON) system. We propose the addition of an integrated SDN controller and flow tables to the optical line terminal and optical network units (ONUs) in order to deliver various DDF protection scenarios. The proposed architecture enables flexible assignment of backup ONU(s) in pre/post-fault conditions depending on the PON traffic load. A transient backup ONU and multiple backup ONUs can be deployed in the pre-fault and post-fault scenarios, respectively. Our extensively discussed simulation results show that our proposed architecture provides better overall throughput and drop probability compared to the architecture with a fixed DDF protection mechanism. It does so while still maintaining overall QoS performance in terms of packet delay, mean jitter, packet loss, and throughput under various fault conditions.

  9. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system

    PubMed Central

    Gostimskaya, Irina; Grant, Chris M.

    2016-01-01

    Glutathione is an abundant, low-molecular-weight tripeptide whose biological importance is dependent upon its redox-active free sulphydryl moiety. Its role as the main determinant of thiol-redox control has been challenged such that it has been proposed to play a crucial role in iron–sulphur clusters maturation, and only a minor role in thiol redox regulation, predominantly as a back-up system for the cytoplasmic thioredoxin system. Here, we have tested the importance of mitochondrial glutathione in thiol-redox regulation. Glutathione reductase (Glr1) is an oxidoreductase which converts oxidized glutathione to its reduced form. Yeast Glr1 localizes to both the cytosol and mitochondria and we have used a Glr1M1L mutant that is constitutively localized to the cytosol to test the requirement for mitochondrial Glr1. We show that the loss of mitochondrial Glr1 specifically accounts for oxidant sensitivity of a glr1 mutant. Loss of mitochondrial Glr1 does not influence iron–sulphur cluster maturation and we have used targeted roGFP2 fluorescent probes to show that oxidant sensitivity is linked to an altered redox environment. Our data indicate mitochondrial glutathione is crucial for mitochondrial thiol-redox regulation, and the mitochondrial thioredoxin system provides a back-up system, but cannot bear the redox load of the mitochondria on its own. PMID:26898146

  10. Files synchronization from a large number of insertions and deletions

    NASA Astrophysics Data System (ADS)

    Ellappan, Vijayan; Kumari, Savera

    2017-11-01

    Synchronization between different versions of files is becoming a major issue that most of the applications are facing. To make the applications more efficient a economical algorithm is developed from the previously used algorithm of “File Loading Algorithm”. I am extending this algorithm in three ways: First, dealing with non-binary files, Second backup is generated for uploaded files and lastly each files are synchronized with insertions and deletions. User can reconstruct file from the former file with minimizing the error and also provides interactive communication by eliminating the frequency without any disturbance. The drawback of previous system is overcome by using synchronization, in which multiple copies of each file/record is created and stored in backup database and is efficiently restored in case of any unwanted deletion or loss of data. That is, to introduce a protocol that user B may use to reconstruct file X from file Y with suitably low probability of error. Synchronization algorithms find numerous areas of use, including data storage, file sharing, source code control systems, and cloud applications. For example, cloud storage services such as Drop box synchronize between local copies and cloud backups each time users make changes to local versions. Similarly, synchronization tools are necessary in mobile devices. Specialized synchronization algorithms are used for video and sound editing. Synchronization tools are also capable of performing data duplication.

  11. Simulations- ASTP Command Module

    NASA Image and Video Library

    1975-02-11

    S75-21599 (12 Feb. 1975) --- Six Apollo-Soyuz Test Project crewmen participate in joint crew training in Building 35 at the Johnson Space Center. They are (wearing flight suits), left to right, astronaut Thomas P. Stafford, commander of the American ASTP prime crew; astronaut Donald K. Slayton, docking module pilot on Stafford?s crew; cosmonaut Valeriy N. Kubasov, engineer on the Soviet ASTP first (prime) crew; astronaut Vance D. Brand, command module pilot on Stafford?s crew; cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP first (prime) crew; and cosmonaut Vladimir A. Dzhanibekov, commander of the Soviet ASTP third (backup) crew. Brand is seated next to the hatch of the Apollo Command Module trainer. This picture was taken during a ?walk-through? of the first day?s activities in Earth orbit. The other men are interpreters and training personnel.

  12. Exp. 55-56 GCTC News Conference, Red Square and Museum Visit

    NASA Image and Video Library

    2018-02-26

    Expedition 55-56 Crew Conducts Traditional Ceremonies in Star City and Moscow, Russia----- : Expedition 55-56 Soyuz Commander Oleg Artemyev of Roscosmos and Flight Engineers Drew Feustel and Ricky Arnold of NASA, the next crew headed to the International Space Station, visited the Gagarin Museum at the Gagarin Cosmonaut Training Center in Star City, Russia, Feb. 22 where they viewed historic space artifacts, then visited Red Square in Moscow for traditional ceremonies, including the laying of flowers at the Kremlin Wall where Russian space icons are interred. Their backups, Alexey Ovchinin of Roscosmos and Nick Hague of NASA, also participated in the visits. Artemyev, Feustel and Arnold are scheduled to launch on March 21 from the Baikonur Cosmodrome in Kazakhstan in the Soyuz MS-08 spacecraft for a five-month mission on the orbiting laboratory.

  13. Spectral characterization of the LANDSAT thematic mapper sensors

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Barker, J. L.

    1983-01-01

    Data collected on the spectral characteristics of the LANDSAT-4 and LANDSAT-4 backup thematic mapper instruments, the protoflight (TM/PF) and flight (TM/F) models, respectively, are presented and analyzed. Tests were conducted on the instruments and their components to determine compliance with two sets of spectral specifications: band-by-band spectral coverage and channel-by-channel within-band spectral matching. Spectral coverage specifications were placed on: (1) band edges--points at 50% of peak response, (2) band edge slopes--steepness of rise and fall-off of response, (3) spectral flatness--evenness of response between edges, and (4) spurious system response--ratio of out-of-band response to in-band response. Compliance with the spectral coverage specifications was determined by analysis of spectral measurements on the individual components contributing to the overall spectral response: filters, detectors, and optical surfaces.

  14. Cold-end Subsystem Testing for the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell; Gibson, Marc; Ellis, David; Sanzi, James

    2013-01-01

    The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodium-potassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated cold-end fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to high-cost composite radiators in an end-to-end TDU test.

  15. Cold-End Subsystem Testing for the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Mazwell; Gibson, Marc; Ellis, David; Sanzi, James

    2013-01-01

    The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodiumpotassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated coldend fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to highcost composite radiators in an end-to-end TDU test.

  16. Expedition 9 Preflight Activities

    NASA Image and Video Library

    2004-04-13

    NASA Expedition 9 backup Commander Leroy Chiao, left and backup European Space Agency astronaut Gerhard Thiele of Germany sign books, envelops and mementoes in the space museum located at the Baikonur Cosmodrome, Wednesday, April, 14, 2004, in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  17. STS-47 Japanese Payload Specialist Mohri and backups during Homestead training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Japanese Payload Specialist Mamoru Mohri (far left), backup Payload Specialist Takao Doi (center), and backup Payload Specialist Chiaki Mukai (right) participate in water survival training at Homestead Air Force Base, Florida. Dockside, Mohri and Mukai wash the salt water from their personalized helmets after a water exercise. The three-day course was attended by the STS-47 prime and alternate payload specialists shortly after they were announced for the scheduled summer of 1992 Spacelab Japan (SLJ) mission. Mohri, Doi, and Mukai all represent the National Space Development Agency of Japan (NASDA).

  18. Comparison of circular orbit and Fourier power series ephemeris representations for backup use by the upper atmosphere research satellite onboard computer

    NASA Technical Reports Server (NTRS)

    Kast, J. R.

    1988-01-01

    The Upper Atmosphere Research Satellite (UARS) is a three-axis stabilized Earth-pointing spacecraft in a low-Earth orbit. The UARS onboard computer (OBC) uses a Fourier Power Series (FPS) ephemeris representation that includes 42 position and 42 velocity coefficients per axis, with position residuals at 10-minute intervals. New coefficients and 32 hours of residuals are uploaded daily. This study evaluated two backup methods that permit the OBC to compute an approximate spacecraft ephemeris in the event that new ephemeris data cannot be uplinked for several days: (1) extending the use of the FPS coefficients previously uplinked, and (2) switching to a simple circular orbit approximation designed and tested (but not implemented) for LANDSAT-D. The FPS method provides greater accuracy during the backup period and does not require additional ground operational procedures for generating and uplinking an additional ephemeris table. The tradeoff is that the high accuracy of the FPS will be degraded slightly by adopting the longer fit period necessary to obtain backup accuracy for an extended period of time. The results for UARS show that extended use of the FPS is superior to the circular orbit approximation for short-term ephemeris backup.

  19. Database Migration for Command and Control

    DTIC Science & Technology

    2002-11-01

    Sql - proprietary JDP Private Area Air defense data Defended asset list Oracle 7.3.2 - Automated process (OLTP...TADIL warnings Oracle 7.3.2 Flat File - Discrete transaction with data upds - NRT response required Pull mission data Std SQL ...level execution data Oracle 7.3 User update External interfaces Auto/manual backup Messaging Proprietary replication (internally) SQL Web server

  20. Sealing a Loosely Fitting Valve Assembly

    NASA Technical Reports Server (NTRS)

    Goff, L.; Tellier, G.

    1986-01-01

    Double-ring seal avoids expense of remachining or redesigning valve parts. Mating fittings on valve sealed by pair of rings - one O-ring and backup ring. Backup ring fills relatively large gap between parts. Prevents softer O-ring from being pushed into and through gap.

  1. Close up of backup exciter showing induction motor at left ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up of backup exciter showing induction motor at left and direct current generator at right. View to west - Mystic Lake Hydroelectric Facility, Powerhouse, Along West Rosebud Creek, 1 3/4 miles northeast of Mystic Lake Dam, Fishtail, Stillwater County, MT

  2. Materials Selection and Their Characteristics as Used in Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    Cooper, K.; Salvail, P.; Vesely, E.; Wells, D.

    1999-01-01

    NASA's Marshall Space Flight Center (MSFC) conducted a program to evaluate six technologies used in Rapid Prototyping (RP) to produce investment casting patterns. In this paper, RP refers to the collective additive fabrication technologies known as Solid Free-Form Fabrication. Such technologies are being used with increasing frequency in manufacturing applications, due in part to their rapidly expanding capabilities to fabricate models from many types of materials. This study used ABS plastic, polycarbonate, TrueForm PM6, epoxy resin, paper, starch, and wax. The baseline model was a semi-complex prototype fuel pump housing, intended for use in the X-33 reusable launch vehicle. All models were shelled in a production- grade colloidal silica ceramic. Primary coats were zircon-base flour with zircon backup, while secondary coats were silica grains with a tabular alumina backup. Each model was shelled in an identical manner, using the same atmospheric conditions and drying times, as well as the same number of layers. Bake-outs and firing cycles were consistent with the leach ability of each material. Preheat and bath temperatures were also kept consistent. All molds were cast in vacuum using a hydrogen-resistant superalloy (NASA- 23) that was developed in-house. The final technical evaluation included detailed measurements of the model and the final casting, in order to determine any dimensional changes caused by different pattern materials, as well as documentation of all defects and any obvious refractory/model reactions. Prototype production costs were estimated for each method and taken into consideration during trade-off analysis.

  3. Outcomes of nonemergent percutaneous coronary intervention with and without on-site surgical backup: a meta-analysis.

    PubMed

    Singh, Param Puneet; Singh, Mukesh; Bedi, Updesh Singh; Adigopula, Sasikanth; Singh, Sarabjeet; Kodumuri, Vamsi; Molnar, Janos; Ahmed, Aziz; Arora, Rohit; Khosla, Sandeep

    2011-01-01

    Despite major advances in percutaneous coronary intervention (PCI) techniques, the current guidelines recommend against elective PCI at hospitals without on-site cardiac surgery backup. Nonetheless, an increasing number of hospitals without on-site cardiac surgery in the United States have developed programs for elective PCI. Studies evaluating outcome in this setting have yielded mixed results, leaving the question unanswered. Hence, a meta-analysis comparing outcomes of nonemergent PCI in hospitals with and without on-site surgical backup was performed. A systematic review of literature identified four studies involving 6817 patients. Three clinical end points were extracted from each study and included in-hospital death, myocardial infarction, and the need for emergency coronary artery bypass grafting. The studies were homogenous for each outcome studied. Therefore, the combined relative risks (RRs) across all the studies and the 95% confidence intervals (CIs) were computed using the Mantel-Haenszel fixed-effect model. A two-sided alpha error less than 0.05 was considered to be statistically significant. Compared with facilities with on-site surgical backup, the risk of in-hospital death (RR, 2.7; CI, 0.6-12.9; P = 0.18), nonfatal myocardial infarction (RR, 1.3; CI, 0.7- 2.2; P = 0.29), and need of emergent coronary artery bypass grafting (RR, 0.46; CI, 0.06- 3.1; P = 0.43) was similar in those lacking on-site surgical backup. The present meta-analysis suggests that there is no difference in the outcome with regard to risk of nonfatal myocardial infarction, need for emergency coronary artery bypass grafting, and the risk of death in patients undergoing elective PCI in hospitals with and without on-site cardiac surgery backup.

  4. Aircraft loading and freezer enhancements: lessons for medical research in remote communities.

    PubMed

    Gagnon, Roy; Gagnon, Faith; Panagiotopoulos, Constadina

    2008-01-01

    Type 2 diabetes (T2D) and impaired glucose tolerance (IGT), historically extremely rare in children, is becoming prevalent among First Nations children. In Canada, many of these children live in remote villages accessible only by float plane. Because T2D has many long-term health implications, prevention and early identification are critical. We developed a process for sending a fully equipped endocrinology team to a remote community to screen the children for T2D and IGT. Float plane (sea plane) travel has several unexpected limitations for a medical research team. These include having to travel in good visibility (visual flight rules), limited payload capacity, and restriction against transporting dry ice. The benefits include avoiding the usual security restrictions. We developed and tested a custom-built insulation jacket and system of backup battery packs for the countertop -25 degrees C freezer (in lieu of dry ice) to transport frozen blood samples from the village to our hospital's laboratory. We also ensured that the five-member research team, its equipment, and the consumable supplies stayed within the maximum takeoff weight of the airplane and met center-of-gravity criteria to ensure a safe flight. Using the insulated freezer, sample integrity was maintained throughout the flight, and a safe weight-and-balance trip was achieved for the team and supplies. The team obtained complete T2D screening data on 88% of children in the remote community.

  5. Harnessing the Power of the Sun

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) Alliance was created in 1994 and operated for 9 years as a NASA-sponsored coalition of 28 members from small companies, government, universities, and nonprofit organizations. ERAST s goal was to foster development of remotely piloted aircraft technology for scientific, humanitarian, and commercial purposes. Some of the aircraft in the ERAST Alliance were intended to fly unmanned at high altitudes for days at a time, and flying for such durations required alternative sources of power that did not add weight. The most successful solution for this type of sustained flight is the lightest solar energy. Photovoltaic cells convert sunlight directly into electricity. They are made of semi-conducting materials similar to those used in computer chips. When sunlight is absorbed, electrons are knocked loose from their atoms, allowing electricity to flow. Under the ERAST Alliance, two solar-powered technology demonstration aircraft, Pathfinder and Helios, were developed. Pathfinder is a lightweight, remotely piloted flying wing aircraft that demonstrated the technology of applying solar cells for long-duration, high-altitude flight. Solar arrays covering most of the upper wing surface provide power for the aircraft s electric motors, avionics, communications, and other electronic systems. Pathfinder also has a backup battery system that can provide power for between 2 and 5 hours to allow limited-duration flight after dark. It was designed, built, and operated by AeroVironment, Inc., of Monrovia, California. On September 11, 1995, Pathfinder reached an altitude of 50,500 feet, setting a new altitude record for solar-powered aircraft. The National Aeronautic Association presented the NASA-industry team with an award for 1 of the 10 Most Memorable Record Flights of 1995.

  6. 47 CFR 12.2 - Backup power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... exchange carriers, including incumbent local exchange carriers and competitive local exchange carriers..., must have an emergency backup power source (e.g., batteries, generators, fuel cells) for all assets... or local law; (2) Risk to safety of life or health; or (3) Private legal obligation or agreement. (c...

  7. 30 CFR 56.14132 - Horns and backup alarms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....14132 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14132 Horns and backup alarms. (a) Manually...

  8. 30 CFR 56.14132 - Horns and backup alarms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....14132 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14132 Horns and backup alarms. (a) Manually...

  9. An audible automobile back-up pedestrian warning device--development and evaluation

    DOT National Transportation Integrated Search

    1976-11-01

    The purpose of the study was to develop and field-test an audible back-up warning device for use on automobiles. Detailed criteria of pedestrian age and hearing ability combined with noise characteristics of typical accident sites provide the basis f...

  10. At the Cosmonaut Hotel in Baikonur, Kazakhstan, Expedition 48-49 backup crewmember Peggy Whitson of NASA waters a tree in her name first planted in 2007 during traditional pre-launch activities June 30. Whitson is one of three backups to the prime crewmembers, Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency, who will launch July 7, Baikonur time, on the Soyuz MS-01 spacecraft for a planned four-month mission on the International Space Station...NASA/Alexander Vysotsky.

    NASA Image and Video Library

    2016-06-30

    At the Cosmonaut Hotel in Baikonur, Kazakhstan, Expedition 48-49 backup crewmember Peggy Whitson of NASA waters a tree in her name first planted in 2007 during traditional pre-launch activities June 30. Whitson is one of three backups to the prime crewmembers, Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency, who will launch July 7, Baikonur time, on the Soyuz MS-01 spacecraft for a planned four-month mission on the International Space Station. NASA/Alexander Vysotsky

  11. A hybrid data compression approach for online backup service

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhou, Ke; Qin, MingKang

    2009-08-01

    With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.

  12. X-38 - On Ground after First Free Flight, March 12, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Crew members surround the X-38 lifting body research vehicle after a successful test flight and landing in March 1998. The flight was the first free flight for the vehicle and took place at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  13. BackUp: Development and evaluation of a smart-phone application for coping with suicidal crises

    PubMed Central

    Aerts, Saskia; Muijzers, Ekke; De Jaegere, Eva; van Heeringen, Kees; Portzky, Gwendolyn

    2017-01-01

    Background Suicide is a major public health issue and has large impact on the lives of many people. Innovative technologies such as smartphones could create new possibilities for suicide prevention, such as helping to overcome the barriers and stigma on help seeking in case of suicidal ideation. Due to their omnipresence, smartphone apps can offer suicide prevention tools very fast, they are easily-accessible, low-threshold and can help overcome some of the help-seeking barriers suicidal people experience. This article describes the development, testing and implementation of a mobile application for coping with suicidal crisis: BackUp. Methods Based on the analysis of literature and existing suicide prevention apps several tools were identified as relevant to include in a suicide prevention app. The selected tools (a safety planning tool, a hope box, a coping cards module, and a module to reach out) are evidence based in a face to face context, and could be easily transferred into a mobile app. The testing of existing apps and the literature also revealed important guidelines for the technical development of the application. Results BackUp was developed and tested by an expert panel (n = 9) and a panel of end users (n = 21). Both groups rated BackUp as valuable for suicide prevention. Suicidal ideation of the end user group was measured using the Beck Scale for Suicidal Ideation before and after testing BackUp, and showed a small but non-significant decrease. The majority of the testers used BackUp several times. All tools were evaluated as rather or very useable in times of suicidal crisis. Conclusion BackUp was positively evaluated and indicates that self-help tools can have a positive impact on suicidal ideation. Apps in particular create opportunities in approaching people that are not reached by traditional interventions; on the other hand they can contribute to suicide prevention in addition to regular care. However, more research is needed on the impact and effect of suicide prevention apps. PMID:28636617

  14. Isolation contactor state control system

    DOEpatents

    Bissontz, Jay E.

    2017-05-16

    A controller area network (CAN) installed on a hybrid electric vehicle provides one node with control of high voltage power distribution system isolation contactors and the capacity to energize a secondary electro-mechanical relay device. The output of the secondary relay provides a redundant and persistent backup signal to the output of the node. The secondary relay is relatively immune to CAN message traffic interruptions and, as a result, the high voltage isolation contactor(s) are less likely to transition open in the event that the intelligent output driver should fail.

  15. Expedition 32 Press Conference

    NASA Image and Video Library

    2012-07-13

    Quarantined Expedition 32 Canadian backup crewmember Chris Hadfield, right, answers reporters questions from behind glass during a prelaunch press conference held at the Cosmonaut Hotel on Friday, July 13, 2012 in Baikonur, Kazakhstan. Seated next to him is Expedition 32 Russian backup crewmember Roman Romanenko. Photo Credit (NASA/Carla Cioffi)

  16. WATER EGRESS

    NASA Image and Video Library

    1965-07-16

    S65-28459 (16 July 1965) --- Astronaut Neil A. Armstrong, command pilot for the Gemini-5 backup crew, inside the Gemini Static Article 5 spacecraft prior to water egress training in the Gulf of Mexico. The training is part of the prelaunch schedule for prime and backup crew on the Gemini-5 mission.

  17. Expedition 44 backup crew ESA (European Space Agency) astronaut Timothy Peake (left), Russian cosmonaut Yuri Malenchenko (ROSCOSMOS) (center), and NASA astronaut Timothy L. Kopra

    NASA Image and Video Library

    2015-02-19

    JSC2015E053686 (04/30/2015) --- Expedition 44 backup crew ESA (European Space Agency) astronaut Timothy Peake (left), Russian cosmonaut Yuri Malenchenko (ROSCOSMOS) (center), and NASA astronaut Timothy L. Kopra .

  18. Ceramic backup ring prevents undesirable weld-metal buildup

    NASA Technical Reports Server (NTRS)

    Leonard, G. E.

    1971-01-01

    Removable ceramic backup material butted against weld zone back prevents weld metal buildup at that site. Method is successful with manual tungsten-inert gas /TIG/ welding of 316 corrosion resistant steel /CRES/ pieces with 0.76 cm throat diameter and 1.57 cm pipe internal diameter.

  19. 76 FR 24444 - Magnuson-Stevens Act Provisions; Fisheries of the Northeastern United States; Northeast...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... and were not sold, bartered or traded. At the time, DAS was the only effort control for the FMP, and... current system does not accurately account for the disposition of fish landed under the ``home consumption... receipt of the TSH report via a back-up system specified by the DSM service provider. While the...

  20. 78 FR 77789 - Petition for Waiver of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Subdivision, from Control Point (CP) Y901 and Kedzie may be made in accordance with signal indication and at... and from the CP Y901 with the ATC cut out and back-up moves; or, With the ATC cut out due to failure. 2. Operations on the Chicago Service Unit, Geneva Subdivision, from Kedzie and Park CP Y015, engines...

  1. The USL NASA PC R and D development environment standards

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Moreau, Dennis R.

    1984-01-01

    The development environment standards which have been established in order to control usage of the IBM PC/XT development systems and to prevent interference between projects being currently developed on the PC's are discussed. The standards address the following areas: scheduling PC resources; login/logout procedures; training; file naming conventions; hard disk organization; diskette care; backup procedures; and copying policies.

  2. Unstable and Multiple Child Care Arrangements and Young Children’s Behavior

    PubMed Central

    Pilarz, Alejandra Ros; Hill, Heather D.

    2015-01-01

    Growing evidence suggests that child care instability is associated with child behavior problems, but existing studies confound different types of instability; use small, convenience samples; and/or control insufficiently for selection into child care arrangements. This study uses survey and calendar data from the Fragile Families and Child Well-Being Study to estimate the associations between three different types of child care instability—long-term instability, multiplicity, and the use of back-up arrangements—and children’s internalizing, externalizing, and prosocial behaviors at age 3, controlling for a large number of child and family background characteristics. Long-term instability between birth and age 3, as measured in both the survey and calendar data, is associated with higher levels of externalizing behavior problems. Current multiplicity at age 3 (as measured by survey data) is associated with higher levels of both externalizing and internalizing behavior problems, but stable multiplicity over time (as measured using calendar data) is not. Finally, the use of back-up arrangements at age 3 is associated with higher levels of internalizing behaviors. We find no consistent differences in these results by the timing of instability, child gender, family income, or type of care. PMID:25635158

  3. Development of Sub-optimal Airway Protocols for the International Space Station (ISS) by the Medical Operation Support Team (MOST)

    NASA Technical Reports Server (NTRS)

    Polk, James D.; Parazynski, Scott; Kelly, Scott; Hurst, Victor, IV; Doerr, Harold K.

    2007-01-01

    Airway management techniques are necessary to establish and maintain a patent airway while treating a patient undergoing respiratory distress. There are situations where such settings are suboptimal, thus causing the caregiver to adapt to these suboptimal conditions. Such occurrences are no exception aboard the International Space Station (ISS). As a result, the NASA flight surgeon (FS) and NASA astronaut cohorts must be ready to adapt their optimal airway management techniques for suboptimal situations. Based on previous work conducted by the Medical Operation Support Team (MOST) and other investigators, the MOST had members of both the FS and astronaut cohorts evaluate two oral airway insertion techniques for the Intubating Laryngeal Mask Airway (ILMA) to determine whether either technique is sufficient to perform in suboptimal conditions within a microgravity environment. Methods All experiments were conducted in a simulated microgravity environment provided by parabolic flight aboard DC-9 aircraft. Each participant acted as a caregiver and was directed to attempt both suboptimal ILMA insertion techniques following a preflight instruction session on the day of the flight and a demonstration of the technique by an anesthesiologist physician in the simulated microgravity environment aboard the aircraft. Results Fourteen participants conducted 46 trials of the suboptimal ILMA insertion techniques. Overall, 43 of 46 trials (94%) conducted were properly performed based on criteria developed by the MOST and other investigators. Discussion The study demonstrated the use of airway management techniques in suboptimal conditions relating to space flight. Use of these techniques will provide a crew with options for using the ILMA to manage airway issues aboard the ISS. Although it is understood that the optimal method for patient care during space flight is to have both patient and caregiver restrained, these techniques provide a needed backup should conditions not present themselves in an ideal manner.

  4. STS-9 payload specialist Merbold and backup Ockels in training session

    NASA Technical Reports Server (NTRS)

    1983-01-01

    STS-9 payload specialist Ulf Merbold, right, a West German physicist and backup Wubbo Ockels, a Dutch scientist, are pictured in a training session in JSC's Shuttle mockup and integration laboratory. In this view Ockels appears to be showing Merbold how to operate a camera.

  5. 30 CFR 57.14132 - Horns and backup alarms for surface equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14132 Horns and backup alarms for surface equipment. (a) Manually-operated horns or other audible warning devices provided on self-propelled mobile equipment as a safety device shall be maintained in a functional...

  6. 75 FR 70294 - Notice of Determinations Regarding Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Corporation Including Express Employment Professionals. 74,111 Alstom Transportation, Hornell, NY May 14, 2009... Serv., Server Systems, IC1, Storage, Backup. 74,316A International Business Cambridge, MA......... June 10, 2009. Machines (IBM), Global Tech Serv., Server Systems, IC1, Storage, Backup. 74,316B...

  7. 26 CFR 31.3406-0 - Outline of the backup withholding regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... incorrect name/TIN combination. (2) Definition of account. (3) Definition of business day. (4) Certain exceptions. (c) Notice regarding an incorrect name/TIN combination. (1) In general. (2) Additional... of receipt. (d) Notice from payors of backup withholding due to an incorrect name/TIN combination. (1...

  8. 75 FR 61655 - Airworthiness Directives; Piper Aircraft, Inc. Model PA-28-161 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... (FADEC) backup battery, replacing the supplement pilot's operating handbook and FAA approved airplane... can allow the FADEC to shut down or reset if the main battery is depleted and the electrical charging... service information describes procedures for installation of a FADEC backup battery. FAA's Determination...

  9. Advanced Distributed Simulation Technology II (ADST-II) LAM Task Force DO #14 CDRL ABO3 After Action Report

    DTIC Science & Technology

    1997-01-17

    SHOWDirect Control Systems (6) Betacam SP Players (Video Backup) (6) Betacam SP Recorders (Show Record) (2) CRV Laser Disc Rec/Players (GoTo) (14) Multi...IK Scoops (3)lKDP’s (1) Schedule 40 Light Pole (Flown) Control Console Dimming Cables & Distribution PRODUCTION HARDWARE (1) Sony Betacam SP...Shooters Package (1) Folsom Hi-Res Video Scan Converter (20) Betacam SP VideoTapes STAGING HARDWARE (1) Custom Screen Divider / Support 44 This

  10. X-38 - First Free Flight, March 12, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert in its first free flight at the Dryden Flight Research Center, Edwards, California. The flight took place March 12, 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  11. X-38 Vehicle #132 in Flight Approaching Landing during First Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), maneuvers toward landing at the end of a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  12. X-38 Vehicle #132 in Flight with Deployed Parafoil during First Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parafoil on a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  13. Autonomous Unmanned Helicopter System for Remote Sensing Missions in Unknown Environments

    NASA Astrophysics Data System (ADS)

    Merz, T.; Chapman, S.

    2011-09-01

    This paper presents the design of an autonomous unmanned helicopter system for low-altitude remote sensing. The proposed concepts and methods are generic and not limited to a specific helicopter. The development was driven by the need for a dependable, modular, and affordable system with sufficient payload capacity suitable for both research and real-world deployment. The helicopter can be safely operated without a backup pilot in a contained area beyond visual range. This enables data collection in inaccessible or dangerous areas. Thanks to its terrain following and obstacle avoidance capability, the system does not require a priori information about terrain elevation and obstacles. Missions are specified in state diagrams and flight plans. We present performance characteristics of our system and show results of its deployment in real-world scenarios. We have successfully completed several dozen infrastructure inspection missions and crop monitoring missions facilitating plant phenomics studies.

  14. KSC-2011-5963

    NASA Image and Video Library

    2011-07-25

    CAPE CANAVERAL, Fla. -- The Apollo/Saturn V Center at NASA's Kennedy Space Center in Florida hosted a celebration on the 40th anniversary of NASA's Apollo 15 mission. An elite gathering of Apollo-era astronauts were on hand for the event and panel discussion. Gerry Griffin, Apollo 15 flight director moderates the question-and-answer period with the panel. From left are: Apollo 15 astronaut backup support crew members, Joe Allen, Jack Schmitt, Vance Brand and Dick Gordon; Al Worden and Dave Scott. Worden circled the moon while Scott and the late Jim Irwin, the Lunar Module commander, made history when they became the first humans to drive a vehicle on the surface of the moon. They also provided extensive descriptions and photographic documentation of geologic features in the vicinity of the Hadley Rille landing site during their three days on the lunar surface. Photo credit: NASA/Kim Shiflett

  15. In-situ ultrasonic inspection of submarine shaft seal housing for corrosion damage

    NASA Astrophysics Data System (ADS)

    Batra, Narendra K.; Chaskelis, Henry H.; Mignogna, Richard B.

    1995-06-01

    The interior of the housings of primary and backup shaft seals of 637 class submarines are exposed to sea water during service and become corroded during service. Corrosion damage evaluation requires disassembly of the housing and visual inspection. In this paper, we present quantitative results of in situ nondestructive ultrasonic technique developed for the inspection of the seal housings. Due to vast variations in velocity in the seal material, the velocity was determined at suitable sites not subjected to corrosion and of known thickness from the blueprints. Using this normalized velocity and measured time-of-flight, we determined the thickness of the seal housing at various locations on the circumference. Subsequent mechanical thickness measurements, made when the housings were removed from service, agreed within the predicted uncertainty of 1.5% of ultrasonic measurements. This technique for the assessment of corrosion damage saves time and money, by preventing premature disassembly and downtime for the submarine.

  16. NASA Remembers Astronaut Alan Bean - Moonwalker, Skylab Commander, Artist

    NASA Image and Video Library

    2018-05-26

    Apollo 12 astronaut Alan Bean has died at the age of 86. Bean walked on the Moon in 1969, commanded the second Skylab crew in 1973 and went on in retirement to paint the remarkable worlds and sights he had seen like no other artist. Born in Wheeler, Texas, Bean got an aeronautical engineering degree from the University of Texas before joining the Navy, where he spent four years with a jet attack squadron. As a Navy test pilot, Bean flew several types of aircraft before he was selected with the third group of NASA astronauts in October 1963. He served as a backup for crewmembers on Gemini 10 and Apollo 9. After his Apollo and Skylab flights, Bean remained with NASA until 1981, when he retired to devote full time to painting. He followed that dream for many years at his home studio in Houston, with considerable success. His paintings were particularly popular among space enthusiasts.

  17. Online attitude determination of a passively magnetically stabilized spacecraft

    NASA Astrophysics Data System (ADS)

    Burton, R.; Rock, S.; Springmann, J.; Cutler, J.

    2017-04-01

    An online attitude determination filter is developed for a nano satellite that has no onboard attitude sensors or gyros. Specifically, the attitude of NASA Ames Research Center's O/OREOS, a passively magnetically stabilized 3U CubeSat, is determined using only an estimate of the solar vector obtained from solar panel currents. The filter is based upon the existing multiplicative extended Kalman filter (MEKF) but instead of relying on gyros to drive the motion model, the filter instead incorporates a model of the spacecraft's attitude dynamics in the motion model. An attitude determination accuracy of five degrees is demonstrated, a performance verified using flight data from the University of Michigan's RAX-1. Although the filter was designed for the specific problem of a satellite without gyros or attitude determination it could also be used to provide smoothing of noisy gyro signals or to provide a backup in the event of gyro failures.

  18. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Image and Video Library

    1986-01-08

    S86-25192 (January 1986) --- Two payload specialists in training for the STS-51L mission, and a payload specialist from STS-61C share a ?zero-gravity? flight aboard a KC-135 aircraft over the Gulf of Mexico. Left to right are United States Representative Bill Nelson (Democrat, Florida), Sharon Christa McAuliffe, and Barbara R. Morgan. The congressman is a payload specialist for the STS-61C mission. McAuliffe is the prime payload specialist for the Teacher-in-Space Project aboard the STS-51L mission; and Morgan is her backup. The photo was taken by Keith meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  19. CREW TRAINING - STS-33/51L - JSC

    NASA Image and Video Library

    1985-09-19

    S85-40510 & S85-40511 (23 Sept. 1985) --- Two women representing the Teacher-in-Space Project undergo training in preparation for the 51-L mission in two photographs made in the Johnson Space Center’s mission simulation and training facility. In S85-40510, Sharon Christa McAuliffe (second right), prime crew member; and Barbara R. Morgan (second left), backup, are briefed in the shuttle mission simulator’s instruction station by Jerry Swain, right, instruction team leader. Others pictured are Michelle Brekke (far left) of the payload specialists’ office and Patricia A. Lawson (lower left foreground). Astronaut Ellison S. Onizuka, in S85-40511, assists Morgan with a head set as the two trainees are familiarized with launch and entry stations in the motion base shuttle mission simulator (SMS). The citizen observer (McAuliffe) is scheduled to be seated on the middeck. This picture, however, was taken at the mission specialists’ station on the flight deck. Photo credit: NASA

  20. Expedition-56-57_Star-City-Ceremonies_2018_134_2048_652945

    NASA Image and Video Library

    2018-05-15

    Expedition 56-57 Crew Conducts Traditional Ceremonies in Star City and Moscow, Russia----- Expedition 56-57 Soyuz Commander Sergey Prokopyev of Roscosmos and Flight Engineers Serena Aunon-Chancellor of NASA and Alexander Gerst of the European Space Agency, and their backups, Oleg Kononenko of Roscosmos, Anne McClain of NASA and David Saint-Jacques of the Canadian Space Agency visited the Gagarin Museum at the Gagarin Cosmonaut Training Center in Star City, Russia May 14 where they viewed historic space artifacts, then visited Red Square in Moscow for traditional ceremonies, including the laying of flowers at the Kremlin Wall where Russian space icons are interred. Prokopyev, Aunon-Chancellor and Gerst are scheduled to launch on June 6 from the Baikonur Cosmodrome in Kazakhstan in the Soyuz MS-09 spacecraft for a six and a half month mission on the International Space Station.

  1. Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl L.; Tarau, Calin; Schifer, Nicholas A.; Anderson, William G.; Garner, Scott

    2016-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal variable conductance heat pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor by bypassing the heat during stops. In a previous NASA Small Business Innovation Research (SBIR) Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for the Stirling RPS. In 2012, one of these VCHPs was successfully tested at NASA Glenn Research Center with a Stirling convertor as an Advanced Stirling Radioisotope Generator (ASRG) backup cooling system. The prototype; however, was not optimized and did not reflect the final heat rejection path. ACT through further funding has developed a semioptimized prototype with the finalized heat path for testing at Glenn with a Stirling convertor. The semioptimized system features a two-phase radiator and is significantly smaller and lighter than the prior prototype to reflect a higher level of flight readiness. The VCHP is designed to activate and remove heat from the GPHS during stoppage with a small temperature increase from the nominal vapor temperature. This small temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the multilayer insulation (MLI). The VCHP passively allows the Stirling convertor to be turned off multiple times during a mission with potentially unlimited off durations. Having the ability to turn the Stirling off allows for the Stirling to be reset and reduces vibrations on the platform during sensitive measurements or procedures. This paper presents the design of the VCHP and its test results with a Stirling convertor at Glenn. Tests were carried for multiple on and off cycles to demonstrate repeatability. The impacts associated with the addition of the VCHP to the system are also addressed in terms of mass and additional heat losses due to the presence of the VCHP.

  2. [Russian treadmill BD-1 as a backup of the NASA TVIS].

    PubMed

    Iarmanova, E N; Kozlovskaia, I B; Bogomolov, V V; Rumiantseva, O N; Sukhachev, V I; Mel'nik, K A

    2006-01-01

    Already during the early ISS increments malfunctioning of NASA TVIS (treadmill with vibration isolation system) posed major problems for regular crew training and particularly scamper, one of the key exercises on the Russian physical training program. During ISS increment-3, TVIS unscheduled repairs took virtually all the training time. In search for TVIS backup, Russian and NASA engineers considered jointly Russian treadmill BD-1, originally designed for Russian "shuttle" Buran and accepted it as a suitable backup in case of complete TVIS failure. To enter into the "dialogue" with BD-1, i.e., to record and downlink training data, the treadmill speed indicator, a part of the treadmill stand, was replaced by PC.

  3. STS-90 M.S. Williams and back-up P.S. Mukai, participate in CEIT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Mission Specialist Dafydd 'Dave' Rhys Williams, M.D., with the Canadian Space Agency, and back-up Payload Specialist Chiaki Mukai, M.D., Ph.D., with the National Space Development Agency of Japan, examine items to be used during the Crew Equipment Interface Test (CEIT) in Kennedy Space Center's (KSC's) Operations and Checkout Building, where the Neurolab payload is undergoing processing. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-90 is scheduled to launch aboard the Shuttle Columbia from KSC on April 2. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system.

  4. Solar energy/utility interface - The technical issues

    NASA Astrophysics Data System (ADS)

    Tabors, R. D.; White, D. C.

    1982-01-01

    The technical and economic factors affecting an interface between solar/wind power sources and utilities are examined. Photovoltaic, solar thermal, and wind powered systems are subject to stochastic local climatic variations and as such may require full back-up services from utilities, which are then in a position of having reserve generating power and power lines and equipment which are used only part time. The low reliability which has degraded some economies of scale formerly associated with large, centralized power plants, and the lowered rate of the increase in electricity usage is taken to commend the inclusion of power sources with a modular nature such as is available from solar derived electrical generation. Technical issues for maintaining the quality of grid power and also effectively metering purchased and supplied back-up power as part of a homeostatic system of energy control are discussed. It is concluded that economic considerations, rather than technical issues, bear the most difficulty in integrating solar technologies into the utility network.

  5. An application of Six Sigma methodology to turnover intentions in health care.

    PubMed

    Taner, Mehmet

    2009-01-01

    The purpose of this study is to show how the principles of Six Sigma can be applied to the high turnover problem of doctors in medical emergency services and paramedic backup. Six Sigma's define-measure-analyse-improve-control (DMAIC) is applied for reducing the turnover rate of doctors in an organisation operating in emergency services. Variables of the model are determined. Explanatory factor analysis, multiple regression, analysis of variance (ANOVA) and Gage R&R are employed for the analysis. Personal burnout/stress and dissatisfaction from salary were found to be the "vital few" variables. The organisation took a new approach by improving its initiatives to doctors' working conditions. Sigma level of the process is increased. New policy and process changes have been found to effectively decrease the incidence of turnover intentions. The improved process is gained, standardised and institutionalised. This study is one of the few papers in the literature that elaborates the turnover problem of doctors working in the emergency and paramedic backup services.

  6. 38 CFR 17.230 - Contingency backup to the Department of Defense.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Contingency backup to the Department of Defense. 17.230 Section 17.230 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... the Department of Defense. (a) Priority care to active duty personnel. The Secretary, during and/or...

  7. 38 CFR 17.230 - Contingency backup to the Department of Defense.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Contingency backup to the Department of Defense. 17.230 Section 17.230 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... the Department of Defense. (a) Priority care to active duty personnel. The Secretary, during and/or...

  8. 38 CFR 17.230 - Contingency backup to the Department of Defense.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Contingency backup to the Department of Defense. 17.230 Section 17.230 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... the Department of Defense. (a) Priority care to active duty personnel. The Secretary, during and/or...

  9. 38 CFR 17.230 - Contingency backup to the Department of Defense.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Contingency backup to the Department of Defense. 17.230 Section 17.230 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... the Department of Defense. (a) Priority care to active duty personnel. The Secretary, during and/or...

  10. 38 CFR 17.230 - Contingency backup to the Department of Defense.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Contingency backup to the Department of Defense. 17.230 Section 17.230 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... the Department of Defense. (a) Priority care to active duty personnel. The Secretary, during and/or...

  11. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  12. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  13. 77 FR 28797 - Redundancy of Communications Systems: Backup Power Private Land Mobile Radio Services: Selection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Systems: Backup Power Private Land Mobile Radio Services: Selection and Assignment of Frequencies, and... certain rule provisions that are without current legal effect and obsolete. These nonsubstantive revisions... current legal effect and is deleted as obsolete. 2. This Order also deletes a rule providing that UHF...

  14. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  15. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  16. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  17. 78 FR 63263 - Self-Regulatory Organizations; The Options Clearing Corporation; Order Approving Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Adopted Under Rule 205 Entitled ``Back-Up Communication Channel to Internet Access'' October 17, 2013. I... ``Back-up Communication Channel to Internet Access'' requiring clearing members that use the internet as... Policy Statement under Rule 205 requiring clearing members that primarily use the internet to access OCC...

  18. Assembly considerations for large reflectors

    NASA Technical Reports Server (NTRS)

    Bush, H.

    1988-01-01

    The technologies developed at LaRC in the area of erectable instructures are discussed. The information is of direct value to the Large Deployable Reflector (LDR) because an option for the LDR backup structure is to assemble it in space. The efforts in this area, which include development of joints, underwater assembly simulation tests, flight assembly/disassembly tests, and fabrication of 5-meter trusses, led to the use of the LaRC concept as the baseline configuration for the Space Station Structure. The Space Station joint is linear in the load and displacement range of interest to Space Station; the ability to manually assemble and disassemble a 45-foot truss structure was demonstrated by astronauts in space as part of the ACCESS Shuttle Flight Experiment. The structure was built in 26 minutes 46 seconds, and involved a total of 500 manipulations of untethered hardware. Also, the correlation of the space experience with the neutral buoyancy simulation was very good. Sections of the proposed 5-meter bay Space Station truss have been built on the ground. Activities at LaRC have included the development of mobile remote manipulator systems (which can traverse the Space Station 5-meter structure), preliminary LDR sun shield concepts, LDR construction scenarios, and activities in robotic assembly of truss-type structures.

  19. The depth of the honeybee's backup sun-compass systems.

    PubMed

    Dovey, Katelyn M; Kemfort, Jordan R; Towne, William F

    2013-06-01

    Honeybees have at least three compass mechanisms: a magnetic compass; a celestial or sun compass, based on the daily rotation of the sun and sun-linked skylight patterns; and a backup celestial compass based on a memory of the sun's movements over time in relation to the landscape. The interactions of these compass systems have yet to be fully elucidated, but the celestial compass is primary in most contexts, the magnetic compass is a backup in certain contexts, and the bees' memory of the sun's course in relation to the landscape is a backup system for cloudy days. Here we ask whether bees have any further compass systems, for example a memory of the sun's movements over time in relation to the magnetic field. To test this, we challenged bees to locate the sun when their known celestial compass systems were unavailable, that is, under overcast skies in unfamiliar landscapes. We measured the bees' knowledge of the sun's location by observing their waggle dances, by which foragers indicate the directions toward food sources in relation to the sun's compass bearing. We found that bees have no celestial compass systems beyond those already known: under overcast skies in unfamiliar landscapes, bees attempt to use their landscape-based backup system to locate the sun, matching the landscapes or skylines at the test sites with those at their natal sites as best they can, even if the matches are poor and yield weak or inconsistent orientation.

  20. An approach to secure weather and climate models against hardware faults

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; Dawson, Andrew

    2017-03-01

    Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelization to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. In this paper, we present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform model simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13 % for the shallow water model.

  1. An approach to secure weather and climate models against hardware faults

    NASA Astrophysics Data System (ADS)

    Düben, Peter; Dawson, Andrew

    2017-04-01

    Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelisation to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. We present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13% for the shallow water model.

  2. Water electrolysis system refurbishment and testing

    NASA Technical Reports Server (NTRS)

    Greenough, B. M.

    1972-01-01

    The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.

  3. An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management

    Treesearch

    Christopher D. O' Connor; David E. Calkin; Matthew P. Thompson

    2017-01-01

    During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions,...

  4. A Modular, Reconfigurable Surveillance UAV Architecture

    DTIC Science & Technology

    2003-09-02

    Una Società Galileo Avionica A Modular, Reconfigurable Surveillance UAV Architecture METEOR, Finmeccanica Group Zona Industriale di Soleschiano Via...ES) METEOR, Finmeccanica Group Zona Industriale di Soleschiano Via Mario Stoppani 21 34077 Ronchi dei Legionari (GO) ITALY 8. PERFORMING...PMSFMS RS1Backup FMS NSU Payload Control Actuators Router Router RS2 Recovery Devices Una Società Galileo Avionica • Daylight TV Camera • IR Sensor • HR

  5. Fault tolerant attitude sensing and force feedback control for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Jagadish, Chirag

    Two aspects of an unmanned aerial vehicle are studied in this work. One is fault tolerant attitude determination and the other is to provide force feedback to the joy-stick of the UAV so as to prevent faulty inputs from the pilot. Determination of attitude plays an important role in control of aerial vehicles. One way of defining the attitude is through Euler angles. These angles can be determined based on the measurements of the projections of the gravity and earth magnetic fields on the three body axes of the vehicle. Attitude determination in unmanned aerial vehicles poses additional challenges due to limitations of space, payload, power and cost. Therefore it provides for almost no room for any bulky sensors or extra sensor hardware for backup and as such leaves no room for sensor fault issues either. In the face of these limitations, this study proposes a fault tolerant computing of Euler angles by utilizing multiple different computation methods, with each method utilizing a different subset of the available sensor measurement data. Twenty-five such methods have been presented in this document. The capability of computing the Euler angles in multiple ways provides a diversified redundancy required for fault tolerance. The proposed approach can identify certain sets of sensor failures and even separate the reference fields from the disturbances. A bank-to-turn maneuver of the NASA GTM UAV is used to demonstrate the fault tolerance provided by the proposed method as well as to demonstrate the method of determining the correct Euler angles despite interferences by inertial acceleration disturbances. Attitude computation is essential for stability. But as of today most UAVs are commanded remotely by human pilots. While basic stability control is entrusted to machine or the on-board automatic controller, overall guidance is usually with humans. It is therefore the pilot who sets the command/references through a joy-stick. While this is a good compromise between complete automation and complete human control, it still poses some unique challenges. Pilots of manned aircraft are present inside the cockpit of the aircraft they fly and thus have a better feel of the flying environment and also the limitations of the flight. The same might not be true for UAV pilots stationed on the ground. A major handicap is that visual feedback is the only one available for the UAV pilot. An additional parameter like force feedback on the remote control joy-stick can help the UAV pilot to physically feel the limitation of the safe flight envelope. This can make the flying itself easier and safer. A method proposed here is to design a joy-stick assembly with an additional actuator. This actuator is controlled so as to generate a force feedback on the joy-stick. The control developed for this system is such that the actuator allows free movement for the pilot as long as the UAV is within the safe flight envelope. On the other hand, if it is outside this safe range, the actuator opposes the pilot's applied torque and prevents him/her from giving erroneous commands to the UAV.

  6. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  7. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    NASA Technical Reports Server (NTRS)

    Marsh, Angela L.; Dudley, Stephanie R. B.

    2014-01-01

    With an increase in the utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS realtime operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art media wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of the project included executing over 450 crew-hours of ISS real-time payload operations including a major onboard communications upgrade, SpaceX un-berth, a Soyuz launch, roll-out of ISS live video and interviews from the POIC, annual BCC certification and hurricane season, and ISS simulations and testing. Continuous ISS payload operations were possible during the PCA facility modifications with the reconfiguration of four control rooms and standup of two temporary control areas. Another major restriction to the project was an ongoing facility upgrade that included a NASA Headquarters mandated replacement of all electrical and mechanical systems and replacement of an external generator. These upgrades required a facility power outage during the PCA upgrades. The project also encompassed console layout designs and ordering, amenities selections and ordering, excessing of old equipment, moves, disposal of old IT equipment, camera installations, facility tour re-schedules, and contract justifications. These were just some of the tasks needed for a successful project.

  8. System Administrator for LCS Development Sets

    NASA Technical Reports Server (NTRS)

    Garcia, Aaron

    2013-01-01

    The Spaceport Command and Control System Project is creating a Checkout and Control System that will eventually launch the next generation of vehicles from Kennedy Space Center. KSC has a large set of Development and Operational equipment already deployed in several facilities, including the Launch Control Center, which requires support. The position of System Administrator will complete tasks across multiple platforms (Linux/Windows), many of them virtual. The Hardware Branch of the Control and Data Systems Division at the Kennedy Space Center uses system administrators for a variety of tasks. The position of system administrator comes with many responsibilities which include maintaining computer systems, repair or set up hardware, install software, create backups and recover drive images are a sample of jobs which one must complete. Other duties may include working with clients in person or over the phone and resolving their computer system needs. Training is a major part of learning how an organization functions and operates. Taking that into consideration, NASA is no exception. Training on how to better protect the NASA computer infrastructure will be a topic to learn, followed by NASA work polices. Attending meetings and discussing progress will be expected. A system administrator will have an account with root access. Root access gives a user full access to a computer system and or network. System admins can remove critical system files and recover files using a tape backup. Problem solving will be an important skill to develop in order to complete the many tasks.

  9. Electromagnetic attachment mechanism

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1992-01-01

    An electromagnetic attachment mechanism is disclosed for use as an end effector of a remote manipulator system. A pair of electromagnets, each with a U-shaped magnetic core with a pull-in coil and two holding coils, are mounted by a spring suspension system on a base plate of the mechanism housing with end pole pieces adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate of a grapple fixture affixed to a target object. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery backup is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary source. A centerline mounted camera and video monitor are used in cooperation with a target pattern on the reflective surface of the strike plate to effect targeting and alignment.

  10. X-38 Vehicle #132 Landing on First Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), flares for its lakebed landing at the end of a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  11. X-38 - First Free Flight, March 12, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert during its first free flight in March 1998 at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  12. X-38 - Landing After First Free Flight, March 12, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The X-38 Crew Return Vehicle touches down amidst the California desert scrubbrush at the end of its first free flight at the Dryden Flight Research Center, Edwards, California, in March 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  13. X-38 on Lakebed after Landing on Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's X-38, a prototype of a Crew Return Vehicle (CRV) resting on the lakebed near the Dryden Flight Research Center after the completion of its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  14. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  15. MicroPPT-Based Secondary/Backup ACS for a 160-m, 450-kg Solar Sail Spacecraft

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Murphy, David

    2005-01-01

    Solar sail tip-mounted, lightweight pulsed plasma thrusters (PPTs) are proposed for a secondary (or backup) attitude control system (ACS) of a 160-m, 450-kg solar sail spacecraft of the Solar Polar Imager (SPI) mission. A propellantless primary ACS of the SPI sailcraft employs trim control masses running along mast lanyards for pitch/yaw control together with roll stabilizer bars at the mast tips for quadrant tilt (roll) control. The robustness of such a propellantless primary ACS would be further enhanced by a secondary ACS utilizing tip-mounted, lightweight PPTs. The microPPT-based ACS is intended mainly for attitude recovery maneuvers from various off-nominal conditions that cannot be reliably handled by the propellantless primary ACS. However, it can also be employed for: i) the checkout or standby mode prior to and during sail deployment, ii) the post-deployment transition mode (prior to the propellantless primary ACS mode operation), iii) the solar sailing cruise mode of a trimmed sailcraft, and iv) the spin-stabilized, sun-pointing, safe mode. Although a conventional bus ACS is required for the SPI mission as the sail is jettisoned at the start of its science mission phase, the microPPT-based ACS option promises greater redundancy and robustness for the SPI mission. For other sailing missions, where the sail is never jettisoned, this secondary ACS provides a lower-cost, lower-mass propulsion for deployment control and greater redundancy than any traditional reaction-jet control system. This paper presents an overview nf the state--of-the--art microPPT technology, the design requirements of microPPTs for solar sail attitude control, and the preliminary ACS design and simulation results.

  16. PC-403: Pioneer Venus multiprobe spacecraft mission operational characteristics document, volume 3

    NASA Technical Reports Server (NTRS)

    Barker, F. C.

    1978-01-01

    The Pioneer Venus spacecraft primary and backup operational modes and operational limitations for maneuvers, roll references transfer, attitude determination, spacecraft power discipline and spacecraft thermal discipline, are described. The functions and operations of the large and small probes, as well detailed performance in the normal operating modes and backup modes are presented.

  17. Recommended high-tank temperatures for maintenance of high-tank backup support, Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greager, O.H.

    1964-05-20

    Purpose of this note is to recommend revised curves for the high-tank temperature required to maintain adequate high-tank backup support at the six small reactors. Compliance with the conditions shown on these curves will ensure adequate high-tank flow rates following the simultaneous loss of electric and steam power.

  18. Towards Efficient Scientific Data Management Using Cloud Storage

    NASA Technical Reports Server (NTRS)

    He, Qiming

    2013-01-01

    A software prototype allows users to backup and restore data to/from both public and private cloud storage such as Amazon's S3 and NASA's Nebula. Unlike other off-the-shelf tools, this software ensures user data security in the cloud (through encryption), and minimizes users operating costs by using space- and bandwidth-efficient compression and incremental backup. Parallel data processing utilities have also been developed by using massively scalable cloud computing in conjunction with cloud storage. One of the innovations in this software is using modified open source components to work with a private cloud like NASA Nebula. Another innovation is porting the complex backup to- cloud software to embedded Linux, running on the home networking devices, in order to benefit more users.

  19. Crew-Aided Autonomous Navigation Project

    NASA Technical Reports Server (NTRS)

    Holt, Greg

    2015-01-01

    Manual capability to perform star/planet-limb sightings provides a cheap, simple, and robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the loss-of-communications backup for all Apollo missions. This study seeks to procure and characterize error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions, and one goal of this study is to modernize and update those findings. This technique has the potential to deliver significant risk mitigation, validation, and backup to more complex low-TRL automated systems under development involving cameras.

  20. CREW TRAINING - STS-33/51L (ZERO-G)

    NASA Image and Video Library

    1985-11-20

    S85-44835 (20 Nov. 1985) --- This flying human chain represents prime and backup payload specialists for two upcoming STS missions. The group, representing trainees for STS-61C later this year and STS-51L early next year, shared some 40 parabolas in NASA?s KSC-135, ?Zero-G? aircraft on Nov. 20. Left to right are Gerard Magilton, RCA backup payload specialist for STS-61C; Sharon Christa McAuliffe, payload specialist/teacher citizen observer for STS-51L; U.S. Rep. Bill Nelson (D., Florida), scheduled for 61-C; Barbara R. Morgan, backup to McAuliffe; and Robert J. Cenker, RCA payload specialist for 61-C. The photo was taken by Keith Meyers, New York Times. Photo credit: NASA

  1. CREW TRAINING - STS-33/51-L (Zero-G)

    NASA Image and Video Library

    1985-11-20

    S85-44834 (20 Nov. 1985) --- This flying human chain represents prime and backup payload specialists for two upcoming STS missions. The group, representing trainees for STS-61C later this year and STS-51L early next year, shared some 40 parabolas in NASA?s KC-135, ?Zero-G? aircraft on Nov. 20, 1985. Left to right are Gerard Magilton, RCA backup payload specialist for STS-61C; Sharon Christa McAuliffe, payload specialist/teacher citizen observer for STS-51L; U.S. Representative Bill Nelson (D., Florida), scheduled for 61C; Barbara R. Morgan, backup to McAuliffe; and Robert J. Cenker, RCA payload specialist for 61C. The photo was taken by Otis Imboden. Photo credit: NASA

  2. NASA launches student experiments from Wallops

    NASA Image and Video Library

    2015-08-12

    NASA launched a Terrier-Improved Malemute suborbital sounding rocket carrying the RockSat-X payload with university and community college student experiments at 6:04 a.m. EDT Wednesday, Aug. 12, from NASA’s Wallops Flight Facilityin Virginia. More than 60 students and instructors from across the continental United States, Hawaii and Puerto Rico were on hand to witness the launch of their experiments. The payload flew to an altitude of about 97 miles and descended via parachute into the Atlantic Ocean off the coast of Wallops. Payload recovery operations began after lift-off. Developed by students from seven higher education programs, the experiments flew through the RockSat-X program in conjunction with the Colorado Space Grant Consortium. Participating institutions in this flight are the University of Colorado, Boulder; Northwest Nazarene University, Nampa, Idaho; the University of Puerto Rico; the University of Nebraska, Lincoln; Virginia Tech University, Blacksburg; Capitol Technology University, Laurel, Maryland; and University of Hawai'i Community Colleges at the Honolulu, Kapi'olani, Kaua'i, and Windward campuses. The next launch scheduled from Wallops is a NASA Black Brant IX suborbital sounding rocket carrying several technology development instruments. The launch is scheduled between 7 and 7:41 p.m. Sept. 29. The backup launch days are Sept. 30 through Oct. 12. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Developments in Miniaturized Laser Heterodyne Radiometer (mini-LHR) construction for groundtruth measurements of CH4 and CO2 in harsh terrain

    NASA Astrophysics Data System (ADS)

    DiGregorio, A.; Wilson, E. L.; Hoffman, C.; Grunberg, C.; Mao, J.; Ramanathan, A. K.

    2016-12-01

    We present an updated, ruggedized design of NASA Goddard Space Flight Center's Miniaturized Laser Heterodyne Radiometer (mini-LHR), and the results of testing in the Bonanza Creek Research Forest. The mini-LHR is a passive variation of typical heterodyne radiometry instruments, designed to work in tandem with the AERONET sun photometer for collection of column methane (CH4) and carbon dioxide (CO2) in harsh environments. Advancements in the development of the Cube-Sat version of the mini-LHR have allowed a more than 50% reduction in size, weight, and power usage of the mini-LHR. Now small enough to fit in a medium handbag, the mini-LHR can be run off of a small 35 Watt solar panel and backup battery for continuous measurement. Using a touch-screen control interface built off of a Raspberry Pi, the updated mini-LHR is capable of data collection and preliminary data processing, even without internet, cellular, or satellite connectivity. The improvements made to the mini-LHR were tested in a field campaign in May 2016 funded under NASA's IDS program to track CH4 and CO2 emissions above thawing permafrost. In addition to being a comprehensive study of methane release from thawing permafrost, this pilot study tested the ruggedization and functionality of the instrument in three different environments- a black spruce forest, collapsed scar bog, and fen.

  4. X-38 Ship #2 Landing on Lakebed, Completing the Program's 4th Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), makes a gentle lakebed landing at the end of a July 1999 test flight at the Dryden Flight Research Center, Edwards, California. It was the fourth free flight of the test vehicles in the X-38 program, and the second free flight test of Vehicle 132 or Ship 2. The goal of this flight was to release the vehicle from a higher altitude -- 31,500 feet -- and to fly the vehicle longer -- 31 seconds -- than any previous X-38 vehicle had yet flown. The project team also conducted aerodynamic verification maneuvers and checked improvements made to the drogue parachute. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  5. 25. Station Control Batteries and Chargers, view to the east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Station Control Batteries and Chargers, view to the east. The ARU130HK50 battery charger is visible in left foreground of photograph, with the A-40 backup battery charger visible adjacent to and beyond the ARU130HK50. The racks of 60 KCU-7 lead calcium batteries manufactured by C&D Batteries are visible in the center of the photograph. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  6. X-38: Artist Concept of Re-Entering Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's depiction of NASA's proposed Crew Return Vehicle (CRV) re-entering the earth's atmosphere. A team of NASA researchers began free flight tests of the X-38, a technology demonstrator for the CRV, at NASA's Dryden Flight Research Center, Edwards, California, in 1998. The CRV is being designed as a 'lifeboat' for the International Space Station The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  7. Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASA's Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  8. The Three Main Rings of the X-38 Vehicle 201 Shown under Construction at NASA Johnson Space Flight C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows the X-38 Vehicle 201, intended for spaceflight testing, under construction at NASA Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  9. X-38 Prototype Technology Demonstrator for the Crew Return Vehicle (CRV) and Project Managers Bob Ba

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Bob Baron of the Dryden Flight Research Center (left) and Brian Anderson of the Johnson Space Flight Center (right) flank an X-38 prototype Crew Return Vehicle technology demonstrator under construction at the Johnson Space Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  10. 76 FR 42577 - Magnuson-Stevens Act Provisions; Fisheries of the Northeastern United States; Northeast...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... comply with trip limits. However, the current system does not accurately account for the fish landed for... confirm the receipt of the TSH report via a back-up system specified by the DSM service provider. The... via a back-up system, after a time determined by the DSM provider, to confirm the receipt of the TSH...

  11. Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-12-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.

  12. 95. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (106), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770). BATTERY RACK FOR BACKUP BOOSTER POWER ON LEFT; BATTERY RACK FOR BACKUP AEROSPACE GROUND EQUIPMENT (AGE) POWER ON RIGHT. BATTERY CHARGER IS RIGHT OF BATTERY RACKS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. X-38 Drop Model: Testing Parafoil Landing System during Drop Tests

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  14. Fail-over file transfer process

    NASA Technical Reports Server (NTRS)

    Semancik, Susan K. (Inventor); Conger, Annette M. (Inventor)

    2005-01-01

    The present invention provides a fail-over file transfer process to handle data file transfer when the transfer is unsuccessful in order to avoid unnecessary network congestion and enhance reliability in an automated data file transfer system. If a file cannot be delivered after attempting to send the file to a receiver up to a preset number of times, and the receiver has indicated the availability of other backup receiving locations, then the file delivery is automatically attempted to one of the backup receiving locations up to the preset number of times. Failure of the file transfer to one of the backup receiving locations results in a failure notification being sent to the receiver, and the receiver may retrieve the file from the location indicated in the failure notification when ready.

  15. 12. Detail of clutch and backup gasoline engine for powering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail of clutch and backup gasoline engine for powering Stoney gates. Clutch mechanism manufactured by Baldridge Machine Company, Detroit, Michigan, ca. 1910. Instrument to the left records volume of flow through headworks. View looking south towards Stoney gates. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  16. STS-47 backup payload specialists participate in JSC WETF bailout exercise

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, backup payload specialists (left to right) Chiaki Naito-Mukai, Takao Doi, and Stan Koszelak, wearing launch and entry suits, sit on the poolside in JSC's Weightless Environment Training Facility (WETF) Bldg 29. These alternates are waiting to participate launch emergency egress (bailout) exercises. The training is conducted in the WETF pool to simulate a water landing.

  17. The Design of Data Disaster Recovery of National Fundamental Geographic Information System

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; Chen, J.; Liu, L.; Liu, J.

    2014-04-01

    With the development of information technology, data security of information system is facing more and more challenges. The geographic information of surveying and mapping is fundamental and strategic resource, which is applied in all areas of national economic, defence and social development. It is especially vital to national and social interests when such classified geographic information is directly concerning Chinese sovereignty. Several urgent problems that needs to be resolved for surveying and mapping are how to do well in mass data storage and backup, establishing and improving the disaster backup system especially after sudden natural calamity accident, and ensuring all sectors rapidly restored on information system will operate correctly. For overcoming various disaster risks, protect the security of data and reduce the impact of the disaster, it's no doubt the effective way is to analysis and research on the features of storage and management and security requirements, as well as to ensure that the design of data disaster recovery system suitable for the surveying and mapping. This article analyses the features of fundamental geographic information data and the requirements of storage management, three site disaster recovery system of DBMS plan based on the popular network, storage and backup, data replication and remote switch of application technologies. In LAN that synchronous replication between database management servers and the local storage of backup management systems, simultaneously, remote asynchronous data replication between local storage backup management systems and remote database management servers. The core of the system is resolving local disaster in the remote site, ensuring data security and business continuity of local site. This article focuses on the following points: background, the necessity of disaster recovery system, the analysis of the data achievements and data disaster recovery plan. Features of this program is to use a hardware-based data hot backup, and remote online disaster recovery support for Oracle database system. The achievement of this paper is in summarizing and analysing the common characteristics of disaster of surveying and mapping business system requirements, while based on the actual situation of the industry, designed the basic GIS disaster recovery solutions, and we also give the conclusions about key technologies of RTO and RPO.

  18. Head-Elevated Patient Positioning Decreases Complications of Emergent Tracheal Intubation in the Ward and Intensive Care Unit.

    PubMed

    Khandelwal, Nita; Khorsand, Sarah; Mitchell, Steven H; Joffe, Aaron M

    2016-04-01

    Based on the data from elective surgical patients, positioning patients in a back-up head-elevated position for preoxygenation and tracheal intubation can improve patient safety. However, data specific to the emergent setting are lacking. We hypothesized that back-up head-elevated positioning would be associated with a decrease in complications related to tracheal intubation in the emergency room environment. This retrospective study was approved by the University of Washington Human Subjects Division (Seattle, WA). Eligible patients included all adults undergoing emergent tracheal intubation outside of the operating room by the anesthesiology-based airway service at 2 university-affiliated teaching hospitals. All intubations were through direct laryngoscopy for an indication other than full cardiopulmonary arrest. Patient characteristics and details of the intubation procedure were derived from the medical record. The primary study endpoint was the occurrence of a composite of any intubation-related complication: difficult intubation, hypoxemia, esophageal intubation, or pulmonary aspiration. Multivariable logistic regression was used to estimate the odds of the primary endpoint in the supine versus back-up head-elevated positions with adjustment for a priori-defined potential confounders (body mass index and a difficult intubation prediction score [Mallampati, obstructive sleep Apnea, Cervical mobility, mouth Opening, Coma, severe Hypoxemia, and intubation by a non-Anesthesiologist score]). Five hundred twenty-eight patients were analyzed. Overall, at least 1 intubation-related complication occurred in 76 of 336 (22.6%) patients managed in the supine position compared with 18 of 192 (9.3%) patients managed in the back-up head-elevated position. After adjusting for body mass index and the Mallampati, obstructive sleep Apnea, Cervical mobility, mouth Opening, Coma, severe Hypoxemia, and intubation by a non-Anesthesiologist score, the odds of encountering the primary endpoint during an emergency tracheal intubation in a back-up head-elevated position was 0.47 (95% confidence interval, 0.26-0.83; P = 0.01). Placing patients in a back-up head-elevated position, compared with supine position, during emergency tracheal intubation was associated with a reduced odds of airway-related complications.

  19. Physical Test Prototypes Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Paramitha, S. T.

    2017-03-01

    The purpose of this study was to produce a prototype of a physical test-based microcontroller. The research method uses the research and development of the Borg and gall. The procedure starts from the study; research and information collecting, planning, develop preliminary form of product, preliminary field testing, main product revision, playing field testing, operational product revision, field operational testing, final product revision, dissemination and implementation. Validation of the product, obtained through expert evaluation; test products of small scale and large scale; effectiveness test; evaluation of respondents. The results showed that the eligibility assessment of prototype products based physical tests microcontroller. Based on the ratings of seven experts showed that 87% included in the category of “very good” and 13% included in the category of “good”. While the effectiveness of the test results showed that 1). The results of the experimental group to test sit-ups increase by 40% and the control group by 15%. 2). The results of the experimental group to test push-ups increased by 30% and the control group by 10%. 3). The results of the experimental group to test the Back-ups increased by 25% and the control group by 10%. With a significant value of 0.002 less than 0.05, product means a physical test prototype microcontroller based, proven effective in improving the results of physical tests. Conclusions and recommendations; Product physical microcontroller-based assays, can be used to measure the physical tests of pushups, sit ups, and back-ups.

  20. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine...

  1. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine...

  2. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  3. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine...

  4. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  5. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  6. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  7. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine...

  8. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  9. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine...

  10. X-38 Arrival at NASA Dryden on June 4, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) is transported down a road at NASA's Dryden Flight Research Center, Edwards, California, upon its arrival there in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  11. The X-38 lifting body research vehicle, seen here wrapped in a protective material, lowered onto a t

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 lifting body research vehicle, seen here wrapped in a protective material, is lowered onto a truck for shipping from the Dryden Flight Research Center in May 2000. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  12. Dale Reed with X-38 and a Subscale Model Used in Test Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Dale Reed, a NASA engineer who worked on the original lifting-body research programs in the 1960s and 1970s, stands with a scale-model X-38 that was used in 1995 research flights, with a full-scale X-38 (80 percent of the size of a potential Crew Return Vehicle) behind him. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.

  13. Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks

    NASA Astrophysics Data System (ADS)

    Din, Der-Rong; Huang, Jen-Shen

    2014-03-01

    As networks grow in size and complexity, the chance and the impact of failures increase dramatically. The pre-allocated backup resources cannot provide 100% protection guarantee when continuous failures occur in a network. In this paper, the multicast backup re-provisioning problem (MBRP) for Hamiltonian cycle (HC)-based protection on WDM networks for the link-failure case is studied. We focus on how to recover the protecting capabilities of Hamiltonian cycle against the subsequent link-failures on WDM networks for multicast transmissions, after recovering the multicast trees affected by the previous link-failure. Since this problem is a hard problem, an algorithm, which consists of several heuristics and a genetic algorithm (GA), is proposed to solve it. The simulation results of the proposed method are also given. Experimental results indicate that the proposed algorithm can solve this problem efficiently.

  14. Dynamic segment shared protection for multicast traffic in meshed wavelength-division-multiplexing optical networks

    NASA Astrophysics Data System (ADS)

    Liao, Luhua; Li, Lemin; Wang, Sheng

    2006-12-01

    We investigate the protection approach for dynamic multicast traffic under shared risk link group (SRLG) constraints in meshed wavelength-division-multiplexing optical networks. We present a shared protection algorithm called dynamic segment shared protection for multicast traffic (DSSPM), which can dynamically adjust the link cost according to the current network state and can establish a primary light-tree as well as corresponding SRLG-disjoint backup segments for a dependable multicast connection. A backup segment can efficiently share the wavelength capacity of its working tree and the common resources of other backup segments based on SRLG-disjoint constraints. The simulation results show that DSSPM not only can protect the multicast sessions against a single-SRLG breakdown, but can make better use of the wavelength resources and also lower the network blocking probability.

  15. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  16. Results of the Magnetometer Navigation (MAGNAV)lnflight Experiment

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Harman, Richard R.; Bar-Itzhack, Itzhack Y.; Lambertson, Mike

    2004-01-01

    The Magnetometer Navigation (MAGNAV) algorithm is currently running as a flight experiment as part of the Wide Field Infrared Explorer (WIRE) Post-Science Engineering Testbed. Initialization of MAGNAV occurred on September 4, 2003. MAGNAV is designed to autonomously estimate the spacecraft orbit, attitude, and rate using magnetometer and sun sensor data. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed magnetic field and measured magnetic field components, as measured by the magnetometer throughout the entire spacecraft orbit, are a function of the spacecraft trajectory and attitude errors. Therefore, these errors are used to estimate both trajectory and attitude. In addition, the time rate of change of the magnetic field vector is used to estimate the spacecraft rotation rate. The estimation of the attitude and trajectory is augmented with the rate estimation into an Extended Kalman filter blended with a pseudo-linear Kalman filter. Sun sensor data is also used to improve the accuracy and observability of the attitude and rate estimates. This test serves to validate MAGNAV as a single low cost navigation system which utilizes reliable, flight qualified sensors. MAGNAV is intended as a backup algorithm, an initialization algorithm, or possibly a prime navigation algorithm for a mission with coarse requirements. Results from the first six months of operation are presented.

  17. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  18. Microcontroller uses in Long-Duration Ballooning

    NASA Astrophysics Data System (ADS)

    Jones, Joseph

    This paper discusses how microcontrollers are being utilized to fulfill the demands of long duration ballooning (LDB) and the advantages of doing so. The Columbia Scientific Balloon Facility (CSBF) offers the service of launching high altitude balloons (120k ft) which provide an over the horizon telemetry system and platform for scientific research payloads to collect data. CSBF has utilized microcontrollers to address multiple tasks and functions which were previously performed by more complex systems. A microcontroller system has been recently developed and programmed in house to replace our previous backup navigation system which is used on all LDB flights. A similar microcontroller system was developed to be independently launched in Antarctica before the actual scientific payload. This system's function is to transmit its GPS position and a small housekeeping packet so that we can confirm the upper level float winds are as predicted from satellite derived models. Microcontrollers have also been used to create test equipment to functionally check out the flight hardware used in our telemetry systems. One test system which was developed can be used to quickly determine if our communication link we are providing for the science payloads is functioning properly. Another system was developed to provide us with the ability to easily determine the status of one of our over the horizon communication links through a closed loop system. This test system has given us the capability to provide more field support to science groups than we were able to in years past. The trend of utilizing microcontrollers has taken place for a number of reasons. By using microcontrollers to fill these needs, it has given us the ability to quickly design and implement systems which meet flight critical needs, as well as perform many of the everyday tasks in LDB. This route has also allowed us to reduce the amount of time required for personnel to perform a number of the tasks required during the initial fabrication and also refurbishing processes of flight hardware systems. The recent use of microcontrollers in the design of both LDB flight hardware and test equipment has shown some examples of the adaptability and usefulness they have provided for our workplace.

  19. CASE/A - COMPUTER AIDED SYSTEM ENGINEERING AND ANALYSIS, ECLSS/ATCS SERIES

    NASA Technical Reports Server (NTRS)

    Bacskay, A.

    1994-01-01

    Design and analysis of Environmental Control and Life Support Systems (ECLSS) and Active Thermal Control Systems (ATCS) for spacecraft missions requires powerful software that is flexible and responsive to the demands of particular projects. CASE/A is an interactive trade study and analysis tool designed to increase productivity during all phases of systems engineering. The graphics-based command-driven package provides a user-friendly environment in which the engineer can analyze the performance and interface characteristics of an ECLS/ATC system. The package is useful during all phases of a spacecraft design program, from initial conceptual design trade studies to the actual flight, including pre-flight prediction and in-flight anomaly analysis. The CASE/A program consists of three fundamental parts: 1) the schematic management system, 2) the database management system, and 3) the simulation control and execution system. The schematic management system allows the user to graphically construct a system model by arranging icons representing system components and connecting the components with physical fluid streams. Version 4.1 contains 51 fully coded and documented default component routines. New components can be added by the user through the "blackbox" component option. The database management system supports the storage and manipulation of component data, output data, and solution control data through interactive edit screens. The simulation control and execution system initiates and controls the iterative solution process, displaying time status and any necessary diagnostic messages. In addition to these primary functions, the program provides three other important functional areas: 1) model output management, 2) system utility commands, and 3) user operations logic capacity. The model output management system provides tabular and graphical output capability. Complete fluid constituent mass fraction and properties data (mass flow, pressure, temperature, specific heat, density, and viscosity) is generated at user-selected output intervals and stored for reference. The Integrated Plot Utility (IPU) provides plotting capability for all data output. System utility commands are provided to enable the user to operate more efficiently in the CASE/A environment. The user is able to customize a simulation through optional operations FORTRAN logic. This user-developed code is compiled and linked with a CASE/A model and enables the user to control and timeline component operating parameters during various phases of the iterative solution process. CASE/A provides for transient tracking of the flow stream constituents and determination of their thermodynamic state throughout an ECLSS/ATCS simulation, performing heat transfer, chemical reaction, mass/energy balance, and system pressure drop analysis based on user-specified operating conditions. The program tracks each constituent through all combination and decomposition states while maintaining a mass and energy balance on the overall system. This allows rapid assessment of ECLSS designs, the impact of alternate technologies, and impacts due to changes in metabolic forcing functions, consumables usage, and system control considerations. CASE/A is written in FORTRAN 77 for the DEC VAX/VMS computer series, and requires 12Mb of disk storage and a minimum paging file quota of 20,000 pages. The program operates on the Tektronix 4014 graphics standard and VT100 text standard. The program requires a Tektronix 4014 or later graphics terminal, third party composite graphics/text terminal, or personal computer loaded with appropriate VT100/TEK 4014 emulator software. The use of composite terminals or personal computers with popular emulation software is recommended for enhanced CASE/A operations and general ease of use. The program is available on an unlabeled 9-track 6250 BPI DEC VAX BACKUP format magnetic tape. CASE/A development began in 1985 under contract to NASA/Marshall Space Flight Center. The latest version (4.1) was released in 1990. Tektronix and TEK 4014 are trademarks of Tektronix, Inc. VT100 is a trademark of Digital Equipment Corporation.

  20. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

Top