Sample records for backup payload specialist

  1. STS-9 payload specialists and backup in training session

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Two Spacelab 1 payload specialists and a backup for that flight prepare for a training session in the JSC mockup and integration laboratory. Fully decked out in the Shuttle constant wear garments (foreground) are Ulf Merbold, left, and Byron K. Licktenberg, prime crewmembers on the STS-9 team. In civilian clothes is payload specialist backup Michael L. Lampton.

  2. STS-55 German payload specialists (and backups) in LESs during JSC training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, German payload specialists and backup (alternate) payload specialists, wearing launch and entry suits (LESs), pose for group portrait outside mockup side hatch in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE. These payload specialists will support the STS-55 Spacelab Deutsche 2 (SL-D2) mission. It is the second dedicated German (Deutsche) Spacelab flight. Left to right are backup Payload Specialists Renate Brummer and Dr. P. Gerhard Thiele, Payload Specialist 1 Ulrich Walter, and Payload Specialist 2 Hans Schlegel.

  3. STS-47 Japanese Payload Specialist Mohri and backups during Homestead training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Japanese Payload Specialist Mamoru Mohri (far left), backup Payload Specialist Takao Doi (center), and backup Payload Specialist Chiaki Mukai (right) participate in water survival training at Homestead Air Force Base, Florida. Dockside, Mohri and Mukai wash the salt water from their personalized helmets after a water exercise. The three-day course was attended by the STS-47 prime and alternate payload specialists shortly after they were announced for the scheduled summer of 1992 Spacelab Japan (SLJ) mission. Mohri, Doi, and Mukai all represent the National Space Development Agency of Japan (NASDA).

  4. STS-47 Payload Specialist Mohri and Japanese backups pose in SLJ module at KSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 payload specialists representing Japan's National Space Development Agency (NASDA) examine the interior of the Spacelab Japan (SLJ) laboratory module recently installed in Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB). Left to right are Payload Specialist Mamoru Mohri, backup Payload Specialist Chiaki Naito-Mukai, and backup Payload Specialist Takao Doi. The crewmembers visited OV-105, currently undergoing preflight processing in a high bay area of Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF). View provided by KSC with alternate KSC number KSC-92PC-1649.

  5. STS-55 German payload specialists and backups pose in front of SL-D2 at KSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, German payload specialists and backup (alternate) payload specialists pose in front of the Spacelab Deutsche 2 (SL-D2) science module at a Kennedy Space Center (KSC) processing facility. These four Germans have been assigned to support the STS-55/SL-D2 mission. Left to right are Payload Specialist 2 Hans Schlegel, backup Payload Specialist Dr. P. Gerhard Thiele (kneeling), Payload Specialist 1 Ulrich Walter, and backup Payload Specialist Renate Brummer. Walter and Schlegel are scheduled to fly aboard OV-102 for the mission while Brummer and Thiele will serve as alternates and fill supportive roles on the ground. Clearly visible on the SL-D2 module are the European Space Agency (ESA) insignia, the feedthrough plate, and the D2 insignia.

  6. Official portrait of STS-65 backup Payload Specialist Jean-Jacques Favier

    NASA Image and Video Library

    1993-09-30

    Official portrait of STS-65 International Microgravity Laboratory 2 (IML-2) backup Payload Specialist Jean-Jacques Favier. Favier is a member of the Centre National D'Etudes Spatiales (CNES), the French space agency.

  7. STS-9 payload specialist Merbold and backup Ockels in training session

    NASA Technical Reports Server (NTRS)

    1983-01-01

    STS-9 payload specialist Ulf Merbold, right, a West German physicist and backup Wubbo Ockels, a Dutch scientist, are pictured in a training session in JSC's Shuttle mockup and integration laboratory. In this view Ockels appears to be showing Merbold how to operate a camera.

  8. STS-47 crew and backups at MSFC's Payload Crew Training Complex

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) crewmembers and backup payload specialists stand outside SLJ module mockup at the Payload Crew Training Complex at Marshall SpaceFlight Center (MSFC) in Huntsville, Alabama. From left to right are Payload Specialist Mamoru Mohri, backup Payload Specialist Takao Doi, backup Payload Specialist Chiaki Naito-Mukai, Mission Specialist (MS) Mae C. Jemison, MS N. Jan Davis, backup Payload Specialist Stan Koszelak, and MS and Payload Commander (PLC) Mark C. Lee. The MSFC-managed mission is a joint venture in space-based research between the United States and Japan. Mohri, Doi, and Mukai represent Japan's National Space Development Agency (NASDA). View provided with alternate number 92P-142.

  9. View of backup payload specialist Robert Thirsk during Zero-G training

    NASA Image and Video Library

    1984-07-16

    S84-37532 (18 July 1984) --? Robert B. Thirsk, backup payload specialist for 41-G appears to be shaking hands with an unoccupied extravehicular mobility unit (EMU) during a familiarization flight aboard NASA?s KC-135 aircraft. Thirsk, representing Canada?s National Research Council (NRC), serves as backup to Marc Garneau on the seven-member crew for Challenger?s October 1984 flight. This aircraft is used extensively for training and exposing Shuttle crewmembers to weightlessness as well as for evaluation of equipment and experiments scheduled for future flights.

  10. STS-52 backup Payload Specialist Tryggvason during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, backup Payload Specialist Bjarni V. Tryggvason, wearing launch and entry suit (LES), checks his launch and entry helmet (LEH) fitting prior to participating in emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25-ft deep pool will serve as the ocean during this water landing simulation. Tryggvason represents the Canadian Space Agency (CSA).

  11. STS-47 backup payload specialists participate in JSC WETF bailout exercise

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, backup payload specialists (left to right) Chiaki Naito-Mukai, Takao Doi, and Stan Koszelak, wearing launch and entry suits, sit on the poolside in JSC's Weightless Environment Training Facility (WETF) Bldg 29. These alternates are waiting to participate launch emergency egress (bailout) exercises. The training is conducted in the WETF pool to simulate a water landing.

  12. STS-45 backup Payload Specialist Chappell during water egress training at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, backup Payload Specialist Charles R. Chappell, wearing launch and entry suit (LES), is suspended via his parachute harness above JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Chappell will be dropped into the pool during the exercise which simulates a parachute landing into a body of water. SCUBA-equipped divers swimming in the pool will assist during the training.

  13. STS-55 backup Payload Specialist Thiele with technician in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, backup German Payload Specialist Dr. P. Gerhard Thiele, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, seated on the poolside waits his turn to participate in launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Thiele and other crewmembers practiced water bailout procedures. Thiele represents the DLR for the upcoming Spacelab Deutsche 2 (SL-D2) mission.

  14. STS-47 Payload Specialist Mohri adjusts life vest during Homestead training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Payload Specialist Mamoru Mohri adjusts his life jacket with a training instructor's assistance as backup (alternate) payload specialist Takao Doi looks on. The STS-47 prime and alternate payload specialists are participating in a special water survival training course hosted by Homestead Air Force Base in Florida. Mohri and Doi represent the National Space Development Agency of Japan (NASDA).

  15. View of Zero-G training for astronauts and payload specialists

    NASA Image and Video Library

    1984-08-27

    S84-40538 (24 Aug 1984) --- Two 41-G payload specialists and a backup for one of them appear to be at home in zero gravity in this scene photographed aboard a KC-135 "Zero gravity" aircraft flying one of its weightlessness opportunity parabolas. Paul D. Scully-Power, a civilian oceanographer with the U.S. Navey, is flanked by Marc Garneau (left) and Robert Thirsk, both representing the National Research Council of Canada. Thirsk is back up payload specialist for Garneau.

  16. STS-47 Payload Specialist Mohri parasails during Homestead AFB water training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Payload Specialist Mamoru Mohri parasails during a special survival training course hosted by Homestead Air Force Base (AFB) in Florida. Mohri simulates a paraglide into water. The exercise was part of an overall course on water survival, attended by the STS-47 prime and alternate (backup) payload specialists shortly after they were announced for the scheduled summer of 1992 Spacelab Japan (SLJ) mission. Mohri represents the National Space Development Agency of Japan (NASDA).

  17. STS-47 crew & backups pose for portrait in SLJ module at KSC during training

    NASA Image and Video Library

    1992-07-25

    S92-44303 --- STS-47 Endeavour, Orbiter Vehicle (OV) 105, crew members and back-up payload specialists, wearing clean suits, pose for a group portrait in the Spacelab Japan (SLJ) module. The team is at the Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF) to inspect SLJ configuration and OV-105 preparations. Kneeling, from left, are back-up Payload Specialist Chiaki Naito-Mukai; Mission Specialist N. Jan Davis; and backup Payload Specialist Takao Doi. Standing, from the left, are Pilot Curtis L. Brown,Jr; Payload Commander Mark C. Lee; Jerome Apt; Payload Specialist Mamoru Mohri; Commander Robert L. Gibson; Mae C. Jemison; and back-up Payload Specialist Stanely L. Koszelak. Mohri, Mukai, and Doi represent the National Space Development Agency of Japan (NASDA). View provided by KSC with alternate KSC number KSC-92PC-1647. Photo credit: NASA

  18. STS-47 Payload Specialist Mohri tosses an apple during SLJ demonstration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Payload Specialist Mamoru Mohri tosses an apple in the weightless environment of the Spacelab Japan (SLJ) science module aboard the Earth-orbitng Endeavour, Orbiter Vehicle (OV) 105. Mohri was handling the space end of a space-to-Earth youth Conference with students in his home country (Japan) in which he gave a brief demonstration on the specifics of his mission as well as general information on space travel and space physics. Mohri conducts his demonstration in front of the NASDA Material Sciences Rack 10. In the background is the SLJ end cone with Detailed Test Objective (DTO), Foot restraint evaluation, base plate, a banner from Auburn University, and portraits of the backup payload specialists. Mohri represents Japan's National Space Development Agency (NASDA).

  19. STS-45 backup Payload Specialist Chappell during water egress training at JSC

    NASA Image and Video Library

    1991-11-26

    S91-52074 (26 Nov 1991) --- Charles R. (Rick) Chappell, alternate payload specialist, equipped with simulated parachute gear, descends into the water during bail-out training exercises in the Johnson Space Center's weightless environment training facility (WET-F). In this phase of the training program, Shuttle crewmembers learn the proper measures to take in the event of ejection and subsequent parachute landing into a body of water. A number of SCUBA-equipped swimmers who assisted in the training are pictured.

  20. STS-87 Payload Specialist Leonid Kadenyuk chats with NASA Administrator Daniel Goldin shortly after

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU), at left, chats with NASA Administrator Daniel Goldin shortly after the landing of Columbia at Kennedy Space Center. Looking on is back-up Payload Specialist Yaroslav Pustovyi, also of NSAU. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; and Mission Specialists Winston Scott, Kalpana Chawla, Ph.D., and Takao Doi, Ph.D., of the National Space Development Agency of Japan. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  1. 14 CFR 1214.305 - Payload specialist responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Payload specialist responsibilities. 1214.305 Section 1214.305 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.305 Payload specialist...

  2. 14 CFR 1214.305 - Payload specialist responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Payload specialist responsibilities. 1214.305 Section 1214.305 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.305 Payload specialist...

  3. 14 CFR 1214.305 - Payload specialist responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Payload specialist responsibilities. 1214.305 Section 1214.305 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.305 Payload specialist...

  4. 14 CFR 1214.305 - Payload specialist responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Payload specialist responsibilities. 1214.305 Section 1214.305 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.305 Payload specialist...

  5. 14 CFR 1214.812 - Payload specialists.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Payload specialists. 1214.812 Section 1214.812 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for...-furnished mission specialists. Accommodations for, and mission-independent training of, any payload...

  6. 14 CFR 1214.812 - Payload specialists.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Payload specialists. 1214.812 Section 1214.812 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for...-furnished mission specialists. Accommodations for, and mission-independent training of, any payload...

  7. 14 CFR 1214.812 - Payload specialists.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Payload specialists. 1214.812 Section 1214.812 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for...-furnished mission specialists. Accommodations for, and mission-independent training of, any payload...

  8. 14 CFR 1214.812 - Payload specialists.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Payload specialists. 1214.812 Section 1214.812 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for...-furnished mission specialists. Accommodations for, and mission-independent training of, any payload...

  9. 14 CFR § 1214.305 - Payload specialist responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Payload specialist responsibilities. § 1214.305 Section § 1214.305 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.305 Payload specialist...

  10. 14 CFR § 1214.812 - Payload specialists.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Payload specialists. § 1214.812 Section § 1214.812 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement...-furnished mission specialists. Accommodations for, and mission-independent training of, any payload...

  11. Payload specialist Ronald Parise checks on ASTRO-2 payload

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Payload specialist Ronald A. Parise, a senior scientist in the Space Observatories Department of Computer Sciences Corporation (CSC), checks on the ASTRO-2 payload (out of frame in the cargo bay of the Space Shuttle Endeavour). Parise is on the aft flight deck of the Earth orbiting Endeavour during STS-67.

  12. Payload specialists in training for STS 51-L in mockup & integration lab

    NASA Image and Video Library

    1986-01-09

    S86-25254 (January 1986) --- Payload specialists in training for STS-51L take a break in shuttle emergency egress training at the Johnson Space Center's (JSC) Shuttle Mock-up and Integration Laboratory. Left to right are Gregory Jarvis of Hughes, Sharon Christa McAuliffe and Barbara Morgan of the Teacher-in-Space Project. McAuliffe was selected as NASA's first citizen observer in the Space Shuttle Program and Morgan was named her backup. The photo was taken by Keith Meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  13. 14 CFR 1214.306 - Payload specialist relationship with sponsoring institutions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Payload specialist relationship with sponsoring institutions. 1214.306 Section 1214.306 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.306 Payload...

  14. 14 CFR 1214.306 - Payload specialist relationship with sponsoring institutions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Payload specialist relationship with sponsoring institutions. 1214.306 Section 1214.306 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.306 Payload...

  15. 14 CFR 1214.306 - Payload specialist relationship with sponsoring institutions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Payload specialist relationship with sponsoring institutions. 1214.306 Section 1214.306 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.306 Payload...

  16. 14 CFR 1214.306 - Payload specialist relationship with sponsoring institutions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Payload specialist relationship with sponsoring institutions. 1214.306 Section 1214.306 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.306 Payload...

  17. Payload specialist Reinhard Furrer show evidence of previous blood sampling

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Payload specialist Reinhard Furrer shows evidence of previous blood sampling while Wubbo J. Ockels, Dutch payload specialist (only partially visible), extends his right arm after a sample has been taken. Both men show bruises on their arms.

  18. 14 CFR § 1214.306 - Payload specialist relationship with sponsoring institutions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Payload specialist relationship with sponsoring institutions. § 1214.306 Section § 1214.306 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space Transportation System (STS) Missions § 1214.306 Payload...

  19. Payload specialist Robert Cenker after adjusting DSO equipment

    NASA Image and Video Library

    1986-01-12

    61C-05-035 (12-17 Jan 1986) --- Robert J. Cenker, 61-C payload specialist representing RCA, returns a tiny tool to its stowage position after adjusting the inner workings of a device used in one of a number of detailed supplementary objective (DSO) studies for NASA's Space Biomedical Research Institute. The device is a pair of ocular counter-rolling goggles used by U.S. Rep. Bill Nelson (D., Florida), 61-C's other payload specialist aboard the Columbia for this five-day flight.

  20. Payload Specialist Gregory T. Linteris

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-83 Payload Specialist Gregory T. Linteris chats with white room closeout crew members as he prepares to enter the Space Shuttle Columbia at Launch Pad 39A. Closeout crew workers Max Kandler (second from right) and Bob Saulnier wait to assist Linteris with his ascent/reentry suit.

  1. Payload specialists Millie Hughes-Fulford in Body Mass Measurement Device

    NASA Image and Video Library

    1985-02-01

    S85-26553 (Feb 1985) --- STS-40/SLS-1 payload specialist Millie Hughes-Fulford sits strapped in the special device scientists have developed for determining mass on orbit. As the chair swings back and forth, a timer records how much the crewmember's mass retards the chair's movement. Dr. Hughes-Fulford will be joined by three mission specialists, the mission commander, the pilot and a second payload specialist for the scheduled 10-day Spacelab Life Sciences-1 (SLS-1) mission. The flight is totally dedicated to biological and medical experimentation.

  2. Payload specialists Rodolfo Neri prepares to begin experiments for Mexico

    NASA Image and Video Library

    1985-11-26

    61B-05-021 (26 Nov-3 Dec 1985) --- Payload Specialist Rodolfo Neri, representing Mexico on the STS-61B space mission aboard the Atlantis, prepares to begin one of the experiments for Mexico. Neri used a nearby 35mm camera to record plants and bacteria for various prescribed testing. Here the payload specialist has opened a stowage drawer to retrieve components of one of the tests.

  3. STS-95 Payload Specialist Mukai poses with NASDA president

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist Chiaki Mukai, M.D. (center), with the National Space Development Agency of Japan (NASDA), poses for a photograph with NASDA President Isao Uchida (left). Behind her at the right is a representative of the European Space Agency (ESA). Mukai was one of a crew of seven aboard orbiter Discovery, which landed at KSC at 12:04 p.m. EST, after a successful mission spanning nine days and 3.6 million miles. The other crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialists Stephen K. Robinson; Scott E. Parazynski and Pedro Duque of Spain, with the European Space Agency; and Payload Specialist John H. Glenn Jr., senator from Ohio. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  4. Payload specialist Ronald Parise using SAREX

    NASA Technical Reports Server (NTRS)

    1995-01-01

    ASTRO-2 payload specialist Ronald A. Parise reminisces on his inspace amateur radio experience of five years ago in the ASTRO-1 mission. Using the Shuttle Amateur Radio Experiment (SAREX), Parise talks to students on Earth from the flight deck of the Earth orbiting Space Shuttle Endeavour.

  5. STS-67 Payload Specialists Durrance and Parise suit up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the Operations and Checkout Building, STS-67 Payload Specialists Samuel T. Durrance (left) and Ronald A. Parise have finished donning their launch/entry suits and chat with astronaut Joe Tanner while waiting for the rest of the crew. The two payload specialists -- who are both making their second trip into space -- and five fellow crew members will soon depart for Launch Pad 39A, where the Space Shuttle Endeavour is being readied for liftoff during a launch window opening at 1:37 a.m. EST, March 2.

  6. Bioinstrumentation for evaluation of workload in payload specialists - Results of ASSESS II

    NASA Technical Reports Server (NTRS)

    Wegmann, H. M.; Herrmann, R.; Winget, C. M.

    1979-01-01

    Results of the medical experiment on payload specialist workloads conducted as part of the ASSESS II airborne simulation of Spacelab conditions are reported. Subjects were fitted with temperature probes and ECG, EEG and EOG electrodes, and hormone and electrolyte excretion was monitored in order to evaluate the changes in circadian rhythms, sleep patterns and stress responses brought about by mission schedules over the ten days of the experiment. Internal dissociations of circadian rhythms, sleep disturbances and increased stress levels were observed, especially during the first three days of the experiment, indicating a considerable workload to be imposed upon the payload specialists. An intensive premission simulation is suggested as a means of estimating overall workloads and allowing payload specialist adaptation to mission conditions. The bioinstrumentation which was developed and applied to the airborne laboratory is concluded to be a practical and reliable tool in the assessment of payload specialist workloads.

  7. STS-87 Payload Specialist Kadenyuk in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine is assisted with final preparations before launch in the white room at Launch Pad 39B by Danny Wyatt, NASA quality assurance specialist, at left; Dave Law, USA mechanical technician, facing Kadenyuk; and Travis Thompson, USA orbiter vehicle closeout chief, at right. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. The 16- day mission will include the Collaborative Ukrainian Experiment (CUE), a collection of 10 plant space biology experiments that will fly in Columbias middeck and will feature an educational component that involves evaluating the effects of microgravity on Brassica rapa seedlings.

  8. Payload specialists Patrick Baudry conducts equilibrium experiments

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Payload specialists Patrick Baudry participates in an experiment involving equilibrium and vertigo. He is anchored to the orbiter floor by foot restraints and is wearing a device over his eyes to measure angular head movement and up and down eye movement.

  9. STS-47 Japanese Payload Specialist Mohri during Homestead water training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Japanese Payload Specialist Mamoru Mohri, wearing inflated life jacket, participates in water survival training at Homestead Air Force Base, Florida. Dockside, Mohri washes the salt water from his personalized helmet (#3) after a water exercise. The three-day course was attended by the STS-47 prime and alternate payload specialists shortly after they were announced for the scheduled summer of 1992 Spacelab Japan (SLJ) mission. Mohri represents the National Space Development Agency of Japan (NASDA).

  10. STS-47 Payload Specialist Mohri during Homestead water survival training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) Payload Specialist Mamoru Mohri participates in water survival training exercises at Homestead Air Force Base, Florida. Mohri ignites a flare used to find assistance during an emergency as training personnel look on. The flare familiarization was part of an overall course on water survival, attended by STS-47 prime and alternate payload specialists shortly after they were announced for the scheduled summer of 1992 SLJ mission. Mohri represents the National Space Development Agency of Japan (NASDA).

  11. Payload specialist Merbold performing experiment in Spacelab

    NASA Image and Video Library

    1983-11-28

    STS009-13-699 (28 Nov - 8 Dec 1983) --? Ulf Merbold, Spacelab 1 payload specialist, carries out one of the experiments using the gradient heating facility on the materials science double rack facility in the busy science module aboard the Earth-orbiting Space Shuttle Columbia. Representing the European Space Agency, Dr. Merbold comes from Max-Planck Institute in Stuttgart, the Federal Republic of Germany. He is a specialist in crystal lattice defects and low temperature physics. The photograph was made with a 35mm camera.

  12. DPM and Glovebox, Payload Commander Kathy Thornton and Payload Specialist Albert Sacco in Spacelab

    NASA Image and Video Library

    1995-10-21

    STS073-E-5003 (23 Oct. 1995) --- Astronaut Kathryn C. Thornton, STS-73 payload commander, works at the Drop Physics Module (DPM) on the portside of the science module aboard the Space Shuttle Columbia in Earth orbit. Payload specialist Albert Sacco Jr. conducts an experiment at the Glovebox. This frame was exposed with the color Electronic Still Camera (ESC) assigned to the 16-day United States Microgravity Laboratory (USML-2) mission.

  13. STS-52 PS MacLean, backup PS Tryggvason, and PI pose on JSC's CCT flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Canadian Payload Specialist (PS) Steven G. MacLean (left) and backup Payload Specialist Bjarni V. Tryggvason (right) take a break from a camera training session in JSC's Crew Compartment Trainer (CCT). The two Canadian Space Agency (CSA) representatives pose on the CCT's aft flight deck with Canadian scientist David Zimick, the principal investigator (PI) for the materials experiment in low earth orbit (MELEO). MELEO is a component of the CANEX-2 experiment package, manifest to fly on the scheduled October 1992 STS-52 mission. The CCT is part of the shuttle Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  14. French payload specialist Patrick Baudry prepares a meal

    NASA Image and Video Library

    1985-06-17

    51G-08-021 (17-24 June 1985) --- Patrick Baudry, payload specialist representing the Centre National d'Etudes Spatiales of France, prepares to open a can of lobster. The bag attached to a nearby locker door appears to contain several other French snacks.

  15. STS-95 Payload Specialist Glenn participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts, participates in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. Also participating in the briefing were the other STS-95 crew members: Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  16. STS-75 Payload Specialist Umberto Guidoni suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 Payload Specialist Umberto Guidoni (right) chats with fellow crew member Mission Specialist Claude Nicollier during suitup activities in the Operations and Checkout Building. Guidoni represents the Italian Space Agency and is one of three international crew members assigned to STS-75. He and six fellow crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff during a two-and-a-half- hour launch window opening at 3:18 p.m. EST.

  17. STS-107 Payload Specialist Ilan Ramon arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon (the first Israeli astronaut) arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla, David Brown and Laurel Clark. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.

  18. STS-35 payload specialists perform balancing act on OV-102's middeck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Aided by the microgravity environment aboard Columbia, Orbiter Vehicle (OV) 102, STS-35 Payload Specialist Ronald A. Parise balances Payload Specialist Samuel T. Durrance on his index finger in front of the middeck starboard wall. Durrance is wearing a blood pressure cuff and is holding a beverage container and food package during the microgravity performance. The waste management compartment (WMC), side hatch, and orbiter galley are seen behind the two crewmembers. Durrance's feet are at the forward lockers.

  19. STS-47 Payload Specialist Mohri during Homestead AFB water survival training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Payload Specialist Mamoru Mohri is pictured during training at Homestead Air Force Base (AFB) in Florida. Mohri is pulled behind a motor boat to simulate being drug by a parachute through water. The exercise is part of a course in water survival training at the Florida United States Air Force (USAF) installation. The brief course was attended by the STS-47 prime and alternate payload specialists shortly after they were announced for the scheduled summer of 1992 Spacelab Japan (SLJ) mission. Mohri represents the National Space Development Agency of Japan (NASDA).

  20. STS-55 German payload specialists pose in front of SL-D2 module at KSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, German payload specialists pose in front of the Spacelab Deutsche 2 (SL-D2) science module at a Kennedy Space Center (KSC) processing facility. These two Germans have been assigned to support the STS-55/SL-D2 mission. They are Payload Specialist 2 Hans Schlegel (left) and Payload Specialist 1 Ulrich Walter. Walter and Schlegel are scheduled to fly aboard OV-102 for the mission, joining five NASA astronauts. Clearly visible on the SL-D2 module are the European Space Agency (ESA) insignia, the feedthrough plate, and the D2 insignia.

  1. STS-90 M.S. Williams and back-up P.S. Mukai, participate in CEIT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Mission Specialist Dafydd 'Dave' Rhys Williams, M.D., with the Canadian Space Agency, and back-up Payload Specialist Chiaki Mukai, M.D., Ph.D., with the National Space Development Agency of Japan, examine items to be used during the Crew Equipment Interface Test (CEIT) in Kennedy Space Center's (KSC's) Operations and Checkout Building, where the Neurolab payload is undergoing processing. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-90 is scheduled to launch aboard the Shuttle Columbia from KSC on April 2. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system.

  2. Payload Specialist Byron K. Lichtenberg working in the Spacelab

    NASA Image and Video Library

    1983-11-28

    STS009-125-427 (28 Nov 1983) --- Payload Specialist Byron K. Lichtenberg carries out an experiment at the fluid physics module on the busy materials science double rack facility. Two beverage containers can be seen just above the biomedical engineer's head.

  3. STS-40 Payload Specialist Hughes-Fulford "flies" through SLS-1 module

    NASA Image and Video Library

    1991-06-14

    STS040-212-006 (5-14 June 1991) --- Payload specialist Millie Hughes-Fulford floats through the Spacelab Life Sciences (SLS-1) module aboard the Earth-orbiting Columbia. Astronaut James P. Bagian, mission specialist, is at the blood draw station in the background. The scene was photographed with a 35mm camera.

  4. STS-55 Payload Specialist Schlegel collects fungi sample at SL-D2 Rack 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 2 Hans Schlegel, wearing lightweight headset, collects fungi sample while working at Spacelab Deutsche 2 (SL-D2) science module Rack 1 Work Bench. Schlegel is conducting these procedures in conjunction with the 'Fruiting Body Development of Fungi' experiment. Schlegel was one of two payload specialists representing the German Aerospace Research Establishment (DLR) on the 10-day spacelab mission.

  5. STS-85 Payload Specialist Tryggvason at LC 39A during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Payload Specialist Bjarni V. Tryggvason stands ready for questions at a news briefing at Launch Pad 39A during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11- day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  6. STS-95 Payload Specialist Glenn and his wife pose before their return flight to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At the Skid Strip at Cape Canaveral Air Station, STS-95 Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts, poses with his wife Annie before their return flight to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The STS-95 crew also includes Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  7. Payload Specialist Charles Walker with handheld protein growth experiment

    NASA Image and Video Library

    1985-11-26

    61B-02-014 (26 Nov-3 Dec 1985) --- Payload Specialist Charles D. Walker works with the handheld protein growth experiment -- one of a series of tests being flown to study the possibility of crystallizing biological materials. Walker rests the experiment against the larger continuous flow electrophoresis systems experiment.

  8. View of Zero-G training for astronauts and payload specialists

    NASA Image and Video Library

    1984-08-27

    Paul Scully-Power, 41-G payload specialist, links arms with two others as they experience weightlessness in the KC-135 training aircraft. The trio appears to be flying toward the front of the aircraft while others take photos.

  9. Payload specialist Martin Fettmen during data collection neurovestibular test

    NASA Image and Video Library

    1993-09-29

    S93-45314 (29 Sept 1993) --- Payload specialist Martin J. Fettman, in an oscillating sled device, participates in a data collection project for neurovestibular functions. The seven Spacelab Life Sciences (SLS-2) crewmembers devoted a full day to miscellaneous biomedical data collection in preparation for next month's two week mission aboard Columbia.

  10. STS-65 Japanese Payload Specialist Mukai at CCT side hatch during training

    NASA Image and Video Library

    1993-11-22

    STS-65 Japanese Payload Specialist Chiaki Mukai takes a break from training at the Johnson Space Center (JSC). Wearing a training version of the orange launch and entry suit (LES), Mukai stands at the crew compartment trainer (CCT) side hatch in the Mockup and Integration Laboratory (MAIL) Bldg 9NE. Note the crew escape system (CES) pole device extending out the side hatch which would accommodate crewmembers in bailout from a troubled spacecraft. Mukai represents the National Space Development Agency (NASDA) of Japan and will serve as a payload specialist aboard Columbia, Orbiter Vehicle (OV) 102, during the STS-65 International Microgravity Laboratory 2 (IML-2) mission.

  11. STS-65 Japanese Payload Specialist Mukai at CCT side hatch during training

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-65 Japanese Payload Specialist Chiaki Mukai takes a break from training at the Johnson Space Center (JSC). Wearing a training version of the orange launch and entry suit (LES), Mukai stands at the crew compartment trainer (CCT) side hatch in the Mockup and Integration Laboratory (MAIL) Bldg 9NE. Note the crew escape system (CES) pole device extending out the side hatch which would accommodate crewmembers in bailout from a troubled spacecraft. Mukai represents the National Space Development Agency (NASDA) of Japan and will serve as a payload specialist aboard Columbia, Orbiter Vehicle (OV) 102, during the STS-65 International Microgravity Laboratory 2 (IML-2) mission.

  12. STS-55 MS3 Harris & Payload Specialist Schlegel conduct Anthrorack experiment

    NASA Image and Video Library

    1993-05-06

    STS055-45-017 (26 April-6 May 1993) --- Hans Schlegel (foreground) participates in the ongoing investigation of human physiology under microgravity conditions as he works out on the ergometer at the Anthrorack. Monitoring the "run" is astronaut Bernard A. Harris, Jr., STS-55 mission specialist. Schlegel is one of two payload specialists representing the German Aerospace Research Establishment (DLR) on the Spacelab D-2 mission.

  13. STS-55 German payload specialists Walter and Schlegel work in SL-D2 module

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 1 Ulrich Walter, wearing special head gear, conducts Tissue Thickness and Compliance Along Body Axis salt-water balance experiment in the Spacelab Deutsche 2 (SL-D2) science module aboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Walter's activities in front of Rack 9 Anthrorack (AR) are monitored by German Payload Specialist 2 Hans Schlegel. Walter uses intravehicular activity (IVA) foot restraints. Walter and Schlegel represent the German Aerospace Research Establishment (DLR).

  14. Payload specialists Baudry and Al-Saud in the middeck

    NASA Image and Video Library

    1985-06-17

    51G-102-035 (17-24 June 1985) --- The two payload specialists for the week-long flight share a middeck scene on the earth-orbiting Discovery. Sultan Salman Abdelazize Al-Saud (left) is in the midst of a meal while Patrick Baudry conducts a phase of the French Postural Experiment (FPE) on himself. Sleep restraints are in the background.

  15. French payload specialist Patrick Baudry prepares a meal

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Payload specialist Patrick Baudry, representing the Centre National d'Etudes Spatiales of France, prepares to open a can of lobster. The bag attached to the nearby middeck locker door appears to contain several other French snacks. His food tray is also attached to the middeck lockers. Behind his head are other food trays attached to the shuttle rehydration unit. A roll of duct tape floats in space to one side of Baudry.

  16. STS-55 German Payload Specialist Walter freefloats inside the SL-D2 module

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 1 Ulrich Walter demonstrates the microgravity aboard the Spacelab Deutsche 2 (SL-D2) science module in Columbia's, Orbiter Vehicle (OV) 102's, payload bay (PLB). The module served as his space laboratory and that of his six crewmates for 10 days. Walter represents the German Aerospace Research Establishment (DLR).

  17. STS-107 Payload Specialist Ilan Ramon during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, participates in Terminal Countdown Demonstration Test activities, a standard part of Shuttle launch preparations. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.

  18. Sen. Jake Garn and payload specialist Charles Waler in middeck simulation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Two payload specialists for the STS 51-D mission get in some training time in the crew compartment trainerat JSC. Charles D. Walker, left, rehearses photography of U.S. Senator E.J. (Jake) Garn in the middeck section of the trainer.

  19. Sen. Jake Garn and payload specialist Charles Waler in middeck simulation

    NASA Image and Video Library

    1985-04-12

    Two payload specialists for the STS 51-D mission get in some training time in the crew compartment trainerat JSC. Charles D. Walker, left, rehearses photography of U.S. Senator E.J. (Jake) Garn in the middeck section of the trainer.

  20. STS-107 Payload Specialist Ilan Ramon at SPACEHAB during training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, trains on equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  1. OTFE, Payload Specialist Fred Leslie works in Spacelab

    NASA Image and Video Library

    1995-11-05

    STS073-233-007 (20 October - 5 November 1995) --- Payload specialist Fred W. Leslie makes use of the versatile U.S. Microgravity Laboratory (USML-2) glovebox to conduct an investigation with the Oscillatory Thermocapillary Flow Experiment (OTFE). This complement of the Surface-Tension-Driven Convection Experiment (STDCE) studies the shapes that fluid surfaces in weightless environments assume within specific containers. Leslie was one of two guest researchers who joined five NASA astronauts for 16 days of on Earth-orbit research in support of USML-2.

  2. STS-42 Payload Specialist Merbold inside KC-135 during zero gravity flight

    NASA Image and Video Library

    1988-05-24

    S88-37966 (2 Oct 1988) --- European Space Agency payload specialists Ulf Merbold (STS-42, right) and Reinhold Furrer (STS 61-A) get the "feel" of zero-gravity aboard NASA's KC-135 aircraft over the Gulf of Mexico.

  3. Official portrait of STS-65 IML-2 Japanese Payload Specialist Chiaki Mukai

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Official portrait of STS-65 International Microgravity Laboratory 2 (IML-2) Japanese Payload Specialist Chiaki Mukai. Mukai represents the National Space Development Agency (NASDA) of Japan and will conduct experiments aboard Columbia, Orbiter Vehicle (OV) 102, inside the IML-2 spacelab module.

  4. STS-45 crewmembers during zero gravity activities onboard KC-135 NASA 930

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, crewmembers and backup payload specialist participate in zero gravity activities onboard KC-135 NASA 930. The crewmembers, wearing flight suits, float and tumble around an inflated globe during the few seconds of microgravity created by parabolic flight. With his hand on the fuselage ceiling is Payload Specialist Dirk D. Frimout. Clockwise from his position are Mission Specialist (MS) C. Michael Foale, Pilot Brian Duffy, backup Payload Specialist Charles R. Chappell, MS and Payload Commander (PLC) Kathryn D. Sullivan (with eye glasses), Commander Charles F. Bolden, and Payload Specialist Byron K. Lichtenberg.

  5. STS-46 Italian Payload Specialist Malerba uses laptop PGSC on OV-104 middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Italian Payload Specialist Franco Malerba, wearing communications kit assembly headset (HDST), uses laptop payload and general support computer (PGSC) on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Malerba is positioned in front of the airlock and surrounded by the interdeck access ladder (foreground), a cycle ergometer (directly behind him), the forward lockers (background), and the sleep station (at his left). Food, candy, hygiene kits, beverage containers, and film reels are attached to the forward lockers.

  6. STS-45 Payload Specialist Frimout with technician before JSC egress training

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, Payload Specialist Dirk D. Frimout (European Space Agency (ESA) crewmember from Belgium), wearing launch and entry suit (LES), waits while technician adjusts his parachute harness. Frimout along with other STS-45 crewmembers is preparing for side hatch emergency egress exercises in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A.

  7. STS-42 Payload Specialist Bondar checks Pilot Oswald's blood flow on middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Payload Specialist Roberta L. Bondar monitors Pilot Stephen S. Oswald's blood flow on the middeck of Discovery, Orbiter Vehicle (OV) 103. Bondar holds a device just above Oswald's ear and analyzes reading displayed on output module on her right. Behind the two crewmembers is the sleep station.

  8. CREW TRAINING - STS-33/51L (ZERO-G)

    NASA Image and Video Library

    1985-11-20

    S85-44835 (20 Nov. 1985) --- This flying human chain represents prime and backup payload specialists for two upcoming STS missions. The group, representing trainees for STS-61C later this year and STS-51L early next year, shared some 40 parabolas in NASA?s KSC-135, ?Zero-G? aircraft on Nov. 20. Left to right are Gerard Magilton, RCA backup payload specialist for STS-61C; Sharon Christa McAuliffe, payload specialist/teacher citizen observer for STS-51L; U.S. Rep. Bill Nelson (D., Florida), scheduled for 61-C; Barbara R. Morgan, backup to McAuliffe; and Robert J. Cenker, RCA payload specialist for 61-C. The photo was taken by Keith Meyers, New York Times. Photo credit: NASA

  9. CREW TRAINING - STS-33/51-L (Zero-G)

    NASA Image and Video Library

    1985-11-20

    S85-44834 (20 Nov. 1985) --- This flying human chain represents prime and backup payload specialists for two upcoming STS missions. The group, representing trainees for STS-61C later this year and STS-51L early next year, shared some 40 parabolas in NASA?s KC-135, ?Zero-G? aircraft on Nov. 20, 1985. Left to right are Gerard Magilton, RCA backup payload specialist for STS-61C; Sharon Christa McAuliffe, payload specialist/teacher citizen observer for STS-51L; U.S. Representative Bill Nelson (D., Florida), scheduled for 61C; Barbara R. Morgan, backup to McAuliffe; and Robert J. Cenker, RCA payload specialist for 61C. The photo was taken by Otis Imboden. Photo credit: NASA

  10. STS-47 crew during fire fighting exercises at JSC's Fire Training Pit

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, crewmembers line up along water hoses to extinguish a blaze in JSC's Fire Training Pit during fire fighting exercises. Manning the hose in the foreground are Payload Specialist Mamoru Mohri, holding the hose nozzle, backup Payload Specialist Takao Doi, Mission Specialist (MS) Jerome Apt, and Commander Robert L. Gibson, at rear. Lined up on the second hose are Pilot Curtis L. Brown, Jr, holding the hose nozzle, followed by MS N. Jan Davis, MS and Payload Commander (PLC) Mark C. Lee, and backup Payload Specialist Stan Koszelak. A veteran firefighter monitors the effort from a position between the two hoses. In the background, backup Payload Specialist Chiaki Naito-Mukai, donning gloves, and MS Mae C. Jemison look on. The Fire Training Pit is located across from the Gilruth Center Bldg 207. Mohri, Doi, and Mukai all represent Japan's National Space Development Agency (NASDA).

  11. Onboard photo: Japanese Payload Specialist Dr. Mamoru Mohri at work in Spacelab-J module

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Space Shuttle Endeavour (STS-47) onboard photo of Japanese Payload Specialist Dr. Mamoru Mohri participating in Comparative Measurement of Visual Stability in Earth Cosmic Space experiment to learn more about Space Adaptation Syndrome (SAS).

  12. STS-107 Payload Specialist Ilan Ramon suits up for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, sits happily during suitup for Terminal Countdown Demonstration Test activities, which include a simulated launch countdown at the pad. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .

  13. Close-up locker scene of material belonging to Payload specialist Neri

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Close-up locker scene of materials belonging to Payload specialist Rodolfo Neri. Items include a Morelos satellite decal, the crest of the Universidad Nacional Autonoma de Mexico (Neri's alma mater), and one of the plant experiments he monitored during the flight. The experiment at bottom frame is the Transportation of Nutrients in a Weightless Environment (TRANSPORT). A pair of scissors are on the locker and a pen floats above it.

  14. STS-78 Payload Specialist Thirsk and Favier at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-78 Payload Specialists Robert Brenton Thirsk (Canadian Space Agency) (left) and Jean-Jacques Favier (French Space Agency) are holding an Olympic torch presented to the crew after they arrived at KSC's Shuttle Landing Facility. The crew will take the torch with them on their upcoming spaceflight and then present it upon their return to a representative of the Atlanta Committee for the Olympic games (ACOG). The countdown clock began ticking earlier today toward the June 20 launch of the Space Shuttle Columbia on Mission STS- 78, the fifth Shuttle flight of 1996.

  15. STS-55 German payload specialist Schlegel and MS3 Harris work in SL-D2 module

    NASA Image and Video Library

    1993-05-06

    STS055-106-090 (26 April- 6 May 1993) --- Hans Schlegel, one of two STS-55 payload specialists representing the German Aerospace Research Establishment (DLR) onboard the Space Shuttle Columbia, finds plenty of room to "spread out" while participating in a Tissue experiment. Astronaut Bernard A. Harris, Jr., mission specialist, monitors an experiment in the background.

  16. STS-107 Payload Specialist Ilan Ramon suits up for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, gets help with his suitup for Terminal Countdown Demonstration Test activities, which include a simulated launch countdown at the pad. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .

  17. STS-46 Payload Specialist Malerba in JSC's WETF pool during egress training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Italian Payload Specialist Franco Malerba, wearing launch and entry suit (LES) and clamshell helmet, laughes as he floats in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Malerba's flotation vest (life jacket) and two SCUBA-equipped divers keep him afloat after he was dropped into the pool during a launch emergency egress simulation.

  18. STS 51-L crewmembers briefed during training session

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Five members of the STS 51-L crew and a backup crewmember are briefed during a training session in JSC's Shuttle mockup and integration laboratory. From left to right are Astronauts Ellison S. Onizuka, mission specialist; Ronald E. McNair, mission specialist; Gregory Jarvis, Hughes payload specialist; Judith A. Resnik, mission specialist; Sharon Christa McAuliffe, citizen observer/payload specialist representing the Teacher in Space project. Barbara R. Morgan, backup to McAuliffe, is in the right foreground.

  19. Payload Specialist Taylor Wang performs repairs on Drop Dynamics Module

    NASA Image and Video Library

    1985-05-01

    51B-03-035 (29 April-6 May 1985) --- Payload specialist Taylor G. Wang performs a repair task on the Drop Dynamics Module (DDM) in the Science Module aboard the Earth-orbiting Space Shuttle Challenger. The photo was taken with a 35mm camera. Dr. Wang is principal investigator for the first time-to-fly experiment, developed by his team at NASA?s Jet Propulsion Laboratory (JPL), Pasadena, California. This photo was among the first to be released by NASA upon return to Earth by the Spacelab 3 crew.

  20. STS-40 Payload Specialist Millie Hughes-Fulford trains in JSC's SLS mockup

    NASA Image and Video Library

    1987-03-10

    STS-40 Payload Specialist Millie Hughes-Fulford conducts Spacelab Life Sciences 1 (SLS-1) Experiment No. 198, Pulmonary Function During Weightlessness, in JSC's Life Sciences Project Division (LSPD) SLS mockup located in the Bioengineering and Test Support Facility Bldg 36. Hughes-Fulford sets switches on Rack 8. Behind her in the center aisle are the stowed bicycle ergometer (foreground) and the body restraint system.

  1. STS-45 Payload Specialist Frimout prepares for water egress training at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, Payload Specialist Dirk D. Frimout, a European Space Agency (ESA) crewmember from Belgium, smiles while taking a break from water egress exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Frimout along with other STS-45 is participating a launch emergency egress simulation during which the crewmembers will be dropped from their parachute harnesses into the pool.

  2. STS-52 MS Veach and Payload Specialist MacLean during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Charles Lacy Veach (left) and Canadian Payload Specialist Steven G. MacLean listen to a briefing during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Veach and MacLean are fully outfitted in launch and entry suits (LESs), launch and entry helmets (LEHs), parachutes, and water survival equipment including a life jacket. The WETF's 25-ft deep pool will simulate the ocean as the crewmember's prepare for the event of a water landing. MacLean represents the Canadian Space Agency (CSA).

  3. STS-47 Payload Specialist Mohri at side hatch during JSC egress exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Japanese Payload Specialist Mamoru Mohri, wearing launch and entry suit (LES), prepares to enter the Crew Compartment Trainer (CCT) side hatch during launch emergency egress (bailout) in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Mohri's right hand rests on the extended crew escape system (CES) pole which will be used in the exercise. Mohri represents Japan's National Development Space Agency (NASDA).

  4. STS-47 Payload Specialist Mohri conducts visual stability experiment in SLJ

    NASA Image and Video Library

    1992-09-20

    STS047-204-006 (12 - 20 Sept 1992) --- Dr. Mamoru Mohri, payload specialist representing Japan's National Space Development Agency (NASDA), participates in an experiment designed to learn more about Space Adaptation Syndrome (SAS). The experiment is titled, "Comparative Measurement of Visual Stability in Earth and Cosmic Space." During the experiment, Dr. Mohri tracked a flickering light target while eye movements and neck muscle tension were measured. This 45-degree angle position was one of four studied during the eight-day Spacelab-J mission.

  5. STS-65 Japanese Payload Specialist Mukai prepares for MAIL egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Japanese Payload Specialist Chiaki Mukai, wearing launch and entry suit (LES), prepares to participate in a training session in the Johnson Space Center's (JSC's) Mockup and Integration Laboratory (MAIL) Bldg 9NE. The entire STS-65 crew was on hand for egress training and countdown rehearsals. Representing Japan's National Space Development Agency (NASDA) Mukai will join six NASA astronauts for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  6. Payload Specialist Scully-Power in full flight suit with helmet

    NASA Image and Video Library

    1984-09-04

    41D-3183 (2 Sept. 1984) --- Paul D. Scully-Power, 41-G payload specialist, appears ready to participate in the eight-day space shuttle mission in this photograph taken during a pause in training in the Johnson Space Center's mockup and integration laboratory. The U.S. Navy oceanographer and a Canadian will join five NASA astronauts for a busy stay in space aboard the Challenger next month. The team was practicing for emergency egress. Photo credit: NASA (Editor's note: Please ignore the odd photo identification number for this image. This is a 41-G training image.)

  7. View of Payload specialist Paul Scully-Power during Zero-G training

    NASA Image and Video Library

    1984-07-16

    S84-37536 (18 July 1984) --- Astronaut Robert L. Crippen, left, 41-G crew commander watches as one of his fellow crewmembers gets an introduction to weightlessness aboard a KC-135, "zero-gravity" aircraft. Paul D. Scully-Power is the crew member literally floating here in the brief period of micro-gravity. Scully-Power, an oceanographer with the U.S. Navy, and Marc Garneau (partially visible in chair behind the floating Scully-Power)are payload specialists for 41-G. Garneau represents the National Research Council (Canada).

  8. STS-55 Payload Specialist Schlegel with technicians during JSC WETF bailout

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Payload Specialist 2 Hans Schlegel, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, discusses procedures with technicians Karen Porter and Todd Bailey prior to launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Schlegel and other crewmembers practiced water bailout procedures. Schlegel represents the DLR for the upcoming Spacelab Deutsche 2 (SL-D2) mission.

  9. STS-95 Payload Specialist Mukai participates in a parade in Cocoa Beach

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist Chiaki Mukai is perched on the back of a red 1999 C-5 Corvette convertible during a parade down State Road A1A in nearby Cocoa Beach. Organizers of the parade include the Cocoa Beach Area Chamber of Commerce, the Brevard County Tourist Development Council, and the cities of Cape Canaveral and Cocoa Beach. The parade is reminiscent of those held after missions during the Mercury Program.

  10. STS-95 Payload Specialist Glenn participates in a parade in Cocoa Beach

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist John H. Glenn Jr. waves to spectators from the back of a silver 1999 C-5 Corvette convertible during a parade down State Road A1A in nearby Cocoa Beach. Organizers of the parade include the Cocoa Beach Area Chamber of Commerce, the Brevard County Tourist Development Council, and the cities of Cape Canaveral and Cocoa Beach. The parade is reminiscent of those held after missions during the Mercury Program.

  11. STS-55 Payload Specialist Schlegel collects fungi sample at SL-D2 Rack 1

    NASA Image and Video Library

    1993-05-06

    STS055-106-037 (26 April-6 May 1993) --- Hans Schlegel works with a fungi experiment in the Spacelab D-2 Science Module onboard the Earth-orbiting Space Shuttle Columbia. Schlegel was one of two payload specialists representing the German Aerospace Research Establishment (DLR) on the 10-day Spacelab D-2 mission.

  12. STS-55 German Payload Specialist Schlegel works at SL-D2 Biolabor microscope

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 2 Hans Schlegel loads sample into a microscope at the Spacelab Deutsche 2 (SL-D2) Rack 7 Biolabor (BB) workstation. The BB facility is a life sciences and biotechnology research device developed by Germany (MBB/ERNO) for use aboard Spacelab. Schlegel represents the German Aerospace Research Establishment (DLR) during this 10-day mission aboard Columbia, Orbiter Vehicle (OV) 102.

  13. STS-65 Japanese Payload Specialist Mukai on OV-102's aft flight deck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Japanese Payload Specialist Chiaki Mukai freefloats on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck in front of overhead windows W7 and W8 while holding a cassette case with bean sprouts in her left hand. Mukai, a physician, represented Japan's National Space Development Agency (NASDA) on the two week mission in support of the International Microgravity Laboratory 2 (IML-2).

  14. STS-55 German Payload Specialist Schlegel manipulates ROTEX controls in SL-D2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 2 Hans Schlegel, wearing goggles (eye glasses) and positioned in front of Spacelab Deutsche 2 (SL-D2) Rack 4 System Rack controls, operates Robotics Technology Experiment (ROTEX) arm. ROTEX is a robotic arm that operates within an enclosed workcell in Rack 6 (partially visible in the foreground) and uses teleoperation from both an onboard station located nearby in Rack 4 and from a station on the ground. The device uses teleprogramming and artificial intelligence to look at the design, verification and operation of advanced autonomous systems for use in future applications. Schlegel represents the German Aerospace Research Establishment (DLR). SL-D2, a German-managed payload, is aboard Columbia, Orbiter Vehicle (OV) 102, for this science research mission.

  15. STS-42 crewmembers participate in JSC fire fighting training exercises

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, Payload Specialist Ulf D. Merbold (far left), fire fighting trainer (center), Payload Specialist Roberta L. Bondar (holding hose nozzle), and backup Payload Specialist Roger K. Crouch position water hoses in the direction of a blazing fire in JSC's Fire Training Pit. The crewmembers and backup are learning fire extinguishing techniques during fire fighting and fire training exercises held at JSC's Fire Training Pit located across from the Gilruth Center Bldg 207. Merbold is representing the European Space Agency (ESA) and Bondar is representing Canada during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.

  16. STS-50 Payload Specialist Trinh during JSC WETF Bailout Exercises in Bldg 29

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-50 Columbia, Orbiter Vehicle (OV) 102, United States Microgravity Laboratory 1 (USML-1) Payload Specialist Eugene H. Trinh, wearing launch and entry suit (LES), listens to instructions prior to participating in launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25-foot deep pool will simulate the ocean as crewmembers familiarize themselves with procedures associated with a bailout and subsequent water landing.

  17. STS-95 Payload Specialist Glenn participates in a parade in Cocoa Beach

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist John H. Glenn Jr. waves to a dense crowd of well-wishers from the back of a silver 1999 C-5 Corvette convertible during a parade down State Road A1A in nearby Cocoa Beach. Organizers of the parade include the Cocoa Beach Area Chamber of Commerce, the Brevard County Tourist Development Council, and the cities of Cape Canaveral and Cocoa Beach. The parade is reminiscent of those held after missions during the Mercury Program.

  18. STS-46 Pilot Allen and Payload Specialist Malerba in life rafts at JSC's WEFT

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Pilot Andrew M. Allen (foreground) and Italian Payload Specialist Franco Malerba, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), float in one-person life rafts during a launch emergency egress (bailout) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. A SCUBA-equipped diver assists in the training activity.

  19. STS-42 Payload Specialist Merbold with drink on OV-103's aft flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Payload Specialist Ulf D. Merbold, wearing a lightweight headset (HDST), experiments with a grapefruit drink and straw on the aft flight deck of Discovery, Orbiter Vehicle (OV) 103. Merbold watches the liquid ball of grapefruit drink he created float in the weightlessness of space. The Los Angeles Dodger cap Merbold is wearing is part of a tribute to Manley L. (Sonny) Carter, originally assigned as a mission specialist on this flight. During the eight-day flight, the crewmembers each wore the cap on a designated day. Carter, a versatile athlete and avid Dodger fan, died in the crash of a commuter airline in 1991.

  20. STS-87 Payload Specialist Leonid K. Kadenyuk suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine gives a thumbs up in his launch and entry suit in the Operations and Checkout Building. He and the five other crew members of STS-87will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Kadenyuk will be flying his first mission on STS-87. During the mission, Kadenyuk will pollinate Brassica rapa plants as part of the Collaborative Ukrainian Experiment, or CUE, aboard Columbia. The CUE experiment is a collection of 10 plant space biology experiments that will fly in Columbias middeck and features an educational component that involves evaluating the effects of microgravity on Brassica rapa seedlings.

  1. STS-52 Payload Specialist MacLean floats in pool during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Payload Specialist Steven G. MacLean, wearing launch and entry suit (LES) and clamshell helmet, is assisted by SCUBA-equipped divers as he floats in pool during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility Bldg 29. Bailout exercises utilize the WETF's 25-foot deep pool as the ocean during this water landing simulation. MacLean represents the Canadian Space Agency (CSA).

  2. STS-55 Payload Specialist Schlegel collects fungi sample at SL-D2 Rack 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 2 Hans Schlegel, wearing lightweight headset, collects fungi sample while working at Spacelab Deutsche 2 (SL-D2) science module Rack 1 Work Bench. Schlegel is conducting these procedures in conjunction with the 'Fruiting Body Development of Fungi' experiment. Pieces of the experiment casing freefloat in the workstation.Schlegel represents the German Aerospace Research Establishment (DLR) on the 10-day spacelab mission.

  3. STDCE, Payload Specialist Fred Leslie works at the STDCE rack in USML-2 Spacelab

    NASA Image and Video Library

    1995-11-05

    STS073-103-015 (20 October-5 November 1995) --- Payload specialist Fred W. Leslie works with the Surface Tension Driven Convection Experiment (STDCE) aboard the science module in the cargo bay of the Earth-orbiting Space Shuttle Columbia. Leslie joined another guest researcher and five NASA astronauts for 16 full days of in-space research in support of the United States Microgravity Laboratory (USML-2) mission.

  4. STS-45 crewmembers during zero gravity activities onboard KC-135 NASA 930

    NASA Image and Video Library

    1991-08-21

    S91-44453 (21 Aug 1991) --- The crew of STS-45 is already training for its March 1992 mission, including stints on the KC-135 zero-gravity-simulating aircraft. Shown with an inflatable globe are, clockwise from the top, C. Michael Foale, mission specialist; Dirk Frimout, payload specialist; Brian Duffy, pilot; Charles R. (Rick) Chappell, backup payload specialist; Charles F. Bolden, mission commander; Byron K. Lichtenberg, payload specialist; and Kathryn D. Sullivan, payload commander.

  5. STS-95 Payload Specialist Duque arrives at KSC to participate in a SPACEHAB familiarization exercise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist Pedro Duque of Spain, who represents the European Space Agency (ESA), waves after arriving in a T-38 jet aircraft at the Shuttle Landing Facility at KSC. He is joining other STS-95 crew members in a familiarization tour of the SPACEHAB module and the equipment that will fly with them on the Space Shuttle Discovery scheduled to launch Oct. 29, 1998. The mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  6. STS-65 Payload Specialist Mukai dons LES and parachute with technicians' help

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Payload Specialist Chiaki Mukai adjusts the neck dam of her launch and entry suit (LES) as Boeing's Sharon Daley and Grady Due help her with the parachute pack prior to a launch emergency egress training (bailout) exercise at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Mukai will join six NASA astronauts later this year for two weeks aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, in support of the second International Microgravity Laboratory 2 (IML-2) mission. Mukai represents Japan's National Space Development Agency (NASDA).

  7. Alternate NASDA Payload Specialists in the Huntsville Operations Support Center (HOSC) Spacelab

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) of Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.

  8. STS-55 German payload specialist Schlegel and MS3 Harris work in SL-D2 module

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 2 Ulrich Walter, wearing special head gear, finds plenty of room to 'spread out' (head to the floor, feet at the ceiling) while conducting Tissue Thickness and Compliance Along Body Axis salt-water balance experiment in the Spacelab Deutsche 2 (SL-D2) science module aboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Schlegel represents the German Aerospace Research Establishment (DLR). In the background, Mission Specialist 3 (MS3) Bernard A. Harris, Jr monitors an experiment in Rack 11, an experiment rack.

  9. STS-55 German Payload Specialist Walter at the SL-D2 Fluid Physics Module

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 1 Ulrich Walter conducts an experiment using the advanced fluid physics module located in Spacelab Deutsche 2 (SL-D2) Rack 8 Werkstofflabor (WL) (Material Sciences Laboratory) aboard Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Walter uses intravehicular activity (IVA) foot restraints to position himself in front of the rack. Walter represents the German Aerospace Research Establishment (DLR) on the 10-day mission.

  10. STS 51-L crewmembers briefed during training session

    NASA Image and Video Library

    1986-01-08

    S86-25186 (December 1985) --- Five members of the prime crew for NASA?s STS-51L mission and a backup crew member are briefed during a training session in the Johnson Space Center?s (JSC) Shuttle Mock-up and Integration Laboratory. From left to right are astronaut Ellison S. Onizuka, mission specialist; Ronald E. McNair, mission specialist; Gregory D. Jarvis, Hughes payload specialist; Judith A. Resnik, mission specialist; Sharon Christa McAuliffe, citizen observer/payload specialist representing the Teacher-in-Space Project; and Barbara R. Morgan, backup payload specialist. The photograph was taken by Keith Meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  11. STS-35 Payload Specialist Parise sets up SAREX on OV-102's middeck

    NASA Image and Video Library

    1990-12-10

    STS-35 Payload Specialist Ronald A. Parise enters data into the payload and general support computer (PGSC) in preparation for Earth communication via the Shuttle Amateur Radio Experiment (SAREX) aboard Columbia, Orbiter Vehicle (OV) 102. The SAREX equipment is secured to the middeck starboard sleep station. SAREX provided radio transmissions between ground based amateur radio operators around the world and Parise, a licensed amateur radio operator. The experiment enabled students to communicate with an astronaut in space, as Parise (call-sign WA4SIR) devoted some of his off-duty time to that purpose. Displayed on the forward lockers beside Parise is a AMSAT (Amateur Radio Satellite Corporation) / ARRL (American Radio Relay League) banner. Food items and checklists are attached to the lockers. In locker position MF43G, the Development Test Objective (DTO) Trash Compaction and Retention System Demonstration extended duration orbiter (EDO) compactor is visible.

  12. STDCE, Payload Specialist Fred Leslie works at the STDCE rack in USML-2 Spacelab

    NASA Image and Video Library

    1995-11-05

    STS073-103-019 (20 October-5 November 1995) --- This wide view gives an overall perspective of the working environment of five astronauts and two guest researchers for 16 days in Earth-orbit. At work in support of the U.S. Microgravity Laboratory (USML-2) mission in this particular scene are astronaut Catherine G. Coleman, who busies herself at the glovebox, and payload specialist Fred W. Leslie, monitoring the Surface-Tension-Driven Convection Experiment (STDCE).

  13. STS-42 MS Hilmers and Payload Specialist Merbold use IML-1 visual stimulator

    NASA Image and Video Library

    1992-01-30

    STS042-203-024 (22-30 Jan. 1992) --- Astronaut David C. Hilmers (right), STS-42 mission specialist, assists European Space Agency (ESA) payload specialist Ulf Merbold with the visual stimulator experiment on the Space Shuttle Discovery's middeck. This particular test is part of an ongoing study of the Space Adaptation Syndrome (SAS). Seated in a stationary mini-sled, Merbold (or any other subject for this test) stares at an umbrella-shaped rotating dome with a pattern of colored dots on its interior. While observing the rotating dome, the subject turns a knob to indicate his perception of body rotation. The strength of circular vection is calculated by comparing the signals from the dome and the knob. The greater the false sense of circular vection, the more the subject is relying on visual information instead of otolith information.

  14. Alternate NASDA Payload Specialists in the Huntsville Operations Support Center (HOSC) Spacelab

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured along with George Norris in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.

  15. STS 51-L crewmembers during training session in flight deck simulation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Shuttle mission simulator (SMS) scene of Astronauts Michael J. Smith, Ellison S. Onizuka, Judith A. Resnik, and Francis R. (Dick) Scobee in their launch and entry positions on the flight deck (46207); Left to right, Backup payload specialist Barbara R. Morgan, Teacher in Space Payload specialist Christa McAuliffe, Hughes Payload specialist Gregory B. Jarvis, and Mission Specialist Ronald E. McNair in the middeck portion of the Shuttle Mission Simulator at JSC (46208).

  16. STS-42 Payload Specialist Bondar in single person life raft at JSC's WETF

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, Payload Specialist Roberta L. Bondar, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress exercises held in the Weightless Environment Training Facility (WETF) Bldg 29 pool. Bondar holds the Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB). The STS-42 crewmembers rehearsed procedures for launch emergency egress and a water landing. Bondar is representing Canada during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.

  17. STS-47 crew during JSC fire fighting exercises in the Fire Training Pit

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, crewmembers line up along water hoses during JSC fire fighting exercises held at JSC's Fire Training Pit. In the foreground are (left to right) Pilot Curtis L. Brown, Jr, holding the hose nozzle, Mission Specialist (MS) N. Jan Davis, MS and Payload Commander (PLC) Mark C. Lee, and backup Payload Specialist Stan Koszelak, partially visible at the end of the line. In the background, manning a second hose are backup Payload Specialist Takao Doi, MS Jerome Apt, and Commander Robert L. Gibson. A veteran fire fighter (behind Brown) stands between the two hoses giving instructions. The Fire Training Pit is located across from the Gilruth Center Bldg 207. Doi represents Japan's National Space Development Agency (NASDA).

  18. Bioinstrumentation for evaluation of workload in payload specialists: results of ASSESS II

    NASA Astrophysics Data System (ADS)

    Wegmann, Hans M.; Herrmann, Reinhold; Winget, Charles M.

    1980-11-01

    ASSESS II‡Acronym for Airborne Science/Spacelab Experiments System Simulation. was a cooperative NASA-ESA project which consisted of a detailed simulation of Spacelab operations using the NASA Ames Research Center CV-990 aircraft laboratory. The Medical Experiment reported on in this paper was part of the complex payload consisting of 11 different experiments. Its general purpose was to develop a technology, possibly flown on board of Spacelab, and enabling the assessment of workload through evaluating changes of circadian rhythmicity, sleep disturbances and episodical or cumulative stress. As parameters the following variables were measured: Rectal temperature, ECG, sleep-EEG and -EOG, the urinary excretion of hormones and electrolytes. The results revealed evidence that a Spacelab environment, as simulated in ASSESS II, will lead to internal dissociation of circadian rhythms, to sleep disturbances and to highly stressful working conditions. Altogether these effects will impose considerable workload upon Payload Specialists. It is suggested that an intensive pre-mission system simulation will reduce these impairments to a reasonable degree. The bioinstrumentation applied in this experiment proved to be a practical and reliable tool in assessing the objectives of the study.

  19. STS-95 Payload Specialist Glenn greets baseball legend Williams following a parade in Cocoa Beach

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist John H. Glenn Jr. (left) greets baseball legend Ted Williams at a reception at the Double Tree Oceanfront Hotel following a parade down State Road A1A in nearby Cocoa Beach. Organizers of the parade included the Cocoa Beach Area Chamber of Commerce, the Brevard County Tourist Development Council, and the cities of Cape Canaveral and Cocoa Beach. The parade is reminiscent of those held after missions during the Mercury Program.

  20. Payload specialist station study. Volume 3: Program study cost estimates. Part 1: Work breakdown structure

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The work breakdown structure (WBS) for the Payload Specialist Station (PSS) is presented. The WBS is divided into two elements--PSS contractor and mission unique requirements. In accordance with the study ground rules, it is assumed that a single contractor, hereafter referred to as PSS Contractor will perform the following: (1) provide C and D hardware (MFDS and elements of MMSE), except for GFE; (2) identify software requirements; (3) provide GSE and ground test software; and (4) perform systems engineering and integration in support of the Aft Flight Deck (AFD) C and D concept. The PSS Contractor WBS element encompasses a core or standardized PSS concept. Payload peculiar C and D requirements identified by users will originate as a part of the WBS element mission unique requirements; these requirements will be provided to the PSS Contractor for implementation.

  1. STS-107 Payload Specialist Ilan Ramon takes a break during TCDT M113 training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, takes a break during training on the operation of an M113 armored personnel carrier during Terminal Countdown Demonstration Test activities, a standard part of launch preparations. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.

  2. International Space Station Payload Operations Integration Center (POIC) Overview

    NASA Technical Reports Server (NTRS)

    Ijames, Gayleen N.

    2012-01-01

    Objectives and Goals: Maintain and operate the POIC and support integrated Space Station command and control functions. Provide software and hardware systems to support ISS payloads and Shuttle for the POIF cadre, Payload Developers and International Partners. Provide design, development, independent verification &validation, configuration, operational product/system deliveries and maintenance of those systems for telemetry, commanding, database and planning. Provide Backup Control Center for MCC-H in case of shutdown. Provide certified personnel and systems to support 24x7 facility operations per ISS Program. Payloads CoFR Implementation Plan (SSP 52054) and MSFC Payload Operations CoFR Implementation Plan (POIF-1006).

  3. STS-94 Payload Specialist Linteris in LC-39A White Room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-94 Payload Specialist Gregory T. Linteris prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. He holds a doctorate in mechanical and aerospace engineering. Linteris has worked at the National Institute of Standards and Technology and is the Principal Investigator on a NASA microgravity combustion experiment. As a member of the Red team, Linteris will concentrate on three combustion experiments. Two of these experiments are housed in the Combustion Module. He will also be backing up crew members on the other Microgravity Science Laboratory-1 (MSL-1) investigations. He and six fellow crew members will lift off during a launch window that opens at 1:50 a.m. EDT, July 1. The launch window will open 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reach the space center.

  4. STS-50 Payload Specialist DeLucas floats in life raft during JSC WETF bailout

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-50 Columbia, Orbiter Vehicle (OV) 102, United States Microgravity Laboratory 1 (USML-1) Payload Specialist Lawrence J. DeLucas, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises, the WETF's 25-foot deep pool was used to simulate the ocean. Crewmembers were dropped from their parachute harnesses into the pool, inflated their life rafts, and used survival equipment to protect themselves from the elements and signal for help.

  5. STS-46 crewmembers participate in Fixed Base (FB) SMS training at JSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) and Payload Commander (PLC) Jeffrey A. Hoffman, standing at the interdeck access ladder, explains procedures to backup Italian Payload Specialist Umberto Guidoni (center) and Italian Payload Specialist Franco Malerba (right) on the middeck of JSC's fixed base (FB) shuttle mission simulator (SMS). Behind them, MS Marsha S. Ivins reviews a cheklist. Participants are wearing communications kit assembly lightweight headsets (HDSTs). FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.

  6. STS-42 crewmembers participate in JSC fire fighting training exercises

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Norman E. Thagard, holding hose nozzle, is followed by Payload Specialist Ulf D. Merbold and backup Payload Specialist Kenneth Money as the team positions the water hose in the direction of a blazing fire at JSC's Fire Training Pit. A second team of crewmembers, manning another hose, forms a line parallel to the first. The crewmembers and backups are learning fire extinguishing techniques during fire fighting and fire training exercises held at JSC's Fire Training Pit located across from the Gilruth Center Bldg 207. Merbold is representing the European Space Agency (ESA) during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.

  7. STS-55 German Payload Specialist Schlegel manipulates ROTEX controls in SL-D2

    NASA Image and Video Library

    1993-05-06

    STS055-106-100 (26 April-6 May 1993) --- Hans Schlegel, wearing special glasses, works at the Robotics Experiment (ROTEX) workstation in the science module aboard the Earth-orbiting Space Shuttle Columbia. Schlegel was one of two payload specialists representing the German Aerospace Research Establishment (DLR) on the 10-day Spacelab D-2 mission. ROTEX is a robotic arm that operates within an enclosed workcell in rack 6 of the Spacelab module and uses teleoperation from both an onboard station located nearby in rack 4 and from a station on the ground. The device uses teleprogramming and artificial intelligence to look at the design, verification and operation of advanced autonomous systems for use in future applications.

  8. CD Bridges and STS-95 Payload Specialist Glenn greet well-wishers following a parade in Cocoa Beach

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Center Director Roy Bridges and STS-95 Payload Specialist John H. Glenn Jr. greet well-wishers at a reception at the Double Tree Oceanfront Hotel following a parade down State Road A1A in nearby Cocoa Beach. Organizers of the parade included the Cocoa Beach Area Chamber of Commerce, the Brevard County Tourist Development Council, and the cities of Cape Canaveral and Cocoa Beach. The parade is reminiscent of those held after missions during the Mercury Program.

  9. STS-87 Payload Specialist Kadenyuk participates in the CEIT for his mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center is STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU). Here, Cosmonaut Kadenyuk is inspecting flowers for pollination and fertilization, which will occur as part of the Collaborative Ukrainian Experiment, or CUE, aboard Columbia during its 16-day mission, scheduled to take off from KSC's Launch Pad 39-B on Nov. 19. The CUE experiment is a collection of 10 plant space biology experiments that will fly in Columbia's middeck and feature an educational component that involves evaluating the effects of microgravity on the pollinating Brassica rapa seedlings. Students in Ukrainian and American schools will participate in the same experiment on the ground and have several live opportunities to discuss the experiment with Kadenyuk in Space. Kadenyuk of the Ukraine will be flying his first Shuttle mission on STS-87.

  10. SLS-1 crewmembers in high fidelity mockup of the Spacelab

    NASA Image and Video Library

    1985-02-01

    S85-26571 (Feb 1985) --- Wearing a special collar, Millie Hughes-Fulford, payload specialist, practices medical test operations scheduled for the Spacelab Life Sciences (SLS-1) mission. Robert Ward Phillips, backup payload specialist, looks on. The collar, called the baroflex neck pressure chamber, is designed to stimulate the bioceptors in the carotid artery, one of the two main arteries that supply blood to the head.

  11. LIF - Payload commander Voss in front of experiment rack

    NASA Image and Video Library

    2016-08-12

    STS083-318-001 (4-8 April 1997) --- Mission specialist Janice E. Voss, payload commander, participates in the activation of the Spacelab Science Module aboard the Earth-orbiting Space Shuttle Columbia. Crewed by Voss, four other NASA astronauts and two payload specialists, the scheduled 16-day mission was later cut short by a power shortage.

  12. STS-97 crew looks over the payload from the Payload Changeout Room

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the payload changeout room on Launch Pad 39B, STS-97 Mission Specialists Joseph Tanner and Marc Garneau (pointing) look over the payload in Endeavour'''s payload bay. At right center of the photo is the orbiter docking system (ODS). At left and below the ODS is the Canadian robotic arm that will be used during spacewalks on the mission to install solar arrays. Each more than 100 feet long, the arrays will capture energy from the sun and convert it to power for the Station. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  13. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Image and Video Library

    1986-01-08

    S86-25191 (for release January 1986) --- The two representatives of the Teacher-in-Space Project continue their training program at the Johnson Space Center with an additional flight aboard NASA?s KC-135 ?zero gravity? aircraft. Sharon Christa McAuliffe, left, is prime crew payload specialist, and Barbara R. Morgan is in training as backup payload specialist. The photo was taken by Keith Meyers of New York Times. Photo credit: NASA

  14. STS-104 crew pose for photo in Atlantis's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During payload walkdown at Launch Pad 39B, the STS-104 crew pause for a photo. At left are Commander Steven W. Lindsey (front), Mission Specialist Janet Lynn Kavandi (center) and Mission Specialist James F. Reilly (back). At right are Mission Specialist Michael L. Gernhardt and Pilot Charles O. Hobaugh. The crew is taking part in Terminal Countdown Demonstration Test activities, which include emergency exit training from the orbiter, opportunities to inspect their mission payloads in the orbiters payload bay and simulated countdown exercises. The launch of Atlantis on mission STS-104 is scheduled July 12 from Launch Pad 39B. The mission is the 10th flight to the International Space Station and carries the Joint Airlock Module.

  15. Health monitoring of Japanese payload specialist: Autonomic nervous and cardiovascular responses under reduced gravity condition (L-0)

    NASA Technical Reports Server (NTRS)

    Sekiguchi, Chiharu

    1993-01-01

    In addition to health monitoring of the Japanese Payload Specialists (PS) during the flight, this investigation also focuses on the changes of cardiovascular hemodynamics during flight which will be conducted under the science collaboration with the Lower Body Negative Pressure (LBNP) Experiment of NASA. For the Japanese, this is an opportunity to examine firsthand the effects of microgravity of human physiology. We are particularly interested in the adaption process and how it relates to space motion sickness and cardiovascular deconditioning. By comparing data from our own experiment to data collected by others, we hope to understand the processes involved and find ways to avoid these problems for future Japanese astronauts onboard Space Station Freedom and other Japanese space ventures. The primary objective of this experiment is to monitor the health condition of Japanese Payload Specialists to maintain a good health status during and after space flight. The second purpose is to investigate the autonomic nervous system's response to space motion sickness. To achieve this, the function of the autonomic nervous system will be monitored using non-invasive techniques. Data obtained will be employed to evaluate the role of autonomic nervous system in space motion sickness and to predict susceptibility to space motion sickness. The third objective is evaluation of the adaption process of the cardiovascular system to microgravity. By observation of the hemodynamics using an echocardiogram we will gain insight on cardiovascular deconditioning. The last objective is to create a data base for use in the health care of Japanese astronauts by obtaining control data in experiment L-O in the SL-J mission.

  16. STS-37 crew EVA in the payload bay

    NASA Image and Video Library

    2017-12-27

    Photographic documentation showing activities in the payload bay of the orbiter Atlantis during STS-37. View include: Gamma Ray Observatory (GRO) on end of Remote Manipulator System (RMS), with Mission Specialist Jay Apt below on the port side of the payload bay.

  17. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Image and Video Library

    1986-01-08

    S86-25192 (January 1986) --- Two payload specialists in training for the STS-51L mission, and a payload specialist from STS-61C share a ?zero-gravity? flight aboard a KC-135 aircraft over the Gulf of Mexico. Left to right are United States Representative Bill Nelson (Democrat, Florida), Sharon Christa McAuliffe, and Barbara R. Morgan. The congressman is a payload specialist for the STS-61C mission. McAuliffe is the prime payload specialist for the Teacher-in-Space Project aboard the STS-51L mission; and Morgan is her backup. The photo was taken by Keith meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  18. Payload crew training scheduler (PACTS) user's manual

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.

    1980-01-01

    The operation of the payload specialist training scheduler (PACTS) is discussed in this user's manual which is used to schedule payload specialists for mission training on the Spacelab experiments. The PACTS program is a fully automated interactive, computerized scheduling program equipped with tutorial displays. The tutorial displays are sufficiently detailed for use by a program analyst having no computer experience. The PACTS program is designed to operate on the UNIVAC 1108 computer system, and has the capability to load output into a PDP 11/45 Interactive Graphics Display System for printing schedules. The program has the capacity to handle up to three overlapping Spacelab missions.

  19. Tour by Saudi prince Salman Abdelazize Al-Saud prior to mission

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Tour by Saudi prince Salman Abdelazize Al-Saud, payload specialists for STS 51-G mission, prior to mission. Al-Saud and Abdulmohsen Hamad Al-Bassam, the backup payload specialist, man the controls on the flight deck of the crew compartment trainer in the Shuttle mockup and integration laboratory (29788); the Saudi payload specialists share the hatch of the crew compartment trainer (29789); Portrait view of Abdulmohsen Hamad Al-Bassam during a visit to the Shuttle mockup and integraion laboratory (29790); Don Sirroco, left, explains the middeck facilities in the Shuttle mockup and integration laboratory (29791); Portrait view of Sultan Salman Abdelazize Al-Saud in the Shuttle Mockup and Integration laboratory (29792); The Saudi payload specialists witness a space food demonstration in the life sciences laboratory at JSC. Al-Saud (left) and Al-Bassam (second left) listen as Rita M. Rapp, food specialist, discusses three preparations of re-hydratable food for space travelers. Lynn S. Coll

  20. STS-87 crew in LC-39B white room during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participates in the Terminal Countdown Demonstration Test (TCDT) at KSC. Standing, from left, Mission Specialist Winston Scott; Backup Payload Specialist Yaroslav Pustovyi, Ph.D., of the National Space Agency of Ukraine (NSAU); Payload Specialist Leonid Kadenyuk of NSAU; Pilot Steven Lindsey; Commander Kevin Kregel; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Mission Specialist Kalpana Chawla, Ph.D. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  1. STS-45 crewmembers during LINHOF camera briefing in JSC's Bldg 4 rm 2026A

    NASA Image and Video Library

    1992-01-14

    S92-26522 (Feb 1992) --- Crewmembers assigned to NASA's STS-45 mission are briefed on the use of the Linhof camera in the flight operations facility at the Johnson Space Center (JSC). Charles F. Bolden, mission commander, stands at left. Other crewmembers (seated clockwise around the table from lower left) are Dirk Frimout of Belgium representing the European Space Agency as payload specialist; Charles R. (Rick) Chappell, backup payload specialist; Brian Duffy, pilot; Kathryn D. Sullivan, payload commander; David C. Leestma, mission specialist; Byron K. Lichtenberg, payload specialist; and C. Michael Foale, mission specialist. James H. Ragan (far right), head of the flight equipment section of the flight systems branch in JSC's Man Systems Division, briefs the crewmembers. Donald C. Carico, of the crew training staff and Rockwell International, stands near Bolden. The camera, used for out-the-window observations, is expected to be used frequently on the Atmospheric Laboratory for Applications and Science (ATLAS-1) mission, scheduled for a March date with the Space Shuttle Atlantis.

  2. STS-95 Mission Specialist Duque suits up during TCDT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, representing the European Space Agency, suits up in the Operations and Checkout Building prior to his trip to Launch Pad 39-B. Duque and the rest of the STS-95 crew are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  3. Assessment of candidate-expendable launch vehicles for large payloads

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In recent years the U.S. Air Force and NASA conducted design studies of 3 expendable launch vehicle configurations that could serve as a backup to the space shuttle--the Titan 34D7/Centaur, the Atlas II/Centaur, and the shuttle-derived SRB-X--as well as studies of advanced shuttle-derived launch vehicles with much larger payload capabilities than the shuttle. The 3 candidate complementary launch vehicles are judged to be roughly equivalent in cost, development time, reliability, and payload-to-orbit performance. Advanced shuttle-derived vehicles are considered viable candidates to meet future heavy lift launch requirements; however, they do not appear likely to result in significant reduction in cost-per-pound to orbit.

  4. STS-95 Mission Specialist Robinson suits up during TCDT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Stephen K. Robinson, with the help of Carlos Gillis, of Lockheed Martin, suits up in the Operations and Checkout Building prior to his trip to Launch Pad 39-B. Robinson and the rest of the STS-95 crew are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  5. Shuttle/payload communications and data systems interface analysis

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1980-01-01

    The payload/orbiter functional command signal flow and telemetry signal flow are discussed. Functional descriptions of the various orbiter communication/avionic equipment involved in processing a command to a payload either from the ground through the orbiter by the payload specialist on the orbiter are included. Functional descriptions of the various orbiter communication/avionic equipment involved in processing telemetry data by the orbiter and transmitting the processed data to the ground are presented. The results of the attached payload/orbiter single processing and data handling system evaluation are described. The causes of the majority of attached payload/orbiter interface problems are delineated. A refined set of required flux density values for a detached payload to communicate with the orbiter is presented.

  6. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Image and Video Library

    1986-01-08

    S86-25180 (October 1985) --- Sharon Christa McAuliffe, STS-51L citizen observer/payload specialist, representing the Teacher-in-Space Project, floats forward and upward during a few moments of weightlessness aboard a KC-135 aircraft. The flight is part of her training for the scheduled five-day flight aboard the Challenger in January of next year. Barbara R. Morgan, backup payload specialist for STS-51L, is partially visible in the background. The photo was taken by Keith Meyers of the New York Times. Photo credit: NASA

  7. STS-46 crewmembers during water egress training in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier (left) and backup Italian Payload Specialist Umberto Guidoni, seated at the pool's side, relax before participating in a launch emergency egress (bailout) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The two participants are wearing launch and entry suits (LESs) during the pretest briefing.

  8. STS-87 crew in front of LC-39B during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from Pad 39B at Kennedy Space Center (KSC), poses at the pad during a break in the Terminal Countdown Demonstration Test (TCDT) at KSC. Standing in front of the Shuttle Columbia are, from left, Commander Kevin Kregel; Mission Specialist Kalpana Chawla, Ph.D.; Pilot Steven Lindsey; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Backup Payload Specialist Yaroslav Pustovyi, Ph.D., of the National Space Agency of Ukraine (NSAU); Payload Specialist Leonid Kadenyuk of NSAU; and Mission Specialist Winston Scott. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  9. Views of the mission control center during STS-9

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The two backup payload specialists for Drs. Byron K. Lichtenberg and Ulf Merbold huddle in the mission control center during day three activity aboard Spacelab. Seated at the Console is Dr. Michael Lampton. Leaning over Lampton's shoulder is Dutch scientist Wubbo Ockels. The two are surrounded by a few of the flight controllers in the payload operations control center (POCC) portion of JSC's mission control center.

  10. The first Spacelab payload - A joint NASA/ESA venture

    NASA Technical Reports Server (NTRS)

    Kennedy, R.; Pace, R.; Collet, J.; Sanfourche, J. P.

    1977-01-01

    Planning for the 1980 qualification flight of Spacelab, which will involve a long module and one pallet, is discussed. The mission will employ two payload specialists, one sponsored by NASA and the other by ESA. Management of the Spacelab mission functions, including definition and execution of the on-board experiments, development of the experimental hardware and training of the payload specialists, is considered; studies proposed in the areas of atmospheric physics, space plasma physics, solar physics, earth observations, astronomy, astrophysics, life sciences and material sciences are reviewed. Analyses of the Spacelab environment and the Spacelab-to-orbiter and Spacelab-to-experiment interactions are also planned.

  11. KENNEDY SPACE CENTER, FLA. - Greeted by cheers from wellwishers at KSC and eager for their ventur into space on the Microgrvity Science Laboratory-1 (MSL-1) mission, the STS-83 astronauts depart the Operations and Checkout Building on their way to Launch Pad 39A. Leading the seven-member crew is Mission Commander James D. Halsell Jr. Behind Halsell and to his right is Pilot Susan L. Still. Behind Still is Payload Commander Janice Voss, with Mission Specialist Donald A. Thomas to her left. Behind Thomas, in order, are Mission Specialist Michael L. Gernhardt and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attched to the right side of Columbia's payload bay.

    NASA Image and Video Library

    1997-04-04

    KENNEDY SPACE CENTER, FLA. - Greeted by cheers from wellwishers at KSC and eager for their ventur into space on the Microgrvity Science Laboratory-1 (MSL-1) mission, the STS-83 astronauts depart the Operations and Checkout Building on their way to Launch Pad 39A. Leading the seven-member crew is Mission Commander James D. Halsell Jr. Behind Halsell and to his right is Pilot Susan L. Still. Behind Still is Payload Commander Janice Voss, with Mission Specialist Donald A. Thomas to her left. Behind Thomas, in order, are Mission Specialist Michael L. Gernhardt and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attched to the right side of Columbia's payload bay.

  12. Payload specialist station study. Part 2: CEI specifications (part 1). [space shuttles

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The performance, design, and verification specifications are established for the multifunction display system (MFDS) to be located at the payload station in the shuttle orbiter aft flight deck. The system provides the display units (with video, alphanumerics, and graphics capabilities), associated with electronic units and the keyboards in support of the payload dedicated controls and the displays concept.

  13. STS-91 AMS-01 payload moved from MPPF to SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The alpha-magnetic spectrometer (AMS-1) is lifted in KSC's MultiPayload Processing Facility in preparation for a move to the Space Station Processing Facility via the Payload Environmental Transportation System. The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery.

  14. STS-107 Mission Specialist David Brown arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist David Brown arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla and Laurel Clark and Payload Specialist Ilan Ramon (the first Israeli astronaut). STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.

  15. STS-107 Mission Specialist Laurel Clark arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Laurel Clark arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla and David Brown, and Payload Specialist Ilan Ramon, the first Israeli astronaut. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.

  16. STS-107 Mission Specialist Kalpana Chawla arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Kalpana Chawla arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists David Brown and Laurel Clark and Payload Specialist Ilan Ramon (the first Israeli astronaut). STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.

  17. STS-87 Mission Specialist Doi addresses the media at the SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As STS-87 Commander Kevin Kregel looks on, Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan addresses members of the press and media at Kennedy Space Center's Shuttle Landing Facility after arriving for the final prelaunch activities leading up to the scheduled Nov. 19 liftoff. Other STS-87 crew members not pictured are Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., and Winston Scott; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan-201 deployable satellite.

  18. Payload commander Voss on aft flight deck

    NASA Image and Video Library

    2012-09-18

    STS083-305-010 (4-8 April 1997) --- Astronaut Janice E. Voss, mission specialist, works with communications systems on the aft flight deck of the Earth-orbiting Space Shuttle Columbia. Voss, along with five other NASA astronauts and two payload specialist supporting the Microgravity Sciences Laboratory (MSL-1) mission, were less than a fourth of the way through a scheduled 16-day flight when a power problem cut short their planned stay.

  19. Payload specialist station study: Volume 2, part 3: Program analysis and planning for phase C/D

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The controls and displays (C&D) required at the Orbiter aft-flight deck (AFD) and the core C&D required at the Payload Specialist Station (PSS) are identified in this document. The AFD C&D Concept consists of a multifunction display system (MFDS) and elements of multiuse mission support equipment (MMSE). The MFDS consists of two CRTs, a display electronics unit (DEU), and a keyboard. The MMSE consists of a manual pointing controller (MPC), five digit numeric displays, 10 character alphanumeric legends, event timers, analog meters, rotary and toggle switches. The MMSE may be hardwired to the experiment, or interface with a data bus at the PSS for signal processing. The MFDS has video capability, with alphanumeric and graphic overlay features, on one CRT and alphanumeric and graphic (tricolor) capability on a second CRT. The DEU will have the capability to communicate, via redundant data buses, with both the spacelab experiment and subsystem computers.

  20. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Along with Scott Thurston (left), of the VITT office, members of the STS-98 crew Mission Specialist Robert Curbeam, Commander Ken Cockrell and Mission Specialist Marsha Ivins are in Atlantis''' payload bay to check out their mission payload, the U.S. Lab Destiny. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  1. 47 CFR 12.2 - Backup power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Backup power. 12.2 Section 12.2 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL REDUNDANCY OF COMMUNICATIONS SYSTEMS § 12.2 Backup power..., must have an emergency backup power source (e.g., batteries, generators, fuel cells) for all assets...

  2. STS-97 crew looks over the payload from the Payload Changeout Room

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-97 crew look into Endeavour'''s payload bay at some of the equipment that will be carried on the mission. On the left, pointing, is Mission Specialist Marc Garneau. Next to him (left to right) are Mission Specialist Carlos Noriega and Pilot Michael Bloomfield. At right center of the photo is the orbiter docking system (ODS). At left and below the ODS is the Canadian robotic arm that will be used during spacewalks on the mission to install solar arrays. Each more than 100 feet long, the arrays will capture energy from the sun and convert it to power for the Station. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  3. STS-87 Mission Specialist Doi and his wife pose at LC 39B

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan poses with his wife, Hitomi Doi, in front of Kennedy Space Center's Launch Pad 39B during final prelaunch activities leading up to the scheduled Nov. 19 liftoff. The other STS-87 crew members are Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., and Winston Scott; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan- 201 deployable satellite.

  4. STS-97 crew looks over the payload from the Payload Changeout Room

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-97 crew look into Endeavour'''s payload bay at some of the equipment that will be carried on the mission. At far left are (left to right) Commander Brent Jett and Mission Specialist Joseph Tanner, with a technician. At center are Mission Specialists Marc Garneau and Carlos Noriega, plus Pilot Michael Bloomfield. The equipment visible at right are the orbiter docking system (ODS) (center) and Canadian robotic arm (left and below the ODS). The arm will be used during spacewalks on the mission to install solar arrays. Each more than 100 feet long, the arrays will capture energy from the sun and convert it to power for the Station. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  5. First evidence for "The backup plan paradox".

    PubMed

    Napolitano, Christopher M; Freund, Alexandra M

    2017-08-01

    This research is a first test of the backup plan paradox. We hypothesized that investing in a backup plan may facilitate the conditions that it was developed to address: Plan A's insufficiency. Five studies provide initial, primarily correlative support for the undermining effect of investing in a backup plan. Study 1 (n= 160) demonstrated that the more participants perceived they had invested in developing a backup plan (preparing a "crib sheet"), the more likely they were to use it, although greater investments were unrelated to backup plan utility. Studies 2-4 used a simulated negotiation task. Study 2 (n = 247) demonstrated that when goal-relevant resources are limited, investing in developing backup plans and perceiving them as highly instrumental can decrease goal performance through the indirect effect of increased means replacing. Study 3 (n = 248) replicated this effect when goal-relevant resources were plentiful. Study 4 (n = 204) used an experimental variant of the simulated negotiation task and demonstrated that simply having a backup plan is not detrimental, but perceiving backup plans to be highly instrumental decreased goal performance, again through the indirect effect of increased means replacing. Study 5 (n = 160) replicated findings from Studies 1-4 using a lab-based motor task (throwing a ball). Together, these results provide first evidence that backup plans can introduce costs that may jeopardize goal performance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Astronaut Franklin Chang-Diaz checking payload bay through aft deck window

    NASA Image and Video Library

    1986-01-12

    61C-02-032 (12-18 Jan. 1986) --- Astronaut Franklin R. Chang-Diaz, STS-61C mission specialist, while checking cargo in the space shuttle Columbia's payload bay, turns to smile at a fellow crew member using a 35mm camera. Some of the prolific camera gear onboard the spacecraft is affixed above the mission specialist's right shoulder.

  7. VISITOR - SULTAN - JSC

    NASA Image and Video Library

    1985-04-04

    S85-29711 (April 1985) --- Ronald C. Epps, right of the training division in the mission operations directorate, briefs the Saudi Arabian payload specialist, Sultan Salman Abdelazize Al-Saud, and his backup, Abdulmohsen Hamad Al-Bassam, in the flight control room (FCR) of the mission control center (MCC). Erlinda Stevenson is also pictured.

  8. STS-87 P.S. Leonid Kadenyuk of NSAU and Daniel Goldin after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU), at left, greets NASA Administrator Daniel Goldin, at right, as back-up Payload Specialist Yaroslav Pustovyi, also of NSAU, looks on. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34-minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; and Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D. of the National Space Development Agency of Japan. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  9. STS-87 Mission Specialist Scott in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Winston Scott is assisted with his ascent and re-entry flight suit in the white room at Launch Pad 39B by Danny Wyatt, NASA quality assurance specialist. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. Scott is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, during STS-87. Scott also performed a spacewalk on the STS-72 mission.

  10. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-98 Mission Specialist Robert Curbeam (left), Commander Ken Cockrell (center) and Mission Specialist Marsha Ivins (right) look over the U.S. Lab Destiny in the payload bay of the orbiter Atlantis. Behind Ivins is Scott Thurston, of the VITT office. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  11. STS-40 crew trains in JSC's SLS mockup located in Bldg 36

    NASA Image and Video Library

    1987-03-10

    STS-40 Payload Specialist Millie Hughes-Fulford along with backup payload specialist Robert Ward Phillips familiarize themselves with Spacelab Life Sciences 1 (SLS-1) equipment. The two scientists are in JSC's Life Sciences Project Division (LSPD) SLS mockup located in the Bioengineering and Test Support Facility Bldg 36. Hughes-Fulford, in the center aisle, pulls equipment from an overhead stowage locker while Phillips, in the foreground, experiments with the baroreflex neck pressure chamber at Rack 11. The baroreflex collar will be used in conjuction with Experiment No. 022, Influence of Weightlessness Upon Human Autonomic Cardiovascular Control. Behind Phillips in the center aisle are body mass measurement device (BMMD) (foreground) and the stowed bicycle ergometer.

  12. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 crew members look over equipment during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. From left are Khristal Parker, with Boeing; Mission Specialist Dan Barry, Pilot Rick Husband, Mission Specialist Tamara Jernigan, and at the far right, Mission Specialist Julie Payette. An unidentified worker is in the background. Also at KSC for the IVT are Commander Kent Rominger and Mission Specialists Ellen Ochoa and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  13. Education Program - Teacher in Space

    NASA Image and Video Library

    1985-12-17

    S85-46205 (December 1985) --- Sharon Christa McAuliffe (left), from Concord, New Hampshire, and Barbara R. Morgan of McCall, Idaho, have been named NASA Teacher-in-Space Project prime and backup payload specialists, respectively, for the first citizen observer position of the STS program, scheduled for a Challenger flight in January 1986. Photo credit: NASA

  14. STS-47 MS Davis trains at Payload Crew Training Complex at Marshall SFC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) N. Jan Davis, wearing the Autogenic Feedback Training System 2 suit and lightweight headset, reviews a Payload Systems Handbook in the Spacelab Japan (SLJ) mockup during training at the Payload Crew Training Complex at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. View provided with alternate number 92P-137.

  15. STS-87 Mission Specialist Doi in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, is assisted with his ascent and re- entry flight suit by Dave Law, USA mechanical technician, in the white room at Launch Pad 39B as Dr. Doi prepares to enter the Space Shuttle orbiter Columbia on launch day. At right wearing glasses is Danny Wyatt, NASA quality assurance specialist. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. The 16-day mission will include a spacewalk by Dr. Doi and Mission Specialist Winston Scott.

  16. STS-88 Mission Commander Cabana looks at the mission payload Unity at pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Pad 39A, STS-88 Mission Commander Robert D. Cabana gets a close look at the Unity connecting module that is in the payload bay of the orbiter Endeavour. Cabana and the STS-88 crew arrived at KSC in the early morning hours of Nov. 30 for pre- launch preparations. The other crew members are Pilot Frederick W. 'Rick' Sturckow, Mission Specialist Nancy J. Currie, Mission Specialist James H. Newman and Mission Specialist Sergei Konstantinovich Krikalev, a Russian cosmonaut. The scheduled lift-off is at 3:56 a.m. on Dec. 3. Unity is the primary payload of the mission, which is the first U.S. launch for the International Space Station. The crew will be mating Unity with the Russian-built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. Endeavour is expected to land at KSC at 10:17 p.m. on Monday, Dec. 14.

  17. Backup agreements with penalty scheme under supply disruptions

    NASA Astrophysics Data System (ADS)

    Hou, Jing; Zhao, Lindu

    2012-05-01

    This article considers a supply chain for a single product involving one retailer and two independent suppliers, when the main supplier might fail to supply the products, the backup supplier can always supply the products at a higher price. The retailer could use the backup supplier as a regular provider or a stand-by source by reserving some products at the supplier. A backup agreement with penalty scheme is constructed between the retailer and the backup supplier to mitigate the supply disruptions and the demand uncertainty. The expected profit functions and the optimal decisions of the two players are derived through a sequential optimisation process. Then, the sensitivity of two players' expected profits to various input factors is examined through numerical examples. The impacts of the disruption probability and the demand uncertainty on the backup agreement are also investigated, which could provide guideline for how to use each sourcing method.

  18. Applying secret sharing for HIS backup exchange.

    PubMed

    Kuroda, Tomohiro; Kimura, Eizen; Matsumura, Yasushi; Yamashita, Yoshinori; Hiramatsu, Haruhiko; Kume, Naoto; Sato, Atsushi

    2013-01-01

    To secure business continuity is indispensable for hospitals to fulfill its social responsibility under disasters. Although to back up the data of the hospital information system (HIS) at multiple remote sites is a key strategy of business continuity plan (BCP), the requirements to treat privacy sensitive data jack up the cost for the backup. The secret sharing is a method to split an original secret message up so that each individual piece is meaningless, but putting sufficient number of pieces together to reveal the original message. The secret sharing method eases us to exchange HIS backups between multiple hospitals. This paper evaluated the feasibility of the commercial secret sharing solution for HIS backup through several simulations. The result shows that the commercial solution is feasible to realize reasonable HIS backup exchange platform when template of contract between participating hospitals is ready.

  19. STS-88 Pilot Sturckow and Commander Cabana look over the payload Unity at pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Pad 39A, STS-88 Pilot Frederick W. 'Rick' Sturckow and Mission Commander Robert D. Cabana look over the Unity connecting module that is in the payload bay of the orbiter Endeavour. Cabana, Sturckow and the STS-88 crew arrived at KSC in the early morning hours of Nov. 30 for pre-launch preparations. The other crew members are Mission Specialist Nancy J. Currie, Mission Specialist James H. Newman and Mission Specialist Sergei Konstantinovich Krikalev, a Russian cosmonaut. The scheduled lift-off is at 3:56 a.m. on Dec. 3. Unity is the primary payload of the mission, which is the first U.S. launch for the International Space Station. The crew will be mating Unity with the Russian-built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. Endeavour is expected to land at KSC at 10:17 p.m. on Monday, Dec. 14.

  20. Teacher in Space Participants testing space food in orientation session

    NASA Image and Video Library

    1985-09-25

    S85-39978 (10 Sept. 1985) --- Sharon Christa McAuliffe, left, appears to be deciding what she thinks of a piece of space food she tastes during a session of interfacing with space shuttle life sciences. Barbara R. Morgan samples an apricot. The two are in early training at the Johnson Space Center (JSC) in preparation for the STS-51L spaceflight early next year. McAuliffe is prime payload specialist representing the Teacher in Space Project, and Morgan is her backup. Dr. C.T. Bourland, a dietitian specialist, assists the two. Photo credit: NASA

  1. The SPACEHAB payload is installed in the PCR at LC 39A awaiting further STS-89 processing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The SPACEHAB payload arrived at Launch Pad 39A this morning and was installed in the Payload Changeout Room. Final preparations for liftoff of the STS-89 mission are under way. Endeavour and its crew of seven are targeted for a Jan. 22 launch. STS-89 will be the eighth Shuttle docking with the Russian Space Station Mir as part of Phase 1 of the International Space Station program. Mission Specialist Andy Thomas, Ph.D., will succeed Mission Specialist David Wolf, M.D., as the last NASA astronaut scheduled for a long-duration stay aboard Mir.

  2. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev (in foreground) of the Russian Space Agency closes a container, part of the equipment that will be in the SPACEHAB module on mission STS-96. Behind Tokarev are Pilot Rick Husband (left) and Mission Specialist Dan Barry (right). Other crew members at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station are Commander Kent Rominger and Mission Specialists Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  3. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Pilot Rick Husband and Mission Specialist Ellen Ochoa (on the left) and Mission Specialist Julie Payette (on the far right) listen to Khristal Parker (second from right), with Boeing, explain about the equipment in front of them. Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  4. STS-85 Mission Specialist Stephen Robinson suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Mission Specialist Stephen K. Robinson smiles as he is assisted with his ascent/reentry flight suit by a suit technician in the Operations and Checkout (O&C) Building. He has been a NASA employee since 1975 and has worked at Ames and Langley Research Centers. Robinson holds a doctorate in mechanical engineering and is a licensed pilot. He will assist Mission Specialist Robert L. Curbeam, Jr. with the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA- SPAS-2) free-flyer and conduct Comet Hale-Bopp observations with the Southwest Ultraviolet Imaging System. Robinson will also coordinate photo and television data operations during the mission. The primary payload aboard the Space Shuttle orbiter Discovery is the CRISTA-SPAS- 2. Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  5. Gemini 8 prime and backup crews during press conference

    NASA Image and Video Library

    1966-02-26

    S66-24380 (26 Feb. 1966) --- Gemini-8 prime and backup crews during press conference. Left to right are astronauts David R. Scott, prime crew pilot; Neil A. Armstrong, prime crew command pilot; Charles Conrad Jr., backup crew command pilot; and Richard F. Gordon Jr., backup crew pilot. Photo credit: NASA

  6. High-Rate Communications Outage Recorder Operations for Optimal Payload and Science Telemetry Management Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Shell, Michael T.; McElyea, Richard M. (Technical Monitor)

    2002-01-01

    All International Space Station (ISS) Ku-band telemetry transmits through the High-Rate Communications Outage Recorder (HCOR). The HCOR provides the recording and playback capability for all payload, science, and International Partner data streams transmitting through NASA's Ku-band antenna system. The HCOR is a solid-state memory recorder that provides recording capability to record all eight ISS high-rate data during ISS Loss-of-Signal periods. NASA payloads in the Destiny module are prime users of the HCOR; however, NASDA and ESA will also utilize the HCOR for data capture and playback of their high data rate links from the Kibo and Columbus modules. Marshall Space Flight Center's Payload Operations Integration Center manages the HCOR for nominal functions, including system configurations and playback operations. The purpose of this paper is to present the nominal operations plan for the HCOR and the plans for handling contingency operations affecting payload operations. In addition, the paper will address HCOR operation limitations and the expected effects on payload operations. The HCOR is manifested for ISS delivery on flight 9A with the HCOR backup manifested on flight 11A. The HCOR replaces the Medium-Rate Communications Outage Recorder (MCOR), which has supported payloads since flight 5A.1.

  7. KSC-98pc146

    NASA Image and Video Library

    1998-01-09

    STS-90 Mission Specialist Dafydd "Dave" Rhys Williams, M.D., with the Canadian Space Agency, and back-up Payload Specialist Chiaki Mukai, M.D., Ph.D., with the National Space Development Agency of Japan, examine items to be used during the Crew Equipment Interface Test (CEIT) in Kennedy Space Center's (KSC's) Operations and Checkout Building, where the Neurolab payload is undergoing processing. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-90 is scheduled to launch aboard the Shuttle Columbia from KSC on April 2. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system

  8. Astronaut John Grunsfeld uses camera to record ASTRO-2 payload

    NASA Image and Video Library

    1995-03-17

    STS067-377-008 (2-18 March 1995) --- Astronaut John M. Grunsfeld, mission specialist, uses a handheld Hasselblad camera to record the Astro-2 payload. Orbiting Earth at 190 nautical miles, Grunsfeld joined four other NASA astronauts and two scientists for almost 17 days conducting research in support of the Astro-2 mission.

  9. STS-88 Mission Specialist Currie receives M-113 training during TCDT activities

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialist Nancy J. Currie prepares to operate an M-113, an armored personnel carrier, as part of emergency egress training under the watchful eye of instructor George Hoggard (left) during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with simulated countdown exercises and opportunities to inspect their mission payloads in the orbiter's payload bay. Mission STS-88 is targeted for launch on Dec. 3, 1998. It is the first U.S. flight for the assembly of the International Space Station and will carry the Unity connecting module. Others in the STS-88 crew are Mission Commander Robert D. Cabana; Pilot Frederick W. 'Rick' Sturckow; and Mission Specialists Jerry L. Ross, James H. Newman, and Sergei Konstantinovich Krikalev, a Russian cosmonaut.

  10. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the payload bay of the orbiter Atlantis, STS-98 Commander Ken Cockrell (center) and Mission Specialist Marsha Ivins (right) look over the mission payload, the U.S. Lab Destiny (in the background). The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  11. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks at equipment as part of a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . From left are Mission Specialist Ellen Ochoa (behind the opened storage cover ), Commander Kent Rominger, Pilot Rick Husband (holding a lithium hydroxide canister) and Mission Specialists Dan Barry, Valery Tokarev of Russia and Julie Payette. In the background is TTI interpreter Valentina Maydell. The other crew member at KSC for the IVT is Mission Specialist Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  12. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (from left) STS-96 Mission Specialist Julie Payette, Pilot Rick Husband and Mission Specialist Ellen Ochoa learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  13. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Tamara Jernigan checks over instructions while Mission Specialist Dan Barry looks up from the Sequential Shunt Unit (SSU) in front of him to other equipment Lynn Ashby (right), with Johnson Space Center, is pointing at. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  14. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (kneeling) STS-96 Mission Specialists Julie Payette and Ellen Ochoa, Pilot Rick Husband, and (standing at right) Mission Specialist Dan Barry. At the left is James Behling, with Boeing, explaining some of the equipment that will be on board STS-96. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  15. Integrated operations/payloads/fleet analysis. Volume 2: Payloads

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The payloads for NASA and non-NASA missions of the integrated fleet are analyzed to generate payload data for the capture and cost analyses for the period 1979 to 1990. Most of the effort is on earth satellites, probes, and planetary missions because of the space shuttle's ability to retrieve payloads for repair, overhaul, and maintenance. Four types of payloads are considered: current expendable payload; current reusable payload; low cost expendable payload, (satellite to be used with expendable launch vehicles); and low cost reusable payload (satellite to be used with the space shuttle/space tug system). Payload weight analysis, structural sizing analysis, and the influence of mean mission duration on program cost are also discussed. The payload data were computerized, and printouts of the data for payloads for each program or mission are included.

  16. Astronaut in EMU in the payload bay

    NASA Image and Video Library

    2009-06-25

    41G-101-013 (14 Oct 1984) --- Astronaut David C. Leestma works at the Orbital Refueling System (ORS) on the Mission Peculiar Support Structure (MPESS) in the aft end of the cargo bay of the Space Shuttle Challenger. Astronaut Kathryn D. Sullivan, America's first woman to perform an extravehicular activity (EVA) with the logging of this busy day, exposed this frame witha 35mm camera. The crew consisted of astronauts Robert L. Crippen, commander; Jon A. McBride, pilot; mission specialist's Kathryn D. Sullivan, Sally K. Ride, and David D. Leestma; Canadian astronaut Marc Garneau; and Paul D. Scully-Power, payload specialist. EDITOR'S NOTE: The STS-41G mission had the first American female EVA (Sullivan); first seven-person crew; first orbital fuel transfer; and the first Canadian (Garneau).

  17. A study of payload specialist station monitor size constraints. [space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Malone, T. B.

    1975-01-01

    Constraints on the CRT display size for the shuttle orbiter cabin are studied. The viewing requirements placed on these monitors were assumed to involve display of imaged scenes providing visual feedback during payload operations and display of alphanumeric characters. Data on target recognition/resolution, target recognition, and range rate detection by human observers were utilized to determine viewing requirements for imaged scenes. Field-of-view and acuity requirements for a variety of payload operations were obtained along with the necessary detection capability in terms of range-to-target size ratios. The monitor size necessary to meet the acuity requirements was established. An empirical test was conducted to determine required recognition sizes for displayed alphanumeric characters. The results of the test were used to determine the number of characters which could be simultaneously displayed based on the recognition size requirements using the proposed monitor size. A CRT display of 20 x 20 cm is recommended. A portion of the display area is used for displaying imaged scenes and the remaining display area is used for alphanumeric characters pertaining to the displayed scene. The entire display is used for the character alone mode.

  18. View of Mission Specialist Judith Resnik on the middeck

    NASA Image and Video Library

    1984-09-08

    41D-13-025 (30 Aug 1984) --- Astronaut Judith A. Resnik, one of three mission specialists, positions herself on the floor of the Space Shuttle Discovery's mid-deck to note some items on a clipboard pad. Nearby, Charles D. Walker, payload specialist (partially out of frame at left), anchors himself with a foot restraint while working at a stowage locker. Between the two is a sign fashioned by Dr. Resnik and held up to a nearby TV camera during early STS-41D downlinked television. This is a 35mm frame.

  19. STS-113 Mission Specialists review data on the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialists John Herrington (left) and Michael Lopez-Alegria (right) look over the P1 Integrated Truss Structure, the primary payload for the mission. The P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002

  20. STS-113 Mission Specialists review data on the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialists John Herrington (left) and Michael Lopez-Alegria (right) look over the P1 Integrated Truss Structure, the primary payload for the mission. The P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002.

  1. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-98 Mission Specialist Marsha Ivins (center, pointing) checks out the U.S. Lab Destiny in the payload bay of the orbiter Atlantis. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Destiny, a key element in the construction of the International Space Station, is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  2. STS-88 Mission Specialist Nancy Currie arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialist Nancy J. Currie climbs out of a T-38 jet aircraft in which she arrived after dark at the Shuttle Landing Facility in order to take part in Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect their mission payloads in the orbiter's payload bay. Mission STS-88 is targeted for launch on Dec. 3, 1998. It is the first U.S. flight for the assembly of the International Space Station and will carry the Unity connecting module. Others in the STS-88 crew are Mission Commander Robert D. Cabana, Pilot Frederick W. 'Rick' Sturckow, Mission Specialists Jerry L. Ross, James H. Newman and Sergei Krikalev, a Russian cosmonaut. Ross and Newman will make three spacewalks to connect power, data and utility lines and install exterior equipment.

  3. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger pause during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  4. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Posing on the platform next to the SPACEHAB Logistics Double Module in the SPACEHAB Facility are the STS-96 crew (from left) Mission Specialists Dan Barry, Tamara Jernigan, Valery Tokarev of Russia, and Julie Payette; Pilot Rick Husband; Mission Specialist Ellen Ochoa; and Commander Kent Rominger. The crew is at KSC for a payload Interface Verification Test for their upcoming mission to the International Space Station. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  5. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger smile for the camera during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  6. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for the upcoming mission to the International Space Station , Chris Jaskolka of Boeing points out a piece of equipment in the SPACEHAB module to STS-96 Commander Kent Rominger, Mission Specialist Ellen Ochoa and Pilot Rick Husband. Other crew members visiting KSC for the IVT are Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  7. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialists Dan Barry and Tamara Jernigan discuss procedures during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  8. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, James Behling, with Boeing, talks about equipment for mission STS-96 during a payload Interface Verification Test (IVT). Watching are (from left) Mission Specialists Ellen Ochoa, Julie Payette and Dan Berry, and Pilot Rick Husband. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  9. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station, STS-96 Mission Specialists Julie Payette, Dan Barry, and Valery Tokarev of Russia, look at a Sequential Shunt Unit in the SPACEHAB Facility. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  10. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  11. STS-47 MS Jemison trains in SLJ module at MSFC Payload Crew Training Complex

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison, wearing Autogenic Feedback Training System 2 suit, works with the Frog Embryology Experiment in a General Purpose Workstation (GPWS) in the Spacelab Japan (SLJ) module mockup at the Payload Crew Training Complex. The experiment will study the effects of weightlessness on the development of frog eggs fertilized in space. The Payload Crew Training Complex is located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. View provided with alternate number 92P-139.

  12. STS-87 Mission Specialist Takao Doi during CEIT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi , Ph.D., of the National Space Development Agency of Japan, participates in the Crew Equipment Integration Test (CEIT) in Kennedy Space Centers (KSC's) Vertical Processing Facility. Glenda Laws, the extravehicular activity (EVA) coordinator, Johnson Space Center, stands behind Dr. Doi. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, Dr. Doi will be the first Japanese astronaut to perform a spacewalk. STS-87 is scheduled for a Nov. 19 liftoff from KSC.

  13. STS-113 Mission Specialist Michael Lopez-Alegria looks over the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist Michael Lopez-Alegria looks over the P1 Integrated Truss Structure, the primary payload for the mission. The P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002.

  14. NASDA President Isao Uchida greets STS-87 Mission Specialist Takao Doi, Ph.D., after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The president of the National Space Development Agency (NASDA) of Japan, Isao Uchida, at left, chats with STS-87 Mission Specialist Takao Doi, Ph.D., of NASDA, shortly after the landing of Columbia at Kennedy Space Center. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Winston Scott and Kalpana Chawla, Ph.D.; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  15. Ukraine President Leonis Kuchma with P.S. Kadenyuk

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Kennedy Space Center, Fla. The president of the Ukraine, Leonid Kuchma, is flanked by Payload Specialist Leonid Kadenyuk, at left, and backup Payload Specialist Yaroslav Pustovyi, at right, both of the National Space Agency of Ukraine, during pre-launch activities leading up to the scheduled Nov. 19 launch of STS-87. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan-201 deployable satellite. During the mission, Kadenyuk will pollinate Brassica rapa plants as part of the Collaborative Ukrainian Experiment, or CUE, aboard Columbia during its 16-day mission. The CUE experiment is a collection of 10 plant space biology experiments that will fly in Columbias middeck and features an educational component that involves evaluating the effects of microgravity on Brassica rapa seedlings. Students in Ukrainian and American schools will participate in the same experiment on the ground and have several live opportunities to discuss the experiment with Kadenyuk in Space. Kadenyuk will be flying his first Shuttle mission on STS- 87.

  16. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the payload bay of the orbiter Atlantis, STS-98 Mission Specialist Robert Curbeam works with equipment he will use in space to attach the U.S. Lab Destiny to the International Space Station. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  17. STS-92 Mission Specialist Chiao is ready to drive the M-113

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Leroy Chiao gets into the driver's side for his turn to drive the M-113, part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind him are Pilot Pam Melroy (left) and Mission Specialist Michael Lopez-Alegria. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  18. STS-85 Mission Specialist Robinson prepares to enter Discovery

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Mission Specialist Stephen K. Robinson prepares to enter the Space Shuttle orbiter Discovery at Launch Complex 39A just prior to launch, scheduled for 10:41 a.m. EDT. The primary payload on this mission is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earths atmosphere as a part of NASAs Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discoverys payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  19. A SWOT Analysis of the Various Backup Scenarios Used in Electronic Medical Record Systems.

    PubMed

    Seo, Hwa Jeong; Kim, Hye Hyeon; Kim, Ju Han

    2011-09-01

    Electronic medical records (EMRs) are increasingly being used by health care services. Currently, if an EMR shutdown occurs, even for a moment, patient safety and care can be seriously impacted. Our goal was to determine the methodology needed to develop an effective and reliable EMR backup system. Our "independent backup system by medical organizations" paradigm implies that individual medical organizations develop their own EMR backup systems within their organizations. A "personal independent backup system" is defined as an individual privately managing his/her own medical records, whereas in a "central backup system by the government" the government controls all the data. A "central backup system by private enterprises" implies that individual companies retain control over their own data. A "cooperative backup system among medical organizations" refers to a networked system established through mutual agreement. The "backup system based on mutual trust between an individual and an organization" means that the medical information backup system at the organizational level is established through mutual trust. Through the use of SWOT analysis it can be shown that cooperative backup among medical organizations is possible to be established through a network composed of various medical agencies and that it can be managed systematically. An owner of medical information only grants data access to the specific person who gave the authorization for backup based on the mutual trust between an individual and an organization. By employing SWOT analysis, we concluded that a linkage among medical organizations or between an individual and an organization can provide an efficient backup system.

  20. A SWOT Analysis of the Various Backup Scenarios Used in Electronic Medical Record Systems

    PubMed Central

    Seo, Hwa Jeong; Kim, Hye Hyeon

    2011-01-01

    Objectives Electronic medical records (EMRs) are increasingly being used by health care services. Currently, if an EMR shutdown occurs, even for a moment, patient safety and care can be seriously impacted. Our goal was to determine the methodology needed to develop an effective and reliable EMR backup system. Methods Our "independent backup system by medical organizations" paradigm implies that individual medical organizations develop their own EMR backup systems within their organizations. A "personal independent backup system" is defined as an individual privately managing his/her own medical records, whereas in a "central backup system by the government" the government controls all the data. A "central backup system by private enterprises" implies that individual companies retain control over their own data. A "cooperative backup system among medical organizations" refers to a networked system established through mutual agreement. The "backup system based on mutual trust between an individual and an organization" means that the medical information backup system at the organizational level is established through mutual trust. Results Through the use of SWOT analysis it can be shown that cooperative backup among medical organizations is possible to be established through a network composed of various medical agencies and that it can be managed systematically. An owner of medical information only grants data access to the specific person who gave the authorization for backup based on the mutual trust between an individual and an organization. Conclusions By employing SWOT analysis, we concluded that a linkage among medical organizations or between an individual and an organization can provide an efficient backup system. PMID:22084811

  1. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  2. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  3. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  4. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  5. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

  6. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (left) and Commander Kent Rominger (second from right) listen to Lynn Ashby (far right), with JSC, talking about the SPACEHAB equipment in front of them during a payload Interface Verification Test (IVT). In the background behind Tokarev is TTI interpreter Valentina Maydell. Other STS-96 crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Dan Barry, Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  7. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks over equipment during a payload Interface Verification Test for the upcoming mission to the International Space Station. From left are Commander Kent Rominger, Mission Specialists Tamara Jernigan and Valery Tokarev of Russia, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Julie Payette (backs to the camera). They are listening to Chris Jaskolka of Boeing talk about the equipment. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  8. STS 51-L crewmembers at Ellington AFB for training flight in T-38

    NASA Image and Video Library

    1986-01-08

    S86-25199 (September 1985) --- Three members of the STS-51L prime crew and a backup crew member walk away from the flight line at nearby Ellington Field following flights in the T-38 jet trainers seen in the background. Sharon Christa McAuliffe (center right), payload specialist/citizen observer for the Teacher-in-Space Project, and Barbara R. Morgan (center left), her backup, are flanked by astronauts Francis R. (Dick) Scobee (right), mission commander, and Michael J. Smith, pilot. The photo was taken by Keith Meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  9. Enhanced networked server management with random remote backups

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2003-08-01

    In this paper, the model is focused on available server management in network environments. The (remote) backup servers are hooked up by VPN (Virtual Private Network) and replace broken main severs immediately. A virtual private network (VPN) is a way to use a public network infrastructure and hooks up long-distance servers within a single network infrastructure. The servers can be represent as "machines" and then the system deals with main unreliable and random auxiliary spare (remote backup) machines. When the system performs a mandatory routine maintenance, auxiliary machines are being used for backups during idle periods. Unlike other existing models, the availability of auxiliary machines is changed for each activation in this enhanced model. Analytically tractable results are obtained by using several mathematical techniques and the results are demonstrated in the framework of optimized networked server allocation problems.

  10. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  11. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Members of the STS-98 crew, along with Scott Thurston (left), with the VITT office, check out the U.S. Lab Destiny in the payload bay of the orbiter Atlantis. Wearing white caps are Commander Ken Cockrell (center) and Mission Specialist Marsha Ivins (right). The crew is at KSC for Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Destiny, a key element in the construction of the International Space Station, is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  12. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the payload bay of the orbiter Atlantis, STS-98 Mission Specialists Thomas Jones (left) and Robert Curbeam (right) talk about their mission, attaching the U.S. Lab Destiny (in the background) to the International Space Station. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  13. STS-92 Mission Specialist Wakata gets ready to drive the M-113

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Getting ready to take his turn at the wheel of the M-113 is Mission Specialist Koichi Wakata of Japan. Behind him can be seen Mission Specialists Bill McArthur (left) and Leroy Chiao (right), who wait their turns. Learning to drive the armored vehicle is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  14. STS-92 Mission Specialist Wisoff is ready to drive the M-113

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Jeff Wisoff happily anticipates his chance to drive the M-113 he is in. Behind him are Commander Brian Duffy (left) and Mission Specialist Leroy Chiao, along with other crew members. Part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities, the tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  15. 14 CFR 431.7 - Payload and payload reentry determinations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payload and payload reentry determinations. 431.7 Section 431.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... payload reentry determination is required to reenter a payload to Earth on an RLV unless the proposed...

  16. A Normal Incidence X-ray Telescope (NIXT) Sounding Rocket Payload

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1996-01-01

    During the past year the changeover from the normal incidence X ray telescope (NIXT) program to the new TXI sounding rocket program was completed. The NIXT effort, aimed at evaluating the viability of the remaining portions of the NIXT hardware and design has been finished and the portions of the NIXT which are viable and flightworthy, such as filters, mirror mounting hardware, electronic and telemetry interface systems, are now part of the new rocket payload. The backup NIXT multilayer-coated X ray telescope and its mounting hardware have been completely fabricated and are being stored for possible future use in the TXI rocket. The h-alpha camera design is being utilized in the TXI program for real-time pointing verification and control via telemetry. Two papers, summarizing scientific results from the NIXT rocket program were published this year.

  17. SPACEHAB is lowered by crane in the SSPF into the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is lowered into the payload canister in KSC's Space Station Processing Facility. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  18. NASDA President Isao Uchida shakes hands with STS-87 Mission Specialist Takao Doi, Ph.D., after land

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The president of the National Space Development Agency (NASDA) of Japan, Isao Uchida, at left, shakes hands with STS-87 Mission Specialist Takao Doi, Ph.D., of NASDA, shortly after the landing of Columbia at Kennedy Space Center. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34-minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Winston Scott and Kalpana Chawla, Ph.D.; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  19. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuelmore » cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.« less

  20. View of the Spacelab module in the Columbia's payload bay

    NASA Image and Video Library

    2016-08-12

    STS083-482-034 (4-8 April 1997) --- A special lens on a 35mm camera gives a "fish-eye" effect this view of the Spacelab Module backdropped over the Pacific Ocean. Nearly all of Baja California and part of western Mexico can be seen at left. Five NASA astronauts and two scientist payload specialists were scheduled to spend 16-days in Earth-orbit but came home early when a problem with one of three fuel cells was recognized.

  1. EVA 2 - old solar array installed in payload bay

    NASA Image and Video Library

    2002-03-05

    STS109-326-008 (5 March 2002) --- Astronaut Michael J. Massimino, mission specialist, works at the stowage area for the Hubble Space Telescope's port side solar array. Astronauts Massimino and James H. Newman removed the old port solar array and stowed it in Columbia’s payload bay for a return to Earth. They then went on to install a third-generation solar array and its associated electrical components. Two crew mates had accomplished the same feat with the starboard array on the previous day.

  2. Fault-tolerant back-up archive using an ASP model for disaster recovery

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Huang, H. K.; Cao, Fei; Documet, Luis; Sarti, Dennis A.

    2002-05-01

    A single point of failure in PACS during a disaster scenario is the main archive storage and server. When a major disaster occurs, it is possible to lose an entire hospital's PACS data. Few current PACS archives feature disaster recovery, but the design is limited at best. These drawbacks include the frequency with which the back-up is physically removed to an offsite facility, the operational costs associated to maintain the back-up, the ease-of-use to perform the backup consistently and efficiently, and the ease-of-use to perform the PACS image data recovery. This paper describes a novel approach towards a fault-tolerant solution for disaster recovery of short-term PACS image data using an Application Service Provider model for service. The ASP back-up archive provides instantaneous, automatic backup of acquired PACS image data and instantaneous recovery of stored PACS image data all at a low operational cost. A back-up archive server and RAID storage device is implemented offsite from the main PACS archive location. In the example of this particular hospital, it was determined that at least 2 months worth of PACS image exams were needed for back-up. Clinical data from a hospital PACS is sent to this ASP storage server in parallel to the exams being archived in the main server. A disaster scenario was simulated and the PACS exams were sent from the offsite ASP storage server back to the hospital PACS. Initially, connectivity between the main archive and the ASP storage server is established via a T-1 connection. In the future, other more cost-effective means of connectivity will be researched such as the Internet 2. A disaster scenario was initiated and the disaster recovery process using the ASP back-up archive server was success in repopulating the clinical PACS within a short period of time. The ASP back-up archive was able to recover two months of PACS image data for comparison studies with no complex operational procedures. Furthermore, no image data loss

  3. Reducing Backups by Utilizing DMF

    NASA Technical Reports Server (NTRS)

    Cardo, Nicholas P.; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    Although a filesystem may be migratable, for a period of time the data blocks are on disk only. When performing system dumps, these data blocks are backed up to tape. If the data blocks are offline or dual resident, then only the inode is backed up. If all online files are made dual resident prior to performing system dumps, the dump time and the amount of resources required can be significantly reduced. The High Speed Processors group at the Numerical Aerodynamics Simulation (NAS) Facility at NASA Ames Research Center developed a tool to make all online files dual resident. The result is that a file whose data blocks are on DMF tape and still assigned to the original inode. Our 150GB filesystem used to take 8 to 12 hours to backup and used 50 to 60 tapes. Now the backup is typically under 10 tapes and completes in under 2 hours. This paper discusses this new tool and advantages gained by using it.

  4. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (left to right) STS-96 Pilot Rick Husband and Mission Specialists Julie Payette and Ellen Ochoa work the straps on the Sequential Shunt Unit (SSU) in front of them. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for its upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  5. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (second from left) and Commander Kent Rominger learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. At the far left looking on is TTI interpreter Valentina Maydell. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Ellen Ochoa, Tamara Jernigan, Dan Barry and Julie Payette. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  6. Payload accommodations. Avionics payload support architecture

    NASA Technical Reports Server (NTRS)

    Creasy, Susan L.; Levy, C. D.

    1990-01-01

    Concepts for vehicle and payload avionics architectures for future NASA programs, including the Assured Shuttle Access program, Space Station Freedom (SSF), Shuttle-C, Advanced Manned Launch System (AMLS), and the Lunar/Mars programs are discussed. Emphasis is on the potential available to increase payload services which will be required in the future, while decreasing the operational cost/complexity by utilizing state of the art advanced avionics systems and a distributed processing architecture. Also addressed are the trade studies required to determine the optimal degree of vehicle (NASA) to payload (customer) separation and the ramifications of these decisions.

  7. Mission Specialist Pedro Duque smiles at camera while at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA), smiles for the camera from Launch Pad 39B. The STS-95 crew were making final preparations for launch, targeted for liftoff at 2 p.m. on Oct. 29. Other crew members not shown are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinsion, and and Payload Specialists John H. Glenn Jr., senator from Ohio, and Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The STS-95 mission is expected to last 8 days, 21 hours and 49 minutes, returning to KSC at 11:49 a.m. EST on Nov. 7.

  8. Clinical experiences with an ASP model backup archive for PACS images

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Cao, Fei; Documet, Luis; Huang, H. K.; Muldoon, Jean

    2003-05-01

    Last year we presented a Fault-Tolerant Backup Archive using an Application Service Provider (ASP) model for disaster recovery. The purpose of this paper is to update and provide clinical experiences related towards implementing the ASP model archive solution for short-term backup of clinical PACS image data as well as possible applications other than disaster recovery. The ASP backup archive provides instantaneous, automatic backup of acquired PACS image data and instantaneous recovery of stored PACS image data all at a low operational cost and with little human intervention. This solution can be used for a variety of scheduled and unscheduled downtimes that occur on the main PACS archive. A backup archive server with hierarchical storage was implemented offsite from the main PACS archive location. Clinical data from a hospital PACS is sent to this ASP storage server in parallel to the exams being archived in the main server. Initially, connectivity between the main archive and the ASP storage server is established via a T-1 connection. In the future, other more cost-effective means of connectivity will be researched such as the Internet 2. We have integrated the ASP model backup archive with a clinical PACS at Saint John's Health Center and has been operational for over 6 months. Pitfalls encountered during integration with a live clinical PACS and the impact to clinical workflow will be discussed. In addition, estimations of the cost of establishing such a solution as well as the cost charged to the users will be included. Clinical downtime scenarios, such as a scheduled mandatory downtime and an unscheduled downtime due to a disaster event to the main archive, were simulated and the PACS exams were sent successfully from the offsite ASP storage server back to the hospital PACS in less than 1 day. The ASP backup archive was able to recover PACS image data for comparison studies with no complex operational procedures. Furthermore, no image data loss was

  9. Payload Operations

    NASA Technical Reports Server (NTRS)

    Cissom, R. D.; Melton, T. L.; Schneider, M. P.; Lapenta, C. C.

    1999-01-01

    The objective of this paper is to provide the future ISS scientist and/or engineer a sense of what ISS payload operations are expected to be. This paper uses a real-time operations scenario to convey this message. The real-time operations scenario begins at the initiation of payload operations and runs through post run experiment analysis. In developing this scenario, it is assumed that the ISS payload operations flight and ground capabilities are fully available for use by the payload user community. Emphasis is placed on telescience operations whose main objective is to enable researchers to utilize experiment hardware onboard the International Space Station as if it were located in their terrestrial laboratory. An overview of the Payload Operations Integration Center (POIC) systems and user ground system options is included to provide an understanding of the systems and interfaces users will utilize to perform payload operations. Detailed information regarding POIC capabilities can be found in the POIC Capabilities Document, SSP 50304.

  10. Researching, Evaluating, and Choosing a Backup Service in the Cloud

    ERIC Educational Resources Information Center

    Hastings, Robin

    2012-01-01

    Backups are a modern fact of life. Every organization that has any kind of computing technology (and that is all of them these days) needs to back up its data in case of technological or user errors. Traditionally, large-scale backups have been done via an internal or external tape drive that takes magnetic tapes (minicassettes, essentially) and…

  11. Gemini 7 backup crew seen in white room during Gemini 7 simulation activity

    NASA Image and Video Library

    1965-11-27

    S65-61837 (27 Nov. 1965) --- The Gemini-7 backup crew seen in the White Room atop Pad 19 during Gemini-7 simulation flight activity. McDonnell Aircraft Corporation technicians assist in the exercise. Astronaut Edward H. White II (in foreground) is the Gemini-7 backup crew command pilot; and astronaut Michael Collins (right background) is the backup crew pilot. Photo credit: NASA

  12. Streamlining Payload Integration

    NASA Technical Reports Server (NTRS)

    Lufkin, Susan N.

    2010-01-01

    Payload integration onto space transport vehicles and the International Space Station (ISS) is a complex process. Yet, cargo transport is the sole reason for any space mission, be it for ferrying humans, science, or hardware. As the largest such effort in history, the ISS offers a wide variety of payload experience. However, for any payload to reach the Space Station under the current process, Payload Developers face a list of daunting tasks that go well beyond just designing the payload to the constraints of the transport vehicle and its stowage topology. Payload customers are required to prove their payload s functionality, structural integrity, and safe integration - including under less than nominal situations. They must also plan for or provide training, procedures, hardware labeling, ground support, and communications. In addition, they must deal with negotiating shared consumables, integrating software, obtaining video, and coordinating the return of data and hardware. All the while, they must meet export laws, launch schedules, budget limits, and the consensus of more than 12 panel and board reviews. Despite the cost and infrastructure overhead, payload proposals have increased. Just in the span from FY08 to FY09, the NASA Payload Space Station Support Office budget rose from $78M to $96M in attempt to manage the growing manifest, but the potential number of payloads still exceeds available Payload Integration Management manpower. The growth has also increased management difficulties due to the fact that payloads are more frequently added to a flight schedule late in the flow. The current standard ISS template for payload integration from concept to payload turn-over is 36 months, or 18 months if the payload already has a preliminary design. Customers are increasingly requiring a turn-around of 3 to 6-months to meet market needs. The following paper suggests options for streamlining the current payload integration process in order to meet customer schedule

  13. STS-105 Mission Specialists in slidewire basket during TCDT at pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialists Daniel Barry (left) and Patrick Forrester (right) wait in the slidewire basket that is part of the emergency egress system. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  14. 14 CFR 431.7 - Payload and payload reentry determinations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Payload and payload reentry determinations. 431.7 Section 431.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... determination. Either an RLV mission license applicant or a payload owner or operator may request a review of...

  15. 14 CFR 431.7 - Payload and payload reentry determinations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Payload and payload reentry determinations. 431.7 Section 431.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... determination. Either an RLV mission license applicant or a payload owner or operator may request a review of...

  16. 14 CFR 431.7 - Payload and payload reentry determinations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Payload and payload reentry determinations. 431.7 Section 431.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... determination. Either an RLV mission license applicant or a payload owner or operator may request a review of...

  17. 14 CFR 431.7 - Payload and payload reentry determinations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Payload and payload reentry determinations. 431.7 Section 431.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... determination. Either an RLV mission license applicant or a payload owner or operator may request a review of...

  18. Apollo 16 prime and backup crewmen during geological field trip in New Mexico

    NASA Image and Video Library

    1971-09-09

    Dr. Lee Silver (pointing foregroung), California Institute of Technology, calls a geological feature near Taos, New Mexico, to the attention of Apollo 16 prime and backup crewmen during a geological field trip. The crewmen, from left to right, are Astronauts Charles M. Duke Jr., lunar module pilot; Fred W. Haise Jr., backup commander; Edgar D. Mitchell, backup Lunar Module pilot; and John W. Young, commander.

  19. SPACEHAB is moved by crane in the SSPF before installation in the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is moved by crane over the payload canister in KSC's Space Station Processing Facility. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  20. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, center, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. On his immediate left is Dale Steffey, SPACEHAB vice president, operations, and at the right of the photograph is Michael Lounge, SPACEHAB vice president, flight systems development. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  1. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences, and Dale Steffey, SPACEHAB vice president, operations. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  2. Apollo 11 - Prime and Backup Crews - Geology Training - TX

    NASA Image and Video Library

    1969-03-03

    S69-25199 (25 Feb. 1969) --- Two Apollo 11 astronauts study a rock specimen during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas. On the left is James A. Lovell Jr., Apollo 11 backup crew commander; and on the right is Fred W. Haise Jr., backup crew lunar module pilot. Lovell holds a camera which was used in simulating taking pictures of actual lunar samples on the surface of the Moon.

  3. Independent backup mode transfer and mechanism for digital control computers

    NASA Technical Reports Server (NTRS)

    Tulpule, Bhalchandra R. (Inventor); Oscarson, Edward M. (Inventor)

    1992-01-01

    An interrupt is provided to a signal processor having a non-maskable interrupt input, in response to the detection of a request for transfer to backup software. The signal processor provides a transfer signal to a transfer mechanism only after completion of the present machine cycle. Transfer to the backup software is initiated by the transfer mechanism only upon reception of the transfer signal.

  4. STS-103 crew look over payload inside Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Members of the STS-103 crew, with representatives from Goddard Space Flight Center, look over the Hubble servicing cargo in the payload bay of Space Shuttle Discovery at Launch Pad 39B. From left are Mission Specialist Steven L. Smith and Claude Nicollier of Switzerland; Steve Pataki and Dave Southwick, with Goddard; and Mission Commander Curtis L. Brown Jr. Inspecting the payload is part of the Terminal Countdown Demonstration Test (TCDT), which also provides the crew with emergency egress training and a simulated countdown exercise. Other crew members taking part in the TCDT are Pilot Scott J. Kelly, and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Jean- Fran'''ois Clervoy of France. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  5. Earth Viewing Applications Laboratory (EVAL). Dedicated payload, standard test rack payload, sensor modifications

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The preliminary analysis of strawman earth-viewing shuttle sortie payloads begun with the partial spacelab payload was analyzed. The payloads analyzed represent the two extremes of shuttle sortie application payloads: a full shuttle sortie payload dedicated to earth-viewing applications, and a small structure payload which can fly on a space available basis with another primary shuttle payload such as a free flying satellite. The intent of the dedicated mission analysis was to configure an ambitious, but feasible, payload; which, while rich in scientific return, would also stress the system and reveal any deficiences or problem areas in mission planning, support equipment, and operations. Conversely, the intent of the small structure payload was to demonstrate the ease with which a small, simple, flexible payload can be accommodated on shuttle flights.

  6. "Teacher in Space" Participants - Space Food Testing - Orientation Session - JSC

    NASA Image and Video Library

    1985-09-25

    S85-39979 (10 Sept. 1985) --- Two teachers training for participation in the STS-51L flight get their first introduction to space food during an orientation session in the life sciences building at the Johnson Space Center (JSC). Sharon Christa McAuliffe (left) chews on a morsel while Barbara R. Morgan reaches for a bite. Dr. C.T. Bourland of Technology, Incorporated, looks on. McAuliffe was chosen from among ten finalists as prime citizen observer payload specialist and Morgan was named as backup for the STS-51L flight. Photo credit: NASA

  7. STS-65 Mission Specialist Chiao in LES at pre-test WETF bailout briefing

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), listens to a briefing on procedures that would become necessary in the event of an emergency egress situation from the Space Shuttle. The astronaut was in the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29 for the launch emergency egress training (bailout) exercise. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  8. 47 CFR 12.2 - Backup power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... exchange carriers, including incumbent local exchange carriers and competitive local exchange carriers..., must have an emergency backup power source (e.g., batteries, generators, fuel cells) for all assets... or local law; (2) Risk to safety of life or health; or (3) Private legal obligation or agreement. (c...

  9. The depth of the honeybee's backup sun-compass systems.

    PubMed

    Dovey, Katelyn M; Kemfort, Jordan R; Towne, William F

    2013-06-01

    Honeybees have at least three compass mechanisms: a magnetic compass; a celestial or sun compass, based on the daily rotation of the sun and sun-linked skylight patterns; and a backup celestial compass based on a memory of the sun's movements over time in relation to the landscape. The interactions of these compass systems have yet to be fully elucidated, but the celestial compass is primary in most contexts, the magnetic compass is a backup in certain contexts, and the bees' memory of the sun's course in relation to the landscape is a backup system for cloudy days. Here we ask whether bees have any further compass systems, for example a memory of the sun's movements over time in relation to the magnetic field. To test this, we challenged bees to locate the sun when their known celestial compass systems were unavailable, that is, under overcast skies in unfamiliar landscapes. We measured the bees' knowledge of the sun's location by observing their waggle dances, by which foragers indicate the directions toward food sources in relation to the sun's compass bearing. We found that bees have no celestial compass systems beyond those already known: under overcast skies in unfamiliar landscapes, bees attempt to use their landscape-based backup system to locate the sun, matching the landscapes or skylines at the test sites with those at their natal sites as best they can, even if the matches are poor and yield weak or inconsistent orientation.

  10. Improving the Quality of Backup Process for Publishing Houses and Printing Houses

    NASA Astrophysics Data System (ADS)

    Proskuriakov, N. E.; Yakovlev, B. S.; Pries, V. V.

    2018-04-01

    The analysis of main types for data threats, used by print media, and their influence on the vitality and security of information is made. The influence of the programs settings for preparing archive files, the types of file managers on the backup process is analysed. We proposed a simple and economical version of the practical implementation of the backup process consisting of 4 components: the command line interpreter, the 7z archiver, the Robocopy utility, and network storage. We recommend that the best option would be to create backup copies, consisting of three local copies of data and two network copies.

  11. [Positional accuracy and quality assurance of Backup JAWs required for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2012-01-01

    The tolerance of the Backup diaphragm (Backup JAW) setting in Elekta linac was specified as 2 mm according to the AAPM TG-142 report. However, the tolerance and the quality assurance procedure for volumetric modulated arc therapy (VMAT) was not provided. This paper describes positional accuracy and quality assurance procedure of the Backup JAWs required for VMAT. It was found that a gap-width error of the Backup JAW by a sliding window test needed to be less than 1.5 mm for prostate VMAT delivery. It was also confirmed that the gap-widths had been maintained with an error of 0.2 mm during the past one year.

  12. SPACEHAB is raised by crane in the SSPF before installation in the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is raised by crane from a transporter in KSC's Space Station Processing Facility, where it will be moved to the payload canister. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  13. STS-113 Mission Specialists during TCDT in SSPF

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. --STS-113 Mission Specialists John Herrington (left) and Michael Lopez-Alegria (center) look over equipment involved in their mission during Crew Equipment Interface Test activities in the Space Station Processing Facility. Part of the payload on mission STS-113 is the first port truss segment, P1 Truss, to be attached to the central truss segment, S0, on the International Space Station. Once delivered, the P1 truss will remain stowed until flight 12A.1. Launch date for STS-113 is under review.

  14. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences; Dale Steffey, SPACEHAB vice president, operations; and Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  15. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dale Steffey, SPACEHAB vice president, operations; Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  16. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from left, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dale Steffey, SPACEHAB vice president, operations; Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  17. STS-65 Mission Specialist Chiao in front of IML-2 Rack 3 aboard OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Leroy Chiao is seen in the International Microgravity Laboratory 2 (IML-2) spacelab science module in front of Rack 3 and above center aisle equipment. Chiao has just made an observation of the goldfish container (silver apparatus on left between his right hand and knee). The Rack 3 Aquatic Animal Experiment Unit (AAEU) also contains Medaka and newts. Chiao joined five other NASA astronauts and a Japanese payload specialist for two weeks of experimenting onboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, in Earth orbit.

  18. A hybrid data compression approach for online backup service

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhou, Ke; Qin, MingKang

    2009-08-01

    With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.

  19. Payload transportation system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A standard size set of shuttle payload transportation equipment was defined that will substantially reduce the cost of payload transportation and accommodate a wide range of payloads with minimum impact on payload design. The system was designed to accommodate payload shipments between the level 4 payload integration sites and the launch site during the calendar years 1979-1982. In addition to defining transportation multi-use mission support equipment (T-MMSE) the mode of travel, prime movers, and ancillary equipment required in the transportation process were also considered. Consistent with the STS goals of low cost and the use of standardized interfaces, the transportation system was designed to commercial grade standards and uses the payload flight mounting interfaces for transportation. The technical, cost, and programmatic data required to permit selection of a baseline system of MMSE for intersite movement of shuttle payloads were developed.

  20. STS-92 Mission Specialist McArthur is ready to take his turn driving the M-113

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Bill McArthur gets ready to take his turn at driving the M-113, part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind him (left) is Mission Specialist Jeff Wisoff, waiting his turn to drive along with other unidentified crew members. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  1. Backup Warning Signals: Driver Perception and Response

    DOT National Transportation Integrated Search

    1996-08-01

    This report describes the findings of three experiments that concern driver reaction to acoustic signals that might be used for backup warning devices. Intelligent warning devices are under development that will use vehicle-based sensors to warn back...

  2. STS-92 Mission Specialist Chiao drives the M-113

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With other crew members in the back, STS-92 Mission Specialist Leroy Chiao races the M-113 along the track through the scrub. Driving the M-113 is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  3. Mechanization of and experience with a triplex fly-by-wire backup control system

    NASA Technical Reports Server (NTRS)

    Lock, W. P.; Petersen, W. R.; Whitman, G. B.

    1976-01-01

    A redundant three axis analog control system was designed and developed to back up a digital fly by wire control system for an F-8C airplane. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum displacement (force) side stick. The operational reliability of the F-8 digital fly by wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.

  4. STS-107 Mission Specialist Kalpana Chawla at SPACEHAB during training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla scans paperwork for equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  5. STS-107 Mission Specialist Kalpana Chawla at SPACEHAB during training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Kalpana Chawla looks over equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  6. ISS Payload Human Factors

    NASA Technical Reports Server (NTRS)

    Ellenberger, Richard; Duvall, Laura; Dory, Jonathan

    2016-01-01

    The ISS Payload Human Factors Implementation Team (HFIT) is the Payload Developer's resource for Human Factors. HFIT is the interface between Payload Developers and ISS Payload Human Factors requirements in SSP 57000. ? HFIT provides recommendations on how to meet the Human Factors requirements and guidelines early in the design process. HFIT coordinates with the Payload Developer and Astronaut Office to find low cost solutions to Human Factors challenges for hardware operability issues.

  7. STS-97 Mission Specialist Noriega talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Carlos Noriega. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  8. STS-97 Mission Specialist Tanner talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Joseph Tanner. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Marc Garneau, who is with the Canadian Space Agency, and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  9. STS-97 Mission Specialist Garneau talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Marc Garneau, who is with the Canadian Space Agency. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  10. Activities at the JSC Payload Operations Control Center During Spacelab Mission

    NASA Technical Reports Server (NTRS)

    1984-01-01

    During a Spacelab flight, the hub of activity was the Payload Operations Control Center (POCC) at the Johnson Space Flight Center (JSC) in Houston, Texas. The POCC became home to the management and science teams who worked around the clock to guide and support the mission. All Spacelab principal investigators and their teams of scientists and engineers set up work areas in the POCC. Through the use of computers, they could send commands to their instruments and receive and analyze experiment data. Instantaneous video and audio communications made it possible for scientists on the ground to follow the progress of their research almost as if they were in space with the crew. This real-time interaction between investigators on the ground and the crew in space was probably the most exciting of Spacelab's many capabilities. As principal investigators talked to the payload specialists during the mission, they consulted on experiment operations, made decisions, and shared in the thrill of gaining new knowledge. In December 1990, a newly-established POCC at the Marshall Space Flight Center (MSFC) opened its door for the operations of the Spacelab payloads and experiments, while JSC monitored the Shuttle flight operations. MSFC had managing responsibilities for the Spacelab missions.

  11. EVA 5 - MS Grunsfeld and Linnehan in payload bay

    NASA Image and Video Library

    2002-03-08

    STS109-E-5750 (8 March 2002) --- Astronaut John M. Grunsfeld, STS-109 payload commander, floats near the giant Hubble Space Telescope (HST) temporarily hosted in the Space Shuttle Columbia’s cargo bay. Astronaut Richard M. Linnehan (lower right), mission specialist, works in tandem with Grunsfeld during this fifth and final scheduled space walk. Activities for EVA-5 centered around the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) to install a Cryogenic Cooler and its Cooling System Radiator. The space walk was completed at 10:06 a.m. CST (1606 GMT), March 8, 2002. The image was recorded with a digital still camera.

  12. STS-109 MS Grunsfeld and Linnehan stow old solar array from payload bay

    NASA Image and Video Library

    2002-03-04

    STS109-E-5244 (4 March 2002) --- Astronauts John M. Grunsfeld (red stripes on suit), payload commander, and Richard M. (Rick) Linnehan, mission specialist, participate in the first of their assigned STS-109 space walks to perform work on the Hubble Space Telescope (HST). The two went on to replace the giant telescope’s starboard solar array. Their seven-hour space walk ended at 7:38 a.m. (CST) or 13:38 GMT March 4, 2002.

  13. The LEAN Payload Integration Process

    NASA Technical Reports Server (NTRS)

    Jordan, Lee P.; Young, Yancy; Rice, Amanda

    2011-01-01

    It is recognized that payload development and integration with the International Space Station (ISS) can be complex. This streamlined integration approach is a first step toward simplifying payload integration; making it easier to fly payloads on ISS, thereby increasing feasibility and interest for more research and commercial organizations to sponsor ISS payloads and take advantage of the ISS as a National Laboratory asset. The streamlined integration approach was addressed from the perspective of highly likely initial payload types to evolve from the National Lab Pathfinder program. Payloads to be accommodated by the Expedite the Processing of Experiments for Space Station (EXPRESS) Racks and Microgravity Sciences Glovebox (MSG) pressurized facilities have been addressed. It is hoped that the streamlined principles applied to these types of payloads will be analyzed and implemented in the future for other host facilities as well as unpressurized payloads to be accommodated by the EXPRESS Logistics Carrier (ELC). Further, a payload does not have to be classified as a National Lab payload in order to be processed according to the lean payload integration process; any payload that meets certain criteria can follow the lean payload integration process.

  14. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    NASA Technical Reports Server (NTRS)

    Marsh, Angela L.; Dudley, Stephanie R. B.

    2014-01-01

    With an increase in the utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS realtime operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art media wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management

  15. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, David Rossi, SPACEHAB president and chief operating officer (extreme left); Michael Lounge, SPACEHAB vice president, flight systems development; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  16. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  17. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  18. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  19. A Stream lined Approach for the Payload Customer in Identifying Payload Design Requirements

    NASA Technical Reports Server (NTRS)

    Miller, Ladonna J.; Schneider, Walter F.; Johnson, Dexer E.; Roe, Lesa B.

    2001-01-01

    NASA payload developers from across various disciplines were asked to identify areas where process changes would simplify their task of developing and flying flight hardware. Responses to this query included a central location for consistent hardware design requirements for middeck payloads. The multidisciplinary team assigned to review the numerous payload interface design documents is assessing the Space Shuttle middeck, the SPACEHAB Inc. locker, as well as the MultiPurpose Logistics Module (MPLM) and EXpedite the PRocessing of Experiments to Space Station (EXPRESS) rack design requirements for the payloads. They are comparing the multiple carriers and platform requirements and developing a matrix which illustrates the individual requirements, and where possible, the envelope that encompasses all of the possibilities. The matrix will be expanded to form an overall envelope that the payload developers will have the option to utilize when designing their payload's hardware. This will optimize the flexibility for payload hardware and ancillary items to be manifested on multiple carriers and platforms with minimal impact to the payload developer.

  20. Mechanization of and experience with a triplex fly-by-wire backup control system

    NASA Technical Reports Server (NTRS)

    Lock, W. P.; Petersen, W. R.; Whitman, G. B.

    1975-01-01

    A redundant three-axis analog control system was designed and developed to back up a digital fly-by-wire control system for an F-8C airplane. Forty-two flights, involving 58 hours of flight time, were flown by six pilots. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum-displacement (force) side stick. The operational reliability of the F-8 digital fly-by-wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.

  1. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less

  2. Backup Attitude Control Algorithms for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Ericsson-Jackson, Aprille J.; Flatley, Thomas W.; Ward, David K.; Bay, P. Michael

    1999-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission, studying the early origins of the universe, in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point. Due to limited mass, power, and financial resources, a traditional reliability concept involving fully redundant components was not feasible. This paper will discuss the redundancy philosophy used on MAP, describe the hardware redundancy selected (and why), and present backup modes and algorithms that were designed in lieu of additional attitude control hardware redundancy to improve the odds of mission success. Three of these modes have been implemented in the spacecraft flight software. The first onboard mode allows the MAP Kalman filter to be used with digital sun sensor (DSS) derived rates, in case of the failure of one of MAP's two two-axis inertial reference units. Similarly, the second onboard mode allows a star tracker only mode, using attitude and derived rate from one or both of MAP's star trackers for onboard attitude determination and control. The last backup mode onboard allows a sun-line angle offset to be commanded that will allow solar radiation pressure to be used for momentum management and orbit stationkeeping. In addition to the backup modes implemented on the spacecraft, two backup algorithms have been developed in the event of less likely contingencies. One of these is an algorithm for implementing an alternative scan pattern to MAP's nominal dual-spin science mode using only one or two reaction wheels and thrusters. Finally, an algorithm has been developed that uses thruster one shots while in science mode for momentum management. This algorithm has been developed in case system momentum builds up faster than anticipated, to allow adequate momentum management while minimizing interruptions to science. In this paper, each mode and

  3. Two Teacher in Space candidates during training at JSC

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Two women representing the Teacher in Space Project undergo training in preparation for the STS 51-L mission. Sharon Christa McAuliffe (second right), prime crewmember; and Barbara R. Morgan (second left) backup, are briefed in the Shuttle mission simulator's instruction station by Jerry Swain, instruction team leader. Others pictured are Michelle Brekke (far right) of the payload specialists office and Patricia A. Lawson (lower left foreground) (40510); Astronaut Ellison S. Onizuka assists Morgan with a head set as the two trainees are familiarized with launch and entry stations in the motion base Shuttle mission simulator (SMS) (40511).

  4. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; back-up tax. 48.4082-4..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  5. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Calvert, John; Freas, George, II

    2017-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD 1553B, Ethernet and TAXI) and is designed to facilitate rapid testing and deployment of payload experiments to the ISS. The ISS Program's goal is to reduce the amount of time it takes a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface. Additionally, the Analog and Discrete (A&D) signals of the following payload types may be tested with RAPTR: (1) EXPRESS Sub Rack Payloads; (2) ELC payloads; (3) External Columbus payloads; (4) External Japanese Experiment Module (JEM) payloads. The automated payload configuration setup and payload data inspection infrastructure is found nowhere else in ISS payload test systems. Testing can be done with minimal human intervention and setup, as the RAPTR automatically monitors parameters in the data headers that are sent to, and come from the experiment under test.

  6. Rates for backup service under PURPA when the supplying utility has excess generating capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Under PURPA, cogenerators are entitled to receive backup service. It is often said that tariffs for backup service should reflect the low probability that an unscheduled outage will occur during system peak. This memorandum concludes that probabilistic analysis of contribution to coincident peak demand is not relevant under PURPA during periods in which a utility system is experiencing generating capacity surpluses, and that in such situations, backup rates should be designed so that should the customer insist on installing a cogeneration system, that the customer's contribution to fixed costs remains constant. The reason for this is to assure that prospectivemore » cogenerators receive appropriate pricing signals in their assessment of proposed cogeneration projects, and should they decide to install cogeneration facilities requiring backup service, to hold the remaining customers on the system harmless.« less

  7. Reliability considerations of a fuel cell backup power system for telecom applications

    NASA Astrophysics Data System (ADS)

    Serincan, Mustafa Fazil

    2016-03-01

    A commercial fuel cell backup power unit is tested in real life operating conditions at a base station of a Turkish telecom operator. The fuel cell system responds to 256 of 260 electric power outages successfully, providing the required power to the base station. Reliability of the fuel cell backup power unit is found to be 98.5% at the system level. On the other hand, a qualitative reliability analysis at the component level is carried out. Implications of the power management algorithm on reliability is discussed. Moreover, integration of the backup power unit to the base station ecosystem is reviewed in the context of reliability. Impact of inverter design on the stability of the output power is outlined. Significant current harmonics are encountered when a generic inverter is used. However, ripples are attenuated significantly when a custom design inverter is used. Further, fault conditions are considered for real world case studies such as running out of hydrogen, a malfunction in the system, or an unprecedented operating scheme. Some design guidelines are suggested for hybridization of the backup power unit for an uninterrupted operation.

  8. The near-source impacts of diesel backup generators in urban environments

    NASA Astrophysics Data System (ADS)

    Tong, Zheming; Zhang, K. Max

    2015-05-01

    Distributed power generation, located close to consumers, plays an important role in the current and future power systems. However, its near-source impacts in complex urban environments are not well understood. In this paper, we focused on diesel backup generators that participate in demand response (DR) programs. We first improved the micro-environmental air quality simulations by employing a meteorology processor, AERMET, to generate site-specific boundary layer parameters for the Large Eddy Simulation (LES) modeling. The modeling structure was then incorporated into the CTAG model to evaluate the environmental impacts of diesel backup generators in near-source microenvironments. We found that the presence of either tall upwind or downwind building can deteriorate the air quality in the near-stack street canyons, largely due to the recirculation zones generated by the tall buildings, reducing the near-stack dispersion. Decreasing exhaust momentum ratio (stack exit velocity/ambient wind velocity) draws more exhaust into the recirculation zone, and reduces the effective stack height, which results in elevated near-ground concentrations inside downwind street canyons. The near-ground PM2.5 concentration for the worst scenarios could well exceed 100 μg m-3, posing potential health risk to people living and working nearby. In general, older diesel backup generators (i.e., Tier 1, 2 or older) without the up-to-date emission control may significantly increase the pollutant concentration in the near-source street canyons if participating in DR programs. Even generators that comply with Tier-4 standards could lead to PM hotspots if their stacks are next to tall buildings. Our study implies that the siting of diesel backup generators stacks should consider not only the interactions of fresh air intake and exhaust outlet for the building housing the backup generators, but also the dispersion of exhaust plumes in the surrounding environment.

  9. Space Station accommodation of attached payloads

    NASA Technical Reports Server (NTRS)

    Browning, Ronald K.; Gervin, Janette C.

    1987-01-01

    The Attached Payload Accommodation Equipment (APAE), which provides the structure to attach payloads to the Space Station truss assembly, to access Space Station resources, and to orient payloads relative to specified targets, is described. The main subelements of the APAE include a station interface adapter, payload interface adapter, subsystem support module, contamination monitoring system, payload pointing system, and attitude determination system. These components can be combined to provide accommodations for small single payloads, small multiple payloads, large self-supported payloads, carrier-mounted payloads, and articulated payloads. The discussion also covers the power, thermal, and data/communications subsystems and operations.

  10. IUS/payload communication system simulator configuration definition study. [payload simulator for pcm telemetry

    NASA Technical Reports Server (NTRS)

    Udalov, S.; Springett, J. C.

    1978-01-01

    The requirements and specifications for a general purpose payload communications system simulator to be used to emulate those communications system portions of NASA and DOD payloads/spacecraft that will in the future be carried into earth orbit by the shuttle are discussed. For the purpose of on-orbit checkout, the shuttle is required to communicate with the payloads while they are physically located within the shuttle bay (attached) and within a range of 20 miles from the shuttle after they have been deployed (detached). Many of the payloads are also under development (and many have yet to be defined), actual payload communication hardware will not be available within the time frame during which the avionic hardware tests will be conducted. Thus, a flexible payload communication system simulator is required.

  11. MS Peterson and MS Musgrave in payload bay (PLB) during EVA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Extravehicular mobility unit (EMU) suited Mission Specialist (MS) Peterson, designated EV2, translates from forward payload bay (PLB) to aft bulkhead worksite along port side sill longeron using tether and slidewire system while MS Musgrave, designated EV1, floats on a tether in center of PLB. Inertial Upper Stage (IUS) Airborne Support Equipment (ASE) forward frame and aft frame tilt actuator (AFTA) table appear in front and behind Musgrave and vertical tail and Orbital Maneuvering System (OMS) pods appear in background highlighted against the cloudy surface of Earth. EMU mini workstation extravehicular activity (EVA) crewmember safety tether reel floats on Musgrave's waist tether.

  12. Astronaut Rich Clifford inserts tape into payload high data recorder

    NASA Image and Video Library

    1994-04-14

    STS059-09-012 (9-20 April 1994) --- On the Space Shuttle Endeavour's aft flight deck, astronaut Michael R. (Rich) Clifford, mission specialist, inserts a tape in the payload high rate recorder. Three of these state-of-the-art recorders captured four times the amount of data that could be radioed to the ground. The 183 tapes, each containing 40 megabytes of data, will be turned into images over the next year, and analyzed over the next decade. Clifford was joined in space by five other NASA astronauts for a week and a half of support to the Space Radar Laboratory (SRL-1)/STS-59 mission.

  13. Expedition 14 Crew and Backup Crew Training

    NASA Image and Video Library

    2006-05-24

    JSC2006-E-20053 (24 May 2006) --- Astronaut Clayton C. Anderson, Expedition 14 backup flight engineer, participates in Journals experiment overview training in the Flight Operations Facility at Johnson Space Center. This type of training is a presentation format regarding the experiment objectives and tools. Training instructor Lindsay Kirschner assisted Anderson.

  14. Payload Operations Support Team Tools

    NASA Technical Reports Server (NTRS)

    Askew, Bill; Barry, Matthew; Burrows, Gary; Casey, Mike; Charles, Joe; Downing, Nicholas; Jain, Monika; Leopold, Rebecca; Luty, Roger; McDill, David; hide

    2007-01-01

    Payload Operations Support Team Tools is a software system that assists in (1) development and testing of software for payloads to be flown aboard the space shuttles and (2) training of payload customers, flight controllers, and flight crews in payload operations

  15. STS-87 Mission Specialist Doi with EVA coordinator Laws participates in the CEIT for his mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi , Ph.D., of the National Space Development Agency of Japan, participates in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center (KSC). Glenda Laws, the extravehicular activity (EVA) coordinator, Johnson Space Center, stands behind Dr. Doi. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, Dr. Doi will be the first Japanese astronaut to perform a spacewalk. STS- 87 is scheduled for a Nov. 19 liftoff from KSC.

  16. Implementation of an ASP model offsite backup archive for clinical images utilizing Internet 2

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Chao, Sander S.; Documet, Jorge; Lee, Jasper; Lee, Michael; Topic, Ian; Williams, Lanita

    2005-04-01

    With the development of PACS technology and an increasing demand by medical facilities to become filmless, there is a need for a fast and efficient method of providing data backup for disaster recovery and downtime scenarios. At the Image Processing Informatics Lab (IPI), an ASP Backup Archive was developed using a fault-tolerant server with a T1 connection to serve the PACS at the St. John's Health Center (SJHC) Santa Monica, California. The ASP archive server has been in clinical operation for more than 18 months, and its performance was presented at this SPIE Conference last year. This paper extends the ASP Backup Archive to serve the PACS at the USC Healthcare Consultation Center II (HCC2) utilizing an Internet2 connection. HCC2 is a new outpatient facility that recently opened in April 2004. The Internet2 connectivity between USC's HCC2 and IPI has been established for over one year. There are two novelties of the current ASP model: 1) Use of Internet2 for daily clinical operation, and 2) Modifying the existing backup archive to handle two sites in the ASP model. This paper presents the evaluation of the ASP Backup Archive based on the following two criteria: 1) Reliability and performance of the Internet2 connection between HCC2 and IPI using DICOM image transfer in a clinical environment, and 2) Ability of the ASP Fault-Tolerant backup archive to support two separate clinical PACS sites simultaneously. The performances of using T1 and Internet2 at the two different sites are also compared.

  17. Payload Documentation Enhancement Project

    NASA Technical Reports Server (NTRS)

    Brown, Betty G.

    1999-01-01

    In late 1998, the Space Shuttle Program recognized a need to revitalize its payload accommodations documentation. As a result a payload documentation enhancement project was initiated to review and update payload documentation and improve the accessibility to that documentation by the Space Shuttle user community.

  18. Quasi Path Restoration: A post-failure recovery scheme over pre-allocated backup resource for elastic optical networks

    NASA Astrophysics Data System (ADS)

    Yadav, Dharmendra Singh; Babu, Sarath; Manoj, B. S.

    2018-03-01

    Spectrum conflict during primary and backup routes assignment in elastic optical networks results in increased resource consumption as well as high Bandwidth Blocking Probability. In order to avoid such conflicts, we propose a new scheme, Quasi Path Restoration (QPR), where we divide the available spectrum into two: (1) primary spectrum (for primary routes allocation) and (2) backup spectrum (for rerouting the data on link failures). QPR exhibits three advantages over existing survivable strategies such as Shared Path Protection (SPP), Primary First Fit Backup Last Fit (PFFBLF), Jointly Releasing and re-establishment Defragmentation SPP (JRDSSPP), and Path Restoration (PR): (1) the conflict between primary and backup spectrum during route assignment is completely eliminated, (2) upon a link failure, connection recovery requires less backup resources compared to SPP, PFFBLF, and PR, and (3) availability of the same backup spectrum on each link improves the recovery guarantee. The performance of our scheme is analyzed with different primary backup spectrum partitions on varying connection-request demands and number of frequency slots. Our results show that QPR provides better connection recovery guarantee and Backup Resources Utilization (BRU) compared to bandwidth recovery of PR strategy. In addition, we compare QPR with Shared Path Protection and Primary First-Fit Backup Last Fit strategies in terms of Bandwidth Blocking Probability (BBP) and average frequency slots per connection request. Simulation results show that BBP of SPP, PFFBLF, and JRDSPP varies between 18.59% and 14.42%, while in QPR, BBP ranges from 2.55% to 17.76% for Cost239, NSFNET, and ARPANET topologies. Also, QPR provides bandwidth recovery between 93.61% and 100%, while in PR, the recovery ranges from 86.81% to 98.99%. It is evident from our analysis that QPR provides a reasonable trade-off between bandwidth blocking probability and connection recoverability.

  19. Payload missions integration

    NASA Technical Reports Server (NTRS)

    Mitchell, R. A. K.

    1983-01-01

    Highlights of the Payload Missions Integration Contract (PMIC) are summarized. Spacelab Missions no. 1 to 3, OSTA partial payloads, Astro-1 Mission, premission definition, and mission peculiar equipment support structure are addressed.

  20. Development and analysis of a modular approach to payload specialist training. [training of spacecrews for Spacelab

    NASA Technical Reports Server (NTRS)

    Watters, H.; Steadman, J.

    1976-01-01

    A modular training approach for Spacelab payload crews is described. Representative missions are defined for training requirements analysis, training hardware, and simulations. Training times are projected for each experiment of each representative flight. A parametric analysis of the various flights defines resource requirements for a modular training facility at different flight frequencies. The modular approach is believed to be more flexible, time saving, and economical than previous single high fidelity trainer concepts. Block diagrams of training programs are shown.

  1. Shuttle payload vibroacoustic test plan evaluation. Free flyer payload applications and sortie payload parametric variations

    NASA Technical Reports Server (NTRS)

    Stahle, C. V.; Gongloff, H. R.

    1977-01-01

    A preliminary assessment of vibroacoustic test plan optimization for free flyer STS payloads is presented and the effects on alternate test plans for Spacelab sortie payloads number of missions are also examined. The component vibration failure probability and the number of components in the housekeeping subassemblies are provided. Decision models are used to evaluate the cost effectiveness of seven alternate test plans using protoflight hardware.

  2. STS-65 Mission Specialist Chiao floats in a single person raft in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Having just deployed a small, single-person life raft, astronaut and STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), floats in a 25-feet deep pool at the Johnson Space Center (JSC). The astronaut was in the Weightless Environment Training Facility (WETF) Bldg 29 pool for a training exercise, designed to familiarize crewmembers with procedures to call on in the event of an emergency egress situation with the Space Shuttle. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  3. Integrating International Space Station payload operations

    NASA Technical Reports Server (NTRS)

    Noneman, Steven R.

    1996-01-01

    The payload operations support for the International Space Station (ISS) payload is reported on, describing payload activity planning, payload operations control, payload data management and overall operations integration. The operations concept employed is based on the distribution of the payload operations responsibility between the researchers and ISS partners. The long duration nature of the ISS mission dictates the geographical distribution of the payload operations activities between the different national centers. The coordination and integration of these operations will be assured by NASA's Payload Operations Integration Center (POIC). The prime objective of the POIC is the achievement of unified operations through communication and collaboration.

  4. STS-92 Mission Specialist Lopez-Alegria is ready to drive the M- 113

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Waiting his turn to drive the M-113 is STS-92 Mission Specialist Michael Lopez-Alegria. Part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities, the tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  5. Emergency and backup power supplies at Department of Energy facilities: Augmented Evaluation Team -- Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report documents the results of the Defense Programs (DP) Augmented Evaluation Team (AET) review of emergency and backup power supplies (i.e., generator, uninterruptible power supply, and battery systems) at DP facilities. The review was conducted in response to concerns expressed by former Secretary of Energy James D. Watkins over the number of incidents where backup power sources failed to provide electrical power during tests or actual demands. The AET conducted a series of on-site reviews for the purpose of understanding the design, operation, maintenance, and safety significance of emergency and backup power (E&BP) supplies. The AET found that themore » quality of programs related to maintenance of backup power systems varies greatly among the sites visited, and often among facilities at the same site. No major safety issues were identified. However, there are areas where the AET believes the reliability of emergency and backup power systems can and should be improved. Recommendations for improving the performance of E&BP systems are provided in this report. The report also discusses progress made by Management and Operating (M&O) contractors to improve the reliability of backup sources used in safety significant applications. One area that requires further attention is the analysis and understanding of the safety implications of backup power equipment. This understanding is needed for proper graded-approach implementation of Department of Energy (DOE) Orders, and to help ensure that equipment important to the safety of DOE workers, the public, and the environment is identified, classified, recognized, and treated as such by designers, users, and maintainers. Another area considered important for improving E&BP system performance is the assignment of overall ownership responsibility and authority for ensuring that E&BP equipment performs adequately and that reliability and availability are maintained at acceptable levels.« less

  6. On-Board Software Reference Architecture for Payloads

    NASA Astrophysics Data System (ADS)

    Bos, Victor; Rugina, Ana; Trcka, Adam

    2016-08-01

    The goal of the On-board Software Reference Architecture for Payloads (OSRA-P) is to identify an architecture for payload software to harmonize the payload domain, to enable more reuse of common/generic payload software across different payloads and missions and to ease the integration of the payloads with the platform.To investigate the payload domain, recent and current payload instruments of European space missions have been analyzed. This led to a Payload Catalogue describing 12 payload instruments as well as a Capability Matrix listing specific characteristics of each payload. In addition, a functional decomposition of payload software was prepared which contains functionalities typically found in payload systems. The definition of OSRA-P was evaluated by case studies and a dedicated OSRA-P workshop to gather feedback from the payload community.

  7. STS-91 Mission Specialist Janet Kavandi, Ph.D., participates in CEIT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Specialist Janet Kavandi, Ph.D., participates in the Crew Equipment Interface Test, or CEIT, in KSC's Orbiter Processing Facility Bay 2. During CEIT, the crew have an opportunity to get a hands-on look at the payloads with which they'll be working on-orbit. The STS-91 crew are scheduled to launch aboard the Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on May 28 at 8:05 EDT.

  8. STS-97 Mission Specialist Tanner during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Joseph Tanner gets help with his boots from suit technician Erin Canlon during check pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  9. STS-97 Mission Specialist Noriega during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Carlos Noriega gets help with his boots from suit technician Shelly Grick-Agrella during pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  10. Visual Earth observation performance in the space environment. Human performance measurement 4: Flight experiments

    NASA Technical Reports Server (NTRS)

    Huth, John F.; Whiteley, James D.; Hawker, John E.

    1993-01-01

    A wide variety of secondary payloads have flown on the Space Transportation System (STS) since its first flight in the 1980's. These experiments have typically addressed specific issues unique to the zero-gravity environment. Additionally, the experiments use the experience and skills of the mission and payload specialist crew members to facilitate data collection and ensure successful completion. This paper presents the results of the Terra Scout experiment, which flew aboard STS-44 in November 1991. This unique Earth Observation experiment specifically required a career imagery analyst to operate the Spaceborne Direct-View Optical System (SpaDVOS), a folded optical path telescope system designed to mount inside the shuttle on the overhead aft flight deck windows. Binoculars and a small telescope were used as backup optics. Using his imagery background, coupled with extensive target and equipment training, the payload specialist was tasked with documenting the following: (1) the utility of the equipment; (2) his ability to acquire and track ground targets; (3) the level of detail he could discern; (4) the atmospheric conditions; and (5) other in-situ elements which contributed to or detracted from his ability to analyze targets. Special emphasis was placed on the utility of a manned platform for research and development of future spaceborne sensors. The results and lessons learned from Terra Scout will be addressed including human performance and equipment design issues.

  11. 30 CFR 56.14132 - Horns and backup alarms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....14132 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14132 Horns and backup alarms. (a) Manually...

  12. 30 CFR 56.14132 - Horns and backup alarms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....14132 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14132 Horns and backup alarms. (a) Manually...

  13. STS-89 Mission Specialist Dunbar participates in the CEIT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-89 Mission Specialist Bonnie Dunbar, Ph.D., participates in the Crew Equipment Interface Test (CEIT) in front of the Real- time Radiation Monitoring Device (RRMD) at the SPACEHAB Payload Processing Facility at Port Canaveral in preparation for the mission, slated to be the first Shuttle launch of 1998. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine- day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven- member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  14. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station

    NASA Technical Reports Server (NTRS)

    De La Cruz, Melinda; Henderson, Steve

    2016-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD1553B, Ethernet and TAXI) and is designed for rapid testing and deployment of payload experiments to the ISS. The ISS's goal is to reduce the amount of time it takes for a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface.

  15. Ceramic backup ring prevents undesirable weld-metal buildup

    NASA Technical Reports Server (NTRS)

    Leonard, G. E.

    1971-01-01

    Removable ceramic backup material butted against weld zone back prevents weld metal buildup at that site. Method is successful with manual tungsten-inert gas /TIG/ welding of 316 corrosion resistant steel /CRES/ pieces with 0.76 cm throat diameter and 1.57 cm pipe internal diameter.

  16. The Space Shuttle orbiter payload retention systems

    NASA Technical Reports Server (NTRS)

    Hardee, J. H.

    1982-01-01

    Payloads are secured in the orbiter payload bay by the payload retention system or are equipped with their own unique retention systems. The orbiter payload retention mechanisms provide structural attachments for each payload by using four or five attachment points to secure the payload within the orbiter payload bay during all phases of the orbiter mission. The payload retention system (PRS) is an electromechanical system that provides standarized payload carrier attachment fittings to accommodate up to five payloads for each orbiter flight. The mechanisms are able to function under either l-g or zero-g conditions. Payload berthing or deberthing on orbit is accomplished by utilizing the remote manipulator system (RMS). The retention mechanisms provide the capability for either vertical or horizontal payload installation or removal. The payload support points are selected to minimize point torsional, bending, and radial loads imparted to the payloads. In addition to the remotely controlled latching system, the passive system used for nondeployable payloads performs the same function as the RMS except it provides fixed attachments to the orbiter.

  17. 14 CFR 415.57 - Payload review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payload review. 415.57 Section 415.57... TRANSPORTATION LICENSING LAUNCH LICENSE Payload Review and Determination § 415.57 Payload review. (a) Timing. A payload review may be conducted as part of a license application review or may be requested by a payload...

  18. Mathematical defense method of networked servers with controlled remote backups

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2006-05-01

    The networked server defense model is focused on reliability and availability in security respects. The (remote) backup servers are hooked up by VPN (Virtual Private Network) with high-speed optical network and replace broken main severs immediately. The networked server can be represent as "machines" and then the system deals with main unreliable, spare, and auxiliary spare machine. During vacation periods, when the system performs a mandatory routine maintenance, auxiliary machines are being used for back-ups; the information on the system is naturally delayed. Analog of the N-policy to restrict the usage of auxiliary machines to some reasonable quantity. The results are demonstrated in the network architecture by using the stochastic optimization techniques.

  19. Pucksat Payload Carrier

    NASA Technical Reports Server (NTRS)

    Milam, M. Bruce; Young, Joseph P.

    1999-01-01

    There is an ever-expanding need to provide economical space launch opportunities for relatively small science payloads. To address this need, a team at NASA's Goddard Space Flight Center has designed the Pucksat. The Pucksat is a highly versatile payload carrier structure compatible for launching on a Delta II two-stage vehicle as a system co-manifested with a primary payload. It is also compatible for launch on the Air Force Medium Class EELV. Pucksat's basic structural architecture consists of six honeycomb panels attached to six longerons in a hexagonal manner and closed off at the top and bottom with circular rings. Users may configure a co-manifested Pucksat in a number of ways. As examples, co-manifested configurations can be designed to accommodate dedicated missions, multiple experiments, multiple small deployable satellites, or a hybrid of the preceding examples. The Pucksat has fixed lateral dimensions and a downward scaleable height. The dimension across the panel hexagonal flats is 62 in. and the maximum height configuration dimension is 38.5 in. Pucksat has been designed to support a 5000 lbm primary payload, with the center of gravity located no greater than 60 in. from its separation plane, and to accommodate a total co-manifested payload mass of 1275 lbm.

  20. Outside users payload model

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The outside users payload model which is a continuation of documents and replaces and supersedes the July 1984 edition is presented. The time period covered by this model is 1985 through 2000. The following sections are included: (1) definition of the scope of the model; (2) discussion of the methodology used; (3) overview of total demand; (4) summary of the estimated market segmentation by launch vehicle; (5) summary of the estimated market segmentation by user type; (6) details of the STS market forecast; (7) summary of transponder trends; (8) model overview by mission category; and (9) detailed mission models. All known non-NASA, non-DOD reimbursable payloads forecast to be flown by non-Soviet-block countries are included in this model with the exception of Spacelab payloads and small self contained payloads. Certain DOD-sponsored or cosponsored payloads are included if they are reimbursable launches.

  1. Stacked Buoyant Payload Launcher

    DTIC Science & Technology

    2013-05-14

    unit, the signal ejector , or through the escape hatch lockout trunk. Each of these deployment methods has disadvantages. [0005] Torpedo tubes are... ejector tube can accommodate payloads approximately three inches in diameter. Thus, payload size is extremely limited. The escape hatch lockout trunk...signal ejector tube. Additionally, the system 10 can launch multiple payloads during one launch sequence, or can provide multiple launches at

  2. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    NASA Technical Reports Server (NTRS)

    Dudley, Stephanie R. B.; Marsh, Angela L.

    2014-01-01

    With an increase in utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four-month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS real-time operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art Video Wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of

  3. STS-113 Mission Specialists review data on the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialists Michael Lopez-Alegria (left) and John Herrington (center) review data on the P1 Integrated Truss Structure with a technician in the Space Station Processing Facility. During the mission, the P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002.

  4. STS-97 Mission Specialist Garneau during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Marc Garneau gets help with his boots from suit technician Tommy McDonald during pre-pack and fit check. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  5. STS-87 Mission Specialist Chawla talks to the media during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Kalpana Chawla, Ph.D., a mission specialist of the STS-87 crew, participates in a news briefing at Launch Pad 39B during the Terminal Countdown Demonstration Test (TCDT) at Kennedy Space Center (KSC). First-time Shuttle flier Dr. Chawla reported for training as an astronaut at Johnson Space Center in 1995. She has a doctorate in aerospace engineering from the University of Colorado. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay. STS-87 is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at KSC.

  6. Modular Countermine Payload for Small Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman Herman; Doug Few; Roelof Versteeg

    2010-04-01

    Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processormore » that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.« less

  7. Modular countermine payload for small robots

    NASA Astrophysics Data System (ADS)

    Herman, Herman; Few, Doug; Versteeg, Roelof; Valois, Jean-Sebastien; McMahill, Jeff; Licitra, Michael; Henciak, Edward

    2010-04-01

    Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multimission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

  8. Data Requirement (DR) MA-03: Payload missions integration. [Spacelab payloads

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Project management and payload integration requirements definition activities are reported. Mission peculiar equipment; systems integration; ground operations analysis and requirement definition; safety and quality assurance; and support systems development are examined for payloads planned for the following missions: EOM-1; SL-2; Sl-3 Astro-1; MSL-2; EASE/ACCESS; MPESS; and the middeck ADSF flight.

  9. Integrated payload and mission planning, phase 3. Volume 1: Integrated payload and mission planning process evaluation

    NASA Technical Reports Server (NTRS)

    Sapp, T. P.; Davin, D. E.

    1977-01-01

    The integrated payload and mission planning process for STS payloads was defined, and discrete tasks which evaluate performance and support initial implementation of this process were conducted. The scope of activity was limited to NASA and NASA-related payload missions only. The integrated payload and mission planning process was defined in detail, including all related interfaces and scheduling requirements. Related to the payload mission planning process, a methodology for assessing early Spacelab mission manager assignment schedules was defined.

  10. STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The U.S. Lab Destiny is ready to move into the orbiter'''s payload bay from the Payload Changeout Room. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.

  11. STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Technicians in the Payload Changeout Room oversee the transfer of the U.S. Lab Destiny to the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.

  12. STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room check the movement of the U.S. Lab Destiny, which is being transferred to the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.

  13. Space Shuttle Payload Information Source

    NASA Technical Reports Server (NTRS)

    Griswold, Tom

    2000-01-01

    The Space Shuttle Payload Information Source Compact Disk (CD) is a joint NASA and USA project to introduce Space Shuttle capabilities, payload services and accommodations, and the payload integration process. The CD will be given to new payload customers or to organizations outside of NASA considering using the Space Shuttle as a launch vehicle. The information is high-level in a visually attractive format with a voice over. The format is in a presentation style plus 360 degree views, videos, and animation. Hyperlinks are provided to connect to the Internet for updates and more detailed information on how payloads are integrated into the Space Shuttle.

  14. The SPACEHAB double module is moved into the payload changeout room at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This fish-eye view shows the SPACEHAB Double module being moved into the payload changeout room at Launch Pad 39B before being transferred to Space Shuttle Discovery's payload bay for mission STS-96. The second flight supporting construction of the International Space Station, STS-96 is a logistics and resupply mission, carrying more than 5,000 pounds of supplies, a Russian- built crane and a U.S.-built crane, plus experiments such as STARSHINE, which was developed by and for students. Comprising the crew are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. Liftoff is scheduled for May 20 at 9:32 a.m. EDT.

  15. Payload analysis for space shuttle applications (study 2.2). Volume 3: Payload system operations analysis (task 2.2.1). [payload system operations analysis for shuttles and space tugs

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The technical and cost analysis that was performed for the payload system operations analysis is presented. The technical analysis consists of the operations for the payload/shuttle and payload/tug, and the spacecraft analysis which includes sortie, automated, and large observatory type payloads. The cost analysis includes the costing tradeoffs of the various payload design concepts and traffic models. The overall objectives of this effort were to identify payload design and operational concepts for the shuttle which will result in low cost design, and to examine the low cost design concepts to identify applicable design guidelines. The operations analysis examined several past and current NASA and DoD satellite programs to establish a shuttle operations model. From this model the analysis examined the payload/shuttle flow and determined facility concepts necessary for effective payload/shuttle ground operations. The study of the payload/tug operations was an examination of the various flight timelines for missions requiring the tug.

  16. Kennedy Space Center Payload Processing

    NASA Technical Reports Server (NTRS)

    Lawson, Ronnie; Engler, Tom; Colloredo, Scott; Zide, Alan

    2011-01-01

    This slide presentation reviews the payload processing functions at Kennedy Space Center. It details some of the payloads processed at KSC, the typical processing tasks, the facilities available for processing payloads, and the capabilities and customer services that are available.

  17. Payload Launch Lock Mechanism

    NASA Technical Reports Server (NTRS)

    Young, Ken (Inventor); Hindle, Timothy (Inventor)

    2014-01-01

    A payload launch lock mechanism includes a base, a preload clamp, a fastener, and a shape memory alloy (SMA) actuator. The preload clamp is configured to releasibly restrain a payload. The fastener extends, along an axis, through the preload clamp and into the base, and supplies a force to the preload clamp sufficient to restrain the payload. The SMA actuator is disposed between the base and the clamp. The SMA actuator is adapted to receive electrical current and is configured, upon receipt of the electrical current, to supply a force that causes the fastener to elongate without fracturing. The preload clamp, in response to the fastener elongation, either rotates or pivots to thereby release the payload.

  18. STS-87 Mission Specialists Scott and Doi with EVA coordinator Laws participate in the CEIT for their

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center are STS-87 crew members, assisted by Glenda Laws, extravehicular activity (EVA) coordinator, Johnson Space Center, at left. Next to Laws is Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, who is looking on as Mission Specialist Winston Scott gets a hands-on look at some of the equipment. The STS-87 mission will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks.

  19. Application of Shuttle EVA Systems to Payloads. Volume 2: Payload EVA Task Completion Plans

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Candidate payload tasks for EVA application were identified and selected, based on an analysis of four representative space shuttle payloads, and typical EVA scenarios with supporting crew timelines and procedures were developed. The EVA preparations and post EVA operations, as well as the timelines emphasizing concurrent payload support functions, were also summarized.

  20. 14 CFR 415.7 - Payload determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.7 Payload determination. A payload determination is required for a launch license unless the proposed payload is exempt from payload review under § 415.53 of...

  1. 14 CFR 415.7 - Payload determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.7 Payload determination. A payload determination is required for a launch license unless the proposed payload is exempt from payload review under § 415.53 of...

  2. 14 CFR 415.57 - Payload review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Payload Review and Determination § 415.57 Payload review. (a) Timing. A payload review may be conducted as part of a license application review or may be requested by a payload...

  3. Applications of Payload Directed Flight

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu

    2009-01-01

    Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'

  4. Onsite and Electric Backup Capabilities at Critical Infrastructure Facilities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Julia A.; Wallace, Kelly E.; Kudo, Terence Y.

    2016-04-01

    The following analysis, conducted by Argonne National Laboratory’s (Argonne’s) Risk and Infrastructure Science Center (RISC), details an analysis of electric power backup of national critical infrastructure as captured through the Department of Homeland Security’s (DHS’s) Enhanced Critical Infrastructure Program (ECIP) Initiative. Between January 1, 2011, and September 2014, 3,174 ECIP facility surveys have been conducted. This study focused first on backup capabilities by infrastructure type and then expanded to infrastructure type by census region.

  5. International Space Station Payload Training Overview

    NASA Technical Reports Server (NTRS)

    Underwood, Deborah B.; Noneman, Steven R.; Sanchez, Julie N.

    2001-01-01

    This paper describes payload crew training-related activities performed by NASA and the U.S. Payload Developer (PD) community for the International Space Station (ISS) Program. It describes how payloads will be trained and the overall training planning and integration process. The overall concept, definition, and template for payload training are described. The roles and responsibilities of individuals, organizations, and groups involved are discussed. The facilities utilized during payload training and the primary processes and activities performed to plan, develop, implement, and administer payload training for ISS crews are briefly described. Areas of improvement to crew training processes that have been achieved or are currently being worked are identified.

  6. Payload/orbiter contamination control requirement study

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Rantanen, R. O.; Ress, E. B.

    1974-01-01

    A study was conducted to determine and quantify the expected particulate and molecular on-orbit contaminant environment for selected space shuttle payloads as a result of major shuttle orbiter contamination sources. Individual payload susceptibilities to contamination are reviewed. The risk of payload degradation is identified and preliminary recommendations are provided concerning the limiting factors which may depend on operational activities associated with the payload/orbiter interface or upon independent payload functional activities. A basic computer model of the space shuttle orbiter which includes a representative payload configuration is developed. The major orbiter contamination sources, locations, and flux characteristics based upon available data have been defined and modeled.

  7. The 1973 NASA payload model: Space opportunities 1973 - 1991. [characteristics of payloads and requirements of user community

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The tables of schedules and descriptions which portray the 1973 NASA Payload Model are presented. The schedules cover all NASA programs and the anticipated requirements of the user community, not including the Department of Defense, for the 1973 to 1991 period. The descriptions give an indication of what the payload is expected to accomplish, its characteristics, and where it is going. The payload flight schedules shown for each of the discipline areas indicate the time frame in which individual payloads will be launched, serviced, or retrieved. These do not necessarily constitute shuttle flights, however, since more than one payload can be flown on a single shuttle flight depending on size, weight, orbital destination, and the suitability of combining them. The weight, dimension, and destination data represent approximations of the payload characteristics as estimated by the Program Offices. Payload codes are provided for easy correlation between the schedules and descriptions of the Payload Model and subsequent documentation which may reference this model.

  8. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Julie Payette closes a container, part of the equipment to be carried on the SPACEHAB and mission STS-96. She and other crew members Commander Kent Rominger, Pilot Rick Husband, and Mission Speciaists Ellen Ochoa, Tamara Jernigan, Dan Barry and Valery Tokarev of Russia are at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station . Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  9. Payload crew activity planning integration. Task 2: Inflight operations and training for payloads

    NASA Technical Reports Server (NTRS)

    Hitz, F. R.

    1976-01-01

    The primary objectives of the Payload Crew Activity Planning Integration task were to: (1) Determine feasible, cost-effective payload crew activity planning integration methods. (2) Develop an implementation plan and guidelines for payload crew activity plan (CAP) integration between the JSC Orbiter planners and the Payload Centers. Subtask objectives and study activities were defined as: (1) Determine Crew Activity Planning Interfaces. (2) Determine Crew Activity Plan Type and Content. (3) Evaluate Automated Scheduling Tools. (4) Develop a draft Implementation Plan for Crew Activity Planning Integration. The basic guidelines were to develop a plan applicable to the Shuttle operations timeframe, utilize existing center resources and expertise as much as possible, and minimize unnecessary data exchange not directly productive in the development of the end-product timelines.

  10. Quo Vadis Payload Safety?

    NASA Technical Reports Server (NTRS)

    Fodroci, Michael P.; Schwartz, MaryBeth

    2008-01-01

    As we complete the preparations for the fourth Hubble Space Telescope (HST) servicing mission, we note an anniversary approaching: it was 30 years ago in July that the first HST payload safety review panel meeting was held. This, in turn, was just over a year after the very first payload safety review, a Phase 0 review for the Tracking and Data Relay Satellite and its Inertial Upper Stage, held in June of 1977. In adapting a process that had been used in the review and certification of earlier Skylab payloads, National Aeronautics and Space Administration (NASA) engineers sought to preserve the lessons learned in the development of technical payload safety requirements, while creating a new process that would serve the very different needs of the new space shuttle program. Their success in this undertaking is substantiated by the fact that this process and these requirements have proven to be remarkably robust, flexible, and adaptable. Furthermore, the payload safety process has, to date, served us well in the critical mission of safeguarding our astronauts, cosmonauts, and spaceflight participants. Both the technical requirements and their interpretation, as well as the associated process requirements have grown, evolved, been streamlined, and have been adapted to fit multiple programs, including the International Space Station (ISS) program, the Shuttle/Mir program, and most recently the United States Constellation program. From its earliest days, it was anticipated that the payload safety process would be international in scope, and so it has been. European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), German Space Agency (DLR), Canadian Space Agency (CSA), Russian Space Agency (RSA), and many additional countries have flown payloads on both the space shuttle and on the ISS. Our close cooperation and long-term working relationships have culminated in the franchising of the payload safety review process itself to our partners in ESA, which in

  11. Dobson space telescope: development of an optical payload of the next generation

    NASA Astrophysics Data System (ADS)

    Segert, Tom; Danziger, Björn; Gork, Daniel; Lieder, Matthias

    2017-11-01

    The Dobson Space Telescope (DST) is a research project of the Department of Astronautics at the TUBerlin. For Development and commercialisation there is a close cooperation with the network of the Berlin Space Industry (RIBB). Major Partner is the Astro- und Feinwerktechnik Adlershof GmbH a specialist for space structures and head of the industry consortia which built the DLR BIRD micro satellite. The aim of the project is to develop a new type of deployable telescope that can overcome the mass and volume limitations of small satellites. With the DST payload micro satellites of the 100kg class will be able to carry 50cm main mirror diameter optics (→ 1m GSD). Basis of this technology is the fact that a telescope is mainly empty space between the optical elements. To fold down the telescope during launch and to undfold it after the satellite reached its orbit can save 70% of payload volume and 50% of payload mass. Since these advantages continue along the value added chain DST is of highest priority for the next generation of commercial EO micro satellites. Since 2002 the key technologies for DST have been developed in test benches in Labs of TU-Berlin and were tested on board a ESA parabolic flight campaign in 2005. The development team at TU-Berlin currently prepares the foundation of a start-up company for further development and commercialisation of DST.

  12. Payload training methodology study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The results of the Payload Training Methodology Study (PTMS) are documented. Methods and procedures are defined for the development of payload training programs to be conducted at the Marshall Space Flight Center Payload Training Complex (PCT) for the Space Station Freedom program. The study outlines the overall training program concept as well as the six methodologies associated with the program implementation. The program concept outlines the entire payload training program from initial identification of training requirements to the development of detailed design specifications for simulators and instructional material. The following six methodologies are defined: (1) The Training and Simulation Needs Assessment Methodology; (2) The Simulation Approach Methodology; (3) The Simulation Definition Analysis Methodology; (4) The Simulator Requirements Standardization Methodology; (5) The Simulator Development Verification Methodology; and (6) The Simulator Validation Methodology.

  13. STS-92 Mission Specialist Wakata takes his turn driving the M-113

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With Capt. George Hoggard, trainer with the KSC Fire Department, riding on top, Mission Specialist Koichi Wakata of Japan practices driving the M-113, part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Riding in the back (on the left) are other crew members, waiting their turn to drive. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  14. STS-92 Mission Specialist Wakata completes his turn driving the M-113

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Koichi Wakata of Japan signals a successful driving lesson on the M-113 he is in. Capt. George Hoggard, trainer with the KSC Fire Department, sits on top. Behind Wakata are Commander Brian Duffy (left) and Leroy Chiao (right), waiting their turns. The practice drive is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  15. STS-92 Mission Specialist Chiao suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Leroy Chiao signals thumbs up for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the third for Chiao. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  16. DOMe: A deduplication optimization method for the NewSQL database backups

    PubMed Central

    Wang, Longxiang; Zhu, Zhengdong; Zhang, Xingjun; Wang, Yinfeng

    2017-01-01

    Reducing duplicated data of database backups is an important application scenario for data deduplication technology. NewSQL is an emerging database system and is now being used more and more widely. NewSQL systems need to improve data reliability by periodically backing up in-memory data, resulting in a lot of duplicated data. The traditional deduplication method is not optimized for the NewSQL server system and cannot take full advantage of hardware resources to optimize deduplication performance. A recent research pointed out that the future NewSQL server will have thousands of CPU cores, large DRAM and huge NVRAM. Therefore, how to utilize these hardware resources to optimize the performance of data deduplication is an important issue. To solve this problem, we propose a deduplication optimization method (DOMe) for NewSQL system backup. To take advantage of the large number of CPU cores in the NewSQL server to optimize deduplication performance, DOMe parallelizes the deduplication method based on the fork-join framework. The fingerprint index, which is the key data structure in the deduplication process, is implemented as pure in-memory hash table, which makes full use of the large DRAM in NewSQL system, eliminating the performance bottleneck problem of fingerprint index existing in traditional deduplication method. The H-store is used as a typical NewSQL database system to implement DOMe method. DOMe is experimentally analyzed by two representative backup data. The experimental results show that: 1) DOMe can reduce the duplicated NewSQL backup data. 2) DOMe significantly improves deduplication performance by parallelizing CDC algorithms. In the case of the theoretical speedup ratio of the server is 20.8, the speedup ratio of DOMe can achieve up to 18; 3) DOMe improved the deduplication throughput by 1.5 times through the pure in-memory index optimization method. PMID:29049307

  17. 78 FR 77171 - Proposed Disposal of George H.W. Bush and Clinton Administration Electronic Backup Tapes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION [NARA-2014-011] Proposed Disposal of George H.W. Bush... George H.W. Bush and Clinton Administration Disaster Recovery Backup Tapes; final agency action. SUMMARY... collection of disaster recovery backup tapes from the George H.W. Bush and Clinton administrations under the...

  18. [Russian treadmill BD-1 as a backup of the NASA TVIS].

    PubMed

    Iarmanova, E N; Kozlovskaia, I B; Bogomolov, V V; Rumiantseva, O N; Sukhachev, V I; Mel'nik, K A

    2006-01-01

    Already during the early ISS increments malfunctioning of NASA TVIS (treadmill with vibration isolation system) posed major problems for regular crew training and particularly scamper, one of the key exercises on the Russian physical training program. During ISS increment-3, TVIS unscheduled repairs took virtually all the training time. In search for TVIS backup, Russian and NASA engineers considered jointly Russian treadmill BD-1, originally designed for Russian "shuttle" Buran and accepted it as a suitable backup in case of complete TVIS failure. To enter into the "dialogue" with BD-1, i.e., to record and downlink training data, the treadmill speed indicator, a part of the treadmill stand, was replaced by PC.

  19. STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room begin moving the U.S. Lab Destiny to the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station, is 28 feet long and weighs 16 tons. This research and command-and- control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.

  20. STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Technicians in the Payload Changeout Room work to secure the U.S. Lab Destiny in the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station, is 28 feet long and weighs 16 tons. This research and command-and- control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.

  1. Production planning and backup sourcing strategy of a buyer-dominant supply chain with random yield and demand

    NASA Astrophysics Data System (ADS)

    Chen, Kebing; Xiao, Tiaojun

    2015-11-01

    This paper studies the backup sourcing strategy of the buyer and the production planning of the supplier in presence of both random yield and random demand. Since the production is susceptible to the randomness of yield beyond the control of the supplier, the buyer may access to a backup sourcing option for the finished items. We analyse the value of backup sourcing for both the decentralised and centralised channels. Backup sourcing strategy of the buyer may lower the supply chain's performance. We show that the order quantity of the buyer does not change the stocking factor of the supplier's input. Meanwhile, compared with the centralised operation, the decentralised operation is more dependent on the backup sourcing to reduce supply shortage of the contracting supplier. From the channel's perspective, an incentive scheme is developed to facilitate the coordination of both the buyer and the contracting supplier, we show that the proposed option contract can allow the supply chain members to share the respective risks involved in the production and selling processes. Finally, we also provide qualitative insights based on numerical examples of the centralised and decentralised solutions.

  2. Do familiar teammates request and accept more backup? Transactive memory in air traffic control.

    PubMed

    Smith-Jentsch, Kimberly A; Kraiger, Kurt; Cannon-Bowers, Janis A; Salas, Eduardo

    2009-04-01

    The present study investigated factors that explain when and why different groups of teammates are more likely to request and accept backup from one another when needed in an environment characterized by extreme time pressure and severe consequences of error: commercial air traffic control (ATC). Transactive memory theory states that teammates develop consensus regarding the distribution of their relative expertise as well as confidence in that expertise over time and that this facilitates coordination processes. The present study investigated whether this theory could help to explain between-team differences in requesting and accepting backup when needed. The present study used cross-sectional data collected from 51 commercial ATC teams. Hypotheses were tested using multiple regression analysis. Teammates with greater experience working together requested and accepted backup from one another more than those with lesser experience working together. Teammate knowledge consensus and perceived team efficacy appear to have mediated this relationship. Transactive memory theory extends to high-stress environments in which members' expertise is highly overlapping. Teammates' shared mental models about one another increase the likelihood that they will request and accept backup. Teammate familiarity should be considered when choosing among potential replacement team members. Training strategies that accelerate the development of teammate knowledge consensus and team efficacy are warranted.

  3. STS-113 Mission Specialist Lopez-Alegris arrives for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist Michael Lopez-Alegria arrives at KSC for Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months. The STS-113 launch is scheduled for Nov. 10, 2002.

  4. Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay

    NASA Image and Video Library

    2006-07-14

    ISS013-E-51263 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.

  5. Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay

    NASA Image and Video Library

    2006-07-14

    ISS013-E-51264 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.

  6. STS-97 P6 truss payload canister is lifted into payload changeout room

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST.

  7. STS-102 crew members check out Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Members of the STS-102 crew check out Discovery's payload bay in the Orbiter Processing Facility bay 1. Dressed in green, they are Mission Specialist Paul W. Richards (left) and Pilot James W. Kelly. The crew is at KSC for Crew Equipment Interface Test activities. Above their heads on the left side are two of the experiments being carried on the flight. STS-102 is the 8th construction flight to the International Space Station and will carry the Multi-Purpose Logistics Module Leonardo. STS-102 is scheduled for launch March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module Destiny. The mission will also be carrying the Expedition Two crew to the Space Station, replacing the Expedition One crew who will return on Shuttle Discovery.

  8. Operating and Managing a Backup Control Center

    NASA Technical Reports Server (NTRS)

    Marsh, Angela L.; Pirani, Joseph L.; Bornas, Nicholas

    2010-01-01

    Due to the criticality of continuous mission operations, some control centers must plan for alternate locations in the event an emergency shuts down the primary control center. Johnson Space Center (JSC) in Houston, Texas is the Mission Control Center (MCC) for the International Space Station (ISS). Due to Houston s proximity to the Gulf of Mexico, JSC is prone to threats from hurricanes which could cause flooding, wind damage, and electrical outages to the buildings supporting the MCC. Marshall Space Flight Center (MSFC) has the capability to be the Backup Control Center for the ISS if the situation is needed. While the MSFC Huntsville Operations Support Center (HOSC) does house the BCC, the prime customer and operator of the ISS is still the JSC flight operations team. To satisfy the customer and maintain continuous mission operations, the BCC has critical infrastructure that hosts ISS ground systems and flight operations equipment that mirrors the prime mission control facility. However, a complete duplicate of Mission Control Center in another remote location is very expensive to recreate. The HOSC has infrastructure and services that MCC utilized for its backup control center to reduce the costs of a somewhat redundant service. While labor talents are equivalent, experiences are not. Certain operations are maintained in a redundant mode, while others are simply maintained as single string with adequate sparing levels of equipment. Personnel at the BCC facility must be trained and certified to an adequate level on primary MCC systems. Negotiations with the customer were done to match requirements with existing capabilities, and to prioritize resources for appropriate level of service. Because some of these systems are shared, an activation of the backup control center will cause a suspension of scheduled HOSC activities that may share resources needed by the BCC. For example, the MCC is monitoring a hurricane in the Gulf of Mexico. As the threat to MCC

  9. Payload/cargo processing at the launch site

    NASA Technical Reports Server (NTRS)

    Ragusa, J. M.

    1983-01-01

    Payload processing at Kennedy Space Center is described, with emphasis on payload contamination control. Support requirements are established after documentation of the payload. The processing facilities feature enclosed, environmentally controlled conditions, with account taken of the weather conditions, door openings, accessing the payload, industrial activities, and energy conservation. Apparatus are also available for purges after Orbiter landing. The payloads are divided into horizontal, vertical, mixed, and life sciences and Getaway Special categories, which determines the processing route through the facilities. A canister/transport system features sealed containers for moving payloads from one facility building to another. All payloads are exposed to complete Orbiter bay interface checkouts in a simulator before actually being mounted in the bay.

  10. STS-109 MS Grunsfeld and Linnehan stow old solar array from payload bay

    NASA Image and Video Library

    2002-03-04

    STS109-E-5246 (4 March 2002) --- Astronaut John M. Grunsfeld (foreground), payload commander, is seen at one end of stowed solar panels in the cargo bay of the Space Shuttle Columbia while astronaut Richard M. Linnehan, mission specialist, uses the Remote Manipulator System's robotic arm to move around at the other end. The two, participating in the first of their assigned STS-109 space walks to perform work on the Hubble Space Telescope (HST), went on to replace the giant telescope’s starboard solar array. Their seven-hour space walk ended at 7:38 a.m. (CST) or 13:38 GMT March 4, 2002.

  11. Auditory backup alarms: distance-at-first-detection via in-situ experimentation on alarm design and hearing protection effects.

    PubMed

    Alali, Khaled; Casali, John G

    2012-01-01

    The purpose of this study was to assess normal hearing listeners' performance in detecting a stationary backup alarm signal and to quantify the linear distance at detection point. Detection distances for 12 participants with normal hearing were measured while they were fitted with 7 hearing protectors and while they were unoccluded (open ear). A standard (narrowband) backup alarm signal and a broadband (pulsed white noise) backup alarm signal from Brigade[1] were used. The method of limits, with distance as the physical measurement variable and threshold detection as the task, was employed to find at which distance the participant could first detect the backup alarms. A within-subject Analysis of Variance (ANOVA) revealed a significant main effect of the listening conditions on the detection distance in feet. Post hoc analyses indicated that the Bilsom L3HV conventional passive earmuff (at 1132.2 ft detection distance) was significantly poorer compared to all other HPDs and the open ear in detection distance achieved, and that there were no statistically-significant differences between the unoccluded ear (1652.3 ft), EB-15-Lo BlastPLGTM (1546.2 ft), EB-15-Hi BlastPLGTM (1543.4 ft), E-A-R/3M Combat ArmsTM earplug-nonlinear, level-dependent state (1507.8 ft), E-A-R/3M HiFiTM earplug (1497.7 ft), and Bilsom ImpactTM dichotic electronic earmuff (1567.2 ft). In addition, the E-A-R/3M Combat ArmsTM earplug-passive steady state resulted in significantly longer detection distances than only the open ear condition, at 1474.1 ft versus 1652.3 ft for the open ear. ANOVA also revealed a significant main effect of the backup alarm type on detection distance. The means were 1600.9 ft for the standard (narrowband) backup alarm signal, and a significantly closer 1379.4 ft was required for the Brigade broadband backup alarm signal. For on-ground workers, it is crucial to detect backup alarm signals as far away as possible rather than at close distances since this will provide them

  12. Universal Payload Information Management

    NASA Technical Reports Server (NTRS)

    Elmore, Ralph B.

    2003-01-01

    As the overall manager and integrator of International Space Station (ISS) science payloads, the Payload Operations Integration Center (POIC) at Marshall Space Flight Center has a critical need to provide an information management system for exchange and control of ISS payload files as well as to coordinate ISS payload related operational changes. The POIC's information management system has a fundamental requirement to provide secure operational access not only to users physically located at the POIC, but also to remote experimenters and International Partners physically located in different parts of the world. The Payload Information Management System (PIMS) is a ground-based electronic document configuration management and collaborative workflow system that was built to service the POIC's information management needs. This paper discusses the application components that comprise the PIMS system, the challenges that influenced its design and architecture, and the selected technologies it employs. This paper will also touch on the advantages of the architecture, details of the user interface, and lessons learned along the way to a successful deployment. With PIMS, a sophisticated software solution has been built that is not only universally accessible for POIC customer s information management needs, but also universally adaptable in implementation and application as a generalized information management system.

  13. Communications payload concepts for geostationary facilities

    NASA Technical Reports Server (NTRS)

    Poley, William A.; Lekan, Jack

    1987-01-01

    Summarized and compared are the major results of two NASA sponsored studies that defined potential communication payload concepts to meet the satellite traffic forecast for the turn of the century for the continental US and Region 2 of the International Telecommunications Union. The studies were performed by the Ford Aerospace and Communications Corporation and RCA Astro-Electronics (now GE-RCA Astro-Space Division). Future scenarios of aggregations of communications services are presented. Payload concepts are developed and defined in detail for nine of the scenarios. Payload costs and critical technologies per payload are also presented. Finally the payload concepts are compared and the findings of the reports are discussed.

  14. BackUp: Development and evaluation of a smart-phone application for coping with suicidal crises

    PubMed Central

    Aerts, Saskia; Muijzers, Ekke; De Jaegere, Eva; van Heeringen, Kees; Portzky, Gwendolyn

    2017-01-01

    Background Suicide is a major public health issue and has large impact on the lives of many people. Innovative technologies such as smartphones could create new possibilities for suicide prevention, such as helping to overcome the barriers and stigma on help seeking in case of suicidal ideation. Due to their omnipresence, smartphone apps can offer suicide prevention tools very fast, they are easily-accessible, low-threshold and can help overcome some of the help-seeking barriers suicidal people experience. This article describes the development, testing and implementation of a mobile application for coping with suicidal crisis: BackUp. Methods Based on the analysis of literature and existing suicide prevention apps several tools were identified as relevant to include in a suicide prevention app. The selected tools (a safety planning tool, a hope box, a coping cards module, and a module to reach out) are evidence based in a face to face context, and could be easily transferred into a mobile app. The testing of existing apps and the literature also revealed important guidelines for the technical development of the application. Results BackUp was developed and tested by an expert panel (n = 9) and a panel of end users (n = 21). Both groups rated BackUp as valuable for suicide prevention. Suicidal ideation of the end user group was measured using the Beck Scale for Suicidal Ideation before and after testing BackUp, and showed a small but non-significant decrease. The majority of the testers used BackUp several times. All tools were evaluated as rather or very useable in times of suicidal crisis. Conclusion BackUp was positively evaluated and indicates that self-help tools can have a positive impact on suicidal ideation. Apps in particular create opportunities in approaching people that are not reached by traditional interventions; on the other hand they can contribute to suicide prevention in addition to regular care. However, more research is needed on the impact and

  15. Close up of backup exciter showing induction motor at left ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up of backup exciter showing induction motor at left and direct current generator at right. View to west - Mystic Lake Hydroelectric Facility, Powerhouse, Along West Rosebud Creek, 1 3/4 miles northeast of Mystic Lake Dam, Fishtail, Stillwater County, MT

  16. STS-42 crewmembers work in the IML-1 module located in OV-103's payload bay

    NASA Image and Video Library

    1992-01-30

    STS042-201-009 (22-30 Jan 1992) --- Canadian Roberta L. Bondar, payload specialist representing the Canadian Space Agency (CSA), works at the International Microgravity Laboratory's (IML-1) biorack while astronaut Stephen S. Oswald, pilot, changes a film magazine on the IMAX camera. The two were joined by five fellow crew members for eight-days of scientific research aboard the Space Shuttle Discovery in Earth-orbit. Most of their on-duty time was spent in this IML-1 Science Module, positioned in the cargo bay and attached via a tunnel to Discovery's airlock.

  17. STS-101 Mission Specialist Williams takes his seat in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Jeffrey N. Williams takes his seat inside Space Shuttle Atlantis before taking part in a simulated launch countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that also include emergency egress training and familiarization with the payload. Other crew members taking part are Commander James D. Halsell Jr., Pilot Scott J. 'Doc' Horowitz and Mission Specialists Mary Ellen Weber, James Voss, Susan Helms, and Yuri Usachev of Russia. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  18. STS-92 Mission Specialist Wisoff suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Peter J.K. '''Jeff''' Wisoff looks relaxed as he signals a thumbs up for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the fourth for Wisoff. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  19. STS-92 Mission Specialist Wakata suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Koichi Wakata of Japan waves while his launch and entry suit is checked during suitup for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the second for Wakata. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  20. NASA payload data book: Payload analysis for space shuttle applications, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Data describing the individual NASA payloads for the space shuttle are presented. The document represents a complete issue of the original payload data book. The subjects discussed are: (1) astronomy, (2) space physics, (3) planetary exploration, (4) earth observations (earth and ocean physics), (5) communications and navigation, (6) life sciences, (7) international rendezvous and docking, and (8) lunar exploration.

  1. Spline-Screw Payload-Fastening System

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1994-01-01

    Payload handed off securely between robot and vehicle or structure. Spline-screw payload-fastening system includes mating female and male connector mechanisms. Clockwise (or counter-clockwise) rotation of splined male driver on robotic end effector causes connection between robot and payload to tighten (or loosen) and simultaneously causes connection between payload and structure to loosen (or tighten). Includes mechanisms like those described in "Tool-Changing Mechanism for Robot" (GSC-13435) and "Self-Aligning Mechanical and Electrical Coupling" (GSC-13430). Designed for use in outer space, also useful on Earth in applications needed for secure handling and secure mounting of equipment modules during storage, transport, and/or operation. Particularly useful in machine or robotic applications.

  2. TDRS-A - The pioneering payload

    NASA Technical Reports Server (NTRS)

    Browning, R. K.

    1983-01-01

    The first launch of a Tracking Data Relay Satellite (TDRS-A) on board the Shuttle Orbiter 'Challenger' of the Space Transportation System (STS) provided many pioneering events as a payload/user. The TDRS-A was launched as a payload of the STS as well as a payload of the Inertial Upper Stage (IUS) on April 4, 1983. This paper traces the payload processing flow of the TDRS-A from its arrival at the Kennedy Space Center (KSC), through its launch on Challenger and its trans-orbit flight on the IUS to geosynchronous orbit. The TDRS-A, as a customer/user of these launch systems, is examined and reviewed and lessons learned are noted.

  3. Payload vehicle aerodynamic reentry analysis

    NASA Astrophysics Data System (ADS)

    Tong, Donald

    An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry trajectory, the derivation of pitch static aerodynamics, the derivation of the pitch damping coefficient, pitching moment modeling, aerodynamic roll device modeling, and payload vehicle reentry dynamics. It is shown that the vehicle dynamics at parachute deployment are well within the design limit of the recovery system, thus ensuring successful payload recovery.

  4. Back-Up Childcare: A Quality Alternative to Regular Care Which Fosters Resilience in Infants and Toddlers.

    ERIC Educational Resources Information Center

    La Bar, Nicole J.

    To many in the field of early care and education, back-up child care may be viewed as a stressful disruption that could interfere with attachment and be detrimental to continuity of care. This paper attempts to prove that high-quality back-up child care offered by employers actually fosters the development of resiliency in young children by…

  5. STS-103 crew look over payload inside Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Launch Pad 39B, STS-103 Mission Specialist C. Michael Foale (Ph.D.) looks over the Hubble servicing cargo in the payload bay of Space Shuttle Discovery. The activity is part of the Terminal Countdown Demonstration Test (TCDT), which also provides the crew with emergency egress training and a simulated countdown exercise. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, John M. Grunsfeld (Ph.D.), Jean- Fran'''ois Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  6. 14 CFR 435.7 - Payload reentry determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payload reentry determination. 435.7 Section 435.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... transport a payload to Earth on a reentry vehicle unless the proposed payload is exempt from payload review...

  7. KENNEDY SPACE CENTER, FLA. - The second International Microgravity Laboratory-2 (IML-2) is off to an ontime start as the Space Shuttle Columbia lifts off from Launch Pad 39A at 12:43:00 p.m. EDT. On board are a crew of seven and more than 80 investigations developed by more than 200 scientists from 13 countries. The IML-2 complement includes materials science, bioprocessing, space and radiation biology, and human physiology experiments that will be carried out over the course of the 14-day flight. The commander of Space Shuttle Mission STS-65 is Robert D. Cabana. James D. Halsell Jr. is the pilot; the payload commander is Richard J. Hieb; the three mission specialists are Carl E. Walz, Leroy Chiao and Donald A. Thomas. Dr. Chiaki Mukai, representing NASDA, the National Space Development Agency of Japan, is the payload specialist. Mukai becomes the first Japanese woman to fly into space.

    NASA Image and Video Library

    1994-07-08

    KENNEDY SPACE CENTER, FLA. - The second International Microgravity Laboratory-2 (IML-2) is off to an ontime start as the Space Shuttle Columbia lifts off from Launch Pad 39A at 12:43:00 p.m. EDT. On board are a crew of seven and more than 80 investigations developed by more than 200 scientists from 13 countries. The IML-2 complement includes materials science, bioprocessing, space and radiation biology, and human physiology experiments that will be carried out over the course of the 14-day flight. The commander of Space Shuttle Mission STS-65 is Robert D. Cabana. James D. Halsell Jr. is the pilot; the payload commander is Richard J. Hieb; the three mission specialists are Carl E. Walz, Leroy Chiao and Donald A. Thomas. Dr. Chiaki Mukai, representing NASDA, the National Space Development Agency of Japan, is the payload specialist. Mukai becomes the first Japanese woman to fly into space.

  8. STS payload data collection and accommodations analysis study. Volume 2: Payload data collection

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A format developed for Space Transportation System payload data collection and a process for collecting the data are described along with payload volumes and a data deck to be used as input for the Marshall Interactive Planning System. Summary matrices of the data generated are included.

  9. Future payload technology requirements study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology advances needed for an overall mission model standpoint as well as those for individual shuttle payloads are defined. The technology advances relate to the mission scientific equipment, spacecraft subsystems that functionally support this equipment, and other payload-related equipment, software, and environment necessary to meet broad program objectives. In the interest of obtaining commonality of requirements, the study was structured according to technology categories rather than in terms of individual payloads.

  10. Economy of middeck payloads

    NASA Technical Reports Server (NTRS)

    Michel, E. L.; Huffstetler, W. J.

    1986-01-01

    The utilization of the middeck, designed as the crew quarters, for experiments is examined. The dimensions of the middeck's standard lockers, double lockers, adapter plates, and the galley, which are applicable for experiments, are described. The utilities available for middeck payloads include ac and dc electrical power supply, active and passive cooling, vacuum/vent line connections, and data handling, and four basic payload configurations are possible. The development of a middeck accommodations rack to make payload space more flexible and to enable an optimum number and variety of experiments to be flown is proposed. Diagrams of the orbiter's middeck and experimental designs are provided.

  11. 'Secret' Shuttle payloads revealed

    NASA Astrophysics Data System (ADS)

    Powell, Joel W.

    1993-05-01

    A secret military payload carried by the orbiter Discovery launched on January 24 1985 is discussed. Secondary payloads on the military Shuttle flights are briefly reviewed. Most of the military middeck experiments were sponsored by the Space Test Program established at the Pentagon to oversee all Defense Department space research projects.

  12. International Space Station Payload Operations Integration

    NASA Technical Reports Server (NTRS)

    Fanske, Elizabeth Anne

    2011-01-01

    The Payload Operations Integrator (POINT) plays an integral part in the Certification of Flight Readiness process for the Mission Operations Laboratory and the Payload Operations Integration Function that supports International Space Station Payload operations. The POINTs operate in support of the POIF Payload Operations Manager to bring together and integrate the Certification of Flight Readiness inputs from various MOL teams through maintaining an open work tracking log. The POINTs create monthly metrics for current and future payloads that the Payload Operations Integration Function supports. With these tools, the POINTs assemble the Certification of Flight Readiness package before a given flight, stating that the Mission Operations Laboratory is prepared to support it. I have prepared metrics for Increment 29/30, maintained the Open Work Tracking Logs for Flights ULF6 (STS-134) and ULF7 (STS-135), and submitted the Mission Operations Laboratory Certification of Flight Readiness package for Flight 44P to the Mission Operations Directorate (MOD/OZ).

  13. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  14. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  15. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  16. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  17. 30 CFR 75.1101-21 - Back-up water system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Back-up water system. 75.1101-21 Section 75.1101-21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... water system. One fire hose outlet together with a length of hose capable of extending to the belt drive...

  18. STS-92 Mission Specialist McArthur suits up

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist William S. McArthur Jr. signals thumbs up for launch, scheduled for 8:05 p.m. EDT. The mission is the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. This launch is the third for McArthur. Landing is expected Oct. 21 at 3:55 p.m. EDT.

  19. Simulating cloud environment for HIS backup using secret sharing.

    PubMed

    Kuroda, Tomohiro; Kimura, Eizen; Matsumura, Yasushi; Yamashita, Yoshinori; Hiramatsu, Haruhiko; Kume, Naoto

    2013-01-01

    In the face of a disaster hospitals are expected to be able to continue providing efficient and high-quality care to patients. It is therefore crucial for hospitals to develop business continuity plans (BCPs) that identify their vulnerabilities, and prepare procedures to overcome them. A key aspect of most hospitals' BCPs is creating the backup of the hospital information system (HIS) data at multiple remote sites. However, the need to keep the data confidential dramatically increases the costs of making such backups. Secret sharing is a method to split an original secret message so that individual pieces are meaningless, but putting sufficient number of pieces together reveals the original message. It allows creation of pseudo-redundant arrays of independent disks for privacy-sensitive data over the Internet. We developed a secret sharing environment for StarBED, a large-scale network experiment environment, and evaluated its potential and performance during disaster recovery. Simulation results showed that the entire main HIS database of Kyoto University Hospital could be retrieved within three days even if one of the distributed storage systems crashed during a disaster.

  20. STS-78 Mission Specialist Charles E. Brady suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 Mission Specialist Charles E. Brady Jr. is donning his launch/entry suit in the Operations and Checkout Building. A spaceflight rookie, Brady was selected by NASA to join the astronaut corps in March 1992; he is a medical doctor who also is a commander in the U.S. Navy. Along with six fellow crew members, he will depart the O&C in a short while and head for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff during a two-and-a-half hour launch window opening at 10:49 a.m. EDT, June 20. STS-78 will be an extended duration flight during which extensive research will be conducted in the Life and Microgravity Spacelab (LMS) located in the payload bay.

  1. Orbiter middeck/payload standard interfaces control document

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The interfaces which shall be provided by the baseline shuttle mid-deck for payload use within the mid-deck area are defined, as well as all constraints which shall be observed by all the users of the defined interfaces. Commonality was established with respect to analytical approaches, analytical models, technical data and definitions for integrated analyses by all the interfacing parties. Any payload interfaces that are out of scope with the standard interfaces defined shall be defined in a Payload Unique Interface Control Document (ICD) for a given payload. Each Payload Unique ICD will have comparable paragraphs to this ICD and will have a corresponding notation of A, for applicable; N/A, for not applicable; N, for note added for explanation; and E, for exception. On any flight, the STS reserves the right to assign locations to both payloads mounted on an adapter plate(s) and payloads stored within standard lockers. Specific locations requests and/or requirements exceeding standard mid-deck payload requirements may result in a reduction in manifesting opportunities.

  2. Resource Prospector: The RESOLVE Payload

    NASA Astrophysics Data System (ADS)

    Quinn, J.; Smith, J.; J., Captain; Paz, A.; Colaprete, A.; Elphic, R.; Zacny, K.

    2015-10-01

    NASA has been developing a lunar volatiles exploration payload named RESOLVE. Now the primary science payload on-board the Resource Prospector (RP) mission, RESOLVE, consists of several instruments that evaluate lunar volatiles.

  3. Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-12-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.

  4. Advanced planning for ISS payload ground processing

    NASA Astrophysics Data System (ADS)

    Page, Kimberly A.

    2000-01-01

    Ground processing at John F. Kennedy Space Center (KSC) is the concluding phase of the payload/flight hardware development process and is the final opportunity to ensure safe and successful recognition of mission objectives. Planning for the ground processing of on-orbit flight hardware elements and payloads for the International Space Station is a responsibility taken seriously at KSC. Realizing that entering into this operational environment can be an enormous undertaking for a payload customer, KSC continually works to improve this process by instituting new/improved services for payload developer/owner, applying state-of-the-art technologies to the advanced planning process, and incorporating lessons learned for payload ground processing planning to ensure complete customer satisfaction. This paper will present an overview of the KSC advanced planning activities for ISS hardware/payload ground processing. It will focus on when and how KSC begins to interact with the payload developer/owner, how that interaction changes (and grows) throughout the planning process, and how KSC ensures that advanced planning is successfully implemented at the launch site. It will also briefly consider the type of advance planning conducted by the launch site that is transparent to the payload user but essential to the successful processing of the payload (i.e. resource allocation, executing documentation, etc.) .

  5. Spacelab payload accommodation handbook. Main volume

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The main characteristics of the Spacelab system are described to enable individual experimenters or payload planning groups to determine how their payload equipment can be accommodated by Spacelab. Spacelab/experiment interfaces, Spacelab payload support systems and requirements that the experiments have to comply with are described to allow experiment design and development. The basic operational aspects are outlined as far as they have an impact on experiment design. The relationship of the Spacelab Payload Accommodation Handbook to Space Transportation System documentation is outlined. Data concerning the space shuttle system are briefly described.

  6. Payload crew interface design criteria and techniques. Task 1: Inflight operations and training for payloads. [space shuttles

    NASA Technical Reports Server (NTRS)

    Carmean, W. D.; Hitz, F. R.

    1976-01-01

    Guidelines are developed for use in control and display panel design for payload operations performed on the aft flight deck of the orbiter. Preliminary payload procedures are defined. Crew operational concepts are developed. Payloads selected for operational simulations were the shuttle UV optical telescope (SUOT), the deep sky UV survey telescope (DUST), and the shuttle UV stellar spectrograph (SUSS). The advanced technology laboratory payload consisting of 11 experiments was selected for a detailed evaluation because of the availability of operational data and its operational complexity.

  7. Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay

    NASA Image and Video Library

    2006-07-14

    ISS013-E-51269 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm (out of frame) grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth. Discovery's vertical stabilizer is at left.

  8. Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay

    NASA Image and Video Library

    2006-07-14

    ISS013-E-51265 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm (out of frame) grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.

  9. Spacelab payload accommodation handbook. Preliminary issue

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The main characteristics of the Spacelab system are described. Sufficient information on Spacelab capabilities is provided to enable individual experimenters or payload planning groups to determine how their payload equipment can be accomodated by Spacelab topics discussed include major spacelab/experiment interfaces; Spacelab payload support systems and requirements the experiments must comply with to allow experiment design; and development and integration up to a level where a group of individual experiments are integrated into a complete Spacelab payload using Spacelab racks/floors and pallet segments. Integration of a complete Spacelab payload with Spacelab subsystems, primary module structure etc., integration of Spacelab with the Orbiter and basic operational aspects are also covered in this preliminary edition of the handbook which reflects the current Spacelab baseline design and is for information only.

  10. Space transportation system payload safety guidelines handbook

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This handbook provides the payload developer with a uniform description and interpretation of the potential hazards which may be caused by or associated with a payload element, operation, or interface with other payloads or with the STS. It also includes guidelines describing design or operational safety measures which suggest means of alleviating a particular hazard or group of hazards, thereby improving payload safety.

  11. STS-87 Mission Specialist Chawla is assisted with her launch and entry spacesuit at LC 39B during TC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Kalpana Chawla, Ph.D., is assisted with her orange launch and entry spacesuit by NASA suit technicians at Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  12. Commercially Hosted Government Payloads: Lessons from Recent Programs

    NASA Technical Reports Server (NTRS)

    Andraschko, Mark A.; Antol, Jeffrey; Horan, Stephen; Neil, Doreen

    2011-01-01

    In a commercially hosted operational mode, a scientific instrument or operational device is attached to a spacecraft but operates independently from the spacecraft s primary mission. Despite the expected benefits of this arrangement, there are few examples of hosted payload programs actually being executed by government organizations. The lack of hosted payload programs is largely driven by programmatic challenges, both real and perceived, rather than by technical challenges. Partly for these reasons, NASA has not sponsored a hosted payload program, in spite of the benefits and visible community interest in doing so. In the interest of increasing the use of hosted payloads across the space community, this paper seeks to alleviate concerns about hosted payloads by identifying these programmatic challenges and presenting ways in which they can be avoided or mitigated. Despite the challenges, several recent hosted payload programs have been successfully completed or are currently in progress. This paper presents an assessment of these programs, with a focus on acquisition, costs, schedules, risks, and other programmatic aspects. The hosted payloads included in this study are the Federal Aviation Administration's Wide Area Augmentation System (WAAS) payloads, United States Coast Guard's Automatic Identification System (AIS) demonstration payload, Department of Defense's IP Router In Space (IRIS) demonstration payload, the United States Air Force's Commercially Hosted Infrared Payload (CHIRP), and the Australian Defence Force's Ultra High Frequency (UHF) payload. General descriptions of each of these programs are presented along with issues that have been encountered and lessons learned from those experiences. A set of recommended approaches for future hosted payload programs is presented, with a focus on addressing risks or potential problem areas through smart and flexible contracting up front. This set of lessons and recommendations is broadly applicable to future

  13. Mechanical Backup For Fly-By-Wire Control System

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1992-01-01

    Mechanical device eliminates need for redundant fly-by-wire subsystems. Main components are two linkages. One connected to control column in conventional, reversible control system. Other slides inside first linkage and connected to pilot's control wheel. In addition to aircraft applications, design used in control systems in which computer control desirable but safety backup systems required; for example, in boat rudders, engine controls in boats and automobiles, and controls in construction equipment.

  14. STS-109 MS Linnehan and Grunsfeld in payload bay during first EVA

    NASA Image and Video Library

    2002-03-04

    STS109-E-5253 (4 March 2002) --- Astronaut Richard M. Linnehan, mission specialist, is about to wrap up the first phase of a seven-hour space walk in the cargo bay of the Space Shuttle Columbia. Linnehan's feet are anchored to a restraint on the end of the Remote Manipulator System (RMS) robotic arm. The piece of hardware putting on a bright glow in left foreground is the furled old solar array that astronauts Linnehan and John M. Grunsfeld, payload commander, earlier removed from Hubble Space Telescope. The old array is now latched in Columbia's cargo bay for return to Earth. The two went on to install the replacement starboard array. The image was recorded with a digital still camera.

  15. Visibility of children behind 2010-2013 model year passenger vehicles using glances, mirrors, and backup cameras and parking sensors.

    PubMed

    Kidd, David G; Brethwaite, Andrew

    2014-05-01

    This study identified the areas behind vehicles where younger and older children are not visible and measured the extent to which vehicle technologies improve visibility. Rear visibility of targets simulating the heights of a 12-15-month-old, a 30-36-month-old, and a 60-72-month-old child was assessed in 21 2010-2013 model year passenger vehicles with a backup camera or a backup camera plus parking sensor system. The average blind zone for a 12-15-month-old was twice as large as it was for a 60-72-month-old. Large SUVs had the worst rear visibility and small cars had the best. Increases in rear visibility provided by backup cameras were larger than the non-visible areas detected by parking sensors, but parking sensors detected objects in areas near the rear of the vehicle that were not visible in the camera or other fields of view. Overall, backup cameras and backup cameras plus parking sensors reduced the blind zone by around 90 percent on average and have the potential to prevent backover crashes if drivers use the technology appropriately. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The 1993 Shuttle Small Payloads Symposium

    NASA Technical Reports Server (NTRS)

    Thomas, Lawrence R. (Editor); Mosier, Frances L. (Editor)

    1993-01-01

    The 1993 Shuttle Small Payloads Symposium is a combined symposia of the Get Away Special (GAS), Hitchhiker, and Complex Autonomous Payloads (CAP) programs, and is proposed to continue as an annual conference. The focus of this conference is to educate potential Space Shuttle Payload Bay users as to the types of carrier systems provided and for current users to share experiment concepts.

  17. Payload software technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A software analysis was performed of known STS sortie payload elements and their associated experiments. This provided basic data for STS payload software characteristics and sizes. A set of technology drivers was identified based on a survey of future technology needs and an assessment of current software technology. The results will be used to evolve a planned approach to software technology development. The purpose of this plan is to ensure that software technology is advanced at a pace and a depth sufficient to fulfill the identified future needs.

  18. Cell Science-02 Payload Overview

    NASA Technical Reports Server (NTRS)

    Mitchell, Sarah Diane

    2014-01-01

    The presentation provides an general overview of the Cell Science-02 science and payload operations to the NASA Payload Operations Integrated Working Group. The overview includes a description of the science objectives and specific aims, manifest status, and operations concept.

  19. An audible automobile back-up pedestrian warning device--development and evaluation

    DOT National Transportation Integrated Search

    1976-11-01

    The purpose of the study was to develop and field-test an audible back-up warning device for use on automobiles. Detailed criteria of pedestrian age and hearing ability combined with noise characteristics of typical accident sites provide the basis f...

  20. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions

    NASA Astrophysics Data System (ADS)

    Xu, Jiwei; Wu, Huijuan; Xiao, Shunkun

    2014-12-01

    A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1× N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.

  1. On-Board Training for US Payloads

    NASA Technical Reports Server (NTRS)

    Murphy, Benjamin; Meacham, Steven (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) crew follows a training rotation schedule that puts them in the United States about every three months for a three-month training window. While in the US, the crew receives training on both ISS systems and payloads. Crew time is limited, and system training takes priority over payload training. For most flights, there is sufficient time to train all systems and payloads. As more payloads are flown, training time becomes a more precious resource. Less training time requires payload developers (PDs) to develop alternatives to traditional ground training. To ensure their payloads have sufficient training to achieve their scientific goals, some PDs have developed on-board trainers (OBTs). These OBTs are used to train the crew when no or limited ground time is available. These lessons are also available on-orbit to refresh the crew about their ground training, if it was available. There are many types of OBT media, such as on-board computer based training (OCBT), video/photo lessons, or hardware simulators. The On-Board Training Working Group (OBTWG) and Courseware Development Working Group (CDWG) are responsible for developing the requirements for the different types of media.

  2. Sounding rocket thermal analysis techniques applied to GAS payloads. [Get Away Special payloads (STS)

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1979-01-01

    Simplified analytical techniques of sounding rocket programs are suggested as a means of bringing the cost of thermal analysis of the Get Away Special (GAS) payloads within acceptable bounds. Particular attention is given to two methods adapted from sounding rocket technology - a method in which the container and payload are assumed to be divided in half vertically by a thermal plane of symmetry, and a method which considers the container and its payload to be an analogous one-dimensional unit having the real or correct container top surface area for radiative heat transfer and a fictitious mass and geometry which model the average thermal effects.

  3. Space Transportation System Payloads Data and Analysis

    NASA Technical Reports Server (NTRS)

    Peterson, J. D.; Craft, H. G., Jr.

    1975-01-01

    The background, current developments and future plans for the Space Transportation System Payloads Data and Analysis (SPDA) activities at Marshall Space Flight Center are reviewed. It is shown how the payload data bank and future planned activities will interface with the payloads community and Space Transportation System designers. The interfaces with the STS data base include NASA planning, international planning, payload design, shuttle design, user agencies planning and information, and OMB, Congress and others.

  4. Evaluation philosophy for shuttle launched payloads

    NASA Technical Reports Server (NTRS)

    Heuser, R. E.

    1975-01-01

    Some approaches to space-shuttle payload evaluation are examined. Issues considered include subsystem replacement in low-cost modular spacecraft (LCMS), validation of spacelab payloads, the use of standard components in shuttle-era spacecraft, effects of shuttle-induced environments on payloads, and crew safety. The LCMS is described, and goals are discussed for its evaluation program. Concepts regarding how the evaluation should proceed are considered.

  5. Outcomes of nonemergent percutaneous coronary intervention with and without on-site surgical backup: a meta-analysis.

    PubMed

    Singh, Param Puneet; Singh, Mukesh; Bedi, Updesh Singh; Adigopula, Sasikanth; Singh, Sarabjeet; Kodumuri, Vamsi; Molnar, Janos; Ahmed, Aziz; Arora, Rohit; Khosla, Sandeep

    2011-01-01

    Despite major advances in percutaneous coronary intervention (PCI) techniques, the current guidelines recommend against elective PCI at hospitals without on-site cardiac surgery backup. Nonetheless, an increasing number of hospitals without on-site cardiac surgery in the United States have developed programs for elective PCI. Studies evaluating outcome in this setting have yielded mixed results, leaving the question unanswered. Hence, a meta-analysis comparing outcomes of nonemergent PCI in hospitals with and without on-site surgical backup was performed. A systematic review of literature identified four studies involving 6817 patients. Three clinical end points were extracted from each study and included in-hospital death, myocardial infarction, and the need for emergency coronary artery bypass grafting. The studies were homogenous for each outcome studied. Therefore, the combined relative risks (RRs) across all the studies and the 95% confidence intervals (CIs) were computed using the Mantel-Haenszel fixed-effect model. A two-sided alpha error less than 0.05 was considered to be statistically significant. Compared with facilities with on-site surgical backup, the risk of in-hospital death (RR, 2.7; CI, 0.6-12.9; P = 0.18), nonfatal myocardial infarction (RR, 1.3; CI, 0.7- 2.2; P = 0.29), and need of emergent coronary artery bypass grafting (RR, 0.46; CI, 0.06- 3.1; P = 0.43) was similar in those lacking on-site surgical backup. The present meta-analysis suggests that there is no difference in the outcome with regard to risk of nonfatal myocardial infarction, need for emergency coronary artery bypass grafting, and the risk of death in patients undergoing elective PCI in hospitals with and without on-site cardiac surgery backup.

  6. International Space Station Alpha user payload operations concept

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Crysel, William B.; Duncan, Elaine F.; Rider, James W.

    1994-01-01

    International Space Station Alpha (ISSA) will accommodate a variety of user payloads investigating diverse scientific and technology disciplines on behalf of five international partners: Canada, Europe, Japan, Russia, and the United States. A combination of crew, automated systems, and ground operations teams will control payload operations that require complementary on-board and ground systems. This paper presents the current planning for the ISSA U.S. user payload operations concept and the functional architecture supporting the concept. It describes various NASA payload operations facilities, their interfaces, user facility flight support, the payload planning system, the onboard and ground data management system, and payload operations crew and ground personnel training. This paper summarizes the payload operations infrastructure and architecture developed at the Marshall Space Flight Center (MSFC) to prepare and conduct ISSA on-orbit payload operations from the Payload Operations Integration Center (POIC), and from various user operations locations. The authors pay particular attention to user data management, which includes interfaces with both the onboard data management system and the ground data system. Discussion covers the functional disciplines that define and support POIC payload operations: Planning, Operations Control, Data Management, and Training. The paper describes potential interfaces between users and the POIC disciplines, from the U.S. user perspective.

  7. STS-111 Crew Interviews: Phillippe Perrin, Mission Specialist 1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Specialist 1 Phillippe Perrin is seen during this preflight interview, where he gives a quick overview of his mission before answering questions about his inspiration to become an astronaut and his career path. Perrin outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes what the crew exchange will be like (transferring the Expedition 5 crew in place of the Expedition 4 crew on the International Space Station (ISS)) and the payloads (Mobile Base System (MBS) and the Leonardo Multi-Purpose Logistics Module). Perrin discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the ISS. He also provides his thoughts about the significance of the mission to France and the value of the ISS.

  8. Ariane 5 Payload Fairing Test

    NASA Image and Video Library

    2012-04-30

    NASA Glenn conducted a test on the Ariane 5 Payload Fairing at Plum Brook’s Space Power Facility (SPF). The test was to qualify a new horizontal pyrotechnic separation system, which blew the two fairing halves apart and away from the payload during flight.

  9. Coupled loads analysis for Space Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Eldridge, J.

    1992-01-01

    Described here is a method for determining the transient response of, and the resultant loads in, a system exposed to predicted external forces. In this case, the system consists of four racks mounted on the inside of a space station resource node module (SSRNMO) which is mounted in the payload bay of the space shuttle. The predicted external forces are forcing functions which envelope worst case forces applied to the shuttle during liftoff and landing. This analysis, called a coupled loads analysis, is used to couple the payload and shuttle models together, determine the transient response of the system, and then recover payload loads, payload accelerations, and payload to shuttle interface forces.

  10. Barbara Morgan and Christa McAuliffe watch the STS 61-A launch of Challenger

    NASA Image and Video Library

    1986-01-09

    S86-25293 (30 Oct. 1985) --- Barbara R. Morgan and Sharon Christa McAuliffe (right) are pictured during a visit to NASA's Kennedy Space Center (KSC) Launch Complex 39 to witness the launch of the space shuttle Challenger. McAuliffe is scheduled to launch aboard the space shuttle Challenger, STS-51L mission, herself early next year as the United States? first in-space citizen observer. Morgan is the backup for the Teacher-in-Space Project?s payload specialist position. The photo was taken by Keith Meyers of the New York Times. EDITOR'S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  11. Barbara Morgan and Christa McAuliffe watch the STS 61-A launch of Challenger

    NASA Image and Video Library

    1986-01-09

    S86-25294 (30 Oct. 1985) --- Barbara R. Morgan and Sharon Christa McAuliffe (right) are pictured during a visit to NASA's Kennedy Space Center (KSC) Launch Complex 39 to witness the launch of the space shuttle Challenger. McAuliffe is scheduled to launch aboard the space shuttle Challenger, STS-51L mission, herself early next year as the United States? first in-space citizen observer. Morgan is the backup for the Teacher-in-Space Project?s payload specialist position. The photo was taken by Keith Meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  12. Thermal environments for Space Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Fu, J. H.; Graves, G. R.

    1985-01-01

    The thermal environment of the Space Shuttle payload bay during the on-orbit phase of the STS flights is presented. The STS Thermal Flight Instrumentation System and various substructures of the Orbiter and the payload are described, as well as the various on-orbit attitudes encountered in the STS flights (the tail to sun, nose to sun, payload bay to sun, etc.). Included are the temperature profiles obtained during the on-orbit STS 1-5 flights (with the payload bay door open), recorded in various substructures of the Orbiter's midsection at different flight attitudes, as well as schematic illustrations of the Space Shuttle system, a typical mission profile, and the Orbiter's substructures.

  13. On locating steganographic payload using residuals

    NASA Astrophysics Data System (ADS)

    Quach, Tu-Thach

    2011-02-01

    Locating steganographic payload usingWeighted Stego-image (WS) residuals has been proven successful provided a large number of stego images are available. In this paper, we revisit this topic with two goals. First, we argue that it is a promising approach to locate payload by showing that in the ideal scenario where the cover images are available, the expected number of stego images needed to perfectly locate all load-carrying pixels is the logarithm of the payload size. Second, we generalize cover estimation to a maximum likelihood decoding problem and demonstrate that a second-order statistical cover model can be used to compute residuals to locate payload embedded by both LSB replacement and LSB matching steganography.

  14. STS-99 Mission Specialists Thiele and Mohri greet the media at SLF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After the crew arrival at KSC's Shuttle Landing Facility, STS-99 Mission Specialist Mamoru Mohri (Ph.D.), at right, talks to the media. At left is Mission Specialist Gerhard Thiele (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST.

  15. 14 CFR 415.59 - Information requirements for payload review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Information requirements for payload review... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Payload Review and Determination § 415.59 Information requirements for payload review. (a) A person requesting review of a particular payload or payload...

  16. SLS Payload Transportation Beyond LEO

    NASA Technical Reports Server (NTRS)

    Creech, S. D.; Baker, J. D.; Jackman, A. L.; Vane, G.

    2017-01-01

    NASA has successfully completed the Critical Design Review (CDR) of the heavy lift Space Launch System (SLS) and is working towards the first flight of the vehicle in 2018. SLS will begin flying crewed missions with an Orion capsule to the lunar vicinity every year after the first 2 flights starting in the early 2020's. As early as 2021, in addition to delivering an Orion capsule to a cislunar destination, SLS will also deliver ancillary payload, termed "Co-manifested Payload (CPL)", with a mass of at least 5.5 mT and volume up to 280 m3 simultaneously to that same destination. Later SLS flights have a goal of delivering as much as 10 mT of CPL to cislunar destinations. In addition to cislunar destinations, SLS flights may deliver non-crewed, science-driven missions with Primary Payload (PPL) to more distant destinations. SLS PPL missions will utilize a unique payload fairing offering payload volume (ranging from 320 m3 to 540 m3) that greatly exceeds the largest existing Expendable Launch Vehicle (ELV) fairing available. The Characteristic Energy (C3) offered by the SLS system will generate opportunities to deliver up to 40 mT to cislunar space, and deliver double PPL mass or de-crease flight time by half for some outer planet destinations when compared to existing capabilities. For example, SLS flights may deliver the Europa Clipper to a Jovian destination in under 3 years by the mid 2020's, compared to the 7+ years cruise time required for current launch capabilities. This presentation will describe ground and flight accommodations, interfaces, resources, and performance planned to be made available to potential CPL and PPL science users of SLS. In addition, this presentation should promote a dialogue between vehicle developers, potential payload users, and funding sources in order to most efficiently evolve required SLS capabilities to meet diverse payload needs as they are identified over the next 35 years and beyond.

  17. Normal mode analysis of the IUS/TDRS payload in a payload canister/transporter environment

    NASA Technical Reports Server (NTRS)

    Meyer, K. A.

    1980-01-01

    Special modeling techniques were developed to simulate an accurate mathematical model of the transporter/canister/payload system during ground transport of the Inertial Upper Stage/Tracking and Data Relay Satellite (IUS/TDRS) payload. The three finite element models - the transporter, the canister, and the IUS/TDRS payload - were merged into one model and used along with the NASTRAN normal mode analysis. Deficiencies were found in the NASTRAN program that make a total analysis using modal transient response impractical. It was also discovered that inaccuracies may exist for NASTRAN rigid body modes on large models when Given's method for eigenvalue extraction is employed. The deficiencies as well as recommendations for improving the NASTRAN program are discussed.

  18. 30 CFR 57.14132 - Horns and backup alarms for surface equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14132 Horns and backup alarms for surface equipment. (a) Manually-operated horns or other audible warning devices provided on self-propelled mobile equipment as a safety device shall be maintained in a functional...

  19. Overview for Attached Payload Accommodations and Environments

    NASA Technical Reports Server (NTRS)

    Schaffer, Craig; Cook, Gene; Nabizadeh, Rodney; Phillion, James

    2007-01-01

    External payload accommodations are provided at attach sites on the U.S provided ELC, U.S. Truss, the Japanese Experiment Module Exposed Facility (JEM EF) and the Columbus EPF (External Payload Facilities). The Integrated Truss Segment (ITS) provides the backbone structure for the ISS. It attaches the solar and thermal control arrays to the rest of the complex, and houses cable distribution trays Extravehicular Activity (EVA) support equipment such as handholds and lighting; and providing for Extravehicular Robotic (EVR) accommodations using the Mobile Servicing System (MSS). It also provides logistics and maintenance, and payload attachment sites. The attachment sites accommodate logistics and maintenance and payloads carriers, zenith and nadir. The JEM-EF, a back porch-like attachment to the JEM Pressurized Module, accommodates up to eight payloads, which can be serviced by the crew via the JEM PM's airlock and dedicated robotic arm. The Columbus-EPF is another porch-like platform that can accommodate two zenith and two nadir looking payloads.

  20. The amino acid's backup bone - storage solutions for proteomics facilities.

    PubMed

    Meckel, Hagen; Stephan, Christian; Bunse, Christian; Krafzik, Michael; Reher, Christopher; Kohl, Michael; Meyer, Helmut Erich; Eisenacher, Martin

    2014-01-01

    Proteomics methods, especially high-throughput mass spectrometry analysis have been continually developed and improved over the years. The analysis of complex biological samples produces large volumes of raw data. Data storage and recovery management pose substantial challenges to biomedical or proteomic facilities regarding backup and archiving concepts as well as hardware requirements. In this article we describe differences between the terms backup and archive with regard to manual and automatic approaches. We also introduce different storage concepts and technologies from transportable media to professional solutions such as redundant array of independent disks (RAID) systems, network attached storages (NAS) and storage area network (SAN). Moreover, we present a software solution, which we developed for the purpose of long-term preservation of large mass spectrometry raw data files on an object storage device (OSD) archiving system. Finally, advantages, disadvantages, and experiences from routine operations of the presented concepts and technologies are evaluated and discussed. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013. Published by Elsevier B.V.

  1. Advanced APS impacts on vehicle payloads

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1989-01-01

    Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethylhydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination of scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.

  2. Advanced APS Impacts on Vehicle Payloads

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1989-01-01

    Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethyl hydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination and scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.

  3. Apollo 9 backup crew on "Retriever"-Ships

    NASA Image and Video Library

    1968-12-06

    S68-51700 (November 1968) --- The backup crew of the Apollo 9 (Spacecraft 104/ Lunar Module 3/ Saturn 504) space mission stands on the deck of the NASA Motor Vessel Retriever (MVR) prior to participating in water egress training in the Gulf of Mexico. Left to right, are astronauts Charles Conrad Jr. (holding hatch), Richard F. Gordon Jr., and Alan L. Bean. They are standing by the Apollo command module trainer which was used in the exercise. Since this photograph was made, these three astronauts have been named as the prime crew of the Apollo 12 lunar landing mission.

  4. 14 CFR 1214.810 - Integration of payloads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Integration of payloads. 1214.810 Section... for Spacelab Services § 1214.810 Integration of payloads. (a) The customer shall bear the cost of... mission. (2) Generation of mission requirements and their documentation in the Payload Integration Plan...

  5. Ensuring Payload Safety in Missions with Special Partnerships

    NASA Technical Reports Server (NTRS)

    Staubus, Calvert A.; Willenbring, Rachel C.; Blankenship, Michael D.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Expendable Launch Vehicle (ELV) payload space flight missions involve cooperative work between NASA and partners including spacecraft (or payload) contractors, universities, nonprofit research centers, Agency payload organization, Range Safety organization, Agency launch service organizations, and launch vehicle contractors. The role of NASA's Safety and Mission Assurance (SMA) Directorate is typically fairly straightforward, but when a mission's partnerships become more complex, to realize cost and science benefits (e.g., multi-agency payload(s) or cooperative international missions), the task of ensuring payload safety becomes much more challenging. This paper discusses lessons learned from NASA safety professionals working multiple-agency missions and offers suggestions to help fellow safety professionals working multiple-agency missions.

  6. 26 CFR 31.3406-0 - Outline of the backup withholding regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... incorrect name/TIN combination. (2) Definition of account. (3) Definition of business day. (4) Certain exceptions. (c) Notice regarding an incorrect name/TIN combination. (1) In general. (2) Additional... of receipt. (d) Notice from payors of backup withholding due to an incorrect name/TIN combination. (1...

  7. Payload design requirements analysis (study 2.2). Volume 3. Guideline analysis. [economic analysis of payloads for space shuttles and space tugs

    NASA Technical Reports Server (NTRS)

    Shiokari, T.

    1973-01-01

    Payloads to be launched on the space shuttle/space tug/sortie lab combinations are discussed. The payloads are of four types: (1) expendable, (2) ground refurbishable, (3) on-orbit maintainable, and (4) sortie. Economic comparisons are limited to the four types of payloads described. Additional system guidelines were developed by analyzing two payloads parameterically and demonstrating the results on an example satellite. In addition to analyzing the selected guidelines, emphasis was placed on providing economic tradeoff data and identifying payload parameters influencing the low cost approaches.

  8. Design of Smart Multi-Functional Integrated Aviation Photoelectric Payload

    NASA Astrophysics Data System (ADS)

    Zhang, X.

    2018-04-01

    To coordinate with the small UAV at reconnaissance mission, we've developed a smart multi-functional integrated aviation photoelectric payload. The payload weighs only 1kg, and has a two-axis stabilized platform with visible task payload, infrared task payload, laser pointers and video tracker. The photoelectric payload could complete the reconnaissance tasks above the target area (including visible and infrared). Because of its light weight, small size, full-featured, high integrated, the constraints of the UAV platform carrying the payload will be reduced a lot, which helps the payload suit for more extensive using occasions. So all users of this type of smart multi-functional integrated aviation photoelectric payload will do better works on completion of the ground to better pinpoint targets, artillery calibration, assessment of observe strike damage, customs officials and other tasks.

  9. Analytical trade study of the STS payload environment. [design analysis and cost estimates for noise reduction devices for space shuttle orbiter payloads

    NASA Technical Reports Server (NTRS)

    Rader, W. P.; Barrett, S.; Raratono, J.; Payne, K. R.

    1976-01-01

    The current predicted acoustic environment for the shuttle orbiter payload bay will produce random vibration environments for payload components and subsystems which potentially will result in design, weight and cost penalties if means of protecting the payloads are not developed. Results are presented of a study to develop, through design and cost effectiveness trade studies, conceptual noise suppression device designs for space shuttle payloads. The impact of noise suppression on environmental levels and associated test costs, and on test philosophy for the various payload classes is considered with the ultimate goal of reducing payload test costs. Conclusions and recommendations are presented.

  10. A Trajectory Generation Approach for Payload Directed Flight

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey A.; Yeh, Yoo-Hsiu

    2009-01-01

    Presently, flight systems designed to perform payload-centric maneuvers require preconstructed procedures and special hand-tuned guidance modes. To enable intelligent maneuvering via strong coupling between the goals of payload-directed flight and the autopilot functions, there exists a need to rethink traditional autopilot design and function. Research into payload directed flight examines sensor and payload-centric autopilot modes, architectures, and algorithms that provide layers of intelligent guidance, navigation and control for flight vehicles to achieve mission goals related to the payload sensors, taking into account various constraints such as the performance limitations of the aircraft, target tracking and estimation, obstacle avoidance, and constraint satisfaction. Payload directed flight requires a methodology for accurate trajectory planning that lets the system anticipate expected return from a suite of onboard sensors. This paper presents an extension to the existing techniques used in the literature to quickly and accurately plan flight trajectories that predict and optimize the expected return of onboard payload sensors.

  11. Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks

    NASA Astrophysics Data System (ADS)

    Din, Der-Rong; Huang, Jen-Shen

    2014-03-01

    As networks grow in size and complexity, the chance and the impact of failures increase dramatically. The pre-allocated backup resources cannot provide 100% protection guarantee when continuous failures occur in a network. In this paper, the multicast backup re-provisioning problem (MBRP) for Hamiltonian cycle (HC)-based protection on WDM networks for the link-failure case is studied. We focus on how to recover the protecting capabilities of Hamiltonian cycle against the subsequent link-failures on WDM networks for multicast transmissions, after recovering the multicast trees affected by the previous link-failure. Since this problem is a hard problem, an algorithm, which consists of several heuristics and a genetic algorithm (GA), is proposed to solve it. The simulation results of the proposed method are also given. Experimental results indicate that the proposed algorithm can solve this problem efficiently.

  12. STS-107 Crew Interviews: Michael Anderson, Mission Specialist

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist 3 and Payload Commander Michael Anderson is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He outlines his role in the mission in general, and specifically in conducting onboard science experiments. He discusses the following instruments and sets of experiments in detail: CM2 (Combustion Module 2), FREESTAR (Fast Reaction Enabling Science Technology and Research, MEIDEX (Mediterranean Israeli Dust Experiment) and MGM (Mechanics of Granular Materials). Anderson also mentions on-board activities and responsibilities during launch and reentry, mission training, and microgravity research. In addition, he touches on the dual work-shift nature of the mission, the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety during training and the value of international cooperation.

  13. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  14. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  15. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  16. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  17. Orbiter ECLSS support of Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.; Morris, D. W.; Prince, R. N.

    1974-01-01

    The orbiter ECLSS (Environmental Control and Life Support System) provides the functions of atmosphere revitalization, crew life support, and active thermal control. This paper describes these functions as they relate to the support of Shuttle payloads, including automated spacecraft, Spacelab and Department of Defense missions. Functional and performance requirements for the orbiter ECLSS which affect payload support are presented for the atmosphere revitalization subsystem, the food, water and waste subsystem, and the active thermal control subsystem. Schematics for these subsystems are also described. Finally, based on the selected orbiter configuration, preliminary design and off-design thermodynamic data are presented to quantify the baseline orbiter capability; to quantify the payload chargeable penalties for increasing this support; and to identify the significant limits of orbiter ECLSS support available to Shuttle payloads.

  18. Coupled Facility/Payload Vibration Modeling Improvements

    NASA Technical Reports Server (NTRS)

    Carnahan, Timothy M.; Kaiser, Michael

    2015-01-01

    A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at NASA/GSFC there is an analysis to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combination of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.

  19. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1994-01-01

    Progress over the past year includes the following: A simplified rotor model with a flexible shaft and backup bearings has been developed. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501. The magnetic bearing test rig is currently floating and dynamics/control tests are being conducted. A paper has been written that documents the work using the T-501 engine model. Work has continued with the simplified model. The finite element model is currently being modified to include the effects of foundation dynamics. A literature search for material on foil bearings has been conducted. A finite element model is being developed for a magnetic bearing in series with a foil backup bearing.

  20. Small Astronomy Payloads for Spacelab. [conferences

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C. (Editor)

    1975-01-01

    The workshop to define feasible concepts in the UV-optical 1R area for Astronomy Spacelab Payloads is reported. Payloads proposed include: high resolution spectrograph, Schmidt camera spectrograph, UV telescope, and small infrared cryogenic telescope.