Sample records for bacteria modulates infections

  1. Phage-bacteria infection networks: From nestedness to modularity

    NASA Astrophysics Data System (ADS)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  2. Attenuation of virulence in pathogenic bacteria using synthetic quorum-sensing modulators under native conditions on plant hosts

    PubMed Central

    Palmer, Andrew G.; Streng, Evan; Blackwell, Helen E.

    2011-01-01

    Quorum sensing (QS) is often critical in both pathogenic and mutualistic relationships between bacteria and their eukaryotic hosts. Gram-negative bacteria typically use N-acylated L-homoserine lactone (AHL) signals for QS. We have identified a number of synthetic AHL analogues that are able to strongly modulate QS in culture-based, reporter gene assays. While informative, these assays represent idealized systems and their relevance to QS under native conditions is often unclear. As one of our goals is to utilize synthetic QS modulators to study bacterial communication under native conditions, identifying robust host-bacteria model systems for their evaluation is crucial. We reasoned that the host-pathogen interaction between Solanum tuberosum (potato) and the Gram-negative pathogen Pectobacterium carotovora would be ideal for such studies as we have identified several potent, synthetic QS modulators for this pathogen, and infection assays in potato are facile. Herein, we report on our development of this host-pathogen system, and another in Phaseolus vulgaris (green bean), as a means for monitoring the ability of abiotic AHLs to modulate QS-regulated virulence in host infection assays. Our assays confirmed that QS modulators previously identified through culture-based assays largely retained their activity profiles when introduced into the plant host. However, inhibition of virulence in wild-type infections was highly dependent on the timing of compound dosing. This study is the first to demonstrate that our AHL analogs are active in wild-type bacteria in their native eukaryotic hosts, and provides compelling evidence for the application of these molecules as probes to study QS in a range of organisms and environments. PMID:21932837

  3. The Interplay between Entamoeba and Enteropathogenic Bacteria Modulates Epithelial Cell Damage

    PubMed Central

    Galván-Moroyoqui, José Manuel; Domínguez-Robles, M. del Carmen; Franco, Elizabeth; Meza, Isaura

    2008-01-01

    presented here provides evidence that the Entamoeba/enteropathogenic bacteria interplay modulates epithelial cell responses to the pathogens. In mixed intestinal infections, where such interactions are possible, they could influence the outcome of disease. The results offer insights to continue research on this phenomenon. PMID:18648517

  4. Essential Oils and Their Components as Modulators of Antibiotic Activity against Gram-Negative Bacteria

    PubMed Central

    Aelenei, Petruta; Miron, Anca; Trifan, Adriana; Bujor, Alexandra; Gille, Elvira; Aprotosoaie, Ana Clara

    2016-01-01

    Gram-negative bacteria cause infections that are difficult to treat due to the emergence of multidrug resistance. This review summarizes the current status of the studies investigating the capacity of essential oils and their components to modulate antibiotic activity against Gram-negative bacteria. Synergistic interactions are particularly discussed with reference to possible mechanisms by which essential oil constituents interact with antibiotics. Special emphasis is given to essential oils and volatile compounds that inhibit efflux pumps, thus reversing drug resistance in Gram-negative bacteria. In addition, indifference and antagonism between essential oils/volatile compounds and conventional antibiotics have also been reported. Overall, this literature review reveals that essential oils and their purified components enhance the efficacy of antibiotics against Gram-negative bacteria, being promising candidates for the development of new effective formulations against Gram-negative bacteria. PMID:28930130

  5. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics

    DOE PAGES

    Roux, Simon; Hawley, Alyse K.; Torres Beltran, Monica; ...

    2014-08-29

    Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks, specific virus–host interaction dynamics remain cryptic. In this study, we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a model marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ∼1/3 of SUP05 bacteria is viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186more » microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together, these results demonstrate closely coupled SUP05 virus–host co-evolutionary dynamics with the potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.« less

  6. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    PubMed

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  7. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics

    PubMed Central

    Roux, Simon; Hawley, Alyse K; Torres Beltran, Monica; Scofield, Melanie; Schwientek, Patrick; Stepanauskas, Ramunas; Woyke, Tanja; Hallam, Steven J; Sullivan, Matthew B

    2014-01-01

    Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks, specific virus–host interaction dynamics remain cryptic. In this study, we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a model marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ∼1/3 of SUP05 bacteria is viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186 microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together, these results demonstrate closely coupled SUP05 virus–host co-evolutionary dynamics with the potential to modulate biogeochemical cycling in climate-critical and expanding OMZs. DOI: http://dx.doi.org/10.7554/eLife.03125.001 PMID:25171894

  8. Bacteria-Targeting Nanoparticles for Managing Infections

    NASA Astrophysics Data System (ADS)

    Radovic-Moreno, Aleksandar Filip

    Bacterial infections continue to be a significant concern particularly in healthcare settings and in the developing world. Current challenges include the increasing spread of drug resistant (DR) organisms, the side effects of antibiotic therapy, the negative consequences of clearing the commensal bacterial flora, and difficulties in developing prophylactic vaccines. This thesis was an investigation of the potential of a class of polymeric nanoparticles (NP) to contribute to the management of bacterial infections. More specifically, steps were taken towards using these NPs (1) to achieve greater spatiotemporal control over drug therapy by more targeted antibiotic delivery to bacteria, and (2) to develop a prophylactic vaccine formulation against the common bacterial sexually transmitted disease (STD) caused by Chlamydia trachomatis. In the first part, we synthesized polymeric NPs containing poly(lactic-co-glycolic acid)-block-poly(L-histidine)-block-poly(ethylene glycol) (PLGA-PLH-PEG). We show that these NPs are able to bind to bacteria under model acidic infection conditions and are able to encapsulate and deliver vancomycin to inhibit the growth of Staphylococcus aureus bacteria in vitro. Further work showed that the PLGA-PLH-PEG-based NPs demonstrated the potential for competition for binding bacteria at a site of infection from soluble protein and model phagocytic and tissue-resident cells in a NP composition dependent manner. The NPs demonstrated low toxicity in vitro, were well tolerated by mice in vivo, and circulated in the blood on timescales comparable to control PLGA-PEG NPs. In the second part, we used PLGA-PLH-PEG-based NPs to design a prophylactic vaccine against the obligate intracellular bacterium Chlamydia trachomatis, the most common cause of bacterial STD in the world. Currently, no vaccines against this pathogen are approved for use in humans. We first formulated NPs encapsulating the TLR7 agonist R848 conjugated to poly(lactic acid) (R848-PLA

  9. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    PubMed

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  10. Toward Understanding Phage:Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria

    PubMed Central

    Gilbert, Rosalind A.; Kelly, William J.; Altermann, Eric; Leahy, Sinead C.; Minchin, Catherine; Ouwerkerk, Diane; Klieve, Athol V.

    2017-01-01

    The rumen is known to harbor dense populations of bacteriophages (phages) predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome. PMID:29259581

  11. A combination of lactic acid bacteria regulates Escherichia coli infection and inflammation of the bovine endometrium.

    PubMed

    Genís, Sandra; Sánchez-Chardi, Alejandro; Bach, Àlex; Fàbregas, Francesc; Arís, Anna

    2017-01-01

    Uterine function in cattle is compromised by bacterial contamination and inflammation after calving. The objective of this study was to select a combination of lactic acid bacteria (LAB) to decrease endometrium inflammation and Escherichia coli infection. Primary endometrial epithelial cells were cultured in vitro to select the most favorable LAB combination modulating basal tissue inflammation and E. coli infection. Supernatants were obtained to determine expression of pro-inflammatory cytokines, and E. coli infection was evaluated after harvesting the tissue and plate counting. The selected LAB combination was tested in uterus explants to assess its capacity to modulate basal and acute inflammation (associated with E. coli infection). The combination of Lactobacillus rhamnosus, Pediococcus acidilactici, and Lactobacillus reuteri at a ratio of 25:25:2, respectively, reduced E. coli infection in vitro with (89.77%) or without basal tissue inflammation (95.10%) compared with single LAB strains. Lactic acid bacteria treatment reduced CXCL8 and IL1B expression 4.7- and 2.2-fold, respectively, under acute inflammation. Ex vivo, the tested LAB combination reduced acute inflammation under E. coli infection, decreasing IL-8, IL-1β, and IL-6 up to 2.2-, 2.5-, and 2.2-fold, respectively. In the total inflammation model, the LAB combination decreased IL-8 1.6-fold and IL-6 1.2-fold. Ultrastructural evaluation of the tissue suggested no direct interaction between the LAB and E. coli, although pathological effects of E. coli in endometrial cells were greatly diminished or even reversed by the LAB combination. This study shows the promising potential of LAB probiotics for therapeutic use against endometrial inflammation and infection. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Infection Vibrio sp. Bacteria on Kappaphycus Seaweed Varieties Brown and Green

    NASA Astrophysics Data System (ADS)

    Irmawati, Yuni; Sudirjo, Fien

    2017-10-01

    Disease in seaweed or ice-ice, until today is still a major problem in the cultivation of seaweed. Changes in extreme environmental conditions is a trigger factor of ice-ice, which can result in seaweed susceptible to infection with pathogenic microorganisms, such as bacteria Vibrio sp. This research aims to determine the bacteria Vibrio sp. infection in seaweed Kappaphycus varieties of brown and green. Vibrio sp. bacteria isolated in the infected seaweed thallus ice-ice, grown on TCBS media, purification, gram staining and biochemical tests. Vibrio sp. infected to seaweed Kappaphycus brown and green varieties in containers controlled by different density, 105 CFU/ml, 106 CFU/ml and 107CFU/ml. Observations were made to change clinical effect in thallus seaweed for 14 days of observation. The results obtained show that the levels of infection bacteria Vibrio sp. higher in seaweed Kappaphycus green varieties both in density 105 CFU/ml, 106 CFU/ml and 107CFU/ml, when compared with varieties brown.

  13. Changing epidemiology of infections due to extended spectrum beta-lactamase producing bacteria

    PubMed Central

    2014-01-01

    Background Community-associated infections caused by extended-spectrum beta-lactamase (ESBL) producing bacteria are a growing concern. Methods Retrospective cohort study of clinical infections due to ESBL-producing bacteria requiring admission from 2006-2011 at a tertiary care academic medical center in Providence, RI. Results A total of 321 infections due to ESBL-producing bacteria occurred during the study period. Fifty-eight cases (18%) were community-acquired, 170 (53%) were healthcare–associated, and 93 (29%) were hospital-acquired. The incidence of ESBL infections per 10,000 discharges increased during the study period for both healthcare-associated infections, 1.9 per year (95% CI 1-2.8), and for community-acquired infections, 0.85 per year (95% CI 0.3-1.4) but the rate remained unchanged for hospital-acquired infections. For ESBL-producing E. coli isolates, resistance to both ciprofloxacin and trimethoprim-sulfamethoxazole was 95% and 65%, respectively but 94% of isolates were susceptible to nitrofurantoin. Conclusions Community-acquired and healthcare-associated infections due to ESBL-producing bacteria are increasing in our community, particularly urinary tract infections due to ESBL-producing E. coli. Most isolates are resistant to oral antibiotics commonly used to treat urinary tract infections. Thus, our findings have important implications for outpatient management of such infections. PMID:24666610

  14. Wound infections with multi-drug resistant bacteria.

    PubMed

    Pîrvănescu, H; Bălăşoiu, M; Ciurea, M E; Bălăşoiu, A T; Mănescu, R

    2014-01-01

    Wound infections remain a public health problem, despite the progress made on improving surgical techniques and antibiotic prophylaxis application. Misuse of antibiotics to prevent bacterial infections leads to increased bacterial resistance and their dissemination. The study refers to 470 samples taken from wound infections of which only multi-drug resistant strains were selected for study, using two special culture mediums (Metistaph-2 for methicillin-resistant staphylococci and ESBLs-Agar for extended-spectrum betalactamases secreting bacteria). Sensitivity of these strains was tested using the diffusion method. Of all studied samples, a rate of 27.6 bacterial strains showed multi-drug resistance. Among them stood primarily Staphylococcus aureus; both MRSA strains and ESBL Gram negative bacteria studied showed high resistance to aminoglycosides, quinolones, third generation cephalosporins and low to fourth generation cephalosporins. No vancomycin resitant nor vancomycin-intermediate Staphylococcus aureus strains were isolated. Knowing the antibiotic resistance is very useful in antibiotic "cycling"application, avoiding this way the emergence of increased resistant strains. Celsius.

  15. Does virus-bacteria coinfection increase the clinical severity of acute respiratory infection?

    PubMed

    Damasio, Guilherme A C; Pereira, Luciane A; Moreira, Suzana D R; Duarte dos Santos, Claudia N; Dalla-Costa, Libera M; Raboni, Sonia M

    2015-09-01

    This retrospective cohort study investigated the presence of bacteria in respiratory secretions of patients hospitalized with acute respiratory infections and analyzed the impact of viral and bacterial coinfection on severity and the mortality rate. A total of 169 patients with acute respiratory infections were included, viruses and bacteria in respiratory samples were detected using molecular methods. Among all samples, 73.3% and 59.7% were positive for viruses and bacteria, respectively; 45% contained both virus and bacteria. Bacterial coinfection was more frequent in patients infected by community respiratory viruses than influenza A H1N1pdm (83.3% vs. 40.6%). The most frequently bacteria detected were Streptococcus pneumoniae and Haemophilus influenzae. Both species were co-detected in 54 patients and identified alone in 22 and 21 patients, respectively. Overall, there were no significant differences in the period of hospitalization, severity, or mortality rate between patients infected with respiratory viruses alone and those coinfected by viruses and bacteria. The detection of mixed respiratory pathogens is frequent in hospitalized patients with acute respiratory infections, but its impact on the clinical outcome does not appear substantial. However, it should be noted that most of the patients received broad-spectrum antibiotic therapy, which may have contributed to this favorable outcome. © 2015 Wiley Periodicals, Inc.

  16. Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination.

    PubMed

    Erickson, Andrea K; Jesudhasan, Palmy R; Mayer, Melinda J; Narbad, Arjan; Winter, Sebastian E; Pfeiffer, Julie K

    2018-01-10

    RNA viruses exist in genetically diverse populations due to high levels of mutations, many of which reduce viral fitness. Interestingly, intestinal bacteria can promote infection of several mammalian enteric RNA viruses, but the mechanisms and consequences are unclear. We screened a panel of 41 bacterial strains as a platform to determine how different bacteria impact infection of poliovirus, a model enteric virus. Most bacterial strains, including those extracted from cecal contents of mice, bound poliovirus, with each bacterium binding multiple virions. Certain bacterial strains increased viral co-infection of mammalian cells even at a low virus-to-host cell ratio. Bacteria-mediated viral co-infection correlated with bacterial adherence to cells. Importantly, bacterial strains that induced viral co-infection facilitated genetic recombination between two different viruses, thereby removing deleterious mutations and restoring viral fitness. Thus, bacteria-virus interactions may increase viral fitness through viral recombination at initial sites of infection, potentially limiting abortive infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Analysis on the infections change and measures for the multiple drug-resistant bacteria of neurology.

    PubMed

    Zang, Wenju

    2016-05-01

    To analyze the bacterial infection situations and the separation situations of multiple drug-resistant bacteria of the neurology of Zhengzhou People's hospital from Feb. 2012 to Dec. 2014. The patients data of neurology were retrieved by means of the doctor workstation system. The infection sites, the classification and drug-resistant feature of bacteria were classified and summarized in Excel. Finally, Compared with the infection sites, the classification and drug-resistant feature of bacteria at different year. The data obtained use SPSS 19.0 software to do statistical analysis. The infection rate of bacteria in neurology from Year 2012 to 2014 declined from 4.99% to 3.41%. But the constitution of the infection sites of bacteria had no significant changes. Staphylococcus aureus still was the majority in the infections of gram-positive bacteria, and Escherichia coli was the majority in the infections of gram-negative bacteria, and there were no significant changes in the ranking of the past three years. The separation rate of Acihetobacter baumanii and Pseudomonas aeruginosa in gram-negative bacteria gradually escalated. There were definite efficiencies in the prevention and control of the bacterial infections in neurology in the past three years. But the situation of prevention and control was still severe at the same time.

  18. Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging.

    PubMed

    Lee, Hoonsoo; Kim, Moon S; Song, Yu-Rim; Oh, Chang-Sik; Lim, Hyoun-Sub; Lee, Wang-Hee; Kang, Jum-Soon; Cho, Byoung-Kwan

    2017-03-01

    There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Microbiology and management of joint and bone infections due to anaerobic bacteria.

    PubMed

    Brook, Itzhak

    2008-03-01

    To describes the microbiology, diagnosis, and management of septic arthritis and osteomyelitis due to anaerobic bacteria. The predominant anaerobes in arthritis are anaerobic Gram-negative bacilli (AGNB) including the Bacteroides fragilis group, Fusobacterium spp., Peptostreptococcus spp., and Propionibacterium acnes. Infection with P. acnes is associated with a prosthetic joint, previous surgery, and trauma. B. fragilis group is associated with distant infection, Clostridium spp. with trauma, and Fusobacterium spp. with oropharyngeal infection. Most cases of anaerobic arthritis, in contrast to anaerobic osteomyelitis, involved a single isolate, and most cases are secondary to hematogenous spread. The predominant anaerobes in osteomyelitis are Bacteroides, Peptostreptococcus, Fusobacterium, and Clostridium spp. as well as P. acnes. Conditions predisposing to bone infections are vascular disease, bites, contiguous infection, peripheral neuropathy, hematogenous spread, and trauma. Pigmented Prevotella and Porphyromonas spp. are mostly isolated in skull and bite infections, members of the B. fragilis group in hand and feet infections, and Fusobacterium spp. in skull, bite, and hematogenous long bone infections. Many patients with osteomyelitis due to anaerobic bacteria have evidence of an anaerobic infection elsewhere in the body that is the source of the organisms involved in the osteomyelitis. Treatment of arthritis and osteomyelitis involving anaerobic bacteria includes symptomatic therapy, immobilization in some cases, adequate drainage of purulent material, and antibiotic therapy effective against these organisms. Anaerobic bacteria can cause septic arthritis and osteomyelitis. Correct diagnosis and appropriate therapy are important contributor to successful outcome.

  20. [Influence of serious infections due to Gram-negative bacteria on the hospital economy].

    PubMed

    Martínez, B; Gómez, J; Gómez Vargas, J; Guerra, B; Ruiz Gómez, J; Simarro, E; Baños, V; Canteras, M; Valdes, M

    2000-12-01

    Nosocomial infections due to Gram-negative bacteria are very important since they are associated with high morbidity and high hospital costs. A prospective study of 250 inpatients was carried out, 200 of whom had Gram-negative bacterial infections. Patients were divided into groups of 50 according to the localization of the infection (urinary, surgical wound, respiratory tract and bacteremia), with a control group of 50 patients with similar characteristics but no infection. We calculated the cost for the different groups by multiplying the average length of hospital stay in days by the daily cost of the stay. Significant differences were observed in the average length of stay per patient according to the type of infection and how it was acquired. In terms of cost, nosocomial infection due to Gram-negative bacteria was 1,049,139 pesetas more expensive than community-acquired infection. The cost of the stay for patients with postsurgical infection due to Gram-negative bacteria was 1,108, 252 pesetas more expensive than for the group of control patients. Nosocomial infection due to Gram-negative bacteria is associated with a prolongation in hospital stay of 9 to 28 days, which is the factor that most reflects the cost that can be attributed to nosocomial infection. Consensual and protocolized measures which allow for better clinical management need to be developed.

  1. Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections.

    PubMed

    Ghodhbane, Hanen; Elaidi, Sabrine; Sabatier, Jean-Marc; Achour, Sami; Benhmida, Jeannette; Regaya, Imed

    2015-01-01

    Multiresistant Gram-negative bacteria are the prime mover of nosocomial infections. Some are naturally resistant to antibiotics, their genetic makes them insensitive to certain families of antibiotics and they transmit these resistors to their offspring. Moreover, when bacteria are subjected to antibiotics, they eventually develop resistance against drugs to which they were previously sensitive. In recent years, many bacteriocins active against gram-negative bacteria have been identified proving their efficacy in treating infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of bacteriocins acting on the most common infectious gram negative bacteria (Klebsiella, Acinetobacter, Pseudomonas aeruginosa and E. coli).

  2. Combination Therapy for Treatment of Infections with Gram-Negative Bacteria

    PubMed Central

    Cosgrove, Sara E.; Maragakis, Lisa L.

    2012-01-01

    Summary: Combination antibiotic therapy for invasive infections with Gram-negative bacteria is employed in many health care facilities, especially for certain subgroups of patients, including those with neutropenia, those with infections caused by Pseudomonas aeruginosa, those with ventilator-associated pneumonia, and the severely ill. An argument can be made for empiric combination therapy, as we are witnessing a rise in infections caused by multidrug-resistant Gram-negative organisms. The wisdom of continued combination therapy after an organism is isolated and antimicrobial susceptibility data are known, however, is more controversial. The available evidence suggests that the greatest benefit of combination antibiotic therapy stems from the increased likelihood of choosing an effective agent during empiric therapy, rather than exploitation of in vitro synergy or the prevention of resistance during definitive treatment. In this review, we summarize the available data comparing monotherapy versus combination antimicrobial therapy for the treatment of infections with Gram-negative bacteria. PMID:22763634

  3. Modulation of Neutrophil Extracellular Trap and Reactive Oxygen Species Release by Periodontal Bacteria

    PubMed Central

    White, Phillipa C.; Milward, Michael R.; Cooper, Paul R.

    2017-01-01

    ABSTRACT Oral bacteria are the main trigger for the development of periodontitis, and some species are known to modulate neutrophil function. This study aimed to explore the release of neutrophil extracellular traps (NETs), associated antimicrobial proteins, and reactive oxygen species (ROS) in response to periodontal bacteria, as well as the underlying pathways. Isolated peripheral blood neutrophils were stimulated with 19 periodontal bacteria. NET and ROS release, as well as the expression of NET-bound antimicrobial proteins, elastase, myeloperoxidase, and cathepsin G, in response to these species was measured using fluorescence-based assays. NET and ROS release was monitored after the addition of NADP (NADPH) oxidase pathway modulators and inhibitors of Toll-like receptors (TLRs). Moreover, bacterial entrapment by NETs was visualized microscopically, and bacterial killing was assessed by bacterial culture. Certain microorganisms, e.g., Veillonella parvula and Streptococcus gordonii, stimulated higher levels of ROS and NET release than others. NETs were found to entrap, but not kill, all periodontal bacteria tested. NADPH oxidase pathway modulators decreased ROS production but not NET production in response to the bacteria. Interestingly, TLR inhibitors did not impact ROS and NET release. These data suggest that the variability in the neutrophil response toward different bacteria may contribute to the pathogenesis of periodontal diseases by mechanisms such as bacterial avoidance of host responses and activation of neutrophils. Moreover, our results indicate that bacterium-stimulated NET release may arise in part via NADPH oxidase-independent mechanisms. The role of TLR signaling in bacterium-induced ROS and NET release needs to be further elucidated. PMID:28947649

  4. Modulation of Neutrophil Extracellular Trap and Reactive Oxygen Species Release by Periodontal Bacteria.

    PubMed

    Hirschfeld, Josefine; White, Phillipa C; Milward, Michael R; Cooper, Paul R; Chapple, Iain L C

    2017-12-01

    Oral bacteria are the main trigger for the development of periodontitis, and some species are known to modulate neutrophil function. This study aimed to explore the release of neutrophil extracellular traps (NETs), associated antimicrobial proteins, and reactive oxygen species (ROS) in response to periodontal bacteria, as well as the underlying pathways. Isolated peripheral blood neutrophils were stimulated with 19 periodontal bacteria. NET and ROS release, as well as the expression of NET-bound antimicrobial proteins, elastase, myeloperoxidase, and cathepsin G, in response to these species was measured using fluorescence-based assays. NET and ROS release was monitored after the addition of NADP (NADPH) oxidase pathway modulators and inhibitors of Toll-like receptors (TLRs). Moreover, bacterial entrapment by NETs was visualized microscopically, and bacterial killing was assessed by bacterial culture. Certain microorganisms, e.g., Veillonella parvula and Streptococcus gordonii , stimulated higher levels of ROS and NET release than others. NETs were found to entrap, but not kill, all periodontal bacteria tested. NADPH oxidase pathway modulators decreased ROS production but not NET production in response to the bacteria. Interestingly, TLR inhibitors did not impact ROS and NET release. These data suggest that the variability in the neutrophil response toward different bacteria may contribute to the pathogenesis of periodontal diseases by mechanisms such as bacterial avoidance of host responses and activation of neutrophils. Moreover, our results indicate that bacterium-stimulated NET release may arise in part via NADPH oxidase-independent mechanisms. The role of TLR signaling in bacterium-induced ROS and NET release needs to be further elucidated. Copyright © 2017 American Society for Microbiology.

  5. Immune Modulation During Latent Herpesvirus Infection

    PubMed Central

    White, Douglas W.; Beard, R. Suzanne; Barton, Erik S.

    2011-01-01

    Summary Nearly all human beings, by the time they reach adolescence, are infected with multiple herpesviruses. At any given time, this family of viruses accounts for 35–40 billion human infections worldwide, making herpesviruses among the most prevalent pathogens known to exist. Compared to most other viruses, herpesviruses are also unique in that infection lasts the life of the host. Remarkably, despite their prevalence and persistence, little is known about how these viruses interact with their hosts, especially during the clinically asymptomatic phase of infection referred to as latency. This review explores data in human and animal systems that reveal the ability of latent herpesviruses to modulate the immune response to self and environmental antigens. From the perspective of the host, there are both potentially detrimental and surprisingly beneficial effects of this lifelong interaction. The realization that latent herpesvirus infection modulates immune responses in asymptomatic hosts forces us to reconsider what constitutes a ‘normal’ immune system in a healthy individual. PMID:22168421

  6. Presence of archaea and selected bacteria in infected root canal systems.

    PubMed

    Brzezińska-Błaszczyk, Ewa; Pawłowska, Elżbieta; Płoszaj, Tomasz; Witas, Henryk; Godzik, Urszula; Agier, Justyna

    2018-05-01

    Infections of the root canal have polymicrobial etiology. The main group of microflora in the infected pulp is bacteria. There is limited data that archaea may be present in infected pulp tissue. The aim of this study was to check the prevalence of archaea in necrotic root canal samples obtained from patients with primary or post-treatment infection. The prevalence of selected bacteria species (Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Synergistes sp.) in necrotic samples was evaluated as well. Sixty-four samples from root canal were collected for DNA and RNA extraction. A PCR assay based on the 16S rRNA gene was used to determine the presence of archaea and selected bacteria. Of the 64 samples, 6 were analyzed by semiquantitative reverse transcription PCR to estimate expression profiles of 16S rRNA, and another 9 were selected for direct sequencing. Archaea were detected in 48.4% samples. Statistical analysis indicated a negative association in coexistence between archaea and Treponema denticola (P < 0.05; Pearson's χ 2 test). The main representative of the Archaea domain found in infected pulp tissue was Methanobrevibacter oralis. Archaea 16S rRNA gene expression was significantly lower than Synergistes sp., Porphyromonas gingivalis, and Tannerella forsythia (P < 0.05; Student's t test). Thus, it can be hypothesized that archaea may participate in the endodontic microbial community.

  7. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

    PubMed Central

    Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona

    2015-01-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  8. Multidrug-resistant bacteria infection and nursing quality management application in the department of physical examination.

    PubMed

    Xu, Li; Luo, Qiang; Chen, Liangzhen; Jiao, Lingmei

    2017-09-01

    The main problem of clinical prevention and control of multi drug resistant bacteria infection is to strengthen the monitoring of pathogenic bacteria spectrum, this study research on the multi drug-resistant bacteria infection and nursing quality management application in the department of physical examination. The results of this study showed that the number of patients with multiple drug resistant infections showed an increasing trend. Therefore, once the patients with multiple drug-resistant bacteria infection are found, the prevention and control of the patients with multiple drug-resistant bacteria should be strictly followed, and the patient's medication care should be highly valued. Also, the nurses need to be classified based on the knowledge and skill characteristics of the nurses in the department of physical examination, and compare the nursing effect before and after classification and grouping. The physicians and individuals receiving physical examinations in the department of physical examination had a higher degree of satisfaction for nursing effect after classification compared with those before classification. Classification and grouping management helps improve the nursing quality and overall quality of the nurses in the department of physical examination.

  9. Saccharomyces boulardii Preserves the Barrier Function and Modulates the Signal Transduction Pathway Induced in Enteropathogenic Escherichia coli-Infected T84 Cells

    PubMed Central

    Czerucka, Dorota; Dahan, Stephanie; Mograbi, Baharia; Rossi, Bernard; Rampal, Patrick

    2000-01-01

    Use of the nonpathogenic yeast Saccharomyces boulardii in the treatment of infectious diarrhea has attracted growing interest. The present study designed to investigate the effect of this yeast on enteropathogenic Escherichia coli (EPEC)-associated disease demonstrates that S. boulardii abrogated the alterations induced by an EPEC strain on transepithelial resistance, [3H]inulin flux, and ZO-1 distribution in T84 cells. Moreover, EPEC-mediated apoptosis of epithelial cells was delayed in the presence of S. boulardii. The yeast did not modify the number of adherent bacteria but lowered by 50% the number of intracellular bacteria. Infection by EPEC induced tyrosine phosphorylation of several proteins in T84 cells, including p46 and p52 SHC isoforms, that was attenuated in the presence of S. boulardii. Similarly, EPEC-induced activation of the ERK1/2 mitogen-activated protein (MAP) kinase pathway was diminished in the presence of the yeast. Interestingly, inhibition of the ERK1/2 pathway with the specific inhibitor PD 98059 decreased EPEC internalization, suggesting that modulation of the ERK1/2 MAP pathway might account for the lowering of the number of intracellular bacteria observed in the presence of S. boulardii. Altogether, this study demonstrated that S. boulardii exerts a protective effect on epithelial cells after EPEC adhesion by modulating the signaling pathway induced by bacterial infection. PMID:10992512

  10. Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria.

    PubMed

    Shima, Kensuke; Coopmeiners, Jonas; Graspeuntner, Simon; Dalhoff, Klaus; Rupp, Jan

    2016-11-01

    Community-acquired pneumonia is caused by intra- and extracellular bacteria, with some of these bacteria also being linked to the pathogenesis of chronic lung diseases, including asthma and chronic obstructive pulmonary disease. Chlamydia pneumoniae is an obligate intracellular pathogen that is highly sensitive to micro-environmental conditions controlling both pathogen growth and host immune responses. The availability of nutrients, as well as changes in oxygen, pH and interferon-γ levels, have been shown to directly influence the chlamydial life cycle and clearance. Although the lung has been traditionally regarded as a sterile environment, sequencing approaches have enabled the identification of a large number of bacteria in healthy and diseased lungs. The influence of the lung microbiota on respiratory infections has not been extensively studied so far and data on chlamydial infections are currently unavailable. In the present study, we speculate on how lung microbiota might interfere with acute and chronic infections by focusing exemplarily on the obligate intracellular C. pneumoniae. Furthermore, we consider changes in the gut microbiota as an additional player in the control of lung infections, especially in view the increasing evidence suggesting the involvement of the gut microbiota in various immunological processes throughout the human body. © 2016 Federation of European Biochemical Societies.

  11. Risk factors for infection with multidrug-resistant bacteria in non-ventilated patients with hospital-acquired pneumonia.

    PubMed

    Seligman, Renato; Ramos-Lima, Luis Francisco; Oliveira, Vivian do Amaral; Sanvicente, Carina; Sartori, Juliana; Pacheco, Elyara Fiorin

    2013-01-01

    To identify risk factors for the development of hospital-acquired pneumonia (HAP) caused by multidrug-resistant (MDR) bacteria in non-ventilated patients. This was a retrospective observational cohort study conducted over a three-year period at a tertiary-care teaching hospital. We included only non-ventilated patients diagnosed with HAP and presenting with positive bacterial cultures. Categorical variables were compared with chi-square test. Logistic regression analysis was used to determine risk factors for HAP caused by MDR bacteria. Of the 140 patients diagnosed with HAP, 59 (42.1%) were infected with MDR strains. Among the patients infected with methicillin-resistant Staphylococcus aureus and those infected with methicillin-susceptible S. aureus, mortality was 45.9% and 50.0%, respectively (p = 0.763). Among the patients infected with MDR and those infected with non-MDR gram-negative bacilli, mortality was 45.8% and 38.3%, respectively (p = 0.527). Univariate analysis identified the following risk factors for infection with MDR bacteria: COPD; congestive heart failure; chronic renal failure; dialysis; urinary catheterization; extrapulmonary infection; and use of antimicrobial therapy within the last 10 days before the diagnosis of HAP. Multivariate analysis showed that the use of antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria (OR = 3.45; 95% CI: 1.56-7.61; p = 0.002). In this single-center study, the use of broad-spectrum antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria in non-ventilated patients with HAP.

  12. Risk factors for infection with multidrug-resistant bacteria in non-ventilated patients with hospital-acquired pneumonia*,**

    PubMed Central

    Seligman, Renato; Ramos-Lima, Luis Francisco; Oliveira, Vivian do Amaral; Sanvicente, Carina; Sartori, Juliana; Pacheco, Elyara Fiorin

    2013-01-01

    OBJECTIVE: To identify risk factors for the development of hospital-acquired pneumonia (HAP) caused by multidrug-resistant (MDR) bacteria in non-ventilated patients. METHODS: This was a retrospective observational cohort study conducted over a three-year period at a tertiary-care teaching hospital. We included only non-ventilated patients diagnosed with HAP and presenting with positive bacterial cultures. Categorical variables were compared with chi-square test. Logistic regression analysis was used to determine risk factors for HAP caused by MDR bacteria. RESULTS: Of the 140 patients diagnosed with HAP, 59 (42.1%) were infected with MDR strains. Among the patients infected with methicillin-resistant Staphylococcus aureus and those infected with methicillin-susceptible S. aureus, mortality was 45.9% and 50.0%, respectively (p = 0.763). Among the patients infected with MDR and those infected with non-MDR gram-negative bacilli, mortality was 45.8% and 38.3%, respectively (p = 0.527). Univariate analysis identified the following risk factors for infection with MDR bacteria: COPD; congestive heart failure; chronic renal failure; dialysis; urinary catheterization; extrapulmonary infection; and use of antimicrobial therapy within the last 10 days before the diagnosis of HAP. Multivariate analysis showed that the use of antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria (OR = 3.45; 95% CI: 1.56-7.61; p = 0.002). CONCLUSIONS: In this single-center study, the use of broad-spectrum antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria in non-ventilated patients with HAP. PMID:23857697

  13. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections.

    PubMed

    Caetano da Silva, Sandro Donizete; Mendes de Souza, Maria Gorete; Oliveira Cardoso, Miguel Jorge; da Silva Moraes, Thais; Ambrósio, Sérgio Ricardo; Sola Veneziani, Rodrigo Cássio; Martins, Carlos Henrique G

    2014-12-01

    Endodontic infections have a polymicrobial nature, but anaerobic bacteria prevail among the infectious microbes. Considering that it is easy to eliminate planktonic bacteria, biofilm-forming bacteria still challenge clinicians during the fight against endodontic diseases. The chemical constituents of the oleoresin of Pinus elliottii, a plant belonging to the family Pinaceae, stand out in the search for biologically active compounds based on natural products with potential application in the treatment of endodontic infections. Indeed, plant oleoresins are an abundant natural source of diterpenes that display significant and well-defined biological activities as well as potential antimicrobial action. In this context, this study aimed to (1) evaluate the in vitro antibacterial activity of the oleoresin, fractions, and subfractions of P. elliottii as well as the action of dehydroabietic acid against 11 anaerobic bacteria that cause endodontic infection in both their planktonic and biofilm forms and (2) assess the in vitro antibiofilm activity of dehydroabietic acid against the same group of bacteria. The broth microdilution technique helped to determine the minimum inhibitory concentration (MIC) of the oleoresin and fractions. This same technique aided determination of the MIC values of nine subfractions of Fraction 1, the most active fraction. The MIC, minimum bactericidal concentration, and antibiofilm activity of dehydroabietic acid against the tested anaerobic bacteria were also examined. The oleoresin and fractions, especially fraction PE1, afforded promising MIC values, which ranged from 0.4 to 50 μg/mL. Concerning the nine evaluated subfractions, PE1.3 and PE1.4 furnished the most noteworthy MIC values, between 6.2 and 100 μg/mL. Dehydroabietic acid displayed antibacterial activity, with MIC values lying from 6.2 to 50 μg/mL, as well as bactericidal effect for all the investigated bacteria, except for Prevotella nigrescens. Assessment of the antibiofilm

  14. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligandmore » spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.« less

  15. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis.

    PubMed

    Baur, David; Gladstone, Beryl Primrose; Burkert, Francesco; Carrara, Elena; Foschi, Federico; Döbele, Stefanie; Tacconelli, Evelina

    2017-09-01

    Antibiotic stewardship programmes have been shown to reduce antibiotic use and hospital costs. We aimed to evaluate evidence of the effect of antibiotic stewardship on the incidence of infections and colonisation with antibiotic-resistant bacteria. For this systematic review and meta-analysis, we searched PubMed, the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, and Web of Science for studies published from Jan 1, 1960, to May 31, 2016, that analysed the effect of antibiotic stewardship programmes on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infections in hospital inpatients. Two authors independently assessed the eligibility of trials and extracted data. Studies involving long-term care facilities were excluded. The main outcomes were incidence ratios (IRs) of target infections and colonisation per 1000 patient-days before and after implementation of antibiotic stewardship. Meta-analyses were done with random-effect models and heterogeneity was calculated with the I 2 method. We included 32 studies in the meta-analysis, comprising 9 056 241 patient-days and 159 estimates of IRs. Antibiotic stewardship programmes reduced the incidence of infections and colonisation with multidrug-resistant Gram-negative bacteria (51% reduction; IR 0·49, 95% CI 0·35-0·68; p<0·0001), extended-spectrum β-lactamase-producing Gram-negative bacteria (48%; 0·52, 0·27-0·98; p=0·0428), and meticillin-resistant Staphylococcus aureus (37%; 0·63, 0·45-0·88; p=0·0065), as well as the incidence of C difficile infections (32%; 0·68, 0·53-0·88; p=0·0029). Antibiotic stewardship programmes were more effective when implemented with infection control measures (IR 0·69, 0·54-0·88; p=0·0030), especially hand-hygiene interventions (0·34, 0·21-0·54; p<0·0001), than when implemented alone. Antibiotic stewardship did not affect the IRs of vancomycin

  16. Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria.

    PubMed

    El-Shibiny, Ayman; El-Sahhar, Salma

    2017-11-01

    Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.

  17. Colonisation of antibiotic resistant bacteria in a cohort of HIV infected children in Ghana.

    PubMed

    Sampane-Donkor, Eric; Badoe, Ebenezer Vincent; Annan, Jennifer Adoley; Nii-Trebi, Nicholas

    2017-01-01

    Antibiotic use not only selects for resistance in pathogenic bacteria, but also in commensal flora of exposed individuals. Little is known epidemiologically about antibiotic resistance in relation to people with HIV infection in sub-Saharan Africa. This study investigated the carriage of antibiotic resistant bacteria among HIV infected children at a tertiary hospital in Ghana. One hundred and eighteen HIV positive children were recruited at the Korle-Bu Teaching Hospital in Ghana and nasopharyngeal specimens were collected from them. The specimens were cultured for bacteria, and the isolates were identified by standard microbiological methods. Antibiotic susceptibility tests were carried out on selected bacterial organisms by the Kirby Bauer method. Bacteria isolated from the study subjects included Moraxella catarrhalis (39.8%), coagulase negative staphylococci (33.1%), Streptococcus pneumoniae (30.5%), diptheroids (29.7%), viridian streptococci (27.1%), Staphylococcus aureus (22.0%), Citrobacter spp. (4.2%) and Neisseria meningitidis (0.9%). Prevalence of antibiotic resistance of S. pneumoniae ranged from 5.6% (ceftriaxone) to 58.3% (cotrimoxazole), M. catarrhalis ranged from 2.1% (gentamicin) to 80.6% (ampicillin), and S. aureus ranged from 7.7% (cefoxitin) to 100% (penicillin). The prevalence of multiple drug resistance was 16.7% for S. pneumoniae, 57.4% for M. catarrhalis and 84.6% for S. aureus. HIV infected children in the study area commonly carry multi-drug resistant isolates of several pathogenic bacteria such as S. aureus and S. pneumoniae. Infections arising in these patients that are caused by S. aureus and S. pneumoniae could be treated with ceftriaxone and cefoxitin respectively.

  18. Colonisation of antibiotic resistant bacteria in a cohort of HIV infected children in Ghana

    PubMed Central

    Sampane-Donkor, Eric; Badoe, Ebenezer Vincent; Annan, Jennifer Adoley; Nii-Trebi, Nicholas

    2017-01-01

    Antibiotic use not only selects for resistance in pathogenic bacteria, but also in commensal flora of exposed individuals. Little is known epidemiologically about antibiotic resistance in relation to people with HIV infection in sub-Saharan Africa. This study investigated the carriage of antibiotic resistant bacteria among HIV infected children at a tertiary hospital in Ghana. One hundred and eighteen HIV positive children were recruited at the Korle-Bu Teaching Hospital in Ghana and nasopharyngeal specimens were collected from them. The specimens were cultured for bacteria, and the isolates were identified by standard microbiological methods. Antibiotic susceptibility tests were carried out on selected bacterial organisms by the Kirby Bauer method. Bacteria isolated from the study subjects included Moraxella catarrhalis (39.8%), coagulase negative staphylococci (33.1%), Streptococcus pneumoniae (30.5%), diptheroids (29.7%), viridian streptococci (27.1%), Staphylococcus aureus (22.0%), Citrobacter spp. (4.2%) and Neisseria meningitidis (0.9%). Prevalence of antibiotic resistance of S. pneumoniae ranged from 5.6% (ceftriaxone) to 58.3% (cotrimoxazole), M. catarrhalis ranged from 2.1% (gentamicin) to 80.6% (ampicillin), and S. aureus ranged from 7.7% (cefoxitin) to 100% (penicillin). The prevalence of multiple drug resistance was 16.7% for S. pneumoniae, 57.4% for M. catarrhalis and 84.6% for S. aureus. HIV infected children in the study area commonly carry multi-drug resistant isolates of several pathogenic bacteria such as S. aureus and S. pneumoniae. Infections arising in these patients that are caused by S. aureus and S. pneumoniae could be treated with ceftriaxone and cefoxitin respectively. PMID:28451037

  19. Imaging bacteria and biofilms on hardware and periprosthetic tissue in orthopedic infections.

    PubMed

    Nistico, Laura; Hall-Stoodley, Luanne; Stoodley, Paul

    2014-01-01

    Infection is a major complication of total joint arthroplasty (TJA) surgery, and even though it is now as low as 1 % in some hospitals, the increasing number of primary surgeries translates to tens of thousands of revisions due to prosthetic joint infection (PJI). In many cases the only solution is revision surgery in which the hardware is removed. This process is extremely long and painful for patients and is a considerable financial burden for the health-care system. A significant proportion of the difficulties in diagnosis and treatment of PJI are associated with biofilm formation where bacteria attach to the surface of the prosthesis and periprosthetic tissue and build a 3-D biofilm community encased in an extracellular polymeric slime (EPS) matrix. Bacteria in biofilms have a low metabolic rate which is thought to be a major contributor to their recalcitrance to antibiotic treatment. The diagnosis of biofilm infections is difficult due to the fact that bacteria in biofilms are not readily cultured with standard clinical microbiology techniques. To identify and visualize in situ biofilm bacteria in orthopedic samples, we have developed protocols for the collection of samples in the operating room, for molecular fluorescent staining with 16S rRNA fluorescence in situ hybridization (FISH), and for imaging of samples using confocal laser scanning microscopy (CLSM). Direct imaging is the only method which can definitively identify biofilms on implants and complements both culture and culture-independent diagnostic methods.

  20. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections

    PubMed Central

    El-Aouar Filho, Rachid A.; Nicolas, Aurélie; De Paula Castro, Thiago L.; Deplanche, Martine; De Carvalho Azevedo, Vasco A.; Goossens, Pierre L.; Taieb, Frédéric; Lina, Gerard; Le Loir, Yves; Berkova, Nadia

    2017-01-01

    Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host. PMID:28589102

  1. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture

    PubMed Central

    2018-01-01

    Rhizosphere microbiome which has been shown to enhance plant growth and yield are modulated or influenced by a few environmental factors such as soil type, plant cultivar, climate change and anthropogenic activities. In particular, anthropogenic activity, such as the use of nitrogen-based chemical fertilizers, is associated with environmental destruction and this calls for a more ecofriendly strategy to increase nitrogen levels in agricultural land. This feat is attainable by harnessing nitrogen-fixing endophytic and free-living rhizobacteria. Rhizobium, Pseudomonas, Azospirillum and Bacillus, have been found to have positive impacts on crops by enhancing both above and belowground biomass and could therefore play positive roles in achieving sustainable agriculture outcomes. Thus, it is necessary to study this rhizosphere microbiome with more sophisticated culture-independent techniques such as next generation sequencing (NGS) with the prospect of discovering novel bacteria with plant growth promoting traits. This review is therefore aimed at discussing factors that can modulate rhizosphere microbiome with focus on the contributions of nitrogen fixing bacteria towards sustainable agricultural development and the techniques that can be used for their study. PMID:29570619

  2. Gallstones containing bacteria are biofilms: bacterial slime production and ability to form pigment solids determines infection severity and bacteremia.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2007-08-01

    Gallstone bacteria provide a reservoir for biliary infections. Slime production facilitates adherence, whereas beta-glucuronidase and phospholipase generate colonization surface. These factors facilitate gallstone formation, but their influence on infection severity is unknown. Two hundred ninety-two patients were studied. Gallstones, bile, and blood (as applicable) were cultured. Bacteria were tested for beta-glucuronidase/phospholipase production and quantitative slime production. Infection severity was correlated with bacterial factors. Bacteria were present in 43% of cases, 13% with bacteremia. Severe infections correlated directly with beta-glucuronidase/phospholipase (55% with vs 13% without, P < 0.0001), but inversely with slime production (55 vs 8%, slime <75 or >75, P = 0.008). Low slime production and beta-glucuronidase/phospholipase production were additive: Severe infections were present in 76% with both, but 10% with either or none (P < 0.0001). beta-Glucuronidase/phospholipase production facilitated bactibilia (86% with vs 62% without, P = 0.03). Slime production was 19 (+/-8) vs 50 (+/-10) for bacteria that did or did not cause bacteremia (P = 0.004). No bacteria with slime >75 demonstrated bacteremia. Bacteria-laden gallstones are biofilms whose characteristics influence illness severity. Factors creating colonization surface (beta-glucuronidase/phospholipase) facilitated bacteremia and severe infections; but abundant slime production, while facilitating colonization, inhibited detachment and cholangiovenous reflux. This shows how properties of the gallstone biofilm determine the severity of the associated illness.

  3. HLA-B27 Modulates Intracellular Growth of Salmonella Pathogenicity Island 2 Mutants and Production of Cytokines in Infected Monocytic U937 Cells

    PubMed Central

    Ge, Shichao; He, Qiushui; Granfors, Kaisa

    2012-01-01

    Background Salmonella enterica serovar Enteritidis PT4 KS8822/88 replicates rapidly in HLA-B27-transfected human monocytic U937 cells. In this process, Salmonella pathogenicity island 2 (SPI-2) genes play a crucial role. Our previous study indicated that 118 Salmonella genes, including 8 SPI-2 genes were affected by HLA-B27 antigen during Salmonella infection of U937 cells. Methods/Principal Findings To further investigate Salmonella replication in HLA-B27-positive U937 monocytic cells, two SPI-2 genes, ssaS and sscA up-regulated most during Salmonella infection of HLA-B27-transfected U937 cells, were mutated by using one-step gene disruption method. Intracellular survival and replication of the mutants in the U937 cells was compared to that of the wild type strain. Surprisingly, the two mutated strains replicated significantly more than the wild type bacteria in HLA-B27-transfected cells. Secretion of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) was significantly induced during the infection of HLA-B27-transfected U937 cells with the mutants. The results indicated that the certain SPI-2 genes in wild type bacteria suppress Salmonella intracellular growth and production of cytokines in infected HLA-B27-transfected cells. HLA-B27-associated modulation of Salmonella SPI-2 genes and cytokine production may have importance in the persistent infection of the bacteria and the pathogenesis of reactive arthritis. Conclusions The study provides evidence that certain virulence factors of pathogens can reduce the intracellular growth in the host cells. We suggest that the limiting intracellular growth might be a strategy for persistence of bacteria in host cells, keeping a balance between pathogenic growth and pathogenesis. PMID:22470519

  4. Significance of anaerobic bacteria in postoperative infection after radical cystectomy and urinary diversion or reconstruction.

    PubMed

    Hiyama, Yoshiki; Takahashi, Satoshi; Uehara, Teruhisa; Hashimoto, Jiro; Kurimura, Yuichiro; Tanaka, Toshiaki; Masumori, Naoya; Tsukamoto, Taiji

    2013-10-01

    Radical cystectomy followed by urinary diversion or reconstruction (RC) is a standard treatment for patients with muscle-invasive bladder cancer. In these operations, a high frequency of complications, especially postoperative infection, has been reported. However, there have only been a few studies about postoperative anaerobic bacterial infection. To clarify the significance and role of anaerobic bacteria in postoperative infection, we retrospectively analyzed cases in which postoperative infection by these organisms developed. A total of 126 patients who underwent RC from 2006 to 2010 were included in this study. Various types of postoperative infection occurred in 66 patients. Anaerobic bacterial infections were detected with cultures for urine and blood in one case, for blood in two cases, and for surgical wound pus in four. The frequency of postoperative anaerobic bacterial infection in RC was less than that of colon surgery. However, this study revealed the possible development of a nonnegligible number of postoperative anaerobic bacterial infections. Therefore, we should consider anaerobic bacteria as possible pathogens in postoperative infection after RC.

  5. A Model of Superinfection of Virus-Infected Zebrafish Larvae: Increased Susceptibility to Bacteria Associated With Neutrophil Death

    PubMed Central

    Boucontet, Laurent; Passoni, Gabriella; Thiry, Valéry; Maggi, Ludovico; Herbomel, Philippe; Levraud, Jean-Pierre; Colucci-Guyon, Emma

    2018-01-01

    Enhanced susceptibility to bacterial infection in the days following an acute virus infection such as flu is a major clinical problem. Mouse models have provided major advances in understanding viral-bacterial superinfections, yet interactions of the anti-viral and anti-bacterial responses remain elusive. Here, we have exploited the transparency of zebrafish to study how viral infections can pave the way for bacterial co-infections. We have set up a zebrafish model of sequential viral and bacterial infection, using sublethal doses of Sindbis virus and Shigella flexneri bacteria. This virus induces a strong type I interferons (IFN) response, while the bacterium induces a strong IL1β and TNFα-mediated inflammatory response. We found that virus-infected zebrafish larvae showed an increased susceptibility to bacterial infection. This resulted in the death with concomitant higher bacterial burden of the co-infected fish compared to the ones infected with bacteria only. By contrast, infecting with bacteria first and virus second did not lead to increased mortality or microbial burden. By high-resolution live imaging, we showed that neutrophil survival was impaired in Sindbis-then-Shigella co-infected fish. The two types of cytokine responses were strongly induced in co-infected fish. In addition to type I IFN, expression of the anti-inflammatory cytokine IL10 was induced by viral infection before bacterial superinfection. Collectively, these observations suggest the zebrafish larva as a useful animal model to address mechanisms underlying increased bacterial susceptibility upon viral infection. PMID:29881380

  6. Molecular identification and antibiotic resistant bacteria isolated from primary dentition infections.

    PubMed

    Loyola-Rodriguez, J P; Garcia-Cortes, J O; Martinez-Martinez, R E; Patiño-Marin, N; Martinez-Castañon, G A; Zavala-Alonso, N V; Amano, A

    2014-12-01

    Bacterial resistance to antibiotics is a health problem in many parts of the world. The aim of this study was to identify bacteria from dental infections and determine bacterial resistance to antibiotics used in dental care in the primary dentition. This cross-sectional study comprised 60 children who presented for dental treatment for active dental infections in the primary dentition. Samples from dental infections were collected and bacteria were identified by polymerase chain reaction (PCR) assay. Bacterial resistance to antibiotics was determined by colony forming units on agar plates containing amoxicillin, clindamycin and amoxillicin-clavulanic acid (A-CA) tested at 8 μg/ml or 16 μg/ml. Clindamycin in both concentrations tested (8 μg/ml and 16 μg/ml) showed the highest bacterial resistance (85.9%), followed by amoxicillin (43.7%) and A-CA (12.0%). All comparisons among the three antibiotics used in the study exhibited statistical significance (p = <0.05) in both concentrations tested (8 μg/ml and 16 μg/ml), and under aerobic and anaerobic conditions. The most prevalent resistant species identified by PCR in primary dentition infections were: Streptococcus oralis and Prevotella intermedia (75.0%); Treponema denticola and Porphyromonas gingivalis (48.3%); Streptococcus mutans (45.0%); Campylobacter rectus; and Streptococcus salivarius (40%). This study demonstrated that A-CA exhibited the lowest bacterial resistance for clinical isolates in primary dentition infections. © 2014 Australian Dental Association.

  7. Novel anti-infective compounds from marine bacteria.

    PubMed

    Rahman, Hafizur; Austin, Brian; Mitchell, Wilfrid J; Morris, Peter C; Jamieson, Derek J; Adams, David R; Spragg, Andrew Mearns; Schweizer, Michael

    2010-03-05

    As a result of the continuous evolution of microbial pathogens towards antibiotic-resistance, there have been demands for the development of new and effective antimicrobial compounds. Since the 1960s, the scientific literature has accumulated many publications about novel pharmaceutical compounds produced by a diverse range of marine bacteria. Indeed, marine micro-organisms continue to be a productive and successful focus for natural products research, with many newly isolated compounds possessing potentially valuable pharmacological activities. In this regard, the marine environment will undoubtedly prove to be an increasingly important source of novel antimicrobial metabolites, and selective or targeted approaches are already enabling the recovery of a significant number of antibiotic-producing micro-organisms. The aim of this review is to consider advances made in the discovery of new secondary metabolites derived from marine bacteria, and in particular those effective against the so called "superbugs", including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE), which are largely responsible for the increase in numbers of hospital acquired, i.e., nosocomial, infections.

  8. Outcome of Transplantation Using Organs From Donors Infected or Colonized With Carbapenem-Resistant Gram-Negative Bacteria.

    PubMed

    Mularoni, A; Bertani, A; Vizzini, G; Gona, F; Campanella, M; Spada, M; Gruttadauria, S; Vitulo, P; Conaldi, P; Luca, A; Gridelli, B; Grossi, P

    2015-10-01

    Donor-derived infections due to multidrug-resistant bacteria are a growing problem in solid organ transplantation, and optimal management options are not clear. In a 2-year period, 30/214 (14%) recipients received an organ from 18/170 (10.5%) deceased donors with infection or colonization caused by a carbapenem-resistant gram-negative bacteria that was unknown at the time of transplantation. Among them, 14/30 recipients (47%) received a transplant from a donor with bacteremia or with infection/colonization of the transplanted organ and were considered at high risk of donor-derived infection transmission. The remaining 16/30 (53%) recipients received an organ from a nonbacteremic donor with colonization of a nontransplanted organ and were considered at low risk of infection transmission. Proven transmission occurred in 4 of the 14 high-risk recipients because donor infection was either not recognized, underestimated, or not communicated. These recipients received late, short or inappropriate posttransplant antibiotic therapy. Transmission did not occur in high-risk recipients who received appropriate and prompt antibiotic therapy for at least 7 days. The safe use of organs from donors with multidrug-resistant bacteria requires intra- and inter-institutional communication to allow appropriate management and prompt treatment of recipients in order to avoid transmission of infection. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  9. Legionnaires' disease: respiratory infections caused by Legionella bacteria.

    PubMed

    Davis, G S; Winn, W C

    1987-09-01

    This article provides a review of Legionnaire's Disease, a bacterial pneumonia caused by Legionella species, and of Pontiac Fever, the flu-like illness caused by these microorganisms. The authors draw on their personal experience with major human outbreaks of Legionnaire's Disease and with animal models of Legionella pneumonia. Emphasis is placed on the sources in nature from which legionellosis is acquired, the means of dissemination of bacteria, the epidemiology of human infections, the pathogenetic mechanisms of disease and host defense, the clinical manifestations, and the treatment.

  10. Quantification of Propionic Acid in the Bovine Spinal Disk After Infection of the Tissue With Propionibacteria acnes Bacteria.

    PubMed

    Magnitsky, Sergey; Dudli, Stefan; Tang, Xinyan; Kaur, Jaskanwaljeet; Diaz, Joycelyn; Miller, Steve; Lotz, Jeffrey C

    2018-06-01

    Research. The goal of this study was to investigate whether Propionibacteria acnes infection of the intervertebral disc can be detected noninvasively by nuclear magnetic resonance (NMR) spectroscopy. Microbiological studies of surgical samples suggest that a significant subpopulation of back pain patients may have occult disc infection with P. acnes bacteria. This hypothesis is further supported by a double-blind clinical trial showing that back pain patients with Modic type 1 changes may respond to antibiotic treatment. Because significant side effects are associated with antibiotic treatment, there is a need for a noninvasive method to detect whether specific discs in back pain patients are infected with P acnes bacteria. P. acnes bacteria were obtained from human patients. NMR detection of a propionic acid (PA) in the bacteria extracts was conducted on 500 MHz high-resolution spectrometer, whereas in vivo NMR spectroscopy of an isolated bovine disk tissue infected with P. acnes was conducted on 7 T magnetic resonance imaging scanner. NMR spectra of P. acnes metabolites revealed a distinct NMR signal with identical chemical shits (1.05 and 2.18 ppm) as PA (a primary P. acne metabolite). The 1.05 ppm signal does not overlap with other bacteria metabolites, and its intensity increases linearly with P. acnes concentration. Bovine disks injected with P. acnes bacteria revealed a very distinct NMR signal at 1.05 ppm, which linearly increased with P. acnes concentration. The 1.05 ppm NMR signal from PA can be used as a marker of P. acnes infection of discs. This signal does not overlap with other disc metabolites and linearly depends on P. acnes concentration. Consequently, NMR spectroscopy may provide a noninvasive method to detect disc infection in the clinical setting. N/A.

  11. Gut Microbiota-Induced Immunoglobulin G Controls Systemic Infection by Symbiotic Bacteria and Pathogens

    PubMed Central

    Zeng, Melody Y.; Cisalpino, Daniel; Varadarajan, Saranyaraajan; Hellman, Judith; Warren, H. Shaw; Cascalho, Marilia; Inohara, Naohiro; Núñez, Gabriel

    2016-01-01

    The gut microbiota is compartmentalized in the intestinal lumen and induces local immune responses, but it remains unknown whether the gut microbiota can induce systemic response and contribute to systemic immunity. We report that selective gut symbiotic gram-negative bacteria were able to disseminate systemically to induce immunoglobulin G (IgG) response, which primarily targeted gram-negative bacterial antigens and conferred protection against systemic infections by E. coli and Salmonella by directly coating bacteria to promote killing by phagocytes. T cells and Toll-like receptor 4 on B cells were important in the generation of microbiota-specific IgG. We identified murein lipoprotein (MLP), a highly conserved gram-negative outer membrane protein, as a major antigen that induced systemic IgG homeostatically in both mice and humans. Administration of anti-MLP IgG conferred crucial protection against systemic Salmonella infection. Thus, our findings reveal an important function for the gut microbiota in combating systemic infection through the induction of protective IgG. PMID:26944199

  12. Assessment of pathogenesis of infective endocarditis by plasma IgG antibody titer test against periodontal bacteria.

    PubMed

    Isoshima, Daichi; Yamashiro, Keisuke; Matsunaga, Kazuyuki; Shinobe, Michitaka; Nakanishi, Nagako; Nakanishi, Izumi; Omori, Kazuhiro; Yamamoto, Tadashi; Takashiba, Shogo

    2017-10-01

    Oral bacteria cause infective endocarditis (IE), so severe periodontitis is thought to be high risk for IE. We suggest the identification of high-risk patients by an IgG antibody titer test against periodontal bacteria might become common screening test.

  13. Protist predation can select for bacteria with lowered susceptibility to infection by lytic phages.

    PubMed

    Örmälä-Odegrip, Anni-Maria; Ojala, Ville; Hiltunen, Teppo; Zhang, Ji; Bamford, Jaana K H; Laakso, Jouni

    2015-05-07

    Consumer-resource interactions constitute one of the most common types of interspecific antagonistic interaction. In natural communities, complex species interactions are likely to affect the outcomes of reciprocal co-evolution between consumers and their resource species. Individuals face multiple enemies simultaneously, and consequently they need to adapt to several different types of enemy pressures. In this study, we assessed how protist predation affects the susceptibility of bacterial populations to infection by viral parasites, and whether there is an associated cost of defence on the competitive ability of the bacteria. As a study system we used Serratia marcescens and its lytic bacteriophage, along with two bacteriovorous protists with distinct feeding modes: Tetrahymena thermophila (particle feeder) and Acanthamoeba castellanii (surface feeder). The results were further confirmed with another study system with Pseudomonas and Tetrahymena thermophila. We found that selection by protist predators lowered the susceptibility to infections by lytic phages in Serratia and Pseudomonas. In Serratia, concurrent selection by phages and protists led to lowered susceptibility to phage infections and this effect was independent from whether the bacteria shared a co-evolutionary history with the phage population or not. Bacteria that had evolved with phages were overall more susceptible to phage infection (compared to bacteria with history with multiple enemies) but they were less vulnerable to the phages they had co-evolved with than ancestral phages. Selection by bacterial enemies was costly in general and was seen as a lowered fitness in absence of phages, measured as a biomass yield. Our results show the significance of multiple species interactions on pairwise consumer-resource interaction, and suggest potential overlap in defending against predatory and parasitic enemies in microbial consumer-resource communities. Ultimately, our results could have larger scale

  14. [A Case of Hyperammonemia Caused by Urinary Tract Infection Due to Urease-Producing Bacteria].

    PubMed

    Emura, Masahiro; Tsuchihashi, Kazunari; Shimizu, Yosuke; Kanamaru, Sojun; Matoba, Shun; Ito, Noriyuki

    2016-08-01

    We present here a rare case of hyperammonemia without liver dysfunction or portal-systemic shunting. The patient was an 80-year-old woman with a history of neurogenic bladder. She was admitted to a nearby hospital for vomiting, diarrhea and consciousness disturbance. Two days after admission, she was transferred to our hospital because of persistant consciousness disturbance. Laboratory data revealed hyperammonemia, but there was no indication of liver dysfunction. Moreover abdominal computed tomography did not reveal any clear finding of liver disease or portal-systemic shunting, but we noted multiple large bladder diverticula. Antibiotic therapy, tracheal intubation, ventilator management and bladder catheterization were performed. The patient's level of consciousness improved rapidly. Urinary culture revealed Bacteroides ureolyticus (urease-producing bacteria). The patient was diagnosed with hyperammonemia and a urinary tract infection due to urease-producing bacteria. Thus, physicians should be aware that obstructive urinary tract infections due to urease-producing bacteria can also be the cause of hyperammonemia.

  15. Capacity of anaerobic bacteria from necrotic dental pulps to induce purulent infections.

    PubMed

    Sundqvist, G K; Eckerbom, M I; Larsson, A P; Sjögren, U T

    1979-08-01

    Combinations of bacteria isolated from the root canals of teeth with necrotic pulps and periapical bone destruction were tested for their capacity to induce abscess formation and transmissible infections when inoculated subcutaneously into guinea pigs. Transmissible infections could be induced with combinations obtained from teeth with purulent apical inflammation, but not with combinations from symptomless teeth with chronic apical inflammation. All combinations which gave transmissible infections contained strains of Bacteroides melaninogenicus or B. asaccharolyticus (formerly B. melaninogenicus subsp. asaccharolyticus). The results suggest that purulent inflammation in the apical region in certain cases may be induced by specific combinations of bacteria in the root canal and that the presence of B. melaninogenicus or B. asaccharolyticus in such combinations is essential. However, with one exception, the strains needed the support of additional microorganisms to achieve pathogenicity. The results indicate that Peptostreptococcus micros was also essential. Histological sections of the lesions in the guinea pigs showed that all bacterial combinations induced acute inflammation with an accumulation of polymorphonuclear leukocytes and the formation of an abscess. However, the presence of B. melaninogenicus or B. asaccharolyticus in the combinations resulted in a failure of abscess resolution, with a gradually increaseing accumulation of polymorphonuclear leukocytes.

  16. Identifying the major bacteria causing intramammary infections in individual milk samples of sheep and goats using traditional bacteria culturing and real-time polymerase chain reaction.

    PubMed

    Rovai, M; Caja, G; Salama, A A K; Jubert, A; Lázaro, B; Lázaro, M; Leitner, G

    2014-09-01

    Use of DNA-based methods, such as real-time PCR, has increased the sensitivity and shortened the time for bacterial identification, compared with traditional bacteriology; however, results should be interpreted carefully because a positive PCR result does not necessarily mean that an infection exists. One hundred eight lactating dairy ewes (56 Manchega and 52 Lacaune) and 24 Murciano-Granadina dairy goats were used for identifying the main bacteria causing intramammary infections (IMI) using traditional bacterial culturing and real-time PCR and their effects on milk performance. Udder-half milk samples were taken for bacterial culturing and somatic cell count (SCC) 3 times throughout lactation. Intramammary infections were assessed based on bacteria isolated in ≥2 samplings accompanied by increased SCC. Prevalence of subclinical IMI was 42.9% in Manchega and 50.0% in Lacaune ewes and 41.7% in goats, with the estimated milk yield loss being 13.1, 17.9, and 18.0%, respectively. According to bacteriology results, 87% of the identified single bacteria species (with more than 3 colonies/plate) or culture-negative growth were identical throughout samplings, which agreed 98.9% with the PCR results. Nevertheless, the study emphasized that 1 sampling may not be sufficient to determine IMI and, therefore, other inflammatory responses such as increased SCC should be monitored to identify true infections. Moreover, when PCR methodology is used, aseptic and precise milk sampling procedures are key for avoiding false-positive amplifications. In conclusion, both PCR and bacterial culture methods proved to have similar accuracy for identifying infective bacteria in sheep and goats. The final choice will depend on their response time and cost analysis, according to the requirements and farm management strategy. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?

    PubMed

    Celli, Jean; Tsolis, Renée M

    2015-02-01

    The unfolded protein response (UPR) is a cytoprotective response that is aimed at restoring cellular homeostasis following physiological stress exerted on the endoplasmic reticulum (ER), which also invokes innate immune signalling in response to invading microorganisms. Although it has been known for some time that the UPR is modulated by various viruses, recent evidence indicates that it also has multiple roles during bacterial infections. In this Review, we describe how bacteria interact with the ER, including how bacteria induce the UPR, how subversion of the UPR promotes bacterial proliferation and how the UPR contributes to innate immune responses against invading bacteria.

  18. A prebiotic role of Ecklonia cava improves the mortality of Edwardsiella tarda-infected zebrafish models via regulating the growth of lactic acid bacteria and pathogen bacteria.

    PubMed

    Lee, WonWoo; Oh, Jae Young; Kim, Eun-A; Kang, Nalae; Kim, Kil-Nam; Ahn, Ginnae; Jeon, You-Jin

    2016-07-01

    In this study, the beneficial prebiotic roles of Ecklonia cava (E. cava, EC) were evaluated on the growth of lactic acid bacteria (LAB) and pathogen bacteria and the mortality of pathogen-bacteria infected zebrafish model. The result showed that the original E. cava (EC) led to the highest growth effects on three LABs (Lactobacillus brevis, L. brevis; Lactobacillus pentosus, L. pentosus; Lactobacillus plantarum; L. plantarum) and it was dose-dependent manners. Also, EC, its Celluclast enzymatic (ECC) and 100% ethanol extracts (ECE) showed the anti-bacterial activities on the fish pathogenic bacteria such as (Edwardsiella tarda; E. tarda, Streptococcus iniae; S. iniae, and Vibrio harveyi; V. harveyi). Interestingly, EC induced the higher production of the secondary metabolites from L. plantarum in MRS medium. The secondary metabolites produced by EC significantly inhibited the growth of pathogen bacteria. In further in vivo study, the co-treatment of EC and L. plantarum improved the growth and mortality of E. tarda-infected zebrafish as regulating the expression of inflammatory molecules such as iNOS and COX2. Taken together, our present study suggests that the EC plays an important role as a potential prebiotic and has a protective effect against the infection caused by E. tarda injection in zebrafish. Also, our conclusion from this evidence is that EC can be used and applied as a useful prebiotic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Bacteria on Urine Microscopy Is Not Associated with Systemic Infection in Patients with Obstructing Urolithiasis.

    PubMed

    Cheung, Felix; Loeb, Charles A; Croglio, Michael P; Waltzer, Wayne C; Weissbart, Steven J

    2017-09-01

    Determining whether bacterial presence in urine microscopy represents infection is important as ureteral stent placement is indicated in patients with obstructing urolithiasis and infection. We aim to investigate whether the presence of bacteria on urine microscopy is associated with other markers of infection in patients with obstructing urolithiasis presenting to the emergency room. We performed a cross-sectional study of 199 patients with obstructing urolithiasis and divided patients into two groups according to the presence of bacteria on urine microscopy. The primary outcome was serum white blood cell count and secondary outcomes were objective fever, subjective fever, tachycardia, pyuria, and final urine culture. Univariate and multivariate analysis were used to assess whether the presence of bacteria on microscopy was associated with other markers of infection. The study included 72 patients in the bacteriuria group and 127 without bacteriuria. On univariate analysis, the presence of bacteria was not associated with leukocytosis, objective fever, or subjective fever, but it was associated with gender (p < 0.001), pyuria (p < 0.001), positive nitrites (p = 0.001), positive leukocyte esterase (p < 0.001), and squamous epithelial cells (p = 0.002). In a multilinear regression model including the presence of squamous cells, age, and sex, the presence of bacteriuria was not related to serum white blood cell count (coefficient -0.47; 95% confidence interval [CI] -1.1, 0.2; p = 0.17), heart rate (coefficient 0.85; 95% CI -2.5, 4.2; p = 0.62), presence of subjective or objective fever (odds ratio [OR] 1.5; 95% CI 0.8, 3.1; p = 0.18), or the presence of squamous epithelial cells (coefficient -4.4; 95% CI -10, 1.2; p = 0.12). However, the presence of bacteriuria was related to only the degree of pyuria (coefficient 16.4; 95% CI 9.6, 23.3; p < 0.001). Bacteria on urine microscopy is not associated with other markers of systemic

  20. What about Urinary Tract Infections and its Antibiotic Resistance Bacteria in Ilam, Iran?

    PubMed

    Mohebi, Reza; Esmaili, Khadijeh; Sadeghifard, Nourkhoda; Pakzad, Iraj; Ghafourian, Sobhan

    2018-06-22

    Because of unknown situation of antibiotic resistance pattern in main hospital in Ilam, Iran, in an attempt we aimed to evaluate the antibiotic resistance pattern of uropathogenic bacteria obtained from referred patients to Imam Khomaini Hospital, Ilam, Iran. For this reason, 114 bacteria were collected during 9 month period and evaluated for their antibiotic resistance pattern. Our results demonstrated that E. coli as the dominant responsible for urinary tract infection. Our results demonstrated that 61.4 % (n = 70) of isolates were positive for E.coli, while the lowest prevalence observed for Staphylococcus aureus and Acinetobacter baumannii. The results demonstrated that 6.4% (n = 7) were MBL producer. Despite, only 4 gram positive bacteria were obtained from patients with urinary tract infections but 100% (n = 1) of S. aureus were methicillin resistant S. aureus (MRSA) and 66.7% (n = 2) of E. faecalis were positive for resistance to vancomycin. In conclusion, we strongly recommended doing the cohort study among all hospital in Iran to evaluate the situation of antibiotic resistance and make a real panel to control this issue. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Active screening of multi-drug resistant bacteria effectively prevent and control the potential infections.

    PubMed

    Ren, Yuguo; Ma, Guoliang; Peng, Lin; Ren, Yufeng; Zhang, Fengmei

    2015-03-01

    Our objective is to determine if actively screen the multi-drug resistant bacteria (MDRB) infection in intensive care unit (ICU) to prevent, control, and decrease the infection rate and transmission of MDRB. The patients admitted in ICU of one hospital in 2013 were analyzed. The throat swab, blood, defecation, and urine of patients were actively collected for bacteria cultures to screen Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii in patients. All patients received screening of MDRB infection and colonization within 2 days and after 2 days of admission, the results showed that there were 418 infectious bacterial strains in total and P. aeruginosa was the main bacterium. The asymptomatic infection rates of P. aeruginosa, K. pneumonia, E. coli, S. aureus, and A. baumannii were 39.02, 24.74, 44.00, 29.17, and 33.33 %, respectively; the symptomatic infection rates were 60.98, 75.26, 56.00, 70.83, and 66.67 %. 59.70 % patients received antibiotics treatment, 27.45 % patients received trachea cannula, 32.95 % patients received mechanism ventilation, 2.27 % patients received arterial cannula or venous cannula and 4.00 % patients received indwelling urinary catheters. The main MDRB in ICU is P. aeruginosa. The active screening of MDRB infection and colonization can provide the opportunity to take the life-saving measure against MDRB and treat patients. This can decrease the infection risk and the nosocomial transmission of MDRB.

  2. Performing Analyses for Waterborne Bacteria. Module 13. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on performing analyses for waterborne bacteria. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming, sterilizing and…

  3. Vaginosis-associated bacteria and its association with HPV infection.

    PubMed

    Romero-Morelos, Pablo; Bandala, Cindy; Jiménez-Tenorio, Julián; Valdespino-Zavala, Mariana; Rodríguez-Esquivel, Miriam; Gama-Ríos, Reyna Anaid; Bandera, Artfy; Mendoza-Rodríguez, Mónica; Taniguchi, Keiko; Marrero-Rodríguez, Daniel; López-Romero, Ricardo; Ramón-Gallegos, Eva; Salcedo, Mauricio

    2018-03-12

    Cervical cancer is an important health problem in our country. It is known that there are several risk factors for this neoplasm, and it has been suggested that cervical microbiome alterations could play a role in the development and progress of cancer. Bacterial vaginosis associated bacteria such as Atopobium vaginae and Gardnerella vaginalis has been suggested as potential risk factor for cervical lesions and cervical cancer. DNA from 177 cervical scraping samples was studied: 104 belonged to women without cytological or colposcopic alterations and 73 samples from precursor lesions with previous human papillomavirus (HPV) infection history. All samples were screened for Atopobium vaginae, Gardnerella vaginalis and HPV by PCR. High HPV prevalence was found in precursor samples, and 30% of samples without lesions were positive for HPV. Virtually all samples contained sequences of both bacteria, and interestingly, there was not HPV association observed; these results could suggest that these microorganisms could be part of the cervical microbiome in Mexican population. The results obtained indicate that the bacteria analysed could be part of normal biome in Mexican women, suggesting a potential reconsideration of the pathogen role of these microorganisms. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  4. Infection Status of Hospitalized Diarrheal Patients with Gastrointestinal Protozoa, Bacteria, and Viruses in the Republic of Korea

    PubMed Central

    Cho, Shin-Hyeong; Lee, Jin-Hee; Lim, Yi-Young; Jeon, Ji-Hye; Yu, Jae-Ran; Kim, Tong-Soo; Lee, Won-Ja; Cho, Seung-Hak; Lee, Deog-Yong; Park, Mi-Seon; Jeong, Hye-Sook; Chen, Doo-Sung; Ji, Yeong-Mi; Kwon, Mi-Hwa

    2010-01-01

    To understand protozoan, viral, and bacterial infections in diarrheal patients, we analyzed positivity and mixed-infection status with 3 protozoans, 4 viruses, and 10 bacteria in hospitalized diarrheal patients during 2004-2006 in the Republic of Korea. A total of 76,652 stool samples were collected from 96 hospitals across the nation. The positivity for protozoa, viruses, and bacteria was 129, 1,759, and 1,797 per 10,000 persons, respectively. Especially, Cryptosporidium parvum was highly mixed-infected with rotavirus among pediatric diarrheal patients (29.5 per 100 C. parvum positive cases), and Entamoeba histolytica was mixed-infected with Clostridium perfringens (10.3 per 100 E. histolytica positive cases) in protozoan-diarrheal patients. Those infected with rotavirus and C. perfringens constituted relatively high proportions among mixed infection cases from January to April. The positivity for rotavirus among viral infection for those aged ≤ 5 years was significantly higher, while C. perfringens among bacterial infection was higher for ≥ 50 years. The information for association of viral and bacterial infections with enteropathogenic protozoa in diarrheal patients may contribute to improvement of care for diarrhea as well as development of control strategies for diarrheal diseases in Korea. PMID:20585526

  5. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections

    PubMed Central

    Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes

    2013-01-01

    In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections. PMID:24516424

  6. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections.

    PubMed

    Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes

    2013-01-01

    In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections.

  7. Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus

    PubMed Central

    Becker, Matthew H.; Walke, Jenifer B.; Cikanek, Shawna; Savage, Anna E.; Mattheus, Nichole; Santiago, Celina N.; Minbiole, Kevin P. C.; Harris, Reid N.; Belden, Lisa K.; Gratwicke, Brian

    2015-01-01

    Symbiotic microbes can dramatically impact host health and fitness, and recent research in a diversity of systems suggests that different symbiont community structures may result in distinct outcomes for the host. In amphibians, some symbiotic skin bacteria produce metabolites that inhibit the growth of Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen that has caused many amphibian population declines and extinctions. Treatment with beneficial bacteria (probiotics) prevents Bd infection in some amphibian species and creates optimism for conservation of species that are highly susceptible to chytridiomycosis, the disease caused by Bd. In a laboratory experiment, we used Bd-inhibitory bacteria from Bd-tolerant Panamanian amphibians in a probiotic development trial with Panamanian golden frogs, Atelopus zeteki, a species currently surviving only in captive assurance colonies. Approximately 30% of infected golden frogs survived Bd exposure by either clearing infection or maintaining low Bd loads, but this was not associated with probiotic treatment. Survival was instead related to initial composition of the skin bacterial community and metabolites present on the skin. These results suggest a strong link between the structure of these symbiotic microbial communities and amphibian host health in the face of Bd exposure and also suggest a new approach for developing amphibian probiotics. PMID:25788591

  8. Effect of respiratory syncytial virus (RSV) infection on the adherence of pathogenic bacteria to human epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faden, H.; Hong, J.J.; Ogra, P.L.

    1986-03-01

    The effect of RSV infection on the adherence of Streptococcus pneumoniae (SP), Haemophilus influenzae (HI) and Staphylococcus aureus (SA) to human epithelial cells was determined. RSV-infected Hep-2 cell cultures at different stages of expression of surface viral antigens and bacteria labeled with /sup 3/H-thymidine were employed to examine the kinetics of bacterial adherence to virus-infected cells. RSV infection did not alter the magnitude of adherence of HI or SA to HEp-2 cells. However, adherence of SP to HEp-2 cells was significantly (P < 0.01) enhanced by prior RSV infection. The degree of adherence was directly related to the amount ofmore » viral antigen expressed on the cell surface. The adherence was temperature dependent, with maximal adherence observed at 37/sup 0/C. Heat-inactivation of SP did not alter adherence characteristics. These data suggest that RSV infection increases adherence of SP to the surface of epithelial cells in vitro. Since attachment of bacteria to mucosal surfaces is the first step in many infections, it is suggested that viral infections of epithelial cells render them more susceptible to bacterial adherence. Thus, RSV infection in vivo may predispose children to SP infections, such as in otitis media, by increasing colonization with SP.« less

  9. Development of Vaccines to Prevent Wound Infections due to Anaerobic Bacteria

    DTIC Science & Technology

    1980-08-01

    organism from neutrophil killing. A series of experiments were designed in the model of intraabdominal sepsis to determine the cellular mechanisms of...abscess, intraabdominal sepsis , and infections of the female genital tract (1). When optimal bacteriologic techniques are used, anaerobic bacteria can... sepsis or bacteremia. Members of the genus Bacteroides were second only to Escherichia coli as a cause of gram-negative septicemia in patients at the

  10. [Intestinal disorder of anaerobic bacteria aggravates pulmonary immune pathological injury of mice infected with influenza virus].

    PubMed

    Wu, Sha; Yan, Yuqi; Zhang, Mengyuan; Shi, Shanshan; Jiang, Zhenyou

    2016-04-01

    To investigate the relationship between the intestinal disorder of anaerobic bacteria and influenza virus infection, and the effect on pulmonary inflammatory cytokines in mice. Totally 36 mice were randomly divided into normal control group, virus-infected group and metronidazole treatment group (12 mice in each group). Mice in the metronidazole group were administrated orally with metronidazole sulfate for 8 days causing anaerobic bacteria flora imbalance; then all groups except the normal control group were treated transnasally with influenza virus (50 μL/d FM1) for 4 days to establish the influenza virus-infected models. Their mental state and lung index were observed, and the pathological morphological changes of lung tissues, caecum and intestinal mucosa were examined by HE staining. The levels of interleukin 4 (IL-4), interferon γ (IFN-γ), IL-10 and IL-17 in the lung homogenates were determined by ELISA. Compared with the virus control group, the metronidazole group showed obviously increased lung index and more serious pathological changes of the lung tissue and appendix inflammation performance. After infected by the FM1 influenza virus, IFN-γ and IL-17 of the metronidazole group decreased significantly and IL-4 and IL-10 levels were raised, but there was no statistically difference between the metronidazole and virus control groups. Intestinal anaerobic bacteria may inhibit the adaptive immune response in the lungs of mice infected with FM1 influenza virus through adjusting the lung inflammatory factors, affect the replication and clean-up time of the FM1 influenza virus, thus further aggravating pulmonary immune pathological injury caused by the influenza virus infection.

  11. Microfluidic-Based Bacteria Isolation from Whole Blood for Diagnostics of Blood Stream Infection.

    PubMed

    Zelenin, Sergey; Ramachandraiah, Harisha; Faridi, Asim; Russom, Aman

    2017-01-01

    Bacterial blood stream infection (BSI) potentially leads to life-threatening clinical conditions and medical emergencies such as severe sepsis, septic shock, and multi organ failure syndrome. Blood culturing is currently the gold standard for the identification of microorganisms and, although it has been automated over the decade, the process still requires 24-72 h to complete. This long turnaround time, especially for the identification of antimicrobial resistance, is driving the development of rapid molecular diagnostic methods. Rapid detection of microbial pathogens in blood related to bloodstream infections will allow the clinician to decide on or adjust the antimicrobial therapy potentially reducing the morbidity, mortality, and economic burden associated with BSI. For molecular-based methods, there is a lot to gain from an improved and straightforward method for isolation of bacteria from whole blood for downstream processing.We describe a microfluidic-based sample-preparation approach that rapidly and selectively lyses all blood cells while it extracts intact bacteria for downstream analysis. Whole blood is exposed to a mild detergent, which lyses most blood cells, and then to osmotic shock using deionized water, which eliminates the remaining white blood cells. The recovered bacteria are 100 % viable, which opens up possibilities for performing drug susceptibility tests and for nucleic-acid-based molecular identification.

  12. Association of black-pigmented bacteria with endodontic infections.

    PubMed

    Baumgartner, J C; Watkins, B J; Bae, K S; Xia, T

    1999-06-01

    Black-pigmented bacteria (BPB) have been associated with endodontic infections. The purpose of this study was to evaluate further the presence of BPB with the clinical signs and symptoms associated with endodontic infections. Microbial samples were collected from the root canals of 40 intact teeth with necrotic pulps and apical periodontitis. Conventional laboratory methods were used for identification of the strains of BPB isolated in pure culture. In addition, the polymerase chain reaction and specific primers for 16S r-RNA genes were used to differentiate Prevotella nigrescens from Prevotella intermedia. Twenty-two (55%) samples were positive for the growth of BPB. Of those, 11 of 22 (50%) were identified as P. nigrescens, 8 of 22 (36%) were P. intermedia, 2 of 22 (9%) were Porphyromonas gingivalis, and 1 of 22 (5%) was Prevotella melaninogenica. Sixteen of the 22 root canals positive for the growth of BPB were associated with purulent drainage either from the root canal or an associated sinus tract. Statistical analysis did not show a significant relationship for the presence of BPB with clinical signs and symptoms.

  13. Single-cell level methods for studying the effect of antibiotics on bacteria during infection.

    PubMed

    Kogermann, Karin; Putrinš, Marta; Tenson, Tanel

    2016-12-01

    Considerable evidence about phenotypic heterogeneity among bacteria during infection has accumulated during recent years. This heterogeneity has to be considered if the mechanisms of infection and antibiotic action are to be understood, so we need to implement existing and find novel methods to monitor the effects of antibiotics on bacteria at the single-cell level. This review provides an overview of methods by which this aim can be achieved. Fluorescence label-based methods and Raman scattering as a label-free approach are discussed in particular detail. Other label-free methods that can provide single-cell level information, such as impedance spectroscopy and surface plasmon resonance, are briefly summarized. The advantages and disadvantages of these different methods are discussed in light of a challenging in vivo environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Lactoferrin modulation of BCG-infected dendritic cell functions

    PubMed Central

    Hwang, Shen-An

    2009-01-01

    Lactoferrin, an 80-kDa iron-binding protein with immune modulating properties, is a unique adjuvant component able to enhance efficacy of the existing Mycobacterium bovis Bacillus Calmette Guerin (BCG) vaccine to protect against murine model of tuberculosis. Although identified as having effects on macrophage presentation events, lactoferrin's capability to modulate dendritic cells (DCs) function when loaded with BCG antigens has not been previously recognized. In this study, the potential of lactoferrin to modulate surface expression of MHC II, CD80, CD86 and CD40 from bone marrow-derived dendritic cells (BMDCs) was examined. Generally, lactoferrin decreased pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, IL-6 and IL-12p40] and chemokines [macrophage inflammatory protein (MIP)-1α and MIP-2] and increased regulatory cytokine, transforming growth factor-β1 and a T-cell chemotatic factor, monocyte chemotactic protein-1, from uninfected or BCG-infected BMDCs. Culturing BCG-infected BMDCs with lactoferrin also enhanced their ability to respond to IFN-γ activation through up-regulation of maturation markers: MHC I, MHC II and the ratio of CD86:CD80 surface expression. Furthermore, lactoferrin-exposed BCG-infected DCs increased stimulation of BCG-specific CD3+CD4+ splenocytes, as defined by increasing IFN-γ production. Finally, BCG-/lactoferrin-vaccinated mice possessed an increased pool of BCG antigen-specific IFN-γ producing CD3+CD4+CD62L− splenocytes. These studies suggest a mechanism in which lactoferrin may exert adjuvant activity by enhancing DC function to promote generation of antigen-specific T cells. PMID:19692539

  15. [Trend survey of ocular infections with bacteria at Toyama University Hospital over the past six years--from the standpoint of laboratory examination].

    PubMed

    Kubota, Tomomi; Hayashi, Shirou; Niimi, Hideki; Kitajima, Isao

    2012-07-01

    Specimens of bacterial ocular infections are frequently received in the clinical laboratory. However, a comprehensive trend survey of ocular infections with bacteria is very rare. Our objective is to understand the current tendency of ocular infections with bacteria in patients at Toyama University Hospital from the standpoint of laboratory examination. We studied 263 cases of ocular infection with bacteria diagnosed at Toyama University Hospital from January 2006 to December 2011. 123 were male and 140 were female, with a mean age of 61.2(0-98) years. Specimens were subjected to direct microscopy and culture. Cultures were positive in 174(66.2%) patients. The most common bacterial isolate was Staphylococcus (28.1%), followed by Corynebacterium (19.3%), Streptococcus (9.3%), and Propionibacterium (8.6%). MRSA accounted for 18.8% of all S. aureus isolates, and has increased in recent years. The number of bacteria detected was larger in March, June, July, August, and October. Age distribution indicated that around 70% of bacterial isolates were detected from patients over 60 years old. The most common specimen of ocular infections with bacteria was eye discharge (detection rate; 87.8%), followed by corneal scraping(41%), aqueous humor (19%), and vitreous body (27%). Nearly 80% of bacterial isolates were detected from patients with keratitis, endophthalmitis, dacryocystitis, and conjunctivitis. As for the disease specific detection rate, endophthalmitis was very low (38.3%). The detection rate by years indicated that the way doctors pick up the specimens greatly affects the detection rate. Based on this survey, we need close cooperation with medical doctors concerning laboratory examination in ocular infection with bacteria, and we must improve the detection sensitivity of specimens from patients with endophthalmitis.

  16. Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM)-1) expression and neutrophil adhesion.

    PubMed Central

    Huang, G T; Eckmann, L; Savidge, T C; Kagnoff, M F

    1996-01-01

    The acute host response to gastrointestinal infection with invasive bacteria is characterized by an accumulation of neutrophils in the lamina propria, and neutrophil transmigration to the luminal side of the crypts. Intestinal epithelial cells play an important role in the recruitment of inflammatory cells to the site of infection through the secretion of chemokines. However, little is known regarding the expression, by epithelial cells, of molecules that are involved in interactions between the epithelium and neutrophils following bacterial invasion. We report herein that expression of ICAM-1 on human colon epithelial cell lines, and on human enterocytes in an in vivo model system, is upregulated following infection with invasive bacteria. Increased ICAM-1 expression in the early period (4-9 h) after infection appeared to result mainly from a direct interaction between invaded bacteria and host epithelial cells since it co-localized to cells invaded by bacteria, and the release of soluble factors by epithelial cells played only a minor role in mediating increased ICAM-1 expression. Furthermore, ICAM-1 was expressed on the apical side of polarized intestinal epithelial cells, and increased expression was accompanied by increased neutrophil adhesion to these cells. ICAM-1 expression by intestinal epithelial cells following infection with invasive bacteria may function to maintain neutrophils that have transmigrated through the epithelium in close contact with the intestinal epithelium, thereby reducing further invasion of the mucosa by invading pathogens. PMID:8755670

  17. Effect of Probiotic Bacteria on Microbial Host Defense, Growth, and Immune Function in Human Immunodeficiency Virus Type-1 Infection

    PubMed Central

    Cunningham-Rundles, Susanna; Ahrné, Siv; Johann-Liang, Rosemary; Abuav, Rachel; Dunn-Navarra, Ann-Margaret; Grassey, Claudia; Bengmark, Stig; Cervia, Joseph S.

    2011-01-01

    The hypothesis that probiotic administration protects the gut surface and could delay progression of Human Immunodeficiency Virus type1 (HIV-1) infection to the Acquired Immunodeficiency Syndrome (AIDS) was proposed in 1995. Over the last five years, new studies have clarified the significance of HIV-1 infection of the gut associated lymphoid tissue (GALT) for subsequent alterations in the microflora and breakdown of the gut mucosal barrier leading to pathogenesis and development of AIDS. Current studies show that loss of gut CD4+ Th17 cells, which differentiate in response to normal microflora, occurs early in HIV-1 disease. Microbial translocation and suppression of the T regulatory (Treg) cell response is associated with chronic immune activation and inflammation. Combinations of probiotic bacteria which upregulate Treg activation have shown promise in suppressing pro inflammatory immune response in models of autoimmunity including inflammatory bowel disease and provide a rationale for use of probiotics in HIV-1/AIDS. Disturbance of the microbiota early in HIV-1 infection leads to greater dominance of potential pathogens, reducing levels of bifidobacteria and lactobacillus species and increasing mucosal inflammation. The interaction of chronic or recurrent infections, and immune activation contributes to nutritional deficiencies that have lasting consequences especially in the HIV-1 infected child. While effective anti-retroviral therapy (ART) has enhanced survival, wasting is still an independent predictor of survival and a major presenting symptom. Congenital exposure to HIV-1 is a risk factor for growth delay in both infected and non-infected infants. Nutritional intervention after 6 months of age appears to be largely ineffective. A meta analysis of randomized, controlled clinical trials of infant formulae supplemented with Bifidobacterium lactis showed that weight gain was significantly greater in infants who received B. lactis compared to formula alone

  18. [Respiratory infections caused by slow-growing bacteria: Nocardia, Actinomyces, Rhodococcus].

    PubMed

    Eschapasse, E; Hussenet, C; Bergeron, A; Lebeaux, D

    2017-06-01

    Pneumonia caused by slow-growing bacteria is rare but sometimes severe. These infections share many similarities such as several differential diagnoses, difficulties to identify the pathogen, the importance of involving the microbiologist in the diagnostic investigation and the need for prolonged antibiotic treatment. However, major differences distinguish them: Nocardia and Rhodococcus infect mainly immunocompromised patients while actinomycosis also concerns immunocompetent patients; the severity of nocardioses is related to their hematogenous spread while locoregional extension by contiguity makes the gravity of actinomycosis. For these diseases, molecular diagnostic tools are essential, either to obtain a species identification and guide treatment in the case of nocardiosis or to confirm the diagnosis from a biological sample. Treatment of these infections is complex due to: (1) the limited data in the literature; (2) the need for prolonged treatment of several months; (3) the management of toxicities and drug interactions for the treatment of Nocardia and Rhodococcus. Close cooperation between pneumonologists, infectious disease specialists and microbiologists is essential for the management of these patients. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  19. Bacteria and wound healing.

    PubMed

    Edwards, Ruth; Harding, Keith G

    2004-04-01

    Wound healing is a complex process with many potential factors that can delay healing. There is increasing interest in the effects of bacteria on the processes of wound healing. All chronic wounds are colonized by bacteria, with low levels of bacteria being beneficial to the wound healing process. Wound infection is detrimental to wound healing, but the diagnosis and management of wound infection is controversial, and varies between clinicians. There is increasing recognition of the concept of critical colonization or local infection, when wound healing may be delayed in the absence of the typical clinical features of infection. The progression from wound colonization to infection depends not only on the bacterial count or the species present, but also on the host immune response, the number of different species present, the virulence of the organisms and synergistic interactions between the different species. There is increasing evidence that bacteria within chronic wounds live within biofilm communities, in which the bacteria are protected from host defences and develop resistance to antibiotic treatment. An appreciation of the factors affecting the progression from colonization to infection can help clinicians with the interpretation of clinical findings and microbiological investigations in patients with chronic wounds. An understanding of the physiology and interactions within multi-species biofilms may aid the development of more effective methods of treating infected and poorly healing wounds. The emergence of consensus guidelines has helped to optimize clinical management.

  20. Metal-Mediated Modulation of Streptococcal Cysteine Protease Activity and Its Biological Implications

    PubMed Central

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.

    2014-01-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  1. Molecular identification and quantification of bacteria from endodontic infections using real-time polymerase chain reaction.

    PubMed

    Blome, B; Braun, A; Sobarzo, V; Jepsen, S

    2008-10-01

    It was the aim of the present study to evaluate root canal samples for the presence and numbers of specific species as well as for total bacterial load in teeth with chronic apical periodontitis using quantitative real-time polymerase chain reaction (PCR). Forty adult patients with one radiographically documented periapical lesion were included. Twenty teeth presented with primary infections and 20 with secondary infections, requiring retreatment. After removal of necrotic pulp tissue or root canal filling, a first bacterial sample was obtained. Following chemo-mechanical root canal preparation a second sample was taken and a third sample was obtained after 14 days of intracanal dressing with calcium hydroxide. Analysis by real-time PCR enabled the quantification of total bacterial counts and of nine selected species. Root canals with primary infections harbored significantly more bacteria (by total bacterial count) than teeth with secondary infections (P < 0.05). Mean total bacterial count in the retreatment group was 2.1 x 10(6) and was significantly reduced following root canal preparation (3.6 x 10(4)) and intracanal dressing (1.4 x 10(5)). Corresponding values for primary infections were: 4.6 x 10(7), 3.6 x 10(4), and 6.9 x 10(4). The numbers of the selected bacteria and their detection frequency were also significantly reduced. Root canals with primary infections contained a higher bacterial load. Chemo-mechanical root canal preparation reduced bacterial counts by at least 95%.

  2. On the intrinsic dynamics of bacteria in waterborne infections.

    PubMed

    Yang, Chayu; Wang, Jin

    2018-02-01

    The intrinsic dynamics of bacteria often play an important role in the transmission and spread of waterborne infectious diseases. In this paper, we construct mathematical models for waterborne infections and analyze two types of nontrivial bacterial dynamics: logistic growth, and growth with Allee effects. For the model with logistic growth, we find that regular threshold dynamics take place, and the basic reproduction number can be used to characterize disease extinction and persistence. In contrast, the model with Allee effects exhibits much more complex dynamics, including the existence of multiple endemic equilibria and the presence of backward bifurcation and forward hysteresis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Öz, Hasan H.; Zhou, Benyuan; Voss, Pina; Carevic, Melanie; Schroth, Carolin; Frey, Nina; Rieber, Nikolaus; Hector, Andreas; Hartl, Dominik

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF) lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK)-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (CF transmembrane conductance regulator, CFTR) modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo. PMID:27965936

  4. Use of Tigecycline in Pediatric Patients With Infections Predominantly Due to Extensively Drug-Resistant Gram-Negative Bacteria.

    PubMed

    Iosifidis, Elias; Violaki, Asimenia; Michalopoulou, Evangelia; Volakli, Elena; Diamanti, Elisavet; Koliouskas, Dimitrios; Antachopoulos, Charalampos; Drossou-Agakidou, Vasiliki; Sdougka, Maria; Roilides, Emmanuel

    2017-06-01

    Emergence of extensively drug-resistant (XDR) bacteria has forced clinicians to use off-label antimicrobial agents such as tigecycline. We present our experience on salvage use of tigecycline for the treatment of infections caused by XDR Gram-negative bacteria in critically ill children and review published cases. We conducted a retrospective chart review in pediatric departments of a tertiary level hospital from January 2009 to May 2014. Patients were identified using pharmacy database. For the literature review, relevant articles were identified from PubMed. In our case series, 13 children (7 males) with a median age of 8 years (range, 2.5 months-14 years) received tigecycline for ≥2 days as treatment for healthcare-associated infections including 5 bacteremias, 6 lower respiratory tract infections, and 3 other infections. Isolated pathogens were XDR Gram-negative bacteria except 1. A loading dose (range, 1.8-6.5 mg/kg) was given in all except 2 cases. Maintenance dose was given at 1-3.2 mg/kg q12 h. Other antimicrobials including colistin and aminoglycosides (85% and 62%, respectively) were coadministered to all patients. No serious adverse events were detected in these very ill children. Twenty cases of children treated with tigecycline were previously published, mostly for multidrug-resistant/XDR bacteria. An episode of acute pancreatitis and neutrophil engraftment delay in 2 cases were reported during tigecycline treatment. Analyzing reported and all our cases together, mortality in bloodstream infections was 86%, whereas in nonbacteremic cases it was 24% (P = .009). Tigecycline, given at the range of administered doses as salvage therapy and in combination with other antimicrobial agents, seemed to be well tolerated in a series of mainly critically ill pediatric patients and demonstrated relatively good clinical response in nonbacteremic patients. © The Author 2016. Published by Oxford University Press on behalf of The Journal of the Pediatric Infectious

  5. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi.

    PubMed

    Chmiel, James F; Aksamit, Timothy R; Chotirmall, Sanjay H; Dasenbrook, Elliott C; Elborn, J Stuart; LiPuma, John J; Ranganathan, Sarath C; Waters, Valerie J; Ratjen, Felix A

    2014-10-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy.

  6. Antibiotic Management of Lung Infections in Cystic Fibrosis. II. Nontuberculous Mycobacteria, Anaerobic Bacteria, and Fungi

    PubMed Central

    Aksamit, Timothy R.; Chotirmall, Sanjay H.; Dasenbrook, Elliott C.; Elborn, J. Stuart; LiPuma, John J.; Ranganathan, Sarath C.; Waters, Valerie J.; Ratjen, Felix A.

    2014-01-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy. PMID:25167882

  7. Sunlight modulates the relative importance of heterotrophic bacteria and picophytoplankton in DMSP-sulphur uptake

    PubMed Central

    Ruiz-González, Clara; Simó, Rafel; Vila-Costa, Maria; Sommaruga, Ruben; Gasol, Josep M

    2012-01-01

    There is a large body of evidence supporting a major role of heterotrophic bacteria in dimethylsulphoniopropionate (DMSP) utilisation as a source of reduced sulphur. However, a role for phototrophic microorganisms has been only recently described and little is known about their contribution to DMSP consumption and the potential modulating effects of sunlight. In an attempt to ascertain the relative quantitative roles of heterotrophic bacteria and picophytoplankton in the osmoheterotrophic uptake of DMSP-sulphur upon exposure to natural sunlight conditions, we incubated northwestern Mediterranean waters under various optical filters and used an array of bulk and single-cell activity methods to trace the fate of added 35S-DMSP. Flow cytometry cell sorting confirmed dark 35S uptake by Prochlorococcus, Synechococcus and heterotrophic bacteria, the latter being the most efficient in terms of uptake on a cell volume basis. Under exposure to full sunlight, however, the relative contribution of Synechococcus was significantly enhanced, mainly because of the inhibition of heterotrophic bacteria. Microautoradiography showed a strong increase in the proportion of Synechococcus cells actively taking up 35S-DMSP, which, after full sunlight exposure, made up to 15% of total active Bacteria. Parallel incubations with 3H-leucine generally showed no clear responses to light. Finally, size-fractionated assimilation experiments showed greater relative cyanobacterial assimilation during the day than at night compared with that of heterotrophic bacteria. Our results show for the first time a major influence of sunlight in regulating the competition among autotrophic and heterotrophic picoplankton for DMSP uptake at both the daily and seasonal time scales. PMID:21955992

  8. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria

    PubMed Central

    Dillon, Stephanie M.; Phang, Tzu; Lee, Eric J.; Helm, Karen; Kappes, John C.; McCarter, Martin D.

    2017-01-01

    Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint

  9. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria.

    PubMed

    Shokal, Upasana; Yadav, Shruti; Atri, Jaishri; Accetta, Julia; Kenney, Eric; Banks, Katherine; Katakam, Akash; Jaenike, John; Eleftherianos, Ioannis

    2016-02-09

    Symbiotic interactions between microbes and animals are common in nature. Symbiotic organisms are particularly common in insects and, in some cases, they may protect their hosts from pathogenic infections. Wolbachia and Spiroplasma endosymbionts naturally inhabit various insects including Drosophila melanogaster fruit flies. Therefore, this symbiotic association is considered an excellent model to investigate whether endosymbiotic bacteria participate in host immune processes against certain pathogens. Here we have investigated whether the presence of Wolbachia alone or together with Spiroplasma endosymbionts in D. melanogaster adult flies affects the immune response against the virulent insect pathogen Photorhabdus luminescens and against non-pathogenic Escherichia coli bacteria. We found that D. melanogaster flies carrying no endosymbionts, those carrying both Wolbachia and Spiroplasma, and those containing Wolbachia only had similar survival rates after infection with P. luminescens or Escherichia coli bacteria. However, flies carrying both endosymbionts or Wolbachia only contained higher numbers of E. coli cells at early time-points post infection than flies without endosymbiotic bacteria. Interestingly, flies containing Wolbachia only had lower titers of this endosymbiont upon infection with the pathogen P. luminescens than uninfected flies of the same strain. We further found that the presence of Wolbachia and Spiroplasma in D. melanogaster up-regulated certain immune-related genes upon infection with P. luminescens or E. coli bacteria, but it failed to alter the phagocytic ability of the flies toward E. coli inactive bioparticles. Our results suggest that the presence of Wolbachia and Spiroplasma in D. melanogaster can modulate immune signaling against infection by certain insect pathogenic and non-pathogenic bacteria. Results from such studies are important for understanding the molecular basis of the interactions between endosymbiotic bacteria of insects

  10. Isolation and Molecular Detection of Gram Negative Bacteria Causing Urinary Tract Infection in Patients Referred to Shahrekord Hospitals, Iran.

    PubMed

    Tajbakhsh, Elahe; Tajbakhsh, Sara; Khamesipour, Faham

    2015-05-01

    Urinary Tract Infections (UTI), and their complications, cause serious health problems, which affect millions of people every year. Infections of the urinary tract are the second most common type of infection in the body and approximately 20% of women are especially prone to UTIs for reasons not yet well understood. Urinary Tract Infections in men are not as common as in women yet can be very serious when they do occur. Accurate identification of bacterial isolates is an essential task of the clinical microbiology laboratory. The purpose of this study was to determine the incidence and variety of the causative microbial agents of UTIs in patients who had referred to a medical laboratory of Kashani and Hajar hospital in Shahrekord, Iran. In this cross-sectional study 147 urine samples of patients (urine test results were positive for UTIs) were examined during April to September 2013. A total of 147 urine samples of patients with clinical symptoms of UTI who had been referred to a medical laboratory of Kashani and Hajar hospital in Shahrekord (Iran), were collected and processed immediately for laboratory analysis. Escherichia coli was identified as the most common causative agent of UTIs (51.70% of total isolates in both sexes), followed by Klebsiella pneumoniae (K. Pneumoniae) (16.32%). Frequency of Proteus spp., Acinetobacter spp., Entrobacter spp., Citrobacter spp., Pseudomonas aeruginosa (P. aeruginosa) and Providencia spp. was 10.88%, 6.12%, 5.44%, 4.08%, 3.40% and 2.04%, respectively. Statistical analysis by Fisher exact test showed that there was no significant relationship between the type of bacteria and gender (P > 0.05). Chi square test showed that there was no significant relationship between the type of bacteria and the use of catheter and age group (P > 0.05). However, there was a significant relationship between the type of bacteria and the history of hospitalization (P > 0.05). Our findings implied that a wide range of bacteria could be involved in

  11. A case of hyperammonemia with obstructive urinary tract infection by urease-producing bacteria.

    PubMed

    Goda, Toshiaki; Watanabe, Kotaro; Kobayashi, Junya; Nagai, Yasuharu; Ohara, Nobuyuki; Takahashi, Daisuke

    2017-03-28

    A 79-year-old woman was admitted emergently for disturbance of consciousness. Her consciousness level was Japan coma scale 20, and she presented with hypermyotonia. Brain magnetic resonance imaging and cerebrospinal fluid examination showed normal findings. Her blood tests showed an increased ammonia level of 291 μg/dl with normal liver function. We catheterized the bladder for urinary retention. Eight hours after admission, the blood level of ammonia decreased to 57 μg/dl and the patient's consciousness level improved. Corynebacterium pseudodiphtheriticum, which is a bacteria producing urease, was detected from a urine culture. It is important to recognize that obstructive urinary tract infection caused by urease-producing bacteria can cause hyperammonemia.

  12. Melatonin attenuates Leishmania (L.) amazonensis infection by modulating arginine metabolism.

    PubMed

    Laranjeira-Silva, Maria Fernanda; Zampieri, Ricardo A; Muxel, Sandra M; Floeter-Winter, Lucile Maria; Markus, Regina P

    2015-11-01

    Acute inflammatory responses induced by bacteria or fungi block nocturnal melatonin synthesis by rodent pineal glands. Here, we show Leishmania infection does not impair daily melatonin rhythm in hamsters. Remarkably, the attenuated parasite burden and lesion progression in hamsters infected at nighttime was impaired by blockage of melatonin receptors with luzindole, whereas melatonin treatment during the light phase attenuated Leishmania infection. In vitro studies corroborated in vivo observations. Melatonin treatment reduced macrophage expression of Cat-2b, Cat1, and ArgI, genes involved in arginine uptake and polyamine synthesis. Indeed, melatonin reduced macrophage arginine uptake by 40%. Putrescine supplementation reverted the attenuation of infectivity by melatonin indicating that its effect was due to the arrest of parasite replication. This study shows that the Leishmania/host interaction varies in a circadian manner according to nocturnal melatonin pineal synthesis. Our results provide new data regarding Leishmania infectiveness and show new approaches for applying agonists of melatonin receptors in Leishmaniasis therapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Bacteria isolated from conspecific bite wounds in Norway and black rats: implications for rat bite-associated infections in people.

    PubMed

    Himsworth, Chelsea G; Zabek, Erin; Tang, Patrick; Parsons, Kirbee L; Koehn, Martha; Jardine, Claire M; Patrick, David M

    2014-02-01

    Bites associated with wild and domestic Norway and black rats (Rattus norvegicus and Rattus rattus) may have a variety of health consequences in people. Bite-related infections are among the most significant of these consequences; however, there is little data on the infectious agents that can be transmitted from rats to people through biting. This is problematic because without an accurate understanding of bite-related infection risks, it is difficult for health professionals to evaluate the adequacy of existing guidelines for empirical therapy. The objectives of this study were to increase our knowledge of the bacterial species associated with rat bites by studying bite wounds that wild rats inflict upon one another and to review the literature regarding rat bites and bite wound management. Wild Norway and black rats (n=725) were trapped in Vancouver, Canada, and examined for bite wounds in the skin. All apparently infected wounds underwent aerobic and anaerobic culture, and isolated bacteria were identified. Thirty-six rats had bite wound-related infections, and approximately 22 different species of bacteria belonging to 18 genera were identified. Staphylococcus aureus was the most common isolate; however, the majority of infections (72.5%) were polymicrobial. Rat bites can result in infection with a number of aerobic and anaerobic Gram-positive and Gram-negative bacteria. In humans, these wounds are best managed through early recognition and cleansing. The benefit of prophylactic antimicrobial treatment is debatable, but given the deep puncturing nature of rodent bites, we suggest that they should be considered a high risk for infection. Antibiotics selected should include coverage for a broad range of bacterial species.

  14. Bacteria Isolated from Conspecific Bite Wounds in Norway and Black Rats: Implications for Rat Bite–Associated Infections In People

    PubMed Central

    Zabek, Erin; Tang, Patrick; Parsons, Kirbee L.; Koehn, Martha; Jardine, Claire M.; Patrick, David M.

    2014-01-01

    Abstract Bites associated with wild and domestic Norway and black rats (Rattus norvegicus and Rattus rattus) may have a variety of health consequences in people. Bite-related infections are among the most significant of these consequences; however, there is little data on the infectious agents that can be transmitted from rats to people through biting. This is problematic because without an accurate understanding of bite-related infection risks, it is difficult for health professionals to evaluate the adequacy of existing guidelines for empirical therapy. The objectives of this study were to increase our knowledge of the bacterial species associated with rat bites by studying bite wounds that wild rats inflict upon one another and to review the literature regarding rat bites and bite wound management. Wild Norway and black rats (n=725) were trapped in Vancouver, Canada, and examined for bite wounds in the skin. All apparently infected wounds underwent aerobic and anaerobic culture, and isolated bacteria were identified. Thirty-six rats had bite wound–related infections, and approximately 22 different species of bacteria belonging to 18 genera were identified. Staphylococcus aureus was the most common isolate; however, the majority of infections (72.5%) were polymicrobial. Rat bites can result in infection with a number of aerobic and anaerobic Gram-positive and Gram-negative bacteria. In humans, these wounds are best managed through early recognition and cleansing. The benefit of prophylactic antimicrobial treatment is debatable, but given the deep puncturing nature of rodent bites, we suggest that they should be considered a high risk for infection. Antibiotics selected should include coverage for a broad range of bacterial species. PMID:24528094

  15. Staph Infections

    MedlinePlus

    ... About Staph Infections Staph infections are caused by Staphylococcus aureus bacteria. Many healthy people carry these bacteria on ... MRSA You may have heard about methicillin-resistant Staphylococcus aureus (MRSA), a type of staph bacteria with a ...

  16. Modulation of cell surface hydrophobicity and attachment of bacteria to abiotic surfaces and shrimp by Malaysian herb extracts.

    PubMed

    Hui, Yew Woh; Dykes, Gary A

    2012-08-01

    The use of simple crude water extracts of common herbs to reduce bacterial attachment may be a cost-effective way to control bacterial foodborne pathogens, particularly in developing countries. The ability of water extracts of three common Malaysian herbs (Andrographis paniculata, Eurycoma longifolia, and Garcinia atroviridis) to modulate hydrophobicity and attachment to surfaces of five food-related bacterial strains (Bacillus cereus ATCC 14576, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 10145, Salmonella Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923) were determined. The bacterial attachment to hydrocarbon assay was used to determine bacterial hydrophobicity. Staining and direct microscopic counts were used to determine attachment of bacteria to glass and stainless steel. Plating on selective media was used to determine attachment of bacteria to shrimp. All extracts were capable of either significantly ( P < 0.05) increasing or decreasing bacterial surface hydrophobicity, depending on the herb extract and bacteria combination. Bacterial attachment to all surfaces was either significantly (P < 0.05) increased or decreased, depending on the herb extract and bacteria combination. Overall, hydrophobicity did not show a significant correlation (P > 0.05) to bacterial attachment. For specific combinations of bacteria, surface material, and plant extract, significant correlations (R > 0.80) between hydrophobicity and attachment were observed. The highest of these was observed for S. aureus attachment to stainless steel and glass after treatment with the E. longifolia extract (R = 0.99, P < 0.01). The crude water herb extracts in this study were shown to have the potential to modulate specific bacterial and surface interactions and may, with further work, be useful for the simple and practical control of foodborne pathogens.

  17. Lipoteichoic acid (LTA) and lipopolysaccharides (LPS) from periodontal pathogenic bacteria facilitate oncogenic herpesvirus infection within primary oral cells.

    PubMed

    Dai, Lu; DeFee, Michael R; Cao, Yueyu; Wen, Jiling; Wen, Xiaofei; Noverr, Mairi C; Qin, Zhiqiang

    2014-01-01

    Kaposi's sarcoma (KS) remains the most common tumor arising in patients with HIV/AIDS, and involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage of a variety of bacteria. Whether interactions involving pathogenic bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity remains unknown. In the current study, our data indicate that pretreatment of primary human oral fibroblasts with two prototypical pathogen-associated molecular patterns (PAMPs) produced by oral pathogenic bacteria-lipoteichoic acid (LTA) and lipopolysaccharide (LPS), increase KSHV entry and subsequent viral latent gene expression during de novo infection. Further experiments demonstrate that the underlying mechanisms induced by LTA and/or LPS include upregulation of cellular receptor, increasing production of reactive oxygen species (ROS), and activating intracellular signaling pathways such as MAPK and NF-κB, and all of which are closely associated with KSHV entry or gene expression within oral cells. Based on these findings, we hope to provide the framework of developing novel targeted approaches for treatment and prevention of oral KSHV infection and KS development in high-risk HIV-positive patients.

  18. Clofazimine Modulates the Expression of Lipid Metabolism Proteins in Mycobacterium leprae-Infected Macrophages

    PubMed Central

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine. PMID:23236531

  19. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.

    PubMed

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.

  20. Urinary tract infection (UTI) multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS)

    NASA Astrophysics Data System (ADS)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-02-01

    Antibiotic resistance is a major health care problem mostly caused by the inappropriate use of antibiotics. At the root of the problem lies the current method for determination of bacterial susceptibility to antibiotics which requires overnight cultures. Physicians suspecting an infection usually prescribe an antibiotic without waiting for the results. This practice aggravates the problem of bacterial resistance. In this work, a rapid method of diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Even though the concentration of bacteria was low (2x105 cfu/ml), species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. With the enhancement provided by SERS, the technique can be applied directly to urine or blood samples, bypassing the need for overnight cultures. This technology can lead to the development of rapid methods of diagnosis and antibiogram for a variety of bacterial infections.

  1. Diaper-Embedded Urinary Tract Infection Monitoring Sensor Module Powered by Urine-Activated Batteries.

    PubMed

    Seo, Weeseong; Yu, Wuyang; Tan, Tianlin; Ziaie, Babak; Jung, Byunghoo

    2017-06-01

    Urinary tract infection (UTI) is one of the most common infections in humans. UTI is easily treatable using antibiotics if identified in early stage. However, without early identification and treatment, UTI can be a major source of serious complications in geriatric patients, in particular, those suffering from neurodegenerative diseases. Also, for infants who have difficulty in describing their symptoms, UTI may lead to serious development of the disease making early identification of UTI crucial. In this paper, we present a diaper-embedded, wireless, self-powered, and autonomous UTI monitoring sensor module that allows an early detection of UTI with minimal effort. The sensor module consists of a paper-based colorimetric nitrite sensor, urine-activated batteries, a boost dc-dc converter, a low-power sensor interface utilizing pulse width modulation, and a Bluetooth low energy module for wireless transmission. Experimental results show a better detection of nitrite, a surrogate of UTI, than that of conventional dipstick testing. The proposed sensor module achieves a sensitivity of 1.35 ms/(mg/L) and a detection limit of 4 mg/L for nitrite.

  2. Staphylococcal Infections

    MedlinePlus

    ... of bacteria. There are over 30 types, but Staphylococcus aureus causes most staph infections (pronounced "staff infections"), including ... Some staph bacteria such as MRSA (methicillin-resistant Staphylococcus aureus) are resistant to certain antibiotics, making infections harder ...

  3. Increasing burden of urinary tract infections due to intrinsic colistin-resistant bacteria in hospitals in Marseille, France.

    PubMed

    Abat, Cédric; Desboves, Guillaume; Olaitan, Abiola Olumuyiwa; Chaudet, Hervé; Roattino, Nicole; Fournier, Pierre-Edouard; Colson, Philippe; Raoult, Didier; Rolain, Jean-Marc

    2015-02-01

    The emergence of multidrug-resistant (MDR) Gram-negative bacteria has become a major public health problem, eliciting renewed interest in colistin, an old antibiotic that is now routinely used to treat MDR bacterial infections. Here we investigated whether colistin use has affected the prevalence of infections due to intrinsic colistin-resistant bacteria (CRB) in university hospitals in Marseille (France) over a 5-year period. All data from patients infected by intrinsic CRB were compiled from January 2009 to December 2013. Escherichia coli infections were used for comparison. Colistin consumption data were also collected from pharmacy records from 2008 to 2013. A total of 4847 intrinsic CRB infections, including 3150 Proteus spp., 847 Morganella spp., 704 Serratia spp. and 146 Providencia spp., were collected between 2009 and 2013. During this period, the annual incidence rate of hospital-acquired CRB infections increased from 220 per 1000 patients to 230 per 1000 patients and that of community-acquired CRB infections increased from 100 per 1000 patients to 140 per 1000 patients. In parallel, colistin consumption increased 2.2-fold from 2008 to 2013, mainly because of an increase in the use of colistin aerosol forms (from 50 unitary doses to 2926 unitary doses; P<10(-5)) that was significantly correlated with an increase in the number of patients positive for CRB admitted to ICUs and units of long-term care between 2009 and 2013 (r=0.91; P=0.03). The global rise in infections due to intrinsic CRB is worrying and surveillance is warranted to better characterise this intriguing epidemiological change. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  4. Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease.

    PubMed

    Manko, Anna; Motta, Jean-Paul; Cotton, James A; Feener, Troy; Oyeyemi, Ayodele; Vallance, Bruce A; Wallace, John L; Buret, Andre G

    2017-01-01

    Our understanding of polymicrobial gastrointestinal infections and their effects on host biology remains incompletely understood. Giardia duodenalis is an ubiquitous intestinal protozoan parasite infecting animals and humans. Concomitant infections with Giardia and other gastrointestinal pathogens commonly occur. In countries with poor sanitation, Giardia infection has been associated with decreased incidence of diarrheal disease and fever, and reduced serum inflammatory markers release, via mechanisms that remain obscure. This study analyzed Giardia spp. co-infections with attaching and effacing (A/E) pathogens, and assessed whether and how the presence of Giardia modulates host responses to A/E enteropathogens, and alters intestinal disease outcome. In mice infected with the A/E pathogen Citrobacter rodentium, co-infection with Giardia muris significantly attenuated weight loss, macro- and microscopic signs of colitis, bacterial colonization and translocation, while concurrently enhancing the production and secretion of antimicrobial peptides (AMPs) mouse β-defensin 3 and trefoil factor 3 (TFF3). Co-infection of human intestinal epithelial cells (Caco-2) monolayers with G. duodenalis trophozoites and enteropathogenic Escherichia coli (EPEC) enhanced the production of the AMPs human β-defensin 2 (HBD-2) and TFF3; this effect was inhibited with treatment of G. duodenalis with cysteine protease inhibitors. Collectively, these results suggest that Giardia infections are capable of reducing enteropathogen-induced colitis while increasing production of host AMPs. Additional studies also demonstrated that Giardia was able to directly inhibit the growth of pathogenic bacteria. These results reveal novel mechanisms whereby Giardia may protect against gastrointestinal disease induced by a co-infecting A/E enteropathogen. Our findings shed new light on how microbial-microbial interactions in the gut may protect a host during concomitant infections.

  5. Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease

    PubMed Central

    Manko, Anna; Motta, Jean-Paul; Cotton, James A.; Feener, Troy; Oyeyemi, Ayodele; Vallance, Bruce A.; Wallace, John L.

    2017-01-01

    Our understanding of polymicrobial gastrointestinal infections and their effects on host biology remains incompletely understood. Giardia duodenalis is an ubiquitous intestinal protozoan parasite infecting animals and humans. Concomitant infections with Giardia and other gastrointestinal pathogens commonly occur. In countries with poor sanitation, Giardia infection has been associated with decreased incidence of diarrheal disease and fever, and reduced serum inflammatory markers release, via mechanisms that remain obscure. This study analyzed Giardia spp. co-infections with attaching and effacing (A/E) pathogens, and assessed whether and how the presence of Giardia modulates host responses to A/E enteropathogens, and alters intestinal disease outcome. In mice infected with the A/E pathogen Citrobacter rodentium, co-infection with Giardia muris significantly attenuated weight loss, macro- and microscopic signs of colitis, bacterial colonization and translocation, while concurrently enhancing the production and secretion of antimicrobial peptides (AMPs) mouse β-defensin 3 and trefoil factor 3 (TFF3). Co-infection of human intestinal epithelial cells (Caco-2) monolayers with G. duodenalis trophozoites and enteropathogenic Escherichia coli (EPEC) enhanced the production of the AMPs human β-defensin 2 (HBD-2) and TFF3; this effect was inhibited with treatment of G. duodenalis with cysteine protease inhibitors. Collectively, these results suggest that Giardia infections are capable of reducing enteropathogen-induced colitis while increasing production of host AMPs. Additional studies also demonstrated that Giardia was able to directly inhibit the growth of pathogenic bacteria. These results reveal novel mechanisms whereby Giardia may protect against gastrointestinal disease induced by a co-infecting A/E enteropathogen. Our findings shed new light on how microbial-microbial interactions in the gut may protect a host during concomitant infections. PMID:28622393

  6. An Introductory Review Module For an Anti-Infectives Therapeutics Course

    PubMed Central

    Murphy, Kendrick; Zaeem, Maryam; DiVall, Margarita V.

    2012-01-01

    Objective. To determine whether an introductory review module using a hybrid-learning approach helped students learn infectious disease management in an anti-infectives therapeutics course. Design. An introductory module consisting of an online pharmacology review, pre-class assignment, 2 classroom lectures, and 1 case-based lecture was developed and implemented. Assessment. Among the 110 students who completed pre- and post-tests on the material covered, average scores increased from 71% to 83% (p<0.0001). Performance on knowledge-based question improved for 8 out of 10 questions (p<0.05) and student confidence increased from the first lecture to completion of the module (p<0.001 for all comparisons). Of the 129 students who completed an evaluation of the introductory module, 98% strongly agreed or agreed that the content was essential for course success. Conclusion. The addition of an introductory module using a hybrid-learning approach to review and solidify concepts of medical microbiology and pharmacology provided the foundation necessary for success in an infectious diseases module. PMID:23049107

  7. Effects of BmCPV Infection on Silkworm Bombyx mori Intestinal Bacteria

    PubMed Central

    Zhang, Hao; Kumar, Dhiraj; Liu, Bo; Gong, Yongchang; Zhu, Min; Zhu, Liyuan; Liang, Zi; Kuang, Sulan; Chen, Fei; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2016-01-01

    The gut microbiota has a crucial role in the growth, development and environmental adaptation in the host insect. The objective of our work was to investigate the microbiota of the healthy silkworm Bombyx mori gut and changes after the infection of B. mori cypovirus (BmCPV). Intestinal contents of the infected and healthy larvae of B. mori of fifth instar were collected at 24, 72 and 144 h post infection with BmCPV. The gut bacteria were analyzed by pyrosequencing of the 16S rRNA gene. 147(135) and 113(103) genera were found in the gut content of the healthy control female (male) larvae and BmCPV-infected female (male) larvae, respectively. In general, the microbial communities in the gut content of healthy larvae were dominated by Enterococcus, Delftia, Pelomonas, Ralstonia and Staphylococcus, however the abundance change of each genus was depended on the developmental stage and gender. Microbial diversity reached minimum at 144 h of fifth instar larvae. The abundance of Enterococcus in the females was substantially lower and the abundance of Delftia, Aurantimonas and Staphylococcus was substantially higher compared to the males. Bacterial diversity in the intestinal contents decreased after post infection with BmCPV, whereas the abundance of both Enterococcus and Staphylococcus which belongs to Gram-positive were increased. Therefore, our findings suggested that observed changes in relative abundance was related to the immune response of silkworm to BmCPV infection. Relevance analysis of plenty of the predominant genera showed the abundance of the Enterococcus genus was in negative correlation with the abundance of the most predominant genera. These results provided insight into the relationship between the gut microbiota and development of the BmCPV-infected silkworm. PMID:26745627

  8. Effects of BmCPV Infection on Silkworm Bombyx mori Intestinal Bacteria.

    PubMed

    Sun, Zhenli; Lu, Yahong; Zhang, Hao; Kumar, Dhiraj; Liu, Bo; Gong, Yongchang; Zhu, Min; Zhu, Liyuan; Liang, Zi; Kuang, Sulan; Chen, Fei; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2016-01-01

    The gut microbiota has a crucial role in the growth, development and environmental adaptation in the host insect. The objective of our work was to investigate the microbiota of the healthy silkworm Bombyx mori gut and changes after the infection of B. mori cypovirus (BmCPV). Intestinal contents of the infected and healthy larvae of B. mori of fifth instar were collected at 24, 72 and 144 h post infection with BmCPV. The gut bacteria were analyzed by pyrosequencing of the 16S rRNA gene. 147(135) and 113(103) genera were found in the gut content of the healthy control female (male) larvae and BmCPV-infected female (male) larvae, respectively. In general, the microbial communities in the gut content of healthy larvae were dominated by Enterococcus, Delftia, Pelomonas, Ralstonia and Staphylococcus, however the abundance change of each genus was depended on the developmental stage and gender. Microbial diversity reached minimum at 144 h of fifth instar larvae. The abundance of Enterococcus in the females was substantially lower and the abundance of Delftia, Aurantimonas and Staphylococcus was substantially higher compared to the males. Bacterial diversity in the intestinal contents decreased after post infection with BmCPV, whereas the abundance of both Enterococcus and Staphylococcus which belongs to Gram-positive were increased. Therefore, our findings suggested that observed changes in relative abundance was related to the immune response of silkworm to BmCPV infection. Relevance analysis of plenty of the predominant genera showed the abundance of the Enterococcus genus was in negative correlation with the abundance of the most predominant genera. These results provided insight into the relationship between the gut microbiota and development of the BmCPV-infected silkworm.

  9. [Significance of bacteria detection with filter paper method on diagnosis of diabetic foot wound infection].

    PubMed

    Zou, X H; Zhu, Y P; Ren, G Q; Li, G C; Zhang, J; Zou, L J; Feng, Z B; Li, B H

    2017-02-20

    Objective: To evaluate the significance of bacteria detection with filter paper method on diagnosis of diabetic foot wound infection. Methods: Eighteen patients with diabetic foot ulcer conforming to the study criteria were hospitalized in Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology from July 2014 to July 2015. Diabetic foot ulcer wounds were classified according to the University of Texas diabetic foot classification (hereinafter referred to as Texas grade) system, and general condition of patients with wounds in different Texas grade was compared. Exudate and tissue of wounds were obtained, and filter paper method and biopsy method were adopted to detect the bacteria of wounds of patients respectively. Filter paper method was regarded as the evaluation method, and biopsy method was regarded as the control method. The relevance, difference, and consistency of the detection results of two methods were tested. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of filter paper method in bacteria detection were calculated. Receiver operating characteristic (ROC) curve was drawn based on the specificity and sensitivity of filter paper method in bacteria detection of 18 patients to predict the detection effect of the method. Data were processed with one-way analysis of variance and Fisher's exact test. In patients tested positive for bacteria by biopsy method, the correlation between bacteria number detected by biopsy method and that by filter paper method was analyzed with Pearson correlation analysis. Results: (1) There were no statistically significant differences among patients with wounds in Texas grade 1, 2, and 3 in age, duration of diabetes, duration of wound, wound area, ankle brachial index, glycosylated hemoglobin, fasting blood sugar, blood platelet count, erythrocyte sedimentation rate, C-reactive protein, aspartate aminotransferase, serum creatinine, and

  10. Modulation of Potassium Channels Inhibits Bunyavirus Infection.

    PubMed

    Hover, Samantha; King, Barnabas; Hall, Bradley; Loundras, Eleni-Anna; Taqi, Hussah; Daly, Janet; Dallas, Mark; Peers, Chris; Schnettler, Esther; McKimmie, Clive; Kohl, Alain; Barr, John N; Mankouri, Jamel

    2016-02-12

    Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K(+)) channels to infect cells. Time of addition assays using K(+) channel modulating agents demonstrated that K(+) channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K(+) channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K(+) channels (K2P) were identified as the K(+) channel family mediating BUNV K(+) channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    PubMed

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Opportunistic infection of Aspergillus and bacteria in captive Cape vultures (Gyps coprotheres)

    PubMed Central

    Chege, Stephen; Howlett, Judith; Al Qassimi, Majid; Toosy, Arshad; Kinne, Joerg; Obanda, Vincent

    2013-01-01

    Objective To describe clinical signs, pathology, diagnosis and treatment of Cape vultures in which Aspergillus fumigatus (A. fumigatus) and mixed species of bacteria were isolated. Methods Six Cape vultures sourced from South Africa for exhibition at Al Ain Zoo developed illness manifesting as anorexia, dyspnea, polyuria and lethargy. Three vultures died manifesting “pneumonia-like syndrome”. These three vultures were necropsied and gross lesions recorded, while organ tissues were collected for histopathology. Internal organs were swabbed for bacteriology and mycology. From live vultures, blood was collected for hematology and biochemistry, oropharyngeal and cloacal swabs were collected for mycology and bacteriology. Results A. fumigatus was isolated from the three dead vultures and two live ones that eventually survived. One of the dead vulture and two live vultures were co-infected with A. fumigatus and mixed species of bacteria that included Clostridium perfringens, Pseudomonas, Staphylococcus, Escherichia, Proteus, Enterococcus and Enterbacter. One of the Cape vulture and a Lappet-faced vulture, however, were free of Aspergillus or bacterial infections. At necropsy, intestinal hemorrhages were observed and the lungs were overtly congested with granulomas present on caudal air sac. Histopathological examinations demonstrated granulomatous lesions that were infiltrated by mononuclear cells and giant cells. Conclusions Aspergillosis is a persistent threat to captive birds and we recommend routine health assessments so that early diagnosis may prompt early treatment. It is likely that prompt prophylaxis by broad spectrum antibiotics and antifungals medication contributed to the survival of some of the vultures. PMID:23646305

  13. The interplay between regulated necrosis and bacterial infection.

    PubMed

    Blériot, Camille; Lecuit, Marc

    2016-06-01

    Necrosis has long been considered as a passive event resulting from a cell extrinsic stimulus, such as pathogen infection. Recent advances have refined this view and it is now well established that necrosis is tightly regulated at the cell level. Regulated necrosis can occur in the context of host-pathogen interactions, and can either participate in the control of infection or favor it. Here, we review the two main pathways implicated so far in bacteria-associated regulated necrosis: caspase 1-dependent pyroptosis and RIPK1/RIPK3-dependent necroptosis. We present how these pathways are modulated in the context of infection by a series of model bacterial pathogens.

  14. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    PubMed

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-10-05

    Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of

  15. Lab-on-a-chip modules for detection of highly pathogenic bacteria: from sample preparation to detection

    NASA Astrophysics Data System (ADS)

    Julich, S.; Kopinč, R.; Hlawatsch, N.; Moche, C.; Lapanje, A.; Gärtner, C.; Tomaso, H.

    2014-05-01

    Lab-on-a-chip systems are innovative tools for the detection and identification of microbial pathogens in human and veterinary medicine. The major advantages are small sample volume and a compact design. Several fluidic modules have been developed to transform analytical procedures into miniaturized scale including sampling, sample preparation, target enrichment, and detection procedures. We present evaluation data for single modules that will be integrated in a chip system for the detection of pathogens. A microfluidic chip for purification of nucleic acids was established for cell lysis using magnetic beads. This assay was evaluated with spiked environmental aerosol and swab samples. Bacillus thuringiensis was used as simulant for Bacillus anthracis, which is closely related but non-pathogenic for humans. Stationary PCR and a flow-through PCR chip module were investigated for specific detection of six highly pathogenic bacteria. The conventional PCR assays could be transferred into miniaturized scale using the same temperature/time profile. We could demonstrate that the microfluidic chip modules are suitable for the respective purposes and are promising tools for the detection of bacterial pathogens. Future developments will focus on the integration of these separate modules to an entire lab-on-a-chip system.

  16. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance.

    PubMed

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas C G

    2015-07-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection.

  17. Mucosal and systemic immune modulation by Trichuris trichiura in a self-infected individual.

    PubMed

    Dige, A; Rasmussen, T K; Nejsum, P; Hagemann-Madsen, R; Williams, A R; Agnholt, J; Dahlerup, J F; Hvas, C L

    2017-01-01

    Helminthic therapy of immune-mediated diseases has gained attention in recent years, but we know little of how helminths modulate human immunity. In this study, we investigated how self-infection with Trichuris (T.) trichiura in an adult man without intestinal disease affected mucosal and systemic immunity. Colonic mucosal biopsies were obtained at baseline, during T. trichiura infection, and after its clearance following mebendazole treatment. Unexpectedly, the volunteer experienced a Campylobacter colitis following T. trichiura clearance, and this served as a positive infectious control. Trichuris trichiura colonization induced equally increased expressions of T-helper (h)1-, Th2-, Th17- and Treg-associated cytokines and transcription factors, measured by quantitative polymerase chain reaction. We observed several indicators of modulation of systemic immunity during the T. trichiura infection. Plasma eosinophils and anti-Trichuris antibodies rose markedly during the inoculation phase, and a shift towards a Th2-dominated T cell response at the expense of the Th1-response was observed in circulating T cells. Taken together, our findings corroborate that helminths modulate regional and systemic human immunity. © 2016 John Wiley & Sons Ltd.

  18. New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee’s vulnerability to Nosema infection

    PubMed Central

    Evans, Jay D.; Li, Wen Feng; Zhao, Ya Zhou; DeGrandi-Hoffman, Gloria; Huang, Shao Kang; Li, Zhi Guo; Hamilton, Michele; Chen, Yan Ping

    2017-01-01

    It has become increasingly clear that gut bacteria play vital roles in the development, nutrition, immunity, and overall fitness of their eukaryotic hosts. We conducted the present study to investigate the effects of gut microbiota disruption on the honey bee’s immune responses to infection by the microsporidian parasite Nosema ceranae. Newly emerged adult workers were collected and divided into four groups: Group I—no treatment; Group II—inoculated with N. ceranae, Group III—antibiotic treatment, and Group IV—antibiotic treatment after inoculation with N. ceranae. Our study showed that Nosema infection did not cause obvious disruption of the gut bacterial community as there was no significant difference in the density and composition of gut bacteria between Group I and Group II. However, the elimination of gut bacteria by antibiotic (Groups III and IV) negatively impacted the functioning of the honey bees’ immune system as evidenced by the expression of genes encoding antimicrobial peptides abaecin, defensin1, and hymenoptaecin that showed the following ranking: Group I > Group II > Group III > Group IV. In addition, significantly higher Nosema levels were observed in Group IV than in Group II, suggesting that eliminating gut bacteria weakened immune function and made honey bees more susceptible to Nosema infection. Based on Group IV having displayed the highest mortality rate among the four experimental groups indicates that antibiotic treatment in combination with stress, associated with Nosema infection, significantly and negatively impacts honey bee survival. The present study adds new evidence that antibiotic treatment not only leads to the complex problem of antibiotic resistance but can impact honey bee disease resistance. Further studies aimed at specific components of the gut bacterial community will provide new insights into the roles of specific bacteria and possibly new approaches to improving bee health. PMID:29125851

  19. Detection of viruses and atypical bacteria associated with acute respiratory infection of children in Hubei, China.

    PubMed

    Wu, Zegang; Li, Yan; Gu, Jian; Zheng, Hongyun; Tong, Yongqing; Wu, Qing

    2014-02-01

    Acute respiratory infection is the major cause of disease and death in children, particularly in developing countries. However, the spectrum of pathogenic viruses and atypical bacteria that exist in many of these countries remains incompletely characterized. The aim of this study was to examine the spectrum of pathogenic viruses and atypical bacteria associated with acute respiratory infection in children under the age of 16. A total of 10 435 serum sera specimens were collected from hospitalized children presenting with acute respiratory infection symptoms. Indirect immunofluorescence assays were performed to detect immunoglobulin M antibodies against nine common pathogens: mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila, coxiella burnetii and chamydophila pneumonia. Of the 10 435 specimens examined, 7046 tested positive for at least one pathogen. Among all of the tested pathogens, mycoplasma pneumonia had the highest detection rate (56.9%). Influenza virus A and influenza virus B epidemics occurred during both winter and summer. The detection rate of respiratory syncytial virus and adenovirus was higher in spring. Cases of mixed infection were more complex: 4136 specimens (39.6%) tested positive for ≥2 pathogens. There were statistically significant difference in detection rates of mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila and chamydophila pneumonia among different age groups (P < 0.05). The most common pathogens causing acute respiratory infection among children in Hubei of China were mycoplasma pneumonia, influenza virus B and respiratory syncytial virus. The detection rates for each pathogen displayed specific seasonal and age group variations. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  20. Investigational drugs for the treatment of infections caused by multidrug-resistant Gram-negative bacteria.

    PubMed

    Avery, Lindsay M; Nicolau, David P

    2018-04-01

    Infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) are associated with significant mortality and costs. New drugs in development to combat these difficult-to-treat infections primarily target carbapenem-resistant Enterobacteriaceae, MDR Pseudomonas aeruginosa, and MDR Acinetobacter baumannii. Areas covered: The authors summarize in vitro and in vivo efficacy studies, as well as available clinical trial findings, for new agents in development for treatment of infection caused by MDR-GNB. Information regarding dosage regimens utilized in clinical trials and key pharmacokinetic and pharmacodynamic considerations are provided if available. A summary of recently approved agents, delafloxacin and meropenem/vaborbactam, is also included. Expert opinion: The development of multiple novel agents to fight MDR-GNB is promising to help save the lives of patients who acquire infection, and judicious use of these agents is imperative once they come to market to prevent the development of resistance. The other component paramount to this field of research is implementation of effective infection control policies and carbapenem-resistant Enterobacteriaceae (CRE) carrier screening protocols to mitigate the worldwide spread of MDR-GNB. Further investigation of anti-infective synergistic combinations will also be important, as well as support for economic research to reveal the true cost-benefit of utilization of the new agents discussed herein.

  1. A New Approach for the Discovery of Antibiotics by Targeting Non-Multiplying Bacteria: A Novel Topical Antibiotic for Staphylococcal Infections

    PubMed Central

    Hu, Yanmin; Shamaei-Tousi, Alireza; Liu, Yingjun; Coates, Anthony

    2010-01-01

    In a clinical infection, multiplying and non-multiplying bacteria co-exist. Antibiotics kill multiplying bacteria, but they are very inefficient at killing non-multipliers which leads to slow or partial death of the total target population of microbes in an infected tissue. This prolongs the duration of therapy, increases the emergence of resistance and so contributes to the short life span of antibiotics after they reach the market. Targeting non-multiplying bacteria from the onset of an antibiotic development program is a new concept. This paper describes the proof of principle for this concept, which has resulted in the development of the first antibiotic using this approach. The antibiotic, called HT61, is a small quinolone-derived compound with a molecular mass of about 400 Daltons, and is active against non-multiplying bacteria, including methicillin sensitive and resistant, as well as Panton-Valentine leukocidin-carrying Staphylococcus aureus. It also kills mupirocin resistant MRSA. The mechanism of action of the drug is depolarisation of the cell membrane and destruction of the cell wall. The speed of kill is within two hours. In comparison to the conventional antibiotics, HT61 kills non-multiplying cells more effectively, 6 logs versus less than one log for major marketed antibiotics. HT61 kills methicillin sensitive and resistant S. aureus in the murine skin bacterial colonization and infection models. No resistant phenotype was produced during 50 serial cultures over a one year period. The antibiotic caused no adverse affects after application to the skin of minipigs. Targeting non-multiplying bacteria using this method should be able to yield many new classes of antibiotic. These antibiotics may be able to reduce the rate of emergence of resistance, shorten the duration of therapy, and reduce relapse rates. PMID:20676403

  2. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    PubMed

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  3. Oxygen-Dependent Globin Coupled Sensor Signaling Modulates Motility and Virulence of the Plant Pathogen Pectobacterium carotovorum.

    PubMed

    Burns, Justin L; Jariwala, Parth B; Rivera, Shannon; Fontaine, Benjamin M; Briggs, Laura; Weinert, Emily E

    2017-08-18

    Bacterial pathogens utilize numerous signals to identify the presence of their host and coordinate changes in gene expression that allow for infection. Within plant pathogens, these signals typically include small molecules and/or proteins from their plant hosts and bacterial quorum sensing molecules to ensure sufficient bacterial cell density for successful infection. In addition, bacteria use environmental signals to identify conditions when the host defenses are weakened and potentially to signal entry into an appropriate host/niche for infection. A globin coupled sensor protein (GCS), termed PccGCS, within the soft rot bacterium Pectobacterium carotovorum ssp. carotovorum WPP14 has been identified as an O 2 sensor and demonstrated to alter virulence factor excretion and control motility, with deletion of PccGCS resulting in decreased rotting of a potato host. Using small molecules that modulate bacterial growth and quorum sensing, PccGCS signaling also has been shown to modulate quorum sensing pathways, resulting in the PccGCS deletion strain being more sensitive to plant-derived phenolic acids, which can function as quorum sensing inhibitors, and exhibiting increased N-acylhomoserine lactone (AHL) production. These findings highlight a role for GCS proteins in controlling key O 2 -dependent phenotypes of pathogenic bacteria and suggest that modulating GCS signaling to limit P. carotovorum motility may provide a means to decrease rotting of plant hosts.

  4. Lipopolysaccharides in diazotrophic bacteria.

    PubMed

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  5. Lipopolysaccharides in diazotrophic bacteria

    PubMed Central

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure. PMID:25232535

  6. Lactobacillus rhamnosus ingestion promotes innate host defense in an enteric parasitic infection.

    PubMed

    McClemens, Jessica; Kim, Janice J; Wang, Huaqing; Mao, Yu-Kang; Collins, Matthew; Kunze, Wolfgang; Bienenstock, John; Forsythe, Paul; Khan, Waliul I

    2013-06-01

    Enteric parasite infections around the world are a huge economic burden and decrease the quality of life for many people. The use of beneficial bacteria has attracted attention for their potential therapeutic applications in various diseases. However, the effects of beneficial bacteria in enteric parasitic infections remain largely unexplored. We investigated the effects of ingestion of Lactobacillus rhamnosus (JB-1) in a model of enteric nematode (Trichuris muris) infection. C57BL/6 (resistant to infection), AKR (susceptible to infection), interleukin 10 (IL-10) knockout (KO), and mucin Muc2 KO mice were infected with T. muris and treated orally with probiotic JB-1 or medium. The mice were sacrificed on various days postinfection to examine goblet cells, epithelial cell proliferation, cytokines, and worm burdens. Treatment with JB-1 significantly enhanced worm expulsion in resistant C57BL/6 mice, and this was associated with increases in IL-10 levels, goblet cell numbers, and epithelial cell proliferation. Beneficial effects of JB-1 were absent in IL-10 KO and resistant mice treated with γ-irradiated bacteria. Live JB-1 treatment also expedited worm expulsion in Muc2 KO mice and, more importantly, in AKR mice (susceptible to infection). Injection of IL-10 directly into the colonic tissue of uninfected mice induced goblet cell hyperplasia. These findings demonstrate that JB-1 modulates goblet cell biology and promotes parasite expulsion via an IL-10-mediated pathway and provide novel insights into probiotic effects on innate defense in nematode infection.

  7. Molecular detection of black-pigmented bacteria in infections of endodontic origin.

    PubMed

    Siqueira, J F; Rôças, I N; Oliveira, J C; Santos, K R

    2001-09-01

    A 16S rDNA-directed polymerase chain reaction method was used to assess the occurrence of four black-pigmented anaerobic rods in root canal infections. Samples were obtained from 54 infected teeth. Ten cases were diagnosed as acute periradicular abscesses. DNA was extracted from the samples and analyzed using a polymerase chain reaction-based identification assay. The method allowed detection of black-pigmented bacteria anaerobes in 59.3% of the examined teeth. Twelve cases yielded more than one black-pigmented species. In general Porphyromonas endodontalis was found in 42.6%, Porphyromonas gingivalis in 27.8%, Prevotella nigrescens in 7.4%, and Prevotella intermedia in 5.6% of the cases. P. endodontalis was found in 70% of the pus samples, P. gingivalis in 40%, and P. intermedia in 10%. P. gingivalis was always found associated with P. endodontalis in abscessed teeth. P. nigrescens was not found in any pus sample. The high prevalence of P. endodontalis and P. gingivalis suggests that they can play an important role in the pathogenesis of periradicular diseases.

  8. Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses

    PubMed Central

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-01-01

    Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour

  9. Characterization of Bacteria in Nigerian Yogurt as Promising Alternative to Antibiotics in Gastrointestinal Infections.

    PubMed

    Ayeni, Anthony Opeyemi; Ruppitsch, Werner; Ayeni, Funmilola Abidemi

    2018-03-14

    Gastrointestinal infections are endemic in Nigeria and several factors contribute to their continual survival, including bacterial resistance to commonly used antibiotics. Nigerian yogurts do not include probiotics, and limited information is available about the antimicrobial properties of the fermenters in the yogurt against gastrointestinal pathogens. Therefore, the antimicrobial potentials of bacteria in Nigeria-produced yogurts against intestinal pathogens were investigated in this study. Viable counts of lactic acid bacteria (LAB) in 15 brands of yogurt were enumerated and the bacteria identified by partial sequencing of 16S rRNA gene. Susceptibility of the gastrointestinal pathogens (Salmonella, Shigella and E. coli ) to antibiotics by disc diffusion method, to viable LAB by the agar overlay method, and to the cell-free culture supernatant (CFCS) of the LAB were investigated. Co-culture analysis of LAB and pathogens were also done. Viable counts of 1.5 × 10 11 cfu/ml were observed in some yogurt samples. Two genera were identified: Lactobacillus (70.7%) and Acetobacter (29.3%). The Lactobacillus species reduced multidrug-resistant gastrointestinal pathogens by 4 to 5 log while the zones of inhibition ranged between 11 and 23. The Lactobacillus and Acetobacter strains examined displayed good activities against the multidrug-resistant tested pathogens. This is the first report of antimicrobial activities of acetic acid bacteria isolated from yogurt in Nigeria.

  10. Dual role of commensal bacteria in viral infections

    PubMed Central

    Wilks, Jessica; Beilinson, Helen; Golovkina, Tatyana V.

    2013-01-01

    Summary With our capabilities to culture and sequence the commensal bacteria that dwell on and within a host, we can now study the host in its entirety, as a supraorganism that must be navigated by the pathogen invader. At present, the majority of studies have focused on the interaction between the host’s microbiota and bacterial pathogens. This is not unwarranted, given that bacterial pathogens must compete with commensal organisms for the limited territory afforded by the host. However, viral pathogens also enter the host through surfaces coated with microbial life and encounter an immune system shaped by this symbiotic community. Therefore, we believe the microbiota cannot be ignored when examining the interplay between the host and viral pathogens. Here we review work that details mechanisms by which the microbiota either promotes or inhibits viral replication and virally-induced pathogenesis. The impact of the microbitota on viral infection promises to be a new and exciting avenue of investigation, which will ultimately lead to better treatments and preventions of virally-induced diseases. PMID:23947358

  11. Urinary tract infection - children

    MedlinePlus

    UTI - children; Cystitis - children; Bladder infection - children; Kidney infection - children; Pyelonephritis - children ... Urinary tract infections (UTIs) can occur when bacteria get into the bladder or the kidneys. These bacteria are common ...

  12. Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks

    PubMed Central

    Beckett, Stephen J.; Williams, Hywel T. P.

    2013-01-01

    Phage and their bacterial hosts are the most diverse and abundant biological entities in the oceans, where their interactions have a major impact on marine ecology and ecosystem function. The structure of interaction networks for natural phage–bacteria communities offers insight into their coevolutionary origin. At small phylogenetic scales, observed communities typically show a nested structure, in which both hosts and phages can be ranked by their range of resistance and infectivity, respectively. A qualitatively different multi-scale structure is seen at larger phylogenetic scales; a natural assemblage sampled from the Atlantic Ocean displays large-scale modularity and local nestedness within each module. Here, we show that such ‘nested-modular’ interaction networks can be produced by a simple model of host–phage coevolution in which infection depends on genetic matching. Negative frequency-dependent selection causes diversification of hosts (to escape phages) and phages (to track their evolving hosts). This creates a diverse community of bacteria and phage, maintained by kill-the-winner ecological dynamics. When the resulting communities are visualized as bipartite networks of who infects whom, they show the nested-modular structure characteristic of the Atlantic sample. The statistical significance and strength of this observation varies depending on whether the interaction networks take into account the density of the interacting strains, with implications for interpretation of interaction networks constructed by different methods. Our results suggest that the apparently complex community structures associated with marine bacteria and phage may arise from relatively simple coevolutionary origins. PMID:24516719

  13. Identification of Transcriptional Modules and Key Genes in Chickens Infected with Salmonella enterica Serovar Pullorum Using Integrated Coexpression Analyses.

    PubMed

    Liu, Bao-Hong; Cai, Jian-Ping

    2017-01-01

    Salmonella enterica Pullorum is one of the leading causes of mortality in poultry. Understanding the molecular response in chickens in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis (WGCNA) and differential coexpression analysis (DCEA) to identify coexpression modules by exploring microarray data derived from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-protein coupled receptor activity, Toll-like receptor signaling pathways, and immune system processes; among them, 14 differentially coexpressed modules (DCMs) and 2,856 differentially coexpressed genes (DCGs) were identified. The global expression of module genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression. Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for future studies of Salmonella infection.

  14. Identification of Transcriptional Modules and Key Genes in Chickens Infected with Salmonella enterica Serovar Pullorum Using Integrated Coexpression Analyses

    PubMed Central

    2017-01-01

    Salmonella enterica Pullorum is one of the leading causes of mortality in poultry. Understanding the molecular response in chickens in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis (WGCNA) and differential coexpression analysis (DCEA) to identify coexpression modules by exploring microarray data derived from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-protein coupled receptor activity, Toll-like receptor signaling pathways, and immune system processes; among them, 14 differentially coexpressed modules (DCMs) and 2,856 differentially coexpressed genes (DCGs) were identified. The global expression of module genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression. Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for future studies of Salmonella infection. PMID:28529955

  15. [Use of antagonistic Bacillus subtilis bacteria for treatment of nosocomial urinary tract infections].

    PubMed

    Pushkarev, A M; Tuĭgunova, V G; Zaĭnullin, R R; Kuznetsova, T N; Gabidullin, Iu Z

    2007-01-01

    Effect of Bactisporin--a probiotic, containing spores of aerobic Bacillus subtilis 3H bacterium--for complex treatment of patients with nosocomial urinary tract infections was studied. 68 Cultures of different species of conditionally pathogenic bacteria were isolated from urine of the patients. Susceptibility of the isolated cultures to antibiotics before and after application of B. subtilis 3H metabolites was determined. The metabolites were accumulated on potato-glucose agar (PGA) while bacterium was cultivated on kapron membranes placed on surface of the medium. Influence of obtained metabolites on isolated strains was assessed by cultivation of each strain in metabolites-rich PGA during 24 h. Metabolites of B. subtilis led to decrease in resistance of isolated uropathogenic microflora to antibiotics. Use of Bactisporin in complex treatment of nosocomial urinary tract infections resulted in accelerated elimination of causative microorganism.

  16. Specific Clinical Profile and Risk Factors for Mortality in General Surgery Patients with Infections by Multi-Drug-Resistant Gram-Negative Bacteria.

    PubMed

    Rubio-Perez, Ines; Martin-Perez, Elena; Domingo-García, Diego; Garcia-Olmo, Damian

    2017-07-01

    The incidence of gram-negative multi-drug-resistant (MDR) infections is increasing worldwide. This study sought to determine the incidence, clinical profiles, risk factors, and mortality of these infections in general surgery patients. All general surgery patients with a clinical infection by gram-negative MDR bacteria were studied prospectively for a period of five years (2007-2011). Clinical, surgical, and microbiologic parameters were recorded, with a focus on the identification of risk factors for MDR infection and mortality. Incidence of MDR infections increased (5.6% to 15.2%) during the study period; 106 patients were included, 69.8% presented nosocomial infections. Mean age was 65 ± 15 years, 61% male. Extended-spectrum β-lactamases (ESBL) Escherichia coli was the most frequent MDR bacteria. Surgical site infections and abscesses were the most common culture locations. The patients presented multiple pre-admission risk factors and invasive measures during hospitalization. Mortality was 15%, and related to older age (odds ratio [OR] 1.07), malnutrition (OR 13.5), chronic digestive conditions (OR 4.7), chronic obstructive pulmonary disease (OR 3.9), and surgical re-intervention (OR 9.2). Multi-drug resistant infections in the surgical population are increasing. The most common clinical profile is a 65-year-old male, with previous comorbidities, who has undergone a surgical intervention, intensive care unit (ICU) admission, and invasive procedures and who has acquired the MDR infection in the nosocomial setting.

  17. Spectroscopic diagnostics for bacteria in biologic sample

    DOEpatents

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  18. Identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture

    PubMed Central

    Dempsey, Kate E; Riggio, Marcello P; Lennon, Alan; Hannah, Victoria E; Ramage, Gordon; Allan, David; Bagg, Jeremy

    2007-01-01

    It has been postulated that bacteria attached to the surface of prosthetic hip joints can cause localised inflammation, resulting in failure of the replacement joint. However, diagnosis of infection is difficult with traditional microbiological culture methods, and evidence exists that highly fastidious or non-cultivable organisms have a role in implant infections. The purpose of this study was to use culture and culture-independent methods to detect the bacteria present on the surface of prosthetic hip joints removed during revision arthroplasties. Ten consecutive revisions were performed by two surgeons, which were all clinically and radiologically loose. Five of the hip replacement revision surgeries were performed because of clinical infections and five because of aseptic loosening. Preoperative and perioperative specimens were obtained from each patient and subjected to routine microbiological culture. The prostheses removed from each patient were subjected to mild ultrasonication to dislodge adherent bacteria, followed by aerobic and anaerobic microbiological culture. Bacterial DNA was extracted from each sonicate and the 16S rRNA gene was amplified with the universal primer pair 27f/1387r. All 10 specimens were positive for the presence of bacteria by both culture and PCR. PCR products were then cloned, organised into groups by RFLP analysis and one clone from each group was sequenced. Bacteria were identified by comparison of the 16S rRNA gene sequences obtained with those deposited in public access sequence databases. A total of 512 clones were analysed by RFLP analysis, of which 118 were sequenced. Culture methods identified species from the genera Leifsonia (54.3%), Staphylococcus (21.7%), Proteus (8.7%), Brevundimonas (6.5%), Salibacillus (4.3%), Methylobacterium (2.2%) and Zimmermannella (2.2%). Molecular detection methods identified a more diverse microflora. The predominant genus detected was Lysobacter, representing 312 (60.9%) of 512 clones

  19. Close Encounters of Lymphoid Cells and Bacteria

    PubMed Central

    Cruz-Adalia, Aranzazu; Veiga, Esteban

    2016-01-01

    During infections, the first reaction of the host against microbial pathogens is carried out by innate immune cells, which recognize conserved structures on pathogens, called pathogen-associated molecular patterns. Afterward, some of these innate cells can phagocytose and destroy the pathogens, secreting cytokines that would modulate the immune response to the challenge. This rapid response is normally followed by the adaptive immunity, more specific and essential for a complete pathogen clearance in many cases. Some innate immune cells, usually named antigen-presenting cells, such as macrophages or dendritic cells, are able to process internalized invaders and present their antigens to lymphocytes, triggering the adaptive immune response. Nevertheless, the traditional boundary of separated roles between innate and adaptive immunity has been blurred by several studies, showing that very specialized populations of lymphocytes (cells of the adaptive immunity) behave similarly to cells of the innate immunity. These “innate-like” lymphocytes include γδ T cells, invariant NKT cells, B-1 cells, mucosal-associated invariant T cells, marginal zone B cells, and innate response activator cells, and together with the newly described innate lymphoid cells are able to rapidly respond to bacterial infections. Strikingly, our recent data suggest that conventional CD4+ T cells, the paradigm of cells of the adaptive immunity, also present innate-like behavior, capturing bacteria in a process called transinfection. Transinfected CD4+ T cells digest internalized bacteria like professional phagocytes and secrete large amounts of proinflammatory cytokines, protecting for further bacterial challenges. In the present review, we will focus on the data showing such innate-like behavior of lymphocytes following bacteria encounter. PMID:27774092

  20. Childhood urinary tract infection caused by extended-spectrum β-lactamase-producing bacteria: Risk factors and empiric therapy.

    PubMed

    Uyar Aksu, Nihal; Ekinci, Zelal; Dündar, Devrim; Baydemir, Canan

    2017-02-01

    This study investigated risk factors of childhood urinary tract infection (UTI) associated with extended-spectrum β-lactamase (ESBL)-producing bacteria (ESBL-positive UTI) and evaluated antimicrobial resistance as well as empiric treatment of childhood UTI. The records of children with positive urine culture between 1 January 2008 and 31 December 2012 were evaluated. Patients with positive urine culture for ESBL-producing bacteria were defined as the ESBL-positive group, whereas patients of the same gender and similar age with positive urine culture for non-ESBL-producing bacteria were defined as the ESBL-negative group. Each ESBL-positive patient was matched with two ESBL-negative patients. The ESBL-positive and negative groups consisted of 154 and 308 patients, respectively. Potential risk factors for ESBL-positive UTI were identified as presence of underlying disease, clean intermittent catheterization (CIC), hospitalization, use of any antibiotic and history of infection in the last 3 months (P < 0.05). On logistic regression analysis, CIC, hospitalization and history of infection in the last 3 months were identified as independent risk factors. In the present study, 324 of 462 patients had empiric therapy. Empiric therapy was inappropriate in 90.3% of the ESBL-positive group and in 4.5% of the ESBL-negative group. Resistance to nitrofurantoin was similar between groups (5.1% vs 1.2%, P = 0.072); resistance to amikacin was low in the ESBL-positive group (2.6%) and there was no resistance in the ESBL-negative group. Clean intermittent catheterization, hospitalization and history of infection in the last 3 months should be considered as risk factors for ESBL-positive UTI. The combination of ampicillin plus amikacin should be taken into consideration for empiric therapy in patients with acute pyelonephritis who have the risk factors for ESBL-positive UTI. Nitrofurantoin seems to be a logical choice for the empiric therapy of cystitis. © 2016 Japan Pediatric

  1. Bacteria on catheters in patients undergoing peritoneal dialysis.

    PubMed

    Pihl, Maria; Davies, Julia R; Johansson, Ann-Cathrine; Svensäter, Gunnel

    2013-01-01

    Peritonitis is the leading cause of morbidity for peritoneal dialysis (PD) patients, and microbial biofilms have previously been identified on catheters from infected patients. However, few studies of catheters from patients without clinical signs of infection have been undertaken. The aim of the present study was to investigate the extent to which bacteria are present on catheters from PD patients with no symptoms of infection. Microbiologic culturing under aerobic and anaerobic conditions and confocal laser scanning microscopy were used to determine the distribution of bacteria on PD catheters from 15 patients without clinical signs of infection and on catheters from 2 infected patients. The 16S rRNA gene sequencing technique was used to identify cultured bacteria. Bacteria were detected on 12 of the 15 catheters from patients without signs of infection and on the 2 catheters from infected patients. Single-species and mixed-microbial communities containing up to 5 species were present on both the inside and the outside along the whole length of the colonized catheters. The bacterial species most commonly found were the skin commensals Staphylococcus epidermidis and Propionibacterium acnes, followed by S. warneri and S. lugdunensis. The strains of these micro-organisms, particularly those of S. epidermidis, varied in phenotype with respect to their tolerance of the major classes of antibiotics. Bacteria were common on catheters from patients without symptoms of infection. Up to 4 different bacterial species were found in close association and may represent a risk factor for the future development of peritonitis in patients hosting such micro-organisms.

  2. RNases and Helicases in Gram-Positive Bacteria.

    PubMed

    Durand, Sylvain; Condon, Ciaran

    2018-04-01

    RNases are key enzymes involved in RNA maturation and degradation. Although they play a crucial role in all domains of life, bacteria, archaea, and eukaryotes have evolved with their own sets of RNases and proteins modulating their activities. In bacteria, these enzymes allow modulation of gene expression to adapt to rapidly changing environments. Today, >20 RNases have been identified in both Escherichia coli and Bacillus subtilis , the paradigms of the Gram-negative and Gram-positive bacteria, respectively. However, only a handful of these enzymes are common to these two organisms and some of them are essential to only one. Moreover, although sets of RNases can be very similar in closely related bacteria such as the Firmicutes Staphylococcus aureus and B. subtilis , the relative importance of individual enzymes in posttranscriptional regulation in these organisms varies. In this review, we detail the role of the main RNases involved in RNA maturation and degradation in Gram-positive bacteria, with an emphasis on the roles of RNase J1, RNase III, and RNase Y. We also discuss how other proteins such as helicases can modulate the RNA-degradation activities of these enzymes.

  3. The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages.

    PubMed

    Price, Christopher T D; Abu Kwaik, Yousef

    2014-01-01

    Legionella pneumophila is an intracellular bacterial pathogen that invades and replicates within alveolar macrophages through injection of ∼ 300 effector proteins by its Dot/Icm type IV translocation apparatus. The bona fide F-box protein, AnkB, is a nutritional virulence effector that triggers macrophages to generate a surplus of amino acids, which is essential for intravacuolar proliferation. Therefore, the ankB mutant represents a novel genetic tool to determine the transcriptional response of human monocyte-derived macrophages (hMDMs) to actively replicating L. pneumophila. Here, we utilized total human gene microarrays to determine the global transcriptional response of hMDMs to infection by wild type or the ankB mutant of L. pneumophila. The transcriptomes of hMDMs infected with either actively proliferating wild type or non-replicative ankB mutant bacteria were remarkably similar. The transcriptome of infected hMDMs was predominated by up-regulation of inflammatory pathways (IL-10 anti-inflammatory, interferon signaling and amphoterin signaling), anti-apoptosis, and down-regulation of protein synthesis pathways. In addition, L. pneumophila modulated diverse metabolic pathways, particularly those associated with bio-active lipid metabolism, and SLC amino acid transporters expression. Taken together, the hMDM transcriptional response to L. pneumophila is independent of intra-vacuolar replication of the bacteria and primarily involves modulation of the immune response and metabolic as well as nutritional pathways.

  4. Variability of cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant bacteria in two Brazilian intensive care units.

    PubMed

    Damaceno, Quésia; Nicoli, Jacques R; Oliveira, Adriana

    2015-01-01

    To compare cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant organisms in two intensive care units. A prospective cohort study was performed in adult intensive care units of two hospitals in Belo Horizonte, Brazil (April 2012 to February 2013). Clinical and demographic data were first collected by reviewing patients' charts. Then, samples collected with nasal, groin, and perineum swabs were cultivated in selective media for 48 h at 37°C. After isolation, determination of antimicrobial susceptibility and biochemical identification were performed. A total of 53 cases of colonization were observed by the following bacteria in decreasing frequencies: imipenem-resistant Acinetobacter baumannii (50.9%), vancomycin-resistant Enterococcus faecalis (43.4%), extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (37.7%), imipenem-resistant Pseudomonas aeruginosa (32.1%), oxacillin-resistant Staphylococcus aureus (7.5%), and imipenem-resistant Klebsiella pneumoniae (5.7%). Among these colonization cases, 26 (49.0%) were followed by infection with bacteria phenotypically similar to those of the colonization. A relation between high population levels of colonization by most of the multidrug-resistant organisms at anatomical sites and a subsequent infection was observed. After colonization/infection, bacterial population levels decreased progressively and spontaneously until disappearance by day 45 in all the anatomical sites and for all the multidrug-resistant organisms. There was a correlation between high population levels of colonization by multidrug-resistant organisms at anatomical sites and a subsequent infection. Reduction in multidrug-resistant organism populations after colonization at anatomical sites could be a preventive measure to reduce evolution to infection as well as transmission of these bacteria between patients in intensive care unit.

  5. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds.

    PubMed

    Anisha, B S; Biswas, Raja; Chennazhi, K P; Jayakumar, R

    2013-11-01

    The aim of this work was to develop an antimicrobial sponge composed of chitosan, hyaluronic acid (HA) and nano silver (nAg) as a wound dressing for diabetic foot ulcers (DFU) infected with drug resistant bacteria. nAg (5-20 nm) was prepared and characterized. The nanocomposite sponges were prepared by homogenous mixing of chitosan, HA and nAg followed by freeze drying to obtain a flexible and porous structure. The prepared sponges were characterized using SEM and FT-IR. The porosity, swelling, biodegradation and haemostatic potential of the sponges were also studied. Antibacterial activity of the prepared sponges was analysed using Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Klebsiella pneumonia. Chitosan-HA/nAg composite sponges showed potent antimicrobial property against the tested organisms. Sponges containing higher nAg (0.005%, 0.01% and 0.02%) concentrations showed antibacterial activity against MRSA. Cytotoxicity and cell attachment studies were done using human dermal fibroblast cells. The nanocomposite sponges showed a nAg concentration dependent toxicity towards fibroblast cells. Our results suggest that this nanocomposite sponges could be used as a potential material for wound dressing for DFU infected with antibiotic resistant bacteria if the optimal concentration of nAg exhibiting antibacterial action with least toxicity towards mammalian cells is identified. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Risk factors for infection development after transrectal prostate biopsy and the role of resistant bacteria in colonic flora.

    PubMed

    Eruz, Emine Dilek; Yalci, Aysun; Ozden, Eriz; Aslaner, Halide; Ogucu-Durgun, Suna; Koseoglu-Taymur, Deniz Derya; Memikoglu, Kemal Osman; Erdem, Hakan; Kurt, Halil

    2017-02-28

    In this study, we aimed to identify risk factors for the development of infectious complications after prostate biopsy and to investigate the role of intestinal colonization of bacteria that are resistant to prophylactic antibiotics. A total of 168 patients who had undergone transrectal prostate biopsy (TRPB) under ciprofloxacin and gentamycin prophylaxis were included in the study. Stool cultures and subsequent antibiotic susceptibility testing were performed in all patients before the start of antibiotic prophylaxis. Of the 168 patients, 17 (10.1%) developed urinary tract infection (UTI), while 6 (3.57%) developed sepsis within seven days after biopsy. Ciprofloxacin-resistant bacterial colonization was detected in 81 (48.2%) of the patients. None of the patients with ciprofloxacin-sensitive bacteria in intestinal flora developed a UTI. The colonization of intestinal ciprofloxacin-resistant bacteria increased UTI risk significantly after TRPB (p < 0.0001). Urolithiasis history, presence of permanent urinary catheterization, hospitalization history for more than 48 hours in the last year, and recent antibiotic usage significantly increased UTI risk after TRPB. Development of an infection was more frequent in patients with resistant bacterial colonization. We hope to guide more comprehensive studies designed to find a standard prophylactic regimen for TRPB that can be used all over the world.

  7. Commensal Bacteria Modulate Innate Immune Responses of Vaginal Epithelial Cell Multilayer Cultures

    PubMed Central

    Rose, William A.; McGowin, Chris L.; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D.; Popov, Vsevolod L.; Pyles, Richard B.

    2012-01-01

    The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives. PMID:22412914

  8. Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR) bacteria isolated from urinary tract infections (UTIs).

    PubMed

    Naderi, Atiyeh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Imani Fooladi, Abbas Ali; Abdollahpour Alitappeh, Meghdad; Saffarian, Parvaneh

    2014-03-01

    Urinary tract infection (UTI) caused by bacteria is one of the most frequent infections in human population. Inappropriate use of antibiotics, often leads to appearance of drug resistance in bacteria. However, use of probiotic bacteria has been suggested as a partial replacement. This study was aimed to assess the antagonistic effects of Lactobacillus standard strains against bacteria isolated from UTI infections. Among 600 samples; those with ≥10,000 cfu/ml were selected as UTI positive samples. Enterococcus sp., Klebsiella pneumoniae, Enterobacter sp., and Escherichia coli were found the most prevalent UTI causative agents. All isolates were screened for multi drug resistance and subjected to the antimicrobial effects of three Lactobacillus strains by using microplate technique and the MICs amounts were determined. In order to verify the origin of antibiotic resistance of isolates, plasmid curing using ethidium bromide and acridine orange was carried out. No antagonistic activity in Lactobacilli suspension was detected against test on Enterococcus and Enterobacter strains and K. pneumoniae, which were resistant to most antibiotics. However, an inhibitory effect was observed for E. coli which were resistant to 8-9 antibiotics. In addition, L. casei was determined to be the most effective probiotic. RESULTS from replica plating suggested one of the plasmids could be related to the gene responsible for ampicillin resistance. Treatment of E. coli with probiotic suspension was not effective on inhibition of the plasmid carrying hypothetical ampicillin resistant gene. Moreover, the plasmid profiles obtained from probiotic-treated isolates were identical to untreated isolates.

  9. C. difficile Infection

    MedlinePlus

    ... Patients Home / Digestive Health Topic / C. Difficile Infection C. Difficile Infection Basics Overview Diarrhea is a frequent ... that change the normal colon bacteria allowing the C. difficile bacteria to grow and produce its toxins. ...

  10. Epidemiology, susceptibility, and risk factors for acquisition of MDR/XDR Gram-negative bacteria among kidney transplant recipients with urinary tract infections.

    PubMed

    Yuan, Xiuhong; Liu, Taohua; Wu, Di; Wan, Qiquan

    2018-01-01

    Multiple drug resistant/extensively drug resistant (MDR/XDR) Gram-negative urinary tract infections (UTIs) represent a growing threat to kidney transplant recipients. This retrospective study aimed to assess the incidence and microbiological profile of MDR/XDR Gram-negative UTIs, to identify drug susceptibility of MDR/XDR bacteria, and to determine the potential risk factors for MDR/XDR UTIs in kidney recipients. During the study period, 1569 patients underwent consecutive kidney transplantation in two transplantation centers. We studied the demographics, clinical characteristics, and urine culture data from kidney recipients with MDR/XDR Gram-negative UTIs, and verified the risk factors associated with MDR/XDR infections. Eighty-one kidney recipients yielded 88 episodes of MDR/XDR Gram-negative UTIs with five patients (6.2%) succumbing to all-cause in-hospital mortality. The most frequently isolated bacterium was Escherichia coli (62.5%). Almost all MDR/XDR Gram-negative bacteria were resistant to first- and second-generation cephalosporin, and monocyclic beta-lactam. They were relatively sensitive to meropenem, amikacin, and tigecycline. As for the 12 XDR bacteria, all of them were resistant to meropenem and 25% of them were resistant to tigecycline. All XDR Acinetobacter baumannii and E. coli were susceptible to tigecycline. Nosocomial infection (odds ratio [OR] = 11.429, 95% CI = 1.311-99.625, P = 0.027) was the only independent predictor of MDR/XDR Gram-negative UTIs. Non-fermenting bacterial infection (OR = 20.161, 95% CI = 3.409-119.240, P = 0.001), polycystic kidney disease (OR = 39.871, 95% CI = 1.979-803.384, P = 0.016), and serum creatinine level > 1.5 mg/dL (OR = 8.688, 95% CI = 1.354-55.747, P = 0.023) were significantly different between XDR and MDR Gram-negative UTIs. Meropenem, amikacin, and/or tigecycline can be prescribed for MDR/XDR Gram-negative infections. Tigecycline can also be prescribed for XDR A. baumannii and E. coli . Nosocomial

  11. Chronic oral infection with major periodontal bacteria Tannerella forsythia modulates systemic atherosclerosis risk factors and inflammatory markers.

    PubMed

    Chukkapalli, Sasanka S; Rivera-Kweh, Mercedes F; Velsko, Irina M; Chen, Hao; Zheng, Donghang; Bhattacharyya, Indraneel; Gangula, Pandu R; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2015-04-01

    Tannerella forsythia is a Gram-negative anaerobic organism that inhabits the subgingival cavity and initiates connective tissue destruction and alveolar bone resorption in periodontal disease (PD). PD is a chronic immunoinflammatory disease and has been linked to several systemic diseases including atherosclerosis. This study evaluated the effects of a chronic oral infection with T. forsythia ATCC 43037 on the induction of PD, inflammatory markers and atherosclerosis risk factors in hyperlipidemic ApoE(null) mice. Mice were orally infected for 12 and 24 weeks prior to euthanasia. Bacterial colonization of the oral cavity and bacteremia was confirmed via isolation of genomic DNA from oral plaque and tissues. Oral infection elicited significantly elevated levels of serum IgG and IgM antibodies and alveolar bone resorption compared to control mice. Tannerella forsythia-infected mice had increased serum amyloid A, and significantly reduced serum nitric oxide when compared to controls. Tannerella forsythia chronic infection also significantly increased serum lipoproteins suggesting altered cholesterol metabolism and potential for aortic inflammation. Despite enhanced acute phase reactants and altered lipid profiles, T. forsythia infection was associated with decreased aortic plaque. This study investigates the potential of a known periodontal bacterial pathogen found in atherosclerotic plaque in humans to accelerate atherosclerosis in hyperlipdemic mice. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Lactobacillus rhamnosus Ingestion Promotes Innate Host Defense in an Enteric Parasitic Infection

    PubMed Central

    McClemens, Jessica; Kim, Janice J.; Wang, Huaqing; Mao, Yu-Kang; Collins, Matthew; Kunze, Wolfgang; Bienenstock, John

    2013-01-01

    Enteric parasite infections around the world are a huge economic burden and decrease the quality of life for many people. The use of beneficial bacteria has attracted attention for their potential therapeutic applications in various diseases. However, the effects of beneficial bacteria in enteric parasitic infections remain largely unexplored. We investigated the effects of ingestion of Lactobacillus rhamnosus (JB-1) in a model of enteric nematode (Trichuris muris) infection. C57BL/6 (resistant to infection), AKR (susceptible to infection), interleukin 10 (IL-10) knockout (KO), and mucin Muc2 KO mice were infected with T. muris and treated orally with probiotic JB-1 or medium. The mice were sacrificed on various days postinfection to examine goblet cells, epithelial cell proliferation, cytokines, and worm burdens. Treatment with JB-1 significantly enhanced worm expulsion in resistant C57BL/6 mice, and this was associated with increases in IL-10 levels, goblet cell numbers, and epithelial cell proliferation. Beneficial effects of JB-1 were absent in IL-10 KO and resistant mice treated with γ-irradiated bacteria. Live JB-1 treatment also expedited worm expulsion in Muc2 KO mice and, more importantly, in AKR mice (susceptible to infection). Injection of IL-10 directly into the colonic tissue of uninfected mice induced goblet cell hyperplasia. These findings demonstrate that JB-1 modulates goblet cell biology and promotes parasite expulsion via an IL-10-mediated pathway and provide novel insights into probiotic effects on innate defense in nematode infection. PMID:23536695

  13. Human respiratory syncytial virus in children with lower respiratory tract infections or influenza-like illness and its co-infection characteristics with viruses and atypical bacteria in Hangzhou, China.

    PubMed

    Yu, Xinfen; Kou, Yu; Xia, Daozong; Li, Jun; Yang, Xuhui; Zhou, Yinyan; He, Xiaoyan

    2015-08-01

    Human respiratory syncytial virus (RSV) is the most important viral pathogen in children. However, its epidemic patterns and co-infection characteristics are not fully understood. We attempted to determine the level of genetic variation of RSV, and describe the prevalence and co-infection characteristics of RSV in Hangzhou during two epidemic seasons. Single respiratory samples from 1820 pediatric patients were screened for RSV and genotyped by RT-PCR and sequencing. In all RSV positive specimens, we screened for viruses and atypical bacteria. Demographic and clinical information was recorded and analyzed. A total of 34.5% and 3.8% of samples from acute lower respiratory tract infections (ALRI) and influenza-like illness (ILI) were positive for RSV, respectively. Phylogenetic analysis revealed that 61.1% of the selected 167 RSV strains were NA1, 31.1% were BA, 3.6% were ON1, 2.4% were CB1, and 1.8% were NA3. A new genotype, BA11 was identified, which comprised 98.1% of BA strains in this study, while the rest were BA10. A total of 36.4% and 9.1% of RSV-positive children with ALRI and ILI respectively were found to be co-infected. Rhinovirus was the most common additional respiratory virus, followed by human metapneumovirus. Except for fever, no significant differences in other clinical presentation between the RSV mono-infection and co-infection groups were observed. The circulating RSV strains had high genetic variability with RSV-B showing a more local pattern. In ALRI cases, co-infection of RSV with other viruses or atypical bacteria has no significant effect on the clinical presentation except fever. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cutoff values for bacteria and leukocytes for urine sediment analyzer FUS200 in culture-positive urinary-tract infections.

    PubMed

    Kocer, Derya; Sarıguzel, Fatma M; Karakukcu, Cıgdem

    2014-08-01

    The microscopic analysis of urine is essential for the diagnosis of patients with urinary tract infections. Quantitative urine culture is the 'gold standard' method for definitive diagnosis of urinary-tract infections, but it is labor-intensive, time consuming, and does not provide the same-day results. The aim of this study was to evaluate the analytical and diagnostic performance of the FUS200 (Changchun Dirui Industry, China), a new urine sedimentation analyzer in comparison to urine culture as the reference method. We evaluated 1000 urine samples, submitted for culture and urine analysis with a preliminary diagnosis of urinary-tract infection. Cut-off values for the FUS200 were determined by comparing the results with urine cultures. The cut-off values by the receiver operating characteristic (ROC) curve technique, sensitivity, and specificity were calculated for bacteria and white blood cells (WBCs). Among the 1000 urine specimens submitted for culture, 637 cultures (63.7%) were negative, and 363 were (36.3%) positive. The best cut-off values obtained from ROC analysis were 16/μL for bacteriuria (sensitivity: 82.3%, specificity: 58%), and 34/μL for WBCs (sensitivity: 72.3%, specificity: 65.2%). The area under the curve (AUC) for the bacteria and WBCs count were 0.71 (95% CI: 0.67-0.74) and, 0.72 (95% CI: 0.69-0.76) respectively. The most important requirement of a rapid diagnostic screening test is sensitivity, and, in this perspective, an unsatisfactory sensitivity by using bacteria recognition and quantification performed by the FUS200 analyzer has been observed. After further technical improvements in particle recognition and laboratory personnel training, the FUS200 might show better results.

  15. Morphine and galectin-1 modulate HIV-1 infection of human monocytes-derived macrophages

    PubMed Central

    Reynolds, Jessica L.; Law, Wing Cheung; Mahajan, Supriya D.; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E.; Mammen, Manoj J.; Yong, Ken-Tye; Hui, Rui; Prasad, Paras N.; Schwartz, Stanley A.

    2012-01-01

    Morphine is a widely abused, addictive drug that modulates immune function. Macrophages are a primary reservoir of HIV-1; therefore, they not only play a role in the development of this disease but also impact the overall course of disease progression. Galectin-1 is a member of a family of β-galactoside-binding lectins that are soluble adhesion molecules and that mediate direct cell-pathogen interactions during HIV-1 viral adhesion. Since the drug abuse epidemic and the HIV-1 epidemic are closely interrelated we propose that increased expression of galectin-1 induced by morphine may modulate HIV-1 infection of human monocytes-derived macrophages (MDM). Here, we show that galectin-1 gene and protein expression are potentiated by incubation with morphine. Confirming previous studies, morphine alone or galectin-1 alone enhance HIV-1 infection of MDM. Concomitant incubation with exogenous galectin-1 and morphine potentiated HIV-1 infection of MDM. We utilized a nanotechnology approach that uses gold nanorod-galectin-1 siRNA complexes (nanoplexes) to inhibit gene expression for galectin-1. We found that nanoplexes silenced gene expression for galectin-1 and the nanoplexes reversed the effects of morphine on galectin-1 expression. Furthermore, the effects of morphine on HIV-1 infection were reduced in the presence of the nanoplex. PMID:22430735

  16. Platelets and Infections – Complex Interactions with Bacteria

    PubMed Central

    Hamzeh-Cognasse, Hind; Damien, Pauline; Chabert, Adrien; Pozzetto, Bruno; Cognasse, Fabrice; Garraud, Olivier

    2015-01-01

    Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-like receptors but also integrins conventionally described in the hemostatic response, such as GPIIb–IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet-bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis, or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of neutrophil extracellular traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet–bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the aggregation response

  17. Relationship of periodontal infection to serum antibody levels to periodontopathic bacteria and inflammatory markers in periodontitis patients with coronary heart disease

    PubMed Central

    Yamazaki, K; Honda, T; Domon, H; Okui, T; Kajita, K; Amanuma, R; Kudoh, C; Takashiba, S; Kokeguchi, S; Nishimura, F; Kodama, M; Aizawa, Y; Oda, H

    2007-01-01

    Several reports have demonstrated a possible association of periodontal infections with coronary heart disease (CHD) by elevated antibody titre to periodontopathic bacteria in CHD patients compared with non-diseased controls. Although each periodontopathic bacterium may vary in virulence for periodontitis and atherosclerosis, antibody response to multiple bacteria in CHD patients has not been understood fully. Therefore, serum levels of antibody to 12 periodontopathic bacteria together with other atherosclerotic risk markers were compared among 51 patients with CHD, 55 patients with moderate to severe chronic periodontitis and 37 healthy individuals. The antibody response was the most prevalent for Porphyromonas gingivalis, a major causative organism, in CHD as well as periodontitis patients. However, antibody positivity was different between CHD and periodontitis if the response was analysed for two different strains of P. gingivalis, namely FDC381 and Su63. While periodontitis patients were positive for both P. gingivalis FDC381 and Su63, a high frequency of antibody positivity for P. gingivalis Su63 but not for FDC381 was observed in CHD patients. The results indicate that the presence of particular periodontopathic bacteria with high virulence may affect atherogenesis. Identifying the virulence factors of P. gingivalis Su63 may gain insight into the new therapeutic modality for infection-induced deterioration of atherosclerosis. PMID:17645769

  18. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection

    PubMed Central

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung. PMID:28912729

  19. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection.

    PubMed

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.

  20. Risk factors for infection and/or colonisation with extended-spectrum β-lactamase-producing bacteria in the neonatal intensive care unit: a meta-analysis.

    PubMed

    Li, Xuan; Xu, Xuan; Yang, Xianxian; Luo, Mei; Liu, Pin; Su, Kewen; Qing, Ying; Chen, Shuai; Qiu, Jingfu; Li, Yingli

    2017-11-01

    Extended-spectrum β-lactamase (ESBL)-producing bacteria are an important cause of healthcare-associated infections in the neonatal intensive care unit (NICU). The aim of this meta-analysis was to identify risk factors associated with infection and/or colonisation with ESBL-producing bacteria in the NICU. Electronic databases were searched for relevant studies published from 1 January 2000 to 1 July 2016. The literature was screened and data were extracted according to the inclusion and exclusion criteria. The Z-test was used to calculate the pooled odds ratio (OR) of the risk factors. ORs and their 95% confidence intervals were used to determine the significance of the risk. A total of 14 studies, including 746 cases and 1257 controls, were identified. Thirteen risk factors were determined to be related to infection and/or colonisation with ESBL-producing bacteria in the NICU: birthweight [standardised mean difference (SMD) = 1.17]; gestational age (SMD = 1.36); Caesarean delivery (OR = 1.76); parenteral nutrition (OR = 7.51); length of stay in the NICU (SMD = 0.72); mechanical ventilation (OR = 4.8); central venous catheter use (OR = 2.85); continuous positive airway pressure (OR = 5.0); endotracheal intubation (OR = 2.82); malformations (OR = 2.89); previous antibiotic use (OR = 6.72); ampicillin/gentamicin (OR = 2.31); and cephalosporins (OR = 6.0). This study identified risk factors for infection and/or colonisation with ESBL-producing bacteria in the NICU, which may provide a theoretical basis for preventive measures and targeted interventions. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  1. Lipoteichoic Acid (LTA) and Lipopolysaccharides (LPS) from Periodontal Pathogenic Bacteria Facilitate Oncogenic Herpesvirus Infection within Primary Oral Cells

    PubMed Central

    Dai, Lu; DeFee, Michael R.; Cao, Yueyu; Wen, Jiling; Wen, Xiaofei; Noverr, Mairi C.; Qin, Zhiqiang

    2014-01-01

    Kaposi’s sarcoma (KS) remains the most common tumor arising in patients with HIV/AIDS, and involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage of a variety of bacteria. Whether interactions involving pathogenic bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity remains unknown. In the current study, our data indicate that pretreatment of primary human oral fibroblasts with two prototypical pathogen-associated molecular patterns (PAMPs) produced by oral pathogenic bacteria–lipoteichoic acid (LTA) and lipopolysaccharide (LPS), increase KSHV entry and subsequent viral latent gene expression during de novo infection. Further experiments demonstrate that the underlying mechanisms induced by LTA and/or LPS include upregulation of cellular receptor, increasing production of reactive oxygen species (ROS), and activating intracellular signaling pathways such as MAPK and NF-κB, and all of which are closely associated with KSHV entry or gene expression within oral cells. Based on these findings, we hope to provide the framework of developing novel targeted approaches for treatment and prevention of oral KSHV infection and KS development in high-risk HIV-positive patients. PMID:24971655

  2. Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior

    PubMed Central

    Sim, Shuzhen; Ramirez, José L.; Dimopoulos, George

    2012-01-01

    The female Aedes aegypti salivary gland plays a pivotal role in bloodmeal acquisition and reproduction, and thereby dengue virus (DENV) transmission. It produces numerous immune factors, as well as immune-modulatory, vasodilatory, and anti-coagulant molecules that facilitate blood-feeding. To assess the impact of DENV infection on salivary gland physiology and function, we performed a comparative genome-wide microarray analysis of the naïve and DENV infection-responsive A. aegypti salivary gland transcriptomes. DENV infection resulted in the regulation of 147 transcripts that represented a variety of functional classes, including several that are essential for virus transmission, such as immunity, blood-feeding, and host-seeking. RNAi-mediated gene silencing of three DENV infection-responsive genes - a cathepsin B, a putative cystatin, and a hypothetical ankyrin repeat-containing protein - significantly modulated DENV replication in the salivary gland. Furthermore, silencing of two DENV infection-responsive odorant-binding protein genes (OBPs) resulted in an overall compromise in blood acquisition from a single host by increasing the time for initiation of probing and the probing time before a successful bloodmeal. We also show that DENV established an extensive infection in the mosquito's main olfactory organs, the antennae, which resulted in changes of the transcript abundance of key host-seeking genes. DENV infection, however, did not significantly impact probing initiation or probing times in our laboratory infection system. Here we show for the first time that the mosquito salivary gland mounts responses to suppress DENV which, in turn, modulates the expression of chemosensory-related genes that regulate feeding behavior. These reciprocal interactions may have the potential to affect DENV transmission between humans. PMID:22479185

  3. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria

    PubMed Central

    Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596

  4. Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria.

    PubMed

    Parkinson, Elizabeth I; Bair, Joseph S; Nakamura, Bradley A; Lee, Hyang Y; Kuttab, Hani I; Southgate, Emma H; Lezmi, Stéphane; Lau, Gee W; Hergenrother, Paul J

    2015-04-24

    Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor candidate for development. Here we describe a facile chemical route to produce DNM and its derivatives. These compounds possess excellent activity against FQR methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci clinical isolates and inhibit mutant DNA gyrase in-vitro. Bacteria that develop resistance to DNM are re-sensitized to fluoroquinolones, suggesting that resistance that emerges to DNM would be treatable. Using a DNM derivative, the first in-vivo efficacy of the nybomycin class is demonstrated in a mouse infection model. Overall, the data presented suggest the promise of DNM derivatives for the treatment of FQR infections.

  5. Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria

    PubMed Central

    Parkinson, Elizabeth I.; Bair, Joseph S.; Nakamura, Bradley A.; Lee, Hyang Y.; Kuttab, Hani I.; Southgate, Emma H.; Lezmi, Stéphane; Lau, Gee W.; Hergenrother, Paul J.

    2015-01-01

    Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor candidate for development. Here we describe a facile chemical route to produce DNM and its derivatives. These compounds possess excellent activity against FQR methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci clinical isolates and inhibit mutant DNA gyrase in-vitro. Bacteria that develop resistance to DNM are re-sensitized to fluoroquinolones, suggesting that resistance that emerges to DNM would be treatable. Using a DNM derivative, the first in-vivo efficacy of the nybomycin class is demonstrated in a mouse infection model. Overall, the data presented suggest the promise of DNM derivatives for the treatment of FQR infections. PMID:25907309

  6. Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome

    PubMed Central

    Lee, Heetae; Ko, GwangPyo

    2016-01-01

    The effect and underlying mechanism of vitamin A on norovirus infection are largely unknown. This study aimed to investigate how vitamin A administration affects the gut microbiome after norovirus infection. Here, we demonstrate that treatment with either retinol or retinoic acid (RA) inhibits murine norovirus (MNV) replication using both in vitro and in vivo models. Compositional changes in the gut microbiome associated with RA administration and/or norovirus infection were also investigated. Oral administration of RA and/or MNV significantly altered intestinal microbiome profiles. Particularly, bacterial species belonging to the Lactobacillaceae families were remarkably increased by MNV inoculation and RA administration, suggesting that the antiviral effects of RA occur via the modulation of specific microbiota. The antiviral causal effect of Lactobacillus was identified and demonstrated using in vitro models in RAW264.7 cells. The antiviral immune response to MNV was mediated by IFN-β upregulation. This study represents the first comprehensive profiling of gut microbiota in response to RA treatment against norovirus infection. Moreover, we conclude that the abundance of Lactobacillus through gut microbiota modulation by RA is at least partially responsible for norovirus inhibition. PMID:27180604

  7. Antibiofilm and Antimicrobial Efficacy of DispersinB (registered trademark)-KSL-W Peptide-Based Wound Gel Against Chronic Wound Infection Associated Bacteria

    DTIC Science & Technology

    2014-01-21

    Antibiofilm and Antimicrobial Efficacy of DispersinB-KSL-W Peptide-Based Wound Gel Against Chronic Wound Infection Associated Bacteria Purushottam V...major contributors to the slow or non-healing chronic wounds such as diabetic foot ulcers, venous leg ulcers, and pressure ulcers. Being a protected...combination of DispersinB and KSL-W peptide showed synergistic antibiofilm and antimicrobial activity against chronic wound infection associated

  8. Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection

    PubMed Central

    Sistrunk, Jeticia R.; Nickerson, Kourtney P.; Chanin, Rachael B.; Rasko, David A.

    2016-01-01

    SUMMARY Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens. PMID:27464994

  9. A multidisciplinary intervention to reduce infections of ESBL- and AmpC-producing, gram-negative bacteria at a University Hospital.

    PubMed

    Knudsen, Jenny Dahl; Andersen, Stig Ejdrup

    2014-01-01

    In response to a considerable increase in the infections caused by ESBL/AmpC-producing Klebsiella pneumonia in 2008, a multidisciplinary intervention, with a main focus on antimicrobial stewardship, was carried out at one university hospital. Four other hospitals were used as controls. Stringent guidelines for antimicrobial treatment and prophylaxis were disseminated throughout the intervention hospital; cephalosporins were restricted for prophylaxis use only, fluoroquinolones for empiric use in septic shock only, and carbapenems were selected for penicillin-allergic patients, infections due to ESBL/AmpC-producing and other resistant bacteria, in addition to their use in severe sepsis/septic shock. Piperacillin-tazobactam ± gentamicin was recommended for empiric treatments of most febrile conditions. The intervention also included education and guidance on infection control, as well as various other surveillances. Two year follow-up data on the incidence rates of patients with selected bacterial infections, outcomes, and antibiotic consumption were assessed, employing before-and-after analysis and segmented regression analysis of interrupted time series, using the other hospitals as controls. The intervention led to a sustained change in antimicrobial consumption, and the incidence of patients infected with ESBL-producing K. pneumoniae decreased significantly (p<0.001). The incidences of other hospital-associated infections also declined (p's<0.02), but piperacillin-tazobactam-resistant Pseudomonas aeruginosa and Enterococcus faecium infections increased (p's<0.033). In wards with high antimicrobial consumption, the patient gut carrier rate of ESBL-producing bacteria significantly decreased (p = 0.023). The unadjusted, all-cause 30-day mortality rates of K. pneumoniae and E. coli were unchanged over the four-year period, with similar results in all five hospitals. Although not statistically significant, the 30-day mortality rate of patients with ESBL

  10. Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection.

    PubMed

    Wang, Jiaxing; Li, Jinhua; Qian, Shi; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong; Chu, Paul K

    2016-05-04

    Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications.

  11. Lactobacillus gasseri K7 modulates the blood cell transcriptome of conventional mice infected with Escherichia coli O157:H7.

    PubMed

    Sagaya, F M; Hacin, B; Tompa, G; Ihan, A; Špela, Š; Černe, M; Hurrell, R F; Matijašić, B B; Rogelj, I; Vergères, G

    2014-05-01

    As the immune cells underlying the intestinal barrier sense luminal microbial signals, blood cell transcriptomics may identify subclinical changes triggered by gut bacteria that may otherwise not be detected. We have therefore investigated how Lactobacillus gasseri K7 and enterohemorrhagic Escherichia coli O157:H7 modulate the blood cell transcriptome of mice possessing an intact microbiota. We have analysed the transcriptome of five groups of C57BL/6J mice: (i) control, (ii) inoculated with a single dose of E. coli, (iii) inoculated during 2 weeks with Lact. gasseri, (iv) co-inoculated with E. coli and Lact. gasseri, (v) inoculated with Lact. gasseri prior to E. coli infection. The transcriptome could distinguish between the five treatment groups. Gene characteristics of bacterial infection, in particular inflammation, were upregulated in the mice inoculated with E. coli. Lact. gasseri had only mild effects on the transcriptome but modified the gene expression induced by E. coli. The transcriptome differentiates mice inoculated orally with E. coli, Lact. gasseri and combinations of these two strains. These results suggest that the blood cell transcriptome can be used as a source of biomarkers to monitor the impact of probiotics in subclinical models of infectious disease. © 2014 The Society for Applied Microbiology.

  12. Exploring alternative treatments for Helicobacter pylori infection

    PubMed Central

    Ayala, Guadalupe; Escobedo-Hinojosa, Wendy Itzel; de la Cruz-Herrera, Carlos Felipe; Romero, Irma

    2014-01-01

    Helicobacter pylori (H. pylori) is a successful pathogen that can persist in the stomach of an infected person for their entire life. It provokes chronic gastric inflammation that leads to the development of serious gastric diseases such as peptic ulcers, gastric cancer and Mucosa associated lymphoid tissue lymphoma. It is known that these ailments can be avoided if the infection by the bacteria can be prevented or eradicated. Currently, numerous antibiotic-based therapies are available. However, these therapies have several inherent problems, including the appearance of resistance to the antibiotics used and associated adverse effects, the risk of re-infection and the high cost of antibiotic therapy. The delay in developing a vaccine to prevent or eradicate the infection has furthered research into new therapeutic approaches. This review summarises the most relevant recent studies on vaccine development and new treatments using natural resources such as plants, probiotics and nutraceuticals. In addition, novel alternatives based on microorganisms, peptides, polysaccharides, and intragastric violet light irradiation are presented. Alternative therapies have not been effective in eradicating the bacteria but have been shown to maintain low bacterial levels. Nevertheless, some of them are useful in preventing the adverse effects of antibiotics, modulating the immune response, gastroprotection, and the general promotion of health. Therefore, those agents can be used as adjuvants of allopathic anti-H. pylori eradication therapy. PMID:24587621

  13. Development of a filter to prevent infections with spore-forming bacteria in injecting drug users.

    PubMed

    Alhusein, Nour; Scott, Jenny; Kasprzyk-Hordern, Barbara; Bolhuis, Albert

    2016-12-01

    In heroin injectors, there have been a number of outbreaks caused by spore-forming bacteria, causing serious infections such as anthrax or botulism. These are, most likely, caused by injecting contaminated heroin, and our aim was to develop a filter that efficiently removes these bacteria and is also likely to be acceptable for use by people who inject drugs (i.e. quick, simple and not spoil the hit). A prototype filter was designed and different filter membranes were tested to assess the volume of liquid retained, filtration time and efficiency of the filter at removing bacterial spores. Binding of active ingredients of heroin to different types of membrane filters was determined using a highly sensitive analytical chemistry technique. Heroin samples that were tested contained up to 580 bacteria per gramme, with the majority being Bacillus spp., which are spore-forming soil bacteria. To remove these bacteria, a prototype filter was designed to fit insulin-type syringes, which are commonly used by people who inject drugs (PWIDs). Efficient filtration of heroin samples was achieved by combining a prefilter to remove particles and a 0.22 μm filter to remove bacterial spores. The most suitable membrane was polyethersulfone (PES). This membrane had the shortest filtration time while efficiently removing bacterial spores. No or negligible amounts of active ingredients in heroin were retained by the PES membrane. This study successfully produced a prototype filter designed to filter bacterial spores from heroin samples. Scaled up production could produce an effective harm reduction tool, especially during outbreaks such as occurred in Europe in 2009/10 and 2012.

  14. Combined immunomodulator and antimicrobial therapy eliminates polymicrobial sepsis and modulates cytokine production in combined injured mice

    PubMed Central

    Elliott, Thomas B.; Bolduc, David L.; Ledney, G. David; Kiang, Juliann G.; Fatanmi, Oluseyi O.; Wise, Stephen Y.; Romaine, Patricia L. P.; Newman, Victoria L.; Singh, Vijay K.

    2015-01-01

    Purpose: A combination therapy for combined injury (CI) using a non-specific immunomodulator, synthetic trehalose dicorynomycolate and monophosphoryl lipid A (STDCM-MPL), was evaluated to augment oral antimicrobial agents, levofloxacin (LVX) and amoxicillin (AMX), to eliminate endogenous sepsis and modulate cytokine production. Materials and methods: Female B6D2F1/J mice received 9.75 Gy cobalt-60 gamma-radiation and wound. Bacteria were isolated and identified in three tissues. Incidence of bacteria and cytokines were compared between treatment groups. Results: Results demonstrated that the lethal dose for 50% at 30 days (LD50/30) of B6D2F1/J mice was 9.42 Gy. Antimicrobial therapy increased survival in radiation-injured (RI) mice. Combination therapy increased survival after RI and extended survival time but did not increase survival after CI. Sepsis began five days earlier in CI mice than RI mice with Gram-negative species predominating early and Gram-positive species increasing later. LVX plus AMX eliminated sepsis in CI and RI mice. STDCM-MPL eliminated Gram-positive bacteria in CI and most RI mice but not Gram-negative. Treatments significantly modulated 12 cytokines tested, which pertain to wound healing or elimination of infection. Conclusions: Combination therapy eliminates infection and prolongs survival time but does not assure CI mouse survival, suggesting that additional treatment for proliferative-cell recovery is required. PMID:25994812

  15. Combined immunomodulator and antimicrobial therapy eliminates polymicrobial sepsis and modulates cytokine production in combined injured mice.

    PubMed

    Elliott, Thomas B; Bolduc, David L; Ledney, G David; Kiang, Juliann G; Fatanmi, Oluseyi O; Wise, Stephen Y; Romaine, Patricia L P; Newman, Victoria L; Singh, Vijay K

    2015-01-01

    A combination therapy for combined injury (CI) using a non-specific immunomodulator, synthetic trehalose dicorynomycolate and monophosphoryl lipid A (STDCM-MPL), was evaluated to augment oral antimicrobial agents, levofloxacin (LVX) and amoxicillin (AMX), to eliminate endogenous sepsis and modulate cytokine production. Female B6D2F(1)/J mice received 9.75 Gy cobalt-60 gamma-radiation and wound. Bacteria were isolated and identified in three tissues. Incidence of bacteria and cytokines were compared between treatment groups. Results demonstrated that the lethal dose for 50% at 30 days (LD(50/30)) of B6D2F(1)/J mice was 9.42 Gy. Antimicrobial therapy increased survival in radiation-injured (RI) mice. Combination therapy increased survival after RI and extended survival time but did not increase survival after CI. Sepsis began five days earlier in CI mice than RI mice with Gram-negative species predominating early and Gram-positive species increasing later. LVX plus AMX eliminated sepsis in CI and RI mice. STDCM-MPL eliminated Gram-positive bacteria in CI and most RI mice but not Gram-negative. Treatments significantly modulated 12 cytokines tested, which pertain to wound healing or elimination of infection. Combination therapy eliminates infection and prolongs survival time but does not assure CI mouse survival, suggesting that additional treatment for proliferative-cell recovery is required.

  16. Motifs, modules and games in bacteria.

    PubMed

    Wolf, Denise M; Arkin, Adam P

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.

  17. Improving the knowledge of students and physicians regarding appropriate use of antibiotics for respiratory infections through an online educational module.

    PubMed

    Al Mohajer, Mayar; Matthias, Kathryn R; Nix, David E

    2017-01-01

    We developed an interactive online module to improve the knowledge of students and physicians regarding respiratory infections. Our study showed that the completion of this module was associated with substantial improvement in knowledge, with modest retention after 2 months. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Exopolysaccharides Isolated from Hydrothermal Vent Bacteria Can Modulate the Complement System

    PubMed Central

    Courtois, Anthony; Berthou, Christian; Guézennec, Jean

    2014-01-01

    The complement system is involved in the defence against bacterial infection, or in the elimination of tumour cells. However, disturbances in this system contributes to the pathogenesis of various inflammatory diseases. The efficiency of therapeutic anti-tumour antibodies is enhanced when the complement system is stimulated. In contrast, cancer cells are able to inhibit the complement system and thus proliferate. Some marine molecules are currently being developed as new drugs for use in humans. Among them, known exopolyssacharides (EPSs) generally originate from fungi, but few studies have been performed on bacterial EPSs and even fewer on EPSs extracted from deep-sea hydrothermal vent microbes. For use in humans, these high molecular weight EPSs must be depolymerised. Furthermore, the over-sulphation of EPSs can modify their biological activity. The aim of this study was to investigate the immunodulation of the complement system by either native or over-sulphated low molecular weight EPSs isolated from vent bacteria in order to find pro or anti-activators of complement. PMID:24736648

  19. Motifs, modules and games in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Denise M.; Arkin, Adam P.

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment.more » Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.« less

  20. The Use of Recombinant Feline Interferon Omega Therapy as an Immune-Modulator in Cats Naturally Infected with Feline Immunodeficiency Virus: New Perspectives.

    PubMed

    Leal, Rodolfo Oliveira; Gil, Solange

    2016-10-27

    Type I interferons (IFNs) are well-known cytokines that, among their main functions, are key components of the host immune response against viral infections. Due to its immune modulation properties, they are commonly used in the therapeutic approach of various retroviral infections, namely human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV). In HIV infection, it has been shown that IFN therapy limits early viral replication, particularly useful on post-exposure prophylaxis. In veterinary medicine, recombinant feline interferon omega (rFeIFN-ω) was the first interferon licensed for use in cats. Several studies have recently shown that this compound seems to stimulate the innate immunity, decreasing clinical signs and co-infections in naturally FIV-infected cats. More than summarizing the main conclusions about rFeIFN-ω in cats, this review emphasizes the immune-modulation properties of IFN therapy, opening new perspectives for its use in retroviral infections. Either in FIV-infected cats or in HIV individuals, type I IFNs seem to induce an innate immune-modulation and should not be overlooked as a therapeutic option in retroviral infections.

  1. Tetranychus urticae mites do not mount an induced immune response against bacteria

    PubMed Central

    Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E.; Zélé, Flore; Riga, Maria; Leitão, Alexandre B.; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara

    2017-01-01

    The genome of the spider mite Tetranychus urticae, a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae, infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila. Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei, a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae. This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei. We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum. Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. PMID:28592670

  2. Tetranychus urticae mites do not mount an induced immune response against bacteria.

    PubMed

    Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E; Zélé, Flore; Riga, Maria; Leitão, Alexandre B; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara; Sucena, Élio

    2017-06-14

    The genome of the spider mite Tetranychus urticae , a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae , infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei , a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. © 2017 The Authors.

  3. Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria

    PubMed Central

    Das, Soumita; Owen, Katherine A.; Ly, Kim T.; Park, Daeho; Black, Steven G.; Wilson, Jeffrey M.; Sifri, Costi D.; Ravichandran, Kodi S.; Ernst, Peter B.; Casanova, James E.

    2011-01-01

    Bacterial recognition by host cells is essential for initiation of infection and the host response. Bacteria interact with host cells via multiple pattern recognition receptors that recognize microbial products or pathogen-associated molecular patterns. In response to this interaction, host cell signaling cascades are activated that lead to inflammatory responses and/or phagocytic clearance of attached bacteria. Brain angiogenesis inhibitor 1 (BAI1) is a receptor that recognizes apoptotic cells through its conserved type I thrombospondin repeats and triggers their engulfment through an ELMO1/Dock/Rac1 signaling module. Because thrombospondin repeats in other proteins have been shown to bind bacterial surface components, we hypothesized that BAI1 may also mediate the recognition and clearance of pathogenic bacteria. We found that preincubation of bacteria with recombinant soluble BAI1 ectodomain or knockdown of endogenous BAI1 in primary macrophages significantly reduced binding and internalization of the Gram-negative pathogen Salmonella typhimurium. Conversely, overexpression of BAI1 enhanced attachment and engulfment of Salmonella in macrophages and in heterologous nonphagocytic cells. Bacterial uptake is triggered by the BAI1-mediated activation of Rac through an ELMO/Dock-dependent mechanism, and inhibition of the BAI1/ELMO1 interaction prevents both Rac activation and bacterial uptake. Moreover, inhibition of ELMO1 or Rac function significantly impairs the proinflammatory response to infection. Finally, we show that BAI1 interacts with a variety of Gram-negative, but not Gram-positive, bacteria through recognition of their surface lipopolysaccharide. Together these findings identify BAI1 as a pattern recognition receptor that mediates nonopsonic phagocytosis of Gram-negative bacteria by macrophages and directly affects the host response to infection. PMID:21245295

  4. Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria.

    PubMed

    Pallett, Ann; Hand, Kieran

    2010-11-01

    Resistance in Gram-negative bacteria has been increasing, particularly over the last 6 years. This is mainly due to the spread of strains producing extended-spectrum β-lactamases (ESBLs) such as CTX-M enzymes or AmpC β-lactamases. Many of the isolates producing these enzymes are also resistant to trimethoprim, quinolones and aminoglycosides, often due to plasmid co-expression of other resistance mechanisms. CTX-M-producing Escherichia coli often occurs in the community and as E. coli is one of the commonest organisms causing urinary tract infections (UTIs) the choice of agents to treat these infections is diminishing. Novel combinations of antibiotics are being used in the community and broad-spectrum agents such as carbapenems are being used increasingly as empirical treatment for severe infections. Of particular concern therefore are reports in the UK of organisms that produce carbapenemases. As resistance is becoming more widespread, prudent use of antimicrobials is imperative and, as asymptomatic bacteriuria is typically benign in the elderly, antibiotics should not be prescribed without clinical signs of UTI. The use of antibiotics as suppressive therapy or long-term prophylaxis may no longer be defensible.

  5. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells.

    PubMed

    Wunsch, Christopher M; Lewis, Janina P

    2015-12-17

    Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal

  6. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells

    PubMed Central

    Wunsch, Christopher M.; Lewis, Janina P.

    2015-01-01

    Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal

  7. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... Many different types of bacteria can cause this infection. A very severe and usually deadly form of necrotizing soft tissue infection is due to the ...

  8. A comparative evaluation of antibacterial effectiveness of sodium hypochlorite, Curcuma longa, and Camellia sinensis as irrigating solutions on isolated anaerobic bacteria from infected primary teeth.

    PubMed

    Dhariwal, Neha Shashikant; Hugar, Shivayogi M; Harakuni, Sheetal; Sogi, Suma; Assudani, Harsha G; Mistry, Laresh Naresh

    2016-01-01

    In endodontics, most of the commercial intra-canal medicaments have cytotoxic reactions and because of their inability to eliminate bacteria from dentinal tubules, recent medicine has turned its attention to the usage of biologic medication prepared from natural plants. The literature to testify the efficacy of natural alternatives in primary teeth is meagre and its effects as irrigating solutions need to be evaluated. To evaluate the antibacterial effectiveness of sodium hypochlorite, ethanolic extracts of Curcuma longa (turmeric) and Camellia sinensis (green tea) as irrigating solutions against the anaerobic bacteria isolated from the root canals of infected primary teeth. Thirty patients were selected based on the selected inclusion and exclusion criteria. Preoperative radiographs were taken. Rubber dam isolation and working length estimation were done, following which thirty samples were taken from the root canals of infected primary teeth using sterile absorbent paper points and transferred to tubes containing thioglycolate transport medium. The bacteria were then isolated using standard microbiological protocols and were subjected to antibiotic sensitivity testing using the three test irrigants. SPSS 18 software using Chi-square test was used for statistical analysis. The most commonly isolated bacteria included Porphyromonas sp., Bacteroides fragilis, Peptostreptococcus, and Staphylococcus aureus. Sodium hypochlorite and C. longa (turmeric) showed good antibacterial effect and were effective against most of the isolated bacteria. There was statistically significant difference in the antibacterial effect among the three tested groups (P < 0.001). The least effective was C. sinensis (green tea). The infected primary teeth almost always present with a polymicrobial structure with a wide variety of anaerobic bacteria. The chemo-mechanical preparation plays an important role in eradicating the population of predominant micro-organisms in treating these teeth with

  9. Alternative fluorescent labeling strategies for characterizing gram-positive pathogenic bacteria: Flow cytometry supported counting, sorting, and proteome analysis of Staphylococcus aureus retrieved from infected host cells.

    PubMed

    Hildebrandt, Petra; Surmann, Kristin; Salazar, Manuela Gesell; Normann, Nicole; Völker, Uwe; Schmidt, Frank

    2016-10-01

    Staphylococcus aureus is a Gram-positive opportunistic pathogen that is able to cause a broad range of infectious diseases in humans. Furthermore, S. aureus is able to survive inside nonprofessional phagocytic host cell which serve as a niche for the pathogen to hide from the immune system and antibiotics therapies. Modern OMICs technologies provide valuable tools to investigate host-pathogen interactions upon internalization. However, these experiments are often hampered by limited capabilities to retrieve bacteria from such an experimental setting. Thus, the aim of this study was to develop a labeling strategy allowing fast detection and quantitation of S. aureus in cell lysates or infected cell lines by flow cytometry for subsequent proteome analyses. Therefore, S. aureus cells were labeled with the DNA stain SYTO ® 9, or Vancomycin BODIPY ® FL (VMB), a glycopeptide antibiotic binding to most Gram-positive bacteria which was conjugated to a fluorescent dye. Staining of S. aureus HG001 with SYTO 9 allowed counting of bacteria from pure cultures but not in cell lysates from infection experiments. In contrast, with VMB it was feasible to stain bacteria from pure cultures as well as from samples of infection experiments. VMB can also be applied for histocytochemistry analysis of formaldehyde fixed cell layers grown on coverslips. Proteome analyses of S. aureus labeled with VMB revealed that the labeling procedure provoked only minor changes on proteome level and allowed cell sorting and analysis of S. aureus from infection settings with sensitivity similar to continuous gfp expression. Furthermore, VMB labeling allowed precise counting of internalized bacteria and can be employed for downstream analyses, e.g., proteomics, of strains not easily amendable to genetic manipulation such as clinical isolates. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  10. Innate immune interactions within the central nervous system modulate pathogenesis of viral infections

    PubMed Central

    Nair, Sharmila; Diamond, Michael S.

    2015-01-01

    The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses. PMID:26163762

  11. Internal extracellular bacteria of Diaphorina citri Kuwayama (Hemiptera: Psyllidae), the Asian citus psyllid

    USDA-ARS?s Scientific Manuscript database

    Internal bacteria were isolated and cultured from the Asian Citrus Psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), the insect which transmits the plant-infecting bacteria, Candidatus Liberibacter, known to infect and kill citrus trees, known as citrus greening disease. The bacteria from Di...

  12. New Mouse Model for Chronic Infections by Gram-Negative Bacteria Enabling the Study of Anti-Infective Efficacy and Host-Microbe Interactions

    PubMed Central

    Pletzer, Daniel; Mansour, Sarah C.; Wuerth, Kelli; Rahanjam, Negin

    2017-01-01

    ABSTRACT Only a few, relatively cumbersome animal models enable long-term Gram-negative bacterial infections that mimic human situations, where untreated infections can last for weeks. Here, we describe a simple murine cutaneous abscess model that enables chronic or progressive infections, depending on the subcutaneously injected bacterial strain. In this model, Pseudomonas aeruginosa cystic fibrosis epidemic isolate LESB58 caused localized high-density skin and soft tissue infections and necrotic skin lesions for up to 10 days but did not disseminate in either CD-1 or C57BL/6 mice. The model was adapted for use with four major Gram-negative nosocomial pathogens, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, and Escherichia coli. This model enabled noninvasive imaging and tracking of lux-tagged bacteria, the influx of activated neutrophils, and production of reactive oxygen-nitrogen species at the infection site. Screening antimicrobials against high-density infections showed that local but not intravenous administration of gentamicin, ciprofloxacin, and meropenem significantly but incompletely reduced bacterial counts and superficial tissue dermonecrosis. Bacterial RNA isolated from the abscess tissue revealed that Pseudomonas genes involved in iron uptake, toxin production, surface lipopolysaccharide regulation, adherence, and lipase production were highly upregulated whereas phenazine production and expression of global activator gacA were downregulated. The model was validated for studying virulence using mutants of more-virulent P. aeruginosa strain PA14. Thus, mutants defective in flagella or motility, type III secretion, or siderophore biosynthesis were noninvasive and suppressed dermal necrosis in mice, while a strain with a mutation in the bfiS gene encoding a sensor kinase showed enhanced invasiveness and mortality in mice compared to controls infected with wild-type P. aeruginosa PA14. PMID:28246361

  13. Multi-antibiotic resistant extended-spectrum beta-lactamase producing bacteria pose a challenge to the effective treatment of wound and skin infections.

    PubMed

    Oli, Angus Nnamdi; Eze, Dennis Emeka; Gugu, Thaddeus Harrison; Ezeobi, Ifeanyi; Maduagwu, Ukamaka Nwakaku; Ihekwereme, Chibueze Peter

    2017-01-01

    The increasing incidence of antibiotic resistant bacteria is a concern both to the clinicians and the patients due to obvious consequences such as treatment failures, prolonged patients' stay in hospital and nosocomial infections. The choice of the first antibiotic therapy in emergency wards in hospitals is usually not based on patient-specific microbial culture and susceptibility test result.This study is aimed at profiling extended-spectrum beta-lactamase (ESBL) producing bacteria associated with wound injuries and highlighting their multi-antibiotic resistance character. Sixty-three wound swab samples were collected and cultured on nutrient agar and on selective media. Evaluation for ESBL production was by phenotypic method while the antibiogram screening was by disc-diffusion. The wounds evaluated were diabetic sore (14), cancer wounds (12), surgical wounds (17), wounds due to road traffic accidents (10) and wounds from fire burn (10). The result showed that 61 wounds were infected and the prevalence of the infecting pathogens was Escherichia coli 17.46%, Klebsiella Pneumonia 14.28%, Salmonella typhi 12.79%, Pseudomonas Aeruginosa 34.92% and Staphylococcus aureus 17.46%. Thirty four (55.74 %) isolates were ESBL producers, greater than 50% of which being Pseudomonas Aeruginosa . The antibiogram study of the ESBL producers showed multi-drug resistance with resistance highest against ampicillin (100%), followed by cephalosporins: cefuroxime (94.12%) and ceftriaxone (61.76%). No resistance was recorded against the β-lactamase inhibitors: amoxicillin/clavulanate and ceftriaxone/sulbactam. There was a high incidence (55.74 %) of ESBL-producing microbes in the wounds. The isolates were mostly multi-antibiotic resistant. Multi-drug resistant ESBL-producing bacteria are common in wound infections in the community. However, amoxicillin/clavulanate or ceftriaxone/sulbactam may be used to treat most patients with such infections in the hospital. This may guide antibiotic

  14. Fine-structural analysis of black band disease-infected coral reveals boring cyanobacteria and novel bacteria.

    PubMed

    Miller, Aaron W; Blackwelder, Patricia; Al-Sayegh, Husain; Richardson, Laurie L

    2011-02-22

    Examination of coral fragments infected with black band disease (BBD) at the fine- and ultrastructural levels using scanning (SEM) and transmission electron microscopy (TEM) revealed novel features of the disease. SEM images of the skeleton from the host coral investigated (Montastraea annularis species complex) revealed extensive boring underneath the BBD mat, with cyanobacterial filaments present within some of the bore holes. Cyanobacteria were observed to penetrate into the overlying coral tissue from within the skeleton and were present throughout the mesoglea between tissue layers (coral epidermis and gastrodermis). A population of novel, as yet unidentified, small filamentous bacteria was found at the leading edge of the migrating band. This population increased in number within the band and was present within degrading coral epithelium, suggesting a role in disease etiology. In coral tissue in front of the leading edge of the band, cyanobacterial filaments were observed to be emerging from bundles of sloughed-off epidermal tissue. Degraded gastrodermis that contained actively dividing zooxanthellae was observed using both TEM and SEM. The BBD mat contained cyanobacterial filaments that were twisted, characteristic of negative-tactic responses. Some evidence of boring was found in apparently healthy control coral fragments; however, unlike in BBD-infected fragments, there were no associated cyanobacteria. These results suggest the coral skeleton as a possible source of pathogenic BBD cyanobacteria. Additionally, SEM revealed the presence of a potentially important group of small, filamentous BBD-associated bacteria yet to be identified.

  15. A Product of Heme Catabolism Modulates Bacterial Function and Survival

    PubMed Central

    Nobles, Christopher L.; Green, Sabrina I.; Maresso, Anthony W.

    2013-01-01

    Bilirubin is the terminal metabolite in heme catabolism in mammals. After deposition into bile, bilirubin is released in large quantities into the mammalian gastrointestinal (GI) tract. We hypothesized that intestinal bilirubin may modulate the function of enteric bacteria. To test this hypothesis, we investigated the effect of bilirubin on two enteric pathogens; enterohemorrhagic E. coli (EHEC), a Gram-negative that causes life-threatening intestinal infections, and E. faecalis, a Gram-positive human commensal bacterium known to be an opportunistic pathogen with broad-spectrum antibiotic resistance. We demonstrate that bilirubin can protect EHEC from exogenous and host-generated reactive oxygen species (ROS) through the absorption of free radicals. In contrast, E. faecalis was highly susceptible to bilirubin, which causes significant membrane disruption and uncoupling of respiratory metabolism in this bacterium. Interestingly, similar results were observed for other Gram-positive bacteria, including B. cereus and S. aureus. A model is proposed whereby bilirubin places distinct selective pressure on enteric bacteria, with Gram-negative bacteria being protected from ROS (positive outcome) and Gram-positive bacteria being susceptible to membrane disruption (negative outcome). This work suggests bilirubin has differential but biologically relevant effects on bacteria and justifies additional efforts to determine the role of this neglected waste catabolite in disease processes, including animal models. PMID:23935485

  16. THE ECOLOGY OF BACTERIA IN THE ALFRESCO ATMOSPHERE

    EPA Science Inventory

    This MiniReview is concerned with the sources,flux and the spacial and temporal distributions of culturable airborne bacteria; how meteorological conditions modulate these distributions; and how death, culture media, and experimental devices relate to measuring airborne bacteria....

  17. A Multidisciplinary Intervention to Reduce Infections of ESBL- and AmpC-Producing, Gram-Negative Bacteria at a University Hospital

    PubMed Central

    Knudsen, Jenny Dahl; Andersen, Stig Ejdrup

    2014-01-01

    In response to a considerable increase in the infections caused by ESBL/AmpC-producing Klebsiella pneumonia in 2008, a multidisciplinary intervention, with a main focus on antimicrobial stewardship, was carried out at one university hospital. Four other hospitals were used as controls. Stringent guidelines for antimicrobial treatment and prophylaxis were disseminated throughout the intervention hospital; cephalosporins were restricted for prophylaxis use only, fluoroquinolones for empiric use in septic shock only, and carbapenems were selected for penicillin-allergic patients, infections due to ESBL/AmpC-producing and other resistant bacteria, in addition to their use in severe sepsis/septic shock. Piperacillin-tazobactam ± gentamicin was recommended for empiric treatments of most febrile conditions. The intervention also included education and guidance on infection control, as well as various other surveillances. Two year follow-up data on the incidence rates of patients with selected bacterial infections, outcomes, and antibiotic consumption were assessed, employing before-and-after analysis and segmented regression analysis of interrupted time series, using the other hospitals as controls. The intervention led to a sustained change in antimicrobial consumption, and the incidence of patients infected with ESBL-producing K. pneumoniae decreased significantly (p<0.001). The incidences of other hospital-associated infections also declined (p’s<0.02), but piperacillin-tazobactam-resistant Pseudomonas aeruginosa and Enterococcus faecium infections increased (p’s<0.033). In wards with high antimicrobial consumption, the patient gut carrier rate of ESBL-producing bacteria significantly decreased (p = 0.023). The unadjusted, all-cause 30-day mortality rates of K. pneumoniae and E. coli were unchanged over the four-year period, with similar results in all five hospitals. Although not statistically significant, the 30-day mortality rate of patients with ESBL

  18. Beneficial Effect of Bidens pilosa on Body Weight Gain, Food Conversion Ratio, Gut Bacteria and Coccidiosis in Chickens

    PubMed Central

    Chang, Cicero L. T.; Chung, Chih-Yao; Kuo, Chih-Horng; Kuo, Tien-Fen; Yang, Chu-Wen; Yang, Wen-Chin

    2016-01-01

    In the interests of food safety and public health, plants and their compounds are now re-emerging as an alternative approach to treat gastrointestinal diseases in chickens. Here, we studied the impact of the edible medicinal plant, B. pilosa, on growth performance, gut bacteria and coccidiosis in chickens. First, we found that B. pilosa significantly elevated body weight gain and lowered feed conversion ratio in chickens. Next, we showed that B. pilosa reduced cecal damage as evidenced by increased hemorrhage, villus destruction and decreased villus-to-crypt ratio in chicken ceca. We also performed pyrosequencing of the PCR ampilcons based on the 16S rRNA genes of gut bacteria in chickens. Metagenomic analysis indicated that the chicken gut bacteria belonged to 6 phyla, 6 classes, 6 orders, 9 families, and 8 genera. More importantly, we found that B. pilosa affected the composition of bacteria. This change in bacteria composition was correlated with body weight gain, feed conversion ratio and gut pathology in chickens. Collectively, this work suggests that B. pilosa has beneficial effects on growth performance and protozoan infection in chickens probably via modulation of gut bacteria. PMID:26765226

  19. Subinhibitory Antibiotic Therapy Alters Recurrent Urinary Tract Infection Pathogenesis through Modulation of Bacterial Virulence and Host Immunity

    PubMed Central

    Hannan, Thomas J.; MacPhee, Roderick A.; Schwartz, Drew J.; Macklaim, Jean M.; Gloor, Gregory B.; Razvi, Hassan; Reid, Gregor; Hultgren, Scott J.; Burton, Jeremy P.

    2015-01-01

    ABSTRACT The capacity of subinhibitory levels of antibiotics to modulate bacterial virulence in vitro has recently been brought to light, raising concerns over the appropriateness of low-dose therapies, including antibiotic prophylaxis for recurrent urinary tract infection management. However, the mechanisms involved and their relevance in influencing pathogenesis have not been investigated. We characterized the ability of antibiotics to modulate virulence in the uropathogens Staphylococcus saprophyticus and Escherichia coli. Several antibiotics were able to induce the expression of adhesins critical to urothelial colonization, resulting in increased biofilm formation, colonization of murine bladders and kidneys, and promotion of intracellular niche formation. Mice receiving subinhibitory ciprofloxacin treatment were also more susceptible to severe infections and frequent recurrences. A ciprofloxacin prophylaxis model revealed this strategy to be ineffective in reducing recurrences and worsened infection by creating larger intracellular reservoirs at higher frequencies. Our study indicates that certain agents used for antibiotic prophylaxis have the potential to complicate infections. PMID:25827417

  20. Multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis

    NASA Astrophysics Data System (ADS)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-06-01

    The inappropriate use of antibiotics leads to antibiotic resistance, which is a major health care problem. The current method for determination of bacterial susceptibility to antibiotics requires overnight cultures. However most of the infections cannot wait for the results to receive treatment, so physicians administer general spectrum antibiotics. This results in ineffective treatments and aggravates the rising problem of antibiotic resistance. In this work, a rapid method for diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. The advantages of this novel method include its rapidness and efficiency which will potentially allow doctors to prescribe the most appropriate antibiotic for an infection. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Bacterial strains were diluted in order to reach the concentration of (2x105 cfu/ml), cells/ml which is equivalent to the minimum concentration found in urine samples from UTIs. Even though the concentration of bacteria was low, species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. This technique can be applied directly to urine samples, and with the enhancement provided by SERS, this method has the potential to be developed into a rapid method for same day UTI diagnosis and antibiogram.

  1. FDA-Approved Selective Estrogen Receptor Modulators Inhibit Ebola Virus Infection

    PubMed Central

    Johansen, Lisa M.; Brannan, Jennifer M.; Delos, Sue E.; Shoemaker, Charles J.; Stossel, Andrea; Lear, Calli; Hoffstrom, Benjamin G.; DeWald, Lisa Evans; Schornberg, Kathryn L.; Scully, Corinne; Lehár, Joseph; Hensley, Lisa E.; White, Judith M.; Olinger, Gene G.

    2014-01-01

    Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)– and ex–US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV). From this screen, we identified a set of selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, which act as potent inhibitors of EBOV infection. Anti-EBOV activity was confirmed for both of these SERMs in an in vivo mouse infection model. This anti-EBOV activity occurred even in the absence of detectable estrogen receptor expression, and both SERMs inhibited virus entry after internalization, suggesting that clomiphene and toremifene are not working through classical pathways associated with the estrogen receptor. Instead, the response appeared to be an off-target effect where the compounds interfere with a step late in viral entry and likely affect the triggering of fusion. These data support the screening of readily available approved drugs to identify therapeutics for the Ebola viruses and other infectious diseases. The SERM compounds described in this report are an immediately actionable class of approved drugs that can be repurposed for treatment of filovirus infections. PMID:23785035

  2. Metabolome strategy against Edwardsiella tarda infection through glucose-enhanced metabolic modulation in tilapias.

    PubMed

    Peng, Bo; Ma, Yan-Mei; Zhang, Jian-Ying; Li, Hui

    2015-08-01

    Edwardsiella tarda causes fish disease and great economic loss. However, metabolic strategy against the pathogen remains unexplored. In the present study, GC-MS based metabolomics was used to investigate the metabolic profile from tilapias infected by sublethal dose of E. tarda. The metabolic differences between the dying group and survival group allow the identification of key pathways and crucial metabolites during infections. More importantly, those metabolites may modulate the survival-related metabolome to enhance the anti-infective ability. Our data showed that tilapias generated two different strategies, survival-metabolome and death-metabolome, to encounter EIB202 infection, leading to differential outputs of the survival and dying. Glucose was the most crucial biomarker, which was upregulated and downregulated in the survival and dying groups, respectively. Exogenous glucose by injection or oral administration enhanced hosts' ability against EIB202 infection and increased the chances of survival. These findings highlight that host mounts the metabolic strategy to cope with bacterial infection, from which crucial biomarkers may be identified to enhance the metabolic strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Using Fluorescent Viruses for Detecting Bacteria in Water

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  4. Alendronate augments interleukin-1{beta} release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Xue; Tamai, Riyoko; Endo, Yasuo

    2009-02-15

    Nitrogen-containing bisphosphonates (NBPs) are anti-bone-resorptive drugs with inflammatory side effects that include osteomyelitis and osteonecrosis of the jaw. Oral bacteria have been considered to be a trigger for these NBP-associated jaw bone diseases. The present study examined the effects of alendronate (a typical NBP) and clodronate (a non-NBP) on the production of proinflammatory cytokines by macrophages infected with Porphyromonas gingivalis and Tannerella forsythia, which are important pathogens of periodontal diseases. Pretreatment with alendronate augmented IL-1{beta}, but not TNF{alpha}, production by macrophages infected with P. gingivalis or T. forsythia. This augmentation of IL-1{beta} production was inhibited by clodronate. Furthermore, caspase-1, amore » promoter of IL-1{beta} production, was activated by treatment with alendronate, and caspase-1 inhibitor reduced the production of IL-1{beta} induced by alendronate and P. gingivalis. These results suggest that NBPs augment periodontal pathogenic bacteria-induced IL-1{beta} release via caspase-1 activation, and this phenomenon may contribute to the development of NBP-associated inflammatory side effects including jaw osteomyelitis. Co-treatment with clodronate may prevent and/or reduce these inflammatory effects induced by NBPs.« less

  5. Resiniferatoxin modulates the Th1 immune response and protects the host during intestinal nematode infection.

    PubMed

    Muñoz-Carrillo, J L; Contreras-Cordero, J F; Muñoz-López, J L; Maldonado-Tapia, C H; Muñoz-Escobedo, J J; Moreno-García, M A

    2017-09-01

    In the early stage of the intestinal phase of Trichinella spiralis infection, the host triggers a Th1-type immune response with the aim of eliminating the parasite. However, this response damages the host which favours the survival of the parasite. In the search for novel pharmacological strategies that inhibit the Th1 immune response and assist the host against T. spiralis infection, a recent study showed that resiniferatoxin had anti-inflammatory activity contributed to the host in T. spiralis infection. In this study, we evaluated whether RTX modulates the host immune response through the inhibition of Th1 cytokines in the intestinal phase. In addition, it was determined whether the treatment with RTX affects the infectivity of T. spiralis-L1 and the development of the T. spiralis life cycle. Our results show that RTX decreased serum levels of IL-12, INF-γ, IL-1β, TNF-α and parasite burden on muscle tissue. It was observed that T. spiralis-L1 treated with RTX decreased their infectivity affecting the development of the T. spiralis life cycle in mouse. These results demonstrate that RTX is able to inhibit the production of Th1 cytokines, contributing to the defence against T. spiralis, which places it as a potential drug modulator of the immune response. © 2017 John Wiley & Sons Ltd.

  6. Puerperal infections.

    PubMed

    Eschenbach, D A; Wager, G P

    1980-12-01

    This comprehensive review on puerperal infections covers risk factors, causative bacteria, pathophysiology, diagnosis, therapy of specific entities, and prevention. Puerperal infection is problematic to define especially with antibiotics that change the course of fever. I may present as endometritis (most common), myometritis, parametritis, pelvic abscess, salpingitis, septic pelvic thrombophlebitis or septicemia, and also includes infections of the urinary tract, episiotomy, surgical wounds, lacerations or breast. Each of these is discussed in terms of contributing factors, microbiology, clinical findings, diagnosis, treatment, prevention and complications. Risk factors in general are cesarean section, premature rupture of the membranes, internal fetal monitoring, general anesthesia, pelvic examinations. The most common bacterial involved are group B and other streptococci, E. coli, Gardnerella vaginalis, Gram positive anaerobic cocci, Mycoplasma and pre-existing Chlamydial infections. Diagnosis of the causative organism is difficult because of polyinfection and difficulty of getting a sterile endometrial swab. Diagnosis of the infection is equally difficult because of the wide variety of symptoms: fever, abnormal lochia, tachycardia, tenderness, mass and abnormal bowel sounds are common. Therapy depends of the responsible microorganism, although 3 empirical tactics are suggested while awaiting results of culture: 1) choose an antibiotic for the most common aerobic bacteria; 2) an antibiotic effective against B. fragilis and one for aerobic bacteria, e.g. clindamycin and an aminoglycoside; 3) a nontoxic antibiotic active against most aerobic and anaerobic organisms, e.g. doxycycline or cefoxitin. An example of an infection recently described is pudendal-paracervical block infection, often signaled by severe hip pain. It is associated with vaginal bacteria, is usually complicated by abscess even with antibiotic coverage, and may end in paraplegia or fatal sepsis

  7. More than the “Killer Trait”: Infection with the Bacterial Endosymbiont Caedibacter taeniospiralis Causes Transcriptomic Modulation in Paramecium Host

    PubMed Central

    Grosser, Katrin; Ramasamy, Pathmanaban; Amirabad, Azim Dehghani; Schulz, Marcel H; Gasparoni, Gilles; Simon, Martin

    2018-01-01

    Abstract Endosymbiosis is a widespread phenomenon and hosts of bacterial endosymbionts can be found all-over the eukaryotic tree of life. Likely, this evolutionary success is connected to the altered phenotype arising from a symbiotic association. The potential variety of symbiont’s contributions to new characteristics or abilities of host organisms are largely unstudied. Addressing this aspect, we focused on an obligate bacterial endosymbiont that confers an intraspecific killer phenotype to its host. The symbiosis between Paramecium tetraurelia and Caedibacter taeniospiralis, living in the host’s cytoplasm, enables the infected paramecia to release Caedibacter symbionts, which can simultaneously produce a peculiar protein structure and a toxin. The ingestion of bacteria that harbor both components leads to the death of symbiont-free congeners. Thus, the symbiosis provides Caedibacter-infected cells a competitive advantage, the “killer trait.” We characterized the adaptive gene expression patterns in symbiont-harboring Paramecium as a second symbiosis-derived aspect next to the killer phenotype. Comparative transcriptomics of infected P. tetraurelia and genetically identical symbiont-free cells confirmed altered gene expression in the symbiont-bearing line. Our results show up-regulation of specific metabolic and heat shock genes whereas down-regulated genes were involved in signaling pathways and cell cycle regulation. Functional analyses to validate the transcriptomics results demonstrated that the symbiont increases host density hence providing a fitness advantage. Comparative transcriptomics shows gene expression modulation of a ciliate caused by its bacterial endosymbiont thus revealing new adaptive advantages of the symbiosis. Caedibacter taeniospiralis apparently increases its host fitness via manipulation of metabolic pathways and cell cycle control. PMID:29390087

  8. Evaluation of the in vitro growth of urinary tract infection-causing gram-negative and gram-positive bacteria in a proposed synthetic human urine (SHU) medium.

    PubMed

    Ipe, Deepak S; Ulett, Glen C

    2016-08-01

    Bacteriuria is a hallmark of urinary tract infection (UTI) and asymptomatic bacteriuria (ABU), which are among the most frequent infections in humans. A variety of gram-negative and gram-positive bacteria are associated with these infections but Escherichia coli contributes up to 80% of cases. Multiple bacterial species including E. coli can grow in human urine as a means to maintain colonization during infections. In vitro bacteriuria studies aimed at modeling microbial growth in urine have utilized various compositions of synthetic human urine (SHU) and a Composite SHU formulation was recently proposed. In this study, we sought to validate the recently proposed Composite SHU as a medium that supports the growth of several bacterial species that are known to grow in normal human urine and/or artificial urine. Comparative growth assays of gram-negative and gram-positive bacteria E. coli, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus agalactiae, Staphylococcus saprophyticus and Enterococcus faecalis were undertaken using viable bacterial count and optical density measurements over a 48h culture period. Three different SHU formulations were tested in various culture vessels, shaking conditions and volumes and showed that Composite SHU can support the robust growth of gram-negative bacteria but requires supplementation with 0.2% yeast extract to support the growth of gram-positive bacteria. Experiments are also presented that show an unexpected but major influence of P. mirabilis towards the ability to measure bacterial growth in generally accepted multiwell assays using absorbance readings, predicted to have a basis in the release of volatile organic compound(s) from P. mirabilis during growth in Composite SHU medium. This study represents an essential methodological validation of a more chemically defined type of synthetic urine that can be applied to study mechanisms of bacteriuria and we conclude will offer a useful in vitro model to investigate the

  9. NK Cells and Their Ability to Modulate T Cells during Virus Infections

    PubMed Central

    Cook, Kevin D.; Waggoner, Stephen N.; Whitmire, Jason K.

    2014-01-01

    Natural killer (NK) cells are important in protection against virus infections, and many viruses have evolved mechanisms to thwart NK cell activity. NK cells respond to inflammatory signals at an early stage of virus infection, resulting in proliferation, cytokine production, and cytolytic activity that can reduce virus loads. Moreover, the rapid kinetics of the NK cell response enables NK cells to influence other populations of innate immune cells, affect the inflammatory milieu, and guide adaptive immune responses to infection. Early NK cell interactions with other leukocytes can have long-lasting effects on the number and quality of memory T cells, as well as impact the exhaustion of T cells during chronic infections. The ability of NK cells to modulate T cell responses can be mediated through direct T-NK interactions, cytokine production, or indirectly through dendritic cells and other cell types. Herein, we summarize our current understanding of how NK cells interact with T cells, dendritic cells, B cells, and other cell types involved in adaptive immune responses to virus infection. We outline several mechanisms by which NK cells enhance or suppress adaptive immune response and long-lived immunological memory. PMID:25404045

  10. Schistosoma Infection and Schistosoma-Derived Products Modulate the Immune Responses Associated with Protection against Type 2 Diabetes

    PubMed Central

    Tang, Chun-Lian; Liu, Zhi-Ming; Gao, Yan Ru; Xiong, Fei

    2018-01-01

    Studies on parasite-induced immunoregulatory mechanisms could contribute to the development of new therapies for inflammatory diseases such as type 2 diabetes (T2D), which is a chronic inflammatory disease characterized by persistent elevated glucose levels due to insulin resistance. The association between previous Schistosoma infection and T2D has been confirmed—Schistosoma infection and Schistosoma-derived products modulate the immune system, including innate and acquired immune responses, contributing to T2D disease control. Schistosoma infections and Schistosoma-derived molecules affect the immune cell composition in adipose tissue, dampening inflammation and improving glucose tolerance. This protective role includes the polarization of immune cells to alternatively activated macrophages, dendritic cells, eosinophils, and group 2 innate lymphoid cells. Furthermore, Schistosoma infection and Schistosoma products are effective for the treatment of T2D, as they increase the number of type 2 helper T cells (Th2) and regulatory T cells (Tregs) and decrease type 1 helper T cells (Th1) and type 17 helper T cells (Th17) cells. Thus, our aim was to comprehensively review the mechanism through which Schistosoma infection and Schistosoma products modulate the immune response against T2D. PMID:29387059

  11. Schistosoma Infection and Schistosoma-Derived Products Modulate the Immune Responses Associated with Protection against Type 2 Diabetes.

    PubMed

    Tang, Chun-Lian; Liu, Zhi-Ming; Gao, Yan Ru; Xiong, Fei

    2017-01-01

    Studies on parasite-induced immunoregulatory mechanisms could contribute to the development of new therapies for inflammatory diseases such as type 2 diabetes (T2D), which is a chronic inflammatory disease characterized by persistent elevated glucose levels due to insulin resistance. The association between previous Schistosoma infection and T2D has been confirmed- Schistosoma infection and Schistosoma -derived products modulate the immune system, including innate and acquired immune responses, contributing to T2D disease control. Schistosoma infections and Schistosoma -derived molecules affect the immune cell composition in adipose tissue, dampening inflammation and improving glucose tolerance. This protective role includes the polarization of immune cells to alternatively activated macrophages, dendritic cells, eosinophils, and group 2 innate lymphoid cells. Furthermore, Schistosoma infection and Schistosoma products are effective for the treatment of T2D, as they increase the number of type 2 helper T cells (Th2) and regulatory T cells (Tregs) and decrease type 1 helper T cells (Th1) and type 17 helper T cells (Th17) cells. Thus, our aim was to comprehensively review the mechanism through which Schistosoma infection and Schistosoma products modulate the immune response against T2D.

  12. Interplay Between Antibiotic Resistance and Virulence During Disease Promoted by Multidrug-Resistant Bacteria

    PubMed Central

    Geisinger, Edward

    2017-01-01

    Abstract Diseases caused by antibiotic-resistant bacteria in hospitals are the outcome of complex relationships between several dynamic factors, including bacterial pathogenicity, the fitness costs of resistance in the human host, and selective forces resulting from interventions such as antibiotic therapy. The emergence and fate of mutations that drive antibiotic resistance are governed by these interactions. In this review, we will examine how different forms of antibiotic resistance modulate bacterial fitness and virulence potential, thus influencing the ability of pathogens to evolve in the context of nosocomial infections. We will focus on 3 important multidrug-resistant pathogens that are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. An understanding of how antibiotic resistance mutations shape the pathobiology of multidrug-resistant infections has the potential to drive novel strategies that can control the development and spread of drug resistance. PMID:28375515

  13. Infection-Mediated Vasoactive Peptides Modulate Cochlear Uptake of Fluorescent Gentamicin

    PubMed Central

    Koo, Ja-Won; Wang, Qi; Steyger, Peter S.

    2011-01-01

    Inflammatory mediators released during bacterial infection include vasoactive peptides such as histamine and serotonin, and their serum levels are frequently elevated. These peptides also modulate the vascular permeability of endothelial cells lining the blood-brain and blood-labyrinth barriers (BLB). These peptides may also modulate the permeability of the BLB to ototoxic aminoglycoside antibiotics prescribed to resolve bacterial sepsis. To test this hypothesis, we compared the effect of histamine and serotonin on the cochlear distribution of fluorescently conjugated gentamicin (GTTR) in control animals at 0.5, 1 and 3 h after injection of GTTR. The intensity of GTTR fluorescence was attenuated at 1 h in the histamine group compared to control mice, and more intense 3 h after injection (p < 0.05). In the serotonin group, the intensity of GTTR fluorescence was attenuated at 0.5 and 1 h (p < 0.05) and was increased at 3 h compared to control animals, where GTTR intensities peaked at 1 h and then plateaued or was slightly decreased at 3 h. This biphasic pattern of modulation was statistically significant in the apical turn of the cochlea. No difference in the intensity of GTTR fluorescence was observed in kidney proximal tubules. Systemic increases in serum levels of vasoactive peptides can modulate cochlear uptake of gentamicin, likely via permeability changes in the BLB. Conditions that influence serum levels of vasoactive peptides may potentiate aminoglycoside ototoxicity. PMID:21196726

  14. Associations Between Enteral Colonization With Gram-Negative Bacteria and Intensive Care Unit-Acquired Infections and Colonization of the Respiratory Tract.

    PubMed

    Frencken, Jos F; Wittekamp, Bastiaan H J; Plantinga, Nienke L; Spitoni, Cristian; van de Groep, Kirsten; Cremer, Olaf L; Bonten, Marc J M

    2018-02-01

    Enteral and respiratory tract colonization with gram-negative bacteria may lead to subsequent infections in critically ill patients. We aimed to clarify the interdependence between gut and respiratory tract colonization and their associations with intensive care unit (ICU)-acquired infections in patients receiving selective digestive tract decontamination (SDD). Colonization status of the rectum and respiratory tract was determined using twice-weekly microbiological surveillance in mechanically ventilated subjects receiving SDD between May 2011 and June 2015 in a tertiary medical-surgical ICU in the Netherlands. Acquisition of infections was monitored daily by dedicated observers. Marginal structural models were used to determine the associations between gram-negative rectal colonization and respiratory tract colonization, ICU-acquired gram-negative infection, and ICU-acquired gram-negative bacteremia. Among 2066 ICU admissions, 1157 (56.0%) ever had documented gram-negative carriage in the rectum during ICU stay. Cumulative incidences of ICU-acquired gram-negative infection and bacteremia were 6.0% (n = 124) and 2.1% (n = 44), respectively. Rectal colonization was an independent risk factor for both respiratory tract colonization (cause-specific hazard ratio [CSHR], 2.93 [95% confidence interval {CI}, 2.02-4.23]) and new gram-negative infection in the ICU (CSHR, 3.04 [95% CI, 1.99-4.65]). Both rectal and respiratory tract colonization were associated with bacteremia (CSHR, 7.37 [95% CI, 3.25-16.68] and 2.56 [95% CI, 1.09-6.03], respectively). Similar associations were observed when Enterobacteriaceae and glucose nonfermenting gram-negative bacteria were analyzed separately. Gram-negative rectal colonization tends to be stronger associated with subsequent ICU-acquired gram-negative infections than gram-negative respiratory tract colonization. Gram-negative rectal colonization seems hardly associated with subsequent ICU-acquired gram-negative respiratory tract

  15. Honey Bee as Alternative Medicine to Treat Eleven Multidrug-Resistant Bacteria Causing Urinary Tract Infection during Pregnancy.

    PubMed

    Bouacha, Mabrouka; Ayed, Hayette; Grara, Nedjoud

    2018-04-13

    Medicinal benefits of honey bee have been recognized in the medical community since ancient times as a remedy for many diseases and infections. This study aimed to investigate the in vitro susceptibility of 11 multidrug-resistant bacterial strains, isolated from urinary tract infections of pregnant women, to six honey samples collected from different localities in the east of Algeria. The evaluation of the antibacterial activity was performed by the well method followed by the broth dilution method using two-fold dilutions of each honey sample ranging from 2.5 to 80% (w/v). The results obtained in this study revealed that all tested honeys exhibited potent antibacterial activity against the tested strains. The diameters of inhibition ranged from 19.67 to 53.33 mm, with minimum inhibitory concentrations (MICs) ranging from 2.5 to 40% (w/v) and minimum bactericidal concentration (MBCs) varied between 2.5 and 80% (w/v). Gram-positive bacteria were found to be more susceptible than Gram-negative bacteria with diameters ranging from 43.33 to 53.33 mm; MIC and MBC values ranged from 2.5 to 5% (w/v). The P.aeruginosa strain was found to be less susceptible than other strains with inhibitory diameters ranging from 19.67 to 27.33 mm; MICs ranged from 20 to 40% and MBCs ranged from 20 to 80% ( w/v ). This contribution has provided a broad overview of the antibacterial activity of Algerian honey and shown that honey bee has great potential for therapeutic use as an alternative therapy for urinary tract infection treatment which is safe and efficient during pregnancy.

  16. Breast infection

    MedlinePlus

    Breast infections are usually caused by common bacteria ( Staphylococcus aureus ) found on normal skin. The bacteria enter through ... 2017:chap 8. Que Y-A, Moreillon P. Staphylococcus aureus (including staphylococcal toxic shock syndrome). In: Bennett JE, ...

  17. Of Men Not Mice: Bactericidal/Permeability-Increasing Protein Expressed in Human Macrophages Acts as a Phagocytic Receptor and Modulates Entry and Replication of Gram-Negative Bacteria

    PubMed Central

    Balakrishnan, Arjun; Schnare, Markus; Chakravortty, Dipshikha

    2016-01-01

    Macrophages as immune cells prevent the spreading of pathogens by means of active phagocytosis and killing. We report here the presence of an antimicrobial protein, bactericidal/permeability-increasing protein (BPI) in human macrophages, which actively participates in engulfment and killing of Gram-negative pathogens. Our studies revealed increased expression of BPI in human macrophages during bacterial infection and upon stimulation with various pathogen-associated molecular patterns, viz., LPS and flagellin. Furthermore, during the course of an infection, BPI interacted with Gram-negative bacteria, resulting in enhanced phagocytosis and subsequent control of the bacterial replication. However, it was observed that bacteria which can maintain an active replicating niche (Salmonella Typhimurium) avoid the interaction with BPI during later stages of infection. On the other hand, Salmonella mutants, which cannot maintain a replicating niche, as well as Shigella flexneri, which quit the endosomal vesicle, showed interaction with BPI. These results propose an active role of BPI in Gram-negative bacterial clearance by human macrophages. PMID:27822215

  18. [Effect of compound Chinese traditional medicine on infected root canal bacteria biofilm].

    PubMed

    Ma, Rui; Huang, Li-li; Xia, Wen-wei; Zhu, Cai-lian; Ye, Dong-xia

    2010-08-01

    To assess the efficacy of compound Chinese traditional medicine(CTM), which composed of gallic acid, magnolol and polysaccharide of Blettila striata, against the infected root canal bacterial biofilm. Actinomyces viscosus (Av), Enterococcus faecalis (Ef), Fusobacterium nucleatum (Fn) were composed to form biofilm, then confocal laser scan microscope (CLSM) was used to observe and study the bacterial activity. SAS6.12 software package was used for statistical analysis. The biofilm thickness reduced after treatment by both CTM and ZnO (P>0.05),while there was a significant decrease of the percentage of vital bacterias after treatment by CTM (P<0.01). The compound Chinese traditional medicine is effective on biofilm control, so that it would be an effective disinfecting drug for root canal sealers. Supported by Research Fund of Bureau of Traditional Chinese Medicine of Shanghai Municipality (Grant No.2008L008A).

  19. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    NASA Astrophysics Data System (ADS)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  20. Experience with a Multinational, Secondary School Education Module with a Focus on Prevention of Virus Infections

    PubMed Central

    Doornekamp, Laura; Stegers-Jager, Karen M.; Vlek, Odette M.; Klop, Tanja; Goeijenbier, Marco; van Gorp, Eric C. M.

    2017-01-01

    Abstract. Worldwide, virus infections are responsible for many diseases in terms of morbidity and mortality. Vaccinations and therapies are only available for relatively few virus infections and not always where they are needed. However, knowledge of transmission routes can prevent virus infection. In the context of this study, we measured the effects of a secondary school education module, named Viruskenner, on knowledge, attitude, and risk behavior as these relate to virus infections. A nonrandomized intervention study was conducted between April and August 2015 to assess the effect of this 2-month education module on knowledge, attitude, and behavior of 684 secondary school students in the Netherlands, Suriname, and Indonesia. For the Netherlands, a control group of a further 184 students was added. Factor analysis was performed on questions pertaining to attitude and behavior. Comparative analyses between pre- and posttest per country were done using multiple linear regression, independent sample T-tests, and one-way analysis of variance. These showed a significant increase in knowledge about virus infections and the prevention of infectious diseases among the Dutch and Surinamese groups, whereas a trend of increased knowledge was evident among the Indonesian participants. The Dutch control group showed an overall decrease in knowledge. Regression analyses showed that there was a significant interaction effect between participation and time on knowledge, attitude, and awareness and behavior and risk infection. Attitudes improved significantly in the intervention group. Pearson correlation coefficients between knowledge, attitude, and behavior were found to be positive. PMID:28719318

  1. Experience with a Multinational, Secondary School Education Module with a Focus on Prevention of Virus Infections.

    PubMed

    Doornekamp, Laura; Stegers-Jager, Karen M; Vlek, Odette M; Klop, Tanja; Goeijenbier, Marco; van Gorp, Eric C M

    2017-07-01

    Worldwide, virus infections are responsible for many diseases in terms of morbidity and mortality. Vaccinations and therapies are only available for relatively few virus infections and not always where they are needed. However, knowledge of transmission routes can prevent virus infection. In the context of this study, we measured the effects of a secondary school education module, named Viruskenner, on knowledge, attitude, and risk behavior as these relate to virus infections. A nonrandomized intervention study was conducted between April and August 2015 to assess the effect of this 2-month education module on knowledge, attitude, and behavior of 684 secondary school students in the Netherlands, Suriname, and Indonesia. For the Netherlands, a control group of a further 184 students was added. Factor analysis was performed on questions pertaining to attitude and behavior. Comparative analyses between pre- and posttest per country were done using multiple linear regression, independent sample T-tests, and one-way analysis of variance. These showed a significant increase in knowledge about virus infections and the prevention of infectious diseases among the Dutch and Surinamese groups, whereas a trend of increased knowledge was evident among the Indonesian participants. The Dutch control group showed an overall decrease in knowledge. Regression analyses showed that there was a significant interaction effect between participation and time on knowledge, attitude, and awareness and behavior and risk infection. Attitudes improved significantly in the intervention group. Pearson correlation coefficients between knowledge, attitude, and behavior were found to be positive.

  2. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria.

    PubMed

    Peng, Bo; Su, Yu-Bin; Li, Hui; Han, Yi; Guo, Chang; Tian, Yao-Mei; Peng, Xuan-Xian

    2015-02-03

    Multidrug-resistant bacteria are an increasingly serious threat to human and animal health. However, novel drugs that can manage infections by multidrug-resistant bacteria have proved elusive. Here we show that glucose and alanine abundances are greatly suppressed in kanamycin-resistant Edwardsiella tarda by GC-MS-based metabolomics. Exogenous alanine or glucose restores susceptibility of multidrug-resistant E. tarda to killing by kanamycin, demonstrating an approach to killing multidrug-resistant bacteria. The mechanism underlying this approach is that exogenous glucose or alanine promotes the TCA cycle by substrate activation, which in turn increases production of NADH and proton motive force and stimulates uptake of antibiotic. Similar results are obtained with other Gram-negative bacteria (Vibrio parahaemolyticus, Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacterium (Staphylococcus aureus), and the results are also reproduced in a mouse model for urinary tract infection. This study establishes a functional metabolomics-based strategy to manage infection by antibiotic-resistant bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Hand Infections

    MedlinePlus

    ... drainage or pus should be sent for laboratory testing to determine the type of bacteria causing the infection and the appropriate antibiotic for treatment. CAUSES Atypical Mycobacterial Infections Rarely, a ...

  4. Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen.

    PubMed

    Longo, Ana V; Zamudio, Kelly R

    2017-02-01

    Fluctuating environments can modulate host-pathogen interactions by providing a temporary advantage to one of the interacting organisms. However, we know very little about how environmental conditions facilitate beneficial interactions between hosts and their microbial communities, resulting in individual persistence with a particular pathogen. Here, we experimentally infected Eleutherodactylus coqui frogs with the fungal pathogen Batrachochytrium dendrobatidis (Bd) under environmental conditions known to confer the survival advantage to the host during the warm-wet season, or alternatively to the pathogen during the cool-dry season. We used 16S rRNA amplicon sequencing to quantify changes in bacterial richness and phylogenetic diversity, and identified operational taxonomic units (OTUs) that became overrepresented or suppressed as a consequence of Bd infection. During the warm-wet season, frogs limited Bd infections, recruited putatively beneficial bacteria and returned to pre-infection levels of richness and phylogenetic diversity. In contrast, during the cool-dry season, Bd infections kept increasing through time, and bacterial diversity remained constant. Our findings confirm that infection outcome not only depends on abiotic factors, but also on biotic interactions between hosts and their associated bacterial communities.

  5. Recovery of anaerobic bacteria from wounds after lawn-mower injuries.

    PubMed

    Brook, Itzhak

    2005-02-01

    Accidental injury while using lawn mowers can cause serious infectious complications in the injured extremity. Anaerobic bacteria were rarely recovered from this infection. Two children who sustained injury in their foot by a lawn mower developed severe wound infection. Culture of the wound from 1 patient had heavy growth of Clostridium bifermentans and Peptostreptococcus magnus, and the culture from the other child grew Clostridium perfringens. Antimicrobial therapy directed at the pathogens and vigorous surgical irrigation and debridement led to complete recovery from the infection. This report illustrates the recovery of anaerobic bacteria from children that had wound infection after lawn-mower injury.

  6. Rapid separation of very low concentrations of bacteria from blood.

    PubMed

    Buchanan, Clara M; Wood, Ryan L; Hoj, Taalin R; Alizadeh, Mahsa; Bledsoe, Colin G; Wood, Madison E; McClellan, Daniel S; Blanco, Rae; Hickey, Caroline L; Ravsten, Tanner V; Husseini, Ghaleb A; Robison, Richard A; Pitt, William G

    2017-08-01

    A rapid and accurate diagnosis of the species and antibiotic resistance of bacteria in septic blood is vital to increase survival rates of patients with bloodstream infections, particularly those with carbapenem-resistant enterobacteriaceae (CRE) infections. The extremely low levels in blood (1 to 100CFU/ml) make rapid diagnosis difficult. In this study, very low concentrations of bacteria (6 to 200CFU/ml) were separated from 7ml of whole blood using rapid sedimentation in a spinning hollow disk that separated plasma from red and white cells, leaving most of the bacteria suspended in the plasma. Following less than a minute of spinning, the disk was slowed, the plasma was recovered, and the bacteria were isolated by vacuum filtration. The filters were grown on nutrient plates to determine the number of bacteria recovered from the blood. Experiments were done without red blood cell (RBC) lysis and with RBC lysis in the recovered plasma. While there was scatter in the data from blood with low bacterial concentrations, the mean average recovery was 69%. The gender of the blood donor made no statistical difference in bacterial recovery. These results show that this rapid technique recovers a significant amount of bacteria from blood containing clinically relevant low levels of bacteria, producing the bacteria in minutes. These bacteria could subsequently be identified by molecular techniques to quickly identify the infectious organism and its resistance profile, thus greatly reducing the time needed to correctly diagnose and treat a blood infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Bacteria, biofilm and honey: a study of the effects of honey on 'planktonic' and biofilm-embedded chronic wound bacteria.

    PubMed

    Merckoll, Patricia; Jonassen, Tom Øystein; Vad, Marie Elisabeth; Jeansson, Stig L; Melby, Kjetil K

    2009-01-01

    Chronically infected wounds are a costly source of suffering. An important factor in the failure of a sore to heal is the presence of multiple species of bacteria, living cooperatively in highly organized biofilms. The biofilm protects the bacteria from antibiotic therapy and the patient's immune response. Honey has been used as a wound treatment for millennia. The components responsible for its antibacterial properties are now being elucidated. The study aimed to determine the effects of different concentrations of 'Medihoney' therapeutic honey and Norwegian Forest Honey 1) on the real-time growth of typical chronic wound bacteria; 2) on biofilm formation; and 3) on the same bacteria already embedded in biofilm. Reference strains of MRSE, MRSA, ESBL Klebsiella pneumoniae and Pseudomonas aeruginosa were incubated with dilution series of the honeys in microtitre plates for 20 h. Growth of the bacteria was assessed by measuring optical density every 10 min. Growth curves, biofilm formation and minimum bactericidal concentrations are presented. Both honeys were bactericidal against all the strains of bacteria. Biofilm was penetrated by biocidal substances in honey. Reintroduction of honey as a conventional wound treatment may help improve individual wound care, prevent invasive infections, eliminate colonization, interrupt outbreaks and thereby preserve current antibiotic stocks.

  8. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs.

    PubMed

    Williams, Andrew R; Krych, Lukasz; Fauzan Ahmad, Hajar; Nejsum, Peter; Skovgaard, Kerstin; Nielsen, Dennis S; Thamsborg, Stig M

    2017-01-01

    Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids) in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.

  9. Helminth infection in mice improves insulin sensitivity via modulation of gut microbiota and fatty acid metabolism.

    PubMed

    Pace, Fernanda; Carvalho, Bruno M; Zanotto, Tamires M; Santos, Andrey; Guadagnini, Dioze; Silva, Kelly L C; Mendes, Maria Carolina S; Rocha, Guilherme Z; Alegretti, Silmara M; Santos, Gustavo A; Catharino, Rodrigo R; Paroni, Rita; Folli, Franco; Saad, Mário José A

    2018-06-01

    Intestinal helminths are prevalent in individuals who live in rural areas of developing countries, where obesity, type 2 diabetes, and metabolic syndrome are rare. In the present study, we analyzed the modulation of the gut microbiota in mice infected with the helminth Strongyloides venezuelensis, and fed either a standard rodent chow diet or high-fat diet (HFD). To investigate the effects of the microbiota modulation on the metabolism, we analyzed the expression of tight-junction proteins present in the gut epithelium, inflammatory markers in the serum and tissue and quantified glucose tolerance and insulin sensitivity and resistance. Additionally, the levels of lipids related to inflammation were evaluated in the feces and serum. Our results show that infection with Strongyloides venezuelensis results in a modification of the gut microbiota, most notably by increasing Lactobacillus spp. These modifications in the microbiota alter the host metabolism by increasing the levels of anti-inflammatory cytokines, switching macrophages from a M1 to M2 pattern in the adipose tissue, increasing the expression of tight junction proteins in the intestinal cells (thereby reducing the permeability) and decreasing LPS in the serum. Taken together, these changes correlate with improved insulin signaling and sensitivity, which could also be achieved with HFD mice treated with probiotics. Additionally, helminth infected mice produce higher levels of oleic acid, which participates in anti-inflammatory pathways. These results suggest that modulation of the microbiota by helminth infection or probiotic treatment causes a reduction in subclinical inflammation, which has a positive effect on the glucose metabolism of the host. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Modulation of the AMPK/Sirt1 axis during neuronal infection by herpes simplex virus type 1.

    PubMed

    Martin, Carolina; Leyton, Luis; Arancibia, Yennyfer; Cuevas, Alexei; Zambrano, Angara; Concha, Margarita I; Otth, Carola

    2014-01-01

    Currently, it is unclear whether a neuron that undergoes viral reactivation and produces infectious particles survives and resumes latency or is killed, which is intriguing even if still unanswered. Previous reports have shown that herpes simplex virus type 1 (HSV-1) inhibits apoptosis during early infection, but is pro-apoptotic during productive infection. Taking in consideration that the stress sensors AMPK and Sirt1 are involved in neuronal survival and neuroprotection, we hypothesized that HSV-1 could activate the AMPK/Sirt1 axis as a strategy to establish latency through inhibition of apoptosis and restoration of the energy status. These effects could be accomplished through deacetylation of pro-apoptotic protein p53 and regulation of the master regulator of mitochondrial biogenesis and function PGC-1α and its target gene TFAM. Accordingly, we evaluated the AMPK/Sirt1 axis and its targets p53, PGC-1α, and acetyl CoA carboxylase in mice neuronal cultures infected with HSV-1 by western blot, RT-qPCR, and immunofluorescence analyses. Herein, we show that HSV-1 differentially modulates the AMPK/Sirt1 axis during the course of infection. In fact, during early infection (2 hpi) activated AMPK (p-AMPK) was down-regulated, but thereafter recovered gradually. In contrast, the levels of acetylated-p53 increased during the first hours post infection, but afterwards were reduced in parallel with the activation of Sirt1. However, acetylated-p53 peaked again at 18 hpi during productive infection, suggesting an activation of apoptosis. Strikingly, acetylated-p53, Sirt1, and p-AMPK apparently translocate from the nucleus to the cytoplasm after 4 hpi, where they accumulate in discrete foci in the perinuclear region. These results suggest that HSV-1 modulates the AMPK/Sirt1 axis differentially during the course of infection interfering with pro-apoptotic signaling and regulating mitochondrial biogenesis.

  11. [Analysis of characteristics of bacteria in respiratory tract infection in 2013-2016 in Heibei 3A hospital: a single-center report of 7 497 patients].

    PubMed

    Hou, Lili; Liu, Lili; Dang, Ping; Kang, Guannan; Zhang, Qinfeng; Li, Dongling

    2017-09-01

    To analyze the changes and characteristics of respiratory tract bacteria in Hebei 3A Hospital, and to provide new rationale for clinical diagnosis and treatment. A single-center retrospective analysis was conducted. 7 497 patients with respiratory tract infection admitted to Hebei Chest Hospital from January 2013 to December 2016 were enrolled. Deep sputum was collected, and the bacterial cultures and susceptibility analysis was conducted in sputum and upper respiratory secretions were collected by fiberoptic bronchoscopy. A total of 7 497 patients with respiratory tract infection were enrolled in the study, and 11 909 strains of 13 kinds of dominant pathogens were isolated. The dominant pathogens for respiratory tract infection were Monilia albican (23.7%), Klebsiella pneumoniae (12.9%), Pseudomonas aeruginosa (11.6%), Escherichia coli (9.5%), Candida glabrata (9.1%), Acinetobacter baumanii (7.9%), Aspergillus (6.7%), Stenotrophomonas maltophilia (4.5%), coagulase negative Staphylococcus (3.7%) and some species of Pseudomonas (3.7%), Staphylococcus aureus (3.0%), Aerobacter cloacae (1.9%), and Candida tropicalis (1.8%). A total of 6 198 strains of 7 kinds of Gram negative (G - ) bacilli infection dominant pathogens accounts for 52.0% of all infections, Klebsiella pneumonia (24.8%), Pseudomonas aeruginosa (22.3%), Escherichia coli (18.2%) and Acinetobacter baumanii (15.3%) were the main pathogens, and increased year by year. Susceptibility analysis showed that the preferred antibiotics for G - bacteria were carbapenems, followed by risperidone, sulbactam, cefepime, amikacin, and the third generation of cephalosporins. A total of 798 strains of 2 kinds of Gram positive (G + ) bacilli infection dominant pathogens accounted for 6.7% of all infections, were coagulase negative Staphylococcus (54.8%) and Staphylococcus aureus (45.2%), each had changed little by year. Susceptibility analysis showed that G + bacteria were sensitive to glycopeptides, followed by cefoxitin

  12. Antibiotic sensitivity pattern of bacteria from diabetic foot infections Haji Adam Malik central general hospital

    NASA Astrophysics Data System (ADS)

    Bulolo, B. A.; Pase, M. A.; Ginting, F.

    2018-03-01

    Increasing rate of Diabetic Foot Infections (DFIs) caused by multi-drug-resistance pathogens plays a huge role in the duration of hospitalization, morbidity, and mortality of diabetic patients. The aim of the study is to assess the antibiotic sensitivity pattern of bacteria in DFIs and causative microorganisms. Using cross-sectional retrospective study, data were collected from medical records of DFIs patients previously hospitalized atHaji Adam Malik Hospital, Medan from January to July 2017. 33 patients met the criteria and got enrolled in the study. The classification of DFIs was evaluated according to Wagner’s Classification. Evaluation of antibiotic sensitivity and identification of causative microorganisms were performed in standard microbiologic methods. The most common grade of DFIs was Grade-4 (48.5%), followed by Grade-3 (39.4%) and Grade-5 (9.1%). A total of 12 pathogens were identified. The most common infecting microorganism isolated on pus cultures was Klebsiella pneumonia (33.3%), followed by Escherichia coli (24.2%), Acinetobacter baumanni (12.1%), and Staphylococcus aureus (9.1%). Frequent susceptible antibiotics were Amikacin (88.8%), Imipenem (87%), Meropenem (84.6%), Erythromycin (75%), and Cefoperazone/Sulbactam (68.9%). DFIs are polymicrobial infections in this study K. pneumonia was the most common cause microorganism.

  13. [The method and result analyses of pathogenic bacteria culture on chronic periprosthetic joint infection after total knee arthroplasty and total hip arthroplasty].

    PubMed

    Ji, Baochao; Xu, Enjie; Cao, Li; Yang, Desheng; Xu, Boyong; Guo, Wentao; Aili, Rehei

    2015-02-01

    To analyze the results of pathogenic bacteria culture on chronic periprosthetic joint infection after total knee arthroplasty (TKA) and total hip arthroplasty (THA). The medical data of 23 patients with chronic periprosthetic joint infection after TKA or THA from September 2010 to March 2014 were reviewed. Fifteen cases of TKA and 8 cases of THA were included in this study. There were 12 male and 11 female patients with the mean age of 62 years (range from 32 to 79 years), and among them 9 patients with sinus. All patients discontinued antibiotic therapy for a minimum of 2 weeks before arthrocentesis, taking pathogenic bacteria culture and antimicrobial susceptibility test by using synovial fluid taken preoperatively and intraoperatively of revision. Common pathogenic bacteria culture and pathological biopsy were taken on tissues intraoperatively of revision. Culture-negative specimens were prolonged the period of incubation for 2 weeks. The overall culture-positive rate of all 23 patients for 1 week before revision was 30.4% (7/23), and the positive rate of culture-negative samples which prolonged for 2 weeks was 39.1% (9/23). The overall culture-positive rate of patients for 1 week intraoperatively of revision was 60.9% (14/23), and the positive rate of culture-negative samples which prolonged for 2 weeks was 82.6% (19/23). The incubation results of 7 cases (30.4%) preoperatively conformed to that of intraoperation. The culture-positive rate of pathogenic bacteria culture can be increased evidently by discontinuing antimicrobial therapy for a minimum of 2 weeks prior to the definite diagnosis.

  14. Experimental infection of mice with tightly coiled spiral bacteria ("Candidatus Helicobacter suis") originating from the pig stomach.

    PubMed

    Park, J-H; Hong, J J; Park, J H

    2003-01-01

    Mice (n=34) were inoculated orally with a gastric homogenate from a pig infected with tightly coiled spiral bacteria (TCSB). In mice killed in pairs at 16 intervals up to 108 weeks post-inoculation (pi), TCSB were invariably found, mainly in the mucosal surface, gastric pits, intercellular spaces, cytoplasm of surface epithelial cells, and lumina of gastric glands. Histopathologically, infiltration of lymphocytes and plasma cells was seen from 8 weeks pi onwards, gradually increasing as infection progressed. From 64 weeks pi onwards, the formation of large follicles was observed in the lamina propria and submucosa, together with severe necrosis of surface epithelial cells. Glandular epithelial cells in the fundic mucosa were markedly dysplastic and intruded through the basement membrane into the submucosal layer. Common antigenicity between TCSB and Helicobacter pylori was demonstrated by Western blotting, ELISA, and immunohistochemistry. The sequence of the 16S rDNA fragment of 374 bp showed 100% homology with the 16S rRNA gene of "Candidatus Helicobacter suis". Experimental infection of the gastric mucosa of mice with TCSB was closely associated with chronic gastritis and dysplastic lesions.

  15. Screening of Probiotic Candidates in Human Oral Bacteria for the Prevention of Dental Disease

    PubMed Central

    Terai, Tomohiko; Okumura, Takekazu; Imai, Susumu; Nakao, Masumi; Yamaji, Kazuaki; Ito, Masahiko; Nagata, Tsuyoshi; Kaneko, Kimiyuki; Miyazaki, Kouji; Okada, Ayako; Nomura, Yoshiaki; Hanada, Nobuhiro

    2015-01-01

    The oral cavity in healthy subjects has a well-balanced microbiota that consists of more than 700 species. However, a disturbance of this balance, with an increase of harmful microbes and a decrease of beneficial microbes, causes oral disorders such as periodontal disease or dental caries. Nowadays, probiotics are expected to confer oral health benefits by modulating the oral microbiota. This study screened new probiotic candidates with potential oral health benefits and no harmful effects on the oral cavity. We screened 14 lactobacillus strains and 36 streptococcus strains out of 896 oral isolates derived from healthy subjects. These bacteria did not produce volatile sulfur compounds or water-insoluble glucan, had higher antibacterial activity against periodontal bacteria, and had higher adherence activity to oral epithelial cells or salivary-coated hydroxyapatite in vitro. We then evaluated the risk of primary cariogenicity and infective endocarditis of the selected oral isolates. As a result, Lactobacillus crispatus YIT 12319, Lactobacillus fermentum YIT 12320, Lactobacillus gasseri YIT 12321, and Streptococcus mitis YIT 12322 were selected because they showed no cariogenic potential in an artificial mouth system and a lower risk of experimental infective endocarditis in a rat model. These candidates are expected as new probiotics with potential oral health benefits and no adverse effects on general health. PMID:26053410

  16. Screening of Probiotic Candidates in Human Oral Bacteria for the Prevention of Dental Disease.

    PubMed

    Terai, Tomohiko; Okumura, Takekazu; Imai, Susumu; Nakao, Masumi; Yamaji, Kazuaki; Ito, Masahiko; Nagata, Tsuyoshi; Kaneko, Kimiyuki; Miyazaki, Kouji; Okada, Ayako; Nomura, Yoshiaki; Hanada, Nobuhiro

    2015-01-01

    The oral cavity in healthy subjects has a well-balanced microbiota that consists of more than 700 species. However, a disturbance of this balance, with an increase of harmful microbes and a decrease of beneficial microbes, causes oral disorders such as periodontal disease or dental caries. Nowadays, probiotics are expected to confer oral health benefits by modulating the oral microbiota. This study screened new probiotic candidates with potential oral health benefits and no harmful effects on the oral cavity. We screened 14 lactobacillus strains and 36 streptococcus strains out of 896 oral isolates derived from healthy subjects. These bacteria did not produce volatile sulfur compounds or water-insoluble glucan, had higher antibacterial activity against periodontal bacteria, and had higher adherence activity to oral epithelial cells or salivary-coated hydroxyapatite in vitro. We then evaluated the risk of primary cariogenicity and infective endocarditis of the selected oral isolates. As a result, Lactobacillus crispatus YIT 12319, Lactobacillus fermentum YIT 12320, Lactobacillus gasseri YIT 12321, and Streptococcus mitis YIT 12322 were selected because they showed no cariogenic potential in an artificial mouth system and a lower risk of experimental infective endocarditis in a rat model. These candidates are expected as new probiotics with potential oral health benefits and no adverse effects on general health.

  17. Macrophage defense mechanisms against intracellular bacteria

    PubMed Central

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  18. Morning glory resin glycosides as modulators of antibiotic activity in multidrug-resistant gram-negative bacteria.

    PubMed

    Corona-Castañeda, Berenice; Pereda-Miranda, Rogelio

    2012-01-01

    Twenty-six microbiologically inactive (MIC > 512 µg/mL) convolvulaceous resin glycosides ( 1- 26) were tested for resistance modulatory activity in vitro against Escherichia coli Rosetta-gami and two nosocomial pathogens, Salmonella typhi and Shigella flexneri. These compounds exerted a potentiation effect of the clinically useful antibiotics tetracycline, kanamycin, and chloramphenicol against the tested gram-negative bacteria by increasing antibiotic susceptibility up to 32-fold at concentrations of 25 µg/mL. Therefore, the oligosaccharides from the morning glory family (Convolvulaceae) represent metabolites that reverse microbial resistance mechanisms, favoring an increase in the strength and effectiveness of current antibiotics that are not effective in the treatment of refractive infections caused by multidrug-resistant strains. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Radiography-based score indicative for the pathogenicity of bacteria in odontogenic infections.

    PubMed

    Cachovan, Georg; Blessmann, Marco; Schön, Gerhard; Rother, Uwe; Heiland, Max; Stürenburg, Enno; Platzer, Ursula; Sobottka, Ingo

    2014-10-01

    To develop a new radiography-based score to assess the potential of bacteria to cause odontogenic infections derived from the occurrence of bacteria at small or large radiographical lesions. The patients analyzed were a sub-population from a large randomized clinical trial comparing moxifloxacin and clindamycin in the treatment of inflammatory infiltrates and odontogenic abscesses. Routine radiographs were used to analyze the area of the periapical radiolucent lesions. Lesions were stratified by their radiographically measured area as large (>9 mm(2)) or small (≤9 mm(2)). A risk ratio was calculated for each species from the frequency of their occurrence in large vs in small lesions. Fifty-one patients, 19 with abscesses and 32 with infiltrates, were evaluated. Overall, the radiographical lesion areas ranged from 0.4-46.2 mm(2) (median = 9 mm(2)). An increased risk (risk ratio >1) to occur at large abscess lesions was observed for Prevotella (P.) oralis, P. buccae, P. oris, P. intermedia, Fusobacterium nucleatum and Streptococcus (Strep.) anginosus group. An increased risk to occur at large infiltrate lesions was found for Strep. salivarius, Strep. parasanguis, Strep. anginosus group, Capnocytophaga spp., Neisseria (N.) sicca, Neisseria spp., Staphylococcus (Staph.) aureus, P. intermedia, P. buccae, Prevotella spp. and P. melaninogenica. The radiography-based score suggests that certain Prevotella spp., F. nucleatum and Strep. anginosus groups play a crucial role in the pathogenesis of odontogenic abscesses, and that various streptococci, Neisseria spp., Capnocytophaga spp., Staph. aureus and Prevotella spp. are involved in the pathogenesis of odontogenic infiltrates.

  20. Genetic battle between Helicobacter pylori and humans. The mechanism underlying homologous recombination in bacteria, which can infect human cells.

    PubMed

    Hanada, Katsuhiro; Yamaoka, Yoshio

    2014-10-01

    Helicobacter pylori is a gram-negative pathogenic bacterium that colonises the human stomach. The chronic infection it causes results in peptic ulcers and gastric cancers. H. pylori can easily establish a chronic infection even if the immune system attacks this pathogen with oxidative stress agents and immunoglobulins. This is attributed to bacterial defence mechanisms against these stresses. As a defence mechanism against oxidative stresses, in bacterial genomes, homologous recombination can act as a repair pathway of DNA's double-strand breaks (DSBs). Moreover, homologous recombination is also involved in the antigenic variation in H. pylori. Gene conversion alters genomic structures of babA and babB (encoding outer membrane proteins), resulting in escape from immunoglobulin attacks. Thus, homologous recombination in bacteria plays an important role in the maintenance of a chronic infection. In addition, H. pylori infection causes DSBs in human cells. Homologous recombination is also involved in the repair of DSBs in human cells. In this review, we describe the roles of homologous recombination with an emphasis on the maintenance of a chronic infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Bacteria-surface interactions.

    PubMed

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  2. Subinhibitory antibiotic therapy alters recurrent urinary tract infection pathogenesis through modulation of bacterial virulence and host immunity.

    PubMed

    Goneau, Lee W; Hannan, Thomas J; MacPhee, Roderick A; Schwartz, Drew J; Macklaim, Jean M; Gloor, Gregory B; Razvi, Hassan; Reid, Gregor; Hultgren, Scott J; Burton, Jeremy P

    2015-03-31

    The capacity of subinhibitory levels of antibiotics to modulate bacterial virulence in vitro has recently been brought to light, raising concerns over the appropriateness of low-dose therapies, including antibiotic prophylaxis for recurrent urinary tract infection management. However, the mechanisms involved and their relevance in influencing pathogenesis have not been investigated. We characterized the ability of antibiotics to modulate virulence in the uropathogens Staphylococcus saprophyticus and Escherichia coli. Several antibiotics were able to induce the expression of adhesins critical to urothelial colonization, resulting in increased biofilm formation, colonization of murine bladders and kidneys, and promotion of intracellular niche formation. Mice receiving subinhibitory ciprofloxacin treatment were also more susceptible to severe infections and frequent recurrences. A ciprofloxacin prophylaxis model revealed this strategy to be ineffective in reducing recurrences and worsened infection by creating larger intracellular reservoirs at higher frequencies. Our study indicates that certain agents used for antibiotic prophylaxis have the potential to complicate infections. Antibiotics are the mainstay treatment for bacterial infections; however, evidence is emerging that argues these agents may have off-target effects if sublethal concentrations are present. Most studies have focused on changes occurring in vitro, leaving questions regarding the clinical relevance in vivo. We utilized a murine urinary tract infection model to explore the potential impact of low-dose antibiotics on pathogenesis. Using this model, we showed that subinhibitory antibiotics prime uropathogens for adherence and invasion of murine urothelial tissues. These changes in initial colonization promoted the establishment of chronic infection. Furthermore, treatment of chronically infected mice with subtherapeutic ciprofloxacin served to exacerbate infection. A part of these changes was

  3. Silver enhances antibiotic activity against gram-negative bacteria.

    PubMed

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  4. Multi-resistant gram negative enteric bacteria causing urinary tract infection among malnourished underfives admitted at a tertiary hospital, northwestern, Tanzania.

    PubMed

    Ahmed, Maimuna; Moremi, Nyambura; Mirambo, Mariam M; Hokororo, Adolfine; Mushi, Martha F; Seni, Jeremiah; Kamugisha, Erasmus; Mshana, Stephen E

    2015-06-19

    Infections are common complications occurring in malnourished childrenas a result of impaired immunity. Urinary tract infections (UTI) have been found to be the commonest cause of fever in normal children in developing countries. However, data regarding UTI among malnourished children is limited because in most of time severe and moderately malnourished children are afebrile despite significant bacteriuria. A total of 402 malnourished underfives were enrolled. Demographic and other clinical characteristics were collected using standardized data collection tool. Urine specimens were cultured and interpreted according to standard operating procedures. Data were analyzed using STATA version 11. Out of 402 malnourished underfives, 229 (56.9 %) were male. The median age in months was 17 (IQR; 12-31). Of 402 malnourished underfives, 83 (20.3 %) had significant bacteriuria of gram negative enteric bacteria. Escherichia coli 35/84 and Klebsiella pneumonia 20/84 were predominant bacteria isolated. More than 37 % of isolates were resistant to third generation cephalosporins with all of them exhibiting extended spectrum beta lactamase (ESBL) phenotype. Rates of resistance to ampicillin, amoxillin/clavulanic acid, gentamicin and ciprofloxacin were 82/84 (98.7 %), 47/55 (85.4 %), 45/84 (57.8 %) and 9/84 (10.8 %) respectively. Decrease in age and increase in lymphocytes count were independent factors on multivariate logistic regression analysis found to predict UTI (p<0.05). Multi-resistant gram negative enteric bacteria are common cause of UTI among underfives. A significant number of severe and moderate malnourished children with bacteriuria had no fever. Therefore, routine testing for UTI is emphasized in all malnourished underfives so that appropriate treatment can be initiated.

  5. Helicobacter pylori infection

    MedlinePlus

    H pylori infection ... H pylori bacteria are most likely passed directly from person to person. This tends to happen during ... bacteria may trigger ulcers in the following way: H pylori enters the mucus layer of the stomach ...

  6. Immune response in Mansonella ozzardi infection modulated by IL-6/IL-10 axis in Amazon region of Brazil.

    PubMed

    Costa, Allyson Guimarães; Sadahiro, Aya; Monteiro Tarragô, Andréa; Pessoa, Felipe Arley Costa; Pires Loiola, Bruna; Malheiro, Adriana; Medeiros, Jansen Fernandes

    2018-04-01

    Mansonellosis is an endemic disease in the South and Central America. In Brazil, one of the etiological agents is Mansonella ozzardi. This filarial infection is yet poorly understood, with a controversial morbity, presenting since a oligosymptoms, malaria-like signs or without complaint in humans. The knowledge of the human immune response to microfilariae infection is limited mainly by different evolutionary cycles of the parasite in the host. In addition, the prevalence of this filarial parasite infection is high in several regions of Amazonas State. A cross-sectional study was conducted in an endemic area for microfilariae of M. ozzardi (MF) infection in the Amazonas State, Brazil. Proinflammatory and regulatory cytokines (IL-2, IL-4, IL-6, IL-10, TNF, IFN-gamma, and IL-17A) were measured in cryopreserved serum using the Cytometric Bead Array techniques (CBA) in 54 patients diagnosed with M. ozzardi infection and 55 individuals without the infection were included in the study (Controls). The IL-4, IL-6 and IL-10 level increased in infected patients with MF infection, while IL-17A increased in control only. When we compared controls to patients with high or low parasite load, the increased level of IL-6 and IL-10 were maintained. IL-6 contributes to the proinflammatory activity and IL-10 modulates Th1, Th2 and Th17 immune response. Furthermore, IL-4 was detected as a marker in the MF infection and MF patients with low parasite load, indicating the action of the Th2 cell response. The complex network of cytokines acting during M. ozzardi infection depends on a fine balance to determine a host protective effect or filarial persistence. Therefore, these results suggest that the immune response in MF infection is modulated by IL-6/IL-10 axis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Polymicrobial Amniotic Fluid Infection with Mycoplasma/Ureaplasma and Other Bacteria Induces Severe Intra-Amniotic Inflammation Associated with Poor Perinatal Prognosis in Preterm Labor.

    PubMed

    Yoneda, Noriko; Yoneda, Satoshi; Niimi, Hideki; Ueno, Tomohiro; Hayashi, Shirou; Ito, Mika; Shiozaki, Arihiro; Urushiyama, Daichi; Hata, Kenichiro; Suda, Wataru; Hattori, Masahira; Kigawa, Mika; Kitajima, Isao; Saito, Shigeru

    2016-02-01

    To study the relationship between perinatal prognosis in cases of preterm labor (PTL) and polymicrobial infection in amniotic fluid (AF) and intra-amniotic (IA) inflammation using a highly sensitive and reliable PCR-based method. To detect prokaryotes using a nested PCR-based method, eukaryote-made thermostable DNA polymerase without bacterial DNA contamination was used in combination with bacterial universal primers. We collected AF aseptically from 118 PTL cases and 50 term subjects. The prevalence of microorganisms was 33% (39/118) by PCR and only 7.6% (9/118) by culture. PTL caused by a combination of positive Mycoplasma/Ureaplasma and other bacteria had significantly higher AF IL-8 levels and a significantly shorter amniocentesis-to-delivery interval. Our newly established PCR method is useful for detecting IA microorganisms. Polymicrobial infection with Mycoplasma/Ureaplasma and other bacteria induces severe IA inflammation associated with poor perinatal prognosis in PTL. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Observations of Bacterial Behavior during Infection Using the ARGOS Method

    NASA Astrophysics Data System (ADS)

    Charest, A. J.; Algarni, S.; Iannacchione, G. S.

    2015-03-01

    This research employed the Area Recorded Generalized Optical Scattering (ARGOS) approach which allowed for the observation of bacterial changes in terms of individual particles and population dynamics in real time. This new approach allows for an aqueous environment to be manipulated while conducting time-specific measurements over an indefinite amount of time. This current study provides a more time-specific method in which the bacteria remained within the initial conditions and allows for more time precision than provided by analyzing concentrations of plaque-forming units (PFU). This study involved the bacteria (F-amp) during infection by bacteriophage (MS2). The relative total intensity allows for detailed measurements of the bacteria population over time. The bacteria characteristics were also evaluated such as the root mean square image difference (at specific wavevectors), fractal dimension and effective radius. The growth rate of the infected bacteria occurred at a rate higher than the uninfected bacteria similarly, the death rates were also higher for the infected bacteria than the uninfected bacteria. The present study indicates that bacteria may react to infection by increasing the rate of population growth.

  9. Nanoparticles modulate surfactant protein A and D mediated protection against influenza A infection in vitro

    PubMed Central

    McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Tetley, Teresa D.; Morgan, Cliff; Griffiths, Mark; Clark, Howard W.; Madsen, Jens

    2015-01-01

    Numerous epidemiological and toxicological studies have indicated that respiratory infections are exacerbated following enhanced exposure to airborne particulates. Surfactant protein A (SP-A) and SP-D form an important part of the innate immune response in the lung and can interact with nanoparticles to modulate the cellular uptake of these particles. We hypothesize that this interaction will also affect the ability of these proteins to combat infections. TT1, A549 and differentiated THP-1 cells, representing the predominant cell types found in the alveolus namely alveolar type I (ATI) epithelial cells, ATII cells and macrophages, were used to examine the effect of two model nanoparticles, 100 nm amine modified (A-PS) and unmodified polystyrene (U-PS), on the ability of SP-A and SP-D to neutralize influenza A infections in vitro. Pre-incubation of low concentrations of U-PS with SP-A resulted in a reduction of SP-A anti-influenza activity in A549 cells, whereas at higher concentrations there was an increase in SP-A antiviral activity. This differential pattern of U-PS concentration on surfactant protein mediated protection against IAV was also shown with SP-D in TT1 cells. On the other hand, low concentrations of A-PS particles resulted in a reduction of SP-A activity in TT1 cells and a reduction in SP-D activity in A549 cells. These results indicate that nanoparticles can modulate the ability of SP-A and SP-D to combat viral challenges. Furthermore, the nanoparticle concentration, surface chemistry and cell type under investigation are important factors in determining the extent of these modulations. PMID:25533100

  10. The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes

    PubMed Central

    Jończyk-Matysiak, Ewa; Łusiak-Szelachowska, Marzanna; Kłak, Marlena; Bubak, Barbara; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata; Żaczek, Maciej; Fortuna, Wojciech; Rogóż, Paweł; Letkiewicz, Sławomir; Szufnarowski, Krzysztof; Górski, Andrzej

    2015-01-01

    Intracellular killing of bacteria is one of the fundamental mechanisms against invading pathogens. Impaired intracellular killing of bacteria by phagocytes may be the reason of chronic infections and may be caused by antibiotics or substances that can be produced by some bacteria. Therefore, it was of great practical importance to examine whether phage preparations may influence the process of phagocyte intracellular killing of bacteria. It may be important especially in the case of patients qualified for experimental phage therapy (approximately half of the patients with chronic bacterial infections have their immunity impaired). Our analysis included 51 patients with chronic Gram-negative and Gram-positive bacterial infections treated with phage preparations at the Phage Therapy Unit in Wroclaw. The aim of the study was to investigate the effect of experimental phage therapy on intracellular killing of bacteria by patients' peripheral blood monocytes and polymorphonuclear neutrophils. We observed that phage therapy does not reduce patients' phagocytes' ability to kill bacteria, and it does not affect the activity of phagocytes in patients with initially reduced ability to kill bacteria intracellularly. Our results suggest that experimental phage therapy has no significant adverse effects on the bactericidal properties of phagocytes, which confirms the safety of the therapy. PMID:26783541

  11. Conformation Change in a Self-recognizing Autotransporter Modulates Bacterial Cell-Cell Interaction*

    PubMed Central

    Girard, Victoria; Côté, Jean-Philippe; Charbonneau, Marie-Ève; Campos, Manuel; Berthiaume, Frédéric; Hancock, Mark A.; Siddiqui, Nadeem; Mourez, Michael

    2010-01-01

    Bacteria mostly live as multicellular communities, although they are unicellular organisms, yet the mechanisms that tie individual bacteria together are often poorly understood. The adhesin involved in diffuse adherence (AIDA-I) is an adhesin of diarrheagenic Escherichia coli strains. AIDA-I also mediates bacterial auto-aggregation and biofilm formation and thus could be important for the organization of communities of pathogens. Using purified protein and whole bacteria, we provide direct evidence that AIDA-I promotes auto-aggregation by interacting with itself. Using various biophysical and biochemical techniques, we observed a conformational change in the protein during AIDA-AIDA interactions, strengthening the notion that this is a highly specific interaction. The self-association of AIDA-I is of high affinity but can be modulated by sodium chloride. We observe that a bile salt, sodium deoxycholate, also prevents AIDA-I oligomerization and bacterial auto-aggregation. Thus, we propose that AIDA-I, and most likely other similar autotransporters such as antigen 43 (Ag43) and TibA, organize bacterial communities of pathogens through a self-recognition mechanism that is sensitive to the environment. This could permit bacteria to switch between multicellular and unicellular lifestyles to complete their infection. PMID:20123991

  12. Parasite Sequestration in Plasmodium falciparum Malaria: Spleen and Antibody Modulation of Cytoadherence of Infected Erythrocytes

    NASA Astrophysics Data System (ADS)

    David, Peter H.; Hommel, Marcel; Miller, Louis H.; Udeinya, Iroka J.; Oligino, Lynette D.

    1983-08-01

    Sequestration, the adherence of infected erythrocytes containing late developmental stages of the parasite (trophozoites and schizonts) to the endothelium of capillaries and venules, is characteristic of Plasmodium falciparum infections. We have studied two host factors, the spleen and antibody, that influence sequestration of P. falciparum in the squirrel monkey. Sequestration of trophozoite/schizont-infected erythrocytes that occurs in intact animals is reduced in splenectomized animals; in vitro, when infected blood is incubated with monolayers of human melanoma cells, trophozoite/schizont-infected erythrocytes from intact animals but not from splenectomized animals bind to the melanoma cells. The switch in cytoadherence characteristics of the infected erythrocytes from nonbinding to binding occurs with a cloned parasite. Immune serum can inhibit and reverse in vitro binding to melanoma cells of infected erythrocytes from intact animals. Similarly, antibody can reverse in vivo sequestration as shown by the appearance of trophozoite/schizont-infected erythrocytes in the peripheral blood of an intact animal after inoculation with immune serum. These results indicate that the spleen modulates the expression of parasite alterations of the infected erythrocyte membrane responsible for sequestration and suggest that the prevention and reversal of sequestration could be one of the effector mechanisms involved in antibody-mediated protection against P. falciparum malaria.

  13. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  14. Human body may produce bacteria.

    PubMed

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Clinical comparison of the effectiveness of single-file reciprocating systems and rotary systems for removal of endotoxins and cultivable bacteria from primarily infected root canals.

    PubMed

    Martinho, Frederico C; Gomes, Ana P M; Fernandes, Aletéia M M; Ferreira, Nádia S; Endo, Marcos S; Freitas, Lilian F; Camões, Izabel C G

    2014-05-01

    This clinical study was conducted to compare the effectiveness of single-file reciprocating systems and rotary systems in removing endotoxins and cultivable bacteria from primarily infected root canals. Forty-eight primarily infected root canals were selected and randomly divided into 4 groups: WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) (n = 12); Reciproc (VDW, Munich, Germany) (n = 12), ProTaper (Dentsply Maillefer) (n = 12), and Mtwo (VDW) (n = 12). Samples were collected before and after chemomechanical preparation. The irrigation was performed by using 2.5% sodium hypochlorite. A chromogenic limulus amebocyte lysate assay test was used to quantify endotoxins. Culture techniques were used to determine bacterial colony-forming unit counts. In the baseline samples (ie, samples collected before chemomechanical preparation), endotoxins and cultivable bacteria were recovered from 100% of the root canal samples. No differences were found in the median percentage values of endotoxin reduction achieved with reciprocating systems (ie, WaveOne [95.15%] and Reciproc [96.21%]) and with rotary systems (ie, ProTaper [97.98%] and Mtwo [96.34%]) (P < .05). Both single-file reciprocating systems (ie, WaveOne [99.45%] and Reciproc [99.93%]) and rotary systems (ProTaper [99.85%] and Mtwo [99.41%]) were effective in reducing the cultivable bacteria (all P < .05). Moreover, the culture analysis revealed no differences in bacterial load reduction (P > .05). Both single-file reciprocating systems (ie, WaveOne and Reciproc instruments) and rotary systems (ie, ProTaper and Mtwo instruments) showed similar effectiveness in reducing endotoxins and cultivable bacteria from primarily infected root canals, but they were not able to eliminate them from all root canals analyzed. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria.

    PubMed

    Lu, Zhong; Rong, Kaifeng; Li, Ju; Yang, Hao; Chen, Rong

    2013-06-01

    Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.

  17. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    PubMed Central

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  18. Collaboration with an infection control team for patients with infection after spine surgery.

    PubMed

    Kobayashi, Kazuyoshi; Imagama, Shiro; Kato, Daizo; Ando, Kei; Hida, Tetsuro; Ito, Kenyu; Tsushima, Mikito; Matsumoto, Akiyuki; Morozumi, Masayoshi; Tanaka, Satoshi; Yagi, Tetsuya; Nishida, Yoshihiro; Ishiguro, Naoki

    2017-07-01

    The risk of infection, including surgical site infection (SSI), after spine surgery has increased due to aging and more immunocompromised hosts. An infection control team (ICT) is responsible for management of health care-associated infections at our institution. The study subjects were 40 patients (18 men and 22 women with an average age of 54 years) referred to the ICT after spine surgery since 2010. Pathogenic bacteria and treatment in these cases were reviewed. Collaboration with the ICT involved guidance on use of antibiotics for infection in 30 patients (16 SSI and 14 non-SSI) and a search for the infection focus for fever of unknown origin in 10 patients (7 patients were found to have urinary tract infections and 2 patients were found to have pneumonia). The detection rate of causative bacteria in ICT consultation was 88% (35 out of 40 patients). SSI patients with instrumentation involved had a significantly higher rate of methicillin-resistant Staphylococcus aureus infection compared with those without instrumentation (42% vs 13%; P < .05). All cases of SSI with instrumentation involved were cured by ICT support without removal of instrumentation. Early assistance from the ICT was important for prevention of worsening of methicillin-resistant S aureus infection. Collaboration with the ICT was helpful for detection of pathogenic bacteria and allowed appropriate use of antibiotics at an early stage. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. [A case of hyperammonemia resulting from urinary tract infection caused by urease-producing bacteria in a Parkinson's disease patient with drug-induced urinary retention].

    PubMed

    Yasunishi, Masahiro; Koumura, Akihiro; Hayashi, Yuichi; Nishida, Shohei; Inuzuka, Takashi

    2017-01-01

    A 71-year-old woman with a 9-year history of Parkinson's disease was admitted to our hospital emergently because of consciousness disturbance. Her consciousness level was 200 on the Japan coma scale (JCS), and she presented with tenderness and distension of the lower abdomen. Brain computed tomography showed normal findings. Blood tests showed an increased ammonia level (209 μg/dl) with normal AST and ALT levels. We catheterized the bladder for urinary retention. Five hours after admission, the blood ammonia level decreased to 38 μg/dl, and her consciousness level improved dramatically. Corynebacterium urearyticum, a bacterial species that produces urease, was detected by urine culture. Therefore, she was diagnosed with hyperammonemic encephalopathy resulting from urinary tract infection caused by urease-producing bacteria. In this case, urologic active agents had been administered to treat neurogenic bladder. We suspect that these drugs caused urinary obstruction and urinary tract infection. It is important to recognize that obstructive urinary tract infection caused by urease-producing bacteria can cause hyperammonemia. Neurological disorders, such as Parkinson's disease, tend to complicate neurogenic bladder. This disease should be considered in elderly patients with Parkinson's disease who are receiving urologic active drugs.

  20. Probing minority population of antibiotic-resistant bacteria.

    PubMed

    Huang, Tianxun; Zheng, Yan; Yan, Ya; Yang, Lingling; Yao, Yihui; Zheng, Jiaxin; Wu, Lina; Wang, Xu; Chen, Yuqing; Xing, Jinchun; Yan, Xiaomei

    2016-06-15

    The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cleaning, resistant bacteria, and antibiotic prescribing in residential aged care facilities.

    PubMed

    Cowan, Raquel U; Kishan, Divya; Walton, Aaron L; Sneath, Emmy; Cheah, Thomas; Butwilowsky, Judith; Friedman, N Deborah

    2016-03-01

    Residents of residential aged care facilities (RACFs) are at risk of colonization and infection with multidrug-resistant bacteria, and antibiotic prescribing is often inappropriate and not based on culture-proven infection. We describe low levels of resident colonization and environmental contamination with resistant gram-negative bacteria in RACFs, but high levels of empirical antibiotic use not guided by microbiologic culture. This research highlights the importance of antimicrobial stewardship and environmental cleaning in aged care facilities. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Salmonella Infections

    USDA-ARS?s Scientific Manuscript database

    Infections with bacteria of the genus Salmonella are responsible for both acute and chronic poultry diseases. These diseases cause economically significant losses for poultry producers in many nations and absorb large investments of public and private resources in testing and control efforts. Infect...

  3. Antibiotic effects against periodontal bacteria in organ cultured tissue.

    PubMed

    Takeshita, Masaaki; Haraguchi, Akira; Miura, Mayumi; Hamachi, Takafumi; Fukuda, Takao; Sanui, Terukazu; Takano, Aiko; Nishimura, Fusanori

    2017-02-01

    Mechanical reduction of infectious bacteria by using physical instruments is considered the principal therapeutic strategy for periodontal disease; addition of antibiotics is adjunctive. However, local antibiotic treatment, combined with conventional mechanical debridement, has recently been shown to be more effective in periodontitis subjects with type 2 diabetes. This suggests that some bacteria may invade the inflamed inner gingival epithelium, and mechanical debridement alone will be unable to reduce these bacteria completely. Therefore, we tried to establish infected organ culture models that mimic the inner gingival epithelium and aimed to see the effects of antibiotics in these established models. Mouse dorsal skin epithelia were isolated, and periodontal bacteria were injected into the epithelia. Infected epithelia were incubated with test antibiotics, and colony-forming ability was evaluated. Results indicated that effective antibiotics differed according to injected bacteria and the bacterial combinations tested. Overall, in organ culture model, the combination of amoxicillin or cefdinir and metronidazole compensate for the effects of less effective bacterial combinations on each other. This in vitro study would suggest effective periodontal treatment regimens, especially for severe periodontitis.

  4. Etiological and Resistance Profile of Bacteria Involved in Urinary Tract Infections in Young Children

    PubMed Central

    Gómez-Luque, José María; Navarro-Marí, José María

    2017-01-01

    Background. The objective of this study was to identify the bacteria most frequently responsible for urinary tract infection (UTI) in the population of under-2-year-olds in our geographic area and to evaluate the activity of antibiotics widely used for UTI treatment during a 4-year study period. Materials and Methods. A retrospective analysis was conducted of data on the identification and susceptibility of microorganisms isolated in urine samples from children under 2 years of age. Results. A total of 1,045 uropathogens were isolated. Escherichia coli accounted for the majority (60.3%) of these, followed by Enterococcus faecalis (22.4%) and Klebsiella spp. (6.5%). The highest E. coli susceptibility rates (>90%) were to piperacillin-tazobactam, cefuroxime, cefotaxime, ceftazidime, imipenem, gentamicin, nitrofurantoin, and fosfomycin, and the lowest were to amoxicillin-clavulanic acid and cotrimoxazole. Among all bacteria isolated, we highlight the overall high activity of piperacillin-tazobactam, imipenem, nitrofurantoin, and fosfomycin against both community and hospital isolates and the reduced activity of amoxicillin-clavulanic acid, cephalosporins, gentamicin, and cotrimoxazole. There was no significant change in the total activity of any of the studied antibiotics over the 4-year study period. Conclusion. Empiric treatment with amoxicillin-clavulanic acid, cotrimoxazole, cephalosporins, and gentamicin may be inadequate due to their limited activity against uropathogens in our setting. PMID:28497052

  5. Activity of nadifloxacin (OPC-7251) and seven other antimicrobial agents against aerobic and anaerobic Gram-positive bacteria isolated from bacterial skin infections.

    PubMed

    Nenoff, P; Haustein, U-F; Hittel, N

    2004-10-01

    The in vitro activity of nadifloxacin (OPC-7251), a novel topical fluoroquinolone, was assessed and compared with those of ofloxacin, oxacillin, flucloxacillin, cefotiam, erythromycin, clindamycin, and gentamicin against 144 Gram-positive bacteria: 28 Staphylococcus aureus, 10 Streptococcus spp., 68 coagulase-negative staphylococci (CNS), 36 Propionibacterium acnes, and 2 Propionibacterium granulosum strains. All strains originated from bacterial-infected skin disease and were isolated from patients with impetigo, secondary infected wounds, folliculitis and sycosis vulgaris, and impetiginized dermatitis. In vitro susceptibility of all clinical isolates was tested by agar dilution procedure and minimum inhibitory concentrations (MICs) were determined. Nadifloxacin was active against all aerobic and anaerobic isolates. MIC(90) (MIC at which 90% of the isolates are inhibited) was 0.1 microg/ml for S. aureus, 0.78 microg/ml for both Streptococcus spp. and CNS, and 0.39 microg/ml for Propionibacterium spp. On the other hand, resistant strains with MICs exceeding 12.5 mug/ml were found in tests with the other antibiotics. For both CNS and Propionibacterium acnes, MIC(90) values > or =100 microg/ml were demonstrated for erythromycin. Ofloxacin, cefotiam, erythromycin, clindamycin and gentamicin exhibited MIC(90) values < or =1 microg/ml for some bacterial species tested. Both oxacillin and flucloxacillin were active against all investigated bacterial species with MIC(90) values < or =1 microg/ml. In summary, nadifloxacin, a topical fluoroquinolone, was found to be highly active against aerobic and anaerobic bacteria isolated from patients with infected skin disease, and seems to be a new alternative for topical antibiotic treatment in bacterial skin infections.

  6. Interactions Between Bacteria and the Gut Mucosa: Do Enteric Neurotransmitters Acting on the Mucosal Epithelium Influence Intestinal Colonization or Infection?

    PubMed

    Green, Benedict T; Brown, David R

    2016-01-01

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include enteric neurons, whose activity is influenced by bacterial pathogens, and their secreted products. Neurotransmitters appear to influence epithelial associations with bacteria in the intestinal lumen. For example, internalization of Salmonella enterica and Escherichia coli O157:H7 into the Peyer's patch mucosa of the small intestine is altered after the inhibition of neural activity with saxitoxin, a neuronal sodium channel blocker. Catecholamine neurotransmitters, such as dopamine and norepinephrine, also alter bacterial internalization in Peyer's patches. In the large intestine, norepinephrine increases the mucosal adherence of E. coli. These neurotransmitter actions are mediated by well-defined catecholamine receptors situated on the basolateral membranes of epithelial cells rather than through direct interactions with luminal bacteria. Investigations of the involvement of neuroepithelial communication in the regulation of interactions between the intestinal mucosa and luminal bacteria will provide novel insights into the mechanisms underlying bacterial colonization and pathogenesis at mucosal surfaces.

  7. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  8. Urinary tract infection caused by community-acquired extended-spectrum β-lactamase-producing bacteria in infants.

    PubMed

    Kim, Yun Hee; Yang, Eun Mi; Kim, Chan Jong

    Urinary tract infection (UTI) caused by resistant strains of bacteria is increasingly prevalent in children. The aim of this study was to investigate the clinical characteristics and risk factors for UTI caused by community-acquired extended-spectrum β-lactamase (CA-ESBL)-producing bacteria in infants. This was a retrospective study performed over 5 years in a single Korean center. Hospitalized infants with febrile UTI were enrolled and divided into two groups (CA-ESBL vs. CA non-ESBL UTI). The yearly prevalence was calculated. Baseline characteristics and clinical course such as fever duration, laboratory and radiological findings were compared between the two groups. Risk factors associated with the CA-ESBL UTI were investigated. Among the enrolled infants (n=185), 31 (17%) had CA-ESBL UTI. The yearly prevalence of ESBL of CA-ESBL UTI increased during the study (0% in 2010, 22.2% in 2015). Infants with CA-ESBL UTI had a longer duration of fever after initiating antibiotics (2.0±1.1 vs. 1.5±0.6 days, p=0.020). Cortical defects on renal scan and early treatment failure were more frequent in CA-ESBL (64.5 vs. 42.2%, p=0.023; 22.6 vs. 4.5%, p=0.001). A logistic regression analysis revealed that urinary tract abnormalities and previous UTI were independent risk factors for CA-EBSL UTI (odds ratio, 2.7; p=0.025; 10.3; p=0.022). The incidence of UTI caused by ESBL-producing bacteria has increased in Korean infants. Recognition of the clinical course and risk factors for ESLB-producing UTI may help to determine appropriate guidelines for its management. Copyright © 2016. Published by Elsevier Editora Ltda.

  9. [Spectrum and drug sensitivity of pathogenic bacteria in children with nephrotic syndrome complicated by urinary tract infection: an analysis of 97 cases].

    PubMed

    Song, Shao-Na; Zhang, Bi-Li; Wang, Wen-Hong; Zhang, Xuan

    2012-09-01

    To investigate the spectrum and drug sensitivity of pathogenic bacteria in children with nephrotic syndrome (NS) complicated by urinary tract infection (UTI). A retrospective analysis was performed on the spectrum and drug sensitivity of pathogenic bacteria in 97 children with NS complicated by UTI, who hospitalized from January to December, 2011. The incidence of UTI in children with NS was 36.5%. It was significantly more common in children with recurrent NS than in those with primary NS (44.0% vs 31.9%; P<0.05). These cases mainly presented with asymptomatic bacteriuria. Enterococcus was the most common pathogenic bacteria (50.5%), including Enterococcus faecium (29.4%) and Enterococcus faecalis (21.1%), followed by Gram-negative bacteria, such as Escherichia coli (15.6%) and Klebsiella pneumoniae (14.7%). Enterococcus was highly sensitive to nitrofurantoin, vacomycin and linezolid, but was highly resistant to tetracycline and moxifloxacin. More multi-resistant strains were detected in Enterococcus faecium than in Enterococcus faecalis (72% vs 17%; P<0.05). Escherichia coli and Klebsiella pneumoniae were highly sensitive to amikacin, imipenem and piperacillin/tazobactam. Of the Gram-negative bacteria, 25% produced extended spectrum β-lactamases (ESBLs). ESBLs-producing bacteria had 100% sensitivity to imipenem, amikacin and piperacillin/tazobactam but were highly resistant to ampicillin, cefazolin and ceftriaxone. Children with recurrent NS are more susceptible to UTI than those with primary NS. Enterococcus is becoming major pathogenic bacteria for UTI in children with NS and has relatively high drug resistance, and most strains of Enterococcus faecium are multi-resistant.

  10. Understanding and Modulating Mammalian-Microbial Communication for Improved Human Health

    PubMed Central

    Mani, Sridhar; Boelsterli, Urs A.; Redinbo, Matthew R.

    2013-01-01

    The fact that the bacteria in the human gastrointestinal (GI) tract play a symbiotic role was noted as early as 1885, well before we began to manage microbial infections using antibiotics. However, even with the first antimicrobial compounds used in humans, the sulfa drugs, microbes were recognized to be critically involved in the biotransformation of these therapeutics. Thus, the roles played by the microbiota in physiology and in the management of human health have long been appreciated. Detailed examinations of GI symbiotic bacteria that started in the early 2000s and the first phases of the Human Microbiome Project that were completed in 2012 have ushered in an exciting period of granularity with respect to the ecology, genetics, and chemistry of the mammalian-microbial axes of communication. Here we review aspects of the biochemical pathways at play between commensal GI bacteria and several mammalian systems, including both local-epithelia and nonlocal responses including inflammation, immunology, metabolism, and neurobiology. Finally, we discuss how the microbial biotransformation of therapeutic compounds, such as anticancer or nonsteroidal anti-inflammatory drugs, can be modulated to reduce toxicity and potentially improve therapeutic efficacy. PMID:24160697

  11. MicroRNA-146a Deficiency Protects against Listeria monocytogenes Infection by Modulating the Gut Microbiota.

    PubMed

    Du, Chong-Tao; Gao, Wei; Ma, Ke; Yu, Shui-Xing; Li, Na; Yan, Shi-Qing; Zhou, Feng-Hua; Liu, Zhen-Zhen; Chen, Wei; Lei, Lian-Cheng; Yang, Yong-Jun; Han, Wen-Yu

    2018-03-26

    The gut microbiota and microRNAs play important roles in the defense against infection. However, the role of miR-146a in L. monocytogenes infection and gut microbiota remains unclear. We tried to determine whether miR-146a controlled L. monocytogenes infection by regulating the gut microbiota. Wild-type and miR-146a-deficient mice or macrophages were used to characterize the impact of miR-146a on animal survival, cell death, bacterial clearance, and gut microbiota following L. monocytogenes challenge. We found that L. monocytogenes infection induced miR-146a expression both in vitro and in vivo. When compared to wild-type mice, miR-146a-deficient mice were more resistant to L. monocytogenes infection. MiR-146a deficiency in macrophages resulted in reduced invasion and intracellular survival of L. monocytogenes . High-throughput sequencing of 16S rRNA revealed that the gut microbiota composition differed between miR-146a-deficient and wild-type mice. Relative to wild-type mice, miR-146a-deficient mice had decreased levels of the Proteobacteria phylum, Prevotellaceae family, and Parasutterella genus, and significantly increased short-chain fatty acid producing bacteria, including the genera Alistipes , Blautia , Coprococcus_1, and Ruminococcus_1 . Wild-type mice co-housed with miR-146a-deficient mice had increased resistance to L. monocytogenes , indicating that miR-146a deficiency guides the gut microbiota to alleviate infection. Together, these results suggest that miR-146a deficiency protects against L. monocytogenes infection by regulating the gut microbiota.

  12. Evaluation of self-collected rectal swabs for the detection of bacteria responsible for sexually transmitted infections in a cohort of HIV-1-infected patients.

    PubMed

    Edouard, Sophie; Tamalet, Catherine; Tissot-Dupont, Hervé; Colson, Philippe; Ménard, Amélie; Ravaux, Isabelle; Dhiver, Catherine; Tomei, Christelle; Stein, Andreas; Raoult, Didier

    2017-06-08

    The standard approach to screening sexually transmitted infections (STIs) has often been restricted to urogenital specimens. Most current guidelines, however, also recommend testing extra-genital sites, including rectal locations, because asymptomatic rectal carriage of pathogens has often been reported. The aim of our study was to evaluate self-collected rectal swabs to screen bacterial STIs in HIV-infected patients in Marseille, France. Between January 2014 and December 2015, 118 HIV-infected patients (93 males and 25 females) agreed to self-sample anal swabs for detection of bacterial STI. Detection of Neisseria gonorrhoeae, Chlamydia trachomatis, Treponema pallidum, Mycoplasma genitalium and Haemophilus ducreyi was performed using in-house qPCR assay.Results/Key findings. Bacterial STIs were found in 8 % (9/118) of the patients. C. trachomatis was the most commonly detected bacterium (4.2 %) followed by N. gonorrhoeae (2.5 %), M. genitalium (1.7 %) and T. pallidum (0.8 %). All the positive patients were males. The rectal carriage of pathogenic bacteria was fortuitously discovered for seven men (78 %) who did not present rectal signs of STIs and was suspected for two men who presented proctitis (22 %). In conclusion, testing extra-genital sites is crucial for the diagnosis of STIs in men and women presenting or not concomitant urogenital infections in order to detect asymptomatic carriage with the aim of controlling and preventing transmission to their sexual partners.

  13. Genetic and physiological interactions in the amoeba-bacteria symbiosis.

    PubMed

    Jeon, Kwang W

    2004-01-01

    Amoebae of the xD strain of Amoeba proteus that arose from the D strain by spontaneous infection of Legionella-like X-bacteria are now dependent on their symbionts for survival. Each xD amoeba contains about 42,000 symbionts within symbiosomes, and established xD amoebae die if their symbionts are removed. Thus, harmful infective bacteria changed into necessary cell components. As a result of harboring X-bacteria. xD amoebae exhibit various physiological and genetic characteristics that are different from those of symbiont-free D amoebae. One of the recent findings is that bacterial symbionts control the expression of a host's house-keeping gene. Thus, the expression of the normal amoeba sams gene (sams1) encoding one form of S-adenosylmethionine synthetase is switched to that of sams2 by endosymbiotic X-bacteria. Possible mechanisms for the switching of sams genes brought about by endosymbionts and its significance are discussed.

  14. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria.

    PubMed

    Darsouei, Reyhaneh; Karimi, Javad; Ghadamyari, Mohammad; Hosseini, Mojtaba

    2017-08-01

    The expression of antimicrobial peptides (AMPs) as the main humoral defense reactions of insects during infection by entomopathogenic nematodes (EPNs) and their symbiont is addressed herein. Three AMPs, attacin, cecropin, and spodoptericin, were evaluated in the fifth instar larvae of Spodoptera exigua Hübner (beet armyworm) when challenged with Steinernema carpocapsae or Heterorhabditis bacteriophora. The results indicated that attacin was expressed to a greater extent than either cecropin or spodoptericin. While spodoptericin was expressed to a much lesser extent, this AMP was induced against Gram-positive bacteria, and thus not expressed after penetration of Xenorhabdus nematophila and Photorhabdus luminescens. Attacin and cecropin in the larvae treated with S. carpocapsae at 8 hr post-injection (PI) attained the maximum expression levels and were 138.42-fold and 65.84-fold greater than those of larvae infected with H. bacteriophora, respectively. Generally, the ability of H. bacteriophora to suppress attacin, cecropin, and spodoptericin was greater than that of S. carpocapsae. According to the results, the expression of AMPs by Sp. exigua larvae against S. carpocapsae was determined in the 4 statuses of monoxenic nematode, axenic nematode, live symbiotic bacterium, and dead symbiotic bacterium. The expression of attacin in larvae treated with a monoxenic nematode and live bacterium at 8 and 2 hr PI, respectively, were increased to the maximum amount. Live X. nematophila was the strongest agent for the suppression of attacin. The expression of cecropin against monoxenic nematodes and live symbiotic bacteria at 8 and 4 hr PI, respectively, reached the maximum amount while the expression levels of attacin and cecropin for axenic nematodes were lesser and stable. The results highlighted that the ability of P. luminescens in AMPs suppression was much more than X. nematophila. The results also showed that the effect of symbiotic bacterium in suppressing attacin and

  15. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria.

    PubMed

    Su, Yu-Bin; Peng, Bo; Li, Hui; Cheng, Zhi-Xue; Zhang, Tian-Tuo; Zhu, Jia-Xin; Li, Dan; Li, Min-Yi; Ye, Jin-Zhou; Du, Chao-Chao; Zhang, Song; Zhao, Xian-Liang; Yang, Man-Jun; Peng, Xuan-Xian

    2018-02-13

    The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.

  16. CIPROFLOXACIN RESISTANCE PATTERN AMONG BACTERIA ISOLATED FROM PATIENTS WITH COMMUNITY-ACQUIRED URINARY TRACT INFECTION

    PubMed Central

    REIS, Ana Carolina Costa; SANTOS, Susana Regia da Silva; de SOUZA, Siane Campos; SALDANHA, Milena Góes; PITANGA, Thassila Nogueira; OLIVEIRA, Ricardo Riccio

    2016-01-01

    SUMMARY Objective: To identify the main bacterial species associated with community-acquired urinary tract infection (UTI) and to assess the pattern of ciprofloxacin susceptibility among bacteria isolated from urine cultures. Methods: We conducted a retrospective study in all the patients with community-acquired UTI seen in Santa Helena Laboratory, Camaçari, Bahia, Brazil during five years (2010-2014). All individuals who had a positive urine culture result were included in this study. Results: A total of 1,641 individuals met the inclusion criteria. Despite the fact that participants were female, we observed a higher rate of resistance to ciprofloxacin in males. The most frequent pathogens identified in urine samples were Escherichia coli, Klebsiella pneumoniae and Staphylococcus saprophyticus. Antimicrobial resistance has been observed mainly for ampicillin, sulfamethoxazole + trimethoprim and ciprofloxacin. Moreover, E. coli has shown the highest rate of ciprofloxacin resistance, reaching 36% of ciprofloxacin resistant strains in 2014. Conclusion: The rate of bacterial resistance to ciprofloxacin observed in the studied population is much higher than expected, prompting the need for rational use of this antibiotic, especially in infections caused by E. coli. Prevention of bacterial resistance can be performed through control measures to limit the spread of resistant microorganisms and a rational use of antimicrobial policy. PMID:27410913

  17. TRIF Licenses Caspase-11-Dependent NLRP3 Inflammasome Activation by Gram-Negative Bacteria

    PubMed Central

    Rathinam, Vijay A.K.; Vanaja, Sivapriya Kailasan; Waggoner, Lisa; Sokolovska, Anna; Becker, Christine; Stuart, Lynda M.; Leong, John M.; Fitzgerald, Katherine A.

    2013-01-01

    SUMMARY Systemic infections with Gram-negative bacteria are characterized by high mortality rates due to the “sepsis syndrome,” a widespread and uncontrolled inflammatory response. Though it is well recognized that the immune response during Gram-negative bacterial infection is initiated after the recognition of endotoxin by Toll-like receptor 4, the molecular mechanisms underlying the detrimental inflammatory response during Gram-negative bacteremia remain poorly defined. Here, we identify a TRIF pathway that licenses NLRP3 inflammasome activation by all Gram-negative bacteria. By engaging TRIF, Gram-negative bacteria activate caspase-11. TRIF activates caspase-11 via type I IFN signaling, an event that is both necessary and sufficient for caspase-11 induction and autoactivation. Caspase-11 subsequently synergizes with the assembled NLRP3 inflammasome to regulate caspase-1 activation and leads to caspase-1-independent cell death. These events occur specifically during infection with Gram-negative, but not Gram-positive, bacteria. The identification of TRIF as a regulator of caspase-11 underscores the importance of TLRs as master regulators of inflammasomes during Gram-negative bacterial infection. PMID:22819539

  18. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients.

    PubMed

    Tacconelli, E; Cataldo, M A; Dancer, S J; De Angelis, G; Falcone, M; Frank, U; Kahlmeter, G; Pan, A; Petrosillo, N; Rodríguez-Baño, J; Singh, N; Venditti, M; Yokoe, D S; Cookson, B

    2014-01-01

    Healthcare-associated infections due to multidrug-resistant Gram-negative bacteria (MDR-GNB) are a leading cause of morbidity and mortality worldwide. These evidence-based guidelines have been produced after a systematic review of published studies on infection prevention and control interventions aimed at reducing the transmission of MDR-GNB. The recommendations are stratified by type of infection prevention and control intervention and species of MDR-GNB and are presented in the form of 'basic' practices, recommended for all acute care facilities, and 'additional special approaches' to be considered when there is still clinical and/or epidemiological and/or molecular evidence of ongoing transmission, despite the application of the basic measures. The level of evidence for and strength of each recommendation, were defined according to the GRADE approach. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  19. A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection

    PubMed Central

    Spera, Juan Manuel; Ugalde, Juan Esteban; Mucci, Juan; Comerci, Diego J.; Ugalde, Rodolfo Augusto

    2006-01-01

    Microbial pathogens with the ability to establish chronic infections have evolved strategies to actively modulate the host immune response. Brucellosis is a disease caused by a Gram-negative intracellular pathogen that if not treated during the initial phase of the infection becomes chronic as the bacteria persist for the lifespan of the host. How this pathogen and others achieve this action is a largely unanswered question. We report here the identification of a Brucella abortus gene (prpA) directly involved in the immune modulation of the host. PrpA belongs to the proline-racemase family and elicits a B lymphocyte polyclonal activation that depends on the integrity of its proline-racemase catalytic site. Stimulation of splenocytes with PrpA also results in IL-10 secretion. Construction of a B. abortus-prpA mutant allowed us to assess the contribution of PrpA to the infection process. Mice infected with B. abortus induced an early and transient nonresponsive status of splenocytes to both Escherichia coli LPS and ConA. This phenomenon was not observed when mice were infected with a B. abortus-prpA mutant. Moreover, the B. abortus-prpA mutant had a reduced capacity to establish a chronic infection in mice. We propose that an early and transient nonresponsive immune condition of the host mediated by this B cell polyclonal activator is required for establishing a successful chronic infection by Brucella. PMID:17053080

  20. An enteric virus can replace the beneficial function of commensal bacteria

    PubMed Central

    Kernbauer, Elisabeth; Ding, Yi; Cadwell, Ken

    2014-01-01

    Intestinal microbial communities have profound effects on host physiology1. Whereas the symbiotic contribution of commensal bacteria is well established, the role of eukaryotic viruses that are present in the gastrointestinal tract under homeostatic conditions is undefined2,3. Here, we demonstrate that a common enteric RNA virus can replace the beneficial function of commensal bacteria in the intestine. Murine norovirus (MNV) infection of germfree or antibiotics-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease. The presence of MNV also suppressed an expansion of group 2 innate lymphoid cells (ILCs) observed in the absence of bacteria, and induced transcriptional changes in the intestine associated with immune development and type I interferon (IFN) signaling. Consistent with this observation, the IFNα receptor was essential for the ability of MNV to compensate for bacterial depletion. Importantly, MNV infection offset the deleterious effect of antibiotics-treatment in models of intestinal injury and pathogenic bacterial infection. These data indicate that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity akin to commensal bacteria. PMID:25409145

  1. Commensal bacteria modulate the tumor microenvironment.

    PubMed

    Poutahidis, Theofilos; Erdman, Susan E

    2016-09-28

    It has been recently shown that gut microbes modulate whole host immune and hormonal factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. This raises the possibility that the tumor microenvironment interacts with broader systemic microbial-immune networks. These accumulated findings suggest novel therapeutic opportunities for holobiont engineering in emerging tumor microenvironments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Pathogenesis of pigment gallstones in Western societies: the central role of bacteria.

    PubMed

    Stewart, Lygia; Oesterle, Adair L; Erdan, Ihsan; Griffiss, J MacLeod; Way, Lawrence W

    2002-01-01

    Bacteria are traditionally accorded a greater role in pigment gallstone formation in Eastern populations. Stone color is thought to predict the presence of bacteria; that is, black stones (Western predominant) are supposedly sterile and brown stones (Eastern predominant) contain bacteria. We previously reported that, regardless of appearance, most pigment gallstones contain bacteria. This study examined, in a large Western population (370 patients), the incidence, appearance, and chemical composition of pigment stones, and the characteristics of gallstone bacteria. One hundred eighty-six pigment stones were obtained aseptically. Bacteria were detected by means of scanning electron microscopy and gallstone culture. Chemical composition was determined by infrared spectroscopy. Bacteria were tested for slime and beta-glucuronidase production. Seventy-three percent of pigment stones contained bacteria. Choledocholithiasis was associated with gallstone bacteria. Ca-bilirubinate was present in all pigment stones. Ca-palmitate was characteristic of infected stones, and more than 75% Ca-carbonate was characteristic of sterile stones. Neither chemical composition nor stone appearance predicted the presence of bacteria. Ninety-five percent and 67% of infected pigment stones contained bacteria that produced slime and beta-glucuronidase, respectively. Most pigment stones contained bacteria that produced beta-glucuronidase, slime, and phospholipase, factors that facilitate stone formation. Thus bacteria have a major role in Western pigment gallstone formation. Furthermore, gallstone color did not predict composition or bacterial presence.

  3. Bacteria associated with Amblyomma cajennense tick eggs

    PubMed Central

    Machado-Ferreira, Erik; Vizzoni, Vinicius Figueiredo; Piesman, Joseph; Gazeta, Gilberto Salles; Soares, Carlos Augusto Gomes

    2015-01-01

    Abstract Ticks represent a large group of pathogen vectors that blood feed on a diversity of hosts. In the Americas, the Ixodidae ticks Amblyomma cajennense are responsible for severe impact on livestock and public health. In the present work, we present the isolation and molecular identification of a group of culturable bacteria associated with A. cajennense eggs from females sampled in distinct geographical sites in southeastern Brazil. Additional comparative analysis of the culturable bacteria from Anocentor nitens, Rhipicephalus sanguineus and Ixodes scapularis tick eggs were also performed. 16S rRNA gene sequence analyses identified 17 different bacterial types identified as Serratia marcescens, Stenotrophomonas maltophilia, Pseudomonas fluorescens, Enterobacter spp., Micrococcus luteus, Ochrobactrum anthropi, Bacillus cereus and Staphylococcus spp., distributed in 12 phylogroups. Staphylococcus spp., especially S. sciuri, was the most prevalent bacteria associated with A. cajennense eggs, occurring in 65% of the samples and also frequently observed infecting A. nitens eggs. S. maltophilia, S. marcescens and B. cereus occurred infecting eggs derived from specific sampling sites, but in all cases rising almost as pure cultures from infected A. cajennense eggs. The potential role of these bacterial associations is discussed and they possibly represent new targets for biological control strategies of ticks and tick borne diseases. PMID:26537602

  4. Infections Complicating the Care of Combat Casualties During Operations Iraqi Freedom and Enduring Freedom

    DTIC Science & Technology

    2011-07-01

    nos 75 510 Empyema with fistula 3 510.9 Empyema w/o fistula 10 513 Abscess of lung 2 V46.1 Dependence on respirator 1 Other 041.89 Infection bacteria...recorded deaths (16 with infections). Infections were commonly gram-negative bacteria (47.6%) involving skin/wound infections (26.7%), and lung infections...trauma is primarily associated with gram-negative bacteria typically involving infections of wounds or other skin structures and lung infections such

  5. Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function.

    PubMed

    Osborne, Suzanne E; Walthers, Don; Tomljenovic, Ana M; Mulder, David T; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J; Wickham, Mark E; Waller, Ross F; Kenney, Linda J; Coombes, Brian K

    2009-03-10

    The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones.

  6. Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function

    PubMed Central

    Osborne, Suzanne E.; Walthers, Don; Tomljenovic, Ana M.; Mulder, David T.; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J.; Wickham, Mark E.; Waller, Ross F.; Kenney, Linda J.; Coombes, Brian K.

    2009-01-01

    The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones. PMID:19234126

  7. Bovine viral diarrhea virus type 2 in vivo infection modulates TLR4 responsiveness in differentiated Myeloid cells which is associated with decreased MyD88 expression

    USDA-ARS?s Scientific Manuscript database

    Bovine viral diarrhea virus (BVDV) causes clinical signs in cattle ranging from mild to severe acute infection which can lead to increased susceptibility to secondary bacteria. In this study we examined the effects of BVDV genotype 2 (BVDV2) infection on the ability of myeloid lineage cells derived...

  8. Middle Ear Infections (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Middle Ear Infections KidsHealth / For Parents / Middle Ear Infections What's ... en español Infecciones del oído medio What Are Middle Ear Infections? Ear infections happen when viruses or bacteria ...

  9. Helicobacter Pylori Infections

    MedlinePlus

    Helicobacter pylori (H. pylori) is a type of bacteria that causes infection in the stomach. It is the main cause of ... of people in the United States get an H. pylori infection. Most people get it as a ...

  10. Infection

    DTIC Science & Technology

    2010-09-01

    promote host tissue attachment and prevent sepsis represent new areas of scientific inquiry. Novel Ways to Detect Infection Swabs, needle aspiration, deep...chromosome, the bacteria emits light at 486-nm wavelength during normal bacteria respiration, and the amount of photons emitted is determined by the amount of...within 5 hours.3 Bacterial or fungal DNA is amplified by polymerase chain reaction and introduced into a mass spectroscopy by electrospray ionization

  11. Modulation of the proteome of peripheral blood mononuclear cells from HIV-1 infected patients by drugs of abuse

    PubMed Central

    Reynolds, Jessica L.; Mahajan, Supriya D.; Aalinkeel, Ravikunar; Nair, Bindukumar; Sykes, Donald E.; Agosto-Mujica, Arnadri; Hsiao, Chiu Bin; Schwartz, Stanley A.

    2010-01-01

    We used proteomic analyses to assess how drug abuse modulates immunologic responses to infections with the human immunodeficiency virus type 1 (HIV-1). Two dimensional (2D) difference gel electrophoresis was utilized to determine changes in the proteome of peripheral blood mononuclear cells (PBMC) isolated from HIV-1 positive donors that occurred after treatment with cocaine or methamphetamine. Both drugs differentially regulated the expression of several functional classes of proteins. We further isolated specific subpopulations of PBMC to determine which subpopulations were selectively affected by treatment with drugs of abuse. Monocytes, B cells and T cells were positively or negatively selected from PBMC isolated from HIV-1 positive donors. Our results demonstrate that cocaine and methamphetamine modulate gene expression primarily in monocytes and T cells, the primary targets of HIV-1 infection. Proteomic data were validated with quantitative, real-time PCR. These studies elucidate the molecular mechanisms underlying the effects of drugs of abuse on HIV-1 infections. Several functionally relevant classes of proteins were identified as potential mediators of HIV-1 pathogenesis and disease progression associated with drug abuse. PMID:19543960

  12. Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoEnull Mice

    PubMed Central

    Chukkapalli, Sasanka S.; Velsko, Irina M.; Rivera-Kweh, Mercedes F.; Zheng, Donghang; Lucas, Alexandra R.; Kesavalu, Lakshmyya

    2015-01-01

    Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoEnull mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoEnull hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoEnull mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection

  13. Linezolid in late-chronic prosthetic joint infection caused by gram-positive bacteria.

    PubMed

    Cobo, Javier; Lora-Tamayo, Jaime; Euba, Gorane; Jover-Sáenz, Alfredo; Palomino, Julián; del Toro, Ma Dolores; Rodríguez-Pardo, Dolors; Riera, Melchor; Ariza, Javier

    2013-05-01

    Linezolid may be an interesting alternative for prosthetic joint infection (PJI) due to its bioavailability and its antimicrobial spectrum. However, experience in this setting is scarce. The aim of the study was to assess linezolid's clinical and microbiological efficacy, and also its tolerance. This was a prospective, multicenter, open-label, non-comparative study of 25 patients with late-chronic PJI caused by Gram-positive bacteria managed with a two-step exchange procedure plus 6 weeks of linezolid. Twenty-two (88%) patients tolerated linezolid without major adverse effects, although a global decrease in the platelet count was observed. Three patients were withdrawn because of major toxicity, which reversed after linezolid stoppage. Among patients who completed treatment, 19 (86%) demonstrated clinical and microbiological cure. Two patients presented with clinical and microbiological failure, and one showed clinical cure and microbiological failure. In conclusion, linezolid showed good results in chronic PJI managed with a two-step exchange procedure. Tolerance seems acceptable, though close surveillance is required. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. quenched-smFISH: Counting small RNA in Pathogenic Bacteria

    NASA Astrophysics Data System (ADS)

    Shepherd, Douglas; Li, Nan; Micheva-Viteva, Sofiya; Munsky, Brian; Hong-Geller, Elizabeth; Werner, James

    2014-03-01

    Here, we present a modification to single-molecule fluorescence in situ hybridization, quenched smFISH (q-smFISH), that enables quantitative detection and analysis of small RNA (sRNA) expressed in bacteria. We show that short nucleic acid targets can be detected when the background of unbound singly dye-labeled DNA oligomers is reduced through hybridization with a set of complementary DNA oligomers labeled with a fluorescence quencher. Exploiting an automated, multi-color wide-field microscope and GPU-accelerated data analysis package, we analyzed the statistics of sRNA expression in thousands of individual Yersinia pseudotuberculosis and Yersinia pestis bacteria before and during a simulated infection. Before infection, we find only a small fraction of either bacteria express the small RNAs YSR35 or YSP8. The copy numbers of these RNA are increased during simulated infection, suggesting a role in pathogenesis. The ability to directly quantify expression level changes of sRNA in single cells as a function of external stimuli provides key information on the role of sRNA in bacterial regulatory networks.

  15. [Clinical evaluation of anaerobic infections in patients with bronchopulmonary infections diagnosed by transtracheal aspiration].

    PubMed

    Konishi, M; Mori, K; Yoshimoto, E; Takahashi, K; Majima, T; Ueda, K; Murakawa, K; Sakamoto, M; Maeda, K; Mikasa, K; Narita, N; Sano, R; Masutani, T

    1999-07-01

    We evaluated the clinical and bacteriologic features in the patients with bronchopulmonary infections isolated anaerobes from transtracheal aspirates between April 1990 and March 1998. Some anaerobe was isolated in 42 (10.9%) in 387 patients whom we performed transtracheal aspiration (TTA), in 42 (15.7%) of 268 in whom some organism was isolated from TTA, or in 42 (16.3%) of 257 patients in whom some bacterium excluding acid-fast bacteria, fungi or mycoplasma from TTA. The isolation rate of anaerobic bacteria was 93.3% in the patients with lung abscess, 22.7% in the patients with nosocomial pneumonia, 19.4% in the patients with community-acquired pneumonia, 26.7% in the patients with acute exacerbation of chronic lower respiratory tract infection (CLRTI), 1.6% in the patients with persistent infection of CLRTI, and 3.0% in the patients with acute bronchitis, respectively. The major anaerobes, isolated from TTA, were Peptostreptococcus micros and Prevotella melaninogenica. The aerobic bacteria were isolated with anaerobic bacteria in 32 of 42 patients at the same time. The quantitive grade of colonial growth of anaerobes was equal to or more than aerobes in the patients with lung abscess and pneumonia. We mostly administrated 3rd generation cephems or carbapenems with or without clindamycin for the treatment of anaerobic infections. Forty-one of 42 patients were cured only by the therapy of antimicrobial agents, but pneumonia patient with lung cancer died in spite of adequate antimicrobial therapy. These results suggest that the anaerobic infections are important in the bronchopulmonary infections.

  16. Antimicrobial copper alloys decreased bacteria on stethoscope surfaces.

    PubMed

    Schmidt, Michael G; Tuuri, Rachel E; Dharsee, Arif; Attaway, Hubert H; Fairey, Sarah E; Borg, Keith T; Salgado, Cassandra D; Hirsch, Bruce E

    2017-06-01

    Stethoscopes may serve as vehicles for transmission of bacteria among patients. The aim of this study was to assess the efficacy of antimicrobial copper surfaces to reduce the bacterial concentration associated with stethoscope surfaces. A structured prospective trial involving 21 health care providers was conducted at a pediatric emergency division (ED) (n = 14) and an adult medical intensive care unit located in tertiary care facilities (n = 7). Four surfaces common to a stethoscope and a facsimile instrument fabricated from U.S. Environmental Protection Agency-registered antimicrobial copper alloys (AMCus) were assessed for total aerobic colony counts (ACCs), methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and vancomycin-resistant enterococci for 90 days. The mean ACCs collectively recovered from all stethoscope surfaces fabricated from the AMCus were found to carry significantly lower concentrations of bacteria (pediatric ED, 11.7 vs 127.1 colony forming units [CFU]/cm 2 , P < .00001) than their control equivalents. This observation was independent of health care provider or infection control practices. Absence of recovery of bacteria from the AMCu surfaces (66.3%) was significantly higher (P < .00001) than the control surfaces (22.4%). The urethane rim common to the stethoscopes was the most heavily burdened surface; mean concentrations exceeded the health care-associated infection acquisition concentration (5 CFU/cm 2 ) by at least 25×, supporting that the stethoscope warrants consideration in plans mitigating microbial cross-transmission during patient care. Stethoscope surfaces fabricated with AMCus were consistently found to harbor fewer bacteria. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. [Flesh-eating bacteria infection of an immunocompromised patient].

    PubMed

    Slavei, K; Hauser, B; Pénzes, I; Ondrejka, P; Faller, J

    2001-10-01

    After years of steadily declining morbidity and mortality due to group A streptococcal infections, a resurgence of severe, invasive disease has been ongoing since 1980, leading to the recognition of streptococcal shock syndrome (STSS), necrotizing fasciitis, the most severe form of invasive infection. The patients suffer from rapid local deep soft tissue destruction, severe septic shock and multi organ failure. The increased incidence of these infections has been accompanied by remarkable vigor in virulence and severity of the disease. The reason for this impressive change in the epidemiology and clinical manifestation of group A streptococcal infections remains unknown. The possible etiological factor is changing in virulence factor or the lack of protective immunity of the population (immunocompromise) against the invasive strains. We describe a severe necrotizing fasciitis of a 41-year-old previously immunocompromised woman. The patient developed severe septic shock, multi organ failure and perineal and lower abdominal skin, fat and fascia necrosis due to mixed GAS (aerob, anaerob) infection of the perineum and the Bartholini glands. After an aggressive surgical debridement, antibiotic and supportive therapy the generalised and local infection was treated.

  18. An Unbiased Systems Genetics Approach to Mapping Genetic Loci Modulating Susceptibility to Severe Streptococcal Sepsis

    PubMed Central

    Abdeltawab, Nourtan F.; Aziz, Ramy K.; Kansal, Rita; Rowe, Sarah L.; Su, Yin; Gardner, Lidia; Brannen, Charity; Nooh, Mohammed M.; Attia, Ramy R.; Abdelsamed, Hossam A.; Taylor, William L.; Lu, Lu; Williams, Robert W.; Kotb, Malak

    2008-01-01

    Striking individual differences in severity of group A streptococcal (GAS) sepsis have been noted, even among patients infected with the same bacterial strain. We had provided evidence that HLA class II allelic variation contributes significantly to differences in systemic disease severity by modulating host responses to streptococcal superantigens. Inasmuch as the bacteria produce additional virulence factors that participate in the pathogenesis of this complex disease, we sought to identify additional gene networks modulating GAS sepsis. Accordingly, we applied a systems genetics approach using a panel of advanced recombinant inbred mice. By analyzing disease phenotypes in the context of mice genotypes we identified a highly significant quantitative trait locus (QTL) on Chromosome 2 between 22 and 34 Mb that strongly predicts disease severity, accounting for 25%–30% of variance. This QTL harbors several polymorphic genes known to regulate immune responses to bacterial infections. We evaluated candidate genes within this QTL using multiple parameters that included linkage, gene ontology, variation in gene expression, cocitation networks, and biological relevance, and identified interleukin1 alpha and prostaglandin E synthases pathways as key networks involved in modulating GAS sepsis severity. The association of GAS sepsis with multiple pathways underscores the complexity of traits modulating GAS sepsis and provides a powerful approach for analyzing interactive traits affecting outcomes of other infectious diseases. PMID:18421376

  19. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis.

    PubMed

    Kalia, Dimpy; Merey, Gökçe; Nakayama, Shizuka; Zheng, Yue; Zhou, Jie; Luo, Yiling; Guo, Min; Roembke, Benjamin T; Sintim, Herman O

    2013-01-07

    For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.

  20. Bacteriophages to combat foodborne infections caused by food contamination by bacteria of the Campylobacter genus.

    PubMed

    Myga-Nowak, Magdalena; Godela, Agnieszka; Głąb, Tomasz; Lewańska, Monika; Boratyński, Janusz

    2016-09-26

    It is estimated that each year more than 2 million people suffer from diarrheal diseases, resulting from the consumption of contaminated meat. Foodborne infections are most frequently caused by small Gram-negative rods Campylobacter. The hosts of these bacteria are mainly birds wherein they are part of the normal intestinal flora. During the commercial slaughter, there is a likelihood of contamination of carcasses by the bacteria found in the intestinal content. In Europe, up to 90% of poultry flocks can be a reservoir of the pathogen. According to the European Food Safety Authority report from 2015, the number of reported and confirmed cases of human campylobacteriosis exceeds 200 thousands per year, and such trend remains at constant level for several years. The occurrence of growing antibiotic resistance in bacteria forces the limitation of antibiotic use in the animal production. Therefore, the European Union allows only using stringent preventive and hygienic treatment on farms. Achieving Campylobacter free chickens using these methods is possible, but difficult to implement and expensive. Utilization of bacterial viruses - bacteriophages, can be a path to provide the hygienic conditions of poultry production and food processing. Formulations applied in the food protection should contain strictly lytic bacteriophages, be non-pyrogenic and retain long lasting biological activity. Currently, on the market there are available commercial bacteriophage preparations for agricultural use, but neither includes phages against Campylobacter. However, papers on the application of bacteriophages against Campylobacter in chickens and poultry products were published in the last few years. In accordance with the estimates, 2-logarithm reduction of Campylobacter in poultry carcases will contribute to the 30-fold reduction in the incidence of campylobacteriosis in humans. Research on bacteriophages against Campylobacter have cognitive and economic importance. The paper

  1. [Non-tuberculous pleural infections versus tuberculous pleural infections].

    PubMed

    Horo, K; N'Gom, A; Ahui, B; Brou-Gode, C; Anon, J-C; Diaw, A; Bemba, P; Foutoupouo, K; Djè Bi, H; Ouattara, P; Kouassi, B; Koffi, N; Aka-Danguy, E

    2012-03-01

    In countries where tuberculosis is endemic, the main differential diagnosis for pleural infection by common bacteria is pleural tuberculosis. The purpose of our study was to determine the differences between pleural infection by common bacteria and that caused by pleural tuberculosis. Our study was a retrospective analysis and compared the characteristics of confirmed pleural infection by common bacteria (PIB) and that due to pleural tuberculosis (PT). For the PIB, the signs evolved for 2.4 ± 1.4 weeks versus 5.6 ± 2.2 weeks for the PT (P=0.01). In multivariate analysis, for PIB the onset of symptoms was more abrupt (OR=3.8 [1.5; 9.9]; P=0.01), asthenia was less frequent (OR=0.3 [0.1; 0.9]; P=0.03), pleural liquid was more purulent (OR=40.0 [15.0; 106.7]; P<0.01). The blood neutrophil count was more frequently raised in cases of PIB (OR=2.5 [1.2; 5.4]; P=0.02). Pneumothorax/hydropneumothorax was less frequent in PIB (OR=0.3 [0.1; 1.0]; P=0.04). Clinical differences exist between pleural effusions caused by tuberculosis (TB) and those due to other bacterial infections. However, they are not sufficiently sensitive and therefore the search for the tuberculous bacillus must be systematic while waiting for implementation of new diagnostic tests for the organism. Copyright © 2012 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  2. A review of the biomaterials technologies for infection-resistant surfaces.

    PubMed

    Campoccia, Davide; Montanaro, Lucio; Arciola, Carla Renata

    2013-11-01

    Anti-infective biomaterials need to be tailored according to the specific clinical application. All their properties have to be tuned to achieve the best anti-infective performance together with safe biocompatibility and appropriate tissue interactions. Innovative technologies are developing new biomaterials and surfaces endowed with anti-infective properties, relying either on antifouling, or bactericidal, or antibiofilm activities. This review aims at thoroughly surveying the numerous classes of antibacterial biomaterials and the underlying strategies behind them. Bacteria repelling and antiadhesive surfaces, materials with intrinsic antibacterial properties, antibacterial coatings, nanostructured materials, and molecules interfering with bacterial biofilm are considered. Among the new strategies, the use of phages or of antisense peptide nucleic acids are discussed, as well as the possibility to modulate the local immune response by active cytokines. Overall, there is a wealth of technical solutions to contrast the establishment of an implant infection. Many of them exhibit a great potential in preclinical models. The lack of well-structured prospective multicenter clinical trials hinders the achievement of conclusive data on the efficacy and comparative performance of anti-infective biomaterials. © 2013 Elsevier Ltd. All rights reserved.

  3. Raman Hyperspectral Imaging for Detection of Watermelon Seeds Infected with Acidovorax citrulli.

    PubMed

    Lee, Hoonsoo; Kim, Moon S; Qin, Jianwei; Park, Eunsoo; Song, Yu-Rim; Oh, Chang-Sik; Cho, Byoung-Kwan

    2017-09-23

    The bacterial infection of seeds is one of the most important quality factors affecting yield. Conventional detection methods for bacteria-infected seeds, such as biological, serological, and molecular tests, are not feasible since they require expensive equipment, and furthermore, the testing processes are also time-consuming. In this study, we use the Raman hyperspectral imaging technique to distinguish bacteria-infected seeds from healthy seeds as a rapid, accurate, and non-destructive detection tool. We utilize Raman hyperspectral imaging data in the spectral range of 400-1800 cm -1 to determine the optimal band-ratio for the discrimination of watermelon seeds infected by the bacteria Acidovorax citrulli using ANOVA. Two bands at 1076.8 cm -1 and 437 cm -1 are selected as the optimal Raman peaks for the detection of bacteria-infected seeds. The results demonstrate that the Raman hyperspectral imaging technique has a good potential for the detection of bacteria-infected watermelon seeds and that it could form a suitable alternative to conventional methods.

  4. Clinical identification of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing

    PubMed Central

    2012-01-01

    Background Chronic wounds affect millions of people and cost billions of dollars in the United States each year. These wounds harbor polymicrobial biofilm communities, which can be difficult to elucidate using culturing methods. Clinical molecular microbiological methods are increasingly being employed to investigate the microbiota of chronic infections, including wounds, as part of standard patient care. However, molecular testing is more sensitive than culturing, which results in markedly different results being reported to clinicians. This study compares the results of aerobic culturing and molecular testing (culture-free 16S ribosomal DNA sequencing), and it examines the relative abundance score that is generated by the molecular test and the usefulness of the relative abundance score in predicting the likelihood that the same organism would be detected by culture. Methods Parallel samples from 51 chronic wounds were studied using aerobic culturing and 16S DNA sequencing for the identification of bacteria. Results One hundred forty-five (145) unique genera were identified using molecular methods, and 68 of these genera were aerotolerant. Fourteen (14) unique genera were identified using aerobic culture methods. One-third (31/92) of the cultures were determined to be < 1% of the relative abundance of the wound microbiota using molecular testing. At the genus level, molecular testing identified 85% (78/92) of the bacteria that were identified by culture. Conversely, culturing detected 15.7% (78/497) of the aerotolerant bacteria and detected 54.9% of the collective aerotolerant relative abundance of the samples. Aerotolerant bacterial genera (and individual species including Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis) with higher relative abundance scores were more likely to be detected by culture as demonstrated with regression modeling. Conclusion Discordance between molecular and culture testing is often observed. However

  5. Three Mycobacterium tuberculosis Rel Toxin-Antitoxin Modules Inhibit Mycobacterial Growth and Are Expressed in Infected Human Macrophages▿

    PubMed Central

    Korch, Shaleen B.; Contreras, Heidi; Clark-Curtiss, Josephine E.

    2009-01-01

    Mycobacterium tuberculosis protein pairs Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, here named RelBE, RelFG, and RelJK, respectively, were identified based on homology to the Escherichia coli RelBE toxin:antitoxin (TA) module. In this study, we have characterized each Rel protein pair and have established that they are functional TA modules. Overexpression of individual M. tuberculosis rel toxin genes relE, relG, and relK induced growth arrest in Mycobacterium smegmatis; a phenotype that was completely reversible by expression of their cognate antitoxin genes, relB, relF, and relJ, respectively. We also provide evidence that RelB and RelE interact directly, both in vitro and in vivo. Analysis of the genetic organization and regulation established that relBE, relFG, and relJK form bicistronic operons that are cotranscribed and autoregulated, in a manner unlike typical TA modules. RelB and RelF act as transcriptional activators, inducing expression of their respective promoters. However, RelBE, RelFG, and RelJK (together) repress expression to basal levels of activity, while RelJ represses promoter activity altogether. Finally, we have determined that all six rel genes are expressed in broth-grown M. tuberculosis, whereas relE, relF, and relK are expressed during infection of human macrophages. This is the first demonstration of M. tuberculosis expressing TA modules in broth culture and during infection of human macrophages. PMID:19114484

  6. Animal models for percutaneous-device-related infections: a review.

    PubMed

    Shao, Jinlong; Kolwijck, Eva; Jansen, John A; Yang, Fang; Walboomers, X Frank

    2017-06-01

    This review focuses on the construction of animal models for percutaneous-device-related infections, and specifically the role of inoculation of bacteria in such models. Infections around percutaneous devices, such as catheters, dental implants and limb prostheses, are a recurrent and persistent clinical problem. To promote the research on this clinical problem, the establishment of a reliable and validated animal model would be of keen interest. In this review, literature related to percutaneous devices was evaluated, and particular attention was paid to studies involving the use of bacteria. The design of percutaneous devices, susceptibility of various animal species, bacterial strains, amounts of bacteria, method of inoculation and methods for subsequent evaluation of the infection are discussed in detail. Given that an ideal animal model for study of percutaneous-device-related infection is still not existent, this article presents the basis for the construction of such a standardized animal model for percutaneous-device-related infection studies. The inoculation of bacteria is critical to obtain an animal model for standardized studies for percutaneous-device-related infections. Copyright © 2017. Published by Elsevier B.V.

  7. [Nationwide sensitivity surveillance of ciprofloxacin and various parenteral antibiotics against bacteria isolated from patients with severe infections--the first Ciproxan IV special investigation in 2001].

    PubMed

    Yamaguchi, Keizo; Ishii, Yoshikazu; Iinuma, Yoshitsugu; Yamanaka, Kiyoharu; Ichiyama, Satoshi; Watanabe, Naoki; Uehara, Nobuyuki; Kaku, Mitsuo; Kurokawa, Yukinori; Hayashi, Mutsumu; Hirakata, Yoichi

    2003-12-01

    The parenteral injection of ciprofloxacin (CPFX), a fluoroquinolone antimicrobial drug, was approved in September 2000 and a re-examination period of 6 years was set at that time. As a special investigation to apply for re-examination of this drug, it has been planned to conduct 3 nationwide surveillances during the re-examination period by collecting clinically isolated bacteria from patients with severe infections, to whom the drug was mainly indicated, and examining drug susceptibilities of the bacteria to various parenteral antimicrobial drugs including CPFX. This time, we determined the minimum inhibitory concentrations (MICs) of various parenteral antimicrobial drugs including CPFX against 1,220 strains isolated from patients with severe infections by the micro-liquid dilution method and compared susceptibilities of various clinically isolated bacteria to CPFX with those to other antimicrobial drugs. Gram-positive bacteria were less susceptible to CPFX than to carbapenems except 2 bacterial species, Enterococcus faecium and Enterococcus avium but susceptibilities of methicillin-susceptible Staphylococcus aureus (MSSA), Staphylococcus epidermidis and Enterococcus faecalis to CPFX were comparable to those to cefozopran. Susceptibility of Streptococcus pneumoniae to CPFX did not differ among ampicillin (ABPC)-susceptible Streptococcus pneumoniae (MIC of ABPC: < 0.25 microgram/ml), ABPC-intermediate S. pneumoniae (MIC of ABPC: 0.25-2 micrograms/ml) and ABPC-resistant S. pneumoniae (MIC of ABPC: > or = 4 micrograms/ml) MIC90 of CPFX: 1 microgram/ml) and a decrease in the antimicrobial activity seen among cephem and carbapenem antimicrobial drugs against penicillin-intermediate strains was not noted with CPFX. Gram-negative bacteria were susceptible to CPFX similarly to carbapenems and the MIC90 values of CPFX were in the range from < or = 0.063 to 2 micrograms/ml against strains except Stenotrophomonas maltophilia and Burkholderia cepacia. Pseudomonas aeruginosa

  8. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    PubMed

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  9. Streptococcus pyogenes Arginine and Citrulline Catabolism Promotes Infection and Modulates Innate Immunity

    PubMed Central

    Cusumano, Zachary T.; Watson, Michael E.

    2014-01-01

    A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS−/−) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient. PMID:24144727

  10. Balamuthia mandrillaris, Free-Living Ameba and Opportunistic Agent of Encephalitis, Is a Potential Host for Legionella pneumophila Bacteria

    PubMed Central

    Shadrach, Winlet Sheba; Rydzewski, Kerstin; Laube, Ulrike; Holland, Gudrun; Özel, Muhsin; Kiderlen, Albrecht F.; Flieger, Antje

    2005-01-01

    Balamuthia mandrillaris is a free-living ameba and an opportunistic agent of granulomatous encephalitis in humans and other mammalian species. Other free-living amebas, such as Acanthamoeba and Hartmannella, can provide a niche for intracellular survival of bacteria, including the causative agent of Legionnaires' disease, Legionella pneumophila. Infection of amebas by L. pneumophila enhances the bacterial infectivity for mammalian cells and lung tissues. Likewise, the pathogenicity of amebas may be enhanced when they host bacteria. So far, the colonization of B. mandrillaris by bacteria has not been convincingly shown. In this study, we investigated whether this ameba could host L. pneumophila bacteria. Our experiments showed that L. pneumophila could initiate uptake by B. mandrillaris and could replicate within the ameba about 4 to 5 log cycles from 24 to 72 h after infection. On the other hand, a dotA mutant, known to be unable to propagate in Acanthamoeba castellanii, also did not replicate within B. mandrillaris. Approaching completion of the intracellular cycle, L. pneumophila wild-type bacteria were able to destroy their ameboid hosts. Observations by light microscopy paralleled our quantitative data and revealed the rounding, collapse, clumping, and complete destruction of the infected amebas. Electron microscopic studies unveiled the replication of the bacteria in a compartment surrounded by a structure resembling rough endoplasmic reticulum. The course of intracellular infection, the degree of bacterial multiplication, and the ultrastructural features of a L. pneumophila-infected B. mandrillaris ameba resembled those described for other amebas hosting Legionella bacteria. We hence speculate that B. mandrillaris might serve as a host for bacteria in its natural environment. PMID:15870307

  11. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection.

    PubMed

    Rodriguez, Maria Cecilia; Conti, Gabriela; Zavallo, Diego; Manacorda, Carlos Augusto; Asurmendi, Sebastian

    2014-08-03

    Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown. This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants. Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses.

  12. Critical Role of Airway Macrophages in Modulating Disease Severity during Influenza Virus Infection of Mice ▿

    PubMed Central

    Tate, Michelle D.; Pickett, Danielle L.; van Rooijen, Nico; Brooks, Andrew G.; Reading, Patrick C.

    2010-01-01

    Airway macrophages provide a first line of host defense against a range of airborne pathogens, including influenza virus. In this study, we show that influenza viruses differ markedly in their abilities to infect murine macrophages in vitro and that infection of macrophages is nonproductive and no infectious virus is released. Virus strain BJx109 (H3N2) infected macrophages with high efficiency and was associated with mild disease following intranasal infection of mice. In contrast, virus strain PR8 (H1N1) was poor in its ability to infect macrophages and highly virulent for mice. Depletion of airway macrophages by clodronate-loaded liposomes led to the development of severe viral pneumonia in BJx109-infected mice but did not modulate disease severity in PR8-infected mice. The severe disease observed in macrophage-depleted mice infected with BJx109 was associated with exacerbated virus replication in the airways, leading to severe airway inflammation, pulmonary edema, and vascular leakage, indicative of lung injury. Thymic atrophy, lymphopenia, and dysregulated cytokine and chemokine production were additional systemic manifestations associated with severe disease. Thus, airway macrophages play a critical role in limiting lung injury and associated disease caused by BJx109. Furthermore, the inability of PR8 to infect airway macrophages may be a critical factor contributing to its virulence for mice. PMID:20504924

  13. Microbiology of infected poison ivy dermatitis.

    PubMed

    Brook, I; Frazier, E H; Yeager, J K

    2000-05-01

    We report the aerobic and anaerobic microbiology of secondarily infected poison ivy dermatitis. The study involved retrospective review of clinical and microbiology laboratory records of patients with secondarily infected poison ivy lesions. Bacterial growth was noted in 33 specimens. Aerobic or facultative anaerobic bacteria only were present in 18 (55%) patients, anaerobic bacteria only in seven (21%), and mixed anaerobic-aerobic bacteria in eight (24%). Forty-five isolates were recovered (1.4 per specimen): 27 aerobic or facultative anaerobic bacteria, and 18 strict anaerobes. The predominant aerobic and facultative anaerobic bacteria were Staphylococcus aureus (13 isolates) and group A beta-haemolytic streptococci (six). The predominant anaerobes were Peptostreptococcus spp. (seven isolates), pigmented Prevotella and Porphyromonas spp. (four) and Fusobacterium spp. (two). Single bacterial isolates were recovered in 18 (55%) patients, eight of which were S. aureus. Nineteen of the organisms isolated from 16 (48%) patients produced the enzyme beta-lactamase. Organisms that resided in the mucous membranes close to the lesions predominated in those infections. Enteric gram-negative rods and Bacteroides fragilis group predominated in leg and buttock lesions. Group A beta-haemolytic streptococci, pigmented Prevotella and Porphyromonas and Fusobacterium spp. were most frequently recovered from lesions of the finger, face and neck. The polymicrobial aetiology of secondarily infected poison ivy lesions, and the association of bacterial flora with the anatomical site of the lesions, are demonstrated.

  14. Prebiotic inulin supplementation modulates the immune response and restores gut morphology in Giardia duodenalis-infected malnourished mice.

    PubMed

    Shukla, Geeta; Bhatia, Ruchika; Sharma, Anuj

    2016-11-01

    Malnutrition induces a state of growth retardation and immunologic depression, enhancing the host susceptibility to various infections. In the present study, it was observed that prebiotic supplementation either prior or simultaneously with Giardia infection in malnourished mice significantly reduced the severity of giardiasis and increased the body and small intestine mass, along with increased lactobacilli counts in faeces compared with malnourished-Giardia-infected mice. More specifically, prebiotic supplementation significantly increased the levels of anti-giardial IgG and IgA antibodies and anti-inflammatory cytokines IL-6 and IL-10 and reduced the pro-inflammatory cytokine TNF-α, along with increased levels of nitric oxide in both the serum and intestinal fluid of malnourished-prebiotic-Giardia-infected mice compared with malnourished-Giardia-infected mice. Histopathology and scanning electron microscopy of the small intestine also revealed less cellular and mucosal damage in the microvilli of prebiotic-supplemented malnourished-Giardia-infected mice compared with severely damaged mummified and blunted villi of malnourished-Giardia-infected mice. This is the first study to report that prebiotic supplementation modulated the gut morphology and improved the immune status even in malnourished-Giardia-infected mice.

  15. Synergistic interaction of Helichrysum pedunculatum leaf extracts with antibiotics against wound infection associated bacteria.

    PubMed

    Aiyegoro, Olayinka A; Afolayan, Anthony J; Okoh, Anthony I

    2009-01-01

    The effect of combinations of the crude methanolic extract of the leaves of Helichrysum pedunculatum and eight first-line antibiotics were investigated by time kill assays against a panel of bacterial strains that have been implicated in wound infections. The plant extract showed appreciable antibacterial activities against the test bacteria with zones of inhibition ranging between 18 and 27 mm, and minimum inhibitory concentrations (MICs) varying between 0.1 and 5.0 mg/ml. The MICs of the test antibiotics range between 0.001 and 0.412 mg/ml, and combination of the plant extract and the antibiotics resulted in reduction of bacterial counts by between 0 and 6.63 Log10 cfu/ml. At V2 MIC, 56.81% synergy; 43.19% indifference and no antagonism were observed, and at MIC levels, 55.68% synergy; 44.32% indifference and no antagonism were observed when the extracts were combined with eight different antibiotics. In all, 60% of the interactions were synergistic. All combination regimes on Staphylococcus aureus ATCC 6538 yielded no synergy, neither was antagonism detected in any of the assays. We propose that extracts of the leaves of Helichrysum pedunculatum could be of relevance in combination therapy and as a source of resistance modifying principies that could be useful as treatment options for persistent wound infections.

  16. Dynamic Modulation of Expression of Lentiviral Restriction Factors in Primary CD4+ T Cells following Simian Immunodeficiency Virus Infection.

    PubMed

    Rahmberg, Andrew R; Rajakumar, Premeela A; Billingsley, James M; Johnson, R Paul

    2017-04-01

    Although multiple restriction factors have been shown to inhibit HIV/SIV replication, little is known about their expression in vivo Expression of 45 confirmed and putative HIV/SIV restriction factors was analyzed in CD4 + T cells from peripheral blood and the jejunum in rhesus macaques, revealing distinct expression patterns in naive and memory subsets. In both peripheral blood and the jejunum, memory CD4 + T cells expressed higher levels of multiple restriction factors compared to naive cells. However, relative to their expression in peripheral blood CD4 + T cells, jejunal CCR5 + CD4 + T cells exhibited significantly lower expression of multiple restriction factors, including APOBEC3G , MX2 , and TRIM25 , which may contribute to the exquisite susceptibility of these cells to SIV infection. In vitro stimulation with anti-CD3/CD28 antibodies or type I interferon resulted in upregulation of distinct subsets of multiple restriction factors. After infection of rhesus macaques with SIVmac239, the expression of most confirmed and putative restriction factors substantially increased in all CD4 + T cell memory subsets at the peak of acute infection. Jejunal CCR5 + CD4 + T cells exhibited the highest levels of SIV RNA, corresponding to the lower restriction factor expression in this subset relative to peripheral blood prior to infection. These results illustrate the dynamic modulation of confirmed and putative restriction factor expression by memory differentiation, stimulation, tissue microenvironment and SIV infection and suggest that differential expression of restriction factors may play a key role in modulating the susceptibility of different populations of CD4 + T cells to lentiviral infection. IMPORTANCE Restriction factors are genes that have evolved to provide intrinsic defense against viruses. HIV and simian immunodeficiency virus (SIV) target CD4 + T cells. The baseline level of expression in vivo and degree to which expression of restriction factors is

  17. Immunomodulating effects of antibiotics used in the prophylaxis of bacterial infections in advanced cirrhosis

    PubMed Central

    Zapater, Pedro; González-Navajas, José Manuel; Such, José; Francés, Rubén

    2015-01-01

    The use of norfloxacin either as primary or secondary prophylaxis of bacterial infections in advanced cirrhosis has improved patient’s survival. This may be explained not only due to a significant decrease in the number of infections, but also because of a direct immunomodulatory effect. Selective intestinal decontamination with norfloxacin reduces translocation of either viable bacteria or bacteria-driven products from the intestinal lumen. In addition, norfloxacin directly modulates the systemic inflammatory response. The pro-inflammatory cytokine profile secreted by neutrophils from these patients shows a close, significant, and inverse correlation with serum norfloxacin levels. Similar effects have been described with other quinolones in different clinical conditions. Although the underlying mechanisms are not well defined for most of the antibiotics, the pathways triggered for norfloxacin to induce such immunomodulatory effects involve the down-regulation of pro-inflammatory inducible nitric oxide synthase, cyclooxygenase-2, and NF-κB and the up-regulation of heme-oxygenase 1 and IL-10 expression. The knowledge of these immunomodulatory effects, additional to their bactericidal role, improves our comprehension of the interaction between antibiotics and the cellular host response and offer new possibilities for the development of new therapeutic strategies to manage and prevent bacterial infections in cirrhosis. PMID:26556982

  18. Gastrointestinal Infections and Diarrhea

    MedlinePlus

    ... cases of diarrhea around the world each year. E. coli bacteria are found in the bowel movements of ... Others can cause traveler's diarrhea, a milder infection. E. coli infections spread through direct person-to-person contact ...

  19. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    PubMed

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  20. Contrasting Life Strategies of Viruses that Infect Photo- and Heterotrophic Bacteria, as Revealed by Viral Tagging

    PubMed Central

    Deng, Li; Gregory, Ann; Yilmaz, Suzan; Poulos, Bonnie T.; Hugenholtz, Philip; Sullivan, Matthew B.

    2012-01-01

    ABSTRACT Ocean viruses are ubiquitous and abundant and play important roles in global biogeochemical cycles by means of their mortality, horizontal gene transfer, and manipulation of host metabolism. However, the obstacles involved in linking viruses to their hosts in a high-throughput manner bottlenecks our ability to understand virus-host interactions in complex communities. We have developed a method called viral tagging (VT), which combines mixtures of host cells and fluorescent viruses with flow cytometry. We investigated multiple viruses which infect each of two model marine bacteria that represent the slow-growing, photoautotrophic genus Synechococcus (Cyanobacteria) and the fast-growing, heterotrophic genus Pseudoalteromonas (Gammaproteobacteria). Overall, viral tagging results for viral infection were consistent with plaque and liquid infection assays for cyanobacterial myo-, podo- and siphoviruses and some (myo- and podoviruses) but not all (four siphoviruses) heterotrophic bacterial viruses. Virus-tagged Pseudoalteromonas organisms were proportional to the added viruses under varied infection conditions (virus-bacterium ratios), while no more than 50% of the Synechococcus organisms were virus tagged even at viral abundances that exceeded (5 to 10×) that of their hosts. Further, we found that host growth phase minimally impacts the fraction of virus-tagged Synechococcus organisms while greatly affecting phage adsorption to Pseudoalteromonas. Together these findings suggest that at least two contrasting viral life strategies exist in the oceans and that they likely reflect adaptation to their host microbes. Looking forward to the point at which the virus-tagging signature is well understood (e.g., for Synechococcus), application to natural communities should begin to provide population genomic data at the proper scale for predictively modeling two of the most abundant biological entities on Earth. PMID:23111870

  1. Lactic acid bacteria and bifidobacteria attenuate the proinflammatory response in intestinal epithelial cells induced by Salmonella enterica serovar Typhimurium.

    PubMed

    Carey, Christine M; Kostrzynska, Magdalena

    2013-01-01

    Inflammation is a physiological response to infections and tissue injury; however, abnormal immune responses can give rise to chronic inflammation and contribute to disease progression. Various dietary components, including probiotic lactic acid bacteria and prebiotics, have the potential to modulate intestinal inflammatory responses. One factor in particular, the chemokine interleukin-8 (IL-8, CXCL-8), is one of the major mediators of the inflammatory response. The purpose of this study was to investigate modulation of the inflammatory host response induced by Salmonella enterica serovar Typhimurium DT104 in the presence of selected probiotics and lactic acid bacteria (LAB) isolated from human sources, dairy products, and farm animals. IL-8 gene expression and protein production in HT-29 cells were evaluated by real-time PCR and ELISA, respectively. Pre-incubation of HT-29 cells with Lactobacillus kefir IM002, Bifidobacterium adolescentis FRP 61, Bifidobacterium longum FRP 68 and FRP 69, Bifidobacterium breve FRP 334, and Leuconostoc mesenteroides IM080 significantly inhibited IL-8 secretion induced by Salmonella Typhimurium DT104. Co-culture of selected probiotics and Salmonella Typhimurium DT104 reduced IL-8 production, while potential probiotics and LAB had no effect on IL-8 secretion in HT-29 cells preincubated with Salmonella Typhimurium DT104 prior to adding probiotics. Lactobacillus kefir IM002 supernatant also significantly reduced IL-8 production. In conclusion, our study suggests that probiotic bifidobacteria and LAB modulate cytokine induction and possess anti-inflammatory properties; however, the effectiveness is strain dependent.

  2. Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength.

    PubMed

    Schastak, Stanislaw; Ziganshyna, Svitlana; Gitter, Burkhard; Wiedemann, Peter; Claudepierre, Thomas

    2010-07-20

    The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100microM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100microM THPTS followed by illumination, yielded a 6lg (> or =99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections.

  3. Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoE null Mice.

    PubMed

    Chukkapalli, Sasanka S; Velsko, Irina M; Rivera-Kweh, Mercedes F; Zheng, Donghang; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2015-01-01

    Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoE null mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoE null hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoE null mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal

  4. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria.

    PubMed

    Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2016-07-29

    Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.

  5. The role of adhesins in bacteria motility modification

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta; Gibiansky, Maxsim; Jin, Fan; Gordon, Vernita; Motto, Dominick; Shrout, Joshua; Parsek, Matthew; Wong, Gerard

    2010-03-01

    Bacterial biofilms are multicellular communities responsible for a broad range of infections. To investigate the early-stage formation of biofilms, we have developed high-throughput techniques to quantify the motility of surface-associated bacteria. We translate microscopy movies of bacteria into a searchable database of trajectories using tracking algorithms adapted from colloidal physics. By analyzing the motion of both wild-type (WT) and isogenic knockout mutants, we have previously characterized fundamental motility mechanisms in P. aeruginosa. Here, we develop biometric routines to recognize signatures of adhesion and trapping. We find that newly attached bacteria move faster than previously adherent bacteria, and are more likely to be oriented out-of-plane. Motility appendages influence the bacterium's ability to become trapped: WT bacteria exhibit two types of trapped trajectories, whereas flagella-deficient bacteria rarely become trapped. These results suggest that flagella play a key role in adhesion.

  6. Phylogenetic Diversity of NTT Nucleotide Transport Proteins in Free-Living and Parasitic Bacteria and Eukaryotes

    PubMed Central

    Major, Peter; Embley, T. Martin

    2017-01-01

    Plasma membrane-located nucleotide transport proteins (NTTs) underpin the lifestyle of important obligate intracellular bacterial and eukaryotic pathogens by importing energy and nucleotides from infected host cells that the pathogens can no longer make for themselves. As such their presence is often seen as a hallmark of an intracellular lifestyle associated with reductive genome evolution and loss of primary biosynthetic pathways. Here, we investigate the phylogenetic distribution of NTT sequences across the domains of cellular life. Our analysis reveals an unexpectedly broad distribution of NTT genes in both host-associated and free-living prokaryotes and eukaryotes. We also identify cases of within-bacteria and bacteria-to-eukaryote horizontal NTT transfer, including into the base of the oomycetes, a major clade of parasitic eukaryotes. In addition to identifying sequences that retain the canonical NTT structure, we detected NTT gene fusions with HEAT-repeat and cyclic nucleotide binding domains in Cyanobacteria, pathogenic Chlamydiae and Oomycetes. Our results suggest that NTTs are versatile functional modules with a much wider distribution and a broader range of potential roles than has previously been appreciated. PMID:28164241

  7. ChpK and MazF of the toxin-antitoxin modules are involved in the virulence of Leptospira interrogans during infection.

    PubMed

    Komi, Komi Koukoura; Ge, Yu-Mei; Xin, Xiao-Yang; Ojcius, David M; Sun, Dexter; Hu, Wei-Lin; Zhao, Xin; Lin, Xu'ai; Yan, Jie

    2015-01-01

    Pathogenic Leptospira species are the causative agents of leptospirosis, a global zoonotic infectious disease. Toxin-antitoxin (TA) modules have been confirmed as stress-response elements that induce prokaryotic and eukaryotic cell-growth arrest or death, but their role in the virulence of Leptospira has not been reported. Here, we confirmed that all the tested leptospiral strains had the chpIK and mazEF TA modules with highly-conserved sequences. The transcription and expression of the chpI, chpK, mazE, and mazF genes of Leptospira interrogans strain Lai were significantly increased during infection of phorbol 12-myristate 13-acetate-induced human THP-1 macrophages. The toxic ChpK and MazF but not the antitoxic ChpI and MazE proteins were detectable in the cytoplasmic fraction of leptospire-infected THP-1 cells, indicating the external secretion of ChpK and MazF during infection. Transfection of the chpK or mazF gene caused decreased viability and necrosis in THP-1 cells, whereas the chpI or mazE gene transfection did not affect the viability of THP-1 cells but blocked the ChpK or MazF-induced toxicity. Deletion of the chpK or mazF gene also decreased the late-apoptotic and/or necrotic ratios of THP-1 cells at the late stages of infection. The recombinant protein MazF (rMazF) cleaved the RNAs but not the DNAs from Leptospira and THP-1 cells, and this RNA cleavage was blocked by rMazE. However, the rChpK had no RNA or DNA-degrading activity. All these findings indicate that the ChpK and MazF proteins in TA modules are involved in the virulence of L. interrogans during infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Salmonella Infections (For Parents)

    MedlinePlus

    ... iguanas). Another, rarer form — called Salmonella typhi — causes typhoid fever . What Is Salmonella Infection? Salmonella infection, or salmonellosis , ... More on this topic for: Parents Kids Teens Typhoid Fever E. Coli Stool Test: Bacteria Culture Food Safety ...

  9. Raman Hyperspectral Imaging for Detection of Watermelon Seeds Infected with Acidovorax citrulli

    PubMed Central

    Lee, Hoonsoo; Kim, Moon S.; Qin, Jianwei; Park, Eunsoo; Song, Yu-Rim; Oh, Chang-Sik

    2017-01-01

    The bacterial infection of seeds is one of the most important quality factors affecting yield. Conventional detection methods for bacteria-infected seeds, such as biological, serological, and molecular tests, are not feasible since they require expensive equipment, and furthermore, the testing processes are also time-consuming. In this study, we use the Raman hyperspectral imaging technique to distinguish bacteria-infected seeds from healthy seeds as a rapid, accurate, and non-destructive detection tool. We utilize Raman hyperspectral imaging data in the spectral range of 400–1800 cm−1 to determine the optimal band-ratio for the discrimination of watermelon seeds infected by the bacteria Acidovorax citrulli using ANOVA. Two bands at 1076.8 cm−1 and 437 cm−1 are selected as the optimal Raman peaks for the detection of bacteria-infected seeds. The results demonstrate that the Raman hyperspectral imaging technique has a good potential for the detection of bacteria-infected watermelon seeds and that it could form a suitable alternative to conventional methods. PMID:28946608

  10. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus.

    PubMed

    Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M

    2016-11-30

    It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of

  11. [The value of glucose-positive coliform bacteria and potentially pathogenic bacteria as indicators of epidemiological safety of tap water].

    PubMed

    Zhuravlev, P V; Aleshnia, V V; Panasovets, O P; Morozova, A A; Artemova, T Z; Talaeva, Iu G; Zagaĭnova, A V; Gipp, E K

    2012-01-01

    Due to intensive anthropogenic pollution of water environment generally accepted indicators of epidemic security of water bodies - common bacteria and thermotolerant coliform bacteria do not always permit to obtain an objective characterization of bacterial contamination of tap water. From the point of view of authors the integral index - glucose positive coliform bacteria most adequately reflect the sanitary-hygienic and epidemiological situation of water bodies. In monitoring for bacterial quality of tap water it is advisable to determine glucose positive coliform bacteria, that will provide the relevance of estimation of the epidemiological safety of water use. According to the method developed by the authors the calculation of the index of population risk of acute intestinal infections occurrence in dependence on the quality of tap water in Azov and Tsimlyansk towns.

  12. Extended-spectrum β-lactamase-producing bacteria causing community-acquired urinary tract infections in children.

    PubMed

    Megged, Orli

    2014-09-01

    Extended-spectrum β-lactamase (ESBL)-producing bacteria are infrequent pathogens of community-acquired (CA) urinary tract infections (UTIs) in children. The aim of this study was to assess the frequency of and identify risk factors for CA-UTIs due to ESBL-producing microorganisms (CA-ESBL-UTI). The medical records of all children diagnosed with CA-ESBL-UTI at our medical center between 2003 and 2013 were reviewed. Patients with non-ESBL-UTIs during the same period were included as controls. Eighty cases of CA-ESBL-UTI were identified. The incidence of ESBL-UTI increased from 2 to 3.8% during the study period. Compared to children with non-ESBL-UTI, those with ESBL were more likely to be of Arab descent, to have underlying medical conditions, to have received antibiotics in the month prior to the UTI and to have been previously hospitalized. The mean duration of hospitalization for patients with an ESBL-UTI was significantly longer than that for patients with a non-ESBL UTI (3.6 vs. 2 days; P = 0.01). In multivariate analysis, Arab ethnicity [odds ratio (OR) 6.1; 95 % confidence interval (CI) 2.7-13.6] and recent antibiotic treatment (OR 4.0; 95 % CI 1.6-10.4) were risk factors for CA-ESBL-UTI. The incidence of CA-ESBL-UTI is rising. The empiric treatment for suspected UTI in children who had been previously hospitalized and who had received antibiotics in the last month should cover ESBL-producing bacteria.

  13. [Anaerobic bacteria isolated from patients with suspected anaerobic infections].

    PubMed

    Ercis, Serpil; Tunçkanat, Ferda; Hasçelik, Gülşen

    2005-10-01

    The study involved 394 clinical samples sent to the Clinical Microbiology Laboratory of Hacettepe University Adult Hospital between January 1997 and May 2004 for anaerobic cultivation. Since multiple cultures from the same clinical samples of the same patient were excluded, the study was carried on 367 samples. The anaerobic cultures were performed in anaerobic jar using AnaeroGen kits (Oxoid, Basingstoke, U.K.) or GENbox (bioMérieux, Lyon, France). The isolates were identified by both classical methods and "BBL Crystal System" (Becton Dickinson, U.S.A.). While no growth was detected in 120 (32.7%) of the clinical samples studied, in 144 samples (39.2%) only aerobes, in 28 (7.6%) only anaerobes and in 75 (20.5%) of the samples both aerobes and anaerobes were isolated. The number of the anaerobic isolates was 217 from 103 samples with anaerobic growth. Of these 103 samples 15 showed single bacterial growth whereas in 88 samples multiple bacterial isolates were detected. Anaerobic isolates consisted of 92 Gram negative bacilli (Bacteroides spp. 50, Prevotella spp. 14, Porphyromonas spp. 10, Fusobacterium spp. 7, Tisierella spp. 2, unidentified 9), 57 Gram positive bacilli (Clostridium spp.17, Propionibacterium spp. 16, Lactobacillus spp. 8, Actinomyces spp. 5, Eubacterium spp. 2, Bifidobacterium adolescentis 1, Mobiluncus mulieris 1, unidentified nonspore forming rods 7), 61 Gram positive cocci (anaerobic cocci 44, microaerophilic cocci 17), and 7 Gram negative cocci (Veillonella spp.). In conclusion, in the samples studied with prediagnosis of anaerobic infection, Bacteroides spp. (23%) were the most common bacteria followed by anaerobic Gram positive cocci (20.3%) and Clostridium spp (7.8%).

  14. The immune response against Chlamydia suis genital tract infection partially protects against re-infection.

    PubMed

    De Clercq, Evelien; Devriendt, Bert; Yin, Lizi; Chiers, Koen; Cox, Eric; Vanrompay, Daisy

    2014-09-25

    The aim of the present study was to reveal the characteristic features of genital Chlamydia suis infection and re-infection in female pigs by studying the immune response, pathological changes, replication of chlamydial bacteria in the genital tract and excretion of viable bacteria. Pigs were intravaginally infected and re-infected with C. suis strain S45, the type strain of this species. We demonstrated that S45 is pathogenic for the female urogenital tract. Chlamydia replication occurred throughout the urogenital tract, causing inflammation and pathology. Furthermore, genital infection elicited both cellular and humoral immune responses. Compared to the primo-infection of pigs with C. suis, re-infection was characterized by less severe macroscopic lesions and less chlamydial elementary bodies and inclusions in the urogenital tract. This indicates the development of a certain level of protection following the initial infection. Protective immunity against re-infection coincided with higher Chlamydia-specific IgG and IgA antibody titers in sera and vaginal secretions, higher proliferative responses of peripheral blood mononuclear cells (PBMC), higher percentages of blood B lymphocytes, monocytes and CD8⁺ T cells and upregulated production of IFN-γ and IL-10 by PBMC.

  15. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    PubMed

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Targeted photodynamic therapy of established soft-tissue infections in mice

    NASA Astrophysics Data System (ADS)

    Gad, Faten; Zahra, Touqir; Hasan, Tayyaba; Hamblin, Michael R.

    2004-06-01

    The worldwide rise in antibiotic resistance necessitates the development of novel antimicrobial strategies. Although many workers have used photodynamic therapy (PDT) to kill bacteria in vitro, the use of this approach has seldom been reported in vivo in animal models of infection. We have previously described the first use of PDT to treat excisional wound infections by Gram-negative bacteria in living mice. However these infected wound models used a short time after infection (30 min) before PDT. We now report on the use of PDT to treat an established soft-tissue infection in mice. We used Staphylococcus aureus stably transformed with a Photorhabdus luminescens lux operon (luxABCDE) that was genetically modified to be functional in Gram-positive bacteria. These engineered bacteria emitted bioluminescence allowing the progress of the infection to be monitored in both space and time with a lowlight imaging charged couple device (CCD) camera. One million cells were injected into one or both thigh muscles of mice that had previously been rendered neutropenic by cyclophosphamide administration. Twenty-four hours later the bacteria had multiplied more than one hundred-fold, and poly-L-lysine chlorin(e6) conjugate or free chlorin(e6) was injected into one area of infected muscle and imaged with the CCD camera. Thirty-minutes later red light from a diode laser was delivered as a surface spot or by interstitial fiber into the infection. There was a lightdose dependent loss of bioluminescence (to < 5% of that seen in control infections) not seen in untreated or light alone treated infections, but in some cases the infection recurred. Conjugate alone led to a lesser reduction in bioluminescence. Infections treated with free chlorin(e6) responded less and the infection subsequently increased over the succeeding days, probably due to PDT-mediated tissue damage. PDT-treated infected legs healed better than legs with untreated infections. This data shows that PDT may have

  17. Reactivation of latent HIV-1 by a wide variety of butyric acid-producing bacteria.

    PubMed

    Imai, Kenichi; Yamada, Kiyoshi; Tamura, Muneaki; Ochiai, Kuniyasu; Okamoto, Takashi

    2012-08-01

    Latently infected cells harbor human immunodeficiency virus type 1 (HIV-1) proviral DNA copies integrated in heterochromatin, allowing persistence of transcriptionally silent proviruses. It is widely accepted that hypoacetylation of histone proteins by histone deacetylases (HDACs) is involved in maintaining the HIV-1 latency by repressing viral transcription. HIV-1 replication can be induced from latently infected cells by environmental factors, such as inflammation and co-infection with other microbes. It is known that a bacterial metabolite butyric acid inhibits catalytic action of HDAC and induces transcription of silenced genes including HIV-1 provirus. There are a number of such bacteria in gut, vaginal, and oral cavities that produce butyric acid during their anaerobic glycolysis. Since these organs are known to be the major site of HIV-1 transmission and its replication, we explored a possibility that explosive viral replication in these organs could be ascribable to butyric acid produced from anaerobic resident bacteria. In this study, we demonstrate that the culture supernatant of various bacteria producing butyric acid could greatly reactivate the latently-infected HIV-1. These bacteria include Fusobacterium nucleatum (commonly present in oral cavity, and gut), Clostridium cochlearium, Eubacterium multiforme (gut), and Anaerococcus tetradius (vagina). We also clarified that butyric acid in these culture supernatants could induce histone acetylation and HIV-1 replication by inhibiting HDAC. Our observations indicate that butyric acid-producing bacteria could be involved in AIDS progression by reactivating the latent HIV provirus and, subsequently, by eliminating such bacterial infection may contribute to the prevention of the AIDS development and transmission.

  18. Dynamics of Salmonella infection of macrophages at the single cell level.

    PubMed

    Gog, Julia R; Murcia, Alicia; Osterman, Natan; Restif, Olivier; McKinley, Trevelyan J; Sheppard, Mark; Achouri, Sarra; Wei, Bin; Mastroeni, Pietro; Wood, James L N; Maskell, Duncan J; Cicuta, Pietro; Bryant, Clare E

    2012-10-07

    Salmonella enterica causes a range of diseases. Salmonellae are intracellular parasites of macrophages, and the control of bacteria within these cells is critical to surviving an infection. The dynamics of the bacteria invading, surviving, proliferating in and killing macrophages are central to disease pathogenesis. Fundamentally important parameters, however, such as the cellular infection rate, have not previously been calculated. We used two independent approaches to calculate the macrophage infection rate: mathematical modelling of Salmonella infection experiments, and analysis of real-time video microscopy of infection events. Cells repeatedly encounter salmonellae, with the bacteria often remain associated with the macrophage for more than ten seconds. Once Salmonella encounters a macrophage, the probability of that bacterium infecting the cell is remarkably low: less than 5%. The macrophage population is heterogeneous in terms of its susceptibility to the first infection event. Once infected, a macrophage can undergo further infection events, but these reinfection events occur at a lower rate than that of the primary infection.

  19. Rapid differentiation of cocci/mixed bacteria from rods in voided urine culture of women with uncomplicated urinary tract infections.

    PubMed

    Yang, Chun-Chun; Yang, Stephen Shei-Dei; Hung, Hui-Ching; Chiang, I-Ni; Peng, Chiung-Hui; Chang, Shang-Jen

    2017-09-01

    To evaluate the ability of laser flow cytometry to predict cocci/mixed growth in the pre-analytical phase of urine specimens. We retrospectively reviewed urine samples from women with uncomplicated urinary tract infections from urologic clinics for study. Urine analyses were performed with laser flow cytometry (UF1000i, Sysmex, Kobe, Japan) and then diagrams were generated (forward scatter vs. fluorescent light scatter). Each specimen (bacteria count >357 BACT/μL) was classified as either cocci bacteria or rods/mixed growth according to the diagrams. Standard urine cultures were performed, and the agreement between cultures and the UF1000i interpretations was analyzed with kappa statistics. Finally, 491 specimens met the criteria for analysis. Among the 376 specimens with single bacteria growth, there were 26 gram-positive cocci (13 Streptococci spp., 7 Staphylococci spp., 6 Enterococci spp.), 1 gram-positive rods (Corynebacterium spp.), and 349 gram-negative rods (273 Escherichia coli, 33 Klebsiella spp., 29 Proteus spp., 6 Citrobacter spp., 4 Enterobacter spp., 3 Pseudomonas spp., and 1 Providencia spp.). There were 115 specimens with two bacteria species or more that were regarded as mixed growth. Agreement of rods or cocci/mixed growth between the laser flow cytometry and urine cultures yielded a kappa value of 0.58. The positive and negative predictive rate of the UF1000i for cocci/mixed growth in voided urine culture was 81.8% and 84.7%, respectively. Through laser flow cytometry, we can predict growth of cocci/mixed growth in the pre-analytical phase of urine culture, thus avoiding unnecessary urine culture and waiting time. © 2016 Wiley Periodicals, Inc.

  20. Electron Microscopy of the Infection and Subsequent Development of Soybean Nodule Cells

    PubMed Central

    Goodchild, D. J.; Bergersen, F. J.

    1966-01-01

    Goodchild, D. J. (Commonwealth Scientific and Industrial Research Organization, Canberra, Australia), and F. J. Bergersen. Electron microscopy of the infection and subsequent development of soybean nodule cells. J. Bacteriol. 92:204–213. 1966—Electron microscopy of thin sections of the developing central tissue cells of young soybean root nodules has shown that infection is initiated by a few infection threads which penetrate cells of the young central tissue. Extension growth of the threads may be a result of pressure developed from the growth of the bacteria within the threads. Release of bacteria from a thread is preceded by the development on an infection thread of a bulge with a cellulose-free membrane-bounded extension; bacteria move from this into the host cells by an endocytotic process and remain enclosed in an infection vacuole which is bounded by a membrane of host-cell origin. Multiplication of the intracellular bacteria takes place within these vacuoles. Until the host cell becomes filled with bacteria, the vacuoles separate into discrete units at each division. Later, division of the bacteria occurs within each vacuole, thus leading to the mature structure of the central tissue cells in which several bacteria are enclosed within each membrane-bounded unit. Images PMID:5949564

  1. Bactericidal activities of GM flax seedcake extract on pathogenic bacteria clinical strains.

    PubMed

    Zuk, Magdalena; Dorotkiewicz-Jach, Agata; Drulis-Kawa, Zuzanna; Arendt, Malgorzata; Kulma, Anna; Szopa, Jan

    2014-07-29

    The antibiotic resistance of pathogenic microorganisms is a worldwide problem. Each year several million people across the world acquire infections with bacteria that are antibiotic-resistant, which is costly in terms of human health. New antibiotics are extremely needed to overcome the current resistance problem. Transgenic flax plants overproducing compounds from phenylpropanoid pathway accumulate phenolic derivatives of potential antioxidative, and thus, antimicrobial activity. Alkali hydrolyzed seedcake extract containing coumaric acid, ferulic acid, caffeic acid, and lignan in high quantities was used as an assayed against pathogenic bacteria (commonly used model organisms and clinical strains). It was shown that the extract components had antibacterial activity, which might be useful as a prophylactic against bacterial infection. Bacteria topoisomerase II (gyrase) inhibition and genomic DNA disintegration are suggested to be the main reason for rendering antibacterial action. The data obtained strongly suggest that the seedcake extract preparation is a suitable candidate for antimicrobial action with a broad spectrum and partial selectivity. Such preparation can be applied in cases where there is a risk of multibacterial infection and excellent answer on global increase in multidrug resistance in pathogenic bacteria.

  2. Characterization of recombinant Trypanosoma brucei gambiense Translationally Controlled Tumor Protein (rTbgTCTP) and its interaction with Glossina midgut bacteria.

    PubMed

    Bossard, Géraldine; Bartoli, Manon; Fardeau, Marie-Laure; Holzmuller, Philippe; Ollivier, Bernard; Geiger, Anne

    2017-09-03

    In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.

  3. Susceptibility of bacteria isolated from acute gastrointestinal infections to rifaximin and other antimicrobial agents in Mexico.

    PubMed

    Novoa-Farías, O; Frati-Munari, A C; Peredo, M A; Flores-Juárez, S; Novoa-García, O; Galicia-Tapia, J; Romero-Carpio, C E

    2016-01-01

    Bacterial resistance may hamper the antimicrobial management of acute gastroenteritis. Bacterial susceptibility to rifaximin, an antibiotic that achieves high fecal concentrations (up to 8,000μg/g), has not been evaluated in Mexico. To determine the susceptibility to rifaximin and other antimicrobial agents of enteropathogenic bacteria isolated from patients with acute gastroenteritis in Mexico. Bacterial strains were analyzed in stool samples from 1,000 patients with diagnosis of acute gastroenteritis. The susceptibility to rifaximin (RIF) was tested by microdilution (<100, <200, <400 and <800μg/ml) and susceptibility to chloramphenicol (CHL), trimethoprim-sulfamethoxazole (T-S), neomycin (NEO), furazolidone (FUR), fosfomycin (FOS), ampicillin (AMP) and ciprofloxacin (CIP) was tested by agar diffusion at the concentrations recommended by the Clinical & Laboratory Standards Institute and the American Society for Microbiology. Isolated bacteria were: enteropathogenic Escherichia coli (E. coli) (EPEC) 531, Shigella 120, non-Typhi Salmonella 117, Aeromonas spp. 80, enterotoxigenic E. coli (ETEC) 54, Yersinia enterocolitica 20, Campylobacter jejuni 20, Vibrio spp. 20, Plesiomonas shigelloides 20, and enterohemorrhagic E. coli (EHEC 0:157) 18. The overall cumulative susceptibility to RIF at <100, <200, <400, and <800μg/ml was 70.6, 90.8, 99.3, and 100%, respectively. The overall susceptibility to each antibiotic was: AMP 32.2%, T-S 53.6%, NEO 54.1%, FUR 64.7%, CIP 67.3%, CLO 73%, and FOS 81.3%. The susceptibility to RIF <400 and RIF <800μg/ml was significantly greater than with the other antibiotics (p<0.001). Resistance of enteropathogenic bacteria to various antibiotics used in gastrointestinal infections is high. Rifaximin was active against 99-100% of these enteropathogens at reachable concentrations in the intestine with the recommended dose. Copyright © 2015 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  4. Intracellular Bacteria in the Pathogenesis of Escherichia coli Urinary Tract Infection in Children

    PubMed Central

    Robino, Luciana; Scavone, Paola; Araujo, Lucia; Algorta, Gabriela; Zunino, Pablo; Pírez, María Catalina; Vignoli, Rafael

    2014-01-01

    Background. Uropathogenic Escherichia coli (UPEC) is the most common agent of urinary tract infection (UTI). The classic model of pathogenesis proposes the ascent of UPEC by the urethra and external adherence to the urothelium. Recently, the ability of UPEC to invade urothelial cells and to form intracellular bacterial communities (IBCs) has been described. Methods. The objective of the present study was to determine the presence of intracellular bacteria (IB) in children with UTI caused by E. coli and to characterize its virulence attributes and its relation with clinical outcomes. One hundred thirty-three children with E. coli UTI who attended a reference children's hospital between June and November 2012 were included. Urine samples were analyzed by optical and confocal microscopy looking for exfoliated urothelial cells with IB. Phylogenetic group and 24 virulence factors of UPEC were determined using multiplex polymerase chain reaction. Medical records were analyzed. Results. The presence of IB was detected in 49 of 133 (36.8%) samples by confocal microscopy, in 30 cases as IBC, and in 19 as isolated intracellular bacteria (IIB). Only 50% of these cases could be detected by light microscopy. Seventy-four medical records were analyzed, 34 with IBC/IIB, 40 without IB. Any virulence gene was associated with IBC/IIB. The presence of IBC/IIB was associated with recurrent UTI (odds ratio [OR], 3.3; 95% confidence interval [CI], 1.3–9; P = .017), especially in children without urinary tract functional or morphological abnormalities (OR, 8.0; 95% CI, 2.3–27.4; P = .000). IBCs were associated with lower urinary tract syndrome (OR, 3.6; 95% CI, 1.1–11.8; P = .05) and absence of fever (P = .009). Conclusions. IBCs/IIB could explain a high proportion of children with recurrent UTI. PMID:25091303

  5. Interaction of Saccharomyces boulardii with Salmonella enterica Serovar Typhimurium Protects Mice and Modifies T84 Cell Response to the Infection

    PubMed Central

    Martins, Flaviano S.; Dalmasso, Guillaume; Arantes, Rosa M. E.; Doye, Anne; Lemichez, Emmanuel; Lagadec, Patricia; Imbert, Veronique; Peyron, Jean-François; Rampal, Patrick; Nicoli, Jacques R.; Czerucka, Dorota

    2010-01-01

    Background Salmonella pathogenesis engages host cells in two-way biochemical interactions: phagocytosis of bacteria by recruitment of cellular small GTP-binding proteins induced by the bacteria, and by triggering a pro-inflammatory response through activation of MAPKs and nuclear translocation of NF-κB. Worldwide interest in the use of functional foods containing probiotic bacteria for health promotion and disease prevention has increased significantly. Saccharomyces boulardii is a non-pathogenic yeast used as a probiotic in infectious diarrhea. Methodology/Principal Findings In this study, we reported that S. boulardii (Sb) protected mice from Salmonella enterica serovar Typhimurium (ST)-induced death and prevented bacterial translocation to the liver. At a molecular level, using T84 human colorectal cancer cells, we demonstrate that incubation with Sb before infection totally abolished Salmonella invasion. This correlates with a decrease of activation of Rac1. Sb preserved T84 barrier function and decreased ST-induced IL-8 synthesis. This anti-inflammatory effect was correlated with an inhibitory effect of Sb on ST-induced activation of the MAPKs ERK1/2, p38 and JNK as well as on activation of NF-κB. Electron and confocal microscopy experiments showed an adhesion of bacteria to yeast cells, which could represent one of the mechanisms by which Sb exerts its protective effects. Conclusions Sb shows modulating effects on permeability, inflammation, and signal transduction pathway in T84 cells infected by ST and an in vivo protective effect against ST infection. The present results also demonstrate that Sb modifies invasive properties of Salmonella. PMID:20111723

  6. Zebrafish and Streptococcal Infections.

    PubMed

    Saralahti, A; Rämet, M

    2015-09-01

    Streptococcal bacteria are a versatile group of gram-positive bacteria capable of infecting several host organisms, including humans and fish. Streptococcal species are common colonizers of the human respiratory and gastrointestinal tract, but they also cause some of the most common life-threatening, invasive infections in humans and aquaculture. With its unique characteristics and efficient tools for genetic and imaging applications, the zebrafish (Danio rerio) has emerged as a powerful vertebrate model for infectious diseases. Several zebrafish models introduced so far have shown that zebrafish are suitable models for both zoonotic and human-specific infections. Recently, several zebrafish models mimicking human streptococcal infections have also been developed. These models show great potential in providing novel information about the pathogenic mechanisms and host responses associated with human streptococcal infections. Here, we review the zebrafish infection models for the most relevant streptococcal species: the human-specific Streptococcus pneumoniae and Streptococcus pyogenes, and the zoonotic Streptococcus iniae and Streptococcus agalactiae. The recent success and the future potential of these models for the study of host-pathogen interactions in streptococcal infections are also discussed. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  7. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  8. Association study of Demodex bacteria and facial dermatoses based on DGGE technique.

    PubMed

    Zhao, YaE; Yang, Fan; Wang, RuiLing; Niu, DongLing; Mu, Xin; Yang, Rui; Hu, Li

    2017-03-01

    The role of bacteria is unclear in the facial skin lesions caused by Demodex. To shed some light on this issue, we conducted a case-control study comparing cases with facial dermatoses with controls with healthy skin using denaturing gradient gel electrophoresis (DGGE) technique. The bacterial diversity, composition, and principal component were analyzed for Demodex bacteria and the matched facial skin bacteria. The result of mite examination showed that all 33 cases were infected with Demodex folliculorum (D. f), whereas 16 out of the 30 controls were infected with D. f, and the remaining 14 controls were infected with Demodex brevis (D. b). The diversity analysis showed that only evenness index presented statistical difference between mite bacteria and matched skin bacteria in the cases. The composition analysis showed that the DGGE bands of cases and controls were assigned to 12 taxa of 4 phyla, including Proteobacteria (39.37-52.78%), Firmicutes (2.7-26.77%), Actinobacteria (0-5.71%), and Bacteroidetes (0-2.08%). In cases, the proportion of Staphylococcus in Firmicutes was significantly higher than that in D. f controls and D. b controls, while the proportion of Sphingomonas in Proteobacteria was significantly lower than that in D. f controls. The between-group analysis (BGA) showed that all the banding patterns clustered into three groups, namely, D. f cases, D. f controls, and D. b controls. Our study suggests that the bacteria in Demodex should come from the matched facial skin bacteria. Proteobacteria and Firmicutes are the two main taxa. The increase of Staphylococcus and decrease of Sphingomonas might be associated with the development of facial dermatoses.

  9. Bacteremias in liver transplant recipients: shift toward gram-negative bacteria as predominant pathogens.

    PubMed

    Singh, Nina; Wagener, Marilyn M; Obman, Asia; Cacciarelli, Thomas V; de Vera, Michael E; Gayowski, Timothy

    2004-07-01

    During the 1990s, gram-positive bacteria emerged as major pathogens after liver transplantation. We sought to determine whether the pathogens associated with bacteremias in liver transplant recipients have changed. Patients included 233 liver transplant recipients transplanted between 1989 and 2003. The proportion of all infections due to bacteremias increased significantly over time (P <.0001). Of other major infections, a trend toward a decrease in fungal infections (P =.089) and a significant decrease in cytomegalovirus (CMV) disease (P =.0004) were documented. Whereas the proportion of bacteremias due to gram-negatives increased from 25% in the period of 1989-1993 to 51.8% in 1998-03, that of gram-positive bacteria decreased from 75% in the period of 1989-93 to 48.2% in the period of 1998-2003. Methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, and Pseudomonas aeruginosa were the most frequent pathogens in bacteremic patients. The incidence of bacteremias due to MRSA and Pseudomonas aeruginosa has remained unchanged (P <.20); however, that due to enteric gram-negative bacteria, particularly Klebsiella pneumoniae has increased (P =.02). Klebsiella pneumoniae isolates in the current quartile were not clonally related. In conclusion, bacteremias as a proportion of all infections in liver transplant recipients have increased significantly over time, due in part to a decline in infections due to other major pathogens, e.g., fungi, primarily Candida species, and CMV. Gram-negative bacteria have emerged as predominant pathogens in bacteremic liver transplant recipients.

  10. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria?

    PubMed Central

    Exner, Martin; Bhattacharya, Sanjay; Christiansen, Bärbel; Gebel, Jürgen; Goroncy-Bermes, Peter; Hartemann, Philippe; Heeg, Peter; Ilschner, Carola; Kramer, Axel; Larson, Elaine; Merkens, Wolfgang; Mielke, Martin; Oltmanns, Peter; Ross, Birgit; Rotter, Manfred; Schmithausen, Ricarda Maria; Sonntag, Hans-Günther; Trautmann, Matthias

    2017-01-01

    In the past years infections caused by multidrug-resistant Gram-negative bacteria have dramatically increased in all parts of the world. This consensus paper is based on presentations, subsequent discussions and an appraisal of current literature by a panel of international experts invited by the Rudolf Schülke Stiftung, Hamburg. It deals with the epidemiology and the inherent properties of Gram-negative bacteria, elucidating the patterns of the spread of antibiotic resistance, highlighting reservoirs as well as transmission pathways and risk factors for infection, mortality, treatment and prevention options as well as the consequences of their prevalence in livestock. Following a global, One Health approach and based on the evaluation of the existing knowledge about these pathogens, this paper gives recommendations for prevention and infection control measures as well as proposals for various target groups to tackle the threats posed by Gram-negative bacteria and prevent the spread and emergence of new antibiotic resistances. PMID:28451516

  11. Antibacterial activity of extracts from five medicinal plants and their formula against bacteria that cause chronic wound infection.

    PubMed

    Temrangsee, Pornthep; Kondo, Sumalee; Itharat, Arunporn

    2011-12-01

    Chronic wound is caused by various factors such as chemotherapy, gene damage, treatment with steroids, diabetes mellitus, renal failure, blood pressure, infection and nutritional factors. One of the most common causes is bacterial infection. Antibacterial activity of several herbal plants has been reported. Thai medicinal plants which possess biological activities are potential to develop an alternative treatment of bacterial infection. To study efficiency of extracts from medicinal plants and their formula against bacteria that cause chronic wound infection. Extraction of Thai medicinal plants including Curcuma longa Linn, Rhinacanthus nasutus Linn, Garcinia mangostana Linn, Caesalpinia sappan Linn and Centellia asiatica Linn was performed by maceration with 95% ethanol and decoction followed by freeze dry. Formulation was conducted by varying the ratio of each components. Antibacterial activity were determined disk diffusion and broth dilution against Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Acinetobacter baumanii, Escherichia coli and Klebsiella pneumoniae. Ethanolic extracts exhibited better antibacterial activity against tested strains than water extracts. Antibacterial activity of Caesalpinia sappan Linn. against S. aureus and MRSA showed the most effective with MIC value of 0.625 mg/ml. One of the five different formulas which contained two times proportion of C. sappan revealed that this formula was able to inhibit all tested strains with the MIC ranging between 0.156 mg/ml and 10 mg/ml. C. sappan is the most effective herbal plant. The formula with two times proportion of C. sappan is potentially best formula for development of medicinal product of chronic wound infection. The potential active compound of C. sappan is suggested for further investigation of antimicrobial activity and other biological properties.

  12. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy.

    PubMed

    Hu, Qinglian; Wu, Min; Fang, Chun; Cheng, Changyong; Zhao, Mengmeng; Fang, Weihuan; Chu, Paul K; Ping, Yuan; Tang, Guping

    2015-04-08

    Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.

  13. Bacteria entombed in the center of cholesterol gallstones induce fewer infectious manifestations than bacteria in the matrix of pigment stones.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2007-10-01

    The clinical significance of bacteria in the pigment centers of cholesterol stones is unknown. We compared the infectious manifestations and characteristics of bacteria from pigment stones and predominantly cholesterol stones. Three hundred forty patients were studied. Bile was cultured. Gallstones were cultured and examined with scanning electron microscopy. Level of bacterial immunoglobulin G (bile, serum), complement killing, and tumor necrosis factor-alpha production were determined. Twenty-three percent of cholesterol stones and 68% of pigment stones contained bacteria (P < 0.0001). Stone culture correlated with scanning electron microscopy results. Pigment stone bacteria were more often present in bile and blood. Cholesterol stone bacteria caused more severe infections (19%) than sterile stones (0%), but less than pigment stone bacteria (57%) (P < 0.0001). Serum and bile from patients with cholesterol stone bacteria had less bacterial-specific immunoglobulin G. Cholesterol stone bacteria produced more slime. Pigment stone bacteria were more often killed by a patient's serum. Tumor necrosis factor-alpha production of the groups was similar. Bacteria are readily cultured from cholesterol stones with pigment centers, allowing for analysis of their virulence factors. Bacteria sequestered in cholesterol stones cause infectious manifestations, but less than bacteria in pigment stones. Possibly because of their isolation, cholesterol stone bacteria were less often present in bile and blood, induced less immunoglobulin G, were less often killed by a patient's serum, and demonstrated fewer infectious manifestations than pigment stone bacteria. This is the first study to analyze the clinical relevance of bacteria within cholesterol gallstones.

  14. Anaerobic infections in surgical wards: a two year study

    PubMed Central

    Ananth-Shenoy, Padmaja; Vishwanath, Shashidhar; Targain, Ryumzook; Shetty, Seema; Sunil-Rodrigues, Gabriel; Mukhopadhyay, Chiranjay; Chawla, Kiran

    2016-01-01

    Background and Objectives: Anaerobic bacteria are recognized as important pathogens in surgical infections. However, they are the most overlooked microorganisms by the clinic and the laboratory because of the tedious culture techniques with longer turn-around times. The study was aimed to analyze the frequency of anaerobic bacterial surgical infections and their predisposing factors. Materials and Methods: A retrospective study was conducted over a period of two years including patients with surgical infections. The specimens were processed by Gram staining, aerobic and anaerobic culture. The anaerobic bacteria were isolated using standard procedures. The predisposing factors and clinical presentation were studied in these patients. Results: A total of 261 specimens were received from patients with diverse infections from surgical wards. Ninety-one anaerobes were isolated from 64 (24.5%) surgical patients with a predominance of Gram-negative bacilli (37.4%). Anaerobic bacteria as monomicrobial isolates were seen in 21.9% isolates. Anaerobic bacterial isolation along with aerobic bacteria was seen in 71.9% of patients and polymicrobial anaerobic growth was detected in 6.3% of patients. Diabetes mellitus (28, 43.8%) was found to be the most frequent predisposing factor. Bacteroides fragilis group (20.9%) were the most frequent anaerobic Gram-negative bacilli followed by Prevotella spp. (12.1%). Peptostreptococcus anaerobius was the predominant anaerobic cocci isolated (14.3%). Necrotizing fascitis (34.4%) was the most common clinical presentation with anaerobic etiology followed by deep seated abscesses (23.4%). Conclusion: Anaerobic bacteria were isolated from a significant proportion of surgical infections. To avoid therapeutic failures, anaerobic bacteria in surgical infections need to be recognized by surgeons and laboratorians. PMID:27928485

  15. [The significance of glucose positive coliform bacteria and potentially pathogenic bacteria as an indicator of epidemiological safety of tap water].

    PubMed

    Zhuravlev, P V; Aleshnya, V V; Panasovets, O P; Morozova, A A; Artemova, T Z; Talaeva, Yu G; Zagaynova, A V

    2013-01-01

    Due to intensive anthropogenic pollution of water environment generally accepted indicators of epidemic security of water bodies--common bacteria (CB) and thermotolerant coliform bacteria (TCB) do not always permit to obtain an objective characterization of bacterial contamination of tap water. From the point of view of authors the integral index--glucose positive coliform bacteria most adequately reflect the sanitary-hygienic and epidemiological situation of water bodies. In monitoring for bacterial quality of tap water it is advisable to determine glucose positive coliform bacteria, that will provide the relevance of estimation of the epidemiological safety of water use. According to the method developed by the authors the calculation of the index of population risk of acute intestinal infections (AHI) occurrence in dependence on the quality of tap water in Azov and Tsimlyansk towns.

  16. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria.

    PubMed

    Velmurugan, Palanivel; Lee, Sang-Myeong; Cho, Min; Park, Jung-Hee; Seo, Sang-Ki; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

    2014-10-01

    We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV-Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.

  17. Chicken-specific kinome array reveals that Salmonella enterica serovar Enteritidis modulates host immune signaling pathways in the cecum to establish a persistence infection

    USDA-ARS?s Scientific Manuscript database

    Non-typhoidal Salmonella enterica induce an early, short-lived, pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The und...

  18. Public health significance of antimicrobial-resistant gram-negative bacteria in raw bulk tank milk.

    PubMed

    Straley, B A; Donaldson, S C; Hedge, N V; Sawant, A A; Srinivasan, V; Oliver, S P; Jayarao, B M

    2006-01-01

    The dairy farm environment and animals on the farm serve as important reservoirs of pathogenic and commensal bacteria that could potentially gain access to milk in the bulk tank via several pathways. Pathogenic gram-negative bacteria can gain access to bulk tank milk from infected mammary glands, contaminated udders and milking machines, and/or from the dairy farm environment. Contaminated raw milk when consumed by humans or fed to animals on the farm can result in gastroenteric infections in humans and animals and also provide an opportunity for organisms to colonize the farm environment. This scenario becomes much more complicated when pathogenic bacteria such as Salmonella, Shiga toxin-producing Escherichia coli, and commensal gram-negative enteric bacteria encode for antimicrobial resistance determinants. In recent years, the role of commensal bacteria as reservoirs of genetic determinants for antimicrobial resistance has come under closer scrutiny. Commensal bacteria in bulk tank milk can be a significant reservoir of antimicrobial determinants. Raw milk consumption can result in exposure to antimicrobial-resistant commensal gram-negative bacteria. This paper examines the prevalence and role of commensal gram-negative enteric bacteria in bulk tank milk and their public health significance.

  19. Increased susceptibility to Pseudomonas aeruginosa infection under hindlimb-unloading conditions

    NASA Technical Reports Server (NTRS)

    Aviles, Hernan; Belay, Tesfaye; Fountain, Kimberly; Vance, Monique; Sonnenfeld, Gerald

    2003-01-01

    It has been reported that spaceflight conditions alter the immune system and resistance to infection [Belay T, Aviles H, Vance M, Fountain K, and Sonnenfeld G. J Allergy Clin Immunol 170: 262-268, 2002; Hankins WR and Ziegelschmid JF. In: Biomedical Results of Apollo. Washington, DC: NASA, 1975, p. 43-81. (NASA Spec. Rep. SP-368)]. Ground-based models, including the hindlimb-unloading model, have become important tools for increasing understanding of how spaceflight conditions can influence physiology. The objective of the present study was to determine the effect of hindlimb unloading on the susceptibility of mice to Pseudomonas aeruginosa infection. Hindlimb-unloaded and control mice were subcutaneously infected with 1 LD50 of P. aeruginosa. Survival, bacterial organ load, and antibody and corticosterone levels were compared among the groups. Hindlimb unloading had detrimental effects for infected mice. Animals in the hindlimb-unloaded group, compared with controls, 1). showed significantly increased mortality and reduced time to death, 2). had increased levels of corticosterone, and 3). were much less able to clear bacteria from the organs. These results suggest that hindlimb unloading may induce the production of corticosterone, which may play a critical role in the modulation of the immune system leading to increased susceptibility to P. aeruginosa infection.

  20. Purinergic signaling modulates the cerebral inflammatory response in experimentally infected fish with Streptococcus agalactiae: an attempt to improve the immune response.

    PubMed

    Souza, Carine F; Baldissera, Matheus D; Bottari, Nathiele B; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Baldisserotto, Bernardo

    2018-06-01

    Appropriate control of the immune response is a critical determinant of fish health, and the purinergic cascade has an important role in the immune and inflammatory responses. This cascade regulates the levels of adenosine triphosphate (ATP), adenosine diphosphate, adenosine monophosphate and adenosine (Ado), molecules involved in physiological or pathological events as inflammatory and anti-inflammatory mediators. Thus, the aim of this study was to evaluate whether purinergic signaling, through the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase, and adenosine deaminase (ADA), is capable of modulating the cerebral immune and inflammatory responses in silver catfish that is experimentally infected with Streptococcus agalactiae. Cerebral NTPDase (with ATP as substrate) and 5'-nucleotidase activities increased, while ADA activity decreased in silver catfish that is experimentally infected with S. agalactiae, compared to the control group. Moreover, the cerebral levels of ATP and Ado increased in infected animals compared to the uninfected control group. Brain histopathology in infected animals revealed inflammatory demyelination (the presence of occasional bubbly collections), increased cellular density in the area near to pia-mater and intercellular edema. Based on this evidence, the modulation of the purinergic cascade by the enzymes NTPDase, 5'-nucleotidase, and ADA exerts an anti-inflammatory profile due to the regulation of ATP and Ado levels. This suggests involvement of purinergic enzymes on streptococcosis pathogenesis, through regulating cerebral ATP and Ado levels, molecules known to participate in physiological or pathological events as inflammatory and anti-inflammatory mediators, respectively. In summary, the modulation of the cerebral purinergic cascade exerts an anti-inflammatory profile in an attempt to reduce inflammatory damage.

  1. Cranberry for Urinary Tract Infection: From Bench to Bedside.

    PubMed

    Nabavi, Seyed Fazel; Sureda, Antoni; Daglia, Maria; Izadi, Morteza; Nabavi, Seyed Mohammad

    2017-01-01

    Urinary tract infections are common infectious diseases which can occur in any part of the urinary tract such as bladder, kidney, ureters, and urethra. They are commonly caused by bacteria that enter through the urethra. Urinary tract infections commonly develop in the bladder and spread to renal tissues. Up to now, there are different antimicrobial agents which have beneficial role on urinary tract infections. However, most of them cause different adverse effects and therefore, much attention has been paid to the search for effective therapeutic agents with negligible adverse effects. Cranberry is known as one of the most important edible plants, which possesses potent antimicrobial effects against the bacteria responsible for urinary tract infections. Growing evidence has shown that cranberry suppresses urinary tract infections and eradicates the bacteria. Therefore, the aim of this study is to critically review the available literature regarding the antimicrobial activities of cranberry against urinary tract infection microorganisms. In addition, we discuss etiology, epidemiology, risk factors, and current drugs of urinary tract infections to provide a more complete picture of this disease.

  2. Are there clinical signs and symptoms of infection to indicate the presence of multidrug-resistant bacteria in venous ulcers?

    PubMed

    Dos Santos, Silvana de Lima Vieira; Martins, Marlene Andrade; do Prado, Marinésia Aparecida; Soriano, José Verdú; Bachion, Maria Márcia

    2017-12-01

    The selection of topical and systemic therapies for the treatment of venous ulcers with signs of infection is challenging and should be accompanied by specific precautionary measures to protect against cross-contamination in the presence of multidrug-resistant microorganisms. However, there are still no clinical indicators for this situation, and confirmation of resistant strains occurs through culture and sensitivity, which can take up to 14 days. During this period, protective measures may no longer be taken, contributing to the spread of these pathogens. This study aimed to analyze the relationship between clinical signs and symptoms of infection in venous ulcers and the presence of antimicrobial-resistant Staphylococcus aureus and/or Pseudomonas spp. A cross-sectional study was developed including 69 patients with 98 venous ulcers. Clinical observation protocol was applied to detect infection indicators established by the European Wound Management Association and microbiological analysis of samples of the lesions. Fisher's exact test and χ 2 were used for analyses (P < 0.05). Two indicators of infection predominated (f >70%): discoloration of the opaque type and/or dark brick red and increased exudate volume; 31 (31.6%) ulcer samples showed positive culture for the bacteria studied. There was no relationship between signs and symptoms of infection and the presence of multidrug-resistant microorganisms. Taking into account the percentage of lesions with resistant strains, for safe care, contact precautionary measures should be implemented in the treatment rooms, in addition to standard precautions. Copyright © 2017 Society for Vascular Nursing, Inc. Published by Elsevier Inc. All rights reserved.

  3. Feasibility of quantitatively diagnosing cornea infection using Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bai, Yanru; Chen, Keren; Mishra, Arti; Beuerman, Roger; Liu, Quan

    2017-02-01

    Ocular infection is a serious eye disease that could lead to blindness without prompt and proper treatment. In pathology, ocular infection is caused by microorganisms such as bacteria, fungi or viruses. The essential prerequisite for the optimal treatment of ocular infection is to identify the microorganism causing infection early as each type of microorganism requires a different therapeutic approach. The clinical procedure for identifying the microorganism species causing ocular infection includes Gram staining (for bacteria)/microscopy (for fungi) and the culture of corneal surface scraping, or aqueous and vitreous smear samples taken from the surface of infected eyes. The culture procedure is labor intensive and expensive. Moreover, culturing is time consuming, which usually takes a few days or even weeks. Such a long delay in diagnosis could result in the exacerbation of patients' symptoms, the missing of the optimal time frame for initiating treatment and subsequently the rising cost for disease management. Raman spectroscopy has been shown highly effective for non-invasive identification of both fungi and bacteria qualitatively. In this study, we investigate the feasibility of identifying the microorganisms of ocular infection and quantifying the concentrations using Raman spectroscopy by measuring not only gram negative and gram positive bacteria but also infected cornea. By applying a modified orthogonal projection approach, the relative concentration of each bacteria species could be quantified. Our results indicate the great potential of Raman spectroscopy as an alternative tool for non-invasive diagnosis of ocular infection and could play a significantly role in future ophthalmology.

  4. Anaerobic Infections in Children with Neurological Impairments.

    ERIC Educational Resources Information Center

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  5. Modulation of Neutrophil Apoptosis by Antimicrobial Peptides

    PubMed Central

    Nagaoka, Isao; Suzuki, Kaori; Niyonsaba, François; Tamura, Hiroshi; Hirata, Michimasa

    2012-01-01

    Peptide antibiotics possess the potent antimicrobial activities against invading microorganisms and contribute to the innate host defense. Human antimicrobial peptides, α-defensins (human neutrophil peptides, HNPs), human β-defensins (hBDs), and cathelicidin (LL-37) not only exhibit potent bactericidal activities against Gram-negative and Gram-positive bacteria, but also function as immunomodulatory molecules by inducing cytokine and chemokine production, and inflammatory and immune cell activation. Neutrophil is a critical effector cell in host defense against microbial infection, and its lifespan is regulated by various pathogen- and host-derived substances. Here, we provided the evidence that HNP-1, hBD-3, and LL-37 cannot only destroy bacteria but also potently modulate (suppress) neutrophil apoptosis, accompanied with the phosphorylation of ERK-1/-2, the downregulation of tBid (an proapoptotic protein) and upregulation of Bcl-xL (an antiapoptotic protein), and the inhibition of mitochondrial membrane potential change and caspase 3 activity, possibly via the actions on the distinct receptors, the P2Y6 nucleotide receptor, the chemokine receptor CCR6, and the low-affinity formyl-peptide receptor FPRL1/the nucleotide receptor P2X7, respectively. Suppression of neutrophil apoptosis results in the prolongation of their lifespan and may be advantageous for the host defense against bacterial invasion. PMID:23724322

  6. Regulation of Ghrelin Receptor by Periodontal Bacteria In Vitro and In Vivo.

    PubMed

    Nokhbehsaim, Marjan; Damanaki, Anna; Nogueira, Andressa Vilas Boas; Eick, Sigrun; Memmert, Svenja; Zhou, Xiaoyan; Nanayakkara, Shanika; Götz, Werner; Cirelli, Joni Augusto; Jäger, Andreas; Deschner, James

    2017-01-01

    Ghrelin plays a major role in obesity-related diseases which have been shown to be associated with periodontitis. This study sought to analyze the expression of the functional receptor for ghrelin (GHS-R1a) in periodontal cells and tissues under microbial conditions in vitro and in vivo . The GHS-R1a expression in human periodontal cells challenged with the periodontopathogen Fusobacterium nucleatum , in gingival biopsies from periodontally healthy and diseased individuals, and from rats with and without ligature-induced periodontitis was analyzed by real-time PCR, immunocytochemistry, and immunofluorescence. F. nucleatum induced an initial upregulation and subsequent downregulation of GHS-R1a in periodontal cells. In rat experimental periodontitis, the GHS-R1a expression at periodontitis sites was increased during the early stage of periodontitis, but significantly reduced afterwards, when compared with healthy sites. In human gingival biopsies, periodontally diseased sites showed a significantly lower GHS-R1a expression than the healthy sites. The expression of the functional ghrelin receptor in periodontal cells and tissues is modulated by periodontal bacteria. Due to the downregulation of the functional ghrelin receptor by long-term exposure to periodontal bacteria, the anti-inflammatory actions of ghrelin may be diminished in chronic periodontal infections, which could lead to an enhanced periodontal inflammation and tissue destruction.

  7. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products.

    PubMed

    Oliveira, Pedro M; Zannini, Emanuele; Arendt, Elke K

    2014-02-01

    Lactic acid bacteria (LAB) metabolites are a reliable alternative for reducing fungal infections pre-/post-harvest with additional advantages for cereal-base products which convene the food market's trend. Grain industrial use is in expansion owing to its applicability in generating functional food. The food market is directed towards functional natural food with clear health benefits for the consumer in detriment to chemical additives. The food market chain is becoming broader and more complex, which presents an ever-growing fungal threat. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. Cereal infections may occur in the field or post-processing, along the food chain. Consequently, the investigation of LAB metabolites with antifungal activity has gained prominence in the scientific research community. LAB bioprotection retards the development of fungal diseases in the field and inhibit pathogens and spoilage fungi in food products. In addition to the health safety improvement, LAB metabolites also enhance shelf-life, organoleptic and texture qualities of cereal-base foods. This review presents an overview of the fungal impact through the cereal food chain leading to investigation on LAB antifungal compounds. Applicability of LAB in plant protection and cereal industry is discussed. Specific case studies include Fusarium head blight, malting and baking. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection.

    PubMed

    Khawaldeh, A; Morales, S; Dillon, B; Alavidze, Z; Ginn, A N; Thomas, L; Chapman, S J; Dublanchet, A; Smithyman, A; Iredell, J R

    2011-11-01

    We describe the success of adjunctive bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection in the context of bilateral ureteric stents and bladder ulceration, after repeated failure of antibiotics alone. No bacteriophage-resistant bacteria arose, and the kinetics of bacteriophage and bacteria in urine suggest self-sustaining and self-limiting infection.

  9. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria

    PubMed Central

    Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2016-01-01

    Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens. DOI: http://dx.doi.org/10.7554/eLife.19605.001 PMID:27472897

  10. [Prevalence and features of pathogenic bacteria in the department of hematology without bone marrow transplantation in Peking Union Medical College Hospital from 2010 to 2012].

    PubMed

    Wnag, Lu; Yang, Chen; Zhang, Qian; Han, Bing; Zhuang, Jun-jing; Chen, Miao; Zou, Nong; Li, Jian; Duan, Ming-hui; Zhang, Wei; Zhu, Tie-nan; Xu, Ying; Wang, Shu-jie; Zhou, Dao-bin; Zhao, Yong-qiang; Zhang, Hui; Wang, Peng; Xu, Ying-chun

    2014-08-01

    To investigate the incidence, pathogens, and clinical features of infection in consecutive cases from 2010 to 2012 in Peking Union Medical College Hospital. The incidence, pathogen, treatment, and outcomes of patients with hematological diseases who had positive findings of bacterium in their samples from 2010 to 2012 were retrospectively analyzed. There were 449 positive samples (5.8%) from 4 890 patients during this period, among which 388 were proved to be with pathogenic bacteria. Samples separated from patients with community-aquired infections accounted for 8.4% of all positive samples. Most community-aquired infections were caused by Gram-negative bacteria (75%), although no multidrug-resistant bacteria was observed. Samples separated from patients with nosocomial infections accounted for 91.6% of all positive samples. Respiratory tract (49.4%) and peripheral blood (32.6%) were the most common samples with positive results. Skin soft tissues (10.4%), and urine (3.7%) were less common samples. Most of the pathogenic bacteria of the nosocomial infections were Gram-negative (66.9%). The most common Gram-negative bacteria included Escherichia coli (13.8%), Pseudomonas aeruginosa (12.1%), and Klebsiella pneumonia (12.1%), while Staphylococcus aureus (10.4%), Enterococcus faecium (7.0%), and Staphylococcus epidermidis (5.1%) were the most common Gram-positive bacteria. Gram-negative bacteria consisted of most of sputum samples and peripheral blood samples. Samples from the surface of skin wound and anal swab were composed largely by Gram-positive bacteria (63.8%). The detection rates of extended-spectrum beta-lactamase-producing Klebsiella pneumonia/Klebsiella oxytoca, Escherichia coli, and Proteus mirabilis were 24.0%, 87.9% and 38.4%, respectively. The resistance to Acinetobacter baumannii was serious. Multidrug-resistant, extensive drug resistant and pan drug resistant A. baumannii acountted for 74% of all A. Baumannii infections. Stenotrophomonas maltophilia

  11. Bacteria from bronchoalveolar lavage fluid from children with suspected chronic lower respiratory tract infection: results from a multi-center, cross-sectional study in Spain.

    PubMed

    Escribano Montaner, Amparo; García de Lomas, Juan; Villa Asensi, José Ramón; Asensio de la Cruz, Oscar; de la Serna Blázquez, Olga; Santiago Burruchaga, Mikel; Mondéjar López, Pedro; Torrent Vernetta, Alba; Feng, Yang; Van Dyke, Melissa K; Reyes, Janet; Garcia-Corbeira, Pilar; Talarico, Carla A

    2018-02-01

    This cross-sectional study assessed the prevalence of bacteria isolated from Spanish children with suspected chronic lower respiratory tract infection (LRTI) for whom bronchoalveolar lavage (BAL) was indicated. BAL fluid (BALF) was collected from 191 children (aged ≥ 6 months to < 6 years, with persistent or recurrent respiratory symptoms, non-responders to usual treatment) and cultured. Nasopharyngeal swabs (NPSs) were also obtained and cultured to assess concordance of BALF and NPS findings in the same patient. Streptococcus pneumoniae, Haemophilus influenzae, or Moraxella catarrhalis were identified from BALF with a bacterial load indicative of infection (> 10 4  colony-forming units/mL) in 10.5, 8.9, and 6.3% of children, respectively. Clinical characteristics were similar among participants, regardless of positivity status for any of the bacteria. Approximately 26% of pneumococcal isolates were PCV13 serotypes, and 96% of H. influenzae isolates were non-typeable (NTHi). Concordance between BALF and NPS isolates was 51.0% for S. pneumoniae, 52.1% for H. influenzae, and 22.0% for M. catarrhalis. S. pneumoniae, NTHi, and M. catarrhalis were the main bacteria detected in BALF and NPS. Children with suspected chronic LRTI may benefit from a vaccine protecting against NTHi. What is Known: • Chronic lower respiratory tract infection (LRTI) in children can cause high morbidity and is a major use of healthcare resources worldwide. Despite this, their etiology or potential preventive measures are poorly assessed. • Bronchoalveolar lavage can be used to determine bacterial etiology of chronic LRTI. What is New: • We used conventional and molecular techniques to show that Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis were present in the LRT of Spanish children with suspected chronic LRTI • Concordance between isolates from bronchoalveolar lavage fluid and nasopharyngeal swabs was low, suggesting that samples from the

  12. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development.

    PubMed

    Gonzalez-Ceron, Lilia; Santillan, Frida; Rodriguez, Mario H; Mendez, Domingo; Hernandez-Avila, Juan E

    2003-05-01

    Bacterial infections were investigated in midguts of insectary and field-collected Anopheles albimanus Weidemann from southern Mexico. Serratia marcescens, Enterobacter cloacae and Enterobacter amnigenus 2, Enterobacter sp., and Serratia sp. were isolated in field samples obtained in 1998, but only Enterobacter sp. was recovered in field samples of 1997 and no bacteria were isolated from insectary specimens. These bacteria were offered along with Plasmodium vivax infected blood to aseptic insectary An. albimanus, and the number of infected mosquitoes as well as the oocyst densities assessed after 7d. Plasmodium vivax infections in mosquitoes co-infected with En. amnigenus 2, En. cloacae, and S. marcensces were 53, 17, and 210 times, respectively, lower than in control mosquitoes, and the mean oocyst density in mosquitoes co-infected with En. cloacae was 2.5 times lower than in controls. Mortality was 13 times higher in S. marcensces-infected mosquitoes compared with controls. The overall midgut bacterial infection in mosquito field populations may influence P. vivax transmission, and could contribute to explain the annual variations in malaria incidence observed in the area.

  13. Multiplex PCR reveals that viruses are more frequent than bacteria in children with cystic fibrosis.

    PubMed

    Miró-Cañís, Sílvia; Capilla-Rubio, Sílvia; Marzo-Checa, Laura; Fontanals-Aymerich, Dionisia; Sanfeliu-Sala, Isabel; Espasa-Soley, Mateu; Asensio-de-la-Cruz, Oscar

    2017-01-01

    Cystic fibrosis is a degenerative disease characterized by progressive epithelial secretory gland dysfunction associated with repeated respiratory infections. Bacterial infections are very frequent in children with cystic fibrosis, but because rapid METHODS: for screening for the wide variety of potentially involved viruses were unavailable until recently, the frequency of viral presence is unknown. Multiplex PCR enables screening for many viruses involved in respiratory infections. This study aimed to evaluate the frequency of viruses and bacteria in respiratory specimens from children with cystic fibrosis and to clarify the incidence and characteristics (seasonality and age of patients) of different viruses detected in children with cystic fibrosis. In this 2-year prospective study, we obtained paired nasopharyngeal-swab and sputum specimens from children with cystic fibrosis during clinical respiratory examinations separated by at least 14days. We analyzed viruses in nasopharyngeal-swab specimens with multiplex PCR and bacteria in sputum with standard methods. We analyzed 368 paired specimens from 33 children. We detected viruses in 154 (41.8%) and bacteria in 132 (35.9%). Bacteria were commoner in spring and summer; viruses were commoner in autumn and winter. In every season, Staphylococcus aureus was the commonest bacteria and rhinovirus was the commonest virus. Nearly all infections with Haemophilus influenzae occurred in autumn and winter. Viruses were more prevalent in children <5 years old, and bacteria were more prevalent in children ≥12 years old. Multiplex PCR screening for respiratory viruses is feasible in children with cystic fibrosis; the clinical implications of screening warrant further study. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Host and Bacterial Proteins That Repress Recruitment of LC3 to Shigella Early during Infection

    PubMed Central

    Baxt, Leigh A.; Goldberg, Marcia B.

    2014-01-01

    Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min.), the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4–6 hr) by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG). Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection. PMID:24722587

  15. Envisaging bacteria as phage targets

    PubMed Central

    Abedon, Stephen T.

    2011-01-01

    It can be difficult to appreciate just how small bacteria and phages are or how large, in comparison, the volumes that they occupy. A single milliliter, for example, can represent to a phage what would be, with proper scaling, an “ocean” to you and me. Here I illustrate, using more easily visualized macroscopic examples, the difficulties that a phage, as a randomly diffusing particle, can have in locating bacteria to infect. I conclude by restating the truism that the rate of phage adsorption to a given target bacterium is a function of phage density, that is, titer, in combination with the degree of bacterial susceptibility to adsorption by an encountering phage. PMID:23616932

  16. Application of micro-PIV to the study of staphylococci bacteria bio-film dynamics

    NASA Astrophysics Data System (ADS)

    Sherman, Erica; Bayles, Kenneth; Moormeier, Derek; Wei, Timothy

    2012-11-01

    Staphylococci bacteria are recognized as the most frequent cause of biofilm-associated infections. Although humans are regularly exposed to staphylococcus bacteria without consequence, a localized staph infection has the potential to enter the bloodstream and lead to serious infections such as endocarditis, pneumonia, or toxic shock syndrome. The mechanics of staphylococci biofilm formation and dispersion through the bloodstream are not well known. It has recently been observed that under certain flow conditions, bacteria grow in stable bio-films. Under other conditions, they organize in tower-like structures which break and are transported downstream by the flow. The fundamental questions addressed in this study are i) whether or not fluid mechanics plays a role in differentiating between film or tower formation and ii) whether or not the faulty towers are a bio-film propagation mechanism. This talk focuses on the application of micro-PIV to study this problem. Bacteria were cultured in a glass microchannel and subjected to a range of steady shear rates. Micro-PIV measurements were made to map the flow over and around different types of bio-film structures. Measurements and control volume analysis will be presented quantifying forces acting on these structures.

  17. Bacteria–bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance

    PubMed Central

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas CG

    2015-01-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection. PMID:25514534

  18. Mycobacterium tuberculosis infection modulates adipose tissue biology

    PubMed Central

    Kühl, Anja A.; Kupz, Andreas; Vogelzang, Alexis; Mollenkopf, Hans-Joachim; Löwe, Delia; Bandermann, Silke; Dorhoi, Anca; Brinkmann, Volker

    2017-01-01

    Mycobacterium tuberculosis (Mtb) primarily resides in the lung but can also persist in extrapulmonary sites. Macrophages are considered the prime cellular habitat in all tissues. Here we demonstrate that Mtb resides inside adipocytes of fat tissue where it expresses stress-related genes. Moreover, perigonadal fat of Mtb-infected mice disseminated the infection when transferred to uninfected animals. Adipose tissue harbors leukocytes in addition to adipocytes and other cell types and we observed that Mtb infection induces changes in adipose tissue biology depending on stage of infection. Mice infected via aerosol showed infiltration of inducible nitric oxide synthase (iNOS) or arginase 1 (Arg1)-negative F4/80+ cells, despite recruitment of CD3+, CD4+ and CD8+ T cells. Gene expression analysis of adipose tissue of aerosol Mtb-infected mice provided evidence for upregulated expression of genes associated with T cells and NK cells at 28 days post-infection. Strikingly, IFN-γ-producing NK cells and Mtb-specific CD8+ T cells were identified in perigonadal fat, specifically CD8+CD44-CD69+ and CD8+CD44-CD103+ subpopulations. Gene expression analysis of these cells revealed that they expressed IFN-γ and the lectin-like receptor Klrg1 and down-regulated CD27 and CD62L, consistent with an effector phenotype of Mtb-specific CD8+ T cells. Sorted NK cells expressed higher abundance of Klrg1 upon infection, as well. Our results reveal the ability of Mtb to persist in adipose tissue in a stressed state, and that NK cells and Mtb-specific CD8+ T cells infiltrate infected adipose tissue where they produce IFN-γ and assume an effector phenotype. We conclude that adipose tissue is a potential niche for Mtb and that due to infection CD8+ T cells and NK cells are attracted to this tissue. PMID:29040326

  19. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection.

    PubMed

    Jagdeo, Julienne M; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M; Jan, Eric

    2018-04-15

    Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed t erminal a mine i sotopic l abeling of s ubstrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3C pro s) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3C pro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3C pro -targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3C pro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3C pro substrates in vivo , we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection

  20. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection

    PubMed Central

    Jagdeo, Julienne M.; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M.

    2018-01-01

    ABSTRACT Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cpro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection

  1. Artificial intelligence techniques for monitoring dangerous infections.

    PubMed

    Lamma, Evelina; Mello, Paola; Nanetti, Anna; Riguzzi, Fabrizio; Storari, Sergio; Valastro, Gianfranco

    2006-01-01

    The monitoring and detection of nosocomial infections is a very important problem arising in hospitals. A hospital-acquired or nosocomial infection is a disease that develops after admission into the hospital and it is the consequence of a treatment, not necessarily a surgical one, performed by the medical staff. Nosocomial infections are dangerous because they are caused by bacteria which have dangerous (critical) resistance to antibiotics. This problem is very serious all over the world. In Italy, almost 5-8% of the patients admitted into hospitals develop this kind of infection. In order to reduce this figure, policies for controlling infections should be adopted by medical practitioners. In order to support them in this complex task, we have developed a system, called MERCURIO, capable of managing different aspects of the problem. The objectives of this system are the validation of microbiological data and the creation of a real time epidemiological information system. The system is useful for laboratory physicians, because it supports them in the execution of the microbiological analyses; for clinicians, because it supports them in the definition of the prophylaxis, of the most suitable antibi-otic therapy and in monitoring patients' infections; and for epidemiologists, because it allows them to identify outbreaks and to study infection dynamics. In order to achieve these objectives, we have adopted expert system and data mining techniques. We have also integrated a statistical module that monitors the diffusion of nosocomial infections over time in the hospital, and that strictly interacts with the knowledge based module. Data mining techniques have been used for improving the system knowledge base. The knowledge discovery process is not antithetic, but complementary to the one based on manual knowledge elicitation. In order to verify the reliability of the tasks performed by MERCURIO and the usefulness of the knowledge discovery approach, we performed a test

  2. Transition Metals and Virulence in Bacteria.

    PubMed

    Palmer, Lauren D; Skaar, Eric P

    2016-11-23

    Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.

  3. Community-acquired urinary tract infection in hospitalized children: etiology and antimicrobial resistance. A comparison between first episode and recurrent infection.

    PubMed

    Sakran, Waheeb; Smolkin, Vladislav; Odetalla, Ahmad; Halevy, Raphael; Koren, Ariel

    2015-05-01

    Urinary tract infection (UTI) is common in infants and children, and Escherichia coli is the leading pathogen. The aims of this study were to compare first episode of UTI with recurrent infection, reveal organisms that cause UTI, uropathogen resistance, and presence of bacteria producing extended-spectrum β-lactamase (ESBL). The first-UTI group included 456 children. E coli was the leading pathogen (80.5%), and Pseudomonas aeruginosa was found in 1.5%. The uropathogens were resistant to gentamicin (3.41%) and cefuroxime (5.71%), and highly resistant to cefamezin (37.39%). The recurrent-infection group included 106 children. E coli was also the leading pathogen, but 7.5% of the isolates were P aeruginosa (P = .002 compared with first-episode group); 6.6% were ESBL-producing bacteria compared with 1.1% in the first-episode group (P = .002). E coli is the leading pathogen in both groups. P aeruginosa and ESBL-producing bacteria were more common in the recurrent infection group. © The Author(s) 2014.

  4. Shigella Infections

    MedlinePlus

    ... this topic for: Parents Kids Teens Adenovirus Amebiasis E. Coli Stool Test: Bacteria Culture Cholera Giardiasis Rotavirus What ... Wash My Hands? Food Poisoning Salmonellosis Shigellosis Cholera E. Coli Gastrointestinal Infections and Diarrhea Salmonellosis View more About ...

  5. Extracellular deoxyribonuclease production by periodontal bacteria.

    PubMed

    Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R

    2012-08-01

    Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.

  6. Infection caused by thymidine-requiring, trimethoprim-resistant bacteria.

    PubMed Central

    King, C H; Shlaes, D M; Dul, M J

    1983-01-01

    We first noted the appearance of thymidine-requiring, gram-negative bacilli in clinical specimens 2 years ago. Since then we have seen 10 patients colonized or infected with these organisms. These strains do not grow on Mueller-Hinton media, growth on MacConkey agar is variable, and growth in API 20E (Analytab Products) and Enterobacteriaceae-Plus Cards (AutoMicrobic system; Vitek Systems Inc.) is inadequate for reliable identifications. Thymidine-requiring organisms are routinely resistant to sulfonamides and trimethoprim. Infection or colonization is associated with previous sulfamethoxazole-trimethoprim therapy in most cases. Of 10 patients, 1 had septicemia of urinary tract origin, 5 had urinary tract colonization or infection, 2 had wound colonization, and two had colonization of respiratory secretions. Thymidine-requiring, gram-negative bacilli can be pathogens and present potential problems in diagnosis, identification, and susceptibility testing. PMID:6604070

  7. [Quantum differences of ortho/para H2O2 spin-isomers as a factor of the femtosecond charge separation kinetics modulation in reaction centers of purple bacteria].

    PubMed

    Pishchal'nikov, R Iu; Pershin, S M; Bunkin, A F

    2012-01-01

    We have proposed the mechanism of coherent modulations of the P* state in the transient absorption spectra of the reaction center isolated from purple bacteria. Two water molecules, located between special pair, Ba, Bb chlorophylls and histidine L173 and M202, are supposed to be ortho-H2O and para-H2O isomers with different magnetic properties. The distinctive modulation frequencies were labeling as rotational resonances of ortho-H2O. According to our assumption, the interaction of rotational modes of water isomers with the charge-transfer states is a reason of coherent modulations of kinetics. We have modified a Hamiltonian system in order to take into account the rotational modes of ortho-H2O. Evolution of the density matrix was calculated in Liouville space. The Redfield relaxation theory for molecular aggregates was used to model kinetics up to 3 ps.

  8. Rapid Separation of Bacteria from Blood—Review and Outlook

    PubMed Central

    Alizadeh, Mahsa; Husseini, Ghaleb A.; McClellan, Daniel S.; Buchanan, Clara M.; Bledsoe, Colin G.; Robison, Richard A.; Blanco, Rae; Roeder, Beverly L.; Melville, Madison; Hunter, Alex K.

    2017-01-01

    The high morbidity and mortality rate of bloodstream infections involving antibiotic-resistant bacteria necessitate a rapid identification of the infectious organism and its resistance profile. Traditional methods based on culturing the blood typically require at least 24 h, and genetic amplification by PCR in the presence of blood components has been problematic. The rapid separation of bacteria from blood would facilitate their genetic identification by PCR or other methods so that the proper antibiotic regimen can quickly be selected for the septic patient. Microfluidic systems that separate bacteria from whole blood have been developed, but these are designed to process only microliter quantities of whole blood or only highly diluted blood. However, symptoms of clinical blood infections can be manifest with bacterial burdens perhaps as low as 10 CFU/mL, and thus milliliter quantities of blood must be processed to collect enough bacteria for reliable genetic analysis. This review considers the advantages and shortcomings of various methods to separate bacteria from blood, with emphasis on techniques that can be done in less than 10 min on milliliter-quantities of whole blood. These techniques include filtration, screening, centrifugation, sedimentation, hydrodynamic focusing, chemical capture on surfaces or beads, field-flow fractionation, and dielectrophoresis. Techniques with the most promise include screening, sedimentation, and magnetic bead capture, as they allow large quantities of blood to be processed quickly. Some microfluidic techniques can be scaled up. PMID:27160415

  9. Microfluidic Capillaric Circuit for Rapid and Facile Bacteria Detection.

    PubMed

    Olanrewaju, Ayokunle Oluwafemi; Ng, Andy; DeCorwin-Martin, Philippe; Robillard, Alessandra; Juncker, David

    2017-06-20

    Urinary tract infections (UTI) are one of the most common bacterial infections and would greatly benefit from a rapid point-of-care diagnostic test. Although significant progress has been made in developing microfluidic systems for nucleic acid and whole bacteria immunoassay tests, their practical application is limited by complex protocols, bulky peripherals, and slow operation. Here we present a microfluidic capillaric circuit (CC) optimized for rapid and automated detection of bacteria in urine. Molds for CCs were constructed using previously established design rules, then 3D-printed and replicated into poly(dimethylsiloxane). CCs autonomously and sequentially performed all liquid delivery steps required for the assay. For efficient bacteria capture, on-the-spot packing of antibody-functionalized microbeads was completed in <20 s followed by autonomous sequential delivery of 100 μL of bacteria sample, biotinylated detection antibodies, fluorescent streptavidin conjugate, and wash buffer for a total volume ≈115 μL. The assay was completed in <7 min. Fluorescence images of the microbead column revealed captured bacteria as bright spots that were easily counted manually or using an automated script for user-independent assay readout. The limit of detection of E. coli in synthetic urine was 1.2 × 10 2 colony-forming-units per mL (CFU/mL), which is well below the clinical diagnostic criterion (>10 5 CFU/mL) for UTI. The self-powered, peripheral-free CC presented here has potential for use in rapid point-of-care UTI screening.

  10. [From the discovery of antibiotics to emerging highly drug-resistant bacteria].

    PubMed

    Meunier, Olivier

    2015-01-01

    The discovery of antibiotics has enabled serious infections to be treated. However, bacteria resistant to several families of antibiotics and the emergence of new highly drug-resistant bacteria constitute a public health issue in France and across the world. Actions to prevent their transmission are being put in place. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis

    PubMed Central

    Kojima, Ayuchi; Nakano, Kazuhiko; Wada, Koichiro; Takahashi, Hirokazu; Katayama, Kazufumi; Yoneda, Masato; Higurashi, Takuma; Nomura, Ryota; Hokamura, Kazuya; Muranaka, Yoshinori; Matsuhashi, Nobuyuki; Umemura, Kazuo; Kamisaki, Yoshinori; Nakajima, Atsushi; Ooshima, Takashi

    2012-01-01

    Although oral bacteria-associated systemic diseases have been reported, association between Streptococcus mutans, pathogen of dental caries, and ulcerative colitis (UC) has not been reported. We investigated the effect of various S. mutans strains on dextran sodium sulfate (DSS)-induced mouse colitis. Administration of TW295, the specific strain of S. mutans, caused aggravation of colitis; the standard strain, MT8148 did not. Localization of TW295 in hepatocytes in liver was observed. Increased expression of interferon-γ in liver was also noted, indicating that the liver is target organ for the specific strain of S. mutans-mediated aggravation of colitis. The detection frequency of the specific strains in UC patients was significantly higher than in healthy subjects. Administration of the specific strains of S. mutans isolated from patients caused aggravation of colitis. Infection with highly-virulent specific types of S. mutans might be a potential risk factor in the aggravation of UC. PMID:22451861

  12. Multiplex polymerase chain reaction detection of black-pigmented bacteria in infections of endodontic origin.

    PubMed

    Seol, Jung-Hwan; Cho, Byung-Hoon; Chung, Chong-Pyoung; Bae, Kwang-Shik

    2006-02-01

    The purpose of this study was to detect the presence of Porphyromonas endodontalis, P. gingivalis, Prevotella intermedia, P. nigrescens, and P. tannerae from clinical samples using multiplex polymerase chain reactions (PCR). Two different multiplex PCR protocols were used (one for the two Porphyromonas species and the other for the three Prevotella species), each one using a primer pair specific for each target species. The results were compared to those of the conventional culture procedures. Microbial samples were taken aseptically from 40 infected root canals and abscesses from patients. Samples were cultured in an anaerobic condition for conventional identification using a Rapid ID 32 A kit. Multiplex PCR was processed using the DNA extracted from each sample. At least one of the five species of black-pigmented bacteria (BPB) were detected in 65% (26 of 40) of the samples using multiplex PCR, and in 15% (6 of 40) using the conventional culture procedures. Multiplex PCR was more rapid, sensitive, specific, and effective in detecting BPB than the conventional culture procedures.

  13. [Insertional Inactivation of Virulence Operon in Population of Persistent Bordetella pertussis Bacteria].

    PubMed

    Karataev, G I; Sinyashina, L N; Medkova, A Yu; Semin, E G; Shevtsova, Z V; Matua, A Z; Kondzariya, I G; Amichba, A A; Kubrava, D T; Mikvabia, Z Ya

    2016-04-01

    Avirulent B. pertussis bacteria containing IS elements in the bvgAS operon were detected during the study of whooping cough patients and bacilli carriers. The present work is devoted to the study of the accumulation dynamics and the mechanisms of generation of persistent forms of the B. pertussis bacteria in lower monkeys as the most adequate model for extrapolation ofthe experiment results to humans. By means of the real-time PCR method, it was established that the B. pertussis bacteria lived more than three months in the upper respiratory tract after a single intranasal monkey infection; the period was reduced to 14-28 days during repeated infection. An increase in the portion of B. pertussis Bvg mutants in the population to tens of percent from the total number of registered bacteria was registered. The experimental confirmation ofthe development and accumulation of avirulent B. pertussis Bvg mutants during the development of the infectious process was obtained. Further study of the composition of the B. pertussis persistent bacteria population at different stages of the disease will make it possible to formulate new approaches to the whooping cough diagnostics and prevention and creation of fundamentally new drugs.

  14. A survey of the prevalence of selected bacteria in wild birds

    USGS Publications Warehouse

    Brittingham, M.C.; Temple, S.A.; Duncan, R.M.

    1988-01-01

    We determined the prevalence of six genera of bacteria from a sample of 387 cloacal swabs from 364 passerines and woodpeckers. The prevalence of bacteria were as follows: Escherichia coli (1%), Pseudomonas spp. (22%), Salmonella spp. (0%), Staphylococcus spp. (15%), Streptococcus spp. (18%), and Yersinia spp. (1%). The prevalence of Streptococcus spp. was higher in omnivorous species than in granivorous species (20% versus 8%). Individuals captured at feeders had a lower prevalence of both Streptococcus spp. (15% versus 33%) and Escherichia coli (0.5% versus 4%) than birds that did not have access to feeders. These differences are probably not due to the feeder per se, but instead to other site related differences. The prevalence of bacteria did not differ between male and female black-capped chickadees, Parus atricapillus. For 279 color marked black-capped chickadees, we calculated the cumulative mortality rate during 12 wk following swabbing. Although the cumulative mortality rates of infected birds were consistently higher than the rates of non-infected birds, none of these differences were significant. Infections may cause slight reductions in survival rates, but we were not able to confirm this with our data.

  15. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.

    PubMed

    Hisert, Katherine B; Heltshe, Sonya L; Pope, Christopher; Jorth, Peter; Wu, Xia; Edwards, Rachael M; Radey, Matthew; Accurso, Frank J; Wolter, Daniel J; Cooke, Gordon; Adam, Ryan J; Carter, Suzanne; Grogan, Brenda; Launspach, Janice L; Donnelly, Seamas C; Gallagher, Charles G; Bruce, James E; Stoltz, David A; Welsh, Michael J; Hoffman, Lucas R; McKone, Edward F; Singh, Pradeep K

    2017-06-15

    Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.

  16. Parasitic scabies mites and associated bacteria joining forces against host complement defence.

    PubMed

    Swe, P M; Reynolds, S L; Fischer, K

    2014-11-01

    Scabies is a ubiquitous and contagious skin disease caused by the parasitic mite Sarcoptes scabiei Epidemiological studies have identified scabies as a causative agent for secondary skin infections caused by Staphylococcus aureus and Streptococcus pyogenes. This is an important notion, as such bacterial infections can lead to serious downstream life-threatening complications. As the complement system is the first line of host defence that confronts invading pathogens, both the mite and bacteria produce a large array of molecules that inhibit the complement cascades. It is hypothesised that scabies mite complement inhibitors may play an important role in providing a favourable micro-environment for the establishment of secondary bacterial infections. This review aims to bring together the current literature on complement inhibition by scabies mites and bacteria associated with scabies and to discuss the proposed molecular link between scabies and bacterial co-infections. © 2014 John Wiley & Sons Ltd.

  17. Nanocoatings for Chronic Wound Repair-Modulation of Microbial Colonization and Biofilm Formation.

    PubMed

    Mihai, Mara Mădălina; Preda, Mădălina; Lungu, Iulia; Gestal, Monica Cartelle; Popa, Mircea Ioan; Holban, Alina Maria

    2018-04-12

    Wound healing involves a complex interaction between immunity and other natural host processes, and to succeed it requires a well-defined cascade of events. Chronic wound infections can be mono- or polymicrobial but their major characteristic is their ability to develop a biofilm. A biofilm reduces the effectiveness of treatment and increases resistance. A biofilm is an ecosystem on its own, enabling the bacteria and the host to establish different social interactions, such as competition or cooperation. With an increasing incidence of chronic wounds and, implicitly, of chronic biofilm infections, there is a need for alternative therapeutic agents. Nanotechnology shows promising openings, either by the intrinsic antimicrobial properties of nanoparticles or their function as drug carriers. Nanoparticles and nanostructured coatings can be active at low concentrations toward a large variety of infectious agents; thus, they are unlikely to elicit emergence of resistance. Nanoparticles might contribute to the modulation of microbial colonization and biofilm formation in wounds. This comprehensive review comprises the pathogenesis of chronic wounds, the role of chronic wound colonization and infection in the healing process, the conventional and alternative topical therapeutic approaches designed to combat infection and stimulate healing, as well as revolutionizing therapies such as nanotechnology-based wound healing approaches.

  18. International Comparison of Causative Bacteria and Antimicrobial Susceptibilities of Urinary Tract Infections between Kobe, Japan, and Surabaya, Indonesia.

    PubMed

    Kitagawa, Koichi; Shigemura, Katsumi; Yamamichi, Fukashi; Alimsardjono, Lindawati; Rahardjo, Dadik; Kuntaman, Kuntaman; Shirakawa, Toshiro; Fujisawa, Masato

    2018-01-23

    Variation by country in urinary tract infection (UTI)-causative bacteria is partly due to the differences in the use of antibiotics. We compared their frequencies and antibiotic susceptibilities in the treatment of patients with UTI from 2 cities, Kobe, Japan, and Surabaya, Indonesia. We retrospectively analyzed 1,804 urine samples collected from patients with UTI in 2014 (1,251 collected in 11 months at Kobe University Hospital in Kobe and 544 collected in 2 months at Dr. Soetomo Hospital in Surabaya). Surabaya data were divided into adult and pediatric patients because a substantial number of specimens from pediatric-patients had been collected. The results indicated that Escherichia coli was the most common uropathogen (24.1% in Kobe and 39.3% in Surabaya) and was significantly resistant to ampicillin and substantially to first- and third-generation cephalosporins in Surabaya adults but not in Kobe adults (p < 0.01). Enterococcus faecalis was often isolated in Kobe (14.0%), but not in Surabaya (5.3%). Klebsiella spp. were isolated at a higher rate in Surabaya pediatric patients (20.3%) than in Surabaya adults (13.6%) and Kobe adults (6.6%). The antibiotic susceptibilities of the isolates form Surabaya isolates tended to be lower than the ones from Kobe. Extended-spectrum β-lactamase-producing Gram-negative bacteria were detected at a significantly higher rate in Surabaya than in Kobe (p < 0.001). These results showed that the antimicrobial resistance patterns of UTI-causative bacteria are highly variable among 2 countries, and the continuous surveillance of trends in antibiotic resistance patterns of uropathogens is necessary for the future revision of antibiotic use.

  19. Protein-linked glycans in periodontal bacteria: prevalence and role at the immune interface.

    PubMed

    Settem, Rajendra P; Honma, Kiyonobu; Stafford, Graham P; Sharma, Ashu

    2013-10-17

    Protein modification with complex glycans is increasingly being recognized in many pathogenic and non-pathogenic bacteria, and is now thought to be central to the successful life-style of those species in their respective hosts. This review aims to convey current knowledge on the extent of protein glycosylation in periodontal pathogenic bacteria and its role in the modulation of the host immune responses. The available data show that surface glycans of periodontal bacteria orchestrate dendritic cell cytokine responses to drive T cell immunity in ways that facilitate bacterial persistence in the host and induce periodontal inflammation. In addition, surface glycans may help certain periodontal bacteria protect against serum complement attack or help them escape immune detection through glycomimicry. In this review we will focus mainly on the generalized surface-layer protein glycosylation system of the periodontal pathogen Tannerella forsythia in shaping innate and adaptive host immunity in the context of periodontal disease. In addition, we will also review the current state of knowledge of surface protein glycosylation and its potential for immune modulation in other periodontal pathogens.

  20. Interactions between the microbiota and pathogenic bacteria in the gut

    PubMed Central

    Bäumler, Andreas J.; Sperandio, Vanessa

    2016-01-01

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases. PMID:27383983

  1. Interactions between the microbiota and pathogenic bacteria in the gut.

    PubMed

    Bäumler, Andreas J; Sperandio, Vanessa

    2016-07-07

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.

  2. An altered gut microbiota in HIV infection: future prospective of FMT therapy.

    PubMed

    Kang, Yongbo; Cai, Yue

    2018-06-07

    Human immunodeficiency virus (HIV) infection progressively destroys CD4+ mononuclear cells leading to profound cellular immune deficiency that manifests as life threatening opportunistic infections and malignancies, i.e., the acquired immune deficiency syndrome (AIDS). Gut microbiota play key roles in the modulation of host metabolism and gene expression, maintenance of epithelial integrity, and mediation of inflammatory and immunity. Hence, the normal intestinal microbiota plays a major role in the maintenance of health and disease prevention. In fact, a large number of studies have shown that the alteration of the gut microbiota contribute to the pathogenesis of several diseases, such as inflammatory bowel diseases, irritable bowel syndrome, metabolic diseases, anorexia nervosa, autoimmune diseases, multiple sclerosis, cancer, neuropsychiatric disorders, and cardiovascular diseases. Recently, accumulating evidences have has shed light on the association of dysbiosis of gut microbiota with HIV infection. Hence, the modification of gut microbiota may be a potential therapeutic tool. Fecal microbiota transplantation (FMT) may be a more straightforward and better therapy for HIV infection by manipulating the human intestinal bacteria. However, the relevant research is very limited, and large amount of scientific research work need to be done in the near further.

  3. Human Invariant Natural Killer T cells possess immune-modulating functions during Aspergillus infection.

    PubMed

    Beitzen-Heineke, Antonia; Bouzani, Maria; Schmitt, Anna-Lena; Kurzai, Oliver; Hünniger, Kerstin; Einsele, Hermann; Loeffler, Juergen

    2016-02-01

    Aspergillus fumigatus is the most common cause for invasive fungal infections, a disease associated with high mortality in immune-compromised patients. CD1d-restricted invariant natural killer T (iNKT) cells compose a small subset of T cells known to impact the immune response toward various infectious pathogens. To investigate the role of human iNKT cells during A. fumigatus infection, we studied their activation as determined by CD69 expression and cytokine production in response to distinct fungal morphotypes in the presence of different CD1d(+) antigen presenting cells using flow cytometry and multiplex enzyme-linked immunosorbent assay (ELISA). Among CD1d(+) subpopulations, CD1d(+)CD1c(+) mDCs showed the highest potential to activate iNKT cells on a per cell basis. The presence of A. fumigatus decreased this effect of CD1d(+)CD1c(+) mDCs on iNKT cells and led to reduced secretion of TNF-α, G-CSF and RANTES. Production of other Th1 and Th2 cytokines was not affected by the fungus, suggesting an immune-modulating function for human iNKT cells during A. fumigatus infection. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Python Cathelicidin CATHPb1 Protects against Multidrug-Resistant Staphylococcal Infections by Antimicrobial-Immunomodulatory Duality.

    PubMed

    Cai, Shasha; Qiao, Xue; Feng, Lan; Shi, Nannan; Wang, Hui; Yang, Huaixin; Guo, Zhilai; Wang, Mengke; Chen, Yan; Wang, Yipeng; Yu, Haining

    2018-03-08

    Multidrug-resistant Staphylococcus aureus, including MRSA (methicillin-resistant) and VRSA (vancomycin-resistant), causes serious healthcare-associated infections, even sepsis and death. Here, we identified six novel cathelicidins (CATHPb1-6) from Python bivittatu, and CATHPb1 displayed the best in vitro pharmacological and toxicological profile. We further show that CATHPb1 exhibited evident protection in mice MRSA/VRSA infection models, given either 24 h before or 4 h after infection. The protection was all effective through different administration routes, but was blocked by in vivo depletion of monocyte/macrophages or neutrophils. CATHPb1 can rapidly and massively modulate macrophages/monocytes and neutrophils trafficking to the infection site, and potentiate their bactericidal functions. Meanwhile, CATHPb1 remarkably augmented neutrophil-mediated bacteria killing by facilitating neutrophil extracellular traps (NETs) formation and preventing its degradation. Acting through MAPKs and NF-κB pathways, CATHPb1 selectively enhanced the levels of chemokines while reducing the production of pro-inflammatory cytokines without undesirable toxicities. The much improved serum half-life and stabilities confer CATHPb1 an excellent prospect to become a novel therapeutic agent against multidrug-resistant staphylococcal infections.

  5. Selection and Transmission of Antibiotic-Resistant Bacteria.

    PubMed

    Andersson, Dan I; Hughes, Diarmaid

    2017-07-01

    Ever since antibiotics were introduced into human and veterinary medicine to treat and prevent bacterial infections there has been a steady selection and increase in the frequency of antibiotic resistant bacteria. To be able to reduce the rate of resistance evolution, we need to understand how various biotic and abiotic factors interact to drive the complex processes of resistance emergence and transmission. We describe several of the fundamental factors that underlay resistance evolution, including rates and niches of emergence and persistence of resistant bacteria, time- and space-gradients of various selective agents, and rates and routes of transmission of resistant bacteria between humans, animals and other environments. Furthermore, we discuss the options available to reduce the rate of resistance evolution and/ or transmission and their advantages and disadvantages.

  6. Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner.

    PubMed

    Singh, Prashant; Yekondi, Shweta; Chen, Po-Wen; Tsai, Chia-Hong; Yu, Chun-Wei; Wu, Keqiang; Zimmerli, Laurent

    2014-06-01

    In nature, plants are exposed to a fluctuating environment, and individuals exposed to contrasting environmental factors develop different environmental histories. Whether different environmental histories alter plant responses to a current stress remains elusive. Here, we show that environmental history modulates the plant response to microbial pathogens. Arabidopsis thaliana plants exposed to repetitive heat, cold, or salt stress were more resistant to virulent bacteria than Arabidopsis grown in a more stable environment. By contrast, long-term exposure to heat, cold, or exposure to high concentrations of NaCl did not provide enhanced protection against bacteria. Enhanced resistance occurred with priming of Arabidopsis pattern-triggered immunity (PTI)-responsive genes and the potentiation of PTI-mediated callose deposition. In repetitively stress-challenged Arabidopsis, PTI-responsive genes showed enrichment for epigenetic marks associated with transcriptional activation. Upon bacterial infection, enrichment of RNA polymerase II at primed PTI marker genes was observed in environmentally challenged Arabidopsis. Finally, repetitively stress-challenged histone acetyltransferase1-1 (hac1-1) mutants failed to demonstrate enhanced resistance to bacteria, priming of PTI, and increased open chromatin states. These findings reveal that environmental history shapes the plant response to bacteria through the development of a HAC1-dependent epigenetic mark characteristic of a primed PTI response, demonstrating a mechanistic link between the primed state in plants and epigenetics. © 2014 American Society of Plant Biologists. All rights reserved.

  7. Transition Metals and Virulence in Bacteria

    PubMed Central

    Palmer, Lauren D.; Skaar, Eric P.

    2016-01-01

    Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. Presumably, in response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface. PMID:27617971

  8. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    PubMed

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  9. Infection Dynamic of Symbiotic Bacteria in the Pea Aphid Acyrthosiphon pisum Gut and Host Immune Response at the Early Steps in the Infection Process

    PubMed Central

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid. PMID:25811863

  10. Intracellular bacteria in the pathogenesis of Escherichia coli urinary tract infection in children.

    PubMed

    Robino, Luciana; Scavone, Paola; Araujo, Lucia; Algorta, Gabriela; Zunino, Pablo; Pírez, María Catalina; Vignoli, Rafael

    2014-12-01

    Uropathogenic Escherichia coli (UPEC) is the most common agent of urinary tract infection (UTI). The classic model of pathogenesis proposes the ascent of UPEC by the urethra and external adherence to the urothelium. Recently, the ability of UPEC to invade urothelial cells and to form intracellular bacterial communities (IBCs) has been described. The objective of the present study was to determine the presence of intracellular bacteria (IB) in children with UTI caused by E. coli and to characterize its virulence attributes and its relation with clinical outcomes. One hundred thirty-three children with E. coli UTI who attended a reference children's hospital between June and November 2012 were included. Urine samples were analyzed by optical and confocal microscopy looking for exfoliated urothelial cells with IB. Phylogenetic group and 24 virulence factors of UPEC were determined using multiplex polymerase chain reaction. Medical records were analyzed. The presence of IB was detected in 49 of 133 (36.8%) samples by confocal microscopy, in 30 cases as IBC, and in 19 as isolated intracellular bacteria (IIB). Only 50% of these cases could be detected by light microscopy. Seventy-four medical records were analyzed, 34 with IBC/IIB, 40 without IB. Any virulence gene was associated with IBC/IIB. The presence of IBC/IIB was associated with recurrent UTI (odds ratio [OR], 3.3; 95% confidence interval [CI], 1.3-9; P = .017), especially in children without urinary tract functional or morphological abnormalities (OR, 8.0; 95% CI, 2.3-27.4; P = .000). IBCs were associated with lower urinary tract syndrome (OR, 3.6; 95% CI, 1.1-11.8; P = .05) and absence of fever (P = .009). IBCs/IIB could explain a high proportion of children with recurrent UTI. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Coconut and Salmonella Infection

    PubMed Central

    Schaffner, Carl P.; Mosbach, Klaus; Bibit, Venuso C.; Watson, Colin H.

    1967-01-01

    Raw, unprocessed coconut supports the growth of salmonellae as well as that of other enteric bacteria, salmonellae being particularly resistant to subsequent desiccation. Original contamination is not due to carriers or to polluted water supplies, but to contact with bacteria-containing soils followed by dispersion via infected coconut milk and shells. Pasteurization of raw coconut meat in a water bath at 80 C for 8 to 10 min effectively killed such bacteria, did not injure the product, and provided a prophylactic method now widely used by the coconut industry. PMID:5340650

  12. Commensal bacteria and essential amino acids control food choice behavior and reproduction

    PubMed Central

    Fioreze, Gabriela Tondolo; Anjos, Margarida; Baltazar, Célia; Elias, Ana Paula; Itskov, Pavel M.; Piper, Matthew D. W.

    2017-01-01

    Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits. PMID:28441450

  13. Commensal bacteria and essential amino acids control food choice behavior and reproduction.

    PubMed

    Leitão-Gonçalves, Ricardo; Carvalho-Santos, Zita; Francisco, Ana Patrícia; Fioreze, Gabriela Tondolo; Anjos, Margarida; Baltazar, Célia; Elias, Ana Paula; Itskov, Pavel M; Piper, Matthew D W; Ribeiro, Carlos

    2017-04-01

    Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.

  14. Detection of Intracellular Bacterial Communities in Human Urinary Tract Infection

    PubMed Central

    Rosen, David A; Hooton, Thomas M; Stamm, Walter E; Humphrey, Peter A; Hultgren, Scott J

    2007-01-01

    Background Urinary tract infections (UTIs) are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC). While UTIs are typically considered extracellular infections, it has been recently demonstrated that UPEC bind to, invade, and replicate within the murine bladder urothelium to form intracellular bacterial communities (IBCs). These IBCs dissociate and bacteria flux out of bladder facet cells, some with filamentous morphology, and ultimately establish quiescent intracellular reservoirs that can seed recurrent infection. This IBC pathogenic cycle has not yet been investigated in humans. In this study we sought to determine whether evidence of an IBC pathway could be found in urine specimens from women with acute UTI. Methods and Findings We collected midstream, clean-catch urine specimens from 80 young healthy women with acute uncomplicated cystitis and 20 asymptomatic women with a history of UTI. Investigators were blinded to culture results and clinical history. Samples were analyzed by light microscopy, immunofluorescence, and electron microscopy for evidence of exfoliated IBCs and filamentous bacteria. Evidence of IBCs was found in 14 of 80 (18%) urines from women with UTI. Filamentous bacteria were found in 33 of 80 (41%) urines from women with UTI. None of the 20 urines from the asymptomatic comparative group showed evidence of IBCs or filaments. Filamentous bacteria were present in all 14 of the urines with IBCs compared to 19 (29%) of 66 samples with no evidence of IBCs (p < 0.001). Of 65 urines from patients with E. coli infections, 14 (22%) had evidence of IBCs and 29 (45%) had filamentous bacteria, while none of the gram-positive infections had IBCs or filamentous bacteria. Conclusions The presence of exfoliated IBCs and filamentous bacteria in the urines of women with acute cystitis suggests that the IBC pathogenic pathway characterized in the murine model may occur in humans. The findings

  15. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact.

    PubMed

    Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam

    2017-02-28

    Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Microbiological analysis of infected root canals from symptomatic and asymptomatic teeth with periapical periodontitis and the antimicrobial susceptibility of some isolated anaerobic bacteria.

    PubMed

    Jacinto, R C; Gomes, B P F A; Ferraz, C C R; Zaia, A A; Filho, F J Souza

    2003-10-01

    The purpose of the present study was to investigate the correlation between the composition of the bacterial flora isolated from infected root canals of teeth with apical periodontitis with the presence of clinical signs and symptoms, and to test the antibiotic susceptibility of five anaerobic bacteria mostly commonly found in the root canals of symptomatic teeth against various substances using the E-test. Microbial samples were taken from 48 root canals, 29 symptomatic and 19 asymptomatic, using adequate techniques. A total of 218 cultivable isolates were recovered from 48 different microbial species and 19 different genera. Root canals from symptomatic teeth harbored more obligate anaerobes and a bigger number of bacterial species than the asymptomatic teeth. More than 70% of the bacterial isolates were strict anaerobes. Statistical analysis used a Pearson Chi-squared test or a one-sided Fisher's Exact test as appropriate. Suggested relationships were found between specific microorganisms, especially gram-negative anaerobes, and the presence of spontaneous or previous pain, tenderness to percussion, pain on palpation and swelling amoxicillin, amoxicillin + clavulanate and cephaclor were effective against all the strains tested. The lowest susceptibility rate was presented by Prevotella intermedia/nigrescens against Penicillin G. Our results suggested that specific bacteria are associated with endodontic symptoms of infected teeth with periapical periodontitis and the majority of the anaerobic bacterial species tested were susceptible to all antibiotics studied.

  17. The antibiotic pipeline for multi-drug resistant gram negative bacteria: what can we expect?

    PubMed

    Falagas, Matthew E; Mavroudis, Andreas D; Vardakas, Konstantinos Z

    2016-08-01

    A real concern in the medical community is the increasing resistance of bacteria, especially that of Gram-negative types. New antibiotics are currently under clinical development, promising to tackle severe infections caused, especially, by multi-drug resistant (MDR) bacteria and broaden the armamentarium of clinicians. We searched PUBMED and GOOGLE databases. Combinations of already approved β-lactams or monobactams with new β-lactamase inhibitors [imipenem-cilastatin/MK-7655 (relebactam), meropenem/RPX7009 (vaborbactam), ceftaroline/avibactam, aztreonam/avibactam], new β-lactams (S-649266, BAL30072), aminoglycosides (plazomicin), quinolones (finafloxacin) and tetracyclines (eravacycline) were included in the review. Expert commentary: For the majority of the upcoming antibiotics the currently available data is limited to their microbiology and pharmacokinetics. Their effectiveness and safety against infections due to MDR bacteria remain to be proved. Significant issues are also the impact of these antibiotics on the human intestinal microbiota and their possible co-administration with already-known antimicrobial agents in difficult-to-treat-infections; further studies should be conducted for these objectives.

  18. Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Rajagopala, Seesandra V.; Kwon, Keehwan; Pieper, Rembert; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2015-01-01

    Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections

  19. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms.

    PubMed

    Memišević, Vesna; Zavaljevski, Nela; Rajagopala, Seesandra V; Kwon, Keehwan; Pieper, Rembert; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2015-03-01

    Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections

  20. Urinary ATP and visualization of intracellular bacteria: a superior diagnostic marker for recurrent UTI in renal transplant recipients?

    PubMed

    Kelley, Stephen P; Courtneidge, Holly R; Birch, Rebecca E; Contreras-Sanz, Alberto; Kelly, Mark C; Durodie, Jerome; Peppiatt-Wildman, Claire M; Farmer, Christopher K; Delaney, Michael P; Malone-Lee, James; Harber, Mark A; Wildman, Scott S

    2014-01-01

    Renal transplant recipients (RTR) are highly susceptible to urinary tract infections (UTIs) with over 50% of patients having at least one UTI within the first year. Yet it is generally acknowledged that there is considerable insensitivity and inaccuracy in routine urinalysis when screening for UTIs. Thus a large number of transplant patients with genuine urine infections may go undiagnosed and develop chronic recalcitrant infections, which can be associated with graft loss and morbidity. Given a recent study demonstrating ATP is released by urothelial cells in response to bacteria exposure, possibly acting at metabotropic P2Y receptors mediating a proinflammatory response, we have investigated alternative, and possibly more appropriate, urinalysis techniques in a cohort of RTRs. Mid-stream urine (MSU) samples were collected from 53 outpatient RTRs. Conventional leukocyte esterase and nitrite dipstick tests, and microscopic pyuria counts (in 1 μl), ATP concentration measurements, and identification of intracellular bacteria in shed urothelial cells, were performed on fresh unspun samples and compared to 'gold-standard' bacterial culture results. Of the 53 RTRs, 22% were deemed to have a UTI by 'gold-standard' conventional bacteria culture, whereas 87%, 8% and 4% showed evidence of UTIs according to leukocyte esterase dipstick, nitrite dipstick, and a combination of both dipsticks, respectively. Intracellular bacteria were visualized in shed urothelial cells of 44% of RTRs, however only 1 of the 23 RTRs (44%) was deemed to have a UTI by conventional bacteria culture. A significant association of the 'gold-standard' test with urinary ATP concentration combined with visualization of intracellular bacteria in shed urothelial cells was determined using the Fisher's exact test. It is apparent that standard bedside tests for UTIs give variable results and that seemingly quiescent bacteria in urothelial cells are very common in RTRs and may represent a focus of

  1. The alpha-tocopherol form of vitamin E reverses age-associated susceptibility to Streptococcus pneumoniae lung infection by modulating pulmonary neutrophil recruitment

    USDA-ARS?s Scientific Manuscript database

    Streptococcus pneumonia infections are an important cause of morbidity and mortality in older patients. Uncontrolled neutrophil-driven pulmonary inflammation exacerbates this disease. To test whether the alpha-tocopherol (alpha-Toc) form of vitamin E, a regulator of immunity, can modulate neutrophil...

  2. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    PubMed

    Guo, Fang; Zhao, Qiong; Sheraz, Muhammad; Cheng, Junjun; Qi, Yonghe; Su, Qing; Cuconati, Andrea; Wei, Lai; Du, Yanming; Li, Wenhui; Chang, Jinhong; Guo, Ju-Tao

    2017-09-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  3. Simulation of bacteria transport processes in a river with Flow3D

    NASA Astrophysics Data System (ADS)

    Schwarzwälder, Kordula; Bui, Minh Duc; Rutschmann, Peter

    2014-05-01

    Water quality aspects are getting more and more important due to the European water Framework directive (WFD). One problem related to this topic is the inflow of untreated wastewater due to combined sewer overflows into a river. The wastewater mixture contains even bacteria like E. coli and Enterococci which are markers for water quality. In our work we investigated the transport of these bacteria in river Isar by using a large-scale flume in the outside area of our lab (Oskar von Miller Institute). Therefor we could collect basic data and knowledge about the processes which occur during bacteria sedimentation and remobilisation. In our flume we could use the real grain with the exact size distribution curve as in the river Isar which we want to simulate and we had the chance to nurture a biofilm which is realistic for the analysed situation. This biofilm plays an important role in the remobilisation processes, because the bacteria are hindered to be washed out back into the bulk phase as fast and in such an amount as this would happen without biofilm. The results of our experiments are now used for a module in the 3D software Flow3D to simulate the effects of a point source inlet of raw wastewater on the water quality. Therefor we have to implement the bacteria not as a problem of concentration with advection and diffusion but as single particles which can be inactivated during the process of settling and need to be hindered from remobilisation by the biofilm. This biofilm has special characteristic, it is slippery and has a special thickness which influences the chance of bacteria being removed. To achieve realistic results we have to include the biofilm with more than a probabilistic-tool to make sure that our module is transferable. The module should be as flexible as possible to be improved step by step with increasing quality of dataset.

  4. Conjugated bilirubin affects cytokine profiles in hepatitis A virus infection by modulating function of signal transducer and activator of transcription factors

    PubMed Central

    Castro-García, Flor P; Corral-Jara, Karla F; Escobedo-Melendez, Griselda; Sandoval-Hernandez, Monserrat A; Rosenstein, Yvonne; Roman, Sonia; Panduro, Arturo; Fierro, Nora A

    2014-01-01

    Hepatitis A virus (HAV) infection is the major cause of acute liver failure in paediatric patients. The clinical spectrum of infection is variable, and liver injury is determined by altered hepatic enzyme function and bilirubin concentration. We recently reported differences in cytokine profiles between distinct HAV-induced clinical courses, and bilirubin has been recognized as a potential immune-modulator. However, how bilirubin may affect cytokine profiles underlying the variability in the course of infection has not been determined. Herein, we used a transcription factor (TF) binding site identification approach to retrospectively analyse cytokine expression in HAV-infected children and to predict the entire set of TFs associated with the expression of specific cytokine profiles. The results suggested that modulation of the activity of signal transducers and activators of transcription proteins (STATs) may play a central role during HAV infection. This led us to compare the degree of STAT phosphorylation in peripheral blood lymphoid cells (PBLCs) from paediatric patients with distinct levels of conjugated bilirubin (CB). Low CB levels in sera were associated with increased STAT-1 and STAT-5 phosphorylation. A positive correlation was observed between the serum interleukin-6 (IL-6) content and CB values, whereas higher levels of CB correlated with reduced serum IL-8 values and with a reduction in the proportion of PBLCs positive for STAT-5 phosphorylation. When CB was used to stimulate patients’ PBLCs in vitro, the levels of IL-6 and tumour necrosis factor-α were increased. The data showed that bilirubin plays a role in STAT function and affects cytokine profile expression during HAV infection. PMID:24943111

  5. Conjugated bilirubin affects cytokine profiles in hepatitis A virus infection by modulating function of signal transducer and activator of transcription factors.

    PubMed

    Castro-García, Flor P; Corral-Jara, Karla F; Escobedo-Melendez, Griselda; Sandoval-Hernandez, Monserrat A; Rosenstein, Yvonne; Roman, Sonia; Panduro, Arturo; Fierro, Nora A

    2014-12-01

    Hepatitis A virus (HAV) infection is the major cause of acute liver failure in paediatric patients. The clinical spectrum of infection is variable, and liver injury is determined by altered hepatic enzyme function and bilirubin concentration. We recently reported differences in cytokine profiles between distinct HAV-induced clinical courses, and bilirubin has been recognized as a potential immune-modulator. However, how bilirubin may affect cytokine profiles underlying the variability in the course of infection has not been determined. Herein, we used a transcription factor (TF) binding site identification approach to retrospectively analyse cytokine expression in HAV-infected children and to predict the entire set of TFs associated with the expression of specific cytokine profiles. The results suggested that modulation of the activity of signal transducers and activators of transcription proteins (STATs) may play a central role during HAV infection. This led us to compare the degree of STAT phosphorylation in peripheral blood lymphoid cells (PBLCs) from paediatric patients with distinct levels of conjugated bilirubin (CB). Low CB levels in sera were associated with increased STAT-1 and STAT-5 phosphorylation. A positive correlation was observed between the serum interleukin-6 (IL-6) content and CB values, whereas higher levels of CB correlated with reduced serum IL-8 values and with a reduction in the proportion of PBLCs positive for STAT-5 phosphorylation. When CB was used to stimulate patients' PBLCs in vitro, the levels of IL-6 and tumour necrosis factor-α were increased. The data showed that bilirubin plays a role in STAT function and affects cytokine profile expression during HAV infection. © 2014 John Wiley & Sons Ltd.

  6. Epithelial Keratins Modulate cMet Expression and Signaling and Promote InlB-Mediated Listeria monocytogenes Infection of HeLa Cells.

    PubMed

    Cruz, Rui; Pereira-Castro, Isabel; Almeida, Maria T; Moreira, Alexandra; Cabanes, Didier; Sousa, Sandra

    2018-01-01

    The host cytoskeleton is a major target for bacterial pathogens during infection. In particular, pathogens usurp the actin cytoskeleton function to strongly adhere to the host cell surface, to induce plasma membrane remodeling allowing invasion and to spread from cell to cell and disseminate to the whole organism. Keratins are cytoskeletal proteins that are the major components of intermediate filaments in epithelial cells however, their role in bacterial infection has been disregarded. Here we investigate the role of the major epithelial keratins, keratins 8 and 18 (K8 and K18), in the cellular infection by Listeria monocytogenes . We found that K8 and K18 are required for successful InlB/cMet-dependent L. monocytogenes infection, but are dispensable for InlA/E-cadherin-mediated invasion. Both K8 and K18 accumulate at InlB-mediated internalization sites following actin recruitment and modulate actin dynamics at those sites. We also reveal the key role of K8 and K18 in HGF-induced signaling which occurs downstream the activation of cMet. Strikingly, we show here that K18, and at a less extent K8, controls the expression of cMet and other surface receptors such TfR and integrin β1, by promoting the stability of their corresponding transcripts. Together, our results reveal novel functions for major epithelial keratins in the modulation of actin dynamics at the bacterial entry sites and in the control of surface receptors mRNA stability and expression.

  7. Are Sunflower chlorotic mottle virus infection symptoms modulated by early increases in leaf sugar concentration?

    PubMed

    Rodríguez, Marianela; Taleisnik, Edith; Lenardon, Sergio; Lascano, Ramiro

    2010-09-15

    Symptom development in a susceptible sunflower line inoculated with Sunflower chlorotic mottle virus (SuCMoV) was followed in the second pair of leaves at different post-inoculation times: before symptom expression (BS), at early (ES) and late (LS) symptom expression. Sugar and starch increases and photoinhibition were observed as early effects BS, and were maintained or enhanced later on, however, chlorophyll loss was detected only at LS. Photoinhibition correlated with a drastic decrease in D1 protein level. The progress of infection was accompanied by decreasing levels of apoplastic reactive oxygen species (ROS). In infected leaves, higher antioxidant enzyme activities (superoxide dismutase, SOD; ascorbate peroxidase, APX; glutathione reductase, GR) were observed from BS. The purpose of this work was to evaluate whether the early increases in carbohydrate accumulation may participate in SuCMoV symptom expression. Similar effects on photoinhibition, apoplastic ROS generation and antioxidant activity were generated when healthy leaves were treated with sugars. These results suggest that photoinhibitory processes and lower apoplastic superoxide levels induced by SuCMoV infection may be modulated by sugar increases. Copyright 2010 Elsevier GmbH. All rights reserved.

  8. Incidence and clinical implication of nosocomial infections associated with implantable biomaterials – catheters, ventilator-associated pneumonia, urinary tract infections

    PubMed Central

    Guggenbichler, Josef Peter; Assadian, Ojan; Boeswald, Michael; Kramer, Axel

    2012-01-01

    Health care associated infections, the fourth leading cause of disease in industrialised countries, are a major health issue. One part of this condition is based on the increasing insertion and implantation of prosthetic medical devices, since presence of a foreign body significantly reduces the number of bacteria required to produce infection. The most significant hospital-acquired infections, based on frequency and potential severity, are those related to procedures e.g. surgical site infections and medical devices, including urinary tract infection in catheterized patients, pneumonia in patients intubated on a ventilator and bacteraemia related to intravascular catheter use. At least half of all cases of nosocomial infections are associated with medical devices. Modern medical and surgical practices have increasingly utilized implantable medical devices of various kinds. Such devices may be utilized only short-time or intermittently, for months, years or permanently. They improve the therapeutic outcome, save human lives and greatly enhance the quality of life of these patients. However, plastic devices are easily colonized with bacteria and fungi, able to be colonized by microorganisms at a rate of up to 0.5 cm per hour. A thick biofilm is formed within 24 hours on the entire surface of these plastic devices once inoculated even with a small initial number of bacteria. The aim of the present work is to review the current literature on causes, frequency and preventive measures against infections associated with intravascular devices, catheter-related urinary tract infection, ventilator-associated infection, and infections of other implantable medical devices. Raising awareness for infection associated with implanted medical devices, teaching and training skills of staff, and establishment of surveillance systems monitoring device-related infection seem to be the principal strategies used to achieve reduction and prevention of such infections. The intelligent use

  9. Coevolution of CRISPR bacteria and phage in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Han, Pu; Deem, Michael

    2014-03-01

    CRISPR (cluster regularly interspaced short palindromic repeats) is a newly discovered adaptive, heritable immune system of prokaryotes. It can prevent infection of prokaryotes by phage. Most bacteria and almost all archae have CRISPR. The CRISPR system incorporates short nucleotide sequences from viruses. These incorporated sequences provide a historical record of the host and predator coevolution. We simulate the coevolution of bacteria and phage in 2 dimensions. Each phage has multiple proto-spacers that the bacteria can incorporate. Each bacterium can store multiple spacers in its CRISPR. Phages can escape recognition by the CRISPR system via point mutation or recombination. We will discuss the different evolutionary consequences of point mutation or recombination on the coevolution of bacteria and phage. We will also discuss an intriguing ``dynamic phase transition'' in the number of phage as a function of time and mutation rate. We will show that due to the arm race between phages and bacteria, the frequency of spacers and proto-spacers in a population can oscillate quite rapidly.

  10. Intracellular bacteria interfere with dendritic cell functions: role of the type I interferon pathway.

    PubMed

    Gorvel, Laurent; Textoris, Julien; Banchereau, Romain; Ben Amara, Amira; Tantibhedhyangkul, Wiwit; von Bargen, Kristin; Ka, Mignane B; Capo, Christian; Ghigo, Eric; Gorvel, Jean-Pierre; Mege, Jean-Louis

    2014-01-01

    Dendritic cells (DCs) orchestrate host defenses against microorganisms. In infectious diseases due to intracellular bacteria, the inefficiency of the immune system to eradicate microorganisms has been attributed to the hijacking of DC functions. In this study, we selected intracellular bacterial pathogens with distinct lifestyles and explored the responses of monocyte-derived DCs (moDCs). Using lipopolysaccharide as a control, we found that Orientia tsutsugamushi, the causative agent of scrub typhus that survives in the cytosol of target cells, induced moDC maturation, as assessed by decreased endocytosis activity, the ability to induce lymphocyte proliferation and the membrane expression of phenotypic markers. In contrast, Coxiella burnetii, the agent of Q fever, and Brucella abortus, the agent of brucellosis, both of which reside in vacuolar compartments, only partly induced the maturation of moDCs, as demonstrated by a phenotypic analysis. To analyze the mechanisms used by C. burnetii and B. abortus to alter moDC activation, we performed microarray and found that C. burnetii and B. abortus induced a specific signature consisting of TLR4, TLR3, STAT1 and interferon response genes. These genes were down-modulated in response to C. burnetii and B. abortus but up-modulated in moDCs activated by lipopolysaccharide and O. tsutsugamushi. This transcriptional alteration was associated with the defective interferon-β production. This study demonstrates that intracellular bacteria specifically affect moDC responses and emphasizes how C. burnetii and B. abortus interfere with moDC activation and the antimicrobial immune response. We believe that comparing infection by several bacterial species may be useful for defining new pathways and biomarkers and for developing new treatment strategies.

  11. New Bacterial Infection in the Prostate after Transrectal Prostate Biopsy.

    PubMed

    Seo, Yumi; Lee, Gilho

    2018-04-23

    The prostate is prone to infections. Hypothetically, bacteria can be inoculated into the prostate during a transrectal prostate biopsy (TRPB) and progress into chronic bacterial prostatitis. Therefore, we examined new bacterial infections in biopsied prostates after TRPB and whether they affect clinical characteristics in the biopsied patients. Of men whose prostate cultures have been taken prior to TRPB, 105 men with bacteria-free benign prostate pathology underwent an additional repeated prostate culture within a year after TRPB. Twenty out of 105 men (19.05%) acquired new bacteria in their naïve prostates after TRPB. Except for one single case of Escherichia coli infection, 19 men had acquired gram-positive bacteria species. Between the culture-positive and negative groups, there were no significant differences in age, serum prostate-specific antigen (PSA) level, white blood cell (WBC) counts in expressed prostatic secretion (EPS), prostate volume, symptom severities in Korean version of the National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) questionnaire, and patient-specific risk factors for biopsy associated infectious complications. Additionally, the TRPB procedure increased the WBC counts in post-biopsy EPS ( P = 0.031, McNemar test), but did not increase the serum PSA level and symptoms of NIH-CPSI in 20 men who acquired new bacteria after TRPB. The TRPB procedure was significantly associated with acquiring new bacterial infections in the biopsied prostate, but these localized bacteria did not affect patients' serum PSA level and symptoms after biopsy.

  12. Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development.

    PubMed

    Wu, Shan; Zhang, Xiaofeng; He, Yongqiang; Shuai, Jiangbing; Chen, Xiaomei; Ling, Erjun

    2010-11-01

    Although Bombyx mori systematic immunity is extensively studied, little is known about the silkworm's intestine-specific responses to bacterial infection. Antimicrobial peptides (AMPs) gene expression analysis of B. mori intestinal tissue to oral infection with the Gram-positive (Staphylococcus aureus) and -negative (Escherichia coli) bacteria revealed that there is specificity in the interaction between host immune responses and parasite types. Neither Att1 nor Leb could be stimulated by S. aureus and E. coli. However, CecA1, Glo1, Glo2, Glo3, Glo4 and Lys, could only be trigged by S. aureus. On the contrary, E. coli stimulation caused the decrease in the expression of CecA1, Glo3 and Glo4 in some time points. Interestingly, there is regional specificity in the silkworm local gut immunity. During the immune response, the increase in Def, Hem and LLP3 was only detected in the foregut and midgut. For CecB1, CecD, LLP2 and Mor, after orally administered with E. coli, the up-regulation was only limited in the midgut and hindgut. CecE was the only AMP that positively responses to the both bacteria in all the testing situations. With development, the expression levels of the AMPs were also changed dramatically. That is, at spinning and prepupa stages, a large increase in the expression of CecA1, CecB1, CecD, CecE, Glo1, Glo2, Glo3, Glo4, Leb, Def, Hem, Mor and Lys was detected in the gut. Unexpectedly, in addition to the IMD pathway genes, the Toll and JAK/STAT pathway genes in the silkworm gut can also be activated by microbial oral infection. But in the developmental course, corresponding to the increase in expression of AMPs at spinning and prepupa stages, only the Toll pathway genes in the gut exhibit the similar increasing trend. Our results imply that the immune responses in the silkworm gut are synergistically regulated by the Toll, JAK/STAT and IMD pathways. However, as the time for approaching pupation, the Toll pathway may play a role in the AMPs expression

  13. Modulating the Gut Micro-Environment in the Treatment of Intestinal Parasites

    PubMed Central

    Vitetta, Luis; Saltzman, Emma Tali; Nikov, Tessa; Ibrahim, Isabelle; Hall, Sean

    2016-01-01

    The interactions of micro-organisms cohabitating with Homo sapiens spans millennia, with microbial communities living in a symbiotic relationship with the host. Interacting to regulate and maintain physiological functions and immunological tolerance, the microbial community is able to exert an influence on host health. An example of micro-organisms contributing to an intestinal disease state is exhibited by a biodiverse range of protozoan and bacterial species that damage the intestinal epithelia and are therefore implicated in the symptoms of diarrhea. As a contentious exemplar, Blastocystis hominis is a ubiquitous enteric protist that can adversely affect the intestines. The symptoms experienced are a consequence of the responses of the innate immune system triggered by the disruption of the intestinal barrier. The infiltration of the intestinal epithelial barrier involves a host of immune receptors, including toll like receptors and IgM/IgG/IgA antibodies as well as CD8+ T cells, macrophages, and neutrophils. Whilst the mechanisms of interactions between the intestinal microbiome and protozoan parasites remain incompletely understood, it is acknowledged that the intestinal microbiota is a key factor in the pathophysiology of parasitic infections. Modulating the intestinal environment through the administration of probiotics has been postulated as a possible therapeutic agent to control the proliferation of intestinal microbes through their capacity to induce competition for occupation of a common biotype. The ultimate goal of this mechanism is to prevent infections of the like of giardiasis and eliminate its symptoms. The differing types of probiotics (i.e., bacteria and yeast) modulate immunity by stimulating the host immune system. Early animal studies support the potential benefits of probiotic administration to prevent intestinal infections, with human clinical studies showing probiotics can reduce the number of parasites and the severity of symptoms. The

  14. Modulating the Gut Micro-Environment in the Treatment of Intestinal Parasites.

    PubMed

    Vitetta, Luis; Saltzman, Emma Tali; Nikov, Tessa; Ibrahim, Isabelle; Hall, Sean

    2016-11-16

    The interactions of micro-organisms cohabitating with Homo sapiens spans millennia, with microbial communities living in a symbiotic relationship with the host. Interacting to regulate and maintain physiological functions and immunological tolerance, the microbial community is able to exert an influence on host health. An example of micro-organisms contributing to an intestinal disease state is exhibited by a biodiverse range of protozoan and bacterial species that damage the intestinal epithelia and are therefore implicated in the symptoms of diarrhea. As a contentious exemplar, Blastocystis hominis is a ubiquitous enteric protist that can adversely affect the intestines. The symptoms experienced are a consequence of the responses of the innate immune system triggered by the disruption of the intestinal barrier. The infiltration of the intestinal epithelial barrier involves a host of immune receptors, including toll like receptors and IgM/IgG/IgA antibodies as well as CD8+ T cells, macrophages, and neutrophils. Whilst the mechanisms of interactions between the intestinal microbiome and protozoan parasites remain incompletely understood, it is acknowledged that the intestinal microbiota is a key factor in the pathophysiology of parasitic infections. Modulating the intestinal environment through the administration of probiotics has been postulated as a possible therapeutic agent to control the proliferation of intestinal microbes through their capacity to induce competition for occupation of a common biotype. The ultimate goal of this mechanism is to prevent infections of the like of giardiasis and eliminate its symptoms. The differing types of probiotics (i.e., bacteria and yeast) modulate immunity by stimulating the host immune system. Early animal studies support the potential benefits of probiotic administration to prevent intestinal infections, with human clinical studies showing probiotics can reduce the number of parasites and the severity of symptoms. The

  15. Highly sensitive label-free dual sensor array for rapid detection of wound bacteria.

    PubMed

    Sheybani, Roya; Shukla, Anita

    2017-06-15

    Wound infections are a critical healthcare concern worldwide. Rapid and effective antibiotic treatments that can mitigate infection severity and prevent the spread of antibiotic resistance are contingent upon timely infection detection. In this work, dual electrochemical pH and cell-attachment sensor arrays were developed for the real-time spatial and temporal monitoring of potential wound infections. Biocompatible polymeric device coatings were integrated to stabilize the sensors and promote bacteria attachment while preventing non-specific cell and protein fouling. High sensitivity (bacteria concentration of 10 2 colony forming units (CFU)/mL and -88.1±6.3mV/pH over a pH range of 1-13) and stability over 14 days were achieved without the addition of biological recognition elements. The dual sensor array was demonstrated to successfully monitor the growth of both gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) over time through lag and log growth phases and following antibiotic administration and in simulated shallow wounds conditions. The versatile fabrication methods utilized in sensor development, superior sensitivity, prolonged stability, and lack of non-specific sensor fouling may enable long-term in situ sensor array operation in low resource settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Classification of human pathogen bacteria for early screening using electronic nose

    NASA Astrophysics Data System (ADS)

    Zulkifli, Syahida Amani; Mohamad, Che Wan Syarifah Robiah; Abdullah, Abu Hassan

    2017-10-01

    This paper present human pathogen bacteria for early screening using electronic nose. Electronic nose (E-nose) known as gas sensor array is a device that analyze the odor measurement give the fast response and less time consuming for clinical diagnosis. Many bacterial pathogens could lead to life threatening infections. Accurate and rapid diagnosis is crucial for the successful management of these infections disease. The conventional method need more time to detect the growth of bacterial. Alternatively, the bacteria are Pseudomonas aeruginosa and Shigella cultured on different media agar can be detected and classifies according to the volatile compound in shorter time using electronic nose (E-nose). Then, the data from electronic nose (E-nose) is processed using statistical method which is principal component analysis (PCA). The study shows the capability of electronic nose (E-nose) for early screening for bacterial infection in human stomach.

  17. Undetected Infection by Maize Bushy Stunt Phytoplasma Enhances Host-Plant Preference to Dalbulus maidis (Hemiptera: Cicadellidae).

    PubMed

    García Gonzalez, Javier; Giraldo Jaramillo, Marisol; Roberto Spotti Lopes, João

    2018-04-05

    Vector-borne plant pathogenic bacteria can induce changes in infected plants favoring the insect vector behavior and biology. The study aimed to determine the effect of maize bushy stunt phytoplasma (MBSP) postinoculation period on the host plant preference and transmission efficiency by the corn leafhopper, Dalbulus maidis DeLong & Wolcott, 1923 (Hemiptera: Cicadellidae). In a series of choice tests, D. maidis preference was measured as settling and oviposition on healthy maize plants versus infected maize plants showing early disease symptoms, advanced symptoms, or no symptoms. Finally, transmission efficiency of D. maidis was measured when the vector previously acquired the phytoplasma from asymptomatic source plants at different postinoculation periods. D. maidis adults preferred to settle and to oviposit on healthy than on symptomatic infected plants with advanced disease symptoms, and preferred asymptomatic plants over symptomatic ones. MBSP transmission by D. maidis was positively correlated with the postinoculation period of the source plant. Results suggest an MBSP modulation for D. maidis preference on asymptomatic infected maize plants in the early stages of the crop, allowing the pathogen an undetected transmission.

  18. Sea bass Dicentrarchus labrax (L.) bacterial infection and confinement stress acts on F-type lectin (DlFBL) serum modulation.

    PubMed

    Parisi, M G; Benenati, G; Cammarata, M

    2015-11-01

    The F-lectin, a fucose-binding protein found from invertebrates to ectothermic vertebrates, is the last lectin family to be discovered. Here, we describe effects of two different types of stressors, bacterial infection and confinement stress, on the modulation of European sea bass Dicentrarchus labrax (L.) F-lectin (DlFBL), a well-characterized serum opsonin, using a specific antibody. The infection of the Vibrio alginolyticus bacterial strain increased the total haemagglutinating activity during the 16-day testing period. The DlFBL value showed an upward regulation on the first, second and last days and underwent a slight downward regulation 4 days post-challenge. In contrast, the effect of confinement and density stress showed a decrease in the plasma concentration of lectin, ranging from 50% to 60% compared with the control. The modulation of DlFBL is in line with the hypothesis that humoral lectins could be involved and recruited in the initial recognition step of the inflammation, which leads to agglutination, and the activation of mechanisms responsible for killing of the pathogens. © 2014 John Wiley & Sons Ltd.

  19. Differentiating sepsis from non-infectious systemic inflammation based on microvesicle-bacteria aggregation

    NASA Astrophysics Data System (ADS)

    Herrmann, I. K.; Bertazzo, S.; O'Callaghan, D. J. P.; Schlegel, A. A.; Kallepitis, C.; Antcliffe, D. B.; Gordon, A. C.; Stevens, M. M.

    2015-08-01

    Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (<=1.5 hour) and reliable diagnostic differentiation of bacterial infection from non-infectious inflammation in a double-blind pilot study. Our study demonstrates the potential of microvesicle activities for sepsis diagnosis and introduces microvesicle-bacteria aggregation as a potentially useful parameter for making early clinical management decisions.Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (<=1.5 hour) and reliable diagnostic differentiation of bacterial infection from non-infectious inflammation in a double-blind pilot study. Our study demonstrates the potential of microvesicle activities for sepsis diagnosis and

  20. Micro-Raman spectroscopy for identification and classification of UTI bacteria

    NASA Astrophysics Data System (ADS)

    Yogesha, M.; Chawla, Kiran; Acharya, Mahendra; Chidangil, Santhosh; Bankapur, Aseefhali

    2017-07-01

    Urinary tract infection (UTI) is one of the major clinical problems known to mankind, especially among adult women. Conventional methods for identification of UTI causing bacteria are time consuming and expensive. Therefore, a rapid and cost-effective method is desired. In the present study, five bacteria (one Gram-positive and four Gram-negative), most commonly known to cause UTI, have been identified and classified using micro-Raman spectroscopy combined with principal component analysis (PCA).

  1. Identification of swine influenza A virus and Stenotrophomonas maltophilia co-infection in Chinese pigs

    PubMed Central

    2012-01-01

    Background Influenza virus virulence can be exacerbated by bacterial co-infections. Swine influenza virus (SIV) infection together with some bacteria is found to enhance pathogenicity. Methods SIV-positive samples suspected of containing bacteria were used for bacterial isolation and identification. Antimicrobial susceptibility testing was performed by disc diffusion methods. To investigate the interaction of SIV and the bacteria in vitro, guinea pigs were used as mammalian hosts to determine the effect on viral susceptibility and transmissibility. Differences in viral titers between groups were compared using Student’s t-test. Results During surveillance for SIV in China from 2006 to 2009, seven isolates (24.14%) of 29 influenza A viruses were co-isolated with Stenotrophomonas maltophilia from nasal and tracheal swab samples of pigs. Antimicrobial susceptibility testing showed that the bacteria possessed a high level of resistance towards clinically used antibiotics. To investigate the interaction between these two microorganisms in influencing viral susceptibility and transmission in humans, guinea pigs were used as an infection model. Animals were inoculated with SIV or S. maltophilia alone or co-infected with SIV and S. maltophilia. The results showed that although no transmission among guinea pigs was observed, virus–bacteria co-infections resulted in higher virus titers in nasal washes and trachea and a longer virus shedding period. Conclusions This is the first report of influenza virus co-infection with S. maltophilia in the Chinese swine population. Increased replication of virus by co-infection with multidrug resistant bacteria might increase the infection rate of SIV in humans. The control of S. maltophilia in clinics will contribute to reducing the spread of SIV in pigs and humans. PMID:22913775

  2. Identification of swine influenza A virus and Stenotrophomonas maltophilia co-infection in Chinese pigs.

    PubMed

    Hou, Dongjun; Bi, Yuhai; Sun, Honglei; Yang, Jun; Fu, Guanghua; Sun, Yipeng; Liu, Jinhua; Pu, Juan

    2012-08-22

    Influenza virus virulence can be exacerbated by bacterial co-infections. Swine influenza virus (SIV) infection together with some bacteria is found to enhance pathogenicity. SIV-positive samples suspected of containing bacteria were used for bacterial isolation and identification. Antimicrobial susceptibility testing was performed by disc diffusion methods. To investigate the interaction of SIV and the bacteria in vitro, guinea pigs were used as mammalian hosts to determine the effect on viral susceptibility and transmissibility. Differences in viral titers between groups were compared using Student's t-test. During surveillance for SIV in China from 2006 to 2009, seven isolates (24.14%) of 29 influenza A viruses were co-isolated with Stenotrophomonas maltophilia from nasal and tracheal swab samples of pigs. Antimicrobial susceptibility testing showed that the bacteria possessed a high level of resistance towards clinically used antibiotics. To investigate the interaction between these two microorganisms in influencing viral susceptibility and transmission in humans, guinea pigs were used as an infection model. Animals were inoculated with SIV or S. maltophilia alone or co-infected with SIV and S. maltophilia. The results showed that although no transmission among guinea pigs was observed, virus-bacteria co-infections resulted in higher virus titers in nasal washes and trachea and a longer virus shedding period. This is the first report of influenza virus co-infection with S. maltophilia in the Chinese swine population. Increased replication of virus by co-infection with multidrug resistant bacteria might increase the infection rate of SIV in humans. The control of S. maltophilia in clinics will contribute to reducing the spread of SIV in pigs and humans.

  3. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation.

    PubMed

    Bergsbaken, Tessa; Cookson, Brad T

    2009-11-01

    Yersinia pestis, the etiological agent of plague, is one of the most deadly pathogens on our planet. This organism shares important attributes with its ancestral progenitor, Yersinia pseudotuberculosis, including a 70-kb virulence plasmid, lymphotropism during growth in the mammalian host, and killing of host macrophages. Infections with both organisms are biphasic, where bacterial replication occurs initially with little inflammation, followed by phagocyte influx, inflammatory cytokine production, and tissue necrosis. During infection, plasmid-encoded attributes facilitate bacterial-induced macrophage death, which results from two distinct processes and corresponds to the inflammatory crescendo observed in vivo: Naïve cells die by apoptosis (noninflammatory), and later in infection, activated macrophages die by pyroptosis (inflammatory). The significance of this redirected cell death for the host is underscored by the importance of phagocyte activation for immunity to Yersinia and the protective role of pyroptosis during host responses to anthrax lethal toxin and infections with Francisella, Legionella, Pseudomonas, and Salmonella. The similarities of Y. pestis and Y. pseudotuberculosis, including conserved, plasmid-encoded functions inducing at least two distinct mechanisms of cell death, indicate that comparative studies are revealing about their critical pathogenic mechanism(s) and host innate immune responses during infection. Validation of this idea and evidence of similar interactions with the host immune system are provided by Y. pseudotuberculosis-priming, cross-protective immunity against Y. pestis. Despite these insights, additional studies indicate much remains to be understood concerning effective host responses against Yersinia, including chromosomally encoded attributes that also contribute to bacterial evasion and modulation of innate and adaptive immune responses.

  4. [Urinary calculi and infection].

    PubMed

    Trinchieri, Alberto

    2014-01-01

    Infection urinary stones resulting from urease-producing bacteria are composed by struvite and/or carbonate apatite. Bacterial urease splits urea and promotes the formation of ammonia and carbon dioxide leading to urine alkalinization and formation of phosphate salts. Proteus species are urease-producers, whereas a limited number of strains of other Gram negative and positive species may produce urease. Ureaplasma urealyticum and Corynebacterium urealyticum are urease-producers that are not isolated by conventional urine cultures, but require specific tests for identification. Primary treatment requires surgical removal of stones as complete as possible. Extracorporeal and endoscopic treatments are usually preferred, while open surgery is actually limited to few selected cases. Residual stones or fragments should be treated by chemolysis via ureteral catheter or nephrostomy or administration of citrate salts in order to achieve a stone-free renal unit. Postoperatively, recurrent urinary tract infection should be treated with appropriate antibiotic treatment although long-term antibiotic prophylaxis can cause resistance. Urinary acidification has been proposed for the prophylaxis of infection stones, but long-term acidification is difficult to achieve in urine infected by urease-producing bacteria. Urease inhibitors lead to prevention and/or dissolution of stones and encrustations in patients with infection by urea-splitting bacteria, but their use is limited by their toxicity. The administration of citrate salts involves an increase of the value of nucleation pH (pHn), that is the pH value at which calcium and magnesium phosphate crystallization occurs, in a greater way than the corresponding increase in the urinary pH due to its alkalinizing effect and resulting in a reduction of the risk of struvite crystallization. In conclusion prevention of the recurrence of infection stones can be achieved by an integrated approach tailored on the single patient. Complete

  5. Clostridium difficile Infection

    MedlinePlus

    ... These drugs can make your infection worse. Certain probiotics, or “good bacteria,” may help prevent repeat C. ... Your Doctor Drugs, Procedures & Devices Over-the-counter Products Procedures & Devices Prescription Medicines Health Tools Dictionary Symptom ...

  6. [Distribution of Pathogenic Bacteria and Its Influence on Expression of BCL-2 and BAX Protein after HSCT in the Patients with Hematological Malignancies].

    PubMed

    Su, Gui-Ping; Dai, Yan; Huang, Lai-Quan; Jiang, Yi-Zhi; Geng, Liang-Quan; Ding, Kai-Yang; Huang, Dong-Ping

    2016-06-01

    To investigate the distribution of pathogenic bacteria in the patients with hematologic malignancies received hematopoietic stem cell transplantation (HSCT) and its influence on the expression of BCL-2 and BAX proteins. The clinical data of 64 patients with malignant lymphoma (ML) received auto-HSCT from January 2011 to December 2015 in our hospital were analyzed. On basis of post-treansplant infection, the patients were divided into infection group (36 cases) and non-infection group (28 cases). The distribution of pathogenic bacteria in 2 groups was identified, the T lymphocyte subsets of peripheral blood, expression level of apoptotic proteins and C-reaction protein (CRP) in 2 group were detected. Thirty-six strains of pathogenic bacteria were isolated from 36 case of hematological malignancy after HSCT, including 24 strains of Gram-negative bacteria (66.67%) with predominamce of klebsiella pneumoniae (19.44%). The periperal blood CD4+ (t=2.637, P<0.01), CD4+/CD8+ ratio (t=8.223, P<0.01), BCL-2 protein (t=5.852, P<0.05), BCL-2/BAX ratio (t=14.56, P<0.01) in infection group were significantly lower than those in non-infection group, while CD8+ (t=2.285, P=<0.01), CRP (t=39.71, P<0.01), BAX level in infection group were higher than those in non-infection group. The pearson correcation analysis showed that the CD4+/CD8+ ratio in infection group positively correlated with BCL-2/BAX ratio (t=0.341, P<0.05), while serum CRP level in infection group negatively correlated with BCL-2/BAX ratio (t=-0.362, P<0.05). The pathogenic bacteria infecting ML patients after HSCT were mainly Gram-negative bacteria. The post-transplant infection can promote the expression up-regulation of related inflammatory factors and apoptotic proteins. The pathogens may be involved in cell apoptisis that provides a new strategy to treat the hematologic malignancies.

  7. The population dynamics of bacteria, phage and RM Systems

    NASA Astrophysics Data System (ADS)

    Guet, Calin; Levin, Bruce; Pleska, Maros

    Viruses drive and mediate bacterial evolution as parasites and vectors of horizontal gene transfer, respectively. Temperate bacteriophages, defined by the ability to lysogenize a fraction of hosts and to transmit horizontally as well as vertically in the form of prophages, frequently carry genes that increase fitness or contribute to bacterial pathogenicity. Restriction-modification (RM) systems, which are widely diverse and ubiquitous among bacteria, can prevent infections leading to lysis, but their effect on lysogeny is not clear. We show that RM systems prevent lytic and lysogenic infections to the same extent and therefore represent a molecular barrier to prophage acquisition. Surprisingly, we find that this negative effect can be overcome and even reversed at the population level, as a consequence of dynamic interactions between viruses, hosts and RM systems. Thus the population dynamics of bacteria carrying RM systems impacts bacterial genome-wide evolution. .

  8. IRAK4 activity controls immune responses to intracellular bacteria Listeria monocytogenes and Mycobacterium smegmatis.

    PubMed

    Pattabiraman, Goutham; Murphy, Michael; Agliano, Federica; Karlinsey, Keaton; Medvedev, Andrei E

    2018-05-11

    IL-1 receptor-associated kinase (IRAK) 4 is a central enzyme of the TLR pathways. This study tested the hypothesis that IRAK4 kinase activity is prerequisite for regulating innate immunity during infections with intracellular bacteria. To this end, we analyzed responses of macrophages obtained from mice expressing wild-type (WT) IRAK4 or its kinase-inactive K213M mutant (IRAK4 KI ) upon infection with intracellular bacteria Listeria monocytogenes or Mycobacterium smegmatis. In contrast to robust induction of cytokines by macrophages expressing kinase-sufficient IRAK4, IRAK4 KI macrophages expressed decreased TNF-α, IL-6, IL-1β, and C-C motif chemokine ligand 5 upon infection with L. monocytogenes or M. smegmatis. Bacterial infection of IRAK4 KI macrophages led to attenuated activation of IRAK1, MAPKs and NF-κB, impaired induction of inducible NO synthase mRNA and secretion of NO, but resulted in elevated microbial burdens. Compared with WT animals, systemic infection of IRAK4 KI mice with M. smegmatis or L. monocytogenes resulted in decreased levels of serum IL-6 and CXCL-1 but increased bacterial burdens in the spleen and liver. Thus, a loss of IRAK4 kinase activity underlies deficient cytokine and microbicidal responses during infection with intracellular bacteria L. monocytogenes or M. smegmatis via impaired activation of IRAK1, MAPKs, and NF-κB but increases bacterial burdens, correlating with decreased induction of NO. ©2018 Society for Leukocyte Biology.

  9. [Infectious risk related to the formation of multi-species biofilms (Candida - bacteria) on peripheral vascular catheters].

    PubMed

    Seghir, A; Boucherit-Otmani, Z; Sari-Belkharroubi, L; Boucherit, K

    2017-03-01

    The Candida yeasts are the fourth leading cause of death from systemic infections, the risk may increase when the infection also involves bacteria. Yeasts and bacteria can adhere to medical implants, such as peripheral vascular catheters, and form a multicellular structures called "mixed biofilms" more resistant to antimicrobials agents. However, the formation of mixed biofilms on implants leads to long-term persistent infections because they can act as reservoirs of pathogens that have poorly understood interactions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Pathogenic mechanisms of intracellular bacteria.

    PubMed

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  11. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches.

    PubMed

    Aschenbroich, Sophie A; Lafontaine, Eric R; Hogan, Robert J

    2016-09-01

    Burkholderia pseudomallei and Burkholderia mallei are pathogenic bacteria causing fatal infections in animals and humans. Both organisms are classified as Tier 1 Select Agents owing to their highly fatal nature, potential/prior use as bioweapons, severity of disease via respiratory exposure, intrinsic resistance to antibiotics, and lack of a current vaccine. Disease manifestations range from acute septicemia to chronic infection, wherein the facultative intracellular lifestyle of these organisms promotes persistence within a broad range of hosts. This ability to thrive intracellularly is thought to be related to exploitation of host immune response signaling pathways. There are currently considerable gaps in our understanding of the molecular strategies employed by these pathogens to modulate these pathways and evade intracellular killing. A better understanding of the specific molecular basis for dysregulation of host immune responses by these organisms will provide a stronger platform to identify novel vaccine targets and develop effective countermeasures.

  12. Immunohematopoietic modulation by oral β-1,3-glucan in mice infected with Listeria monocytogenes.

    PubMed

    Torello, Cristiane O; de Souza Queiroz, Julia; Oliveira, Sueli C; Queiroz, Mary L S

    2010-12-01

    In this study we demonstrated that the oral administration of β-1,3-glucan (Imunoglucan®) protects mice from a lethal dose of Listeria monocytogenes (LM) when administered prophylactically for 10 days at the doses of 150 and 300 mg/kg, with survival rates up to 40%. These doses also prevented the myelosuppression and the splenomegaly caused by a sublethal infection with LM, due to increased numbers of granulocyte-macrophage progenitors (CFU-GM) in the bone marrow. Investigation of the production of colony-stimulating factors revealed an increased colony-stimulating activity (CSA) in the serum of infected mice pre-treated with Imunoglucan®. The treatment also restored the reduced ability of stromal cells to display myeloid progenitors in long-term bone marrow cultures (LTBMC) and up-regulated IL-6 and IL-1α production by these cells in the infected mice, which was consistent with higher number of non-adherent cells. Additional studies to investigate the levels of interferon-gamma (INF-γ) in the supernatant of splenocyte cultures demonstrated a further increase in the level of this cytokine in infected-treated mice, compared to infected controls. In all cases, no differences were observed between the responses of the two optimal biologically effective doses. In contrast, no significant changes were produced by the treatment with the 50mg/kg dose. In addition, no changes were observed in normal mice treated with the three doses used. All together our results suggest that orally given Imunoglucan® indirectly modulates immune activity and probably disengages Listeria induced suppression of these responses by inducing a higher reserve of myeloid progenitors in the bone marrow in consequence of biologically active cytokine release (CSFs, IL-1α, IL-6, and INF-γ). Copyright © 2010 Elsevier B.V. All rights reserved.

  13. The frequency and some characteristics of anaerobic bacteria isolated from various forms of bovine mastitis.

    PubMed

    Greeff, A S; Du Preez, J H; De Beer, M

    1983-03-01

    The prevalence of strictly anaerobic bacteria in the secretions from untreated cases of mastitis in lactating dairy cows was investigated. The study involved 147 Friesland cows in 12 highveld herds. All herds yielded cows with anaerobic udder infections. No anaerobic bacteria were recovered from cows with normal quarters or those with latent aerobic infections. Only anaerobes were present in 10% of so-called 'aseptic' mastitis cases. A variety of anaerobic organisms was isolated concurrently with facultative bacteria from 5,3% and 58,8% of cases classified as subclinical and clinical respectively. Peptococcus spp. was associated with Corynebacterium pyogenes and Bacteroides spp. with Staphylococcus aureus and/or Streptococcus agalactiae in 80% anaerobic udder infections. Gram positive anaerobic species were mostly sensitive to penicillin-G but all the Gram negative rods were resistant. In addition, all B. fragilis strains produced beta-lactamase. The ability to produce heparinase was demonstrated in one strain of Peptococcus indolicus and a Peptostreptococcus sp.

  14. Resistance profiles to antimicrobial agents in bacteria isolated from acute endodontic infections: systematic review and meta-analysis.

    PubMed

    Lang, Pauline M; Jacinto, Rogério C; Dal Pizzol, Tatiane S; Ferreira, Maria Beatriz C; Montagner, Francisco

    2016-11-01

    Infected root canal or acute apical abscess exudates can harbour several species, including Fusobacterium, Porphyromonas, Prevotella, Parvimonas, Streptococcus, Treponema, Olsenella and not-yet cultivable species. A systematic review and meta-analysis was performed to assess resistance rates to antimicrobial agents in clinical studies that isolated bacteria from acute endodontic infections. Electronic databases and the grey literature were searched up to May 2015. Clinical studies in humans evaluating the antimicrobial resistance of primary acute endodontic infection isolates were included. PRISMA guidelines were followed. A random-effect meta-analysis was employed. The outcome was described as the pooled resistance rates for each antimicrobial agent. Heterogeneity and sensitivity analyses were performed. Subgroup analyses were conducted based upon report or not of the use of antibiotics prior to sampling as an exclusion factor (subgroups A and B, respectively). Data from seven studies were extracted. Resistance rates for 15 different antimicrobial agents were evaluated (range, 3.5-40.0%). Lower resistance rates were observed for amoxicillin/clavulanic acid and amoxicillin; higher resistance rates were detected for tetracycline. Resistance rates varied according to previous use of an antimicrobial agent as demonstrated by the subgroup analyses. Heterogeneity was observed for the resistance profiles of penicillin G in subgroup A and for amoxicillin, clindamycin, metronidazole and tetracycline in subgroup B. Sensitivity analyses demonstrated that resistance rates changed for metronidazole, clindamycin, tetracycline and amoxicillin. These findings suggest that clinical isolates had low resistance to β-lactams. Further well-designed studies are needed to clarify whether the differences in susceptibility among the antimicrobial agents may influence clinical responses to treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights

  15. Economic evaluation of infection control activities.

    PubMed

    Seko, T; Tachi, T; Kawashima, N; Maeda, T; Yasuda, M; Noguchi, Y; Teramachi, H

    2017-08-01

    Healthcare-associated infections by drug-resistant bacteria affect a patient's prognosis. Infection control activities at medical institutions in Japan are increasingly focused on the threat from these bacteria. To undertake a full cost analysis that included the costs of consumables and labour required for infection control activities. The cost of infection control activities undertaken by the infection control team (ICT) at Nishimino Kosei Hospital in Japan was surveyed from January 2013 to December 2015. The evaluation index of infection control activities used the meticillin-resistant Staphylococcus aureus detection rate. The cost:effectiveness ratio (CER) of each intervention was calculated. Consumables and labour costs increased over time, as did the ratio of labour cost to total cost over time. However, the CER of interventions was found to have decreased, from ¥164,177 in 2014 to ¥57,989 in 2015. There were increases not only in the amount of consumables, but also in ICT time, suggesting the possibility of improvements in the economic efficiency of infection control. Increasing the amount of consumables and the time input of the ICT could help improve the economic efficiency of infection control. Our research suggests the possibility for improvements in the economic efficiency of infection control. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. Salmonella infections

    USDA-ARS?s Scientific Manuscript database

    Infections of poultry with bacteria of the genus Salmonella can cause clinical disease, but are of greater current concern as agents of food-borne transmission of illness to humans. However, two nonmotile organisms, S. Pullorum and S. Gallinarum, are host-specific for avian species. Pullorum disease...

  17. Chronic Bladder Infection: Is There a Cure?

    MedlinePlus

    ... to get recurrent bladder infections, a type of urinary tract infection (UTI). These factors include: Kidney or bladder stones Bacteria ... your doctor at the first sign of a UTI Vaginal estrogen therapy — if you don't already ...

  18. Comparative Genomics Evidence That Only Protein Toxins are Tagging Bad Bugs

    PubMed Central

    Georgiades, Kalliopi; Raoult, Didier

    2011-01-01

    The term toxin was introduced by Roux and Yersin and describes macromolecular substances that, when produced during infection or when introduced parenterally or orally, cause an impairment of physiological functions that lead to disease or to the death of the infected organism. Long after the discovery of toxins, early genetic studies on bacterial virulence demonstrated that removing a certain number of genes from pathogenic bacteria decreases their capacity to infect hosts. Each of the removed factors was therefore referred to as a “virulence factor,” and it was speculated that non-pathogenic bacteria lack such supplementary factors. However, many recent comparative studies demonstrate that the specialization of bacteria to eukaryotic hosts is associated with massive gene loss. We recently demonstrated that the only features that seem to characterize 12 epidemic bacteria are toxin–antitoxin (TA) modules, which are addiction molecules in host bacteria. In this study, we investigated if protein toxins are indeed the only molecules specific to pathogenic bacteria by comparing 14 epidemic bacterial killers (“bad bugs”) with their 14 closest non-epidemic relatives (“controls”). We found protein toxins in significantly more elevated numbers in all of the “bad bugs.” For the first time, statistical principal components analysis, including genome size, GC%, TA modules, restriction enzymes, and toxins, revealed that toxins are the only proteins other than TA modules that are correlated with the pathogenic character of bacteria. Moreover, intracellular toxins appear to be more correlated with the pathogenic character of bacteria than secreted toxins. In conclusion, we hypothesize that the only truly identifiable phenomena, witnessing the convergent evolution of the most pathogenic bacteria for humans are the loss of metabolic activities, i.e., the outcome of the loss of regulatory and transcription factors and the presence of protein toxins, alone, or

  19. Virulence properties of cariogenic bacteria

    PubMed Central

    Kuramitsu, Howard K; Wang, Bing-Yan

    2006-01-01

    The importance of Streptococcus mutans in the etiology of dental caries has been well documented. However, there is growing recognition that the cariogenic potential of dental plaque may be determined by the composite interactions of the total plaque bacteria rather than solely the virulence properties of a single organism. This study will examine how the interactions of S. mutans with other biofilm constituents may influence the cariogenicity of plaque samples. In order to begin to investigate the effects of nonmutans streptococci on the cariogenic potential of S. mutans, we have examined the effects of Streptococcus gordonii on the virulence properties of the former organisms. These studies have indicated that S.gordonii can attenuate several potential virulence properties of S. mutans including bacteriocin production, genetic transformation, and biofilm formation. Therefore, modulation of the interactions between plaque bacteria might be a novel approach for attenuating dental caries initiation. PMID:16934112

  20. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran

    PubMed Central

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2016-01-01

    Background: Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. Materials and Methods: A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. Results: The average level of bacteria ranged from 99 to 1079 CFU/m3. The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m3) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m3). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). Conclusion: Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections. PMID:27656612

  1. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2016-01-01

    Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. The average level of bacteria ranged from 99 to 1079 CFU/m(3). The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m(3)) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m(3)). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections.

  2. Why sensitive bacteria are resistant to hospital infection control

    PubMed Central

    van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S

    2017-01-01

    Background: Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. Methods: We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio ( IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. Results: For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤  0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while communityacquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Conclusions: Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally, following differences in their adaptation to hospital and community

  3. Why sensitive bacteria are resistant to hospital infection control.

    PubMed

    van Kleef, Esther; Luangasanatip, Nantasit; Bonten, Marc J; Cooper, Ben S

    2017-01-01

    Large reductions in the incidence of antibiotic-resistant strains of Staphylococcus aureus and Clostridium difficile have been observed in response to multifaceted hospital-based interventions. Reductions in antibiotic-sensitive strains have been smaller or non-existent. It has been argued that since infection control measures, such as hand hygiene, should affect resistant and sensitive strains equally, observed changes must have largely resulted from other factors, including changes in antibiotic use. We used a mathematical model to test the validity of this reasoning. We developed a mechanistic model of resistant and sensitive strains in a hospital and its catchment area. We assumed the resistant strain had a competitive advantage in the hospital and the sensitive strain an advantage in the community. We simulated a hospital hand hygiene intervention that directly affected resistant and sensitive strains equally. The annual incidence rate ratio (IRR) associated with the intervention was calculated for hospital- and community-acquired infections of both strains. For the resistant strain, there were large reductions in hospital-acquired infections (0.1 ≤ IRR ≤ 0.6) and smaller reductions in community-acquired infections (0.2 ≤ IRR ≤ 0.9). These reductions increased in line with increasing importance of nosocomial transmission of the strain. For the sensitive strain, reductions in hospital acquisitions were much smaller (0.6 ≤ IRR ≤ 0.9), while community acquisitions could increase or decrease (0.9 ≤ IRR ≤ 1.2). The greater the importance of the community environment for the transmission of the sensitive strain, the smaller the reductions. Counter-intuitively, infection control interventions, including hand hygiene, can have strikingly discordant effects on resistant and sensitive strains even though they target them equally. This follows from differences in their adaptation to hospital- and community-based transmission. Observed lack of

  4. Targeted photodynamic therapy for infected wounds in mice

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; O'Donnell, David A.; Zahra, Touqir; Contag, Christopher H.; McManus, Albert T.; Hasan, Tayyaba

    2002-06-01

    Although many workers have used photodynamic therapy to kill bacteria in vitro, the use of this approach has seldom been reported in vivo in animal models of infection. We report on the use of a targeted polycationic photosensitizer conjugate between poly-L-lysine and chlorin(e6) that can penetrate the Gram (-) outer membrane together with red laser light to kill Escherichia coli and Pseudomonas aeruginosa infecting excisional wounds in mice. We used genetically engineered luminescent bacteria that allowed the infection to be imaged in mouse wounds using a sensitive CCD camera. Wounds were infected with 5x106 bacteria, followed by application of the conjugate in solution and illumination. There was a light-dose dependent loss of luminescence as measured by image analysis in the wound treated with conjugate and light, not seen in control wounds. This strain of E coli is non-invasive and the infection in untreated wounds spontaneously resolved in a few days and all wounds healed equally well showing the photodynamic treatment did not damage the host tissue. P aeruginosa is highly invasive and mice with untreated or control wounds all died while 90% of PDT treated mice survived. PDT may have a role to play in the rapid treatment of infected wounds in view of the worldwide rise in antibiotic resistance.

  5. Empiric systemic antibiotics for hospitalized patients with severe odontogenic infections.

    PubMed

    Zirk, Matthias; Buller, Johannes; Goeddertz, Peter; Rothamel, Daniel; Dreiseidler, Timo; Zöller, Joachim E; Kreppel, Matthias

    2016-08-01

    Odontogenic infections may lead to severe head and neck infections with potentially great health risk. Age, location of purulent affected sites and beta-lactam allergy are some mentionable factors regarding patients' in-hospital stay and course of disease. Are there new challenges regarding bacteria' antibiotic resistance for empiric treatment and what influences do they have on patients' clinical course? We analyzed in a 4-year retrospective study the medical records of 294 in-hospital patients with severe odontogenic infections. On a routine base bacteria were identified and susceptibility testing was performed. Length of stay in-hospital was evaluated regarding patients' age, beta-lactam allergy profile, affected sites and bacteria susceptibility to empiric antibiotics. Length of stay in-hospital was detected to be associated with affected space and penicillin allergy as well (p < 0.05). Isolates presented large amounts of aerobic gram-positive bacteria (64.2%), followed by facultative anaerobic bacteria (gram+/15.8%, gram-/12.7%). Tested ampicillin in combination with sulbactam (or without) and cephalosporins displayed high susceptibility rates, revealing distinguished results regarding clindamycin (p < 0.05). Co-trimoxazol and moxifloxacin showed high overall susceptibility rates (MOX: 94.7%, COTRIM: 92.6%). This study demonstrates ampicillin/sulbactam in addition to surgical intervention is a good standard in treatment of severe odontogenic neck infections. Cephalosporins seem to be a considerable option as well. If beta-lactam allergy is diagnosed co-trimoxazol and moxifloxacin represent relevant alternatives. Age, allergic profile and bacteria' resistance patterns for empiric antibiotics have an influence on patients in-hospital stay. Ampicillin/sulbactam proves itself to be good for empiric antibiosis in severe odontogenic infections. Furthermore cephalosporins could be considered as another option in treatment. However moxifloxacin and co

  6. Battacin (Octapeptin B5), a New Cyclic Lipopeptide Antibiotic from Paenibacillus tianmuensis Active against Multidrug-Resistant Gram-Negative Bacteria

    PubMed Central

    Qian, Chao-Dong; Teng, Yi; Zhao, Wen-Peng; Li, Ou; Fang, Sheng-Guo; Huang, Zhao-Hui; Gao, Hai-Chun

    2012-01-01

    Hospital-acquired infections caused by drug-resistant bacteria are a significant challenge to patient safety. Numerous clinical isolates resistant to almost all commercially available antibiotics have emerged. Thus, novel antimicrobial agents, specifically those for multidrug-resistant Gram-negative bacteria, are urgently needed. In the current study, we report the isolation, structure elucidation, and preliminary biological characterization of a new cationic lipopeptide antibiotic, battacin or octapeptin B5, produced from a Paenibacillus tianmuensis soil isolate. Battacin kills bacteria in vitro and has potent activity against Gram-negative bacteria, including multidrug-resistant and extremely drug-resistant clinical isolates. Hospital strains of Escherichia coli and Pseudomonas aeruginosa are the pathogens most sensitive to battacin, with MICs of 2 to 4 μg/ml. The ability of battacin to disrupt the outer membrane of Gram-negative bacteria is comparable to that of polymyxin B, the last-line therapy for infections caused by antibiotic-resistant Gram-negative bacteria. However, the capacity of battacin to permeate bacterial plasma membranes is less extensive than that of polymyxin B. The bactericidal kinetics of battacin correlate with the depolarization of the cell membrane, suggesting that battacin kills bacteria by disrupting the cytoplasmic membrane. Other studies indicate that battacin is less acutely toxic than polymyxin B and has potent in vivo biological activity against E. coli. Based on the findings of the current study, battacin may be considered a potential therapeutic agent for the treatment of infections caused by antibiotic-resistant Gram-negative bacteria. PMID:22183171

  7. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    PubMed Central

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630

  8. Determination of antimicrobial susceptibilities on infected urines without isolation

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chappelle, E. W.; Deming, J. W.; Shrock, C. G.; Vellend, H.; Barza, M. J.; Weinstein, L. (Inventor)

    1979-01-01

    A method is described for the quick determination of the susceptibilities of various unidentified bacteria contained in an aqueous physiological fluid sample, particularly urine, to one or more antibiotics. A bacterial adenosine triphosphate (ATP) assay is carried out after the elimination of non-bacterial ATP to determine whether an infection exists. If an infection does exist, a portion of the sample is further processed, including subjecting parts of the portion to one or more antibiotics. Growth of the bacteria in the parts are determined, again by an ATP assay, to determine whether the unidentified bacteria in the sample are susceptible to the antibiotic or antibiotics under test.

  9. Healthcare-associated viral and bacterial infections in dentistry

    PubMed Central

    Laheij, A.M.G.A.; Kistler, J.O.; Belibasakis, G.N.; Välimaa, H.; de Soet, J.J.

    2012-01-01

    Infection prevention in dentistry is an important topic that has gained more interest in recent years and guidelines for the prevention of cross-transmission are common practice in many countries. However, little is known about the real risks of cross-transmission, specifically in the dental healthcare setting. This paper evaluated the literature to determine the risk of cross-transmission and infection of viruses and bacteria that are of particular relevance in the dental practice environment. Facts from the literature on HSV, VZV, HIV, Hepatitis B, C and D viruses, Mycobacterium spp., Pseudomonas spp., Legionella spp. and multi-resistant bacteria are presented. There is evidence that Hepatitis B virus is a real threat for cross-infection in dentistry. Data for the transmission of, and infection with, other viruses or bacteria in dental practice are scarce. However, a number of cases are probably not acknowledged by patients, healthcare workers and authorities. Furthermore, cross-transmission in dentistry is under-reported in the literature. For the above reasons, the real risks of cross-transmission are likely to be higher. There is therefore a need for prospective longitudinal research in this area, to determine the real risks of cross-infection in dentistry. This will assist the adoption of effective hygiene procedures in dental practice. PMID:22701774

  10. Bacterial Modulation of Plant Ethylene Levels

    PubMed Central

    Gamalero, Elisa; Glick, Bernard R.

    2015-01-01

    A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. PMID:25897004

  11. Modulation of immune responses of Rhynchophorus ferrugineus (Insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (Nematoda: Rhabditida).

    PubMed

    Mastore, Maristella; Arizza, Vincenzo; Manachini, Barbara; Brivio, Maurizio F

    2015-12-01

    Aim of this study was to investigate relationships between the red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier) and the entomopathogenic nematode Steinernema carpocapsae (EPN); particularly, the work was focused on the immune response of the insect host in naive larvae and after infection with the EPN. Two main immunological processes have been addressed: the activity and modulation of host prophenoloxidase-phenoloxidase (proPO) system, involved in melanization of not-self and hemocytes recognition processes responsible for not-self encapsulation. Moreover, immune depressive and immune evasive strategies of the parasite have been investigated. Our results suggest that RPW possess an efficient immune system, however in the early phase of infection, S. carpocapsae induces a strong inhibition of the host proPO system. In addition, host cell-mediated mechanisms of encapsulation, are completely avoided by the parasite, the elusive strategies of S. carpocapsae seem to be related to the structure of its body-surface, since induced alterations of the parasite cuticle resulted in the loss of its mimetic properties. S. carpocapsae before the release of its symbiotic bacteria, depress and elude RPW immune defenses, with the aim to arrange a favorable environment for its bacteria responsible of the septicemic death of the insect target. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  12. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria.

    PubMed

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D'Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-03-22

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  13. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D'Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-03-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  14. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue.

    PubMed

    Becerra, Sandra C; Roy, Daniel C; Sanchez, Carlos J; Christy, Robert J; Burmeister, David M

    2016-04-12

    Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Currently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate treatments for bacterial infections. Histologically, hematoxylin and eosin (H&E) and Gram stains have been employed, but are far from optimal when analyzing tissue samples due to non-specific staining. The goal of the current study was to develop a modification of the Gram stain that enhances the contrast between bacteria and host tissue. A modified Gram stain was developed and tested as an alternative to Gram stain that improves the contrast between Gram positive bacteria, Gram negative bacteria and host tissue. Initially, clinically relevant strains of Pseudomonas aeruginosa and Staphylococcus aureus were visualized in vitro and in biopsies of infected, porcine burns using routine Gram stain, and immunohistochemistry techniques involving bacterial strain-specific fluorescent antibodies as validation tools. H&E and Gram stain of serial biopsy sections were then compared to a modification of the Gram stain incorporating a counterstain that highlights collagen found in tissue. The modified Gram stain clearly identified both Gram positive and Gram negative bacteria, and when compared to H&E or Gram stain alone provided excellent contrast between bacteria and non-viable burn eschar. Moreover, when applied to surgical biopsies from patients that underwent burn debridement this technique was able to clearly detect bacterial morphology within host tissue. We describe a modification of the Gram stain that provides improved contrast of Gram positive and Gram negative microorganisms within host

  15. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection

    PubMed Central

    Rossoni, Rodnei Dennis; Fuchs, Beth Burgwyn; de Barros, Patrícia Pimentel; Velloso, Marisol dos Santos; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Mylonakis, Eleftherios

    2017-01-01

    Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis. PMID:28267809

  16. Gram-negative bacteria that produce carbapenemases causing death attributed to recent foreign hospitalization.

    PubMed

    Ahmed-Bentley, Jasmine; Chandran, A Uma; Joffe, A Mark; French, Desiree; Peirano, Gisele; Pitout, Johann D D

    2013-07-01

    Overseas travel, as a risk factor for the acquisition of infections due to antimicrobial-resistant organisms, has recently been linked to carbapenemase-producing Gram-negative bacteria. Multiresistant Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii strains were isolated from a wound of a Canadian patient with a recent history of hospitalization in India. This resulted in the initiation of outbreak management that included surveillance cultures. Epidemiological and molecular investigations showed that NDM-1-producing K. pneumoniae ST16 and OXA-23-producing A. baumannii ST10 strains were transmitted to 5 other patients, resulting in the colonization of 4 patients and the death of 1 patient due to septic shock caused by the OXA-23-producing A. baumannii strain. The high rate of false positivity of the screening cultures resulted in additional workloads and increased costs for infection control and clinical laboratory work. We believe that this is the first report of an infection with carbapenemase-producing Gram-negative bacteria resulting in death attributed to a patient with recent foreign hospitalization. We recommend routine rectal and wound screening for colonization with multiresistant bacteria for patients who have recently been admitted to hospitals outside Canada.

  17. Antimicrobial Nanotherapeutics Against Helicobacter pylori Infection

    NASA Astrophysics Data System (ADS)

    Thamphiwatana, Soracha

    Helicobacter pylori (H. pylori) infection with its vast prevalence is responsible for various gastric diseases including gastritis, peptic ulcers, and gastric malignancy. While effective, current treatment regimens are challenged by a fast-declining eradication rate due to the increasing emergence of H. pylori strains resistant to existing antibiotics. Therefore, there is an urgent need to develop novel antibacterial strategies against H. pylori. The first area of this research, we developed a liposomal nanoformulation of linolenic acid (LipoLLA) and evaluated its bactericidal activity against resistant strains of H. pylori. We found that LipoLLA was effective in killing both spiral and dormant forms of the bacteria via disrupting bacterial membranes. LipoLLA eradicated all strains of the bacteria regardless of their antibiotic resistance status. Furthermore, the bacteria did not develop drug resistance toward LipoLLA. Our findings suggest that LipoLLA is a promising antibacterial nanotherapeutic to treat antibiotic-resistant H. pylori infection. The next step, we investigated the in vivo therapeutic potential of LipoLLA for the treatment of H. pylori infection. In vivo tests further confirmed that LipoLLA was able to kill H. pylori and reduce bacterial load in the mouse stomach. LipoLLA treatment was also shown to reduce the levels of proinflammatory cytokines including interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor alpha, which were otherwise elevated due to the H. pylori infection. Finally, toxicity test demonstrated excellent biocompatibility of LipoLLA to normal mouse stomach. Collectively, results from this work indicate that LipoLLA is a promising, new, effective, and safe therapeutic agent for the treatment of H. pylori infection. The second area is stimuli-responsive liposomes development. By adsorbing small chitosan-modified gold nanoparticles (AuChi) onto the outer surface of liposomes, we show that at gastric pH the liposomes have

  18. Reversing the Resistance Phenotype of the Biomphalaria glabrata Snail Host Schistosoma mansoni Infection by Temperature Modulation

    PubMed Central

    Ittiprasert, Wannaporn; Knight, Matty

    2012-01-01

    Biomphalaria glabrata snails that display either resistant or susceptible phenotypes to the parasitic trematode, Schistosoma mansoni provide an invaluable resource towards elucidating the molecular basis of the snail-host/schistosome relationship. Previously, we showed that induction of stress genes either after heat-shock or parasite infection was a major feature distinguishing juvenile susceptible snails from their resistant counterparts. In order to examine this apparent association between heat stress and snail susceptibility, we investigated the effect of temperature modulation in the resistant snail stock, BS-90. Here, we show that, incubated for up to 4 hrs at 32°C prior to infection, these resistant snails became susceptible to infection, i.e. shedding cercariae at 5 weeks post exposure (PE) while unstressed resistant snails, as expected, remained resistant. This suggests that susceptibility to infection by this resistant snail phenotype is temperature-sensitive (ts). Additionally, resistant snails treated with the Hsp 90 specific inhibitor, geldanamycin (GA) after heat stress, were no longer susceptible to infection, retaining their resistant phenotype. Consistently, susceptible snail phenotypes treated with 100 mM GA before parasite exposure also remained uninfected. These results provide direct evidence for the induction of stress genes (heat shock proteins; Hsp 70, Hsp 90 and the reverse transcriptase [RT] domain of the nimbus non-LTR retrotransposon) in B. glabrata susceptibility to S. mansoni infection and characterize the resistant BS-90 snails as a temperature-sensitive phenotype. This study of reversing snail susceptibility phenotypes to S. mansoni provides an opportunity to directly track molecular pathway(s) that underlie the B. glabrata snail's ability to either sustain or destroy the S. mansoni parasite. PMID:22577362

  19. Reversing the resistance phenotype of the Biomphalaria glabrata snail host Schistosoma mansoni infection by temperature modulation.

    PubMed

    Ittiprasert, Wannaporn; Knight, Matty

    2012-01-01

    Biomphalaria glabrata snails that display either resistant or susceptible phenotypes to the parasitic trematode, Schistosoma mansoni provide an invaluable resource towards elucidating the molecular basis of the snail-host/schistosome relationship. Previously, we showed that induction of stress genes either after heat-shock or parasite infection was a major feature distinguishing juvenile susceptible snails from their resistant counterparts. In order to examine this apparent association between heat stress and snail susceptibility, we investigated the effect of temperature modulation in the resistant snail stock, BS-90. Here, we show that, incubated for up to 4 hrs at 32°C prior to infection, these resistant snails became susceptible to infection, i.e. shedding cercariae at 5 weeks post exposure (PE) while unstressed resistant snails, as expected, remained resistant. This suggests that susceptibility to infection by this resistant snail phenotype is temperature-sensitive (ts). Additionally, resistant snails treated with the Hsp 90 specific inhibitor, geldanamycin (GA) after heat stress, were no longer susceptible to infection, retaining their resistant phenotype. Consistently, susceptible snail phenotypes treated with 100 mM GA before parasite exposure also remained uninfected. These results provide direct evidence for the induction of stress genes (heat shock proteins; Hsp 70, Hsp 90 and the reverse transcriptase [RT] domain of the nimbus non-LTR retrotransposon) in B. glabrata susceptibility to S. mansoni infection and characterize the resistant BS-90 snails as a temperature-sensitive phenotype. This study of reversing snail susceptibility phenotypes to S. mansoni provides an opportunity to directly track molecular pathway(s) that underlie the B. glabrata snail's ability to either sustain or destroy the S. mansoni parasite.

  20. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors

    PubMed Central

    Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346

  1. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections.

    PubMed

    Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B

    2016-10-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.

  2. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections

    PubMed Central

    Maltas, Jeff; Brumm, Peter; Wood, Kevin B.

    2016-01-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095

  3. Physical Sequestration of Bacillus anthracis in the Pulmonary Capillaries in Terminal Infection.

    PubMed

    Jouvion, Gregory; Corre, Jean-Philippe; Khun, Huot; Moya-Nilges, Marie; Roux, Pascal; Latroche, Claire; Tournier, Jean-Nicolas; Huerre, Michel; Chrétien, Fabrice; Goossens, Pierre L

    2016-07-15

    The lung is the terminal target of Bacillus anthracis before death, whatever the route of infection (cutaneous, inhalational, or digestive). During a cutaneous infection in absence of toxins, we observed encapsulated bacteria colonizing the alveolar capillary network, bacteria and hemorrhages in alveolar and bronchiolar spaces, and hypoxic foci in the lung (endothelial cells) and brain (neurons and neuropil). Circulating encapsulated bacteria were as chains of approximately 13 µm in length. Bacteria of such size were immediately trapped within the lung capillary network, but bacteria of shorter length were not. Controlling lung-targeted pathology would be beneficial for anthrax treatment. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Host modulation therapy: An indispensable part of perioceutics

    PubMed Central

    Gulati, Minkle; Anand, Vishal; Govila, Vivek; Jain, Nikil

    2014-01-01

    Traditionally, only antimicrobials have been used as the chemotherapeutic modality for the treatment of periodontitis. Though bacteria are the primary etiologic factors of periodontal diseases, yet the extent and severity of tissue destruction seen in periodontitis is determined by the host immuno-inflammatory response to these bacteria. This increasing awareness and knowledge of the host-microbial interaction in periodontal pathogenesis has presented the opportunity for exploring new therapeutic strategies for periodontitis by means of targeting host response via host-modulating agents. This has lead to the emergence of the field of “Perioceutics” i.e. the use of parmacotherapeutic agents including antimicrobial therapy as well as host modulatory therapy for the management of periodontitis. These host-modulating agents used as an adjunct tip the balance between periodontal health and disease progression in the direction of a healing response. In this article the host-modulating role of various systemically and locally delivered perioceutic agents will be reviewed. PMID:25024538

  5. Ozone Technology for Pathogenic Bacteria of Shrimp (Vibrio sp.) Disinfection

    NASA Astrophysics Data System (ADS)

    Wulansarie, Ria; Dyah Pita Rengga, Wara; Rustamadji

    2018-03-01

    One of important marine commodities in Indonesia, shrimps are susceptible with Vibrio sp bacteria infection. That infection must be cleared. One of the technologies for disinfecting Vibrio sp. is ozone technology. In this research, Vibrio sp. is a pathogenic bacterium which infects Penaeus vannamei. Ozone technology is applied for threatening Vibrio sp. In this research, ozonation was performed in different pH. Those are neutral, acid (pH=4), and base (pH=9). The sample was water from shrimp embankment from Balai Besar Perikanan Budidaya Air Payau (BBPBAP) located in Jepara. That water was the habitat of Penaeus vannamei shrimp. The brand of ozonator used in this research was “AQUATIC”. The used ozonator in this research had 0,0325 g/hour concentration. The flow rate of sample used in this research was 2 L/minute. The ozonation process was performed in continuous system. A tank, pipe, pump, which was connected with microfilter, flowmeter and ozone generator were the main tools in this research. It used flowmeter and valve to set the flow rate scalable as desired. The first step was the insert of 5 L sample into the receptacle. Then, by using a pump, a sample supplied to the microfilter to be filtered and passed into the flow meter. The flow rate was set to 2 LPM. Furthermore, gas from ozonator passed to the flow for the disinfection of bacteria and then was recycled to the tank and the process run continuously. Samples of the results of ozonation were taken periodically from time 0, 3, 7, 12, 18, 24 to 30 minutes. The samples of the research were analyzed using Total Plate Count (TPC) test in BBPBAP Jepara to determine the number of Vibrio sp. bacteria. The result of this research was the optimal condition for pathogenic bacteria of shrimp (Vibrio sp.) ozonation was in neutral condition.

  6. Treatment of the Infected Stone.

    PubMed

    Marien, Tracy; Miller, Nicole L

    2015-11-01

    Infected kidney stones refer to stones that form because of urinary tract infections with urease-producing bacteria, secondarily infected stones of any composition, or stones obstructing the urinary tract leading to pyelonephritis. The mainstay of treatment of infection stones is complete stone removal. Kidney stones that obstruct the urinary tract and cause obstructive pyelonephritis are also frequently referred to as infected stones. Obstructive pyelonephritis is a urologic emergency as it can result in sepsis and even death. Infection stones and obstructive stones causing pyelonephritis are different disease processes, and their workup and management are described separately. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Endocarditis caused by anaerobic bacteria.

    PubMed

    Kestler, M; Muñoz, P; Marín, M; Goenaga, M A; Idígoras Viedma, P; de Alarcón, A; Lepe, J A; Sousa Regueiro, D; Bravo-Ferrer, J M; Pajarón, M; Costas, C; García-López, M V; Hidalgo-Tenorio, C; Moreno, M; Bouza, E

    2017-10-01

    Infective endocarditis (IE) caused by anaerobic bacteria is a rare and poorly characterized disease. Most data reported in the literature are from case reports [1-3]. Therefore, we assessed the situation of anaerobic IE (AIE) in Spain using the database of the Spanish Collaboration on Endocarditis (GAMES). We performed a prospective study from 2008 to 2016 in 26 Spanish centers. We included 2491 consecutive cases of definite IE (Duke criteria). Anaerobic bacteria caused 22 cases (0.9%) of definite IE. Median age was 66 years (IQR, 56-73), and 19 (86.4%) patients were men. Most patients (14 [63.6%]) had prosthetic valve IE and all episodes were left-sided: aortic valves, 12 (54.5%); and mitral valves, 8 (36.4%). The most common pathogens were Propionibacterium acnes (14 [63.6%]), Lactobacillus spp (3 [13.63%]), and Clostridium spp. (2 [9.0%]), and the infection was mainly odontogenic. Fifteen of the 22 patients (68.2%) underwent cardiac surgery. Mortality was 18.2% during admission and 5.5% after 1 year of follow-up. When patients with AIE were compared with the rest of the cohort, we found that although those with AIE had a similar age and Charlson comorbidity index, they were more likely to have community-acquired IE (86.4% vs. 60.9%, p = 0.01), have undergone cardiac surgery (68.2% vs 48.7% p = 0.06), and have had lower mortality rates during admission (18.2% vs. 27.3%). IE due to anaerobic bacteria is an uncommon disease that affects mainly prosthetic valves and frequently requires surgery. Otherwise, there are no major differences between AIE and IE caused by other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Was Earth ever infected by martian biota? Clues from radioresistant bacteria.

    PubMed

    Pavlov, Anatoly K; Kalinin, Vitaly L; Konstantinov, Alexei N; Shelegedin, Vladimir N; Pavlov, Alexander A

    2006-12-01

    Here we propose that the radioresistance (tolerance to ionizing radiation) observed in several terrestrial bacteria has a martian origin. Multiple inconsistencies with the current view of radioresistance as an accidental side effect of tolerance to desiccation are discussed. Experiments carried out 25 years ago were reproduced to demonstrate that "ordinary" bacteria can develop high radioresistance ability after multiple cycles of exposure to high radiation dosages followed by cycles of recovery of the bacterial population. We argue that "natural" cycles of this kind could have taken place only on the martian surface, and we hypothesize that Mars microorganisms could have developed radioresistance in just several million years' time and, subsequently, have undergone transfer to Earth by way of martian meteorites. Our mechanism implies multiple and frequent exchanges of biota between Mars and Earth.

  9. Helicobacter infections with rare bacteria or minimal gastritis: Expecting the unexpected.

    PubMed

    Glickman, Jonathan N; Noffsinger, Amy; Nevin, Daniel T; Ray, Mukunda; Lash, Richard H; Genta, Robert M

    2015-07-01

    The routine use of special stains for detection of Helicobacter remains controversial. To determine the frequency of histologically atypical Helicobacter infection. All gastric biopsies received at a large pathology reference laboratory over a 6-month period were stained for Helicobacter, and the histologic and clinicopathologic parameters evaluated. Amongst 7663 Helicobacter-positive biopsies, 823 (10.7%) did not show typical chronic active gastritis with numerous Helicobacter organisms, and were therefore considered histologically atypical. Rare Helicobacter pylori organisms accounted for 58.0% of all atypical infections; the next most common atypical Helicobacter infection was that with minimal or no gastric inflammation (23.3% of atypical infections). Patients in these groups did not differ demographically from those with other forms of atypical or typical Helicobacter infection, although a small subgroup (6%) was more likely to have had a previously treated infection. In many of these atypical infections, Helicobacter would not have been suspected based on the histologic findings alone, and would have been missed without routine special stains. Performing a sensitive stain could prevent additional testing and allow prompt treatment of the affected patients, thus substantially reducing the risk for peptic ulcer and gastric cancer and preventing the transmission of the infection to family members. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. Broad spectrum antibiotic enrofloxacin modulates contact sensitivity through gut microbiota in a murine model.

    PubMed

    Strzępa, Anna; Majewska-Szczepanik, Monika; Lobo, Francis M; Wen, Li; Szczepanik, Marian

    2017-07-01

    Medical advances in the field of infection therapy have led to an increasing use of antibiotics, which, apart from eliminating pathogens, also partially eliminate naturally existing commensal bacteria. It has become increasingly clear that less exposure to microbiota early in life may contribute to the observed rise in "immune-mediated" diseases, including autoimmunity and allergy. We sought to test whether the change of gut microbiota with the broad spectrum antibiotic enrofloxacin will modulate contact sensitivity (CS) in mice. Natural gut microbiota were modified by oral treatment with enrofloxacin prior to sensitization with trinitrophenyl chloride followed by CS testing. Finally, adoptive cell transfers were performed to characterize the regulatory cells that are induced by microbiota modification. Oral treatment with enrofloxacin suppresses CS and production of anti-trinitrophenyl chloride IgG1 antibodies. Adoptive transfer experiments show that antibiotic administration favors induction of regulatory cells that suppress CS. Flow cytometry and adoptive transfer of purified cells show that antibiotic-induced suppression of CS is mediated by TCR αβ + CD4 + CD25 + FoxP3 + Treg, CD19 + B220 + CD5 + IL-10 + , IL-10 + Tr1, and IL-10 + TCR γδ + cells. Treatment with the antibiotic induces dysbiosis characterized by increased proportion of Clostridium coccoides (cluster XIVa), C coccoides-Eubacterium rectale (cluster XIVab), Bacteroidetes, and Bifidobacterium spp, but decreased segmented filamentous bacteria. Transfer of antibiotic-modified gut microbiota inhibits CS, but this response can be restored through oral transfer of control gut bacteria to antibiotic-treated animals. Oral treatment with a broad spectrum antibiotic modifies gut microbiota composition and promotes anti-inflammatory response, suggesting that manipulation of gut microbiota can be a powerful tool to modulate the course of CS. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  11. Measurement of fluid dynamic loading on staphylococci bacteria bio-film structures using μPIV

    NASA Astrophysics Data System (ADS)

    Sherman, Erica; Moormeier, Derek; Bayles, Kenneth; Davidson, John; Ryu, Sangjin; Wei, Timothy

    2013-11-01

    Staphylococci bacteria are recognized as the most frequent cause of biofilm-associated infections. Although humans are regularly exposed to these bacteria without consequence, a localized infection can enter the bloodstream and lead to serious infections such as endocarditis, pneumonia, or toxic shock syndrome. The mechanics of staphylococci biofilm formation and dispersion through the bloodstream are not well known. It has recently been observed that under certain flow conditions, bacteria organize in tower-like structures which break and are transported downstream by the flow. The fundamental questions of interest are i) whether or not fluid mechanics plays a role in differentiating between film or tower formation and ii) whether or not the faulty towers are a bio-film propagation mechanism. This talk focuses on the application of μPIV to study this problem. Staphylococcus aureus bacteria were cultured in the Bioflux Fluxion square microchannel of a 65 by 65 um cross section, and subjected to a steady shear rate of 0.5 dynes. μPIV measurements were made to map the flow over and around a biofilm tower structure which occluded approximately 66% of the channel width. Data were recorded around the structure at a series of two dimensional planes, which when stacked vertically show a two dimensional flow field as a function of tower height. Measurements and control volume analysis will be presented quantifying forces acting on these structures.

  12. [Antimicrobial susceptibility patterns of Gram-negative bacteria isolated in urinary tract infections in Venezuela: Results of the SMART study 2009-2012].

    PubMed

    Guevara, Napoleón; Guzmán, Manuel; Merentes, Altagracia; Rizzi, Adele; Papaptzikos, Juana; Rivero, Narlesky; Oranges, Carmela; Vlllarroel, Héctor; Limas, Yoxsivell

    2015-12-01

    Antimicrobial resistance of pathogens causing urinary tract infection (UTI) is a growing problem, which complicates their effective treatment. Surveillance is needed to guide appropriate empiric therapy. to describe the susceptibility patterns of Gram-negative bacteria isolated of patients with UTI to twelve antibiotics as part of the Study for Monitoring Antimicrobial Resistance Trends in Venezuela. Between 2009-2012 a total of 472 Gram-negative bacteria were isolated from hospitalized patients with UTI. The isolates were sent to Central Laboratory (Central Laboratory of International Health Management Associates) to confirm their identification, and to make susceptibility testing as recommended by the Clinical and Laboratory Standards Institute. Enterobacteriacea comprised 96.6% of the total, where Escherichia coli (76.9%) and Klebsiella pneumoniae (10.6%) were the most frequent. Extended-spectrum β-lactamases (ESBL) was detected in 21.6% of isolates. Top antimicrobial activity were ertapenem, imipenem, and amikacin (> 90.0%), slightly lower for amikacin (85.1%) in ESBL-producing strains. Resistance rates to fluoroquinolones and ampicillin/sulbactam were high (40 y 64%, respectively). These data suggest a necessary revision of the therapeutic regimens for the empirical treatment of UTI in Venezuela.

  13. Identification of bacteria causing acute otitis media using Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Ayala, Oscar D.; Wakeman, Catherine A.; Skaar, Eric P.; Mahadevan-Jansen, Anita

    2016-03-01

    Otitis media (OM) is the leading cause of acute physician visits and prescription of antibiotics for children. Current standard techniques to diagnose acute otitis media (AOM) are limited by their ability to probe only changes in symptoms of the bacterial infection that cause AOM. Furthermore, they are not able to detect the presence of or identify bacteria causing AOM, which is important for diagnosis and proper antibiotic treatment. Our goal is to detect the presence of and identify the pathogens involved in causing AOM based on their biochemical profile using Raman spectroscopy (RS). An inVia confocal Raman microscope (Renishaw) at 785 nm was used to detect bacteria causing AOM in vitro. The three main bacteria that cause AOM, Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae were cultured in chocolate agar and Mueller-Hinton agar to determine which agar type would minimize Raman signal from the growth agar. Preliminary results identified specific Raman spectral features characteristic of S. pneumoniae. RS has the potential to accurately diagnose AOM, which will help in identifying the antibiotic that will be most beneficial for the patient and ultimately decrease the course of infection.

  14. Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4, 2011)

    PubMed Central

    Averbuch, Diana; Cordonnier, Catherine; Livermore, David M.; Mikulska, Małgorzata; Orasch, Christina; Viscoli, Claudio; Gyssens, Inge C.; Kern, Winfried V.; Klyasova, Galina; Marchetti, Oscar; Engelhard, Dan; Akova, Murat

    2013-01-01

    The detection of multi-resistant bacterial pathogens, particularly those to carbapenemases, in leukemic and stem cell transplant patients forces the use of old or non-conventional agents as the only remaining treatment options. These include colistin/polymyxin B, tigecycline, fosfomycin and various anti-gram-positive agents. Data on the use of these agents in leukemic patients are scanty, with only linezolid subjected to formal trials. The Expert Group of the 4th European Conference on Infections in Leukemia has developed guidelines for their use in these patient populations. Targeted therapy should be based on (i) in vitro susceptibility data, (ii) knowledge of the best treatment option against the particular species or phenotype of bacteria, (iii) pharmacokinetic/pharmacodynamic data, and (iv) careful assessment of the risk-benefit balance. For infections due to resistant Gram-negative bacteria, these agents should be preferably used in combination with other agents that remain active in vitro, because of suboptimal efficacy (e.g., tigecycline) and the risk of emergent resistance (e.g., fosfomycin). The paucity of new antibacterial drugs in the near future should lead us to limit the use of these drugs to situations where no alternative exists. PMID:24323984

  15. Preservation affinity in consensus modules among stages of HIV-1 progression.

    PubMed

    Mosaddek Hossain, Sk Md; Ray, Sumanta; Mukhopadhyay, Anirban

    2017-03-20

    Analysis of gene expression data provides valuable insights into disease mechanism. Investigating relationship among co-expression modules of different stages is a meaningful tool to understand the way in which a disease progresses. Identifying topological preservation of modular structure also contributes to that understanding. HIV-1 disease provides a well-documented progression pattern through three stages of infection: acute, chronic and non-progressor. In this article, we have developed a novel framework to describe the relationship among the consensus (or shared) co-expression modules for each pair of HIV-1 infection stages. The consensus modules are identified to assess the preservation of network properties. We have investigated the preservation patterns of co-expression networks during HIV-1 disease progression through an eigengene-based approach. We discovered that the expression patterns of consensus modules have a strong preservation during the transitions of three infection stages. In particular, it is noticed that between acute and non-progressor stages the preservation is slightly more than the other pair of stages. Moreover, we have constructed eigengene networks for the identified consensus modules and observed the preservation structure among them. Some consensus modules are marked as preserved in two pairs of stages and are analyzed further to form a higher order meta-network consisting of a group of preserved modules. Additionally, we observed that module membership (MM) values of genes within a module are consistent with the preservation characteristics. The MM values of genes within a pair of preserved modules show strong correlation patterns across two infection stages. We have performed an extensive analysis to discover preservation pattern of co-expression network constructed from microarray gene expression data of three different HIV-1 progression stages. The preservation pattern is investigated through identification of consensus modules

  16. Vital Signs: Preventing Antibiotic-Resistant Infections in Hospitals - United States, 2014.

    PubMed

    Weiner, Lindsey M; Fridkin, Scott K; Aponte-Torres, Zuleika; Avery, Lacey; Coffin, Nicole; Dudeck, Margaret A; Edwards, Jonathan R; Jernigan, John A; Konnor, Rebecca; Soe, Minn M; Peterson, Kelly; McDonald, L Clifford

    2016-03-11

    Health care-associated antibiotic-resistant (AR) infections increase patient morbidity and mortality and might be impossible to successfully treat with any antibiotic. CDC assessed health care-associated infections (HAI), including Clostridium difficile infections (CDI), and the role of six AR bacteria of highest concern nationwide in several types of health care facilities. During 2014, approximately 4,000 short-term acute care hospitals, 501 long-term acute care hospitals, and 1,135 inpatient rehabilitation facilities in all 50 states reported data on specific infections to the National Healthcare Safety Network. National standardized infection ratios and their percentage reduction from a baseline year for each HAI type, by facility type, were calculated. The proportions of AR pathogens and HAIs caused by any of six resistant bacteria highlighted by CDC in 2013 as urgent or serious threats were determined. In 2014, the reductions in incidence in short-term acute care hospitals and long-term acute care hospitals were 50% and 9%, respectively, for central line-associated bloodstream infection; 0% (short-term acute care hospitals), 11% (long-term acute care hospitals), and 14% (inpatient rehabilitation facilities) for catheter-associated urinary tract infection; 17% (short-term acute care hospitals) for surgical site infection, and 8% (short-term acute care hospitals) for CDI. Combining HAIs other than CDI across all settings, 47.9% of Staphylococcus aureus isolates were methicillin resistant, 29.5% of enterococci were vancomycin-resistant, 17.8% of Enterobacteriaceae were extended-spectrum beta-lactamase phenotype, 3.6% of Enterobacteriaceae were carbapenem resistant, 15.9% of Pseudomonas aeruginosa isolates were multidrug resistant, and 52.6% of Acinetobacter species were multidrug resistant. The likelihood of HAIs caused by any of the six resistant bacteria ranged from 12% in inpatient rehabilitation facilities to 29% in long-term acute care hospitals. Although

  17. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection

    PubMed Central

    Chiang, Chih-Yuan; Uzoma, Ijeoma; Lane, Douglas J.; Memišević, Vesna; Alem, Farhang; Yao, Kuan; Kota, Krishna P.; Bavari, Sina; Wallqvist, Anders; Hakami, Ramin M.; Panchal, Rekha G.

    2015-01-01

    Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments. PMID:26284031

  18. Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells.

    PubMed

    Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph

    2016-08-05

    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular

  19. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response

    PubMed Central

    Grant, Sarah Schmidt; Hung, Deborah T.

    2013-01-01

    Certain bacterial pathogens are able to evade the host immune system and persist within the human host. The consequences of persistent bacterial infections potentially include increased morbidity and mortality from the infection itself as well as an increased risk of dissemination of disease. Eradication of persistent infections is difficult, often requiring prolonged or repeated courses of antibiotics. During persistent infections, a population or subpopulation of bacteria exists that is refractory to traditional antibiotics, possibly in a non-replicating or metabolically altered state. This review highlights the clinical significance of persistent infections and discusses different in vitro models used to investigate the altered physiology of bacteria during persistent infections. We specifically focus on recent work establishing increased protection against oxidative stress as a key element of the altered physiologic state across different in vitro models and pathogens. PMID:23563389

  20. Effects of intravaginal lactic acid bacteria on bovine endometrium: Implications in uterine health.

    PubMed

    Genís, Sandra; Bach, Àlex; Arís, Anna

    2017-05-01

    Infection and inflammation of the endometrium after calving compromise uterine health, contributing to decreased reproductive efficiency in dairy cows. Twenty multiparous cows were distributed in two groups and treated intra-vaginally with a combination of lactic acid bacteria (LAB) composed by Lactobacillus rhamnosus, Pedioccocus acidilactici, and Lactobacillus reuteri, or with a sterile carrier (CON) twice per week during 3 wk. At the slaughterhouse, vaginal and endometrial swabs were taken for E. coli and Lactobacillus quantification. Endometriums were collected and cut forming explants that were analyzed for the expression of 10 genes related to innate immunity and infection or submitted to an ex vivo inflammation model. In the ex vivo experiment, explants were infected with E. coli or inflammated by treating them with IL-1β and also E. coli. The secretion of IL-8, IL-1β, and IL-6 was evaluated by ELISA in the supernatants of the ex vivo cultures. Lactobacillus counts did not differ between endometria of LAB and CON cows, although E. coli vaginal counts tended to be lower in LAB than in CON cows. The expression of B-defensins and MUC1, indicators of infected uterus, was down-regulated in explants of LAB-treated cows. No differences were observed between LAB and CON explants in the ex vivo inflammation experiment. These results indicate that the vaginal application of the LAB combination used herein was unable to reach the endometrium and regulating the innate immunity at uterine level when applied into the vagina; however, it may be capable of modulating the pathogenic environment in the vaginal tract. Copyright © 2017 Elsevier B.V. All rights reserved.