Sample records for bacteria causing biodeterioration

  1. Weakening effect of cell permeabilizers on gram-negative bacteria causing biodeterioration.

    PubMed

    Alakomi, H-L; Paananen, A; Suihko, M-L; Helander, I M; Saarela, M

    2006-07-01

    Gram-negative bacteria play an important role in the formation and stabilization of biofilm structures on stone surfaces. Therefore, the control of growth of gram-negative bacteria offers a way to diminish biodeterioration of stone materials. The effect of potential permeabilizers on the outer membrane (OM) properties of gram-negative bacteria was investigated and further characterized. In addition, efficacy of the agents in enhancing the activity of a biocide (benzalkonium chloride) was assessed. EDTA, polyethylenimine (PEI), and succimer (meso-2,3-dimercaptosuccinic) were shown to be efficient permeabilizers of the members of Pseudomonas and Stenotrophomonas genera, as indicated by an increase in the uptake of a hydrophobic probe (1-N-phenylnaphthylamine) and sensitization to hydrophobic antibiotics. Visualization of Pseudomonas cells treated with EDTA or PEI by atomic force microscopy revealed damage in the outer membrane structure. PEI especially increased the surface area and bulges of the cells. Topographic images of EDTA-treated cells were compatible with events assigned for the effect of EDTA on outer membranes, i.e., release of lipopolysaccharide and disintegration of OM structure. In addition, the effect of EDTA treatment was visualized in phase-contrast images as large areas with varying hydrophilicity on cell surfaces. In liquid culture tests, EDTA and PEI supplementation enhanced the activity of benzalkonium chloride toward the target strains. Use of permeabilizers in biocide formulations would enable the use of decreased concentrations of the active biocide ingredient, thereby providing environmentally friendlier products.

  2. PVC biodeterioration and DEHP leaching by DEHP-degrading bacteria

    PubMed Central

    Latorre, Isomar; Hwang, Sangchul; Sevillano, Maria; Montalvo-Rodriguez, Rafael

    2012-01-01

    Newly isolated, not previously reported, di-(2-ethylhexyl) phthalate (DEHP)-degraders were augmented to assess their role in polyvinyl chloride (PVC) shower curtain deterioration and DEHP leaching. The biofilms that developed on the surfaces of the bioaugmented shower curtains with Gram-positive strains LHM1 and LHM2 were thicker than those of the biostimulated and Gram-negative strain LHM3-augmented shower curtains. The first derivative thermogravimetric (DTG) peaks of the bioaugmented shower curtains with the Gram-positive bacteria were observed at ~287°C, whereas the control and Gram-negative strain LHM3-augmented shower curtains were detected at ~283°C. This slight delay in the first DTG peak temperature is indicative of lower plasticizer concentrations in the shower curtains that were bioaugmented with Gram positive bacteria. Despite bioaugmentation with DEHP-degraders, aqueous solutions of the bioaugmentation reactors were not DEHP-free due probably to the presence of co-solutes that must have supported microbial growth. Generally, the bioaugmented reactors with the Gram-positive strains LHM1 and LHM2 had greater aqueous DEHP concentrations in the first-half (<3 wk) of the biodeterioration experiment than the biostimulated and strain LHM3-augmented reactors. Therefore, strains LHM1 and LHM2 may play an important role in DEHP leaching to the environment and PVC biodeterioration. PMID:22736894

  3. Biodeterioration of the Cement Composites

    NASA Astrophysics Data System (ADS)

    Luptáková, Alena; Eštoková, Adriana; Mačingová, Eva; Kovalčíková, Martina; Jenčárová, Jana

    2016-10-01

    The destruction of natural and synthetic materials is the spontaneous and irreversible process of the elements cycling in nature. It can by accelerated or decelerated by physical, chemical and biological influences. Biological influences are represented by the influence of the vegetation and microorganisms (MO). The destruction of cement composites by different MO through the diverse mechanisms is entitled as the concrete biodeterioration. Several sulphur compounds and species of MO are involved in this complex process. Heterotrophic and chemolithotrophic bacteria together with fungi have all been found in samples of corroding cement composites. The MO involved in the process metabolise the presented sulphur compounds (hydrogen sulphide, elemental sulphur etc.) to sulphuric acid reacting with concrete. When sulphuric acid reacts with a concrete matrix, the first step involves a reaction between the acid and the calcium hydroxide forming calcium sulphate. This is subsequently hydrated to form gypsum, the appearance of which on the surface of concrete pipes takes the form of a white, mushy substance which has no cohesive properties. In the continuing attack, the gypsum would react with the calcium aluminate hydrate to form ettringite, an expansive product. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to biodeterioration. The aim of this work was the study of the cement composites biodeterioration by the bacteria Acidithiobacillus thiooxidans. Experimental works were focused on the comparison of special cement composites and its resistance affected by the activities of used sulphur-oxidising

  4. Isolation of five Rubrobacter strains from biodeteriorated monuments

    NASA Astrophysics Data System (ADS)

    Laiz, L.; Miller, A. Z.; Jurado, V.; Akatova, E.; Sanchez-Moral, S.; Gonzalez, J. M.; Dionísio, A.; Macedo, M. F.; Saiz-Jimenez, C.

    2009-01-01

    In the last few years, the microbial colonisation of mural paintings in ancient monuments has been attracting the attention of microbiologists and conservators. The genus Rubrobacter is commonly found in biodeteriorated monuments, where it has been reported to cause rosy discolouration. However, to date, only three species of this genus have been isolated, all from thermophilic environments. In this paper, we studied three monuments: the Servilia and Postumio tombs in the Roman Necropolis of Carmona (Spain), and Vilar de Frades church (Portugal), in search of Rubrobacter strains. In all cases, biodeterioration and the formation of efflorescences were observed, and five Rubrobacter strains were isolated. These isolates showed different physiology and migration in denaturing gradient gel electrophoresis, suggesting they might represent new species within this genus. The isolates reproduced some biodeterioration processes in the laboratory and revealed their biomediation in crystal formation.

  5. Microbial diversity in biodeteriorated Greek historical documents dating back to the 19th and 20th century: A case study.

    PubMed

    Karakasidou, Kiriaki; Nikolouli, Katerina; Amoutzias, Grigoris D; Pournou, Anastasia; Manassis, Christos; Tsiamis, George; Mossialos, Dimitris

    2018-02-27

    Paper documents in archives, libraries, and museums often undergo biodeterioration by microorganisms. Fungi and less often bacteria have been described to advance paper staining, so called "foxing" and degradation of paper substrates. In this study, for the first time, the fungal and bacterial diversity in biodeteriorated paper documents of Hellenic General State Archives dating back to the 19th and 20th century has been assessed by culture-dependent and independent methods. The internally transcribed spacer (ITS) region and 16S rRNA gene were amplified by PCR from fungal and bacterial isolates and amplicons were sequenced. Sequence analysis and phylogeny revealed fungal phylotypes like Penicillium sp., Cladosporium sp., Penicillium citrinum, Alternaria infectoria, Alternaria alternata, Epicoccum nigrum, and Penicillium chrysogenum which are often implicated in paper deterioration. Bacterial phylotypes closely related to known biodeteriogenic bacteria such as Bacillus spp., Micrococcus spp., Kocuria sp. in accordance with previous studies were characterized. Among the fungal phylotypes described in this study are included well-known allergens such as Penicillium spp., Alternaria spp., and Cladosporium spp. that impose a serious health threat on staff members and scholars. Furthermore, fungal isolates such as Chalastospora gossypii and Trametes ochracea have been identified and implicated in biodeterioration of historical paper manuscripts in this study for the first time. Certain new or less known fungi and bacteria implicated in paper degradation were retrieved, indicating that particular ambient conditions, substrate chemistry, or even location might influence the composition of colonizing microbiota. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Determination of indoor air quality in archives and biodeterioration of the documentary heritage.

    PubMed

    Borrego, Sofía; Lavin, Paola; Perdomo, Ivette; Gómez de Saravia, Sandra; Guiamet, Patricia

    2012-01-01

    Documentary heritage is permanently subject to suffering from physical, chemical, and/or biological alterations. Biological deterioration by microorganisms (bacteria and fungi) causes undesirable changes on material properties. Microorganisms affect different organic, natural or synthetic substrates (cellulose, polycarbonates), metals, and compounds of optical and magnetic devices (CD, VHS). Paper made by vegetal fibers, functional additives (glue, optical polishers, consolidating agents), and inks with organic bindings are used as sources of nutrients. The environmental microorganisms that form the microbial charge of indoor air at repositories (archives, libraries) storing cultural heritage can deteriorate the different supports of heritage importance and affect human health as allergies and skin affections. The aims of this research were to study microbial contamination of the environment and its influence on biodeterioration by the biofilm formation and to analyze the relationship between environment microbiota and biofilm formation in materials stored at three archives in Argentina and in two repositories of the National Archive of the Republic of Cuba.

  7. Biodeterioration of marble in an underwater environment.

    PubMed

    Cámara, Beatriz; de Buergo, Mónica Álvarez; Bethencourt, Manuel; Fernández-Montblanc, Tomás; La Russa, Mauro F; Ricca, Michela; Fort, Rafael

    2017-12-31

    This study examines the deterioration of geomaterials used throughout history that today may be found lying on the ocean floor. Submerged archaeological sites including cargoes from shipwrecks or ancient city ruins have been a topic of interest from a perspective of in situ musealization, as a way of making underwater cultural heritage accessible to the public. In an experimental study conducted at an underwater archaeological site in the Bay of Cádiz (SW Spain), we subjected two types of marble (Carrara and Macael) to three conditions to which submerged archaeological objects are often exposed: full exposure to the water column, natural processes of burial and unearthing, or permanent burial. After an 18-month study period, the factor found to mostly affect these materials was their biological colonization. This factor was assessed by estimating total surface biocover and the rate of surface biocolonization, and also through the identification of skeletons and associated alteration forms by light microscopy, and scanning electron microscopy (SEM). Biofouling and bioerosion were the main causes of biodeterioration and dependent on the position of the marble specimens in the seawater. The response of both materials was similar, though dolomite crystals in the Carrara marble acted as a protective barrier against actively penetrating microorganisms. These investigations have allowed the study of tracers left by epilithic encrusting organisms and endolithic bioeroders on marbles intentionally exposed to seawater, providing new insights to the understanding of the biodeterioration processes occurring in cultural heritage stones, with significant implications when they are part of underwater archaeological remains. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ecology and identification of environmental fungi and metabolic processes involved in the biodeterioration of Brazilian soapstone historical monuments.

    PubMed

    Boniek, D; de Castro Mendes, I; Paiva, C A O; de Paula Lana, U G; Dos Santos, A F B; de Resende Stoianoff, M A

    2017-11-01

    This study aimed to evaluate the action of organic acids produced by the fungal population associated with the biodeterioration process of the Twelve Prophets of Aleijadinho, a set of soapstone sculptures in Congonhas, state of Minas Gerais, Brazil. For this, samples of fungi were obtained from the surface of each of the 12 outdoor stone sculptures that comprise the set of Prophets. The identification of the colonizing filamentous fungi was performed by classical microbiology and molecular methods. Some species of filamentous fungi-dependent cultivation were detected, and the presence of species Aspergillus versicolor, Curvularia lunata, Epicoccum nigrum, Penicillium citrinum and Pseudocercospora norchiensis indicated a connection with the excretion of organic acids. The acids produced by each of these fungal species were analysed quantitatively by chromatographic methods, revealing potential biodeterioration by the action of acidic metabolites excreted in the stone. Minas Gerais, Brazil, is vulnerable to the activities of mineral extraction industries, posing an imminent risk to United Nations Educational, Scientific and Cultural Organization (UNESCO) recognized cities, e.g. Congonhas. Many of these municipalities hold many soapstone religious sculptures and historical monuments. Consequently, soapstone is susceptible to filamentous fungi attack causing irreversible biodeterioration. Despite the concern related to nondestructive sampling of 18th century sculptures, in this study, we have discussed the factors that lead to biodeterioration of soapstone due to organic acid excretion by the fungi that damage the stone, thereby providing an insight in conserving and preserving the soapstone monuments. © 2017 The Society for Applied Microbiology.

  9. Untargeted Metabolomics Approach in Halophiles: Understanding the Biodeterioration Process of Building Materials

    PubMed Central

    Adamiak, Justyna; Bonifay, Vincent; Otlewska, Anna; Sunner, Jan A.; Beech, Iwona B.; Stryszewska, Teresa; Kańka, Stanisław; Oracz, Joanna; Żyżelewicz, Dorota; Gutarowska, Beata

    2017-01-01

    The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS). As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS) to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels), MgSO4, Mg(NO3)2), were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity. PMID:29321766

  10. Biodeterioration of materials in water reclamation systems

    NASA Technical Reports Server (NTRS)

    Ford, Tim; Maki, James S.; Mitchell, Ralph

    1992-01-01

    The chemicals produced by the microbial processes involved in the 'biofilms' which form on the surfaces of manned spacecraft water reclamation systems encompass both metals and organic poisons; both are potential hazards to astronaut health and the growth of the plants envisioned for closed-cycle life support systems. Image analysis is here shown to be a very useful technique for the study of biofilm formation on candidate water-processor materials for Space Station Freedom. The biodeterioration of materials exposed to biofilms can be swiftly evaluated by means of electrochemical impedance spectroscopy.

  11. Contribution of the Microbial Communities Detected on an Oil Painting on Canvas to Its Biodeterioration

    PubMed Central

    López-Miras, María del Mar; Martín-Sánchez, Inés; Yebra-Rodríguez, África; Romero-Noguera, Julio; Bolívar-Galiano, Fernando; Ettenauer, Jörg; Sterflinger, Katja; Piñar, Guadalupe

    2013-01-01

    In this study, we investigated the microbial community (bacteria and fungi) colonising an oil painting on canvas, which showed visible signs of biodeterioration. A combined strategy, comprising culture-dependent and -independent techniques, was selected. The results derived from the two techniques were disparate. Most of the isolated bacterial strains belonged to related species of the phylum Firmicutes, as Bacillus sp. and Paenisporosarcina sp., whereas the majority of the non-cultivable members of the bacterial community were shown to be related to species of the phylum Proteobacteria, as Stenotrophomonas sp. Fungal communities also showed discrepancies: the isolated fungal strains belonged to different genera of the order Eurotiales, as Penicillium and Eurotium, and the non-cultivable belonged to species of the order Pleosporales and Saccharomycetales. The cultivable microorganisms, which exhibited enzymatic activities related to the deterioration processes, were selected to evaluate their biodeteriorative potential on canvas paintings; namely Arthrobacter sp. as the representative bacterium and Penicillium sp. as the representative fungus. With this aim, a sample taken from the painting studied in this work was examined to determine the stratigraphic sequence of its cross-section. From this information, “mock paintings,” simulating the structure of the original painting, were prepared, inoculated with the selected bacterial and fungal strains, and subsequently examined by micro-Fourier Transform Infrared spectroscopy, in order to determine their potential susceptibility to microbial degradation. The FTIR-spectra revealed that neither Arthrobacter sp. nor Penicillium sp. alone, were able to induce chemical changes on the various materials used to prepare “mock paintings.” Only when inoculated together, could a synergistic effect on the FTIR-spectra be observed, in the form of a variation in band position on the spectrum. PMID:24312203

  12. Biodeterioration of wood

    Treesearch

    Terry L. Highley

    1999-01-01

    Under proper conditions, wood will give centuries of service. However, if conditions exist that permit the development of wood-degrading organisms, protection must be provided during processing, merchandising, and use. The principal organisms that can degrade wood are fungi, insects, bacteria, and marine borers. Molds, most sapwood stains, and decay are caused by fungi...

  13. Effect of biobased fillers nature on biodeterioration of hybrid polyethylene composites by mold fungi

    NASA Astrophysics Data System (ADS)

    Mastalygina, E. E.; Popov, A. A.; Pantyukhov, P. V.

    2017-06-01

    The paper is devoted to investigation of deterioration of natural fillers and polyethylene composites on their basis (polyethylene/filler=70/30) due to the action of mold fungi. The fillers chemical composition, dimensional parameters and biodegradability have been analyzed as factors exert a considerable impact on composite materials biodeterioration. It has been found that the principal factor determining the biodeterioration of polyethylene/filler composites by mold fungi is chemical composition of a filler and, in turn, its biodegradability. The excess of holocellulose content over lignin content and high protein content in a filler are able to induce biofouling of the polymeric composite materials. The presence of soluble and easy hydrolysed fraction in a filler increases its availability in a polymeric matrix. According to the study results, most effective natural fillers as additives stimulating polyethylene composites biodegradability are milled straw of seed flax and hydrolyzed keratin of bird’s feather.

  14. Contributions of in situ microscopy to the current understanding of stone biodeterioration.

    PubMed

    de Los Ríos, Asunción; Ascaso, Carmen

    2005-09-01

    In situ microscopy consists of simultaneously applying several microscopy techniques without separating the biological component from its habitat. Over the past few years, this strategy has allowed characterization of the biofilms involved in biodeterioration processes affecting stone monuments and has revealed the biogeophysical and biogeochemical impact of the microbiota present. In addition, through in situ microscopy diagnosis, appropriate treatments can be designed to resolve the problems related to microbial colonization of stone monuments.

  15. Scopulariopsis sp. and Fusarium sp. in the Documentary Heritage: Evaluation of Their Biodeterioration Ability and Antifungal Effect of Two Essential Oils.

    PubMed

    Lavin, Paola; de Saravia, Sandra Gómez; Guiamet, Patricia

    2016-04-01

    Fungi produce pigments and acids, generating particular local conditions which modify the physicochemical properties of materials. The aims of this work are (i) to investigate bioadhesion, foxing production and biofilm formation by Scopulariopsis sp. and Fusarium sp. isolated from document collections under laboratory conditions; (ii) to verify attack on cellulose fibres and (iii) to study the possibility of reducing fungal growth using natural products. Biofilm formation and extracellular polymeric substance (EPS) production by fungi were demonstrated in laboratory assays and by scanning electron microscopy (SEM) observations. The biocidal activity of two essential oils of Origanum vulgare L. and Thymus vulgaris L. was evaluated using the microatmosphere method. SEM observations showed that these strains were able to attach to paper and form biofilms, causing damage on them, which demonstrates the biodeterioration ability of these microorganisms. Scopulariopsis sp. and Fusarium sp. isolated from paper books showed the formation of fox-like reddish-brown colour spots, attack to the paper structure and pigment production on aged paper samples. The strains tested produced a decrease in the pH of one unit. This would substantiate the effect of the strains in paper biodeterioration. The microatmosphere method showed that volatile compounds of the essential oils have antifungal activity.

  16. Endocarditis caused by anaerobic bacteria.

    PubMed

    Kestler, M; Muñoz, P; Marín, M; Goenaga, M A; Idígoras Viedma, P; de Alarcón, A; Lepe, J A; Sousa Regueiro, D; Bravo-Ferrer, J M; Pajarón, M; Costas, C; García-López, M V; Hidalgo-Tenorio, C; Moreno, M; Bouza, E

    2017-10-01

    Infective endocarditis (IE) caused by anaerobic bacteria is a rare and poorly characterized disease. Most data reported in the literature are from case reports [1-3]. Therefore, we assessed the situation of anaerobic IE (AIE) in Spain using the database of the Spanish Collaboration on Endocarditis (GAMES). We performed a prospective study from 2008 to 2016 in 26 Spanish centers. We included 2491 consecutive cases of definite IE (Duke criteria). Anaerobic bacteria caused 22 cases (0.9%) of definite IE. Median age was 66 years (IQR, 56-73), and 19 (86.4%) patients were men. Most patients (14 [63.6%]) had prosthetic valve IE and all episodes were left-sided: aortic valves, 12 (54.5%); and mitral valves, 8 (36.4%). The most common pathogens were Propionibacterium acnes (14 [63.6%]), Lactobacillus spp (3 [13.63%]), and Clostridium spp. (2 [9.0%]), and the infection was mainly odontogenic. Fifteen of the 22 patients (68.2%) underwent cardiac surgery. Mortality was 18.2% during admission and 5.5% after 1 year of follow-up. When patients with AIE were compared with the rest of the cohort, we found that although those with AIE had a similar age and Charlson comorbidity index, they were more likely to have community-acquired IE (86.4% vs. 60.9%, p = 0.01), have undergone cardiac surgery (68.2% vs 48.7% p = 0.06), and have had lower mortality rates during admission (18.2% vs. 27.3%). IE due to anaerobic bacteria is an uncommon disease that affects mainly prosthetic valves and frequently requires surgery. Otherwise, there are no major differences between AIE and IE caused by other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Abiotic determinants of the historical buildings biodeterioration in the former Auschwitz II-Birkenau concentration and extermination camp.

    PubMed

    Piotrowska, Małgorzata; Otlewska, Anna; Rajkowska, Katarzyna; Koziróg, Anna; Hachułka, Mariusz; Nowicka-Krawczyk, Paulina; Wolski, Grzegorz J; Gutarowska, Beata; Kunicka-Styczyńska, Alina; Zydzik-Białek, Agnieszka

    2014-01-01

    The paper presents the results of a study conducted at the Auschwitz-Birkenau State Museum in Oświęcim on the occurrence of biodeterioration. Visual assessment of the buildings revealed signs of deterioration of the buildings in the form of dampness, bulging and crumbling plaster, and wood fiber splitting. The external surfaces, and especially the concrete strips and ground immediately adjoining the buildings, were colonized by bryophytes, lichens, and algae. These organisms developed most intensively close to the ground on the northern sides of the buildings. Inside the buildings, molds and bacteria were not found to develop actively, while algae and wood-decaying fungi occurred locally. The factors conducive to biological corrosion in the studied buildings were excessive dampness of structural partitions close to the ground and a relative air humidity of above 70%, which was connected to ineffective moisture insulation. The influence of temperature was smaller, as it mostly affected the quantitative composition of the microorganisms and the qualitative composition of the algae. Also the impact of light was not very strong, but it was conducive to algae growth.

  18. Abiotic Determinants of the Historical Buildings Biodeterioration in the Former Auschwitz II – Birkenau Concentration and Extermination Camp

    PubMed Central

    Piotrowska, Małgorzata; Otlewska, Anna; Rajkowska, Katarzyna; Koziróg, Anna; Hachułka, Mariusz; Nowicka-Krawczyk, Paulina; Wolski, Grzegorz J.; Gutarowska, Beata; Kunicka-Styczyńska, Alina; Żydzik-Białek, Agnieszka

    2014-01-01

    The paper presents the results of a study conducted at the Auschwitz-Birkenau State Museum in Oświęcim on the occurrence of biodeterioration. Visual assessment of the buildings revealed signs of deterioration of the buildings in the form of dampness, bulging and crumbling plaster, and wood fiber splitting. The external surfaces, and especially the concrete strips and ground immediately adjoining the buildings, were colonized by bryophytes, lichens, and algae. These organisms developed most intensively close to the ground on the northern sides of the buildings. Inside the buildings, molds and bacteria were not found to develop actively, while algae and wood-decaying fungi occurred locally. The factors conducive to biological corrosion in the studied buildings were excessive dampness of structural partitions close to the ground and a relative air humidity of above 70%, which was connected to ineffective moisture insulation. The influence of temperature was smaller, as it mostly affected the quantitative composition of the microorganisms and the qualitative composition of the algae. Also the impact of light was not very strong, but it was conducive to algae growth. PMID:25279789

  19. Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air

    PubMed Central

    Piñar, Guadalupe; Piombino-Mascali, Dario; Maixner, Frank; Zink, Albert; Sterflinger, Katja

    2013-01-01

    The Capuchin Catacombs of Palermo contain over 1800 preserved bodies dating from the 16th to 20th centuries AD and showing evidence of biodeterioration. An extensive microbiological and molecular investigation was recently performed. Samples were taken from skin, muscle, hair, bone, stuffing materials, clothes, and surrounding walls as well as from the indoor air. In this study, we witnessed that the different degradation phenomena observed on the variety of materials located at the Capuchin Catacombs of Palermo are biological in origin. Molecular techniques showed the dominance of halophilic species of the domains Bacteria and Archaea on the walls and – as a result of salt emanating from the walls – on the mummies themselves. Nevertheless, specialized microorganisms belonging to taxa well-known for their cellulolytic and proteolytic activities were detected on clothes and stuffing material, and on skin, muscle, hair, and bone, respectively. This specialized microbiota is threatening the conservation of the mummies themselves. Additionally, sequences related to the human skin microbiome and to some pathogenic Bacteria (order Clostridiales) and fungi (genus Phialosimplex) were identified on samples derived from the mummies. Furthermore, a phosphate-reducing fungus, Penicillium radicum, was detected on bone. Finally, the high concentration of airborne fungal spores is not conducive to the conservation of the human remains and is posing a potential health risk for visitors. PMID:23772650

  20. Identification of bacteria causing acute otitis media using Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Ayala, Oscar D.; Wakeman, Catherine A.; Skaar, Eric P.; Mahadevan-Jansen, Anita

    2016-03-01

    Otitis media (OM) is the leading cause of acute physician visits and prescription of antibiotics for children. Current standard techniques to diagnose acute otitis media (AOM) are limited by their ability to probe only changes in symptoms of the bacterial infection that cause AOM. Furthermore, they are not able to detect the presence of or identify bacteria causing AOM, which is important for diagnosis and proper antibiotic treatment. Our goal is to detect the presence of and identify the pathogens involved in causing AOM based on their biochemical profile using Raman spectroscopy (RS). An inVia confocal Raman microscope (Renishaw) at 785 nm was used to detect bacteria causing AOM in vitro. The three main bacteria that cause AOM, Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae were cultured in chocolate agar and Mueller-Hinton agar to determine which agar type would minimize Raman signal from the growth agar. Preliminary results identified specific Raman spectral features characteristic of S. pneumoniae. RS has the potential to accurately diagnose AOM, which will help in identifying the antibiotic that will be most beneficial for the patient and ultimately decrease the course of infection.

  1. Biodeterioration agents: Bacterial and fungal diversity dwelling in or on the pre-historic rock-paints of Kabra-pahad, India.

    PubMed

    Biswas, Jayant; Sharma, Kavita; Harris, K K; Rajput, Yogita

    2013-09-01

    In the last few decades, losses of our cultural heritage due to biodeteriorationare beinghighly recognized. From museum objects to rock monuments, the microbial biodeterioration agents are found to be the most destructive. Possibilities for proper preservative measure(s) are always more when it is only a monument, statue, museum article, or pre-historic art in any small subterranean cave. Nevertheless, preservation/protection of the footprints occupying a big area, lying scattered in a very negligible manner requires safeguard against several deterioration factors; right from various physical, chemical and biological agents which are indeed interrelated to each other. In the present study, some microbial communities possibly responsible for deteriorating the rocks of Kabra-pahad, where the most famous pre-historic rock paints of India prevail have been identified. The diversity of fungi and bacteria present in the stone crust of the infected areas has been studied by employing standard laboratory methods. The cultivated cultures confirmed total fifteen fungal species, among which Aspergillus group were the most dominant. Among bacteria, total 80 numbers of colonies were observed that dominated by two major groups; Micrococcus.spp and Staphylococcus spp. The pre-historic footprint in the form of rock paints in Kabra-pahad of district Raigarh, Chhattisgarh, India is lying in a very deteriorated manner. In the present study, we have tried to identify few major deteriorating factors that are responsible for such degradation of our existing pre-historic footprints.

  2. Identification of Fungal Communities Associated with the Biodeterioration of Waterlogged Archeological Wood in a Han Dynasty Tomb in China

    PubMed Central

    Liu, Zijun; Wang, Yu; Pan, Xiaoxuan; Ge, Qinya; Ma, Qinglin; Li, Qiang; Fu, Tongtong; Hu, Cuiting; Zhu, Xudong; Pan, Jiao

    2017-01-01

    The Mausoleum of the Dingtao King (termed ‘M2’) is a large-scale huangchang ticou tomb that dates to the Western Han Dynasty (206 B.C.–25 A.D.). It is the highest-ranking Han Dynasty tomb discovered to date. However, biodeterioration on the surface of the tomb M2 is causing severe damage to its wooden materials. The aim of the present study was to give insight into the fungal communities colonized the wooden tomb. For this purpose, seven samples were collected from different sections of the tomb M2 which exhibited obvious biodeterioration in the form of white spots. Microbial structures associated with the white spots were observed with scanning electron microscopy. Fungal community structures were assessed for seven samples via a combination of high-throughput sequencing and culture-dependent techniques. Sequencing analyses identified 114 total genera that belonged to five fungal phyla. Hypochnicium was the most abundant genus across all samples and accounted for 98.61–99.45% of the total community composition. Further, Hypochnicium sp. and Mortierella sp. cultures were successfully isolated from the tomb samples, and were distinguished as Hypochnicium sp. WY-DT1 and Mortierella sp. NK-DT1, respectively. Cultivation-dependent experiments indicated that the dominant member, Hypochnicium sp. WY- DT1, could grow at low temperatures and significantly degraded cellulose and lignin. Thus, our results taken together suggest that this fungal strain must be regarded as a serious threat to the preservation of the wooden tomb M2. The results reported here are useful for informing future contamination mitigation efforts for the tomb M2 as well as other similar cultural artifacts. PMID:28890715

  3. Treatment with activated water by GlidArc technology of bacteria producing Biofouling

    NASA Astrophysics Data System (ADS)

    Hnatiuc, B.; Ghita, S.; Sabau, A.; Hnatiuc, M.; Dumitrache, C. L.; Wartel, M.

    2015-02-01

    Corrosion in marine environment is an actual problem, being a complex dynamic process influenced mainly by physical, chemical, microbiological and mechanical parameters. Around 70% of the maintenance costs of a ship are associated with the corrosion protection. Times for maintenance related to this phenomenon are greater than 80% of the total repair. Reducing this cost would be a significant saving, and an effective treatment can reduce times related to ships repairing. Biofouling is a main cause of corrosion and for its reduction different methods could be applied, especially in the first part of its production. The atmospheric pressure non-thermal plasmas have been gaining an ever increasing interest for different biodecontamination applications and present potential utilisation in the control of biofouling and biodeterioration. They have a high efficiency of the antimicrobial treatment, including capacity to eradicate microbial biofilms. The adhesion microbial biofilm is mainly influenced by presence of bacteria from the liquid environment. That is why this work concerns the study of annihilation of maximum amount of bacteria from sea water, by using GlidArc technology that produces non-thermal plasma. Bacteria suspended in sea water are placed in contact with activated water. This water is activated by using GlidArc working in humid air. Experimental results refer to the number of different activated and inactivated marine organisms and their evolution, present in solution at certain time intervals after mixing different amounts of seawater with plasma activated water.

  4. Spatio-temporal patterns of bacteria caused by collective motion

    NASA Astrophysics Data System (ADS)

    Kitsunezaki, So

    2006-04-01

    In incubation experiments on bacterial colonies of Proteus mirabilis, collective motion of bacteria is found to generate macroscopic turbulent patterns on the surface of agar media. We propose a mathematical model to describe the time evolution of the positional and directional distributions of motile bacteria in such systems, and investigate this model both numerically and analytically. It is shown that as the average density of bacteria increases, nonuniform swarming patterns emerge from a uniform stationary state. For a sufficient large density, we find that spiral patterns are caused by interactions between the local bacteria densities and the rotational mode of the collective motion. Unidirectional spiral patterns similar to those observed in experiments appear in the case in which the equilibrium directional distribution is asymmetric.

  5. Synthetic Consolidants Attacked by Melanin-Producing Fungi: Case Study of the Biodeterioration of Milan (Italy) Cathedral Marble Treated with Acrylics▿

    PubMed Central

    Cappitelli, Francesca; Nosanchuk, Joshua D.; Casadevall, Arturo; Toniolo, Lucia; Brusetti, Lorenzo; Florio, Sofia; Principi, Pamela; Borin, Sara; Sorlini, Claudia

    2007-01-01

    Monuments and artistic stone surfaces are often consolidated and protected with synthetic polymers, in particular, acrylics. Although it is generally thought that acrylic polymers are resistant to biodeterioration, we report for the first time the systematic occurrence of dematiaceous meristematic fungi on many marble samples of the cathedral in Milan (Italy) previously treated with this material. Fourier transform infrared spectroscopy applied to the Milan cathedral stone samples revealed characteristic features of biodeteriorated synthetic resins that differentiated them from the aged but nonbiodeteriorated samples. Samples showing biological colonization were analyzed for the presence of fungi. Cultivation and morphological characterization and methods independent from cultivation, such as denaturing gradient gel electrophoresis coupled with partial 18S rRNA gene sequencing and immunofluorescence staining with melanin-binding antibodies, showed that melanin-producing species are heavily present on stone surfaces protected with acrylic resins. This observation raises the question of the effectiveness of acrylics in protecting stone artworks. PMID:17071788

  6. Synthetic consolidants attacked by melanin-producing fungi: case study of the biodeterioration of Milan (Italy) cathedral marble treated with acrylics.

    PubMed

    Cappitelli, Francesca; Nosanchuk, Joshua D; Casadevall, Arturo; Toniolo, Lucia; Brusetti, Lorenzo; Florio, Sofia; Principi, Pamela; Borin, Sara; Sorlini, Claudia

    2007-01-01

    Monuments and artistic stone surfaces are often consolidated and protected with synthetic polymers, in particular, acrylics. Although it is generally thought that acrylic polymers are resistant to biodeterioration, we report for the first time the systematic occurrence of dematiaceous meristematic fungi on many marble samples of the cathedral in Milan (Italy) previously treated with this material. Fourier transform infrared spectroscopy applied to the Milan cathedral stone samples revealed characteristic features of biodeteriorated synthetic resins that differentiated them from the aged but nonbiodeteriorated samples. Samples showing biological colonization were analyzed for the presence of fungi. Cultivation and morphological characterization and methods independent from cultivation, such as denaturing gradient gel electrophoresis coupled with partial 18S rRNA gene sequencing and immunofluorescence staining with melanin-binding antibodies, showed that melanin-producing species are heavily present on stone surfaces protected with acrylic resins. This observation raises the question of the effectiveness of acrylics in protecting stone artworks.

  7. Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air.

    PubMed

    Piñar, Guadalupe; Piombino-Mascali, Dario; Maixner, Frank; Zink, Albert; Sterflinger, Katja

    2013-11-01

    The Capuchin Catacombs of Palermo contain over 1800 preserved bodies dating from the 16th to 20th centuries AD and showing evidence of biodeterioration. An extensive microbiological and molecular investigation was recently performed. Samples were taken from skin, muscle, hair, bone, stuffing materials, clothes, and surrounding walls as well as from the indoor air. In this study, we witnessed that the different degradation phenomena observed on the variety of materials located at the Capuchin Catacombs of Palermo are biological in origin. Molecular techniques showed the dominance of halophilic species of the domains Bacteria and Archaea on the walls and - as a result of salt emanating from the walls - on the mummies themselves. Nevertheless, specialized microorganisms belonging to taxa well-known for their cellulolytic and proteolytic activities were detected on clothes and stuffing material, and on skin, muscle, hair, and bone, respectively. This specialized microbiota is threatening the conservation of the mummies themselves. Additionally, sequences related to the human skin microbiome and to some pathogenic Bacteria (order Clostridiales) and fungi (genus Phialosimplex) were identified on samples derived from the mummies. Furthermore, a phosphate-reducing fungus, Penicillium radicum, was detected on bone. Finally, the high concentration of airborne fungal spores is not conducive to the conservation of the human remains and is posing a potential health risk for visitors. © 2013 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  8. Legionnaires' disease: respiratory infections caused by Legionella bacteria.

    PubMed

    Davis, G S; Winn, W C

    1987-09-01

    This article provides a review of Legionnaire's Disease, a bacterial pneumonia caused by Legionella species, and of Pontiac Fever, the flu-like illness caused by these microorganisms. The authors draw on their personal experience with major human outbreaks of Legionnaire's Disease and with animal models of Legionella pneumonia. Emphasis is placed on the sources in nature from which legionellosis is acquired, the means of dissemination of bacteria, the epidemiology of human infections, the pathogenetic mechanisms of disease and host defense, the clinical manifestations, and the treatment.

  9. A multiproxy approach to evaluate biocidal treatments on biodeteriorated majolica glazed tiles.

    PubMed

    Coutinho, M L; Miller, A Z; Martin-Sanchez, P M; Mirão, J; Gomez-Bolea, A; Machado-Moreira, B; Cerqueira-Alves, L; Jurado, V; Saiz-Jimenez, C; Lima, A; Phillips, A J L; Pina, F; Macedo, M F

    2016-12-01

    The Fishing House located on the grounds of the Marquis of Pombal Palace, Oeiras, Portugal, was built in the 18th century. During this epoch, Portuguese gardens, such as the one surrounding the Fishing House, were commonly ornamented with glazed wall tile claddings. Currently, some of these outdoor tile panels are covered with dark colored biofilms, contributing to undesirable aesthetic changes and eventually inducing chemical and physical damage to the tile surfaces. Phylogenetic analyses revealed that the investigated biofilms are mainly composed of green algae, cyanobacteria and dematiaceous fungi. With the aim of mitigating biodeterioration, four different biocides (TiO 2 nanoparticles, Biotin ® T, Preventol ® RI 80 and Albilex Biostat ® ) were applied in situ to the glazed wall tiles. Their efficacy was monitored by visual examination, epifluorescence microscopy and DNA-based analysis. Significant changes in the microbial community composition were observed 4 months after treatment with Preventol ® RI 80 and Biotin ® T. Although the original community was inactivated after these treatments, an early stage of re-colonization was detected 6 months after the biocide application. TiO 2 nanoparticles showed promising results due to their self-cleaning effect, causing the detachment of the biofilm from the tile surface, which remained clean 6 and even 24 months after biocide application. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Nasal septal abscess caused by anaerobic bacteria of oral flora.

    PubMed

    Hyo, Yukiyoshi; Fukushima, Hisaki; Harada, Tamotsu; Hara, Hirotaka

    2018-06-07

    Although nasal septal abscess (NSA) was formerly common, it has become rare since the development of antibiotics. NSA, if left untreated, can lead to intracranial complications such as meningitis and eventually result in saddle-nose deformity. NSA often occurs after injury, and indigenous skin bacteria such as Staphylococcus aureus are frequently detected. We treated a patient who had injured the upper alveolus in a fall on the stairs and developed NSA two weeks later. Anaerobic bacteria, including Veillonella parvula and Peptostreptococcus sp., were detected. Symptoms were relieved by needle and incisional drainage. Our patient represents a very rare case of NSA in terms of the cause of onset and the detected bacteria. Early drainage can result in good outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Biodeterioration of wood

    Treesearch

    Carol A. Clausen

    2010-01-01

    Under proper conditions, wood will give centuries of service. However, under conditions that permit the development of wood-degrading organisms, protection must be provided during processing, merchandising, and use. The organisms that can degrade wood are principally fungi, insects, bacteria, and marine borers.

  12. Bacteria causing bacteremia in pediatric cancer patients presenting with febrile neutropenia--species distribution and susceptibility patterns.

    PubMed

    Miedema, Karin G E; Winter, Rik H L J; Ammann, Roland A; Droz, Sara; Spanjaard, Lodewijk; de Bont, Eveline S J M; Kamps, Willem A; van de Wetering, Marianne D; Tissing, Wim J E

    2013-09-01

    Infections are a major cause of morbidity and mortality in pediatric cancer patients. The aim of this study was to establish the microbiological spectrum and the susceptibility patterns of bacteremia-causing bacteria in pediatric cancer patients with febrile neutropenia in relation to the use of prophylactic and empirical antibiotics. We analyzed positive blood cultures of pediatric cancer patients presenting with febrile neutropenia between 2004 and 2011 in Groningen and Amsterdam (the Netherlands) and in Bern (Switzerland), using different antibiotic prophylactic and empirical regimens. A total of 156 patients with 202 bacteremias, due to 248 bacteria species, were enrolled. The majority (73%) of bacteremias were caused by Gram-positive bacteria. Gram-negative bacteria, especially Pseudomonas aeruginosa, were observed significantly more often in Bern, where no fluoroquinolone prophylaxis was used. Ciprofloxacin-resistant bacteria were cultured more often from patients who did receive ciprofloxacin prophylaxis, compared to the patients who did not (57 versus 11%, p = 0.044). Gram-positive bacteria predominated in this study. We showed that the use of prophylactic antibiotics in pediatric cancer patients was associated with increased resistance rates, which needs further study. The strategy for empiric antimicrobial therapy for febrile neutropenia should be adapted to local antibiotic resistance patterns.

  13. In vitro growth inhibition of mastitis causing bacteria by phenolics and metal chelators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, B.P.; Tjoelker, L.W.; Tanaka, T.S.

    1985-11-01

    Antimicrobial activities of three phenolic compounds and four metal chelators were tested at 0, 250, 500, and 1000 ppm in vitro against four major mastitis-causing bacteria, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pnuemoniae, and Escherichia coli. Overall, butylated hydroxyanisole and tert-butylhydroquinone showed the greatest antimicrobial activity. These phenolics were bactericidal at 250 to 500 ppm against all four bacteria tested. The butylated hydroxytoluene was bactericidal against the gram-positive bacteria but was ineffective against the coliforms. At 250 ppm, disodium ethylenediaminetetraacetic acid was bactericidal against the gram-positive bacteria but much less effective against the gram-negatives. However, diethylene-triaminepentaacetic acid was more growth inhibitorymore » than ethylenediaminetetraacetic acid against the gram-negative bacteria and especially against Escherichia coli. All other compounds were generally much less effective or ineffective against all four microorganisms. Therefore, butylated hydroxyanisole, butylated hydroxytoluene, tert-butylhydroquinone, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid may have practical implications in the prevention or treatment of bovine mastitis.« less

  14. Bacteria and cancer: cause, coincidence or cure? A review

    PubMed Central

    Mager, DL

    2006-01-01

    Research has found that certain bacteria are associated with human cancers. Their role, however, is still unclear. Convincing evidence links some species to carcinogenesis while others appear promising in the diagnosis, prevention or treatment of cancers. The complex relationship between bacteria and humans is demonstrated by Helicobacter pylori and Salmonella typhi infections. Research has shown that H. pylori can cause gastric cancer or MALT lymphoma in some individuals. In contrast, exposure to H. pylori appears to reduce the risk of esophageal cancer in others. Salmonella typhi infection has been associated with the development of gallbladder cancer; however S. typhi is a promising carrier of therapeutic agents for melanoma, colon and bladder cancers. Thus bacterial species and their roles in particular cancers appear to differ among different individuals. Many species, however, share an important characteristic: highly site-specific colonization. This critical factor may lead to the development of non-invasive diagnostic tests, innovative treatments and cancer vaccines. PMID:16566840

  15. [Toxic shock syndrome caused by pyogenic bacteria].

    PubMed

    Gábor, Zsuzsa; Szekeres, Sándor; Gacs, Mária

    2003-01-12

    Case reports and review of the literature. Severe toxic shock syndrome caused by invasive infection with pyogenic bacteria Staphylococcus aureus or group A Streptococcus pyogenes, with high mortality rates in cases of the latter, remained one of the most problematic chapters of critical care medicine to date. To give an overview on the epidemiology, clinical manifestations, the complex therapeutical approaches of the syndrome and, on the role and mechanisms of action of bacterial superantigens in the pathophysiological processes as well. Literary data, and some illustrative selected cases demonstrate that, the incidence of TSS shows increasing tendency worldwide and, that otherwise healthy, younger people are the most frequently affected. As for prognosis: early diagnosis and treatment with sufficient radicality are of decisive importance.

  16. Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings.

    PubMed

    Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L; Brauer, Jonathan I; Duncan, Kathleen E; Adamiak, Justyna; Sunner, Jan A; Beech, Iwona B

    2015-01-01

    Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities

  17. Metabolomic and high-throughput sequencing analysis—modern approach for the assessment of biodeterioration of materials from historic buildings

    PubMed Central

    Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L.; Brauer, Jonathan I.; Duncan, Kathleen E.; Adamiak, Justyna; Sunner, Jan A.; Beech, Iwona B.

    2015-01-01

    Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II–Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial

  18. In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria.

    PubMed

    de Boer, Wietse; Wagenaar, Anne-Marieke; Klein Gunnewiek, Paulien J A; van Veen, Johannes A

    2007-01-01

    We hypothesized that apparently non-antagonistic soil bacteria may contribute to suppression of fungi during competitive interactions with other bacteria. Four soil bacteria (Brevundimonas sp., Luteibacter sp., Pedobacter sp. and Pseudomonas sp.) that exhibited little or no visible antifungal activity on different agar media were prescribed. Single and mixed strains of these species were tested for antagonism on a nutrient-poor agar medium against the plant pathogenic fungi Fusarium culmorum and Rhizoctonia solani and the saprotrophic fungus Trichoderma harzianum. Single bacterial strains caused little to moderate growth reduction of fungi (quantified as ergosterol), most probably due to nutrient withdrawal from the media. Growth reduction of fungi by the bacterial mixture was much stronger than that by the single strains. This appeared to be mostly due to competitive interactions between the Pseudomonas and Pedobacter strains. We argue that cohabitation of these strains triggered antibiotic production via interspecific interactions and that the growth reduction of fungi was a side-effect caused by the sensitivity of the fungi to bacterial secondary metabolites. Induction of gliding behavior in the Pedobacter strain by other strains was also observed. Our results indicate that apparently non-antagonistic soil bacteria may be important contributors to soil suppressiveness and fungistasis when in a community context.

  19. Investigation of best practices for maintenance of concrete bridge railings.

    DOT National Transportation Integrated Search

    2015-01-01

    Biodeterioration on concrete surfaces of vertical elements of bridges represents a serious challenge to : the highway infrastructure in Louisiana. This report aims to document the causes of biodeterioration of : concrete surfaces and to document curr...

  20. Neutrophil extracellular traps formation by bacteria causing endometritis in the mare.

    PubMed

    Rebordão, M R; Carneiro, C; Alexandre-Pires, G; Brito, P; Pereira, C; Nunes, T; Galvão, A; Leitão, A; Vilela, C; Ferreira-Dias, G

    2014-12-01

    Besides the classical functions, neutrophils (PMNs) are able to release DNA in response to infectious stimuli, forming neutrophil extracellular traps (NETs) and killing pathogens. The pathogenesis of endometritis in the mare is not completely understood. The aim was to evaluate the in vitro capacity of equine PMNs to secrete NETs by chemical activation, or stimulated with Streptococcus equi subspecies zooepidemicus (Szoo), Escherichia coli (Ecoli) or Staphylococcus capitis (Scap) strains obtained from mares with endometritis. Ex vivo endometrial mucus from mares with bacterial endometritis were evaluated for the presence of NETs. Equine blood PMNs were used either without or with stimulation by phorbol-myristate-acetate (PMA), a strong inducer of NETs, for 1-3h. To evaluate PMN ability to produce NETs when phagocytosis was impaired, the phagocytosis inhibitor cytochalasin (Cyt) was added after PMA. After the addition of bacteria, a subsequent 1-h incubation was carried out in seven groups. NETs were visualized by 4',6-diamidino-2-phenylindole (DAPI) and anti-histone. Ex vivo samples were immunostained for myeloperoxidase and neutrophil elastase. A 3-h incubation period of PMN + PMA increased NETs (p < 0.05). Bacteria + 25 nM PMA and bacteria + PMA + Cyt increased NETs (p<0.05). Szoo induced fewer NETs than Ecoli or Scap (p < 0.05). Ex vivo NETs were present in mares with endometritis. Scanning electron microscopy showed the spread of NETs formed by smooth fibers and globules that can be aggregated in thick bundles. Formation of NETs and the subsequent entanglement of bacteria suggest that equine NETs might be a complementary mechanism in fighting some of the bacteria causing endometritis in the mare. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Is mad cow disease caused by a bacteria?

    PubMed

    Broxmeyer, L

    2004-01-01

    Transmissible spongioform enchephalopathies (TSE's), include bovine spongiform encephalopathy (also called BSE or "mad cow disease"), Creutzfeldt-Jakob disease (CJD) in humans, and scrapie in sheep. They remain a mystery, their cause hotly debated. But between 1994 and 1996, 12 people in England came down with CJD, the human form of mad cow, and all had eaten beef from suspect cows. Current mad cow diagnosis lies solely in the detection of late appearing "prions", an acronym for hypothesized, gene-less, misfolded proteins, somehow claimed to cause the disease. Yet laboratory preparations of prions contain other things, which could include unidentified bacteria or viruses. Furthermore, the rigors of prion purification alone, might, in and of themselves, have killed the causative virus or bacteria. Therefore, even if samples appear to infect animals, it is impossible to prove that prions are causative. Manuelidis found viral-like particles, which even when separated from prions, were responsible for spongiform STE's. Subsequently, Lasmezas's study showed that 55% of mice injected with cattle BSE, and who came down with disease, had no detectable prions. Still, incredibly, prions, are held as existing TSE dogma and Heino Dringer, who did pioneer work on their nature, candidly predicts "it will turn out that the prion concept is wrong." Many animals that die of spongiform TSE's never show evidence of misfolded proteins, and Dr. Frank Bastian, of Tulane, an authority, thinks the disorder is caused by the bacterial DNA he found in this group of diseases. Recently, Roels and Walravens isolated Mycobacterium bovis it from the brain of a cow with the clinical and histopathological signs of mad cow. Moreover, epidemiologic maps of the origins and peak incidence of BSE in the UK, suggestively match those of England's areas of highest bovine tuberculosis, the Southwest, where Britain's mad cow epidemic began. The neurotoxic potential for cow tuberculosis was shown in pre-1960

  2. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  3. [A Case of Hyperammonemia Caused by Urinary Tract Infection Due to Urease-Producing Bacteria].

    PubMed

    Emura, Masahiro; Tsuchihashi, Kazunari; Shimizu, Yosuke; Kanamaru, Sojun; Matoba, Shun; Ito, Noriyuki

    2016-08-01

    We present here a rare case of hyperammonemia without liver dysfunction or portal-systemic shunting. The patient was an 80-year-old woman with a history of neurogenic bladder. She was admitted to a nearby hospital for vomiting, diarrhea and consciousness disturbance. Two days after admission, she was transferred to our hospital because of persistant consciousness disturbance. Laboratory data revealed hyperammonemia, but there was no indication of liver dysfunction. Moreover abdominal computed tomography did not reveal any clear finding of liver disease or portal-systemic shunting, but we noted multiple large bladder diverticula. Antibiotic therapy, tracheal intubation, ventilator management and bladder catheterization were performed. The patient's level of consciousness improved rapidly. Urinary culture revealed Bacteroides ureolyticus (urease-producing bacteria). The patient was diagnosed with hyperammonemia and a urinary tract infection due to urease-producing bacteria. Thus, physicians should be aware that obstructive urinary tract infections due to urease-producing bacteria can also be the cause of hyperammonemia.

  4. Gram-negative bacteria that produce carbapenemases causing death attributed to recent foreign hospitalization.

    PubMed

    Ahmed-Bentley, Jasmine; Chandran, A Uma; Joffe, A Mark; French, Desiree; Peirano, Gisele; Pitout, Johann D D

    2013-07-01

    Overseas travel, as a risk factor for the acquisition of infections due to antimicrobial-resistant organisms, has recently been linked to carbapenemase-producing Gram-negative bacteria. Multiresistant Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii strains were isolated from a wound of a Canadian patient with a recent history of hospitalization in India. This resulted in the initiation of outbreak management that included surveillance cultures. Epidemiological and molecular investigations showed that NDM-1-producing K. pneumoniae ST16 and OXA-23-producing A. baumannii ST10 strains were transmitted to 5 other patients, resulting in the colonization of 4 patients and the death of 1 patient due to septic shock caused by the OXA-23-producing A. baumannii strain. The high rate of false positivity of the screening cultures resulted in additional workloads and increased costs for infection control and clinical laboratory work. We believe that this is the first report of an infection with carbapenemase-producing Gram-negative bacteria resulting in death attributed to a patient with recent foreign hospitalization. We recommend routine rectal and wound screening for colonization with multiresistant bacteria for patients who have recently been admitted to hospitals outside Canada.

  5. Urinary tract infection caused by community-acquired extended-spectrum β-lactamase-producing bacteria in infants.

    PubMed

    Kim, Yun Hee; Yang, Eun Mi; Kim, Chan Jong

    Urinary tract infection (UTI) caused by resistant strains of bacteria is increasingly prevalent in children. The aim of this study was to investigate the clinical characteristics and risk factors for UTI caused by community-acquired extended-spectrum β-lactamase (CA-ESBL)-producing bacteria in infants. This was a retrospective study performed over 5 years in a single Korean center. Hospitalized infants with febrile UTI were enrolled and divided into two groups (CA-ESBL vs. CA non-ESBL UTI). The yearly prevalence was calculated. Baseline characteristics and clinical course such as fever duration, laboratory and radiological findings were compared between the two groups. Risk factors associated with the CA-ESBL UTI were investigated. Among the enrolled infants (n=185), 31 (17%) had CA-ESBL UTI. The yearly prevalence of ESBL of CA-ESBL UTI increased during the study (0% in 2010, 22.2% in 2015). Infants with CA-ESBL UTI had a longer duration of fever after initiating antibiotics (2.0±1.1 vs. 1.5±0.6 days, p=0.020). Cortical defects on renal scan and early treatment failure were more frequent in CA-ESBL (64.5 vs. 42.2%, p=0.023; 22.6 vs. 4.5%, p=0.001). A logistic regression analysis revealed that urinary tract abnormalities and previous UTI were independent risk factors for CA-EBSL UTI (odds ratio, 2.7; p=0.025; 10.3; p=0.022). The incidence of UTI caused by ESBL-producing bacteria has increased in Korean infants. Recognition of the clinical course and risk factors for ESLB-producing UTI may help to determine appropriate guidelines for its management. Copyright © 2016. Published by Elsevier Editora Ltda.

  6. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections

    PubMed Central

    Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes

    2013-01-01

    In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections. PMID:24516424

  7. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections.

    PubMed

    Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes

    2013-01-01

    In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections.

  8. Bacteriological Assessment of Pneumonia Caused by Gram-Negative Bacteria in Patients Hospitalized in Intensive Care Unit.

    PubMed

    Guzek, A; Korzeniewski, K; Tomaszewski, D; Rybicki, Z; Zwolińska, E

    2017-01-01

    The article presents the results of 11-year study (2005-2015) of Gram-negative bacteria responsible for pneumonia in 2033 mechanically ventilated patients hospitalized in Intensive Care Unit. Of 8796 biological samples, consisting mainly of bronchial aspirate (97.9 %), 2056 bacterial strains were isolated and subjected to identification. VITEK 2 was used to determine drug susceptibility (classified according to the EUCAST criteria). ESBL, MBL and KPC-producing strains were identified by means of phenotypic methods using appropriate discs. The findings were that the predominant bacteria responsible for infections consisted of Enterobacteriaceae (42.0 %), Acinetobacter baumannii (37.2 %), Pseudomonas aeruginosa (16.1 %), and Stenotrophomonas maltophila (4.7 %). We observed a rise in the number of bacteria causing pneumonia throughout the study period, especially in S. maltophila and Enterobacteriaceae ESBL (+). Gram-negative bacilli were 100 % susceptible to colistin, apart from naturally resistant strains such as Proteus mirabilis, Serratia marcescens, whereas Enterobacteriaceae ESBL (+) were susceptible to imipenem and meropenem. Acinetobacter baumannii strains exhibited the lowest drug susceptibility. In conclusion, we report an increase in the prevalence of pneumonia associated with Gram-negative bacteria in mechanically ventilated intensive care patients. Colistin remains the most effective drug against the majority of Gram-negative bacteria. Therapeutic problems are common in the course of treatment of Acinetobacter baumannii infections.

  9. Antibacterial Activity of Ethanolic Extract of Cinnamon Bark, Honey, and Their Combination Effects against Acne-Causing Bacteria

    PubMed Central

    Julianti, Elin; Rajah, Kasturi K.; Fidrianny, Irda

    2017-01-01

    Propionibacterium acnes and Staphylococcus epidermidis are the major skin bacteria that cause the formation of acne. The present study was conducted to investigate antibacterial activity of ethanolic extract of cinnamon bark, honey, and their combination against acne bacteria. The antibacterial activity of extract of cinnamon bark and honey were investigated against P. acnes and S. epidermidis using disc diffusion. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were attained using Clinical and Laboratory Standard Institute (CLSI) methods. The interaction between cinnamon bark extract and honey was determined using a checkerboards method. The results showed that the MICs of cinnamon bark extract and honey against P. acne were 256 µg/mL and 50% v/v, respectively, while those against S. epidermidis were 1024 µg/mL and 50% v/v, respectively. The MBC of cinnamon bark extract against P. acnes and S. epidermidis were more than 2048 µg/mL, whereas the MBC for honey against P. acnes and S. epidermidis were 100%. The combination of cinnamon bark extract and honey against P. acnes and S. epidermidis showed additive activity with a fractional inhibitory concentration index (FICI) value of 0.625. Therefore, the combination of cinnamon bark extract and honey has potential activity against acne-causing bacteria. PMID:28398231

  10. Biodeterioration of epoxy resin: a microbial survey through culture-independent and culture-dependent approaches.

    PubMed

    Pangallo, Domenico; Bučková, Maria; Kraková, Lucia; Puškárová, Andrea; Šaková, Nikoleta; Grivalský, Tomaš; Chovanová, Katarina; Zemánková, Milina

    2015-02-01

    During the 20th century, synthetic polymers were greatly used in the field of art. In particular, the epoxy resins were used for both conservation and for creating sculptures. The biodeterioration of these polymers has not been adequately studied. The aim of this investigation was to examine the microflora responsible for the deterioration of an epoxy statue exposed to outdoor conditions. Fungal and bacterial microflora were isolated from the art object, clustered by fluorescence-ITS (internal transcribed spacer), identified by ITS and 16S rRNA sequencing and tested for their lipolytic abilities by three agar assays. Different algal, bacterial, cyanobacterial and fungal clone libraries were constructed. The surrounding airborne microflora was analyzed using culture-dependent and culture-independent approaches. The results indicated the presence, on the statue surface, of an interesting and differentiate microbial community composed of rock-inhabiting members, algal photobionts (Trebouxia spp., Chloroidium ellipsoideum and Chlorella angustoellipsoidea), Cyanobacteria (Leptolyngbya sp., Phormidium sp., Cylindrospermum stagnale, Hassallia byssoidea and Geitlerinema sp.), black yeasts related to the species Friedmanniomyces endolithicus, Pseudotaeniolina globosa, Phaeococcomyces catenatus and Catenulostroma germanicum and several plant-associated fungi. This investigation provides new information on the potential microfloral inhabitants of epoxy resin discovering a new ecological niche, occupied mainly by several members of rock-colonizing microbial species. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Genes and Gut Bacteria Involved in Luminal Butyrate Reduction Caused by Diet and Loperamide.

    PubMed

    Hwang, Nakwon; Eom, Taekil; Gupta, Sachin K; Jeong, Seong-Yeop; Jeong, Do-Youn; Kim, Yong Sung; Lee, Ji-Hoon; Sadowsky, Michael J; Unno, Tatsuya

    2017-11-28

    Unbalanced dietary habits and gut dysmotility are causative factors in metabolic and functional gut disorders, including obesity, diabetes, and constipation. Reduction in luminal butyrate synthesis is known to be associated with gut dysbioses, and studies have suggested that restoring butyrate formation in the colon may improve gut health. In contrast, shifts in different types of gut microbiota may inhibit luminal butyrate synthesis, requiring different treatments to restore colonic bacterial butyrate synthesis. We investigated the influence of high-fat diets (HFD) and low-fiber diets (LFD), and loperamide (LPM) administration, on key bacteria and genes involved in reduction of butyrate synthesis in mice. MiSeq-based microbiota analysis and HiSeq-based differential gene analysis indicated that different types of bacteria and genes were involved in butyrate metabolism in each treatment. Dietary modulation depleted butyrate kinase and phosphate butyryl transferase by decreasing members of the Bacteroidales and Parabacteroides . The HFD also depleted genes involved in succinate synthesis by decreasing Lactobacillus . The LFD and LPM treatments depleted genes involved in crotonoyl-CoA synthesis by decreasing Roseburia and Oscilllibacter . Taken together, our results suggest that different types of bacteria and genes were involved in gut dysbiosis, and that selected treatments may be needed depending on the cause of gut dysfunction.

  12. Actinomycetes in Karstic caves of northern Spain (Altamira and Tito Bustillo).

    PubMed

    Groth, I; Vettermann, R; Schuetze, B; Schumann, P; Saiz-Jimenez, C

    1999-05-01

    A variety of isolation procedures were carried out to study the involvement of bacteria in the colonisation and biodeterioration of Spanish caves with paleolithic rock art (Altamira and Tito Bustillo). The applied techniques mainly aimed to isolate heterotrophic bacteria such as streptomycetes, nocardioform and coryneform actinomycetes, and other gram-positive and gram-negative bacteria. The results demonstrated that actinomycetes were the most abundant gram-positive bacteria in the caves. Actinomycetes revealed a great taxonomic diversity with the predominant isolates belonging to the genus Streptomyces. Members of the genera Nocardia, Rhodococcus, Nocardioides, Amycolatopsis, Saccharothrix, Brevibacterium, Microbacterium, and coccoid actinomycetes (family Micrococcaceae) were also found.

  13. Synergistic interaction and mode of action of Citrus hystrix essential oil against bacteria causing periodontal diseases.

    PubMed

    Wongsariya, Karn; Phanthong, Phanida; Bunyapraphatsara, Nuntavan; Srisukh, Vimol; Chomnawang, Mullika Traidej

    2014-03-01

    Citrus hystrix de Candolle (Rutaceae), an edible plant regularly used as a food ingredient, possesses antibacterial activity, but there is no current data on the activity against bacteria causing periodontal diseases. C. hystrix essential oil from leaves and peel were investigated for antibiofilm formation and mode of action against bacteria causing periodontal diseases. In vitro antibacterial and antibiofilm formation activities were determined by broth microdilution and time kill assay. Mode of action of essential oil was observed by SEM and the active component was identified by bioautography and GC/MS. C. hystrix leaves oil exhibited antibacterial activity at the MICs of 1.06 mg/mL for P. gingivalis and S. mutans and 2.12 mg/mL for S. sanguinis. Leaf oil at 4.25 mg/mL showed antibiofilm formation activity with 99% inhibition. The lethal effects on P. gingivalis were observed within 2 and 4 h after treated with 4 × MIC and 2 × MIC, respectively. S. sanguinis and S. mutans were completely killed within 4 and 8 h after exposed to 4 × MIC and 2 × MIC of oil. MICs of tested strains showed 4 times reduction suggesting synergistic interaction of oil and chlorhexidine. Bacterial outer membrane was disrupted after treatment with leaves oil. Additionally, citronellal was identified as the major active compound of C. hystrix oil. C. hystrix leaf oil could be used as a natural active compound or in combination with chlorhexidine in mouthwash preparations to prevent the growth of bacteria associated with periodontal diseases and biofilm formation.

  14. [Respiratory infections caused by slow-growing bacteria: Nocardia, Actinomyces, Rhodococcus].

    PubMed

    Eschapasse, E; Hussenet, C; Bergeron, A; Lebeaux, D

    2017-06-01

    Pneumonia caused by slow-growing bacteria is rare but sometimes severe. These infections share many similarities such as several differential diagnoses, difficulties to identify the pathogen, the importance of involving the microbiologist in the diagnostic investigation and the need for prolonged antibiotic treatment. However, major differences distinguish them: Nocardia and Rhodococcus infect mainly immunocompromised patients while actinomycosis also concerns immunocompetent patients; the severity of nocardioses is related to their hematogenous spread while locoregional extension by contiguity makes the gravity of actinomycosis. For these diseases, molecular diagnostic tools are essential, either to obtain a species identification and guide treatment in the case of nocardiosis or to confirm the diagnosis from a biological sample. Treatment of these infections is complex due to: (1) the limited data in the literature; (2) the need for prolonged treatment of several months; (3) the management of toxicities and drug interactions for the treatment of Nocardia and Rhodococcus. Close cooperation between pneumonologists, infectious disease specialists and microbiologists is essential for the management of these patients. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  15. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    PubMed

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Polyphasic approach to characterize heterotrophic bacteria of biofilms and patina on walls of the Suburban Bath of the Herculaneum's archaeological excavations in Italy

    NASA Astrophysics Data System (ADS)

    Ventorino, V.; Pepe, O.; Sannino, L.; Blaiotta, G.; Palomba, S.

    2012-04-01

    Built between the walls of Herculaneum excavations, one of the world's most important archaeological sites, and the sea in the early 1st cent. AD, the Suburban Bath is one of the best thermal complexes better preserved in ancient times. The entrance opens onto a large courtyard that leads into a hallway well lit by a skylight, impluvium, with a portrait of "Apollo". From this room you can access various parts of the thermae, all beautifully preserved. A single room, mostly occupied by the pool, serving both apodyterium (dressing room) that frigidarium. Among tepidarium and frigidarium there's a room elegantly decorated with stucco and marble. The vestibule opens to the right, through a corridor, onto a waiting room with a floor in signinum opus and into a praefurnium (oven for heating). A large pool of tepidarium, connected with laconicum, a small circular room for the baths sweat, is also present. The calidarium, as usual, has a small tank for hot water and a basin for washing in cold water. Behind the calidarium is the praefurnium, an environment with the boiler for heating the bath. Although the suburban baths are well preserved, unfortunately in you can observe the development of visible microbial coatings. During the biodeterioration process, secondary colonization of wall is due to heterotrophic bacteria and fungi that induce deterioration cause structural as well as aesthetic damage such as the discoloration of materials, the formation of crusts on surfaces and the loss of material. This investigation was carried out sampling the surfaces of walls of different rooms in the Suburban Thermae according to Italian legal procedures. Depending on the samples typology, sampling was carry out using sterile nitrocellulose membranes pressed on the surface of the walls, sterile swabs or with sterile tweezers by tearing out surface material. The samples were suspended in physiological solution and immediately refrigerated until analysis. Isolated colonies grown on PCA

  17. Gene switching in Amoeba proteus caused by endosymbiotic bacteria.

    PubMed

    Jeon, Taeck J; Jeon, Kwang W

    2004-02-01

    The expression of genes for S-adenosylmethionine synthetase (SAMS), which catalyzes the synthesis of S-adenosylmethionine (AdoMet), a major methyl donor in cells, was studied in symbiont-free (D) and symbiont-bearing (xD) amoeba strains to determine the effect of bacterial endosymbionts. The symbionts suppressed the expression of the gene in host xD amoebae, but amoebae still exhibited about half the enzyme activity found in symbiont-free D amoebae. The study was aimed at elucidating mechanisms of the suppression of the amoeba's gene and determining the alternative source for the gene product. Unexpectedly, we found a second sams (sams2) gene in amoebae, which encoded 390 amino acids. Results of experiments measuring SAMS activities and amounts of AdoMet in D and xD amoebae showed that the half SAMS activity found in xD amoebae came from the amoeba's SAMS2 and not from their endosymbionts. The expression of amoeba sams genes was switched from sams1 to sams2 as a result of infection with X-bacteria, raising the possibility that the switch in the expression of sams genes by bacteria plays a role in the development of symbiosis and the host-pathogen interactions. This is the first report showing such a switch in the expression of host sams genes by infecting bacteria.

  18. Typhlitis Caused by Intestinal Serpulina-Like Bacteria in Domestic Guinea Pigs (Cavia porcellus)

    PubMed Central

    Vanrobaeys, Mia; De Herdt, Peter; Ducatelle, Richard; Devriese, Luc A.; Charlier, Gerard; Haesebrouck, Freddy

    1998-01-01

    Between January 1992 and December 1996, Serpulina-like bacteria were demonstrated in intestinal tract lesions from 37 of 88 guinea pigs submitted to the University of Ghent in Ghent, Belgium, for necropsy because of disease and death from different unknown causes. All infected animals had a history of sudden death with minimal introductory clinical signs. Occasionally, they produced yellow, slimy feces or showed nervous signs, but the condition always had a fatal outcome within 24 h. When larger colonies of guinea pigs were involved, the disease spread very rapidly unless treatment with ronidazole was initiated. Lesions consisted of a catarrhal or hemorrhagic inflammation of the colon and cecum (typhlitis). Electron microscopy demonstrated the presence of large numbers of Serpulina-like organisms adhering to the cecal mucosae of these animals. Attempts to isolate the agents failed. The organisms did not stain by an immunofluorescence technique for the detection of Serpulina hyodysenteriae. The present data provide evidence that intestinal Serpulina-like organisms can be important as a cause of disease in guinea pigs. PMID:9508297

  19. Lactic acid bacteria of meat and meat products.

    PubMed

    Egan, A F

    1983-09-01

    When the growth of aerobic spoilage bacteria is inhibited, lactic acid bacteria may become the dominant component of the microbial flora of meats. This occurs with cured meats and with meats packaged in films of low gas permeability. The presence of a flora of psychrotrophic lactic acid bacteria on vacuum-packaged fresh chilled meats usually ensures that shelf-life is maximal. When these organisms spoil meats it is generally by causing souring, however other specific types of spoilage do occur. Some strains cause slime formation and greening of cured meats, and others may produce hydrogen sulphide during growth on vacuum-packaged beef. The safety and stability of fermented sausages depends upon fermentation caused by lactic acid bacteria. Overall the presence on meats of lactic acid bacteria is more desirable than that of the types of bacteria they have replaced.

  20. Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis.

    PubMed

    Mello, Cesar; Ribeiro, Diórginis; Novaes, Fábio; Poppi, Ronei J

    2005-10-01

    Use of classical microbiological methods to differentiate bacteria that cause gastroenteritis is cumbersome but usually very efficient. The high cost of reagents and the time required for such identifications, approximately four days, could have serious consequences, however, mainly when the patients are children, the elderly, or adults with low resistance. The search for new methods enabling rapid and reagentless differentiation of these microorganisms is, therefore, extremely relevant. In this work the main microorganisms responsible for gastroenteritis, Escherichia coli, Salmonella choleraesuis, and Shigella flexneri, were studied. For each microorganism sixty different dispersions were prepared in physiological solution. The Raman spectra of these dispersions were recorded using a diode laser operating in the near infrared region. Partial least-squares (PLS) discriminant analysis was used to differentiate among the bacteria by use of their respective Raman spectra. This approach enabled correct classification of 100% of the bacteria evaluated and unknown samples from the clinical environment, in less time ( approximately 10 h), by use of a low-cost, portable Raman spectrometer, which can be easily used in intensive care units and clinical environments.

  1. Suppurative parotitis caused by anaerobic bacteria in newborns.

    PubMed

    Brook, Itzhak

    2002-01-01

    Staphylococci are the usual bacterial etiology of suppurative parotitis in newborns. This report describes for the first time recovery of anaerobic bacteria from aspirates of the infected gland in two infants with suppurative parotitis. Peptostreptococcus intermedius and Prevotella melaninogenica were isolated from one child and Prevotella intermedia from the other patient. Complete recovery occurred after 4 weeks of antimicrobial therapy.

  2. White Band Disease (type I) of endangered caribbean acroporid corals is caused by pathogenic bacteria.

    PubMed

    Kline, David I; Vollmer, Steven V

    2011-01-01

    Diseases affecting coral reefs have increased exponentially over the last three decades and contributed to their decline, particularly in the Caribbean. In most cases, the responsible pathogens have not been isolated, often due to the difficulty in isolating and culturing marine bacteria. White Band Disease (WBD) has caused unprecedented declines in the Caribbean acroporid corals, resulting in their listings as threatened on the US Threatened and Endangered Species List and critically endangered on the IUCN Red List. Yet, despite the importance of WBD, the probable pathogen(s) have not yet been determined. Here we present in situ transmission data from a series of filtrate and antibiotic treatments of disease tissue that indicate that WBD is contagious and caused by bacterial pathogen(s). Additionally our data suggest that Ampicillin could be considered as a treatment for WBD (type I).

  3. Identifying the major bacteria causing intramammary infections in individual milk samples of sheep and goats using traditional bacteria culturing and real-time polymerase chain reaction.

    PubMed

    Rovai, M; Caja, G; Salama, A A K; Jubert, A; Lázaro, B; Lázaro, M; Leitner, G

    2014-09-01

    Use of DNA-based methods, such as real-time PCR, has increased the sensitivity and shortened the time for bacterial identification, compared with traditional bacteriology; however, results should be interpreted carefully because a positive PCR result does not necessarily mean that an infection exists. One hundred eight lactating dairy ewes (56 Manchega and 52 Lacaune) and 24 Murciano-Granadina dairy goats were used for identifying the main bacteria causing intramammary infections (IMI) using traditional bacterial culturing and real-time PCR and their effects on milk performance. Udder-half milk samples were taken for bacterial culturing and somatic cell count (SCC) 3 times throughout lactation. Intramammary infections were assessed based on bacteria isolated in ≥2 samplings accompanied by increased SCC. Prevalence of subclinical IMI was 42.9% in Manchega and 50.0% in Lacaune ewes and 41.7% in goats, with the estimated milk yield loss being 13.1, 17.9, and 18.0%, respectively. According to bacteriology results, 87% of the identified single bacteria species (with more than 3 colonies/plate) or culture-negative growth were identical throughout samplings, which agreed 98.9% with the PCR results. Nevertheless, the study emphasized that 1 sampling may not be sufficient to determine IMI and, therefore, other inflammatory responses such as increased SCC should be monitored to identify true infections. Moreover, when PCR methodology is used, aseptic and precise milk sampling procedures are key for avoiding false-positive amplifications. In conclusion, both PCR and bacterial culture methods proved to have similar accuracy for identifying infective bacteria in sheep and goats. The final choice will depend on their response time and cost analysis, according to the requirements and farm management strategy. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Re-engineering bacteria for ethanol production

    DOEpatents

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  5. Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria.

    PubMed

    El-Shibiny, Ayman; El-Sahhar, Salma

    2017-11-01

    Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.

  6. Measurements of water temperature in fountains as an indicator of potential secondary water pollution caused by Legionella bacteria

    NASA Astrophysics Data System (ADS)

    Bąk, Joanna

    2018-02-01

    At high air temperatures persisting for a long time, water temperature in the fountains may also increase significantly. This can cause a sudden and significant increase in Legionella bacteria, which results in secondary water contamination. This phenomenon with water - air aerosol generated by fountains can be very dangerous for people. During the test, water temperature measurements in fountains in Poland were made. These research tests was conducted in the spring and summer. The research was conducted in order to determine whether there is a possibility of growth of Legionella bacteria. One of the aims of the study was to determine what temperature range occurs in the fountains and how the temperature changes in the basin of the fountain and when the highest temperature occurs. Single temperature measurements were made and also the temperature distribution was measured during daylight hours. The water temperature in most cases was greater than 20°C, but in no case exceed 26°C. The paper presents also the review about the effect of water temperature on the presence and bacterial growth. The study confirmed the existence of the risk of increasing the number of bacteria of the genus Legionella in the water in the fountains.

  7. Characterizing the microbial colonization of a dolostone quarry: implications for stone biodeterioration and response to biocide treatments.

    PubMed

    Cámara, Beatriz; De los Ríos, Asuncion; Urizal, Marta; de Buergo, Mónica Alvarez; Varas, Maria Jose; Fort, Rafael; Ascaso, Carmen

    2011-08-01

    This study examines the microbial colonization of three fronts of an abandoned dolostone quarry (Redueña, Madrid, Spain) exposed to atmospheric conditions for different time periods since Roman times to the present. Through scanning electron microscopy in backscattered electron mode (SEM-BSE), endolithic colonization was predominantly detected in the most recently exposed front, while in the longer exposed quarry fronts, epilithic forms of growth were most often observed. These observations were confirmed by denaturing gradient gel electrophoresis (DGGE) analysis. Based on the distribution pattern of microbial colonization in the different quarry fronts, we then established a sequence of colonization events that took place over this long time frame. Bioalteration processes related to this sequential colonization were also identified. Characterizing these sequential processes can be useful for interpreting biodeterioration processes in historic dolostone monuments, especially those affecting constructions in the area of the Redueña stone quarry. In a second experimental stage, different biocide treatments were tested on this quarry rock to find the best way to avoid the microbial colonization effects identified. Through combined SEM-BSE/DGGE analysis, the efficacy of several biocides against the microorganisms inhabiting the dolostones was assessed after 4 and 16 months treatment. In general, all treatments were effective at reducing around 80% of the lichen cover, although effects on endolithic lithobiontic communities were dependent on how well the rock surface had been mechanically cleaned prior to treatment and gradually disappeared over time.

  8. Bacteria entombed in the center of cholesterol gallstones induce fewer infectious manifestations than bacteria in the matrix of pigment stones.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2007-10-01

    The clinical significance of bacteria in the pigment centers of cholesterol stones is unknown. We compared the infectious manifestations and characteristics of bacteria from pigment stones and predominantly cholesterol stones. Three hundred forty patients were studied. Bile was cultured. Gallstones were cultured and examined with scanning electron microscopy. Level of bacterial immunoglobulin G (bile, serum), complement killing, and tumor necrosis factor-alpha production were determined. Twenty-three percent of cholesterol stones and 68% of pigment stones contained bacteria (P < 0.0001). Stone culture correlated with scanning electron microscopy results. Pigment stone bacteria were more often present in bile and blood. Cholesterol stone bacteria caused more severe infections (19%) than sterile stones (0%), but less than pigment stone bacteria (57%) (P < 0.0001). Serum and bile from patients with cholesterol stone bacteria had less bacterial-specific immunoglobulin G. Cholesterol stone bacteria produced more slime. Pigment stone bacteria were more often killed by a patient's serum. Tumor necrosis factor-alpha production of the groups was similar. Bacteria are readily cultured from cholesterol stones with pigment centers, allowing for analysis of their virulence factors. Bacteria sequestered in cholesterol stones cause infectious manifestations, but less than bacteria in pigment stones. Possibly because of their isolation, cholesterol stone bacteria were less often present in bile and blood, induced less immunoglobulin G, were less often killed by a patient's serum, and demonstrated fewer infectious manifestations than pigment stone bacteria. This is the first study to analyze the clinical relevance of bacteria within cholesterol gallstones.

  9. Bacteria permeabilization and disruption caused by sludge reduction technologies evaluated by flow cytometry.

    PubMed

    Foladori, P; Tamburini, S; Bruni, L

    2010-09-01

    Technologies proposed in the last decades for the reduction of the sludge production in wastewater treatment plants and based on the mechanism of cell lysis-cryptic growth (physical, mechanical, thermal, chemical, oxidative treatments) have been widely investigated at lab-, pilot- and, in some cases, at full-scale but the effects on cellular lysis have not always been demonstrated in depth. The research presented in this paper aims to investigate how these sludge reduction technologies affect the integrity and permeabilization of bacterial cells in sludge using flow cytometry (FCM), which permits the rapid and statistically accurate quantification of intact, permeabilised or disrupted bacteria in the sludge using a double fluorescent DNA-staining instead of using conventional methods like plate counts and microscope. Physical/mechanical treatments (ultrasonication and high pressure homogenisation) caused moderate effects on cell integrity and caused significant cell disruption only at high specific energy levels. Conversely, thermal treatment caused significant damage of bacterial membranes even at moderate temperatures (45-55 °C). Ozonation significantly affected cell integrity, even at low ozone dosages, below 10 mgO(3)/gTSS, causing an increase of permeabilised and disrupted cells. At higher ozone dosages the compounds solubilised after cell lysis act as scavengers in the competition between soluble compounds and (particulate) bacterial cells. An original aspect of this paper, not yet reported in the literature, is the comparison of the effects of these sludge reduction technologies on bacterial cell integrity and permeabilization by converting pressure, temperature and ozone dosage to an equivalent value of specific energy. Among these technologies, comparison of the applied specific energy demonstrates that achieving the complete disruption of bacterial cells is not always economically advantageous because excessive energy levels may be required. Copyright

  10. Bacteriophages to combat foodborne infections caused by food contamination by bacteria of the Campylobacter genus.

    PubMed

    Myga-Nowak, Magdalena; Godela, Agnieszka; Głąb, Tomasz; Lewańska, Monika; Boratyński, Janusz

    2016-09-26

    It is estimated that each year more than 2 million people suffer from diarrheal diseases, resulting from the consumption of contaminated meat. Foodborne infections are most frequently caused by small Gram-negative rods Campylobacter. The hosts of these bacteria are mainly birds wherein they are part of the normal intestinal flora. During the commercial slaughter, there is a likelihood of contamination of carcasses by the bacteria found in the intestinal content. In Europe, up to 90% of poultry flocks can be a reservoir of the pathogen. According to the European Food Safety Authority report from 2015, the number of reported and confirmed cases of human campylobacteriosis exceeds 200 thousands per year, and such trend remains at constant level for several years. The occurrence of growing antibiotic resistance in bacteria forces the limitation of antibiotic use in the animal production. Therefore, the European Union allows only using stringent preventive and hygienic treatment on farms. Achieving Campylobacter free chickens using these methods is possible, but difficult to implement and expensive. Utilization of bacterial viruses - bacteriophages, can be a path to provide the hygienic conditions of poultry production and food processing. Formulations applied in the food protection should contain strictly lytic bacteriophages, be non-pyrogenic and retain long lasting biological activity. Currently, on the market there are available commercial bacteriophage preparations for agricultural use, but neither includes phages against Campylobacter. However, papers on the application of bacteriophages against Campylobacter in chickens and poultry products were published in the last few years. In accordance with the estimates, 2-logarithm reduction of Campylobacter in poultry carcases will contribute to the 30-fold reduction in the incidence of campylobacteriosis in humans. Research on bacteriophages against Campylobacter have cognitive and economic importance. The paper

  11. Reproducing stone monument photosynthetic-based colonization under laboratory conditions.

    PubMed

    Miller, Ana Zélia; Laiz, Leonila; Gonzalez, Juan Miguel; Dionísio, Amélia; Macedo, Maria Filomena; Saiz-Jimenez, Cesareo

    2008-11-01

    In order to understand the biodeterioration process occurring on stone monuments, we analyzed the microbial communities involved in these processes and studied their ability to colonize stones under controlled laboratory experiments. In this study, a natural green biofilm from a limestone monument was cultivated, inoculated on stone probes of the same lithotype and incubated in a laboratory chamber. This incubation system, which exposes stone samples to intermittently sprinkling water, allowed the development of photosynthetic biofilms similar to those occurring on stone monuments. Denaturing gradient gel electrophoresis (DGGE) analysis was used to evaluate the major microbial components of the laboratory biofilms. Cyanobacteria, green microalgae, bacteria and fungi were identified by DNA-based molecular analysis targeting the 16S and 18S ribosomal RNA genes. The natural green biofilm was mainly composed by the Chlorophyta Chlorella, Stichococcus, and Trebouxia, and by Cyanobacteria belonging to the genera Leptolyngbya and Pleurocapsa. A number of bacteria belonging to Alphaproteobacteria, Bacteroidetes and Verrucomicrobia were identified, as well as fungi from the Ascomycota. The laboratory colonization experiment on stone probes showed a colonization pattern similar to that occurring on stone monuments. The methodology described in this paper allowed to reproduce a colonization equivalent to the natural biodeteriorating process.

  12. Multi-resistant gram negative enteric bacteria causing urinary tract infection among malnourished underfives admitted at a tertiary hospital, northwestern, Tanzania.

    PubMed

    Ahmed, Maimuna; Moremi, Nyambura; Mirambo, Mariam M; Hokororo, Adolfine; Mushi, Martha F; Seni, Jeremiah; Kamugisha, Erasmus; Mshana, Stephen E

    2015-06-19

    Infections are common complications occurring in malnourished childrenas a result of impaired immunity. Urinary tract infections (UTI) have been found to be the commonest cause of fever in normal children in developing countries. However, data regarding UTI among malnourished children is limited because in most of time severe and moderately malnourished children are afebrile despite significant bacteriuria. A total of 402 malnourished underfives were enrolled. Demographic and other clinical characteristics were collected using standardized data collection tool. Urine specimens were cultured and interpreted according to standard operating procedures. Data were analyzed using STATA version 11. Out of 402 malnourished underfives, 229 (56.9 %) were male. The median age in months was 17 (IQR; 12-31). Of 402 malnourished underfives, 83 (20.3 %) had significant bacteriuria of gram negative enteric bacteria. Escherichia coli 35/84 and Klebsiella pneumonia 20/84 were predominant bacteria isolated. More than 37 % of isolates were resistant to third generation cephalosporins with all of them exhibiting extended spectrum beta lactamase (ESBL) phenotype. Rates of resistance to ampicillin, amoxillin/clavulanic acid, gentamicin and ciprofloxacin were 82/84 (98.7 %), 47/55 (85.4 %), 45/84 (57.8 %) and 9/84 (10.8 %) respectively. Decrease in age and increase in lymphocytes count were independent factors on multivariate logistic regression analysis found to predict UTI (p<0.05). Multi-resistant gram negative enteric bacteria are common cause of UTI among underfives. A significant number of severe and moderate malnourished children with bacteriuria had no fever. Therefore, routine testing for UTI is emphasized in all malnourished underfives so that appropriate treatment can be initiated.

  13. Linezolid in late-chronic prosthetic joint infection caused by gram-positive bacteria.

    PubMed

    Cobo, Javier; Lora-Tamayo, Jaime; Euba, Gorane; Jover-Sáenz, Alfredo; Palomino, Julián; del Toro, Ma Dolores; Rodríguez-Pardo, Dolors; Riera, Melchor; Ariza, Javier

    2013-05-01

    Linezolid may be an interesting alternative for prosthetic joint infection (PJI) due to its bioavailability and its antimicrobial spectrum. However, experience in this setting is scarce. The aim of the study was to assess linezolid's clinical and microbiological efficacy, and also its tolerance. This was a prospective, multicenter, open-label, non-comparative study of 25 patients with late-chronic PJI caused by Gram-positive bacteria managed with a two-step exchange procedure plus 6 weeks of linezolid. Twenty-two (88%) patients tolerated linezolid without major adverse effects, although a global decrease in the platelet count was observed. Three patients were withdrawn because of major toxicity, which reversed after linezolid stoppage. Among patients who completed treatment, 19 (86%) demonstrated clinical and microbiological cure. Two patients presented with clinical and microbiological failure, and one showed clinical cure and microbiological failure. In conclusion, linezolid showed good results in chronic PJI managed with a two-step exchange procedure. Tolerance seems acceptable, though close surveillance is required. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  15. Identification and antimicrobial suceptibility profile of bacteria causing bovine mastitis from dairy farms in Pelotas, Rio Grande do Sul.

    PubMed

    Freitas, C H; Mendes, J F; Villarreal, P V; Santos, P R; Gonçalves, C L; Gonzales, H L; Nascente, P S

    2018-01-08

    Mastitis is an inflammatory process of the udder tissue caused mainly by the bacteria Staphylococcus aureus. The indiscriminate use of antibiotics fosters conditions that favor the selection of resistant microorganisms, suppressing at the same time susceptible forms, causing a serious problem in dairy cattle. Given the importance in performing an antibiogram to select the most adequate antimicrobial therapy, the aim of this study was to identify bacteria isolated from cow's milk with mastitis, in dairy farms situated in the city of Pelotas, Rio Grande do Sul, and to determinate the susceptibility profile of these isolates against the antibiotics used to treat this illness. A total of 30 isolates of Staphylococcus spp., were selected from milk samples from the udder quarters with subclinical mastitis whose species were identified through the Vitek system. The susceptibility profile was performed by the disk diffusion assay, against: ampicillin, amoxicillin, bacitracin, cephalexin, ceftiofur, enrofloxacin, gentamicin, neomycin, norfloxacin, penicillin G, tetracycline and trimethoprim. In the antibiogram, 100.0% of the isolates were resistant to trimethoprim and 96.7% to tetracycline and neomycin, three strains of Staphylococcus spp., (10.0%) presented resistance to the 12 antibiotics tested and 24 (80.0%) to at least eight. These results showed the difficulty in treating mastitis, due to the pathogens' resistance.

  16. [A case of hyperammonemia resulting from urinary tract infection caused by urease-producing bacteria in a Parkinson's disease patient with drug-induced urinary retention].

    PubMed

    Yasunishi, Masahiro; Koumura, Akihiro; Hayashi, Yuichi; Nishida, Shohei; Inuzuka, Takashi

    2017-01-01

    A 71-year-old woman with a 9-year history of Parkinson's disease was admitted to our hospital emergently because of consciousness disturbance. Her consciousness level was 200 on the Japan coma scale (JCS), and she presented with tenderness and distension of the lower abdomen. Brain computed tomography showed normal findings. Blood tests showed an increased ammonia level (209 μg/dl) with normal AST and ALT levels. We catheterized the bladder for urinary retention. Five hours after admission, the blood ammonia level decreased to 38 μg/dl, and her consciousness level improved dramatically. Corynebacterium urearyticum, a bacterial species that produces urease, was detected by urine culture. Therefore, she was diagnosed with hyperammonemic encephalopathy resulting from urinary tract infection caused by urease-producing bacteria. In this case, urologic active agents had been administered to treat neurogenic bladder. We suspect that these drugs caused urinary obstruction and urinary tract infection. It is important to recognize that obstructive urinary tract infection caused by urease-producing bacteria can cause hyperammonemia. Neurological disorders, such as Parkinson's disease, tend to complicate neurogenic bladder. This disease should be considered in elderly patients with Parkinson's disease who are receiving urologic active drugs.

  17. [Zoonotic diseases caused by bacteria of the genus Bartonella genus: new reservoirs ? New vectors?].

    PubMed

    Chomel, Bruno B; Boulouis, Henri-Jean

    2005-03-01

    Domestic animals and wildlife represent a large reservoir for bartonellae, at least eight species or subspecies of which have been reported to cause zoonotic infections. In addition, numerous orphan clinical syndromes are now being attributed to Bartonella henselae infection. Many mammalian species, including cats, dogs, rodents and ruminants are the main bartonellae reservoirs. Cats are the main reservoir for B. henselae. It appears that domestic dogs, at least in non tropical regions, are more likely to be accidental hosts than reservoirs, and constitute excellent sentinels for human infections. Bartonellae are vector-borne bacteria. The mode of B. henselae transmission by cat fleas is now better understood, but new potential vectors have recently been identified, including ticks and biting flies. This articles summarizes current knowledge of the etiology, new clinical features and epidemiological characteristics of these emerging zoonoses.

  18. Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing.

    PubMed

    Li, Qiang; Zhang, Bingjian; He, Zhang; Yang, Xiaoru

    The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D.) and Qing dynasties (1636-1912 A.D.) and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.

  19. Characterization of three antifungal calcite-forming bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, derived from the Korean islands, Dokdo and their application on mortar.

    PubMed

    Park, Jong-Myong; Park, Sung-Jin; Ghim, Sa-Youl

    2013-09-28

    Crack remediation on the surface of cement mortar using microbiological calcium carbonate (CaCO3) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-CaCl2 media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed CaCO3 precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.

  20. Investigational drugs for the treatment of infections caused by multidrug-resistant Gram-negative bacteria.

    PubMed

    Avery, Lindsay M; Nicolau, David P

    2018-04-01

    Infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) are associated with significant mortality and costs. New drugs in development to combat these difficult-to-treat infections primarily target carbapenem-resistant Enterobacteriaceae, MDR Pseudomonas aeruginosa, and MDR Acinetobacter baumannii. Areas covered: The authors summarize in vitro and in vivo efficacy studies, as well as available clinical trial findings, for new agents in development for treatment of infection caused by MDR-GNB. Information regarding dosage regimens utilized in clinical trials and key pharmacokinetic and pharmacodynamic considerations are provided if available. A summary of recently approved agents, delafloxacin and meropenem/vaborbactam, is also included. Expert opinion: The development of multiple novel agents to fight MDR-GNB is promising to help save the lives of patients who acquire infection, and judicious use of these agents is imperative once they come to market to prevent the development of resistance. The other component paramount to this field of research is implementation of effective infection control policies and carbapenem-resistant Enterobacteriaceae (CRE) carrier screening protocols to mitigate the worldwide spread of MDR-GNB. Further investigation of anti-infective synergistic combinations will also be important, as well as support for economic research to reveal the true cost-benefit of utilization of the new agents discussed herein.

  1. Chapter A7. Section 7.1. Fecal Indicator Bacteria

    USGS Publications Warehouse

    Myers, Donna N.; Sylvester, Marc A.

    1997-01-01

    Fecal indicator bacteria are used to assess the microbiological quality of water because, although not typically disease causing, they are correlated with the presence of several waterborne disease-causing organisms. The concentration of indicator bacteria is a measure of water safety for body-contact recreation or for consumption. This report provides information on the equipment, sampling protocols, and identification, enumeration, and calculation procedures that are in standard use by U.S. Geological Survey (USGS) personnel for the collection of data on fecal indicator bacteria.

  2. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria.

    PubMed

    Velmurugan, Palanivel; Lee, Sang-Myeong; Cho, Min; Park, Jung-Hee; Seo, Sang-Ki; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

    2014-10-01

    We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV-Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.

  3. A Direct Quantitative Agar-Plate Based Assay for Analysis of Pseudomonas protegens PF-5 Degradation of Polyurethane Films (Postprint)

    DTIC Science & Technology

    2014-10-02

    Journal article published in International Biodeterioration & Biodegradation 95 (2014) 311-319. The U.S. Government is joint author of the work and...SUBJECT TERMS pseudomonas biofilms, polyurethane, biodegradation , FTIR spectroscopy, citrate, impranil 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...International Biodeterioration & Biodegradation 95 (2014) 311e319Contents lists avaiInternational Biodeterioration & Biodegradation journal homepage

  4. Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode.

    PubMed

    Proença, Diogo N; Grass, Gregor; Morais, Paula V

    2017-04-01

    Pine wilt disease (PWD) is one of the most destructive diseases in trees of the genus Pinus and is responsible for environmental and economic losses around the world. The only known causal agent of the disease is the pinewood nematode (PWN) Bursaphelenchus xylophilus. Despite that, bacteria belonging to several different genera have been found associated with PWN and their roles in the development of PWD have been suggested. Molecular methodologies and the new era of genomics have revealed different perspectives to the problem, recognizing the manifold interactions between different organisms involved in the disease. Here, we reviewed the possible roles of nematode-carried bacteria in PWD, what could be the definition of this group of microorganisms and questioned their origin as possible endophytes, discussing their relation within the endophytic community of pine trees. The diversity of the nematode-carried bacteria and the diversity of pine tree endophytes, reported until now, is revised in detail in this review. What could signify a synergetic effect with PWN harming the plant, or what could equip bacteria with functions to control the presence of nematodes inside the tree, is outlined as two possible roles of the microbial community in the etiology of this disease. An emphasis is put on the potential revealed by the genomic data of isolated organisms in their potential activities as effective tools in PWD management. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Dual phylogenetic staining protocol for simultaneous analysis of yeast and bacteria in artworks

    NASA Astrophysics Data System (ADS)

    González-Pérez, Marina; Brinco, Catarina; Vieira, Ricardo; Rosado, Tânia; Mauran, Guilhem; Pereira, António; Candeias, António; Caldeira, Ana Teresa

    2017-02-01

    The detection and analysis of metabolically active microorganisms are useful to determine those directly involved in the biodeterioration of cultural heritage (CH). Fluorescence in situ hybridization with oligonucleotide probes targeted at rRNA (RNA-FISH) has demonstrated to be a powerful tool for signaling them. However, more efforts are required for the technique to become a vital tool for the analysis of CH's microbiological communities. Simultaneous analysis of microorganisms belonging to different kingdoms, by RNA-FISH in-suspension approach, could represent an important progress: it could open the door for the future use of the technique to analyze the microbial communities by flow cytometry, which has shown to be a potent tool in environmental microbiology. Thus, in this work, various already implemented in-suspension RNA-FISH protocols for ex situ analysis of yeast and bacteria were investigated and adapted for allowing the simultaneous detection of these types of microorganisms. A deep investigation of the factors that can affect the results was carried out, focusing particular attention on the selection of the fluorochromes used for labelling the probe set. The resultant protocol, involving the use of EUK516-6-FAM/EUB338-Cy3 probes combination, was validated using artificial consortia and gave positive preliminary results when applied in samples from a real case study: the Paleolithic archaeological site of Escoural Cave (Alentejo, Portugal). This approach represents the first dual-staining RNA-FISH in-suspension protocol developed and applied for the simultaneous investigation of CH biodeteriogenic agents belonging to different kingdoms.

  6. Sensor node for remote monitoring of waterborne disease-causing bacteria.

    PubMed

    Kim, Kyukwang; Myung, Hyun

    2015-05-05

    A sensor node for sampling water and checking for the presence of harmful bacteria such as E. coli in water sources was developed in this research. A chromogenic enzyme substrate assay method was used to easily detect coliform bacteria by monitoring the color change of the sampled water mixed with a reagent. Live webcam image streaming to the web browser of the end user with a Wi-Fi connected sensor node shows the water color changes in real time. The liquid can be manipulated on the web-based user interface, and also can be observed by webcam feeds. Image streaming and web console servers run on an embedded processor with an expansion board. The UART channel of the expansion board is connected to an external Arduino board and a motor driver to control self-priming water pumps to sample the water, mix the reagent, and remove the water sample after the test is completed. The sensor node can repeat water testing until the test reagent is depleted. The authors anticipate that the use of the sensor node developed in this research can decrease the cost and required labor for testing samples in a factory environment and checking the water quality of local water sources in developing countries.

  7. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria

    PubMed Central

    Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596

  8. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  9. Isolation and Molecular Detection of Gram Negative Bacteria Causing Urinary Tract Infection in Patients Referred to Shahrekord Hospitals, Iran.

    PubMed

    Tajbakhsh, Elahe; Tajbakhsh, Sara; Khamesipour, Faham

    2015-05-01

    Urinary Tract Infections (UTI), and their complications, cause serious health problems, which affect millions of people every year. Infections of the urinary tract are the second most common type of infection in the body and approximately 20% of women are especially prone to UTIs for reasons not yet well understood. Urinary Tract Infections in men are not as common as in women yet can be very serious when they do occur. Accurate identification of bacterial isolates is an essential task of the clinical microbiology laboratory. The purpose of this study was to determine the incidence and variety of the causative microbial agents of UTIs in patients who had referred to a medical laboratory of Kashani and Hajar hospital in Shahrekord, Iran. In this cross-sectional study 147 urine samples of patients (urine test results were positive for UTIs) were examined during April to September 2013. A total of 147 urine samples of patients with clinical symptoms of UTI who had been referred to a medical laboratory of Kashani and Hajar hospital in Shahrekord (Iran), were collected and processed immediately for laboratory analysis. Escherichia coli was identified as the most common causative agent of UTIs (51.70% of total isolates in both sexes), followed by Klebsiella pneumoniae (K. Pneumoniae) (16.32%). Frequency of Proteus spp., Acinetobacter spp., Entrobacter spp., Citrobacter spp., Pseudomonas aeruginosa (P. aeruginosa) and Providencia spp. was 10.88%, 6.12%, 5.44%, 4.08%, 3.40% and 2.04%, respectively. Statistical analysis by Fisher exact test showed that there was no significant relationship between the type of bacteria and gender (P > 0.05). Chi square test showed that there was no significant relationship between the type of bacteria and the use of catheter and age group (P > 0.05). However, there was a significant relationship between the type of bacteria and the history of hospitalization (P > 0.05). Our findings implied that a wide range of bacteria could be involved in

  10. Dissemination of Persistent Intestinal Bacteria via the Mesenteric Lymph Nodes Causes Typhoid Relapse▿

    PubMed Central

    Griffin, Amanda J.; Li, Lin-Xi; Voedisch, Sabrina; Pabst, Oliver; McSorley, Stephen J.

    2011-01-01

    Enteric pathogens can cause relapsing infections in a proportion of treated patients, but greater understanding of this phenomenon is hindered by the lack of appropriate animal models. We report here a robust animal model of relapsing primary typhoid that initiates after apparently successful antibiotic treatment of susceptible mice. Four days of enrofloxacin treatment were sufficient to reduce bacterial loads below detectable levels in all major organs, and mice appeared otherwise healthy. However, any interruption of further antibiotic therapy allowed renewed fecal shedding and renewed bacterial growth in systemic tissues to occur, and mice eventually succumbed to relapsing infection. In vivo imaging of luminescent Salmonella identified the mesenteric lymph nodes (MLNs) as a major reservoir of relapsing infection. A magnetic-bead enrichment strategy isolated MLN-resident CD11b+ Gr-1− monocytes associated with low numbers of persistent Salmonella. However, the removal of MLNs increased the severity of typhoid relapse, demonstrating that this organ serves as a protective filter to restrain the dissemination of bacteria during antibiotic therapy. Together, these data describe a robust animal model of typhoid relapse and identify an important intestinal phagocyte subset involved in protection against the systemic spread of enteric infection. PMID:21263018

  11. Antagonism of Lactic Acid Bacteria against Phytopathogenic Bacteria

    PubMed Central

    Visser, Ronèl; Holzapfel, Wilhelm H.; Bezuidenhout, Johannes J.; Kotzé, Johannes M.

    1986-01-01

    A variety of lactic acid bacteria, isolated from plant surfaces and plant-associated products, were found to be antagonistic to test strains of the phytopathogens Xanthomonas campestris, Erwinia carotovora, and Pseudomonas syringae. Effective “in vitro” inhibition was found both on agar plates and in broth cultures. In pot trials, treatment of bean plants with a Lactobacillus plantarum strain before inoculation with P. syringae caused a significant reduction of the disease incidence. Images PMID:16347150

  12. [Outbreaks caused by diarrheagenic Escherichia coli].

    PubMed

    Vila Estapé, Jordi; Zboromyrska, Yuliya

    2012-02-01

    Escherichia coli are ubiquitous bacteria from a wide variety of ecosystems including the gastrointestinal tract of humans and warm-blooded animals. E. coli can play a role as an opportunistic bacteria causing a variety of infectious diseases including, among many others, sepsis, urinary tract infections, meningitis, and wound infections. Moreover, these bacteria can also act as primary pathogens in the intestinal tract. There are several pathotypes of E. coli that cause enteritis, and both sporadic cases and outbreaks have been reported. In this article, we review the pathogenicity and epidemiology of enteritis caused by these E. coli pathotypes, and provide some examples of outbreaks described in the scientific literature and the measures required to prevent them. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  13. Interactions between amphibians' symbiotic bacteria cause the production of emergent anti-fungal metabolites

    PubMed Central

    Loudon, Andrew H.; Holland, Jessica A.; Umile, Thomas P.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; Harris, Reid N.

    2014-01-01

    Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd). Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola) from red-backed salamanders (Plethodon cinereus) and cultured isolates both alone and together to collect their cell-free supernatants (CFS). We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: (1) CFSs of single isolates; (2) combined CFSs of two isolates; and (3) CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection against Bd

  14. Amoeba-Resisting Bacteria and Ventilator-Associated Pneumonia

    PubMed Central

    La Scola, Bernard; Boyadjiev, Ioanna; Greub, Gilbert; Khamis, Atieh; Martin, Claude

    2003-01-01

    To evaluate the role of amoeba-associated bacteria as agents of ventilator-associated pneumonia (VAP), we tested the water from an intensive care unit (ICU) every week for 6 months for such bacteria isolates; serum samples and bronchoalveolar lavage samples (BAL) were also obtained from 30 ICU patients. BAL samples were examined for amoeba-associated bacteria DNA by suicide-polymerase chain reaction, and serum samples were tested against ICU amoeba-associated bacteria. A total of 310 amoeba-associated bacteria from10 species were isolated. Twelve of 30 serum samples seroconverted to one amoeba-associated bacterium isolated in the ICU, mainly Legionella anisa and Bosea massiliensis, the most common isolates from water (p=0.021). Amoeba-associated bacteria DNA was detected in BAL samples from two patients whose samples later seroconverted. Seroconversion was significantly associated with VAP and systemic inflammatory response syndrome, especially in patients for whom no etiologic agent was found by usual microbiologic investigations. Amoeba-associated bacteria might be a cause of VAP in ICUs, especially when microbiologic investigations are negative. PMID:12890321

  15. Factors of bacteria and virus transport in groundwater

    NASA Astrophysics Data System (ADS)

    Pekdeger, A.; Matthess, G.

    1983-06-01

    The underground transport of pathogenic bacteria and viruses may be described by the general transport equation considering dispersion, adsorption, and biological elimination. The survival time of bacteria and viruses in groundwater is different for the specific species and for the specific groundwater environment. Dispersion causes a distribution of pollutants in time and space, thus their concentration decreases over time and with transport distance. Microorganisms are reversibly adsorbed on underground particles, which causes a retardation of their transport velocity with respect to groundwater flow velocity. An additional approach is provided by the filter theory.

  16. Investigation of the effects of plasma treatments on biodeteriorated ancient paper

    NASA Astrophysics Data System (ADS)

    Laguardia, L.; Vassallo, E.; Cappitelli, F.; Mesto, E.; Cremona, A.; Sorlini, C.; Bonizzoni, G.

    2005-11-01

    Deterioration of paper-based materials is mainly due to the degradation of cellulose caused by a lot of factors such as chemical attack due to acidic hydrolysis, oxidative agent, light, air pollution and biological attack and also due to the presence of microorganisms like bacteria and fungi. It is therefore desirable to focus the research activities on restoration and conservation techniques to develop appropriate treatments. The aim of this paper is the removal or reduction of the microbial contamination and paper consolidation by means of plasma treatment. For plasma processes, different gas mixtures are utilised, and the different gas mixtures are compared as a function of pressure, power, and treatment time. To demonstrate the efficiency of the sterilisation treatment, two fungi: Aspergillus niger and Penicillium funiculosum, commonly found in libraries and archives were spread on naturally aged paper (19th century). Microorganisms were let to grow by using the organic compounds found in the historical records as a sole source of carbon and energy. The microbial abatement was measured before and after the plasma treatment by using the standard plate count method. Surface chemical and morphological characterisation of paper before and after plasma treatment has been carried out by X-ray photoelectron spectroscopy (XPS) and ATR infrared spectroscopy (ATR FTIR). The tensile strength of the plasma-treated papers was also determined. CNR Patent, n° Mi2004A000068, 21/01/2004.

  17. Efficacy of epiphytic bacteria to prevent northern leaf blight caused by Exserohilum turcicum in maize.

    PubMed

    Sartori, Melina; Nesci, Andrea; García, Julián; Passone, María A; Montemarani, Analía; Etcheverry, Miriam

    Eight potential biological control agents (BCAs) were evaluated in planta in order to assess their effectiveness in reducing disease severity of northern leaf blight caused by Exserohilum turcicum. The assay was carried out in greenhouse. Twenty-six-day-old plants, V4 phenological stage, were inoculated with antagonists by foliar spray. Only one biocontrol agent was used per treatment. Ten days after this procedure, all treatments were inoculated with E. turcicum by foliar application. Treatments performed were: C-Et: control of E. turcicum; T1: isolate 1 (Enterococcus genus)+E. turcicum; T2: isolate 2 (Corynebacterium genus)+E. turcicum; T3: isolate 3 (Pantoea genus)+E. turcicum; T4: isolate 4 (Corynebacterium genus)+E. turcicum; T5: isolate 5 (Pantoea genus)+E. turcicum; T6: isolate 6 (Bacillus genus)+E. turcicum; T7: isolate 7 (Bacillus genus)+E. turcicum; T8: isolate 8 (Bacillus genus)+E. turcicum. Monitoring of antagonists on the phyllosphere was performed at different times. Furthermore, the percentage of infected leaves and, plant and leaf incidence were determined. Foliar application of different bacteria significantly reduced the leaf blight between 30-78% and 39-56% at 20 and 39 days respectively. It was observed that in the V10 stage of maize plants, isolate 8 (Bacillus spp.) caused the greatest effect on reducing the severity of northern leaf blight. Moreover, isolate 8 was the potential BCA that showed more stability in the phyllosphere. At 39 days, all potential biocontrol agents had a significant effect on controlling the disease caused by E. turcicum. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Bacteria causing important diseases of citrus utilise distinct modes of pathogenesis to attack a common host.

    PubMed

    Vojnov, Adrián Alberto; do Amaral, Alexandre Morais; Dow, John Maxwell; Castagnaro, Atilio Pedro; Marano, Marìa Rosa

    2010-06-01

    In this review, we summarise the current knowledge on three pathogens that exhibit distinct tissue specificity and modes of pathogenesis in citrus plants. Xanthomonas axonopodis pv. citri causes canker disease and invades the host leaf mesophyll tissue through natural openings and can also survive as an epiphyte. Xylella fastidiosa and Candidatus Liberibacter are vectored by insects and proliferate in the vascular system of the host, either in the phloem (Candidatus Liberibacter) or xylem (X. fastidiosa) causing variegated chlorosis and huanglongbing diseases, respectively. Candidatus Liberibacter can be found within host cells and is thus unique as an intracellular phytopathogenic bacterium. Genome sequence comparisons have identified groups of species-specific genes that may be associated with the particular lifestyle, mode of transmission or symptoms produced by each phytopathogen. In addition, components that are conserved amongst bacteria may have diverse regulatory actions underpinning the different bacterial lifestyles; one example is the divergent role of the Rpf/DSF cell-cell signalling system in X. citri and X. fastidiosa. Biofilm plays a key role in epiphytic fitness and canker development in X. citri and in the symptoms produced by X. fastidiosa. Bacterial aggregation may be associated with vascular occlusion of the xylem vessels and symptomatology of variegated chlorosis.

  19. Guide for Use of Wood Preservatives in Historic Structures

    Treesearch

    Stan Lebow; Ronald W. Anthony

    2012-01-01

    This document provides guidance on wood preservation options in the context of historic preservation. Preserving wooden building materials is critical to historic preservation practitioners. Biodeterioration can be minimized through design, construction practices, maintenance, and, if necessary, by use of wood preservatives. Moisture is the primary cause of...

  20. Micro-Raman spectroscopy for identification and classification of UTI bacteria

    NASA Astrophysics Data System (ADS)

    Yogesha, M.; Chawla, Kiran; Acharya, Mahendra; Chidangil, Santhosh; Bankapur, Aseefhali

    2017-07-01

    Urinary tract infection (UTI) is one of the major clinical problems known to mankind, especially among adult women. Conventional methods for identification of UTI causing bacteria are time consuming and expensive. Therefore, a rapid and cost-effective method is desired. In the present study, five bacteria (one Gram-positive and four Gram-negative), most commonly known to cause UTI, have been identified and classified using micro-Raman spectroscopy combined with principal component analysis (PCA).

  1. Isolation and identification of bacteria causing mastitis in small ruminants and their susceptibility to antibiotics, honey, essential oils, and plant extracts

    PubMed Central

    Abdalhamed, Abeer Mostafa; Zeedan, Gamil Sayed Gamil; Zeina, Hala Abdoula Ahmed Abou

    2018-01-01

    Aim: The present work aims to isolate and identify bacteria that cause mastitis in small ruminants and evaluates the antibacterial activity of some antibiotics, honey, essential oils, and plant extracts. Materials and Methods: A total of 289 milk samples were collected from udder secretions of sheep (n=189) and goat (n=100) from El-Fayoum, Beni-Suef, and Giza governorates. Screening subclinical mastitis (SCM) was done using California Mastitis Test (CMT); identification of the isolates was achieved using Gram’s staining, hemolytic pattern, colony morphology, and biochemical tests using Analytical Profile Index. Results: On clinical examination, the incidence of clinical mastitis (CM) was found to be 5.88% and 7% in sheep and goat, respectively. On CMT, SCM was found to be 25 (13.23%) and 11 (10%) in sheep and goat, respectively. Bacteriological examination of all milk samples found the presence of Staphylococcus aureus (SA) (31.1%), coagulase-negative staphylococci (CNS) (19.5%), Escherichia coli (EC) (8.3%), Streptococcus spp. (5.6%), Klebsiella spp. (3.77%), and Pseudomonas spp. (1.89%), while no bacteria were cultured from 81.66% of the samples. Identification of 9 isolates of CNS was achieved by using API staph test to Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus cohnii, and Staphylococcus saprophyticus. The highest bacterial resistance was found in EC (67.14%) followed by Kp (45.28%) and SA (26.57%). Conclusion: Onion and black cumin essential oils followed by Egyptian honey showed strong antibacterial effects against multidrug-resistant bacteria. Finally, our study proved that Egyptian honey, onion, and black cumin essential oils have a marked strong antibacterial effect against bacteria isolated from small ruminant mastitis, but still further extensive studies are needed to discover the therapeutic properties of these plant extracts and honey. PMID:29657429

  2. Antibacterial activity of GUAVA, Psidium guajava Linnaeus, leaf extracts on diarrhea-causing enteric bacteria isolated from Seabob shrimp, Xiphopenaeus kroyeri (Heller).

    PubMed

    Gonçalves, Flávia A; Andrade Neto, Manoel; Bezerra, José N S; Macrae, Andrew; Sousa, Oscarina Viana de; Fonteles-Filho, Antonio A; Vieira, Regine H S F

    2008-01-01

    Guava leaf tea of Psidium guajava Linnaeus is commonly used as a medicine against gastroenteritis and child diarrhea by those who cannot afford or do not have access to antibiotics. This study screened the antimicrobial effect of essential oils and methanol, hexane, ethyl acetate extracts from guava leaves. The extracts were tested against diarrhea-causing bacteria: Staphylococcus aureus, Salmonella spp. and Escherichia coli. Strains that were screened included isolates from seabob shrimp, Xiphopenaeus kroyeri (Heller) and laboratory-type strains. Of the bacteria tested, Staphylococcus aureus strains were most inhibited by the extracts. The methanol extract showed greatest bacterial inhibition. No statistically significant differences were observed between the tested extract concentrations and their effect. The essential oil extract showed inhibitory activity against S. aureus and Salmonella spp. The strains isolated from the shrimp showed some resistance to commercially available antibiotics. These data support the use of guava leaf-made medicines in diarrhea cases where access to commercial antibiotics is restricted. In conclusion, guava leaf extracts and essential oil are very active against S. aureus, thus making up important potential sources of new antimicrobial compounds.

  3. Influence of a new surface modification of intraocular lenses with fluoroalkylsilan on the adherence of endophthalmitis-causing bacteria in vitro.

    PubMed

    Kienast, Antonia; Kämmerer, Regine; Weiss, Claudia; Klinger, Matthias; Menz, Dirk-Henning; Dresp, Joachim; Ohgke, Helge; Solbach, Werner; Laqua, Horst; Hoerauf, Hans

    2006-09-01

    Dynasilan is a fluoroalkylsilan that is able to interact with surface active centres on intraocular lenses (IOL), offering a new way for surface modification of different IOL materials. The purpose of this in vitro study was to investigate the influence of this new surface modification on the adherence of two typical endophthalmitis causing bacteria (Staphylococcus epidermidis, Propionibacterium acnes). In a pilot experiment, the effect of Dynasilan coating on the adherence of S. epidermidis was tested on glass slides. Forty-two Dynasilan-modified and 42 unmodified IOL (14 PMMA, 14 silicone and 14 hydrogel) were incubated at 37 degrees C in brain heart infusion broth (10(8) CFU/ml) with either S. epidermidis for 24 h or with P. acnes for 1 h. Subsequently, the adherent bacteria were resuspended using ultrasonification at 35 kHz for 3x45 s. After dilution series and incubation at 37 degrees C on Petri dishes for 24 h and 3 days, respectively, the colonies were counted. In the pilot experiment, a markedly lower number of adherent S. epidermidis was observed on Dynasilan-modified glass slides. Of all IOL materials incubated with S. epidermidis, those modified with Dynasilan showed a lower mean number of adherent bacteria (mean 1.37x10(7); SD 2.37x10(7)) than those untreated (2.43x10(7); SD 3.04x10(7)). IOLs incubated with P. acnes showed a significantly lower mean number of adherent bacteria of 2.51x10(4) (SD 2.71x10(4)) on Dynasilan-modified IOLs versus 6.27x10(4) (SD 7.70x10(4)) on untreated IOLs. The presented in vitro results indicate that Dynasilan surface modification is able to reduce the adherence of S. epidermidis and P. acnes on all IOL materials tested. Further studies regarding the stability of this modification and its biocompatibility must be performed.

  4. Unusual multifocal granulomatous disease caused by actinomycetous bacteria in a nestling Derbyan parrot (Psittacula derbiana).

    PubMed

    Park, F J; Jaensch, S

    2009-01-01

    A nestling Derbyan parrot (Psittacula derbiana) was presented with unusual subcutaneous swellings of the thigh regions, and poor growth. Histological examination revealed actinomycetous bacteria associated with multifocal systemic granulomas. The clinical and pathological findings of the case are presented, and some relevant aspects of actinomycetous bacterial infections in mammals and birds are discussed. Although granulomatous disease is encountered at times in avian species, the actinomycetous bacteria (Nocardia and Actinomyces spp.) have rarely been reported in association with multifocal granulomatous disease in birds.

  5. Tyramine and phenylethylamine biosynthesis by food bacteria.

    PubMed

    Marcobal, Angela; De las Rivas, Blanca; Landete, José María; Tabera, Laura; Muñoz, Rosario

    2012-01-01

    Tyramine poisoning is caused by the ingestion of food containing high levels of tyramine, a biogenic amine. Any foods containing free tyrosine are subject to tyramine formation if poor sanitation and low quality foods are used or if the food is subject to temperature abuse or extended storage time. Tyramine is generated by decarboxylation of the tyrosine through tyrosine decarboxylase (TDC) enzymes derived from the bacteria present in the food. Bacterial TDC have been only unequivocally identified and characterized in Gram-positive bacteria, especially in lactic acid bacteria. Pyridoxal phosphate (PLP)-dependent TDC encoding genes (tyrDC) appeared flanked by a similar genetic organization in several species of lactic acid bacteria, suggesting a common origin by a single mobile genetic element. Bacterial TDC are also able to decarboxylate phenylalanine to produce phenylethylamine (PEA), another biogenic amine. The molecular knowledge of the genes involved in tyramine production has led to the development of molecular methods for the detection of bacteria able to produce tyramine and PEA. These rapid and simple methods could be used for the analysis of the ability to form tyramine by bacteria in order to evaluate the potential risk of tyramine biosynthesis in food products.

  6. Role of dissolved organic carbon upon re-entrainment and surface properties of aquifer bacteria and bacteria-sized microspheres during subsurface transport (Invited)

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Metge, D. W.; Mohanram, A.; Gao, X.; Chorover, J.

    2010-12-01

    Susceptibilities for in-situ re-entrainment of attached 0.2 and 1.0 μm (diameter) microspheres and groundwater bacteria (Pseudomonas stuzeri and uncultured, native bacteria) were assessed during transport studies involving an organically contaminated, sandy aquifer in Cape Cod, MA. Aquifer sediments between pairs of injection and sampling wells were initially loaded with fluorescently labeled, carboxylated microspheres and bacteria that had been stained with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole. In response to subsequent hydrodynamic perturbations and injections of deionized water (ionic strength reduction), anionic surfactants (77 μM linear alkylbenzene sulfonates, LAS) and non-ionic surfactant (76 μM polyoxyethylene sorbitan monooleate, Tween 80), differing patterns of re-entrainment were evident for the two colloids. Injections of anionic surfactant and deionized water were the most efficient in causing detachment of the highly hydrophilic and negatively charged microspheres, but largely ineffective in causing re-entrainment of bacteria. In contrast, the nonionic surfactant was highly effective in re-entraining bacteria, but not microspheres. The hydrophobicities and zeta potentials of the indigenous bacteria were highly sensitive to modest concentration changes (0.6 to 1.3 mg L-1) in groundwater dissolved organic carbon (DOC), whereas the microspheres were largely unaffected. The most hydrophilic and negatively charged bacterial community was isolated from groundwater having the lowest DOC. FTIR spectra indicated that the community from the lowest DOC groundwater also had the highest average density of surface carboxyl groups. This indicates that DOC may have a biological effect on native bacteria resulting in changes to surface structures or changes in the makeup of the bacterial community.

  7. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    PubMed

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  8. Microfluidic Transducer for Detecting Nanomechanical Movements of Bacteria

    NASA Astrophysics Data System (ADS)

    Kara, Vural; Ekinci, Kamil

    2017-11-01

    Various nanomechanical movements of bacteria are currently being explored as an indication of bacterial viability. Most notably, these movements have been observed to subside rapidly and dramatically when the bacteria are exposed to an effective antibiotic. This suggests that monitoring bacterial movements, if performed with high fidelity, can offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and sensitive microfluidic transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microchannel which the bacteria populate. These electrical fluctuations are caused by the swimming of motile, planktonic bacteria and random oscillations of surface-immobilized bacteria. The technique provides enough sensitivity to detect even the slightest movements of a single cell and lends itself to smooth integration with other microfluidic methods and devices; it may eventually be used for rapid antibiotic susceptibility testing. We acknowledge support from Boston University Office of Technology Development, Boston University College of Engineering, NIH (1R03AI126168-01) and The Wallace H. Coulter Foundation.

  9. Detecting decay fungi with antibody-based tests and immunoassays

    Treesearch

    Carol A. Clausen

    2003-01-01

    Early detection of wood decay can prolong the service life of wood. Antibodies are the ideal probe for detecting fungi that cause biodeterioration because they are highly specific and can quantitatively determine the fungal antigen concentration from highly complex structures, such as wood. Polyclonal antibodies recognize multiple chemical sites of the targeted...

  10. Antibacterial activity of caffeine against plant pathogenic bacteria.

    PubMed

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  11. Protection of Historical Wood against Microbial Degradation-Selection and Application of Microbiocides.

    PubMed

    Koziróg, Anna; Rajkowska, Katarzyna; Otlewska, Anna; Piotrowska, Małgorzata; Kunicka-Styczyńska, Alina; Brycki, Bogumił; Nowicka-Krawczyk, Paulina; Kościelniak, Marta; Gutarowska, Beata

    2016-08-22

    The aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine were effective even at 0.02%-2%. Subsequently, eight microbiocides containing the selected active ingredients were chosen and applied three times on the surface of wood samples colonized by bacteria and moulds. ABM-1 and ABM-2-6% solution; Rocima 101-8%; Preventol R 80-12%; Acticide 706 LV-15% and Boramon-30% were the most effective disinfectants. Under laboratory conditions, ABM-1, Boramon and Rocima 101 ensured antimicrobial protection of new wood samples for six months. In situ, 30% Boramon and 8% Rocima 101 applied by spraying effectively protected the historical wood from bacterial and mould growth for 12 and 3 months, respectively. Colour and luminance of the new wood were not altered after exposure to the biocides. Boramon and Rocima 101, applied by the spraying method, caused no significant change in the colour of the historical wood. Results from this study were used to develop a procedure for the protection of wood in historical buildings against biodeterioration.

  12. Identification of active fluorescence stained bacteria by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krause, Mario; Beyer, Beatrice; Pietsch, Christian; Radt, Benno; Harz, Michaela; Rösch, Petra; Popp, Jürgen

    2008-04-01

    Microorganisms can be found everywhere e.g. in food both as useful ingredients or harmful contaminations causing food spoilage. Therefore, a fast and easy to handle analysis method is needed to detect bacteria in different kinds of samples like meat, juice or air to decide if the sample is contaminated by harmful microorganisms. Conventional identification methods in microbiology require always cultivation and therefore are time consuming. In this contribution we present an analysis approach to identify fluorescence stained bacteria on strain level by means of Raman spectroscopy. The stained bacteria are highlighted and can be localized easier against a complex sample environment e.g. in food. The use of Raman spectroscopy in combination with chemometrical methods allows the identification of single bacteria within minutes.

  13. Isolation and characterization of pigmented algicidal bacteria from seawater

    NASA Astrophysics Data System (ADS)

    Shaima, A.; Gires, U.; Asmat, A.

    2014-09-01

    Some dinoflagellate species are toxic and widely distributed in Malaysian marines ecosystems. They can cause many problems to aquatic life due to the production of various potential and natural toxins that accumulate in filter feeding shellfish and cause food poisoning to human. In recent decades, bacteria have been widely used as a biological control against these harmful algae. In the present study, pigmented bacteria isolated from marine water of Port Dickson beach was studied for their anti-algal activity towards toxic dinoflagellate Alexandrium minutum. Four isolates were studied and only one was capable of inhibiting algal growth when treated with bacterial culture. The algilytic effect on dinoflagellate was evaluated based on direct cell count under the microscope. Results showed that only isolate Sdpd-310 with orange colour has an inhibitory effect on A. minutum growth. This study demonstrated the rapid algicidal activity of a marine pigmented bacteria against the toxic dinoflagellate A. minutum.

  14. Novel pharmacotherapy for the treatment of hospital-acquired and ventilator-associated pneumonia caused by resistant gram-negative bacteria.

    PubMed

    Kidd, James M; Kuti, Joseph L; Nicolau, David P

    2018-03-01

    Hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) are among the most prevalent infections in hospitalized patients, particularly those in the intensive care unit. Importantly, the frequency of multidrug resistant (MDR) Gram-negative (GN) bacteria as the bacteriologic cause of HABP/VABP is increasing. These include MDR Pseudomonas aeruginosa, Acinetobacter baumannii, and carbapenem resistant Enterobacteriaceae (CRE). Few antibiotics are currently available when such MDR Gram-negatives are encountered and older agents such as polymyxin B, colistin (polymyxin E), and tigecycline have typically performed poorly in HABP/VABP. Areas covered: In this review, the authors summarize novel antibiotics which have reached phase 3 clinical trials including patients with HABP/VABP. For each agent, the spectrum of activity, pertinent pharmacological characteristics, clinical trial data, and potential utility in the treatment of MDR-GN HABP/VABP is discussed. Expert opinion: Novel antibiotics currently available, and those soon to be, will expand opportunities to treat HABP/VABP caused by MDR-GN organisms and minimize the use of more toxic, less effective drugs. However, with sparse clinical data available, defining the appropriate role for each of the new agents is challenging. In order to maximize the utility of these antibiotics, combination therapy and the role of therapeutic drug monitoring should be investigated.

  15. Copper tolerance and virulence in bacteria

    PubMed Central

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  16. "Life after Last Orders": Microbiology as a Career

    ERIC Educational Resources Information Center

    Verran, Joanna

    2004-01-01

    The 2003 conference of the International Biodegradation and Biodeterioration Society (www.biodeterioration. org) and the International Biodegradation Research Group (www.ibrg.org), was held last September at the Manchester Metropolitan University. The conference, "Management and Control of Undesirable Microorganisms", followed the usual…

  17. Meningitis caused by Oerskovia xanthineolytica.

    PubMed

    Kailath, E J; Goldstein, E; Wagner, F H

    1988-03-01

    In summary, we describe a case of central nervous system infection with O. xanthineolytica in which the infecting microbe probably was engrafted on a ventricular shunt. The bacteria caused a smoldering meningitis that did not respond to penicillin and rifampin despite in vitro sensitivity, presumably because of inadequate cerebrospinal fluid penetration of the penicillin and the recognized difficulty of eradicating bacteria from contaminated shunts. Removal of the shunt and continued treatment with penicillin and rifampin resulted in cure.

  18. Biodegradation of chlorobenzene by indigenous bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, S.F.; Spain, J.C.; Pettigrew, C.A.

    Soil and ground water from four sites chronically contaminated with chlorobenzenes were examined to determine whether indigenous bacteria could degrade the contaminants and whether the addition of specific chlorobenzene-degrading bacteria enhanced the degradation rate. At each site, chlorobenzene-degrading bacteria were readily isolated from chlorobenzene-contaminated wells, whereas similar samples from noncontaminated wells yielded no chlorobenzene-degrading bacteria. Isolates were tested for growth on a variety of substrates. At a site contaminated with several solvents, a bioreactor was inoculated with the chlorobenzene-degrading Pseudomonas sp. strain JS150. Contaminated water was pumped through this bioreactor and a control bioreactor that had been colonized by inmore » indigenous microorganisms. The contaminants were removed from both bioreactors; however, JS150 could not be recovered from the inoculated bioreactor after three weeks of operation. A follow-up lab study using ground water from the contaminated site confirmed the field results. The authors conclude that chlorobenzene contamination of soil causes the development of indigenous degradative populations that have a competitive advantage over inoculated strains. The mechanism and time course of this acclimation are poorly understood and require additional study.« less

  19. Effect of two organophosphorus insecticides on the phosphate-dissolving soil bacteria.

    PubMed Central

    Congregado, F; Simon-Pujol, D; Juárez, A

    1979-01-01

    Dimethoate and malathion added to soil at 10 and 100 microgram/g caused an initial stimulation of CO2 production. Total counts of bacterial propagules were increased. All insecticide applications increased bacteria producing phospholipases from week 1 until week 4 after the application; bacteria then returned to the original levels. PMID:760634

  20. Impacts of Gut Bacteria on Human Health and Diseases

    PubMed Central

    Zhang, Yu-Jie; Li, Sha; Gan, Ren-You; Zhou, Tong; Xu, Dong-Ping; Li, Hua-Bin

    2015-01-01

    Gut bacteria are an important component of the microbiota ecosystem in the human gut, which is colonized by 1014 microbes, ten times more than the human cells. Gut bacteria play an important role in human health, such as supplying essential nutrients, synthesizing vitamin K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism. This review summarizes and discusses the roles and potential mechanisms of gut bacteria in human health and diseases. PMID:25849657

  1. Cuticular bacteria appear detrimental to social spiders in mixed but not monoculture exposure

    PubMed Central

    Keiser, Carl N.; Shearer, Taylor A.; DeMarco, Alexander E.; Brittingham, Hayley A.; Knutson, Karen A.; Kuo, Candice; Zhao, Katherine; Pruitt, Jonathan N.

    2016-01-01

    Abstract Much of an animal’s health status, life history, and behavior are dictated by interactions with its endogenous and exogenous bacterial communities. Unfortunately, interactions between hosts and members of their resident bacterial community are often ignored in animal behavior and behavioral ecology. Here, we aim to identify the nature of host–microbe interactions in a nonmodel organism, the African social spider Stegodyphus dumicola. We collected and identified bacteria from the cuticles of spiders in situ and then exposed spiders to bacterial monocultures cultures via topical application or injection. We also topically inoculated spiders with a concomitant “cocktail” of bacteria and measured the behavior of spiders daily for 24 days after inoculation. Lastly, we collected and identified bacteria from the cuticles of prey items in the capture webs of spiders, and then fed spiders domestic crickets which had been injected with these bacteria. We also injected 1 species of prey-borne bacteria into the hemolymph of spiders. Only Bacillus thuringiensis caused increased mortality when injected into the hemolymph of spiders, whereas no bacterial monocultures caused increased mortality when applied topically, relative to control solutions. However, a bacterial cocktail of cuticular bacteria caused weight loss and mortality when applied topically, yet did not detectibly alter spider behavior. Consuming prey injected with prey-borne bacteria was associated with an elongated lifespan in spiders. Thus, indirect evidence from multiple experiments suggests that the effects of these bacteria on spider survivorship appear contingent on their mode of colonization and whether they are applied in monoculture or within a mixed cocktail. We urge that follow-up studies should test these host–microbe interactions across different social contexts to determine the role that microbes play in colony performance. PMID:29491926

  2. Symptoms and Causes of Peptic Ulcer Disease

    MedlinePlus

    ... ulcer. How do H. pylori cause a peptic ulcer and peptic ulcer disease? H. pylori are spiral-shaped bacteria that ... peptic ulcer. How do tumors from ZES cause peptic ulcers? Zollinger-Ellison syndrome is a rare disorder that ...

  3. Enhancing durability of wood-based composites with nanotechnology

    Treesearch

    Carol Clausen

    2012-01-01

    Wood protection systems are needed for engineered composite products that are susceptible to moisture and biodeterioration. Protection systems using nano-materials are being developed to enhance the durability of wood-based composites through improved resistance to biodeterioration, reduced environmental impact from chemical leaching, and improved resistance to...

  4. Expulsion of swimming bacteria by a circular flow

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Aronson, Igor

    Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. We report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a circular flow created by a rotating microparticle. We observed a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a circular structure of the flow rather than intrinsic random fluctuations of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model revealed that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed new light on bacteria-flow interactions. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science And Engineering, under Contract No. DE AC02-06CH11357.

  5. Appropriateness of antibiotic prescription for targeted therapy of infections caused by multidrug-resistant bacteria: assessment of the most common improper uses in a tertiary hospital in southern Italy.

    PubMed

    Viceconte, Giulio; Maraolo, Alberto Enrico; Iula, Vita Dora; Catania, Maria Rosaria; Tosone, Grazia; Orlando, Raffaele

    2017-09-01

    A huge proportion of antibiotic therapies for infections caused by multidrug-resistant bacteria (MDR) are inappropriate. In this study, we described the most common causes of inappropriateness of definitive antibiotic regimes in a large university hospital in southern Italy and we evaluated the impact on microbial eradication, length of stay, 30-day readmission and mortality. We retrospectively assessed 45 patients who received a definitive antibiotic therapy after isolation of multidrug-resistant Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter spp. strains between 2014 and 2015. From the literature, we set a series of criteria to retrospectively determine the appropriateness of the therapy. In all, 61% of the prescribed antibiotic regimes were found to be inappropriate, especially due to incorrect drug dosage. It emerged that meropenem was the antibiotic most frequently inappropriately used. In 46% of infections caused by MDR but not extended-spectrum β-lactamase-producing Enterobacteriaceae, carbapenems were inappropriately administered. Microbial eradication was achieved in 87% of the appropriate therapy group compared to 31% of the inappropriate therapy group (chi-square=6.750, p<0.027). No statistically significant association was found between inappropriate therapy and the length of stay (chi-square=3.084, p=0.101) and 30-day readmission (p=0.103). Definitive antibiotic therapy in infections caused by multidrug-resistant bacteria in a large university hospital is often inappropriate, especially due to the drug dosing regimen, particularly in the case of meropenem and colistin. This inappropriateness has a significant impact on post-treatment microbial eradication in specimens collected after antibiotic therapy.

  6. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    USDA-ARS?s Scientific Manuscript database

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  7. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    PubMed Central

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and remove them from the oral cavity. To test this hypothesis, we developed two methods to quantify numbers of bacteria trapped in chewed gum. In the first method, known numbers of bacteria were finger-chewed into gum and chewed gums were molded to standard dimensions, sonicated and plated to determine numbers of colony-forming-units incorporated, yielding calibration curves of colony-forming-units retrieved versus finger-chewed in. In a second method, calibration curves were created by finger-chewing known numbers of bacteria into gum and subsequently dissolving the gum in a mixture of chloroform and tris-ethylenediaminetetraacetic-acid (TE)-buffer. The TE-buffer was analyzed using quantitative Polymerase-Chain-Reaction (qPCR), yielding calibration curves of total numbers of bacteria versus finger-chewed in. Next, five volunteers were requested to chew gum up to 10 min after which numbers of colony-forming-units and total numbers of bacteria trapped in chewed gum were determined using the above methods. The qPCR method, involving both dead and live bacteria yielded higher numbers of retrieved bacteria than plating, involving only viable bacteria. Numbers of trapped bacteria were maximal during initial chewing after which a slow decrease over time up to 10 min was observed. Around 108 bacteria were detected per gum piece depending on the method and gum considered. The number of species trapped in chewed gum increased with chewing time. Trapped bacteria were clearly visualized in chewed gum using scanning-electron-microscopy. Summarizing, using novel methods to quantify and qualify oral bacteria trapped in chewed gum, the hypothesis is confirmed that chewing of gum can trap

  8. Rapid separation of bacteria from blood — Chemical aspects

    PubMed Central

    Alizadeh, Mahsa; Wood, Ryan L.; Buchanan, Clara M.; Bledsoe, Colin G.; Wood, Madison E.; McClellan, Daniel S.; Blanco, Rae; Ravsten, Tanner V.; Husseini, Ghaleb A.; Hickey, Caroline L.; Robison, Richard A.; Pitt, William G.

    2017-01-01

    To rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000 rpm for 1 min. The red and white cells sediment more than 30-fold faster than bacteria, leaving much of the bacteria in the plasma. When the disk is slowly decelerated, the plasma flows to a collection site and the red and white cells are trapped in the disk. Analysis of the recovered plasma shows that about 36% of the bacteria is recovered in the plasma. The plasma is not perfectly clear of red blood cells, but about 94% have been removed. This paper describes the effects of various chemical aspects of this process, including the influence of anticoagulant chemistry on the separation efficiency and the use of wetting agents and platelet aggregators that may influence the bacterial recovery. In a clinical scenario, the recovered bacteria can be subsequently analyzed to determine their species and resistance to various antibiotics. PMID:28365426

  9. Thermal control of virulence factors in bacteria: A hot topic

    PubMed Central

    Lam, Oliver; Wheeler, Jun; Tang, Christoph M

    2014-01-01

    Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health. PMID:25494856

  10. Antibacterial activity of extracts from five medicinal plants and their formula against bacteria that cause chronic wound infection.

    PubMed

    Temrangsee, Pornthep; Kondo, Sumalee; Itharat, Arunporn

    2011-12-01

    Chronic wound is caused by various factors such as chemotherapy, gene damage, treatment with steroids, diabetes mellitus, renal failure, blood pressure, infection and nutritional factors. One of the most common causes is bacterial infection. Antibacterial activity of several herbal plants has been reported. Thai medicinal plants which possess biological activities are potential to develop an alternative treatment of bacterial infection. To study efficiency of extracts from medicinal plants and their formula against bacteria that cause chronic wound infection. Extraction of Thai medicinal plants including Curcuma longa Linn, Rhinacanthus nasutus Linn, Garcinia mangostana Linn, Caesalpinia sappan Linn and Centellia asiatica Linn was performed by maceration with 95% ethanol and decoction followed by freeze dry. Formulation was conducted by varying the ratio of each components. Antibacterial activity were determined disk diffusion and broth dilution against Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Acinetobacter baumanii, Escherichia coli and Klebsiella pneumoniae. Ethanolic extracts exhibited better antibacterial activity against tested strains than water extracts. Antibacterial activity of Caesalpinia sappan Linn. against S. aureus and MRSA showed the most effective with MIC value of 0.625 mg/ml. One of the five different formulas which contained two times proportion of C. sappan revealed that this formula was able to inhibit all tested strains with the MIC ranging between 0.156 mg/ml and 10 mg/ml. C. sappan is the most effective herbal plant. The formula with two times proportion of C. sappan is potentially best formula for development of medicinal product of chronic wound infection. The potential active compound of C. sappan is suggested for further investigation of antimicrobial activity and other biological properties.

  11. Sociomicrobiology and Pathogenic Bacteria.

    PubMed

    Xavier, Joao B

    2016-06-01

    The study of microbial pathogenesis has been primarily a reductionist science since Koch's principles. Reductionist approaches are essential to identify the causal agents of infectious disease, their molecular mechanisms of action, and potential drug targets, and much of medicine's success in the treatment of infectious disease stems from that approach. But many bacteria-caused diseases cannot be explained by a single bacterium. Several aspects of bacterial pathogenesis will benefit from a more holistic approach that takes into account social interaction among bacteria of the same species and between species in consortia such as the human microbiome. The emerging discipline of sociomicrobiology provides a framework to dissect microbial interactions in single and multi-species communities without compromising mechanistic detail. The study of bacterial pathogenesis can benefit greatly from incorporating concepts from other disciplines such as social evolution theory and microbial ecology, where communities, their interactions with hosts, and with the environment play key roles.

  12. Plant-bacteria partnerships for the remediation of persistent organic pollutants.

    PubMed

    Arslan, Muhammad; Imran, Asma; Khan, Qaiser Mahmood; Afzal, Muhammad

    2017-02-01

    High toxicity, bioaccumulation factor and widespread dispersal of persistent organic pollutants (POPs) cause environmental and human health hazards. The combined use of plants and bacteria is a promising approach for the remediation of soil and water contaminated with POPs. Plants provide residency and nutrients to their associated rhizosphere and endophytic bacteria. In return, the bacteria support plant growth by the degradation and detoxification of POPs. Moreover, they improve plant growth and health due to their innate plant growth-promoting mechanisms. This review provides a critical view of factors that affect absorption and translocation of POPs in plants and the limitations that plant have to deal with during the remediation of POPs. Moreover, the synergistic effects of plant-bacteria interactions in the phytoremediation of organic pollutants with special reference to POPs are discussed.

  13. Multidrug resistance in enteric and other gram-negative bacteria.

    PubMed

    George, A M

    1996-05-15

    In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved.

  14. Biosynthesized silver nanoparticles to control fungal infections in indoor environments

    NASA Astrophysics Data System (ADS)

    Deyá, Cecilia; Bellotti, Natalia

    2017-06-01

    Fungi grow especially in dark and moist areas, deteriorating the indoor environment and causing infections that particularly affect immunosuppressed individuals. Antimicrobial coatings have as principal objective to prevent biofilm formation and infections by incorporation of bioactive additives. In this sense, metallic nanoparticles, such as silver, have proven to be active against different microorganisms specially bacteria. Biosynthesized method is a promising environmentally friendly option to obtain nanoparticles. The aim of this research was assess the employment of plants extracts of Aloysia triphylla (cedrón), Laurelia sempervirens (laurel) and Ruta chalepensis (ruda) to obtain silver nanoparticles to be used as an antimicrobial additive to a waterborne coating formulation. The products obtained were assessed against fungal isolates from biodeteriorated indoor coatings. The fungi were identified by conventional and molecular techniques as Chaetomium globosum and Alternaria alternate. The results revealed that the coating with silver nanoparticles obtained with L. sempervirens extract at 60 °C with a size of 9.8 nm was the most efficient against fungal biofilm development.

  15. Algicidal bacteria in the sea and their impact on algal blooms.

    PubMed

    Mayali, Xavier; Azam, Farooq

    2004-01-01

    Over the past two decades, many reports have revealed the existence of bacteria capable of killing phytoplankton. These algicidal bacteria sometimes increase in abundance concurrently with the decline of algal blooms, suggesting that they may affect algal bloom dynamics. Here, we synthesize the existing knowledge on algicidal bacteria interactions with marine eukaryotic microalgae. We discuss the effectiveness of the current methods to characterize the algicidal phenotype in an ecosystem context. We briefly consider the literature on the phylogenetic identification of algicidal bacteria, their interaction with their algal prey, the characterization of algicidal molecules, and the enumeration of algicidal bacteria during algal blooms. We conclude that, due to limitations of current methods, the evidence for algicidal bacteria causing algal bloom decline is circumstantial. New methods and an ecosystem approach are needed to test hypotheses on the impact of algicidal bacteria in algal bloom dynamics. This will require enlarging the scope of inquiry from its current focus on the potential utility of algicidal bacteria in the control of harmful algal blooms. We suggest conceptualizing bacterial algicidy within the general problem of bacterial regulation of algal community structure in the ocean.

  16. Guide for In-Place Treatment of Covered and Timber Bridges

    Treesearch

    Stan Lebow; Grant Kirker; Robert White; Terry Amburgey; H. Michael Barnes; Michael Sanders; Jeff Morrell

    2012-01-01

    Historic covered bridges and current timber bridges can be vulnerable to damage from biodeterioration or fire. This guide describes procedures for selecting and applying in-place treatments to prevent or arrest these forms of degradation. Vulnerable areas for biodeterioration in covered bridges include members contacting abutments, members near the ends of bridges...

  17. Quantification of microbial risks to human health caused by waterborne viruses and bacteria in an urban slum.

    PubMed

    Katukiza, A Y; Ronteltap, M; van der Steen, P; Foppen, J W A; Lens, P N L

    2014-02-01

    To determine the magnitude of microbial risks from waterborne viruses and bacteria in Bwaise III in Kampala (Uganda), a typical slum in Sub-Saharan Africa. A quantitative microbial risk assessment (QMRA) was carried out to determine the magnitude of microbial risks from waterborne pathogens through various exposure pathways in Bwaise III in Kampala (Uganda). This was based on the concentration of Escherichia coli O157:H7, Salmonella spp., rotavirus (RV) and human adenoviruses F and G (HAdV) in spring water, tap water, surface water, grey water and contaminated soil samples. The total disease burden was 680 disability-adjusted life years (DALYs) per 1000 persons per year. The highest disease burden contribution was caused by exposure to surface water open drainage channels (39%) followed by exposure to grey water in tertiary drains (24%), storage containers (22%), unprotected springs (8%), contaminated soil (7%) and tap water (0.02%). The highest percentage of the mean estimated infections was caused by E. coli O157:H7 (41%) followed by HAdV (32%), RV (20%) and Salmonella spp. (7%). In addition, the highest infection risk was 1 caused by HAdV in surface water at the slum outlet, while the lowest infection risk was 2.71 × 10(-6) caused by E. coli O157:H7 in tap water. The results show that the slum environment is polluted, and the disease burden from each of the exposure routes in Bwaise III slum, with the exception of tap water, was much higher than the WHO reference level of tolerable risk of 1 × 10(-6) DALYs per person per year. The findings of this study provide guidance to governments, local authorities and nongovernment organizations in making decisions on measures to reduce infection risk and the disease burden by 10(2) to 10(5) depending on the source of exposure to achieve the desired health impacts. The infection risk may be reduced by sustainable management of human excreta and grey water, coupled with risk communication during hygiene awareness

  18. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress.

    PubMed

    Egamberdieva, Dilfuza; Wirth, Stephan J; Shurigin, Vyacheslav V; Hashem, Abeer; Abd Allah, Elsayed F

    2017-01-01

    Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non-rhizobial endophytic bacteria from the root nodules of chickpea ( Cicer arietinum L.), and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1 , Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H 2 O 2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani . This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress.

  19. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan J.; Shurigin, Vyacheslav V.; Hashem, Abeer; Abd_Allah, Elsayed F.

    2017-01-01

    Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L.), and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress. PMID:29033922

  20. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  1. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  2. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  3. Acoustic impedance matched buffers enable separation of bacteria from blood cells at high cell concentrations.

    PubMed

    Ohlsson, Pelle; Petersson, Klara; Augustsson, Per; Laurell, Thomas

    2018-06-14

    Sepsis is a common and often deadly systemic response to an infection, usually caused by bacteria. The gold standard for finding the causing pathogen in a blood sample is blood culture, which may take hours to days. Shortening the time to diagnosis would significantly reduce mortality. To replace the time-consuming blood culture we are developing a method to directly separate bacteria from red and white blood cells to enable faster bacteria identification. The blood cells are moved from the sample flow into a parallel stream using acoustophoresis. Due to their smaller size, the bacteria are not affected by the acoustic field and therefore remain in the blood plasma flow and can be directed to a separate outlet. When optimizing for sample throughput, 1 ml of undiluted whole blood equivalent can be processed within 12.5 min, while maintaining the bacteria recovery at 90% and the blood cell removal above 99%. That makes this the fastest label-free microfluidic continuous flow method per channel to separate bacteria from blood with high bacteria recovery (>80%). The high throughput was achieved by matching the acoustic impedance of the parallel stream to that of the blood sample, to avoid that acoustic forces relocate the fluid streams.

  4. Protection of Historical Wood against Microbial Degradation—Selection and Application of Microbiocides

    PubMed Central

    Koziróg, Anna; Rajkowska, Katarzyna; Otlewska, Anna; Piotrowska, Małgorzata; Kunicka-Styczyńska, Alina; Brycki, Bogumił; Nowicka-Krawczyk, Paulina; Kościelniak, Marta; Gutarowska, Beata

    2016-01-01

    The aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine were effective even at 0.02%–2%. Subsequently, eight microbiocides containing the selected active ingredients were chosen and applied three times on the surface of wood samples colonized by bacteria and moulds. ABM-1 and ABM-2—6% solution; Rocima 101—8%; Preventol R 80—12%; Acticide 706 LV—15% and Boramon—30% were the most effective disinfectants. Under laboratory conditions, ABM-1, Boramon and Rocima 101 ensured antimicrobial protection of new wood samples for six months. In situ, 30% Boramon and 8% Rocima 101 applied by spraying effectively protected the historical wood from bacterial and mould growth for 12 and 3 months, respectively. Colour and luminance of the new wood were not altered after exposure to the biocides. Boramon and Rocima 101, applied by the spraying method, caused no significant change in the colour of the historical wood. Results from this study were used to develop a procedure for the protection of wood in historical buildings against biodeterioration. PMID:27556450

  5. The impact of culture medium on the development and physiology of biofilms of Pseudomonas fluorescens formed on polyurethane paint.

    PubMed

    Crookes-Goodson, Wendy J; Bojanowski, Caitlin L; Kay, Michelle L; Lloyd, Pamela F; Blankemeier, Andrew; Hurtubise, Jennifer M; Singh, Kristi M; Barlow, Daniel E; Ladouceur, Harold D; Matt Eby, D; Johnson, Glenn R; Mirau, Peter A; Pehrsson, Pehr E; Fraser, Hamish L; Russell, John N

    2013-01-01

    Microbial biofilms cause the deterioration of polymeric coatings such as polyurethanes (PUs). In many cases, microbes have been shown to use the PU as a nutrient source. The interaction between biofilms and nutritive substrata is complex, since both the medium and the substratum can provide nutrients that affect biofilm formation and biodeterioration. Historically, studies of PU biodeterioration have monitored the planktonic cells in the medium surrounding the material, not the biofilm. This study monitored planktonic and biofilm cell counts, and biofilm morphology, in long-term growth experiments conducted with Pseudomonas fluorescens under different nutrient conditions. Nutrients affected planktonic and biofilm cell numbers differently, and neither was representative of the system as a whole. Microscopic examination of the biofilm revealed the presence of intracellular storage granules in biofilms grown in M9 but not yeast extract salts medium. These granules are indicative of nutrient limitation and/or entry into stationary phase, which may impact the biodegradative capability of the biofilm.

  6. Halophilic Microorganisms Are Responsible for the Rosy Discolouration of Saline Environments in Three Historical Buildings with Mural Paintings

    PubMed Central

    Ettenauer, Jörg D.; Jurado, Valme; Piñar, Guadalupe; Miller, Ana Z.; Santner, Markus; Saiz-Jimenez, Cesareo; Sterflinger, Katja

    2014-01-01

    A number of mural paintings and building materials from monuments located in central and south Europe are characterized by the presence of an intriguing rosy discolouration phenomenon. Although some similarities were observed among the bacterial and archaeal microbiota detected in these monuments, their origin and nature is still unknown. In order to get a complete overview of this biodeterioration process, we investigated the microbial communities in saline environments causing the rosy discolouration of mural paintings in three Austrian historical buildings using a combination of culture-dependent and -independent techniques as well as microscopic techniques. The bacterial communities were dominated by halophilic members of Actinobacteria, mainly of the genus Rubrobacter. Representatives of the Archaea were also detected with the predominating genera Halobacterium, Halococcus and Halalkalicoccus. Furthermore, halophilic bacterial strains, mainly of the phylum Firmicutes, could be retrieved from two monuments using special culture media. Inoculation of building materials (limestone and gypsum plaster) with selected isolates reproduced the unaesthetic rosy effect and biodeterioration in the laboratory. PMID:25084531

  7. Enumeration and Identification of Coliform Bacteria Injured by Chlorine or Fungicide Mixed with Agricultural Water.

    PubMed

    Izumi, Hidemi; Nakata, Yuji; Inoue, Ayano

    2016-10-01

    Chemical sanitizers may induce no injury (bacteria survive), sublethal injury (bacteria are injured), or lethal injury (bacteria die). The proportion of coliform bacteria that were injured sublethally by chlorine and fungicide mixed with agricultural water (pond water), which was used to dilute the pesticide solution, was evaluated using the thin agar layer (TAL) method. In pure cultures of Enterobacter cloacae , Escherichia coli , and E. coli O157:H7 (representing a human pathogen), the percentage of chlorine-injured cells was 69 to 77% for dilute electrolyzed water containing an available chlorine level of 2 ppm. When agricultural water was mixed with electrolyzed water, the percentage of injured coliforms in agricultural water was 75%. The isolation and identification of bacteria on TAL and selective media suggested that the chlorine stress caused injury to Enterobacter kobei . Of the four fungicide products tested, diluted to their recommended concentrations, Topsin-M, Sumilex, and Oxirane caused injury to coliform bacteria in pure cultures and in agricultural water following their mixture with each pesticide, whereas Streptomycin did not induce any injury to the bacteria. The percentage of injury was 45 to 97% for Topsin-M, 80 to 87% for Sumilex, and 50 to 97% for Oxirane. A comparison of the coliforms isolated from the pesticide solutions and then grown on either TAL or selective media indicated the possibility of fungicide-injured Rahnella aquatilis , Yersinia mollaretii , and E. coli . These results suggest the importance of selecting a suitable sanitizer and the necessity of adjusting the sanitizer concentration to a level that will kill the coliforms rather than cause sanitizer-induced cell injury that can result in the recovery of the coliforms.

  8. Effects of Interactions of Auxin-Producing Bacteria and Bacterial-Feeding Nematodes on Regulation of Peanut Growths

    PubMed Central

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil. PMID:25867954

  9. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    PubMed

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  10. Mucosal immunity to pathogenic intestinal bacteria.

    PubMed

    Perez-Lopez, Araceli; Behnsen, Judith; Nuccio, Sean-Paul; Raffatellu, Manuela

    2016-03-01

    The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.

  11. Surveillance of multidrug resistant uropathogenic bacteria in hospitalized patients in Indian

    PubMed Central

    Mishra, Monali Priyadarsini; Debata, Nagen Kumar; Padhy, Rabindra Nath

    2013-01-01

    Objective To record surveillance, antibiotic resistance of uropathogens of hospitalized patients over a period of 18 months. Methods Urine samples from wards and cabins were used for isolating urinary tract infection (UTI)-causing bacteria that were cultured on suitable selective media and identified by biochemical tests; and their antibiograms were ascertained by Kirby-Bauer's disc diffusion method, in each 6-month interval of the study period, using 18 antibiotics of five different classes. Results From wards and cabins, 1 245 samples were collected, from which 996 strains of bacteria belonging to 11 species were isolated, during April 2011 to September 2012. Two Gram-positive, Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), and nine Gram-negative bacteria, Acinetobacter baumannii, Citrobacter sp., Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis, Proteus vulgaris and Pseudomonas aeruginosa were isolated. Both S. aureus and E. faecalis were vancomycin resistant, and resistant-strains of all pathogens increased in each 6-month period of study. Particularly, all Gram-negatives were resistant to nitrofurantoin and co-trimoxazole, the most preferred antibiotics of empiric therapy for UTI. Conclusions Antibiograms of 11 UTI-causing bacteria recorded in this study indicated moderately higher numbers of strains resistant to each antibiotic studied, generating the fear of precipitating fervent episodes in public health particularly with bacteria, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and S. aureus. Moreover, vancomycin resistance in strains of S. aureus and E. faecalis is a matter of concern. PMID:23620859

  12. Respiration and carbon dynamics of free-living and particle-attached bacteria in coastal waters of NE Pacific

    NASA Astrophysics Data System (ADS)

    Guo, C.; Ke, Y.; Liu, H.

    2016-02-01

    Bacterial respiration (BR) rates are fundamental to understand the role of bacteria in carbon flow in aquatic ecosystem, and therefore it is critical to obtain reliable measurements. Prefiltration- (mostly 1-3μm) and dark-incubation- (mostly 24 h) based direct measurements of oxygen consumption have been the most commonly used method for BR. However, the prefiltration procedure and long incubation time may cause change of the bacterial abundance and structure, leading to inaccurate measurements. In this study, by measuring bacterial abundance, production and respiration of both particle-attached (PA) and free-living (FL) bacteria at two contrasting site in coastal NE Pacific from Nov 2014 to Mar 2015, we found that the 24 h growth rate of FL bacteria in the traditional BR incubations were significantly higher for 30% and 54% than those obtained for FL and total (FL+PA) bacteria in unfiltered incubations respectively, suggesting removal of protist grazers could cause a significant biomass accumulation during 24 h incubation than the in situ condition. This biomass overestimation resulted in 40% (±12%) overestimation of measured FL BR rates compared with the corrected in situ FL BR. Nevertheless, for the corrected in situ total BR, the rates were overestimated by traditional method in three measurements over nine for 6-46%, and were underestimated in the rest six measurements for 7-67%. Interestingly, those underestimations were attributed to the ignorance of PA bacteria due to prefiltration, which had larger cell size than the FL bacteria, accounted for 19% (±16%) in total bacterial abundance, and contributed to 50% (±19%) of total bacterial production. The average bacterial growth efficiency calculated by comparable 24 h integrated bacterial production and respiration was 0.42 (±0.24). Our results confirmed two major flaws in the current BR methodology, i.e., 1) it only measures the respiration of FL bacteria, and 2) the removal of grazers causing dramatic

  13. Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis.

    PubMed

    Puttipan, Rinrampai; Wanachantararak, Penpicha; Khongkhunthian, Sakornrat; Okonogi, Siriporn

    2017-01-01

    The present study explores antimicrobial activities of Caesalpinia sappan extracts against three strains of oral pathogenic bacteria; Streptococcus mutans DMST9567 (Smu9), Streptococcus mutans DMST41283 (Smu4), and Streptococcus intermedius DMST42700 (Si). Ethanol crude extract of C. sappan (Cs-EtOH) was firstly compared to that of other medicinal plants using disc diffusion method. Cs-EtOH showed significantly higher effective inhibition against all tested strains than other extracts and 0.12% chlorhexidine with the inhibition zone of 17.5 ± 0.5, 18.5 ± 0.0, and 17.0 ± 0.0 mm against Smu9, Smu4, and Si, respectively. Three fractionated extracts of C. sappan using hexane, ethyl acetate, and ethanol, respectively, were further investigated. The fractionated extract from ethanol (F-EtOH) presented the strongest activities with the minimum bactericidal concentration (MBC) of 125-250 µg/mL. Killing kinetics of F-EtOH was depended on the bacterial species and the concentration of F-EtOH. Two-fold MBC of F-EtOH could kill all tested strains within 12 h whereas its 4-fold MBC showed killing effect against Si within 6 h. Separation of F-EtOH by column chromatography using chloroform/methanol mixture as an eluent yielded 11 fractions (F1-F11). The fingerprints of these fractions by high-performance liquid chromatography at 280 nm revealed that F-EtOH consisted of at least 5 compounds. F6 possessed the significantly highest antimicrobial activity among 11 fractions, however less than F-EtOH. It is considered that F-EtOH is the promising extract of C. sappan for inhibiting oral pathogenic bacteria and appropriate as natural antiseptic for further develop of oral hygiene products.

  14. Stop the Spread of Superbugs: Help Fight Drug Resistant Bacteria

    MedlinePlus

    ... those that cause colds or flu. Unfortunately, many antibiotics prescribed to people and to animals are unnecessary. And the overuse and misuse of antibiotics helps to create drug-resistant bacteria. Here’s how ...

  15. Bacteria-Targeting Nanoparticles for Managing Infections

    NASA Astrophysics Data System (ADS)

    Radovic-Moreno, Aleksandar Filip

    Bacterial infections continue to be a significant concern particularly in healthcare settings and in the developing world. Current challenges include the increasing spread of drug resistant (DR) organisms, the side effects of antibiotic therapy, the negative consequences of clearing the commensal bacterial flora, and difficulties in developing prophylactic vaccines. This thesis was an investigation of the potential of a class of polymeric nanoparticles (NP) to contribute to the management of bacterial infections. More specifically, steps were taken towards using these NPs (1) to achieve greater spatiotemporal control over drug therapy by more targeted antibiotic delivery to bacteria, and (2) to develop a prophylactic vaccine formulation against the common bacterial sexually transmitted disease (STD) caused by Chlamydia trachomatis. In the first part, we synthesized polymeric NPs containing poly(lactic-co-glycolic acid)-block-poly(L-histidine)-block-poly(ethylene glycol) (PLGA-PLH-PEG). We show that these NPs are able to bind to bacteria under model acidic infection conditions and are able to encapsulate and deliver vancomycin to inhibit the growth of Staphylococcus aureus bacteria in vitro. Further work showed that the PLGA-PLH-PEG-based NPs demonstrated the potential for competition for binding bacteria at a site of infection from soluble protein and model phagocytic and tissue-resident cells in a NP composition dependent manner. The NPs demonstrated low toxicity in vitro, were well tolerated by mice in vivo, and circulated in the blood on timescales comparable to control PLGA-PEG NPs. In the second part, we used PLGA-PLH-PEG-based NPs to design a prophylactic vaccine against the obligate intracellular bacterium Chlamydia trachomatis, the most common cause of bacterial STD in the world. Currently, no vaccines against this pathogen are approved for use in humans. We first formulated NPs encapsulating the TLR7 agonist R848 conjugated to poly(lactic acid) (R848-PLA

  16. Corals diseases are a major cause of coral death

    EPA Science Inventory

    Corals, like humans, are susceptible to diseases. Some coral diseases are associated with pathogenic bacteria; however, the causes of most remain unknown. Some diseases trigger rapid and extensive mortality, while others slowly cause localized color changes or injure coral tiss...

  17. Battacin (Octapeptin B5), a New Cyclic Lipopeptide Antibiotic from Paenibacillus tianmuensis Active against Multidrug-Resistant Gram-Negative Bacteria

    PubMed Central

    Qian, Chao-Dong; Teng, Yi; Zhao, Wen-Peng; Li, Ou; Fang, Sheng-Guo; Huang, Zhao-Hui; Gao, Hai-Chun

    2012-01-01

    Hospital-acquired infections caused by drug-resistant bacteria are a significant challenge to patient safety. Numerous clinical isolates resistant to almost all commercially available antibiotics have emerged. Thus, novel antimicrobial agents, specifically those for multidrug-resistant Gram-negative bacteria, are urgently needed. In the current study, we report the isolation, structure elucidation, and preliminary biological characterization of a new cationic lipopeptide antibiotic, battacin or octapeptin B5, produced from a Paenibacillus tianmuensis soil isolate. Battacin kills bacteria in vitro and has potent activity against Gram-negative bacteria, including multidrug-resistant and extremely drug-resistant clinical isolates. Hospital strains of Escherichia coli and Pseudomonas aeruginosa are the pathogens most sensitive to battacin, with MICs of 2 to 4 μg/ml. The ability of battacin to disrupt the outer membrane of Gram-negative bacteria is comparable to that of polymyxin B, the last-line therapy for infections caused by antibiotic-resistant Gram-negative bacteria. However, the capacity of battacin to permeate bacterial plasma membranes is less extensive than that of polymyxin B. The bactericidal kinetics of battacin correlate with the depolarization of the cell membrane, suggesting that battacin kills bacteria by disrupting the cytoplasmic membrane. Other studies indicate that battacin is less acutely toxic than polymyxin B and has potent in vivo biological activity against E. coli. Based on the findings of the current study, battacin may be considered a potential therapeutic agent for the treatment of infections caused by antibiotic-resistant Gram-negative bacteria. PMID:22183171

  18. The determination and arrangement of a combination of enzyme lactate dehydrogenase of bacteria Acinetobacter sp. as a device the identity important bacteria agent composts

    NASA Astrophysics Data System (ADS)

    Sukmawati, D.; Puspitaningrum, R.; Muzajjanah

    2017-07-01

    The number of garbage generated by the industry or society is a usual problem encountered by almost all urban centers, especially large cities such as Jakarta. Waste prevention strategy required quickly and accurately. One strategy for tackling the Junk was getting lactic acid-producing bacteria. It has been shown that lactic acid can increase the acceleration of organic matter such as an overhaul of lignin and cellulose as well as out causing toxic compounds arising from decay. This research will be conducted on the determination and characterization of the enzyme-producing compost bacteria LDH lactate dehydrogenase LDH - which in isolation from the garbage Landfill Rawasari. Methodology: Research carried out consists: isolation of lactic acid-producing bacteria; identification of microscopic, macroscopic and staining Gram; cellulose assay, and optimization of PCR conditions LDH enzymes producing bacteria. Isolation is performed by dilution method and the direct method. As many as 5-point sampling. Each stage is conducted from 10 grams of soil from the top surface of the compost. Isolation results obtained 100 isolate the bacteria. Base on the characteristic of macroscopic and microscopic observations retrieved 14 isolates of bacteria have shaped rods and brought forth a negative kind of Gram positive staining. Bacterial isolates with codes (BK1; BK3; BK4; BK5; BK6; BK7; BK8; BK9; BK10; BK11: BK12; BK 13). The potential bacteria with ability produce lactate dehydrogenase was BK1 and BK3. Base for analysis phylogenetic there was identification bacteria bak1 and bak3 where Acinetobacter sp.

  19. Assessment of pathogenesis of infective endocarditis by plasma IgG antibody titer test against periodontal bacteria.

    PubMed

    Isoshima, Daichi; Yamashiro, Keisuke; Matsunaga, Kazuyuki; Shinobe, Michitaka; Nakanishi, Nagako; Nakanishi, Izumi; Omori, Kazuhiro; Yamamoto, Tadashi; Takashiba, Shogo

    2017-10-01

    Oral bacteria cause infective endocarditis (IE), so severe periodontitis is thought to be high risk for IE. We suggest the identification of high-risk patients by an IgG antibody titer test against periodontal bacteria might become common screening test.

  20. Effects of the Essential Oil from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and Slurry.

    PubMed

    de Souza, Geany Targino; de Carvalho, Rayssa Julliane; de Sousa, Jossana Pereira; Tavares, Josean Fechine; Schaffner, Donald; de Souza, Evandro Leite; Magnani, Marciane

    2016-02-01

    This study assessed the inhibitory effects of the essential oil from Origanum vulgare L. (OVEO) on Staphylococcus aureus, Listeria monocytogenes, and a mesophilic starter coculture composed of lactic acid bacteria (Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris) in Brazilian coalho cheese systems. The MIC of OVEO was 2.5 μl/ml against both S. aureus and L. monocytogenes and 0.6 μl/ml against the tested starter coculture. In cheese broth containing OVEO at 0.6 μl/ml, no decrease in viable cell counts (VCC) of both pathogenic bacteria was observed, whereas the initial VCC of the starter coculture decreased approximately 1.0 log CFU/ml after 24 h of exposure at 10°C. OVEO at 1.25 and 2.5 μl/ml caused reductions of up to 2.0 and 2.5 log CFU/ml in S. aureus and L. monocytogenes, respectively, after 24 h of exposure in cheese broth. At these same concentrations, OVEO caused a greater decrease of initial VCC of the starter coculture following 4 h of exposure. Higher concentrations of OVEO were required to decrease the VCC of all target bacteria in semisolid coalho cheese slurry compared with cheese broth. The VCC of Lactococcus spp. in coalho cheese slurry containing OVEO were always lower than those of pathogenic bacteria under the same conditions. These results suggest that the concentrations of OVEO used to control pathogenic bacteria in semihard cheese should be carefully evaluated because of its inhibitory effects on the growth of starter lactic acid cultures used during the production of the product.

  1. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    EPA Science Inventory

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  2. Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian Mustard1

    PubMed Central

    de Souza, Mark P.; Chu, Dara; Zhao, May; Zayed, Adel M.; Ruzin, Steven E.; Schichnes, Denise; Terry, Norman

    1999-01-01

    Indian mustard (Brassica juncea L.) accumulates high tissue Se concentrations and volatilizes Se in relatively nontoxic forms, such as dimethylselenide. This study showed that the presence of bacteria in the rhizosphere of Indian mustard was necessary to achieve the best rates of plant Se accumulation and volatilization of selenate. Experiments with the antibiotic ampicillin showed that bacteria facilitated 35% of plant Se volatilization and 70% of plant tissue accumulation. These results were confirmed by inoculating axenic plants with rhizosphere bacteria. Compared with axenic controls, plants inoculated with rhizosphere bacteria had 5-fold higher Se concentrations in roots (the site of volatilization) and 4-fold higher rates of Se volatilization. Plants with bacteria contained a heat-labile compound in their root exudate; when this compound was added to the rhizosphere of axenic plants, Se accumulation in plant tissues increased. Plants with bacteria had an increased root surface area compared with axenic plants; the increased area was unlikely to have caused their increased tissue Se accumulation because they did not accumulate more Se when supplied with selenite or selenomethionine. Rhizosphere bacteria also possibly increased plant Se volatilization because they enabled plants to overcome a rate-limiting step in the Se volatilization pathway, i.e. Se accumulation in plant tissues. PMID:9952452

  3. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    PubMed

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  4. Electro-responsive supramolecular graphene oxide hydrogels for active bacteria adsorption and removal

    NASA Astrophysics Data System (ADS)

    Xue, Bin; Cao, Yi; Wang, Wei

    Bacteria are major contaminations in drinking water and healthcare products. Bacteria contamination may cause severe health problems, including food poisoning and diseases. Currently water sterilization and purification methods to remove contaminated bacteria are mainly based on the size-exclusion mechanism. In order to completely remove all bacteria in water, the pore sizes of the membranes or cartilages should be comparable to the size of bacteria, which inevitable leads to high cross-membrane water pressure and slow purification speed. Moreover, the membranes can easily get clogged. Therefore it is highly demanded to develop efficient methods and novel materials for water purification. Recently, Cui and coworker have introduced a bacteria inactivation method with high efficiency and fast purification speed based on a kind of complex materials made of silver nanofibers, carbon nanotubes and cotton, operating in an electric field. With the help of electric field, the bacteria can be efficiently kill when passing through the membrance even the pore sizes are larger than bacteria. Inspired by their work, here we report a proof-of-principle demonstration of bacteria removal using electro-reponsive hydrogels. This work is funded by Six talent peaks project in Jiangsu Province, the National Natural Science Foundation of China (Nos. 11304156, 11334004, 31170813, 81421091 and 91127026), the 973 Program of China (No. 2012CB921801 and 2013CB834100), the Priority Ac.

  5. Wastewater nutrient removal in a mixed microalgae-bacteria culture: effect of light and temperature on the microalgae-bacteria competition.

    PubMed

    González-Camejo, J; Barat, R; Pachés, M; Murgui, M; Seco, A; Ferrer, J

    2018-02-01

    The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae-bacteria culture and their effects on the microalgae-bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125 µE m -2  s -1 . Other two experiments were carried out at variable temperatures: 23 ± 2°C and 28 ± 2°C at light intensity of 85 and 125 µE m -2  s -1 , respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85-125 µE m -2  s -1 and 22 ± 1°C. In the microalgae-bacteria culture studied, increasing light intensity favoured microalgae growth and limited the nitrification process. However, a non-graduated temperature increase (up to 32°C) under the light intensities studied caused the proliferation of nitrifying bacteria and the nitrite and nitrate accumulation. Hence, light intensity and temperature are key parameters in the control of the microalgae-bacteria competition. Biomass productivity significantly increased with light intensity, reaching 50.5 ± 9.6, 80.3 ± 6.5 and 94.3 ± 7.9 mgVSS L -1  d -1 for a light intensity of 40, 85 and 125 µE m -2  s -1 , respectively.

  6. Removal of bacteria Legionella pneumophila, Escherichia coli, and Bacillus subtilis by (super)cavitation.

    PubMed

    Šarc, Andrej; Kosel, Janez; Stopar, David; Oder, Martina; Dular, Matevž

    2018-04-01

    In sufficient concentrations, the pathogenic bacteria L. pneumophila can cause a respiratory illness that is known as the "Legionnaires" disease. Moreover, toxic Shiga strains of bacteria E. coli can cause life-threatening hemolytic-uremic syndrome. Because of the recent restrictions imposed on the usage of chlorine, outbreaks of these two bacterial species have become more common. In this study we have developed a novel rotation generator and its effectiveness against bacteria Legionella pneumophila and Escherichia coli was tested for various types of hydrodynamic cavitation (attached steady cavitation, developed unsteady cavitation and supercavitation). The results show that the supercavitation was the only effective form of cavitation. It enabled more than 3 logs reductions for both bacterial species and was also effective against a more persistent Gram positive bacteria, B. subtilis. The deactivation mechanism is at present unknown. It is proposed that when bacterial cells enter a supercavitation cavity, an immediate pressure drop occurs and this results in bursting of the cellular membrane. The new rotation generator that induced supercavitation proved to be economically and microbiologically far more effective than the classical Venturi section (super)cavitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Role of granular activated carbon in the microalgal cultivation from bacteria contamination.

    PubMed

    Ni, Zhi-Yi; Li, Jing-Ya; Xiong, Zhao-Zhao; Cheng, Li-Hua; Xu, Xin-Hua

    2018-01-01

    Microalgal wastewater treatment has been considered as one of the most promising measures to treat nitrogen and phosphorus in the municipal wastewater. While the municipal wastewater provides sufficient nitrogen and phosphorus for microalgal growth, the microalgae still faces serious biological contamination caused by bacteria in wastewater. In this study, the commercial granular activated carbon (GAC) was added into the simulated municipal wastewater to avoid the influence of bacteria on the growth of microalgae. The extracellular organic matter (EOM) in microalgal broth was then characterized to enlighten the role of GAC in reducing the bioavailability of EOM. The results showed that the GAC addition could increase the dry weight of microalgae from 0.06mgL -1 to 0.46mgL -1 under the condition of bacterial inoculation. The GAC could mitigate bacterial contamination mainly due to its adsorption of both bacteria and EOM that might contain algicidal extracellular substances. Moreover, compared to the control group, the GAC addition could mitigate the microalgal lysis caused by bacteria and thus greatly reduce the bioavailability of EOM from 2.80mgL -1 to 0.61mgL -1 , which was beneficial for the improvement of biostability and reuse of effluent after the microalgal harvesting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Modeling studying on ice formation by bacteria in warm-based convective cloud

    NASA Astrophysics Data System (ADS)

    Sun, J.

    2005-12-01

    Bacteria have been recognized as cloud condensation nuclei (CCN), and certain bacteria, commonly found in plants, have exhibited capacity to act as ice nuclei (IN) at temperatures as warm as -2 °C. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds at altitudes of several kilometres. It is noteworthy that over 20 years ago, one assumed the possibility of bacterial transport and their importance into cloud formation process, rain and precipitation, as well as causing disease in plants and animal kingdom. We used a 1-D cumulus cloud model with the CCOPE 19th July 1981 case and the observed field profile of bacterial concentration, to simulate the significance of bacteria as IN through condensation freezing mechanism. In this paper, we will present our results on the role of bacteria as active ice nuclei in the developing stage of cumulus clouds, and their potential significance in atmospheric sciences.

  9. Differentiating the growth phases of single bacteria using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  10. Bacteriophages of lactic acid bacteria and their impact on milk fermentations

    PubMed Central

    2011-01-01

    Every biotechnology process that relies on the use of bacteria to make a product or to overproduce a molecule may, at some time, struggle with the presence of virulent phages. For example, phages are the primary cause of fermentation failure in the milk transformation industry. This review focuses on the recent scientific advances in the field of lactic acid bacteria phage research. Three specific topics, namely, the sources of contamination, the detection methods and the control procedures will be discussed. PMID:21995802

  11. [The frequency of bacteria in human gallstones].

    PubMed

    Lévay, Bernadett; Szabó, Györgyi; Szijártó, Attila; Gamal, Eldin Mohamed

    2013-12-01

    Complications caused by lost gallstones within the abdominal cavity are well known. Abscesses, perforation of the gastro-intestinal tract were all described in the literature, but gallstones were found in hernial sac, or even in sputum after it penetrated through the diaphragm into the respiratory tract. These complications can develop between several weeks to several years postoperatively. Most complications can be treated surgically only. Fifty gallstones and bile samples were collected from 50 patients who underwent cholecystectomy (36 female / 14 male, avarge age: 60.8 ± 6.8 years). All samples were sent for microbiological examination. bacterial colonization of the gallstone and the bile were found in 16 cases. Four of them showed acute inflammation in the gallbladder while pathological signs of chronic inflammation in the gallbladder wall were detected in eight cases. Empyema was found in four cases. Bacteria from enteral origin (Esherichia coli, Enterococcus faecalis, Enterobacter cloacae) was detected in 13 cases, while non-enteral (Klebsiella penumoniae, Streptococcus alfa-haemoliticus) colony were detected in three cases. Positive bacterial cultures were identified in twelve female and fourmale patients. Different types of bacteria can be found in the gallstones, which may cause various complications.

  12. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes

    PubMed Central

    Argudín, Maria Angeles; Deplano, Ariane; Meghraoui, Alaeddine; Dodémont, Magali; Heinrichs, Amelie; Denis, Olivier; Nonhoff, Claire; Roisin, Sandrine

    2017-01-01

    Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world. PMID:28587316

  13. COMPOSITE SAMPLING FOR DETECTION OF COLIFORM BACTERIA IN WATER SUPPLY

    EPA Science Inventory

    Low densities of coliform bacteria introduced into distribution systems may survive in protected habitats. These organisms may interfere with and cause confusion in the use of the coliforms as indicators of sewage contamination of drinking water. Methods of increasing the probabi...

  14. Depth-Related Changes in Community Structure of Culturable Mineral Weathering Bacteria and in Weathering Patterns Caused by Them along Two Contrasting Soil Profiles

    PubMed Central

    Huang, Jing; Xi, Jun; Huang, Zhi; Wang, Qi; Zhang, Zhen-Dong

    2014-01-01

    Bacteria play important roles in mineral weathering and soil formation. However, few reports of mineral weathering bacteria inhabiting subsurfaces of soil profiles have been published, raising the question of whether the subsurface weathering bacteria are fundamentally distinct from those in surface communities. To address this question, we isolated and characterized mineral weathering bacteria from two contrasting soil profiles with respect to their role in the weathering pattern evolution, their place in the community structure, and their depth-related changes in these two soil profiles. The effectiveness and pattern of bacterial mineral weathering were different in the two profiles and among the horizons within the respective profiles. The abundance of highly effective mineral weathering bacteria in the Changshu profile was significantly greater in the deepest horizon than in the upper horizons, whereas in the Yanting profile it was significantly greater in the upper horizons than in the deeper horizons. Most of the mineral weathering bacteria from the upper horizons of the Changshu profile and from the deeper horizons of the Yanting profile significantly acidified the culture media in the mineral weathering process. The proportion of siderophore-producing bacteria in the Changshu profile was similar in all horizons except in the Bg2 horizon, whereas the proportion of siderophore-producing bacteria in the Yanting profile was higher in the upper horizons than in the deeper horizons. Both profiles existed in different highly depth-specific culturable mineral weathering community structures. The depth-related changes in culturable weathering communities were primarily attributable to minor bacterial groups rather than to a change in the major population structure. PMID:24077700

  15. Plants as sources of airborne bacteria, including ice nucleation-active bacteria.

    PubMed

    Lindemann, J; Constantinidou, H A; Barchet, W R; Upper, C D

    1982-11-01

    Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colony-forming units per m over young corn and wet soil to 663 colony-forming units per m over dry soil and 6,500 colony-forming units per m over a closed wheat canopy. In simultaneous samples, concentrations of viable bacteria in the air 10 m inside an alfalfa field were fourfold higher than those over a field with dry, bare soil immediately upwind. The upward flux of viable bacteria over alfalfa was three- to fourfold greater than over dry soil. Concentrations of ice nucleation-active bacteria were higher over plants than over soil. Thus, plant canopies may constitute a major source of bacteria, including ice nucleation-active bacteria, in the air.

  16. Symbiotic bacteria contribute to increasing the population size of a freshwater crustacean, Daphnia magna.

    PubMed

    Peerakietkhajorn, Saranya; Tsukada, Koji; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2015-04-01

    The filter-feeding crustacean Daphnia is a key organism in freshwater ecosystems. Here, we report the effect of symbiotic bacteria on ecologically important life history traits, such as population dynamics and longevity, in Daphnia magna. By disinfection of the daphniid embryos with glutaraldehyde, aposymbiotic daphniids were prepared and cultured under bacteria-free conditions. Removal of bacteria from the daphniids was monitored by quantitative polymerase chain reaction for bacterial 16S rRNA gene. The population of aposymbiotic daphniids was reduced 10-folds compared with that of the control daphniids. Importantly, re-infection with symbiotic bacteria caused daphniids to regain bacteria and increase their fecundity to the level of the control daphniids, suggesting that symbiotic bacteria regulate Daphnia fecundity. To identify the species of symbiotic bacteria, 16S rRNA genes of bacteria in daphniids were sequenced. This revealed that 50% of sequences belonged to the Limnohabitans sp. of the Betaproteobacteria class and that the diversity of bacterial taxa was relatively low. These results suggested that symbiotic bacteria have a beneficial effect on D. magna, and that aposymbiotic Daphnia are useful tools in understanding the role of symbiotic bacteria in the environmental responses and evolution of their hosts. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Detecting cell division of Pseudomonas aeruginosa bacteria from bright-field microscopy images with hidden conditional random fields.

    PubMed

    Ong, Lee-Ling S; Xinghua Zhang; Kundukad, Binu; Dauwels, Justin; Doyle, Patrick; Asada, H Harry

    2016-08-01

    An approach to automatically detect bacteria division with temporal models is presented. To understand how bacteria migrate and proliferate to form complex multicellular behaviours such as biofilms, it is desirable to track individual bacteria and detect cell division events. Unlike eukaryotic cells, prokaryotic cells such as bacteria lack distinctive features, causing bacteria division difficult to detect in a single image frame. Furthermore, bacteria may detach, migrate close to other bacteria and may orientate themselves at an angle to the horizontal plane. Our system trains a hidden conditional random field (HCRF) model from tracked and aligned bacteria division sequences. The HCRF model classifies a set of image frames as division or otherwise. The performance of our HCRF model is compared with a Hidden Markov Model (HMM). The results show that a HCRF classifier outperforms a HMM classifier. From 2D bright field microscopy data, it is a challenge to separate individual bacteria and associate observations to tracks. Automatic detection of sequences with bacteria division will improve tracking accuracy.

  18. X-ray photoelectron spectroscopic evidence for bacteria-enhanced dissolution of hornblende

    NASA Astrophysics Data System (ADS)

    Kalinowski, B. E.; Liermann, L. J.; Brantley, S. L.; Barnes, A.; Pantano, C. G.

    2000-04-01

    An Arthrobacter species capable of extracting Fe from hornblende was isolated from a soil from the Adirondacks, NY (USA). This bacteria isolate, used in batch experiments with hornblende, accelerated the release of Fe from hornblende without measurably affecting Al release. The isolate produces both low molecular weight organic acids (LMWOA) and a catecholate siderophore. Polished hornblende (glass and crystal) discs were analyzed with X-ray photoelectron spectroscopy (XPS) before and after incubation with growing Arthrobacter sp. to investigate whether the bacteria caused a distinguishable chemical signature on the upper 100 Å of mineral surface. After removal of the arthrobacter grown on hornblende crystal or glass substrates using lysozyme, XPS revealed surface depletion of Fe for samples grown for several days in buffered (crystal) and unbuffered (crystal and glass) media. Fe/Si ratios of hornblende surfaces dissolved under biotic conditions are significantly lower than Fe/Si ratios on surfaces dissolved under abiotic conditions for similar amounts of time. Enhanced Fe release and the formation of Fe-depleted surfaces is inferred to be caused by catechol complexation at the mineral surface. Because natural siderophore was not isolated in sufficient quantities to run bacteria-free leaching experiments, parallel investigations were run with a commercially available siderophore (desferrioxamine B). Desferrioxamine B was observed to enhance release of Fe, Si, and Al from hornblende both with and without added bacteria. Formation of desferrioxamine-Fe surface complexes were probed by studying the multiple splitting and shift in intensities of the N 1s line analyzed by XPS on siderophore ± Fe on gold surfaces and siderophore + hornblende crystal surfaces. Based upon the observed formation of an hydroxamate (desferrioxamine) surface complex on hornblende, we infer that catecholate siderophores, such as those produced by the arthrobacter, also complex on the

  19. The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes

    PubMed Central

    Jończyk-Matysiak, Ewa; Łusiak-Szelachowska, Marzanna; Kłak, Marlena; Bubak, Barbara; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata; Żaczek, Maciej; Fortuna, Wojciech; Rogóż, Paweł; Letkiewicz, Sławomir; Szufnarowski, Krzysztof; Górski, Andrzej

    2015-01-01

    Intracellular killing of bacteria is one of the fundamental mechanisms against invading pathogens. Impaired intracellular killing of bacteria by phagocytes may be the reason of chronic infections and may be caused by antibiotics or substances that can be produced by some bacteria. Therefore, it was of great practical importance to examine whether phage preparations may influence the process of phagocyte intracellular killing of bacteria. It may be important especially in the case of patients qualified for experimental phage therapy (approximately half of the patients with chronic bacterial infections have their immunity impaired). Our analysis included 51 patients with chronic Gram-negative and Gram-positive bacterial infections treated with phage preparations at the Phage Therapy Unit in Wroclaw. The aim of the study was to investigate the effect of experimental phage therapy on intracellular killing of bacteria by patients' peripheral blood monocytes and polymorphonuclear neutrophils. We observed that phage therapy does not reduce patients' phagocytes' ability to kill bacteria, and it does not affect the activity of phagocytes in patients with initially reduced ability to kill bacteria intracellularly. Our results suggest that experimental phage therapy has no significant adverse effects on the bactericidal properties of phagocytes, which confirms the safety of the therapy. PMID:26783541

  20. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection.

    PubMed

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee Jeong; Ahn, Jae Sung; Lee, Taehoon; Ahn, Jong Joon

    2017-10-01

    Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. Copyright©2017. The Korean Academy of Tuberculosis and Respiratory Diseases

  1. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection

    PubMed Central

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae-Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee-Jeong; Ahn, Jae-Sung

    2017-01-01

    Background Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Methods Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. Results A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. Conclusion The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. PMID:28905531

  2. Pulmonary inflammation induced by bacteria-free outer membrane vesicles from Pseudomonas aeruginosa.

    PubMed

    Park, Kyong-Su; Lee, Jaewook; Jang, Su Chul; Kim, Sae Rom; Jang, Myoung Ho; Lötvall, Jan; Kim, Yoon-Keun; Gho, Yong Song

    2013-10-01

    Pseudomonas aeruginosa is often involved in lung diseases such as cystic fibrosis. These bacteria can release outer membrane vesicles (OMVs), which are bilayered proteolipids with diameters of approximately 20 to 250 nm. In vitro, these OMVs activate macrophages and airway epithelial cells. The aim of this study was to determine whether OMVs from P. aeruginosa can induce pulmonary inflammation in vivo and to elucidate the mechanisms involved. Bacteria-free OMVs were isolated from P. aeruginosa cultures. Wild-type, Toll-like receptor (TLR)2 and TLR4 knockout mice were exposed to OMVs by the airway, and inflammation in the lung was assessed using differential counts, histology, and quantification of chemokines and cytokines. The involvement of the TLR2 and TLR4 pathways was studied in human cells using transfection. OMVs given to the mouse lung caused dose- and time-dependent pulmonary cellular inflammation. Furthermore, OMVs increased concentrations of several chemokines and cytokines in the mouse lungs and mouse alveolar macrophages. The inflammatory responses to OMVs were comparable to those of live bacteria and were only partly regulated by the TLR2 and TLR4 pathways, according to studies in knockout mice. This study shows that OMVs from P. aeruginosa cause pulmonary inflammation without live bacteria in vivo. This effect is only partly controlled by TLR2 and TLR4. The role of OMVs in clinical disease warrants further studies because targeting of OMVs in addition to live bacteria may add clinical benefit compared with treating with antibiotics alone.

  3. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides.

    PubMed

    Lázár, Viktória; Martins, Ana; Spohn, Réka; Daruka, Lejla; Grézal, Gábor; Fekete, Gergely; Számel, Mónika; Jangir, Pramod K; Kintses, Bálint; Csörgő, Bálint; Nyerges, Ákos; Györkei, Ádám; Kincses, András; Dér, András; Walter, Fruzsina R; Deli, Mária A; Urbán, Edit; Hegedűs, Zsófia; Olajos, Gábor; Méhi, Orsolya; Bálint, Balázs; Nagy, István; Martinek, Tamás A; Papp, Balázs; Pál, Csaba

    2018-06-01

    Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.

  4. The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes

    PubMed Central

    Ma, Yantian; Zhang, He; Du, Ye; Tian, Tian; Xiang, Ting; Liu, Xiande; Wu, Fasi; An, Lizhe; Wang, Wanfu; Gu, Ji-Dong; Feng, Huyuan

    2015-01-01

    In this study, we compared the microbial communities colonising ancient cave wall paintings of the Mogao Grottoes exhibiting signs of biodeterioration. Ten samples were collected from five different caves built during different time periods and analysed using culture-independent and culture-dependent methods. The clone library results revealed high microbial diversity, including the bacterial groups Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Chloroflexi and the fungal groups Euascomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes, Saccharomycetes, Plectomycetes, Pezizomycetes, Zygomycota, and Basidiomycota. The bacterial community structures differed among the samples, with no consistent temporal or spatial trends. However, the fungal community diversity index correlated with the building time of the caves independent of environmental factors (e.g., temperature or relative humidity). The enrichment cultures revealed that many culturable strains were highly resistant to various stresses and thus may be responsible for the damage to cave paintings in the Mogao Grottoes. PMID:25583346

  5. The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes.

    PubMed

    Ma, Yantian; Zhang, He; Du, Ye; Tian, Tian; Xiang, Ting; Liu, Xiande; Wu, Fasi; An, Lizhe; Wang, Wanfu; Gu, Ji-Dong; Feng, Huyuan

    2015-01-13

    In this study, we compared the microbial communities colonising ancient cave wall paintings of the Mogao Grottoes exhibiting signs of biodeterioration. Ten samples were collected from five different caves built during different time periods and analysed using culture-independent and culture-dependent methods. The clone library results revealed high microbial diversity, including the bacterial groups Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Chloroflexi and the fungal groups Euascomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes, Saccharomycetes, Plectomycetes, Pezizomycetes, Zygomycota, and Basidiomycota. The bacterial community structures differed among the samples, with no consistent temporal or spatial trends. However, the fungal community diversity index correlated with the building time of the caves independent of environmental factors (e.g., temperature or relative humidity). The enrichment cultures revealed that many culturable strains were highly resistant to various stresses and thus may be responsible for the damage to cave paintings in the Mogao Grottoes.

  6. Recovery of anaerobic bacteria from wounds after lawn-mower injuries.

    PubMed

    Brook, Itzhak

    2005-02-01

    Accidental injury while using lawn mowers can cause serious infectious complications in the injured extremity. Anaerobic bacteria were rarely recovered from this infection. Two children who sustained injury in their foot by a lawn mower developed severe wound infection. Culture of the wound from 1 patient had heavy growth of Clostridium bifermentans and Peptostreptococcus magnus, and the culture from the other child grew Clostridium perfringens. Antimicrobial therapy directed at the pathogens and vigorous surgical irrigation and debridement led to complete recovery from the infection. This report illustrates the recovery of anaerobic bacteria from children that had wound infection after lawn-mower injury.

  7. Microbiological Analysis of Surfaces of Leonardo Da Vinci's Atlantic Codex: Biodeterioration Risk.

    PubMed

    Tarsitani, Gianfranco; Moroni, Catia; Cappitelli, Francesca; Pasquariello, Giovanna; Maggi, Oriana

    2014-01-01

    Following the discovery of discoloration on some pages of the Atlantic Codex (AC) of Leonardo da Vinci kept in the Biblioteca Ambrosiana in Milan, some investigations have been carried out to verify the presence of microorganisms, such as bacteria and fungi. To verify the presence of microorganisms a noninvasive method of sampling has been used that was efficient and allowed us to highlight the microbial facies of the material that was examined using conventional microbiological techniques. The microclimatic conditions in the storage room as well as the water content of the volume were also assessed. The combined observations allowed the conclusion that the discoloration of suspected biological origin on some pages of AC is not related to the presence or current attack of microbial agents.

  8. Microbiological Analysis of Surfaces of Leonardo Da Vinci's Atlantic Codex: Biodeterioration Risk

    PubMed Central

    Moroni, Catia; Pasquariello, Giovanna; Maggi, Oriana

    2014-01-01

    Following the discovery of discoloration on some pages of the Atlantic Codex (AC) of Leonardo da Vinci kept in the Biblioteca Ambrosiana in Milan, some investigations have been carried out to verify the presence of microorganisms, such as bacteria and fungi. To verify the presence of microorganisms a noninvasive method of sampling has been used that was efficient and allowed us to highlight the microbial facies of the material that was examined using conventional microbiological techniques. The microclimatic conditions in the storage room as well as the water content of the volume were also assessed. The combined observations allowed the conclusion that the discoloration of suspected biological origin on some pages of AC is not related to the presence or current attack of microbial agents. PMID:25574171

  9. Essential Oils and Their Components as Modulators of Antibiotic Activity against Gram-Negative Bacteria

    PubMed Central

    Aelenei, Petruta; Miron, Anca; Trifan, Adriana; Bujor, Alexandra; Gille, Elvira; Aprotosoaie, Ana Clara

    2016-01-01

    Gram-negative bacteria cause infections that are difficult to treat due to the emergence of multidrug resistance. This review summarizes the current status of the studies investigating the capacity of essential oils and their components to modulate antibiotic activity against Gram-negative bacteria. Synergistic interactions are particularly discussed with reference to possible mechanisms by which essential oil constituents interact with antibiotics. Special emphasis is given to essential oils and volatile compounds that inhibit efflux pumps, thus reversing drug resistance in Gram-negative bacteria. In addition, indifference and antagonism between essential oils/volatile compounds and conventional antibiotics have also been reported. Overall, this literature review reveals that essential oils and their purified components enhance the efficacy of antibiotics against Gram-negative bacteria, being promising candidates for the development of new effective formulations against Gram-negative bacteria. PMID:28930130

  10. Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database.

    PubMed

    Pan, Xubin; Jones, Kim D

    2012-01-01

    Bacteria are one of the major causes of surface water impairments in the USA. Over the past several years, best management practices, including detention basins, manufactured devices, grass swales, filters and bioretention cells have been used to remove bacteria and other pollutants from stormwater runoff. However, there are data gaps in the comprehensive studies of bacteria concentrations in stormwater runoff. In this paper, the event mean concentration (EMC) of fecal indicator bacteria (Enterococcus, Escherichia coli, fecal Streptococcus group bacteria, and fecal coliform) across the USA was retrieved from the international stormwater best management practices database to analyze the seasonal variations of inflow and outflow event mean concentrations and removal efficiencies. The Kruskal-Wallis test was employed to determine the seasonal variations of bacteria indicator concentrations and removals, and the two-sample Kolmogorov-Smirnov test was used for comparing different seasonal outcomes. The results indicate that all the inflow EMC of FIB in stormwater runoff is above the water quality criteria. The seasonal differences of fecal Streptococcus group bacteria and fecal coliform are significant. Summer has the potential to increase the bacteria EMC and illustrate the seasonal differences.

  11. A case of hyperammonemia with obstructive urinary tract infection by urease-producing bacteria.

    PubMed

    Goda, Toshiaki; Watanabe, Kotaro; Kobayashi, Junya; Nagai, Yasuharu; Ohara, Nobuyuki; Takahashi, Daisuke

    2017-03-28

    A 79-year-old woman was admitted emergently for disturbance of consciousness. Her consciousness level was Japan coma scale 20, and she presented with hypermyotonia. Brain magnetic resonance imaging and cerebrospinal fluid examination showed normal findings. Her blood tests showed an increased ammonia level of 291 μg/dl with normal liver function. We catheterized the bladder for urinary retention. Eight hours after admission, the blood level of ammonia decreased to 57 μg/dl and the patient's consciousness level improved. Corynebacterium pseudodiphtheriticum, which is a bacteria producing urease, was detected from a urine culture. It is important to recognize that obstructive urinary tract infection caused by urease-producing bacteria can cause hyperammonemia.

  12. Prions: Protein Rebels with a Cause!

    ERIC Educational Resources Information Center

    Marshall, Karen E.; Serpell, Louise C.

    2017-01-01

    Traditionally we consider infection to arise from viruses, bacteria and parasites. Prions are infectious proteins without any nucleic acids, and therefore do not represent living things. Despite this, they have the ability to replicate themselves and cause diseases such as mad cow disease (bovine spongiform encepthalopathy) and human…

  13. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  14. A Role of Oral Bacteria in Bisphosphonate-induced Osteonecrosis of the Jaw

    PubMed Central

    Mawardi, H.; Giro, G.; Kajiya, M.; Ohta, K.; Almazrooa, S.; Alshwaimi, E.; Woo, S.-B.; Nishimura, I.; Kawai, T.

    2011-01-01

    No consensus has yet been reached to associate oral bacteria conclusively with the etio-pathogenesis of bisphosphonate-induced osteonecrosis of the jaw (BONJ). Therefore, the present study examined the effects of oral bacteria on the development of BONJ-like lesions in a mouse model. In the pamidronate (Pam)-treated mice, but not control non-drug-treated mice, tooth extraction followed by oral infection with Fusobacterium nucleatum caused BONJ-like lesions and delayed epithelial healing, both of which were completely suppressed by a broad-spectrum antibiotic cocktail. Furthermore, in both in vitro and in vivo experiments, the combination of Pam and Fusobacterium nucleatum caused the death of gingival fibroblasts (GFs) and down-regulated their production of keratinocyte growth factor (KGF), which induces epithelial cell growth and migration. Therefore, in periodontal tissues pre-exposed to bisphosphonate, bacterial infection at tooth extraction sites caused diminished KGF expression in GFs, leading to a delay in the epithelial wound-healing process that was mitigated by antibiotics. PMID:21921248

  15. Bacteria on catheters in patients undergoing peritoneal dialysis.

    PubMed

    Pihl, Maria; Davies, Julia R; Johansson, Ann-Cathrine; Svensäter, Gunnel

    2013-01-01

    Peritonitis is the leading cause of morbidity for peritoneal dialysis (PD) patients, and microbial biofilms have previously been identified on catheters from infected patients. However, few studies of catheters from patients without clinical signs of infection have been undertaken. The aim of the present study was to investigate the extent to which bacteria are present on catheters from PD patients with no symptoms of infection. Microbiologic culturing under aerobic and anaerobic conditions and confocal laser scanning microscopy were used to determine the distribution of bacteria on PD catheters from 15 patients without clinical signs of infection and on catheters from 2 infected patients. The 16S rRNA gene sequencing technique was used to identify cultured bacteria. Bacteria were detected on 12 of the 15 catheters from patients without signs of infection and on the 2 catheters from infected patients. Single-species and mixed-microbial communities containing up to 5 species were present on both the inside and the outside along the whole length of the colonized catheters. The bacterial species most commonly found were the skin commensals Staphylococcus epidermidis and Propionibacterium acnes, followed by S. warneri and S. lugdunensis. The strains of these micro-organisms, particularly those of S. epidermidis, varied in phenotype with respect to their tolerance of the major classes of antibiotics. Bacteria were common on catheters from patients without symptoms of infection. Up to 4 different bacterial species were found in close association and may represent a risk factor for the future development of peritonitis in patients hosting such micro-organisms.

  16. Photodynamic inactivation of antibiotic-resistant bacteria and biofilms by hematoporphyrin monomethyl ether.

    PubMed

    Liu, Chengcheng; Hu, Min; Ma, Dandan; Lei, Jin'e; Xu, Jiru

    2016-02-01

    The worldwide increase in bacterial antibiotic resistance has led to a search for alternative antibacterial therapies. A promising approach to killing antibiotic-resistant bacteria is photodynamic antimicrobial chemotherapy, which uses light in combination with a photosensitizer to induce a phototoxic reaction. We evaluated the photodynamic inactivation (PDI) efficiency of hematoporphyrin monomethyl ether (HMME) on antibiotic-resistant bacteria and biofilms. HMME exhibited no significant dark toxicity and provided dose-dependent inactivation of antibiotic-resistant bacteria and biofilms. After incubation with 100-μM HMME and irradiation with 72-J cm(-2) white light, 4.19-7.59 log10 reductions in survival were achieved in planktonic suspension. Antibiotic-resistant strains were as susceptible to PDI in biofilms as in planktonic suspensions, but the inactivation of bacterial cells in biofilms was attenuated. In addition, gram-positive bacterial strains and biofilms were more susceptible than gram-negative strains and biofilms to the PDI effect of HMME. Thus, HMME is a promising photosensitizer for the treatment of infectious diseases caused by antibiotic-resistant bacteria, especially gram-positive bacteria.

  17. The influence of bacteria on multitrophic interactions among plants, psyllids, and pathogen.

    PubMed

    Tamborindeguy, Cecilia; Huot, Ordom Brian; Ibanez, Freddy; Levy, Julien

    2017-12-01

    The recent emergence of several plant diseases caused by psyllid-borne bacterial pathogens worldwide (Candidatus Liberibacter spp.) has created renewed interest on the interaction between psyllids and bacteria. In spite of these efforts to understand psyllid association with bacteria, many aspects of their interactions remain poorly understood. As more organisms are studied, subtleties on the molecular interactions as well as on the effects of the bacteria on the psyllid host are being uncovered. Additionally, psyllid-borne bacterial phytopathogens can also affect the host plant, which in turn can impact psyllid physiology and behavior. Here, we review the current literature on different aspects of the influence of bacteria on multitrophic interactions among plants, psyllids, and pathogens. We then highlight gaps that need to be addressed to advance this field, which can have significant implications for controlling these newly emergent and other plant diseases. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  18. Extended-spectrum β-lactamase-producing bacteria causing community-acquired urinary tract infections in children.

    PubMed

    Megged, Orli

    2014-09-01

    Extended-spectrum β-lactamase (ESBL)-producing bacteria are infrequent pathogens of community-acquired (CA) urinary tract infections (UTIs) in children. The aim of this study was to assess the frequency of and identify risk factors for CA-UTIs due to ESBL-producing microorganisms (CA-ESBL-UTI). The medical records of all children diagnosed with CA-ESBL-UTI at our medical center between 2003 and 2013 were reviewed. Patients with non-ESBL-UTIs during the same period were included as controls. Eighty cases of CA-ESBL-UTI were identified. The incidence of ESBL-UTI increased from 2 to 3.8% during the study period. Compared to children with non-ESBL-UTI, those with ESBL were more likely to be of Arab descent, to have underlying medical conditions, to have received antibiotics in the month prior to the UTI and to have been previously hospitalized. The mean duration of hospitalization for patients with an ESBL-UTI was significantly longer than that for patients with a non-ESBL UTI (3.6 vs. 2 days; P = 0.01). In multivariate analysis, Arab ethnicity [odds ratio (OR) 6.1; 95 % confidence interval (CI) 2.7-13.6] and recent antibiotic treatment (OR 4.0; 95 % CI 1.6-10.4) were risk factors for CA-ESBL-UTI. The incidence of CA-ESBL-UTI is rising. The empiric treatment for suspected UTI in children who had been previously hospitalized and who had received antibiotics in the last month should cover ESBL-producing bacteria.

  19. Combination Therapy for Treatment of Infections with Gram-Negative Bacteria

    PubMed Central

    Cosgrove, Sara E.; Maragakis, Lisa L.

    2012-01-01

    Summary: Combination antibiotic therapy for invasive infections with Gram-negative bacteria is employed in many health care facilities, especially for certain subgroups of patients, including those with neutropenia, those with infections caused by Pseudomonas aeruginosa, those with ventilator-associated pneumonia, and the severely ill. An argument can be made for empiric combination therapy, as we are witnessing a rise in infections caused by multidrug-resistant Gram-negative organisms. The wisdom of continued combination therapy after an organism is isolated and antimicrobial susceptibility data are known, however, is more controversial. The available evidence suggests that the greatest benefit of combination antibiotic therapy stems from the increased likelihood of choosing an effective agent during empiric therapy, rather than exploitation of in vitro synergy or the prevention of resistance during definitive treatment. In this review, we summarize the available data comparing monotherapy versus combination antimicrobial therapy for the treatment of infections with Gram-negative bacteria. PMID:22763634

  20. Development of a filter to prevent infections with spore-forming bacteria in injecting drug users.

    PubMed

    Alhusein, Nour; Scott, Jenny; Kasprzyk-Hordern, Barbara; Bolhuis, Albert

    2016-12-01

    In heroin injectors, there have been a number of outbreaks caused by spore-forming bacteria, causing serious infections such as anthrax or botulism. These are, most likely, caused by injecting contaminated heroin, and our aim was to develop a filter that efficiently removes these bacteria and is also likely to be acceptable for use by people who inject drugs (i.e. quick, simple and not spoil the hit). A prototype filter was designed and different filter membranes were tested to assess the volume of liquid retained, filtration time and efficiency of the filter at removing bacterial spores. Binding of active ingredients of heroin to different types of membrane filters was determined using a highly sensitive analytical chemistry technique. Heroin samples that were tested contained up to 580 bacteria per gramme, with the majority being Bacillus spp., which are spore-forming soil bacteria. To remove these bacteria, a prototype filter was designed to fit insulin-type syringes, which are commonly used by people who inject drugs (PWIDs). Efficient filtration of heroin samples was achieved by combining a prefilter to remove particles and a 0.22 μm filter to remove bacterial spores. The most suitable membrane was polyethersulfone (PES). This membrane had the shortest filtration time while efficiently removing bacterial spores. No or negligible amounts of active ingredients in heroin were retained by the PES membrane. This study successfully produced a prototype filter designed to filter bacterial spores from heroin samples. Scaled up production could produce an effective harm reduction tool, especially during outbreaks such as occurred in Europe in 2009/10 and 2012.

  1. Vanadium removal from LD converter slag using bacteria and fungi.

    PubMed

    Mirazimi, S M J; Abbasalipour, Z; Rashchi, F

    2015-04-15

    Removal of vanadium from Linz-Donawits (LD) converter slag was investigated by means of three different species of microbial systems: Acidithiobacillus thiooxidans (autotrophic bacteria), Pseudomonas putida (heterotrophic bacteria) and Aspergillus niger (fungi). The bioleaching process was carried out in both one-step and two-step process and the leaching efficiencies in both cases were compared. Formation of inorganic and organic acids during the leaching process caused mobilization of vanadium. In order to reduce toxic effects of the metal species on the above mentioned microorganisms, a prolonged adaptation process was performed. Both bacteria, A. thiooxidans and P. putida were able to remove more than 90% of vanadium at slag concentrations of 1-5 g L(-1) after 15 days. Also, the maximum achievable vanadium removal in the fungal system was approximately 92% at a slag concentration of 1 g L(-1) after 22 days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria.

    PubMed Central

    Weiss, J; Elsbach, P; Shu, C; Castillo, J; Grinna, L; Horwitz, A; Theofan, G

    1992-01-01

    The bactericidal/permeability-increasing protein (BPI) of neutrophils and BPI fragments neutralize the effects of isolated Gram-negative bacterial lipopolysaccharides both in vitro and in vivo. Since endotoxin most commonly enters the host as constituents of invading Gram-negative bacteria, we raised the question: Can BPI and its bioactive fragments also protect against whole bacteria? To determine whether the bactericidal and endotoxin-neutralizing activities of BPI/fragments are expressed when Gram-negative bacteria are introduced to the complex environment of whole blood we examined the effects of added BPI and proteolytically prepared and recombinant NH2-terminal fragments on: (a) the fate of serum-resistant encapsulated Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa that survive the antibacterial actions of whole blood and (b) the ability of these bacteria to trigger cytokine release. Added BPI in nanomolar concentrations killed each of three encapsulated strains of E. coli and in closely parallel fashion inhibited tumor necrosis factor (TNF) release. Holo-BPI and its NH2-terminal fragment were equipotent toward a rough LPS chemotype K1-encapsulated strain, but the fragment was substantially more potent than holo-BPI toward two encapsulated smooth LPS chemotype strains. TNF release induced by K. pneumoniae and P. aeruginosa was also inhibited by both holo-BPI and fragment but, at the protein concentrations tested, P. aeruginosa was killed only by the fragment and K. pneumoniae was not killed by either protein. The bactericidal action of BPI/fragment toward E. coli is inhibited by C7-depleted serum, but accelerated by normal serum, indicating that BPI, acting in synergy with late complement components, enhances extracellular killing of serum-resistant bacteria. Thus, BPI and an even more potent NH2-terminal fragment may protect against Gram-negative bacteria in the host by blocking bacterial proliferation as well as endotoxin

  3. Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria.

    PubMed

    Weiss, J; Elsbach, P; Shu, C; Castillo, J; Grinna, L; Horwitz, A; Theofan, G

    1992-09-01

    The bactericidal/permeability-increasing protein (BPI) of neutrophils and BPI fragments neutralize the effects of isolated Gram-negative bacterial lipopolysaccharides both in vitro and in vivo. Since endotoxin most commonly enters the host as constituents of invading Gram-negative bacteria, we raised the question: Can BPI and its bioactive fragments also protect against whole bacteria? To determine whether the bactericidal and endotoxin-neutralizing activities of BPI/fragments are expressed when Gram-negative bacteria are introduced to the complex environment of whole blood we examined the effects of added BPI and proteolytically prepared and recombinant NH2-terminal fragments on: (a) the fate of serum-resistant encapsulated Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa that survive the antibacterial actions of whole blood and (b) the ability of these bacteria to trigger cytokine release. Added BPI in nanomolar concentrations killed each of three encapsulated strains of E. coli and in closely parallel fashion inhibited tumor necrosis factor (TNF) release. Holo-BPI and its NH2-terminal fragment were equipotent toward a rough LPS chemotype K1-encapsulated strain, but the fragment was substantially more potent than holo-BPI toward two encapsulated smooth LPS chemotype strains. TNF release induced by K. pneumoniae and P. aeruginosa was also inhibited by both holo-BPI and fragment but, at the protein concentrations tested, P. aeruginosa was killed only by the fragment and K. pneumoniae was not killed by either protein. The bactericidal action of BPI/fragment toward E. coli is inhibited by C7-depleted serum, but accelerated by normal serum, indicating that BPI, acting in synergy with late complement components, enhances extracellular killing of serum-resistant bacteria. Thus, BPI and an even more potent NH2-terminal fragment may protect against Gram-negative bacteria in the host by blocking bacterial proliferation as well as endotoxin

  4. BACTERICIDAL COATINGS ON TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT

    DTIC Science & Technology

    2017-07-07

    Activity by Bacillus sp. P11” Food Bioprocess Technol. 4:822- 828. (2011) Levy, S.B and Marshal,l B.; “ Antibacterial resistance worldwide: causes...TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT by Tobyn A. Branck Courtney M. Cowell Jennifer M. Rego and...October 2011 – September 2015 4. TITLE AND SUBTITLE BACTERICIDAL COATINGS ON TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT

  5. Bacteria between protists and phages: from antipredation strategies to the evolution of pathogenicity.

    PubMed

    Brüssow, Harald

    2007-08-01

    Bacteriophages and protists are major causes of bacterial mortality. Genomics suggests that phages evolved well before eukaryotic protists. Bacteria were thus initially only confronted with phage predators. When protists evolved, bacteria were caught between two types of predators. One successful antigrazing strategy of bacteria was the elaboration of toxins that would kill the grazer. The released cell content would feed bystander bacteria. I suggest here that, to fight grazing protists, bacteria teamed up with those phage predators that concluded at least a temporary truce with them in the form of lysogeny. Lysogeny was perhaps initially a resource management strategy of phages that could not maintain infection chains. Subsequently, lysogeny might have evolved into a bacterium-prophage coalition attacking protists, which became a food source for them. When protists evolved into multicellular animals, the lysogenic bacteria tracked their evolving food source. This hypothesis could explain why a frequent scheme of bacterial pathogenicity is the survival in phagocytes, why a significant fraction of bacterial pathogens have prophage-encoded virulence genes, and why some virulence factors of animal pathogens are active against unicellular eukaryotes. Bacterial pathogenicity might thus be one playing option of the stone-scissor-paper game played between phages-bacteria-protists, with humans getting into the crossfire.

  6. Changes in the proteome of Mastitis-causing escherichia coli strains that affect pathogenesis

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. Milk is the environment in which bacteria must grow to establish an infection of the mammary gland. However, milk is not a rich growth media for bacteria. In fact, milk naturally contains many mechanisms to inhibit bacterial ...

  7. Pathogenic bacteria carried by companion animals and their susceptibility to antibacterial agents.

    PubMed

    Buma, Ryoko; Maeda, Takuya; Kamei, Masaharu; Kourai, Hiroki

    2006-03-01

    Results of the investigation showed that there was a difference in the bacteria isolated from dogs, cats and their living environment. The number and species isolated from the hair and front paw samples from dogs kept outdoors and from cats were greater and more varied than those from the samples from dogs kept indoors. Staphylococcus, Micrococcus and Bacillus were frequently detected from skin surfaces. On the other hand, Escherichia, Pseudomonas, Proteus and others were detected on each sampling area on dogs kept outdoors and on cats. About 60% of the bacteria commonly causes infectious diseases and carries a risk of food poisoning. Moreover, Pasteurella multocida, which causes pasteurellasis, a kind of zoonosis, was isolated from dogs and cats. These pathogenic bacteria were transmitted from animals to humans by direct contact. This result suggests that direct contact with dogs and cats and contact with aerosols can possibly transmit infectious diseases. Most of the isolates (75.9%, 60/79) were resistant to antibacterial agents. We then investigated the effect of household detergents and pet care deodorant sprays containing antibacterial agents on isolates from dogs and cats. They were effective in preventing the transmission of pathogens from dogs and cats to humans.

  8. Intraplaque hemorrhage, a potential consequence of periodontal bacteria gathering in human carotid atherothrombosis.

    PubMed

    Brun, Adrian; Rangé, Hélène; Prouvost, Bastien; Meilhac, Olivier; Mazighi, Mikael; Amarenco, Pierre; Lesèche, Guy; Bouchard, Philippe; Michel, Jean-Baptiste

    2016-06-28

    Periodontal diseases are multifactorial inflammatory diseases, caused by a bacterial biofilm involving both innate and adaptative immunity, characterized by the destruction of tooth-supporting tissues. In the context of periodontitis, the spread of weak pathogenic bacteria into the bloodstream has been described. These bacteria will preferentially localize to existing clot within the circulation. Atherothrombosis of the carotid arteries is a local pathology and a common cause of cerebral infarction. Intraplaque hemorrhages render the lesion more prone to clinical complications such as stroke. The main objective of this study is to explore the biological relationship between carotid intraplaque hemorrhage and periodontal diseases. This study included consecutive patients with symptomatic or asymptomatic carotid stenosis, admitted for endarterectomy surgical procedure (n=41). In conditioned media of the carotid samples collected, markers of neutrophil activation (myeloperoxidase or MPO, DNA-MPO complexes) and hemoglobin were quantified. To investigate the presence of DNA from periodontal bacteria in atherosclerotic plaque, PCR analysis using specific primers was performed. Our preliminary results indicate an association between neutrophil activation and intraplaque hemorrhages, reflected by the release of MPO (p<0,01) and MPO-DNA complexes (p<0,05). Presence of DNA from periodontitis-associated bacteria was found in 32/41 (78%) atheromatous plaque samples. More specifically, DNA from Pg, Tf, Pi, Aa was found in 46%, 24%, 34% and 68% of the samples, respectively. Hemoglobin levels were higher in conditioned media in carotid samples where the bacteria were found, but this was not statistically significant. Our data confirm the relationship between intraplaque hemorrhage and neutrophil activation. In addition, the presence of periodontal bacteria DNA in carotid atheromatous plaque, may contribute to this activation. Further analysis is needed to fully explore the

  9. The role of anaerobic bacteria in the cystic fibrosis airway.

    PubMed

    Sherrard, Laura J; Bell, Scott C; Tunney, Michael M

    2016-11-01

    Anaerobic bacteria are not only normal commensals, but are also considered opportunistic pathogens and have been identified as persistent members of the lower airway community in people with cystic fibrosis of all ages and stages of disease. Currently, the role of anaerobic bacteria in cystic fibrosis lower airway disease is not well understood. Therefore, this review describes the recent studies relating to the potential pathophysiological role(s) of anaerobes within the cystic fibrosis lungs. The most frequently identified anaerobic bacteria in the lower airways are common to both cystic fibrosis and healthy lungs. Studies have shown that in cystic fibrosis, the relative abundance of anaerobes fluctuates in the lower airways with reduced lung function and increased inflammation associated with a decreased anaerobic load. However, anaerobes found within the lower airways also produce virulence factors, may cause a host inflammatory response and interact synergistically with recognized pathogens. Anaerobic bacteria are potentially members of the airway microbiota in health but could also contribute to the pathogenesis of lower airway disease in cystic fibrosis via both direct and indirect mechanisms. A personalized treatment strategy that maintains a normal microbial community may be possible in the future.

  10. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  11. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria.

    PubMed

    Lefèvre, Christopher T; Menguy, Nicolas; Abreu, Fernanda; Lins, Ulysses; Pósfai, Mihály; Prozorov, Tanya; Pignol, David; Frankel, Richard B; Bazylinski, Dennis A

    2011-12-23

    Magnetotactic bacteria contain magnetosomes--intracellular, membrane-bounded, magnetic nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4))--that cause the bacteria to swim along geomagnetic field lines. We isolated a greigite-producing magnetotactic bacterium from a brackish spring in Death Valley National Park, California, USA, strain BW-1, that is able to biomineralize greigite and magnetite depending on culture conditions. A phylogenetic comparison of BW-1 and similar uncultured greigite- and/or magnetite-producing magnetotactic bacteria from freshwater to hypersaline habitats shows that these organisms represent a previously unknown group of sulfate-reducing bacteria in the Deltaproteobacteria. Genomic analysis of BW-1 reveals the presence of two different magnetosome gene clusters, suggesting that one may be responsible for greigite biomineralization and the other for magnetite.

  12. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.

    PubMed

    Marinho, Palloma Rodrigues; Moreira, Ana Paula Barbosa; Pellegrino, Flávia Lúcia Piffano Costa; Muricy, Guilherme; Bastos, Maria do Carmo de Freire; Santos, Kátia Regina Netto dos; Giambiagi-deMarval, Marcia; Laport, Marinella Silva

    2009-08-01

    Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  13. Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria.

    PubMed

    Inhan-Garip, Ayse; Aksu, Burak; Akan, Zafer; Akakin, Dilek; Ozaydin, A Nilufer; San, Tangul

    2011-12-01

    To determine the effect of extremely low frequency (<300 Hz) electromagnetic fields (ELF-EMF) on the growth rate of Gram-positive and Gram-negative bacteria and to determine any morphological changes that might have been caused by ELF-EMF. Six bacterial strains, three Gram-negative and three Gram-positive were subjected to 50 Hz, 0.5 mT ELF-EMF for 6 h. To determine growth rate after ELF-EMF application, bacteria exposed to ELF-EMF for 3 h were collected, transferred to fresh medium and cultured without field application for another 4 h. Growth-rate was determined by optical density (OD) measurements made every hour. Morphological changes were determined with Transmission electron microscopy (TEM) for two gram-negative and two gram-positive strains collected after 3 h of field application. A decrease in growth rate with respect to control samples was observed for all strains during ELF-EMF application. The decrease in growth-rate continued when exposed bacteria were cultured without field application. Significant ultrastructural changes were observed in all bacterial strains, which were seen to resemble the alterations caused by cationic peptides. This study shows that ELF-EMF induces a decrease in growth rate and morphological changes for both Gram-negative and Gram-positive bacteria.

  14. Changes in Bacteria Induce Inflammatory Skin Diseases | Center for Cancer Research

    Cancer.gov

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that manifests as dry skin with a relentless itch and eczema. AD is considered an allergic disease in which the skin inflammation manifests in response to chronic exposure to contact allergens. However, identification of a responsible allergen is uncommon. Meanwhile, analyses have demonstrated that the surface of the human body is colonized by large numbers of diverse bacteria. This observation has led researchers to examine the roles these bacteria play in healthy and diseased skin. In a variety of genetic and chronic inflammatory skin diseases, including in patients with AD or with cancer who receive epidermal growth factor receptor (EGFR) inhibitors, Staphylococcus aureus and Corynebacterium species are the predominant bacteria isolated from the skin. However, the cause-and-effect relationship between this microbial imbalance and skin inflammation has not been determined.

  15. A metagenomic assessment of the bacteria associated with Lucilia sericata and Lucilia cuprina (Diptera: Calliphoridae)

    USDA-ARS?s Scientific Manuscript database

    Lucilia Robineau-Desvoidy (Diptera: Calliphoridae), is a blow fly genus of forensic, medical, veterinary, and agricultural importance. Both species of this genus causes myiasis and are vectors of disease causing bacteria. This genus is also famous because of its beneficial uses in maggot therapy. ...

  16. Agriculture and food animals as a source of antimicrobial-resistant bacteria

    PubMed Central

    Economou, Vangelis; Gousia, Panagiota

    2015-01-01

    One of the major breakthroughs in the history of medicine is undoubtedly the discovery of antibiotics. Their use in animal husbandry and veterinary medicine has resulted in healthier and more productive farm animals, ensuring the welfare and health of both animals and humans. Unfortunately, from the first use of penicillin, the resistance countdown started to tick. Nowadays, the infections caused by antibiotic-resistant bacteria are increasing, and resistance to antibiotics is probably the major public health problem. Antibiotic use in farm animals has been criticized for contributing to the emergence of resistance. The use and misuse of antibiotics in farm animal settings as growth promoters or as nonspecific means of infection prevention and treatment has boosted antibiotic consumption and resistance among bacteria in the animal habitat. This reservoir of resistance can be transmitted directly or indirectly to humans through food consumption and direct or indirect contact. Resistant bacteria can cause serious health effects directly or via the transmission of the antibiotic resistance traits to pathogens, causing illnesses that are difficult to treat and that therefore have higher morbidity and mortality rates. In addition, the selection and proliferation of antibiotic-resistant strains can be disseminated to the environment via animal waste, enhancing the resistance reservoir that exists in the environmental microbiome. In this review, an effort is made to highlight the various factors that contribute to the emergence of antibiotic resistance in farm animals and to provide some insights into possible solutions to this major health issue. PMID:25878509

  17. Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria

    PubMed Central

    Richter, Stefan G.; Elli, Derek; Kim, Hwan Keun; Hendrickx, Antoni P. A.; Sorg, Joseph A.; Schneewind, Olaf; Missiakas, Dominique

    2013-01-01

    The current epidemic of infections caused by antibiotic-resistant Gram-positive bacteria requires the discovery of new drug targets and the development of new therapeutics. Lipoteichoic acid (LTA), a cell wall polymer of Gram-positive bacteria, consists of 1,3-polyglycerol-phosphate linked to glycolipid. LTA synthase (LtaS) polymerizes polyglycerol-phosphate from phosphatidylglycerol, a reaction that is essential for the growth of Gram-positive bacteria. We screened small molecule libraries for compounds inhibiting growth of Staphylococcus aureus but not of Gram-negative bacteria. Compound 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] blocked phosphatidylglycerol binding to LtaS and inhibited LTA synthesis in S. aureus and in Escherichia coli expressing ltaS. Compound 1771 inhibited the growth of antibiotic-resistant Gram-positive bacteria and prolonged the survival of mice with lethal S. aureus challenge, validating LtaS as a target for the development of antibiotics. PMID:23401520

  18. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes

    NASA Astrophysics Data System (ADS)

    Etayash, Hashem; Khan, M. F.; Kaur, Kamaljit; Thundat, Thomas

    2016-10-01

    In the fight against drug-resistant bacteria, accurate and high-throughput detection is essential. Here, a bimaterial microcantilever with an embedded microfluidic channel with internal surfaces chemically or physically functionalized with receptors selectively captures the bacteria passing through the channel. Bacterial adsorption inside the cantilever results in changes in the resonance frequency (mass) and cantilever deflection (adsorption stress). The excitation of trapped bacteria using infrared radiation (IR) causes the cantilever to deflect in proportion to the infrared absorption of the bacteria, providing a nanomechanical infrared spectrum for selective identification. We demonstrate the in situ detection and discrimination of Listeria monocytogenes at a concentration of single cell per μl. Trapped Escherichia coli in the microchannel shows a distinct nanomechanical response when exposed to antibiotics. This approach, which combines enrichment with three different modes of detection, can serve as a platform for the development of a portable, high-throughput device for use in the real-time detection of bacteria and their response to antibiotics.

  19. Diversity of ionizing radiation-resistant bacteria obtained from the Taklimakan Desert.

    PubMed

    Yu, Li Zhi-Han; Luo, Xue-Song; Liu, Ming; Huang, Qiaoyun

    2015-01-01

    So far, little is known about the diversity of the radiation-resistant microbes of the hyperarid Taklimakan Desert. In this study, ionizing radiation (IR)-resistant bacteria from two sites in Xinjiang were investigated. After exposing the arid (water content of 0.8 ± 0.3%) and non-arid (water content of 21.3 ± 0.9%) sediment samples to IR of 3000 Gy using a (60)Co source, a total of 52 γ-radiation-resistant bacteria were isolated from the desert sample. The 16S rRNA genes of all isolates were sequenced. The phylogenetic tree places these isolates into five groups: Cytophaga-Flavobacterium-Bacteroides, Proteobacteria, Deinococcus-Thermus, Firmicutes, and Actinobacteria. Interestingly, this is the first report of radiation-resistant bacteria belonging to the genera Knoellia, Lysobacter, Nocardioides, Paracoccus, Pontibacter, Rufibacter and Microvirga. The 16s rRNA genes of four isolates showed low sequence similarities to those of the published species. Phenotypic analysis showed that all bacteria in this study are able to produce catalase, suggesting that these bacteria possess reactive oxygen species (ROS)-scavenging enzymes. These radiation-resistant bacteria also displayed diverse metabolic properties. Moreover, their radiation resistances were found to differ. The diversity of the radiation-resistant bacteria in the desert provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of ROS-scavenging systems that protect cells against oxidative damage caused by desiccation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evolution of the Kdo2-lipid A Biosynthesis in Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Opiyo; R Pardy; H Moriyama

    BACKGROUND: Lipid A is the highly immunoreactive endotoxic center of lipopolysaccharide (LPS). It anchors the LPS into the outer membrane of most Gram-negative bacteria. Lipid A can be recognized by animal cells, triggers defense-related responses, and causes Gram-negative sepsis. The biosynthesis of Kdo2-lipid A, the LPS substructure, involves with nine enzymatic steps. RESULTS: In order to elucidate the evolutionary pathway of Kdo2-lipid A biosynthesis, we examined the distribution of genes encoding the nine enzymes across bacteria. We found that not all Gram-negative bacteria have all nine enzymes. Some Gram-negative bacteria have no genes encoding these enzymes and others have genesmore » only for the first four enzymes (LpxA, LpxC, LpxD, and LpxB). Among the nine enzymes, five appeared to have arisen from three independent gene duplication events. Two of such events happened within the Proteobacteria lineage, followed by functional specialization of the duplicated genes and pathway optimization in these bacteria. CONCLUSIONS: The nine-enzyme pathway, which was established based on the studies mainly in Escherichia coli K12, appears to be the most derived and optimized form. It is found only in E. coli and related Proteobacteria. Simpler and probably less efficient pathways are found in other bacterial groups, with Kdo2-lipid A variants as the likely end products. The Kdo2-lipid A biosynthetic pathway exemplifies extremely plastic evolution of bacterial genomes, especially those of Proteobacteria, and how these mainly pathogenic bacteria have adapted to their environment.« less

  1. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  2. Acute sensitivity of activated sludge bacteria to erythromycin.

    PubMed

    Alighardashi, A; Pandolfi, D; Potier, O; Pons, M N

    2009-12-30

    The presence of antibiotics in water resources has been disturbing news for the stakeholders who are responsible for public health and the drinking water supply. In many cases, biological wastewater treatment plants are the final opportunity in the water cycle to trap these substances. The sensitivity of activated sludge bacteria to erythromycin, a macrolide widely used in human medicine was investigated in batch toxicity tests using a concentration range of 1-300 mg L(-1). Erythromycin, a protein synthesis inhibitor, has been found to significantly inhibit ammonification, nitritation and nitratation at concentrations higher than 20 mg L(-1). The degree of inhibition increased with greater concentrations of the antibiotic. Exposure to erythromycin also clearly affected heterotrophs, particularly filamentous bacteria, causing floc disintegration and breakage of filaments. Cell lysis was observed with the concomitant release of organic nitrogen (intracellular proteins) and soluble COD. Although erythromycin exhibits properties of a surfactant, this characteristic alone cannot explain the damage to heterotrophs: the effects from erythromycin were greater than those of Tween 80, a commonly used surfactant. Floc disruption can lead to the release of isolated bacteria, and possibly antibiotic resistance genes, into the environment.

  3. Two symbiotic bacteria of the entomopathogenic nematode Heterorhabditis spp. against Galleria mellonella.

    PubMed

    Liao, Chunli; Gao, Along; Li, Bingbing; Wang, Mengjun; Shan, Linna

    2017-03-01

    The entomopathogenic nematode Heterorhabditis spp. is considered a promising agent in the biocontrol of injurious insects of agriculture. However, different symbiotic bacteria associated with the nematode usually have different specificity and virulence toward their own host. In this study, two symbiotic bacteria, LY2W and NK, were isolated from the intestinal canals of two entomopathogenic nematode Heterorhabditis megidis 90 (PDSj1 and PDSj2) from Galleria mellonela, separately. To determine their species classification, we carried out some investigations on morphology, culture, biochemistry, especially 16S rDNA sequence analyses. As a result, both of them belong to Enterobacter spp., showing the closest relatedness with Enterobacter gergoviae (LY2W) and Enterobacter cloacae (NK), respectively. Moreover, the toxicity to Galleria mellonella was examined using both the metabolites and washed cells (primary and secondary) of these two strains. The results indicated both metabolites and cells of the primary-type bacteria could cause high mortalities (up to 97%) to Galleria mellonella, while those of the primary-type bacteria only killed 20%. These findings would provide new symbiotic bacteria and further references for biological control of the agricultural pest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Immobilization of introduced bacteria and degradation of pyrene and benzo(alpha) pyrene in soil by immobilized bacteria].

    PubMed

    Wang, Xin; Li, Peijun; Song, Shouzhi; Zhong, Yong; Zhang, Hui; Verkhozina, E V

    2006-11-01

    In this study, introduced bacteria were applied in the bioremediation of pyrene and benzo (alpha) pyrene in organic pollutants-contaminated soils, aimed to test whether it was feasible to introduce bacteria to environmental engineering. Three introduced bacteria were immobilized separately or together to degrade the pyrene and benzo (alpha) pyrene in soil, taking dissociated bacteria as the control, and comparing with three indigenous bacteria. The results showed that immobilized introduced bacteria, either single or mixed, had higher degradation efficiency than dissociated bacteria. Compared with indigenous bacteria, some introduced bacteria had predominance to some degree. The introduced bacteria-mixture had better degradation efficiency after being immobilized. The degradation rate of pyrene and benzo(alpha) pyrene after treated with immobilized bacteria-( B61-B67)-mixture for 96 hours was 43.49% and 38.55%, respectively.

  5. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  6. Isolation of marine fungi Aspergillus sp. and its in vitro antifouling activity against marine bacteria.

    PubMed

    Thiyagarajan, Santhananmari; Bavya, Manoharan; Jamal, Alruwaili

    2016-09-01

    Biofouling is considered as a main issue of concern in aquatic environment causing severe economic loss and pollution. The aim of the present study was to isolate marine fungus antagonistic to biofouling bacteria and to define antifouling compounds present in it. Using standard plate method five predominant biofouling bacteria viz., Methylococcus sp., Flavobacterium sp., Marinococcus sp., Serratia sp. and Pseudomonas sp. were isolated from marine solid substances on Zobell's agar. Tolerance range of these bacteria to NaCl was 2-10%. Isolation of fungi from mangrove and estuarine sediments and their screening identified Aspergillus sp. EF4 as a potential isolate. This isolate caused inhibition of all the five test bacterial cultures measuring zone diameters respectively of 11, 16, 12, 13 and 11mm.? Subsequent to submerged fermentation using shaking flask method this fungus produced bioactive compounds within 5 days. The culture parameters optimized were raffinose as carbon source, yeast extract as lone nitrogen source, pH up to 9.0 and temperature up to 40?C. Antifouling compounds of culture filtrate were separated and detected by a three-step procedure involving thin layer chromatography, bioautography and preparative TLC. The in vitro assay involving glass slide-wooden stick-biofilm method revealed that these compounds could cause inhibition and destruction of bacteria to an extent of 2.16 x 104 CFU ml-1 and 2.46 x 104 CFU ml-1 respectively while growth of bacteria in control beaker was enumerated to be 4.41 x 104 CFU ml-1. High performance liquid chromatography of culture filtrate indicated probable principal antifouling compound as Fumonisin B2. Isolation of antagonistic marine fungus from Indian coast and detection of its antifouling compound would help in planning effective strategies for controlling biofouling in marine environment.

  7. Presence of bacteria in the endometrium and placentomes of pregnant cows.

    PubMed

    Karstrup, Cecilia Christensen; Klitgaard, Kirstine; Jensen, Tim Kåre; Agerholm, Jørgen Steen; Pedersen, Hanne Gervi

    2017-09-01

    Bacterial invasion of the bovine uterus during the postpartum period occurs in most cows, but the general consensus is that these bacteria are eliminated before the next pregnancy. The pregnant uterus has therefore hitherto been considered a sterile environment, but this assumption has now been challenged by recent studies in humans, which indicate that bacteria can be present in the placenta of term pregnancies without causing abortion. The aim of the present study was therefore to investigate whether bacteria are present in the uterus of pregnant cows. Specimens were taken from the inter-caruncular endometrium and from placentomes of slaughtered pregnant cows (n = 43) and subjected to histology, fluorescence in situ hybridization and massive parallel sequencing. Bacteria were observed in the tissue from 90.7% (39/43) of the cows by fluorescence in situ hybridization. Fusobacterium necrophorum, Porphyromonas levii and Trueperella pyogenes were located within the endometrium, on the endometrial surface and in the caruncular stroma, but their presence was not associated with inflammation. Data from massive parallel sequencing of the 16S rRNA gene from a subset of 15 cows indicated that the most abundant bacteria were the families Porphyromonadaceae, followed by Ruminococcaceae and Lachnospiraceae. Our results indicate that the bovine uterus is not a sterile environment during pregnancy as previously assumed and that a cow can carry a pregnancy despite the presence of a few potentially pathogenic bacteria in the uterus. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [Research on bacteria microecology in root rot rhizosphere soil of Coptis chinensis produced in Shizhu city].

    PubMed

    Song, Xu-Hong; Wang, Yu; Li, Long-Yun; Tan, Jun

    2017-04-01

    Illumina Hiseq 2500 high-throughput sequencing platform was used to study the bacteria richness and diversity, the soil enzyme activities, nutrients in unplanted soil, root-rot and healthy rhizophere soil of Coptis chinensis for deeply discussing the mechanism of the root-rot of C. chinensis. The high-throughput sequencing result showed that the artificial cultivation effected the bacteria community richness and diversity. The bacteria community richness in healthy and diseased rhizosphere soil showed significant lower than that of in unplanted soil (P<0.05) and declined bacteria diversity. The bacteria community richness in root-rot rhizosphere soil increased significantly than that of health and unplanted soil and the diversity was lower significant than that of unplanted soil (P<0.05). The results of soil nutrients and enzyme activities detected that the pH value, available phosphorus and urease activity decreased and the sucrase activity increased significantly (P<0.05). The content of organic carbon and alkaline hydrolysis nitrogen the catalase and urease activity in root rot soil samples was significantly lower than that of healthy soil samples (P<0.05). However, the contents of available phosphorus and available potassium were significantly in root-rot sample higher than that of healthy soil samples (P<0.05). Comprehensive analysis showed that the artificial cultivation declined the bacteria community richness and diversity. The bacteria community richness decreased significantly and the decreased diversity may be the cause of the root-rot. Meanwhile, the decrease of carbon and the catalase activity may be another cause of the root-rot in C. chinensis produced in Shizhu city, Chongqing province. Copyright© by the Chinese Pharmaceutical Association.

  9. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria.

    PubMed

    Arzanlou, Mohsen; Chai, Wern Chern; Venter, Henrietta

    2017-02-28

    Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Genomic analysis of bifunctional Class C-Class D β-lactamases in environmental bacteria.

    PubMed

    Silveira, Melise Chaves; Catanho, Marcos; Miranda, Antônio Basílio de

    2018-01-01

    β-lactamases, which are found in several bacterial species and environments, are the main cause of resistance to β-lactams in Gram-negative bacteria. In 2009, a protein (LRA-13) with two β-lactamase domains (one class C domain and one class D domain) was experimentally characterised, and an extended action spectrum against β-lactams consistent with two functional domains was found. Here, we present the results of searches in the non-redundant NCBI protein database that revealed the existence of a group of homologous bifunctional β-lactamases in the genomes of environmental bacteria. These findings suggest that bifunctional β-lactamases are widespread in nature; these findings also raise concern that bifunctional β-lactamases may be transferred to bacteria of clinical importance through lateral gene transfer mechanisms.

  11. Rapid Evolution of Culture-Impaired Bacteria During Adaptation to Biofilm Growth

    PubMed Central

    Penterman, Jon; Nguyen, Dao; Anderson, Erin; Staudinger, Benjamin J.; Greenberg, Everett P.; Lam, Joseph S.; Singh, Pradeep K.

    2014-01-01

    Summary Biofilm growth increases the fitness of bacteria in harsh conditions. However, bacteria from clinical and environmental biofilms can exhibit impaired growth in culture, even when the species involved are readily cultureable, and permissive conditions are used. Here we show that culture-impaired variants of Pseudomonas aeruginosa rapidly and abundantly evolve in laboratory biofilms. The culture-impaired phenotype is caused by mutations that alter the outer-membrane lipopolysaccharide structure. Within biofilms, the lipopolysaccharide mutations markedly increase bacterial fitness. However, outside the protected biofilm environment, the mutations sensitize the variants to killing by a self-produced antimicrobial agent. Thus, a biofilm-mediated adaptation produces a stark fitness trade off that compromises bacterial survival in culture. Trade offs like this could limit the ability of bacteria to transition between biofilm growth and the free-living state, and produce bacterial populations that escape detection by culture-based sampling. PMID:24412364

  12. [Darwin and bacteria].

    PubMed

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  13. Marine Bacteria Cause False-Positive Results in the Colilert-18 Rapid Identification Test for Escherichia coli in Florida Waters

    PubMed Central

    Pisciotta, John M.; Rath, Damon F.; Stanek, Paul A.; Flanery, D. Michael; Harwood, Valerie J.

    2002-01-01

    The Colilert-18 system for enumeration of total coliforms and Escherichia coli is approved by the U.S. Environmental Protection Agency for use in drinking water analysis and is also used by various agencies and research studies for enumeration of indicator organisms in fresh and saline waters. During monitoring of Pinellas County, Fla., marine waters, estimates of E. coli numbers (by Colilert-18) frequently exceeded fecal coliform counts (by membrane filtration) by 1 to 3 orders of magnitude. Samples from freshwater sites did not display similar discrepancies. Fecal coliforms, including E. coli, could be cultured from 100% of yellow fluorescent wells (denoting E. coli-positive results) inoculated with freshwater samples but could be cultured from only 17.1% of the “positive” wells inoculated with marine samples. Ortho-nitrophenyl-β-d-galactopyranoside (ONPG)-positive or 4-methylumbelliferyl-β-d-glucuronide (MUG)-positive noncoliform bacteria were readily cultured from Colilert-18 test wells inoculated with marine samples. Filtered cell-free seawater did not cause false positives. Coculture preparations of as few as 5 CFU of Vibrio cholerae (ONPG positive) and Providencia sp. (MUG positive) ml−1 inoculated into Colilert-18 caused false-positive E. coli results. Salinity conditions influenced coculture results, as the concentration of coculture inoculum required to cause false positives in most wells increased from about 5 CFU ml−1 in seawater diluted 1:10 with freshwater to ≈5,000 CFU ml−1 in seawater diluted 1:20 with freshwater. Estimated E. coli numbers in various marine water samples processed at the 1:10 dilution ranged from 10 to 7,270 CFU·100 ml−1, while E. coli numbers in the same samples processed at the 1:20 dilution did not exceed 40 CFU·100 ml−1. The lower estimates of E. coli numbers corresponded well with fecal coliform counts by membrane filtration. This study indicates that assessment of E. coli in subtropical marine waters by

  14. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    PubMed

    Hoyt, Joseph R; Cheng, Tina L; Langwig, Kate E; Hee, Mallory M; Frick, Winifred F; Kilpatrick, A Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species.

  15. Bacteria Isolated from Bats Inhibit the Growth of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome

    PubMed Central

    Hoyt, Joseph R.; Cheng, Tina L.; Langwig, Kate E.; Hee, Mallory M.; Frick, Winifred F.; Kilpatrick, A. Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species. PMID:25853558

  16. On-chip immunomagnetic separation of bacteria by in-flow dynamic manipulation of paramagnetic beads

    NASA Astrophysics Data System (ADS)

    Ahmed, Shakil; Noh, Jong Wook; Hoyland, James; de Oliveira Hansen, Roana; Erdmann, Helmut; Rubahn, Horst-Günter

    2016-11-01

    Every year, millions of people all over the world fall ill due to the consumption of unsafe food, where consumption of contaminated and spoiled animal origin product is the main cause for diseases due to bacterial growth. This leads to an intense need for efficient methods for detection of food-related bacteria. In this work, we present a method for integration of immunomagnetic separation of bacteria into microfluidic technology by applying an alternating magnetic field, which manipulates the paramagnetic beads into a sinusoidal path across the whole microchannel, increasing the probability for bacteria capture. The optimum channel geometry, flow rate and alternating magnetic field frequency were investigated, resulting in a capture efficiency of 68 %.

  17. Responses, applications, and analysis of microgravity effects on bacteria

    NASA Astrophysics Data System (ADS)

    Benoit, Michael Robert

    Spaceflight causes many changes to the growth and behavior of bacteria, most likely because of microgravity. However, we do not fully understand the gravity-dependent mechanisms that alter bacterial cell physiology. Furthermore, the literature consists of many contradictory results, creating controversy over the mechanisms by which spaceflight affects bacterial cultures. The research described in this dissertation combines empirical, analytical, and numerical modeling techniques aimed at characterizing the various gravity-dependent phenomena that act on bacteria. While reviewing the literature, I identified an interesting trend in prior experimental results regarding bacterial motility. With this information, we can begin to explain some of the seemingly contradictory findings. This discovery should help to resolve several controversial theories in the field of space microbiology. Chapter 3 describes a microbial antibiotic production experiment conducted onboard the International Space Station. The results corroborated earlier findings of increased antibiotic production for samples taken during the first two weeks of spaceflight. For later samples, however, a reversal occurred, showing decreased production in the spaceflight samples. This insight highlights the benefit of conducting long duration experiments in space to fully evaluate biological responses. Chapter 4 describes a novel technique for preventing bacterial cell sedimentation to partially simulate microgravity in ground-based experiments. The results of this study showed a correlation between cell sedimentation and bacterial growth. As documented in Chapter 5, I investigated the use of digital holographic interferometry to measure extracellular fluid density changes caused by bacterial metabolism. The results showed that fluid density changes surrounding individual bacteria were too small to measure directly. Therefore, I used mathematical analyses and numerical model simulations (described in Chapter 6

  18. [Pigments of green sulfur bacteria isolated from reservoirs of Iavoriv sulfur deposit].

    PubMed

    Baran, I M; Hudz', S P; Hnatush, S O; Fedorovych, A M

    2004-01-01

    The enormous amount of hydrogen sulfide (up to 11 mg/ml) is present in the Yavoriv sulfur deposit reservoirs owing to sulfur reductive bacteria activity. As a consequence the ecological situation is badly affected and requires recovering. The biological H2S decomposition by photosynthetic sulfur bacteria, which use the hydrogen sulfide as electron donor during photosynthesis, can be one of the possible ways of this toxic substance destruction. The qualitative and quantitative analysis of photosynthetic pigments composition that derived from green photosynthesizing sulfur bacteria from reservoirs of Yavoriv sulfur deposit is carried out. It was fixed that Pelodictyon sp., Chlorobium sp. and isolated consortia "Pelochromatium sp." contain the bacteriochlorophyll c and d. All the isolated cultures contained bacteriochlorophyll a in trace amounts. The obtained photosynthetic pigments (bacteriochlorophylls, carotenoids) were recognized by their absorption spectra in the visible and far-red region and by their quantity. The difference was not essential. All investigated cultures of isolated bacteria contain some carotenoid the Chlorobium sp. and obtained consortia possesses isorenieratene. The absorption maxima of extracted pigments from young cultures of isolated green sulfur bacteria are more definitely displayed than those from old cultures. Investigations of phototrophic sulfur bacteria were carried out in Ukraine up to now. Ecological problem that occurred in the Yavoriv sulfur deposit as a result of the deposit exploitation caused a necessity of the investigation of photosynthetic sulfur bacteria and bacterial photosynthesis mechanism. The photosynthetic pigments nature identification will promote the fast and precise identification of the new forms of photosynthetic sulfur bacteria and will extend our knowledge about their role in the anoxygenic photosynthesis.

  19. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  20. PATHOGENICITY OF DRINKING WATER ISOLATES OF HETEROTROPHIC BACTERIA WITH PUTATIVE VIRULENCE FACTORS

    EPA Science Inventory

    Although the heterotrophic plate count (HPC) bacteria normally found in potable water are not a threat to the healthy population, some of them may be opportunistic pathogens that could cause adverse health effects in individuals with impaired immune systems. Earlier studies of t...

  1. Chitinase producing bacteria with direct algicidal activity on marine diatoms

    PubMed Central

    Li, Yi; Lei, Xueqian; Zhu, Hong; Zhang, Huajun; Guan, Chengwei; Chen, Zhangran; Zheng, Wei; Fu, Lijun; Zheng, Tianling

    2016-01-01

    Chitinase producing bacteria can involve extensively in nutrient cycling and energy flow in the aquatic environment through degradation and utilization of chitin. It is well known that diatoms cells are encased by box-like frustules composed of chitin. Thus the chitin containing of diatoms shall be a natural target of chitinase producing bacteria, however, the interaction between these two organismic groups has not been studied thus far. Therefore, in this study, the algicidal mechanism of one chitinase producing bacterium (strain LY03) on Thalassiosira pseudonana was investigated. The algicidal range and algicidal mode of strain LY03 were first studied, and then bacterial viability, chemotactic ability and direct interaction characteristic between bacteria and diatom were also confirmed. Finally, the characteristic of the intracellular algicidal substance was identified and the algicidal mechanism was determined whereby algicidal bacterial cells showed chemotaxis to algal cells, fastened themselves on algal cells with their flagella, and then produced chitinase to degrade algal cell walls, and eventually caused algal lysis and death. It is the first time to investigate the interaction between chitinase producing bacteria and diatoms, and this novel special interaction mode was confirmed in this study, which will be helpful in protection and utilization of diatoms resources. PMID:26902175

  2. Chitinase producing bacteria with direct algicidal activity on marine diatoms.

    PubMed

    Li, Yi; Lei, Xueqian; Zhu, Hong; Zhang, Huajun; Guan, Chengwei; Chen, Zhangran; Zheng, Wei; Fu, Lijun; Zheng, Tianling

    2016-02-23

    Chitinase producing bacteria can involve extensively in nutrient cycling and energy flow in the aquatic environment through degradation and utilization of chitin. It is well known that diatoms cells are encased by box-like frustules composed of chitin. Thus the chitin containing of diatoms shall be a natural target of chitinase producing bacteria, however, the interaction between these two organismic groups has not been studied thus far. Therefore, in this study, the algicidal mechanism of one chitinase producing bacterium (strain LY03) on Thalassiosira pseudonana was investigated. The algicidal range and algicidal mode of strain LY03 were first studied, and then bacterial viability, chemotactic ability and direct interaction characteristic between bacteria and diatom were also confirmed. Finally, the characteristic of the intracellular algicidal substance was identified and the algicidal mechanism was determined whereby algicidal bacterial cells showed chemotaxis to algal cells, fastened themselves on algal cells with their flagella, and then produced chitinase to degrade algal cell walls, and eventually caused algal lysis and death. It is the first time to investigate the interaction between chitinase producing bacteria and diatoms, and this novel special interaction mode was confirmed in this study, which will be helpful in protection and utilization of diatoms resources.

  3. Modeling Studying the Role of Bacteria on ice Nucleation Processes

    NASA Astrophysics Data System (ADS)

    Sun, J.

    2006-12-01

    Certain air-borne bacteria have been recognized as active ice nuclei at the temperatures warm than - 10°C. Ice nucleating bacteria commonly found in plants and ocean surface. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds and hailstones, and their importance in cloud formation process and precipitation, as well as causing diseases in plants and animal kingdom, have been considered for over two decades, but their significance in atmospheric processes are yet to be understood. A 1.5-D non-hydrostatic cumulus cloud model with bin-resolved microphysics is developed and is to used to examine the relative importance of sulphate aerosol concentrations on the evolution of cumulus cloud droplet spectra and ice multiplication process, as well as ice initiation process by ice nucleating bacteria in the growing stage of cumulus clouds and the key role of this process on the ice multiplication in the subsequent dissipating stage of cumulus clouds. In this paper, we will present some sensitivity test results of the evolution of cumulus cloud spectra, ice concentrations at various concentrations of sulfate aerosols, and at different ideal sounding profiles. We will discuss the implication of our results in understanding of ice nucleation processes.

  4. Parasitic scabies mites and associated bacteria joining forces against host complement defence.

    PubMed

    Swe, P M; Reynolds, S L; Fischer, K

    2014-11-01

    Scabies is a ubiquitous and contagious skin disease caused by the parasitic mite Sarcoptes scabiei Epidemiological studies have identified scabies as a causative agent for secondary skin infections caused by Staphylococcus aureus and Streptococcus pyogenes. This is an important notion, as such bacterial infections can lead to serious downstream life-threatening complications. As the complement system is the first line of host defence that confronts invading pathogens, both the mite and bacteria produce a large array of molecules that inhibit the complement cascades. It is hypothesised that scabies mite complement inhibitors may play an important role in providing a favourable micro-environment for the establishment of secondary bacterial infections. This review aims to bring together the current literature on complement inhibition by scabies mites and bacteria associated with scabies and to discuss the proposed molecular link between scabies and bacterial co-infections. © 2014 John Wiley & Sons Ltd.

  5. Differential effects of dissolved organic carbon upon re-entrainment and surface properties of groundwater bacteria and bacteria-sized microspheres during transport through a contaminated, sandy aquifer

    USGS Publications Warehouse

    Harvey, R.W.; Metge, D.W.; Mohanram, A.; Gao, X.; Chorover, J.

    2011-01-01

    Injection-and-recovery studies involving a contaminated, sandy aquifer (Cape Cod, Massachusetts) were conducted to assess the relative susceptibility for in situ re-entrainment of attached groundwater bacteria (Pseudomonas stuzeri ML2, and uncultured, native bacteria) and carboxylate-modified microspheres (0.2 and 1.0 μm diameters). Different patterns of re-entrainment were evident for the two colloids in response to subsequent injections of groundwater (hydrodynamic perturbation), deionized water (ionic strength alteration), 77 μM linear alkylbenzene sulfonates (LAS, anionic surfactant), and 76 μM Tween 80 (polyoxyethylene sorbitan monooleate, a very hydrophobic nonionic surfactant). An injection of deionized water was more effective in causing detachment of micrsopheres than were either of the surfactants, consistent with the more electrostatic nature of microsphere’s attachment, their extreme hydrophilicity (hydrophilicity index, HI, of 0.99), and negative charge (zeta potentials, ζ, of −44 to −49 mv). In contrast, Tween 80 was considerably more effective in re-entraining the more-hydrophobic native bacteria. Both the hydrophilicities and zeta potentials of the native bacteria were highly sensitive to and linearly correlated with levels of groundwater dissolved organic carbon (DOC), which varied modestly from 0.6 to 1.3 mg L−1. The most hydrophilic (0.52 HI) and negatively charged (ζ −38.1 mv) indigenous bacteria were associated with the lowest DOC. FTIR spectra indicated the latter community had the highest average density of surface carboxyl groups. In contrast, differences in groundwater (DOC) had no measurable effect on hydrophilicity of the bacteria-sized microspheres and only a minor effect on their ζ. These findings suggest that microspheres may not be very good surrogates for bacteria in field-scale transport studies and that adaptive (biological) changes in bacterial surface characteristics may need to be considered where there is longer

  6. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  7. Contemporary microbiology and identification of Corynebacteria spp. causing infections in human.

    PubMed

    Zasada, A A; Mosiej, E

    2018-06-01

    The Corynebacterium is a genus of bacteria of growing clinical importance. Progress in medicine results in growing population of immunocompromised patients and growing number of infections caused by opportunistic pathogens. A new infections caused by new Corynebacterium species and species previously regarded as commensal micro-organisms have been described. Parallel with changes in Corynebacteria infections, the microbiological laboratory diagnostic possibilities are changing. But identification of this group of bacteria to the species level remains difficult. In the paper, we present various manual, semi-automated and automated assays used in clinical laboratories for Corynebacterium identification, such as API Coryne, RapID CB Plus, BBL Crystal Gram Positive ID System, MICRONAUT-RPO, VITEK 2, BD Phoenix System, Sherlock Microbial ID System, MicroSeq Microbial Identification System, Biolog Microbial Identification Systems, MALDI-TOF MS systems, polymerase chain reaction (PCR)-based and sequencing-based assays. The presented assays are based on various properties, like biochemical tests, specific DNA sequences, composition of cellular fatty acids, protein profiles and have specific limitations. The number of opportunistic infections caused by Corynebacteria is increasing due to increase in number of immunocompromised patients. New Corynebacterium species and new human infections, caused by this group of bacteria, has been described recently. However, identification of Corynebacteria is still a challenge despite application of sophisticated laboratory methods. In the study we present possibilities and limitations of various commercial systems for identification of Corynebacteria. © 2018 The Society for Applied Microbiology.

  8. High prevalence of fastidious bacteria in 1520 cases of uveitis of unknown etiology.

    PubMed

    Drancourt, Michel; Berger, Pierre; Terrada, Céline; Bodaghi, Bahram; Conrath, John; Raoult, Didier; LeHoang, Phuc

    2008-05-01

    The etiologic evaluation of uveitis is frequently unsuccessful when noninvasive methods are used. We conducted a prospective study to evaluate systematic screening for pathogens of uveitis. All patients with uveitis referred to the participating tertiary ophthalmology departments from January 2001 to September 2007 underwent intraocular and serum specimen collection. The standardized protocol for laboratory investigations included universal polymerase chain reaction (PCR)-based detection of any bacteria and mycoses, specific PCR-based detection of fastidious (difficult-to-grow) bacteria and herpes viruses, and culture of vitreous fluid. Sera were tested for fastidious bacteria. Among the 1321 included patients (1520 specimens), infection was diagnosed in 147 (11.1%) patients: 78 (53%) were caused by fastidious bacteria that included spirochetes, Bartonella species, intracellular bacteria (Chlamydia species, Rickettsia species, Coxiella burnetii), and Tropheryma whipplei; 18 by herpes viruses; and 9 by fungi. Bartonella quintana, Coxiella burnetii, Paracoccus yeei, Aspergillus oryzae, and Cryptococcus albidus were found to be associated with uveitis for the first time, to our knowledge. We recommend applying a 1-step diagnostic procedure that incorporates intraocular, specific microbial PCR with serum analyses in tertiary centers to determine the etiology of uveitis.

  9. Lipopolysaccharides in diazotrophic bacteria.

    PubMed

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  10. Lipopolysaccharides in diazotrophic bacteria

    PubMed Central

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure. PMID:25232535

  11. Bacteria of leg atheromatous arteries responsible for inflammation.

    PubMed

    Olszewski, Waldemar Lech; Rutkowska, Joanna; Moscicka-Wesolowska, Maria; Swoboda-Kopec, Ewa; Stelmach, Ewa; Zaleska, Marzanna; Zagozda, Malgorzata

    2016-09-01

    Ischaemia of the lower limbs is frequently followed by inflammation and, in advanced cases, necrosis of peripheral tissues. Whether this is caused by arterial hypoperfusion only or by the presence of bacteria in the arterial walI as well remains unclear. The aim of the study was to prove the presence and source of bacteria in arterial specimens and evaluate their chemotactic properties resulting in the formation of periarterial cellular infiltrates. Bacterial culture and testing for 16sRNA were performed in fragments of popliteal artery harvested from amputated limbs. Carotid artery plaques served as controls. Fragments of arteries were transplanted into scid mice to evaluate their chemotactic activity for macrophages. a) higher prevalence of isolates and 16sRNA in atherosclerotic popliteal than carotid arteries, b) high density of plaque and periarterial infiltrates and mRNA level for pro-inflammatory cytokines in popliteal arteries, c) prevalent microbes were Staphylococcus aureus, S. epidermidis and Enterococci, d) foot skin and arterial bacterial phenotypes and DNA revealed evident similarities, and e) more intensive mouse macrophage accumulation in popliteal than carotid implants into scid mice. The presence of bacteria in the lower limb arterial wall was documented. They may predispose to inflammation secondary to ischaemic changes.

  12. Pathogenic mechanisms of intracellular bacteria.

    PubMed

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  13. Effect of red dyes on blue light phototoxicity against VSC producing bacteria in an experimental oral biofilm.

    PubMed

    Jeffet, U; Nasrallah, R; Sterer, N

    2016-11-21

    Oral malodour is considered to be caused mainly by the production of volatile sulfide compounds (VSC) by anaerobic Gram-negative oral bacteria. Previous study showed that these bacteria were susceptible to blue light (wavelengths of 400-500 nm). In the present study, we tested the effect of blue light in the presence of red dyes on malodour production in an experimental oral biofilm. Biofilms were exposed to a plasma-arc light source for 30, 60, and 120 s (i.e. fluences of 41, 82, and 164 J cm -2 , respectively) with the addition of erythrosine, natural red and rose bengal (0.01, 0.1 and 1% w/v). Following light exposure biofilm samples were examined for malodour production (Odour judge), VSC production (Halimeter ™ ), VSC producing bacteria quantification using microscopy sulfide assay (MSA) and reactive oxygen species (ROS) production. Results showed that the exposure of experimental oral biofilm to blue light in the presence of rose bengal caused an increased reduction in VSC and malodour production concomitant with an increase in ROS production. These results suggest that rose bengal might be effective as a blue light photosensitizer against VSC producing bacteria.

  14. Exopolysaccharide Productivity and Biofilm Phenotype on Oral Commensal Bacteria as Pathogenesis of Chronic Periodontitis

    DTIC Science & Technology

    2012-01-01

    2 Exopolysaccharide Productivity and Biofilm Phenotype on Oral Commensal Bacteria as Pathogenesis of Chronic Periodontitis Takeshi Yamanaka1...species biofilm in the oral cavity can cause persistent chronic periodontitis along with the importance of dental plaque formation and maturation...independent manner could be pathogenic for periodontal tissues and can cause chronic periodontitis lesions. 2.1 Initial colonizers on the tooth surface

  15. A prebiotic role of Ecklonia cava improves the mortality of Edwardsiella tarda-infected zebrafish models via regulating the growth of lactic acid bacteria and pathogen bacteria.

    PubMed

    Lee, WonWoo; Oh, Jae Young; Kim, Eun-A; Kang, Nalae; Kim, Kil-Nam; Ahn, Ginnae; Jeon, You-Jin

    2016-07-01

    In this study, the beneficial prebiotic roles of Ecklonia cava (E. cava, EC) were evaluated on the growth of lactic acid bacteria (LAB) and pathogen bacteria and the mortality of pathogen-bacteria infected zebrafish model. The result showed that the original E. cava (EC) led to the highest growth effects on three LABs (Lactobacillus brevis, L. brevis; Lactobacillus pentosus, L. pentosus; Lactobacillus plantarum; L. plantarum) and it was dose-dependent manners. Also, EC, its Celluclast enzymatic (ECC) and 100% ethanol extracts (ECE) showed the anti-bacterial activities on the fish pathogenic bacteria such as (Edwardsiella tarda; E. tarda, Streptococcus iniae; S. iniae, and Vibrio harveyi; V. harveyi). Interestingly, EC induced the higher production of the secondary metabolites from L. plantarum in MRS medium. The secondary metabolites produced by EC significantly inhibited the growth of pathogen bacteria. In further in vivo study, the co-treatment of EC and L. plantarum improved the growth and mortality of E. tarda-infected zebrafish as regulating the expression of inflammatory molecules such as iNOS and COX2. Taken together, our present study suggests that the EC plays an important role as a potential prebiotic and has a protective effect against the infection caused by E. tarda injection in zebrafish. Also, our conclusion from this evidence is that EC can be used and applied as a useful prebiotic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Childhood urinary tract infection caused by extended-spectrum β-lactamase-producing bacteria: Risk factors and empiric therapy.

    PubMed

    Uyar Aksu, Nihal; Ekinci, Zelal; Dündar, Devrim; Baydemir, Canan

    2017-02-01

    This study investigated risk factors of childhood urinary tract infection (UTI) associated with extended-spectrum β-lactamase (ESBL)-producing bacteria (ESBL-positive UTI) and evaluated antimicrobial resistance as well as empiric treatment of childhood UTI. The records of children with positive urine culture between 1 January 2008 and 31 December 2012 were evaluated. Patients with positive urine culture for ESBL-producing bacteria were defined as the ESBL-positive group, whereas patients of the same gender and similar age with positive urine culture for non-ESBL-producing bacteria were defined as the ESBL-negative group. Each ESBL-positive patient was matched with two ESBL-negative patients. The ESBL-positive and negative groups consisted of 154 and 308 patients, respectively. Potential risk factors for ESBL-positive UTI were identified as presence of underlying disease, clean intermittent catheterization (CIC), hospitalization, use of any antibiotic and history of infection in the last 3 months (P < 0.05). On logistic regression analysis, CIC, hospitalization and history of infection in the last 3 months were identified as independent risk factors. In the present study, 324 of 462 patients had empiric therapy. Empiric therapy was inappropriate in 90.3% of the ESBL-positive group and in 4.5% of the ESBL-negative group. Resistance to nitrofurantoin was similar between groups (5.1% vs 1.2%, P = 0.072); resistance to amikacin was low in the ESBL-positive group (2.6%) and there was no resistance in the ESBL-negative group. Clean intermittent catheterization, hospitalization and history of infection in the last 3 months should be considered as risk factors for ESBL-positive UTI. The combination of ampicillin plus amikacin should be taken into consideration for empiric therapy in patients with acute pyelonephritis who have the risk factors for ESBL-positive UTI. Nitrofurantoin seems to be a logical choice for the empiric therapy of cystitis. © 2016 Japan Pediatric

  17. Differentiating sepsis from non-infectious systemic inflammation based on microvesicle-bacteria aggregation

    NASA Astrophysics Data System (ADS)

    Herrmann, I. K.; Bertazzo, S.; O'Callaghan, D. J. P.; Schlegel, A. A.; Kallepitis, C.; Antcliffe, D. B.; Gordon, A. C.; Stevens, M. M.

    2015-08-01

    Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (<=1.5 hour) and reliable diagnostic differentiation of bacterial infection from non-infectious inflammation in a double-blind pilot study. Our study demonstrates the potential of microvesicle activities for sepsis diagnosis and introduces microvesicle-bacteria aggregation as a potentially useful parameter for making early clinical management decisions.Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (<=1.5 hour) and reliable diagnostic differentiation of bacterial infection from non-infectious inflammation in a double-blind pilot study. Our study demonstrates the potential of microvesicle activities for sepsis diagnosis and

  18. Raman spectroscopy for the microbiological characterization and identification of medically relevant bacteria

    NASA Astrophysics Data System (ADS)

    Hamasha, Khozima Mahmoud

    The detection and identification of pathogenic bacteria has become more important than ever due to the increase of potential bioterrorism threats and the high mortality rate of bacterial infections worldwide. Raman spectroscopy has recently gained popularity as an attractive robust approach for the molecular characterization, rapid identification, and accurate classification of a wide range of bacteria. In this dissertation, Raman spectroscopy utilizing advanced statistical techniques was used to identify and discriminate between different pathogenic and non-pathogenic bacterial strains of E. coli and Staphylococcus aureus bacterial species by probing the molecular compositions of the cells. The five-carbon sugar xylitol, which cannot be metabolized by the oral and nasopharyngeal bacteria, had been recognized by clinicians as a preventive agents for dental caries and many studies have demonstrated that xylitol causes a reduction in otitis media (chronic inner ear infections) and other nasopharyngeal infections. Raman spectroscopy was used to characterize the uptake and metabolic activity of xylitol in pathogenic (viridans group Streptococcus) and nonpathogenic (E. coli) bacteria by taking their Raman spectra before xylitol exposure and after growing with xylitol and quantifying the significant differences in the molecular vibrational modes due to this exposure. The results of this study showed significant stable spectral changes in the S. viridians bacteria induced by xylitol and those changes were not the same as in some E. coli strains. Finally, Raman spectroscopy experiments were conducted to provide important information about the function of a certain protein (wag31) of Mycobacterium tuberculosis using a relative non-pathogenic bacterium called Mycobacterium smegmatis. Raman spectra of conditional mutants of bacteria expressing three different phosphorylation forms of wag31 were collected and analyzed. The results show that that the phosphorylation of wag31

  19. Series quartz crystal sensor for remote bacteria population monitoring in raw milk via the Internet.

    PubMed

    Chang, Ku-Shang; Jang, Hung-Der; Lee, Ching-Fu; Lee, Yuan-Guey; Yuan, Chiun-Jye; Lee, Sheng-Hsien

    2006-02-15

    A remote monitoring system based on a piezoelectric quartz crystal (SPQC) sensor was developed for the determination of the bacteria population in raw milk. The system employs the Windows XP server operating system, and its programs for data acquisition, display and transmission were developed using the LabVIEW 7.1 programming language. The circuit design consists of a circuit with a piezoelectric quartz crystal (SPQC) and a pair of electrodes. This system can provide dynamic data monitoring on a web-page via the Internet. Immersion of the electrodes in a cell culture with bacteria inoculums resulted in a change of frequency caused by the impedance change due to microbial metabolism and the adherence of bacteria on the surface of the electrodes. The calibration curve of detection times against density of bacteria showed a linear correlation coefficient (R(2) = 0.9165) over the range of 70-10(6) CFU ml(-1). The sensor could acquire sufficient data rapidly (within 4 h) and thus enabled real-time monitoring of bacteria growth via the Internet. This system has potential application in the detection of bacteria concentration of milk at dairy farms.

  20. STUDIES ON LUMINOUS BACTERIA

    PubMed Central

    Morrison, Thomas F.

    1925-01-01

    1. A method has been described whereby the intensity of the light of luminous bacteria may be measured in a quantitative manner. 2. It is pointed out that the temperature coefficients for light intensity do not follow the van't Hoff rule, but are higher and vary with each 10° temperature interval. 3. From a comparison with other data it is found that the process is not a simple one, but that the observed curve is the resultant of several reactions which proceed simultaneously. 4. The discrepancies in the temperature coefficients in the neighborhood of the "optimum temperature" may be due to a process of coagulation of the colloidal particles of the enzyme. This coagulation will tend to cause a deviation of the curve away from that normal for chemical reactions. PMID:19872179

  1. Causes of mortality in sea ducks (Mergini) necropsied at the USGS-National Wildlife Health Center

    USGS Publications Warehouse

    Skerratt, L.F.; Franson, J.C.; Meteyer, C.U.; Hollmén, Tuula E.

    2005-01-01

    A number of factors were identified as causes of mortality in 254 (59%) of 431 sea ducks submitted for necropsy at the USGS-National Wildlife Health Center, Madison, Wisconsin from 1975 until 2003. Bacteria causing large outbreaks of mortality were Pasteurella multocida and Clostridium botulinum Type E. Starvation was responsible for large mortality events as well as sporadic deaths of individuals. Lead toxicity, gunshot and exposure to petroleum were important anthropogenic factors. Other factors that caused mortality were avian pox virus, bacteria (Clostridium botulinum Type C, Riemerella anatipestifer and Clostridium perfringens), fungi (Aspergillus fumigatus and an unidentified fungus), protozoans (unidentified coccidia), nematodes (Eustrongylides spp.), trematodes (Sphaeridiotrema globulus and Schistosoma spp.), acanthocephalans (Polymorphus spp.), predation, cyanide and trauma (probably due to collisions). There were also a number of novel infectious organisms in free-living sea ducks in North America, which were incidental to the death, including avipoxvirus and reovirus, bacteria Mycobacterium avium, protozoans Sarcocystis sp. and nematodes Streptocara sp. Apart from anthropogenic factors, the other important mortality factors listed here have not been studied as possible causes for the decline of sea ducks in North America.

  2. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    PubMed

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

  3. Resistance of bioparticles formed of phosphate-accumulating bacteria and zeolite to harsh environmental conditions.

    PubMed

    Ivankovic, Tomislav; Hrenovic, Jasna; Matonickin-Kepcija, Renata

    2013-01-01

    Extreme environmental conditions, such as pH fluctuations, high concentrations of toxicants or grazing of protozoa, can potentially be found in wastewater treatment systems. This study was carried out to provide specific evidence on how 'bioparticles' can resist these conditions. The term 'bioparticle' is used to describe a particle comprising natural zeolitized tuff with a developed biofilm of the phosphate-accumulating bacterial species, Acinetobacter junii, on the surface. The bacteria in the biofilm were protected from the negative influence of extremely low pH, high concentrations of benzalkonium-chloride and grazing by Paramecium caudatum and Euplotes affinis, even under conditions that caused complete eradication of planktonic bacteria. During an incubation of 24 h, the biofilms were maintained and bacteria detached from the bioparticles, thus bioaugmenting the wastewater. The bioparticles provided a safe environment for the survival of bacteria in harsh environmental conditions and could be used for successful bioaugmentation in wastewater treatment plants.

  4. Biodeterioration of medical-grade silicone rubber used for voice prostheses: a SEM study.

    PubMed

    Neu, T R; Van der Mei, H C; Busscher, H J; Dijk, F; Verkerke, G J

    1993-05-01

    Silicone voice prostheses used for rehabilitation of speech after total laryngectomy are inserted in an non-sterile habitat. Deposits on explanted Groningen Button voice prostheses revealed a biofilm, due to heavy colonization of the silicone surface by bacteria and yeasts. Furthermore, it was demonstrated by scanning electron microscopy on sectioned explants that the silicone material was deteriorated by filamentous and vegetative yeast cells. The different explants showed a variety of sharp-edged, discrete yeast colonies. The yeasts grew just under the silicone surface and up to 700 microns into the silicone material. Finally, nine different types of defects in the silicone material created by the yeasts are described. This deterioration of the silicone by yeasts seems to be the main reason for the failure and the frequent replacement of the prostheses. The mechanisms of silicone deterioration are still hypothetical.

  5. Visualization of interaction between inorganic nanoparticles and bacteria or fungi.

    PubMed

    Chwalibog, André; Sawosz, Ewa; Hotowy, Anna; Szeliga, Jacek; Mitura, Stanislaw; Mitura, Katarzyna; Grodzik, Marta; Orlowski, Piotr; Sokolowska, Aleksandra

    2010-12-06

    The objective of the present investigation was to evaluate the morphologic characteristics of self-assemblies of diamond (nano-D), silver (nano-Ag), gold (nano-Au), and platinum (nano-Pt) nanoparticles with Staphylococcus aureus (bacteria) and Candida albicans (fungi), to determine the possibility of constructing microorganism-nanoparticle vehicles. Hydrocolloids of individual nanoparticles were added to suspensions of S. aureus and C. albicans. Immediately after mixing, the samples were inspected by transmission electron microscopy. Visualization of the morphologic interaction between the nanoparticles and microorganisms showed that nano-D, which are dielectrics and exhibit a positive zeta potential, were very different from the membrane potentials of microorganisms, and uniformly surrounded the microorganisms, without causing visible damage and destruction of cells. All metal nanoparticles with negative zeta potential had cell damaging properties. Nano-Ag showed the properties of self-organization with the cells, disintegrating the cell walls and cytoplasmic membranes, and releasing a substance (probably cytoplasm) outside the cell. Arrangement of nano-Au with microorganisms did not create a system of self-organization, but instead a "noncontact" interaction between the nanoparticles and microorganisms was observed to cause damage to fungal cells. Nano-Pt caused both microorganisms to release a substance outside the cell and disintegrated the cytoplasmic membrane and cell wall. Nano-Ag, nano-Au, and nano-Pt (all metal nanoparticles) are harmful to bacteria and fungi. In contrast, nano-D bind closely to the surface of microorganisms without causing visible damage to cells, and demonstrating good self-assembling ability. The results indicate that both microorganisms could be used as potential carriers for nano-D.

  6. Association study of Demodex bacteria and facial dermatoses based on DGGE technique.

    PubMed

    Zhao, YaE; Yang, Fan; Wang, RuiLing; Niu, DongLing; Mu, Xin; Yang, Rui; Hu, Li

    2017-03-01

    The role of bacteria is unclear in the facial skin lesions caused by Demodex. To shed some light on this issue, we conducted a case-control study comparing cases with facial dermatoses with controls with healthy skin using denaturing gradient gel electrophoresis (DGGE) technique. The bacterial diversity, composition, and principal component were analyzed for Demodex bacteria and the matched facial skin bacteria. The result of mite examination showed that all 33 cases were infected with Demodex folliculorum (D. f), whereas 16 out of the 30 controls were infected with D. f, and the remaining 14 controls were infected with Demodex brevis (D. b). The diversity analysis showed that only evenness index presented statistical difference between mite bacteria and matched skin bacteria in the cases. The composition analysis showed that the DGGE bands of cases and controls were assigned to 12 taxa of 4 phyla, including Proteobacteria (39.37-52.78%), Firmicutes (2.7-26.77%), Actinobacteria (0-5.71%), and Bacteroidetes (0-2.08%). In cases, the proportion of Staphylococcus in Firmicutes was significantly higher than that in D. f controls and D. b controls, while the proportion of Sphingomonas in Proteobacteria was significantly lower than that in D. f controls. The between-group analysis (BGA) showed that all the banding patterns clustered into three groups, namely, D. f cases, D. f controls, and D. b controls. Our study suggests that the bacteria in Demodex should come from the matched facial skin bacteria. Proteobacteria and Firmicutes are the two main taxa. The increase of Staphylococcus and decrease of Sphingomonas might be associated with the development of facial dermatoses.

  7. Resident bacteria of plums and their potential for controlling brown rot after harvest

    USDA-ARS?s Scientific Manuscript database

    Fruit microflora has been the richest source of antagonists against fruit decays and the active ingredient in all currently available commercial biocontrol products. A comprehensive evaluation of plum bacteria for biocontrol activity against Monilinia fructicola, causing brown rot of stone fruit, w...

  8. Co-occurrence of anaerobic bacteria in colorectal carcinomas.

    PubMed

    Warren, René L; Freeman, Douglas J; Pleasance, Stephen; Watson, Peter; Moore, Richard A; Cochrane, Kyla; Allen-Vercoe, Emma; Holt, Robert A

    2013-05-15

    Numerous cancers have been linked to microorganisms. Given that colorectal cancer is a leading cause of cancer deaths and the colon is continuously exposed to a high diversity of microbes, the relationship between gut mucosal microbiome and colorectal cancer needs to be explored. Metagenomic studies have shown an association between Fusobacterium species and colorectal carcinoma. Here, we have extended these studies with deeper sequencing of a much larger number (n = 130) of colorectal carcinoma and matched normal control tissues. We analyzed these data using co-occurrence networks in order to identify microbe-microbe and host-microbe associations specific to tumors. We confirmed tumor over-representation of Fusobacterium species and observed significant co-occurrence within individual tumors of Fusobacterium, Leptotrichia and Campylobacter species. This polymicrobial signature was associated with over-expression of numerous host genes, including the gene encoding the pro-inflammatory chemokine Interleukin-8. The tumor-associated bacteria we have identified are all Gram-negative anaerobes, recognized previously as constituents of the oral microbiome, which are capable of causing infection. We isolated a novel strain of Campylobacter showae from a colorectal tumor specimen. This strain is substantially diverged from a previously sequenced oral Campylobacter showae isolate, carries potential virulence genes, and aggregates with a previously isolated tumor strain of Fusobacterium nucleatum. A polymicrobial signature of Gram-negative anaerobic bacteria is associated with colorectal carcinoma tissue.

  9. Bisphosphocins: novel antimicrobials for enhanced killing of drug-resistant and biofilm-forming bacteria.

    PubMed

    Wong, Jonathan P; DiTullio, Paul; Parkinson, Steve

    2015-01-01

    The global prevalence of antibiotic resistance and the threat posed by drug-resistant superbugs are a leading challenge confronting modern medicine in the 21st century. However, the progress on the development of novel antibiotics to combat this problem is severely lagging. A more concerted effort to develop novel therapeutic agents with robust activity and unique mechanisms of action will be needed to overcome the problem of drug resistance. Furthermore, biofilm forming bacteria are known to be increasingly resistant to the actions of antibiotics and are a leading cause of mortality or morbidity in nosocomial infections. Bisphosphocins (also scientifically known as nubiotics) are novel small protonated deoxynucleotide molecules, and exert their antibacterial activity by depolarization of the bacterial cell membrane, causing bacterial cell death. Bisphosphocins may represent an effective weapon against antibiotic-resistant and biofilm-forming pathogenic bacteria. Preclinical efficacy studies in animals have shown that the compounds are safe and, efficacious against various bacterial infections, including drug-resistant pathogens. In vitro biochemical analysis confirmed that the bactericidal activity of bisphosphocins is mediated by depolarization of the bacterial cell membrane, and these compounds are better able to penetrate through bacterial biofilm and kill the biofilm encased bacteria. This article will cover the structure, mode of action, safety, efficacy and the current state of development of bisphosphocins. Together, the information presented here will present a strong case for bisphosphocins to be considered for use as new weapons to complement the existing arsenal of antimicrobial drugs and as a first line defence against drug-resistant and biofilm-forming bacteria.

  10. Comparison of Biocorrosion due to Desulfovibrio desulfuricans and Desulfotomaculum nigrificans Bacteria

    NASA Astrophysics Data System (ADS)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay K.

    2013-02-01

    One observes several species of sulfate-reducing bacteria in nature. Presence of these species in a media may cause microbial influenced corrosion (MIC) of materials differently. To investigate this aspect of MIC, corrosion tests were performed on three types of stainless steels. The tests were done in modified Baar's media inoculated separately by the two species of SRB namely Desulfovibrio desulfuricans (DD) and Desulfotomaculum nigrificans (DN). Electrochemical and immersion tests were performed to assess the extent of uniform and localized corrosion of these steels. Biofilms formed on the corroded samples were analyzed for estimating various components of its extracellular polymeric substances. Hydrogenase enzyme of these bacteria was tested to determine its nature and activity. Higher degree of corrosivity was observed in case of media inoculated with DD as compared to DN. More active nature of hydrogenase enzyme, its location in the periplasmic phase in DD and higher fraction of carbohydrate in biofilm formed due to DD have been suggested to be responsible for higher degree of corrosivity caused by them.

  11. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks.

    PubMed

    Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein

    2015-12-01

    This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.

  12. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks

    PubMed Central

    AMANIDAZ, Nazak; ZAFARZADEH, Ali; MAHVI, Amir Hossein

    2015-01-01

    Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. Results: In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Conclusion: Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms. PMID:26811820

  13. Community-acquired febrile urinary tract infection caused by extended-spectrum beta-lactamase-producing bacteria in hospitalised infants.

    PubMed

    Hernández Marco, Roberto; Guillén Olmos, Elena; Bretón-Martínez, José Rafael; Giner Pérez, Lourdes; Casado Sánchez, Benedicta; Fujkova, Julia; Salamanca Campos, Marina; Nogueira Coito, José Miguel

    2017-05-01

    Extended-spectrum beta-lactamase (ESBL) producing bacteria are infrequent pathogens of urinary tract infections in children. The objective of our study was to investigate the presence, clinically associated characteristics and risk factors for acquisition of urinary tract infection/acute pyelonephritis (UTI/APN) in hospitalised children <2years old caused by community-acquired ESBL. A case-control study in a second level community hospital in Spain, in which 537 episodes of UTI/APN were investigated in a retrospective study between November 2005 and August 2014. Cases were patients with ESBL strains. For each case, four ESBL-negative controls were selected. A questionnaire with the variables of interest was completed for every patient, and the groups were compared. ESBL-positive strains were found in 19 (3,5%) cultures. Of these 16 (84%) were Escherichia coli. Vesicoureteral reflux (VUR) of any grade was more frequent in the ESBL group (60 vs. 29%), although without statistical significance. Relapses were more frequent in the ESBL group (42% vs. 18%) (P=.029; OR=3.2; 95%CI: 1.09-9.5). The prevalence of UTI/APN due to ESBL-positive strains increased slightly from 2.7% in the period 2005-2009 to 4.4% in the period 2010-2014. ESBL UTI/APN were associated with more frequent relapses. VUR of any grade was twice more frequent in the ESBL group. Piperacillin/tazobactam, fosfomycin and meropenem showed an excellent activity. Aminoglycosides may be a therapeutic option, and in our patients gentamicin was the antibiotic most used. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. Bacteria-surface interactions.

    PubMed

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  15. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  16. RETRACTED ARTICLE: Quorum-sensing of bacteria and its application

    NASA Astrophysics Data System (ADS)

    Jiang, Guoliang; Su, Mingxia

    2009-12-01

    Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is triggered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing industries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.

  17. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO 2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO 2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H 2 and other valuable compounds.

  18. Staphylococcus aureus causes acute inflammatory episodes in the cornea during contact lens wear.

    PubMed

    Wu, P Z; Thakur, A; Stapleton, F; Willcox, M D

    2000-06-01

    The aim of this investigation was to determine the ability of Staphylococcus aureus to cause keratitis during contact lens wear in the rabbit. Rabbits were fitted with hydrogel lenses and wore them on an extended wear schedule for 7 weeks. At the end of each week of wear, one drop of S. aureus was added to the eyes, and the eyes were monitored using slit lamp bio-microscopy, with subsequent microbial and histological studies of the cornea. In the presence of S. aureus, keratitis occurred after 3 weeks of lens wear, a condition that was characterized by diffuse infiltration of the peripheral cornea and limbal redness. In the absence of bacteria, there was no infiltration until week 6. Contact lens wear also prolonged the retention of bacteria in the eye. Extended contact lens wear and S. aureus caused non-ulcerative keratitis in a rabbit model, and disturbances in the ability of the eye to remove bacteria.

  19. Effects of sulfate-reducing bacteria on methylmercury at the sediment-water interface.

    PubMed

    Zeng, Lingxia; Luo, Guangjun; He, Tianrong; Guo, Yanna; Qian, Xiaoli

    2016-08-01

    Sediment cores (containing sediment and overlying water) from Baihua Reservoir (SW China) were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reducing bacteria (SRB) on mercury (Hg) methylation at sediment-water interfaces. Concentrations of dissolved methyl mercury (DMeHg) in the overlying water of the control cores with bioactivity maintained (BAC) and cores with only sulfate-reducing bacteria inhibited (SRBI) and bacteria fully inhibited (BACI) were measured at the anaerobic stage followed by the aerobic stage. For the BAC and SRBI cores, DMeHg concentrations in waters were much higher at the anaerobic stage than those at the aerobic stage, and they were negatively correlated to the dissolved oxygen concentrations (r=-0.5311 and r=-0.4977 for BAC and SRBI, respectively). The water DMeHg concentrations of the SRBI cores were 50% lower than those of the BAC cores, indicating that the SRB is of great importance in Hg methylation in sediment-water systems, but there should be other microbes such as iron-reducing bacteria and those containing specific gene cluster (hgcAB), besides SRB, causing Hg methylation in the sediment-water system. Copyright © 2016. Published by Elsevier B.V.

  20. In vitro activity of daptomycin against clinical isolates of Gram-positive bacteria.

    PubMed

    Piper, Kerryl E; Steckelberg, James M; Patel, Robin

    2005-08-01

    We determined the activity of daptomycin, a recently FDA-approved antimicrobial agent, against clinical isolates of Gram-positive bacteria, including viridans group streptococci (16 Streptococcus mitis species group, 12 S. mutans species group, 9 S. anginosus species group, 8 S. sanguinis species group, 5 S. salivarius species group) from patients with infective endocarditis, 32 methicillin-resistant Staphylococcus aureus, 32 high-level penicillin-resistant Streptococcus pneumoniae, 38 vancomycin-resistant enterococci (including 1 linezolid-resistant isolate), and the following unusual Gram-positive bacteria: 3 Listeria monocytogenes, 4 Erysipelothrix rhusiopathiae, 9 Corynebacterium species, 10 Abiotrophia/Granulicatella species, 2 Rothia (Stomatococcus) mucilaginosus, and 4 Gemella morbillorum. Daptomycin minimum inhibitory concentration (MIC)(90) values for the viridans group streptococci, methicillin-resistant S. aureus, penicillin-resistant S. pneumoniae, and Enterococcus species were 0.5, 0.5, < or =0.125, and 4 microg/ml, respectively. The daptomycin MIC range for the unusual Gram-positive bacteria was < or =0.125-2 microg/ml. We conclude that daptomycin has in vitro activity against viridans group streptococci associated with endocarditis as well as against several types of unusual Gram-positive bacteria that can cause endocarditis.

  1. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria

    NASA Astrophysics Data System (ADS)

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-01

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems.

  2. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages.

    PubMed

    Hultman, Jenni; Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K Johanna

    2015-10-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2%±5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages

    PubMed Central

    Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K. Johanna

    2015-01-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2% ± 5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces. PMID:26231646

  4. Identification and disruption of bacteria associated with sheep scab mites-novel means of control?

    PubMed

    Hall, S A; Mack, K; Blackwell, A; Evans, K A

    2015-10-01

    Psoroptes ovis mites, which cause psoroptic mange (sheep scab), were investigated to identify potential bacterial targets for endosymbiont control of sheep scab. In addition, transmission of bacteria to the sheep skin was investigated through the characterisation of bacteria present in P. ovis faecal trails and on the fleece environment by internal transcribed spacer (ITS) sequencing. A diverse range of bacteria was identified in addition to a potential endosymbiont candidate, Comamonas sp, which was detected in P. ovis by both ITS PCR and endosymbiont-specific PCR. Disruption of these bacteria within P. ovis, through the use of antibiotics, was explored; with significant reduction in mean mite survival when administered antibiotic diets compared with controls (LR4 = 23.12, P < 0.001). The antibiotic treatments also significantly affected the bacterial density (CFU/mite) within P. ovis, indicating that mite survival may be linked to the bacterial communities that they harbour. Although antibiotics are not suitable for practical application, these results suggest disrupting bacteria associated with P. ovis should be further investigated for novel control. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Interactions between Diatoms and Bacteria

    PubMed Central

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  6. Cause of Legionnaire's Disease outbreak at hospital traced.

    PubMed

    1995-03-01

    The cause of an outbreak of Legionnaire's Disease at St. Vincent's Medical Center, Bridgeport, CT, has been traced to the hospital's hot water system after months of testing and decontamination efforts. A total of 28 patients were diagnosed with the disease between January and October 1994, with most of the cases occurring in June and July. Legionnaire's Disease is a kind of pneumonia caused by bacteria that thrive in warm water and can become airborne on tiny water droplets that, if inhaled, spread the disease.

  7. Phylogeny of pectolytic bacteria associated with recent outbreaks of potato soft rot and blackleg in the United States

    USDA-ARS?s Scientific Manuscript database

    Soft rot diseases of potato are caused by several species of bacteria belonging to the newly described family Pectobacteriaceae. Multiple species of Pectobacterium are known to cause soft rot diseases during field production and storage of potatoes. Recently, the genus Dickeya has been connected wi...

  8. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria?

    PubMed Central

    Exner, Martin; Bhattacharya, Sanjay; Christiansen, Bärbel; Gebel, Jürgen; Goroncy-Bermes, Peter; Hartemann, Philippe; Heeg, Peter; Ilschner, Carola; Kramer, Axel; Larson, Elaine; Merkens, Wolfgang; Mielke, Martin; Oltmanns, Peter; Ross, Birgit; Rotter, Manfred; Schmithausen, Ricarda Maria; Sonntag, Hans-Günther; Trautmann, Matthias

    2017-01-01

    In the past years infections caused by multidrug-resistant Gram-negative bacteria have dramatically increased in all parts of the world. This consensus paper is based on presentations, subsequent discussions and an appraisal of current literature by a panel of international experts invited by the Rudolf Schülke Stiftung, Hamburg. It deals with the epidemiology and the inherent properties of Gram-negative bacteria, elucidating the patterns of the spread of antibiotic resistance, highlighting reservoirs as well as transmission pathways and risk factors for infection, mortality, treatment and prevention options as well as the consequences of their prevalence in livestock. Following a global, One Health approach and based on the evaluation of the existing knowledge about these pathogens, this paper gives recommendations for prevention and infection control measures as well as proposals for various target groups to tackle the threats posed by Gram-negative bacteria and prevent the spread and emergence of new antibiotic resistances. PMID:28451516

  9. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  10. The three-dimensional structure of CFA/I adhesion pili: traveler's diarrhea bacteria hang on by a spring.

    PubMed

    Mu, Xiang-Qi; Savarino, Stephen J; Bullitt, Esther

    2008-02-22

    To survive the harsh environment of a churning intestinal tract, bacteria attach to the host epithelium via thin fibers called pili (or fimbriae). Enterotoxigenic Escherichia coli bacteria expressing colonization factor antigen I (CFA/I) pili and related pili are the most common known bacterial cause of diarrheal disease, including traveler's diarrhea. CFA/I pili, assembled via the alternate chaperone pathway, are essential for binding and colonization of the small bowel by these pathogenic bacteria. Herein, we elucidate unique structural features of CFA/I pili that appear to optimize their function as bacterial tethers in the intestinal tract. Using transmission electron microscopy of negatively stained samples in combination with iterative three-dimensional helical reconstruction methods for image processing, we determined the structure of the CFA/I pilus filament. Our results indicate that strong end-to-end protein interactions and weak interactions between the coils of a sturdy spring-like helix provide the combination of strength, stability, and flexibility required to sustain bacterial adhesion and incite intestinal disease. We propose that CFA/I pili behave like a spring to maintain attachment to the gut lining during vortex mixing and downward flow of the intestinal contents, thereby persisting long enough for these bacteria to colonize the host epithelium and cause enteric disease.

  11. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome.

    PubMed

    Dickson, Robert P; Singer, Benjamin H; Newstead, Michael W; Falkowski, Nicole R; Erb-Downward, John R; Standiford, Theodore J; Huffnagle, Gary B

    2016-07-18

    Sepsis and the acute respiratory distress syndrome (ARDS) are major causes of mortality without targeted therapies. Although many experimental and clinical observations have implicated gut microbiota in the pathogenesis of these diseases, culture-based studies have failed to demonstrate translocation of bacteria to the lungs in critically ill patients. Here, we report culture-independent evidence that the lung microbiome is enriched with gut bacteria both in a murine model of sepsis and in humans with established ARDS. Following experimental sepsis, lung communities were dominated by viable gut-associated bacteria. Ecological analysis identified the lower gastrointestinal tract, rather than the upper respiratory tract, as the likely source community of post-sepsis lung bacteria. In bronchoalveolar lavage fluid from humans with ARDS, gut-specific bacteria (Bacteroides spp.) were common and abundant, undetected by culture and correlated with the intensity of systemic inflammation. Alveolar TNF-α, a key mediator of alveolar inflammation in ARDS, was significantly correlated with altered lung microbiota. Our results demonstrate that the lung microbiome is enriched with gut-associated bacteria in sepsis and ARDS, potentially representing a shared mechanism of pathogenesis in these common and lethal diseases.

  12. A novel antimicrobial peptide against dental-caries-associated bacteria.

    PubMed

    Chen, Long; Jia, Lili; Zhang, Qiang; Zhou, Xirui; Liu, Zhuqing; Li, Bingjie; Zhu, Zhentai; Wang, Fenwei; Yu, Changyuan; Zhang, Qian; Chen, Feng; Luo, Shi-Zhong

    2017-10-01

    Dental caries, a highly prevalent oral disease, is primarily caused by pathogenic bacteria infection, and most of them are anaerobic. Herein, we investigated the activity of a designed antimicrobial peptide ZXR-2, and found it showed broad-spectrum activity against a variety of Gram-positive and Gram-negative oral bacteria, particularly the caries-related taxa Streptococcus mutans. Time-course killing assays indicated that ZXR-2 killed most bacterial cells within 5 min at 4 × MIC. The mechanism of ZXR-2 involved disruption of cell membranes, as observed by scanning electron microscopy. Moreover, ZXR-2 inhibited the formation of S. mutans biofilm, but showed limited hemolytic effect. Based on its potent antimicrobial activity, rapid killing, and inhibition of S. mutans biofilm formation, ZXR-2 represents a potential therapeutic for the prevention and treatment of dental caries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets

    PubMed Central

    Wang, Shaopu; Giller, Katrin; Kreuzer, Michael; Ulbrich, Susanne E.; Braun, Ueli; Schwarm, Angela

    2017-01-01

    Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I), without archaea (–A), without fungi (–F), without protozoa (–P) and with bacteria only (–AFP). A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower (Carthamus tinctorius) or poppy (Papaver somniferum) or camelina (Camelina sativa) at 70 g oil kg−1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, –F decreased organic matter (OM) degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in –F was greater with camelina seeds (−12 vs.−7% with I, P = 0.06), but smaller with poppy seeds (−4 vs. −8% with I, P = 0.03), and not affected with safflower seeds. With –P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08). Hydrogen recovery was improved with –P in any oilseeds compared to non-supplemented control. No methane emission was detected with the –A and –AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea associated

  14. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets.

    PubMed

    Wang, Shaopu; Giller, Katrin; Kreuzer, Michael; Ulbrich, Susanne E; Braun, Ueli; Schwarm, Angela

    2017-01-01

    Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I), without archaea (-A), without fungi (-F), without protozoa (-P) and with bacteria only (-AFP). A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower ( Carthamus tinctorius ) or poppy ( Papaver somniferum ) or camelina ( Camelina sativa ) at 70 g oil kg -1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, -F decreased organic matter (OM) degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in -F was greater with camelina seeds (-12 vs.-7% with I, P = 0.06), but smaller with poppy seeds (-4 vs. -8% with I, P = 0.03), and not affected with safflower seeds. With -P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08). Hydrogen recovery was improved with -P in any oilseeds compared to non-supplemented control. No methane emission was detected with the -A and -AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea associated with protozoa. This

  15. Survival of pathogenic bacteria in compost with special reference to Escherichia coli.

    PubMed

    Gong, Chun-ming; Koichi, Inoue; Shunji, Inanaga; Takashi, Someya

    2005-01-01

    Application of compost in agricultural practice could potentially cause contamination of foodstuffs with pathogenic bacteria such as Escherichia coli O157:H7 (E. Coli O157). We investigated pathogenic bacteria in compost collected from the compost facilities, and evaluated the survival of E. coli K12 and O157 in laboratory experiments. Out of 19 compost product samples, coliform bacteria and salmonella were detected in 7 and 3 samples respectively. The number of coliform bacteria was 1.8 x 10(2) to 2.5 x 10(6) CFU/g dw and that of salmonella was 4.2 x 10(1) to 6.0 x 10(3) CFU/g dw. Moreover, coliform bacteria, fecal coliform, E. coli and salmonella were detected during composting at 54 degrees C to 67 degrees C. The results indicated that moisture content was a very important factor to the heat sensitivity of pathogenic bacteria in compost, E. coil in compost of high moisture content was more sensitive than that in compost of low moisture content, cells harvested in logarithmic phase was more sensitive than these in stationary phase, and E. coli K12 was more sensitive than E. coli O157. Based on the D values, the lethal time of E. coli K12 and O157 from l0(8) to 10(0) CFU/g dw were 16.3 and 28.8 min, respectively, at 60 degrees C in compost with 40% moisture content. However, some E. coil cells survived in composting process at 54 degrees C to 67 degrees C. Water potential (low moisture content) and physiological aspects of bacteria (stationary phase) could explain only in part of the prolonged survival of E. coil in compost, and there should be some other factors that are conducive to bacterial survival in compost.

  16. [Problems caused by poisonous tropical marine animals].

    PubMed

    Lääveri, Tinja; Räisänen-Sokolowski, Anne; Jama, Timo

    2014-01-01

    A Finnish physician encounters problems caused by tropical marine animals either during her/his own travelling or while treating travelers who have returned home. Certain species of medusae and cone shells as well as the stings by some fish species are life-threateningly poisonous. A person stung or bitten by any of the most dangerous species must immediately be admitted to the hospital. Foreign material remaining in tissues after stings by echinoderms and spiky fish may cause problems months after the actual injury. The injuries become easily infected, and antimicrobial drug therapy must thus cover gram-negative rod-shaped bacteria as well.

  17. Composite of PAH-degrading endophytic bacteria reduces contamination and health risks caused by PAHs in vegetables.

    PubMed

    Wang, Jian; Liu, Juan; Ling, Wanting; Huang, Qingguo; Gao, Yanzheng

    2017-11-15

    Vegetables accumulate polycyclic aromatic hydrocarbons (PAHs) at high concentrations when grown in contaminated sites. Inoculation with PAH-degrading endophytic bacteria (EB PAH ) has been recognized as one of the most promising ways to remove PAHs from plant bodies; however, the performance of single endophytic bacteria is generally limited. This investigation used a composite of eight EB PAH to reduce the contamination and health risk posed by 16 EPA priority PAHs in vegetables including Chinese cabbage (Brassica chinensis L.) and pakchoi (Brassica campestris L.). Composite EB PAH have strong PAH degradation abilities, and more than 65% of ∑PAH were degraded after 10-day insuspension with composite EB PAH . Vegetable were contacted with composite EB PAH by seed soaking (SS) and leaf painting (LP) with an EB PAH cell incubation at OD 600nm =0.2-1.5. Compared with those in non-inoculated controls, the ∑PAH concentrations in edible parts of Chinese cabbage and pakchoi colonized by composite EB PAH via SS and LP with bacterial suspension at OD 600nm =0.2-1.5 were 42.07-70.77% and 15.79-53.20% lower, and the incremental lifetime cancer risk (ILCR) values for males and females were 31.78-84.08% and 26.60-83.40% smaller, respectively. SS was the optimal inoculation method for reducing PAH concentrations and ILCR values. Our results indicate that inoculating plants with composite EB PAH can lower the health risk posed by vegetables contaminated with PAHs, and may be used to mitigate plant PAH contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.

    PubMed

    Caplan, Z; Melilli, C; Barbano, D M

    2013-04-01

    The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids. Copyright © 2013 American Dairy Science Association. Published by

  19. Visualization of interaction between inorganic nanoparticles and bacteria or fungi

    PubMed Central

    Chwalibog, André; Sawosz, Ewa; Hotowy, Anna; Szeliga, Jacek; Mitura, Stanislaw; Mitura, Katarzyna; Grodzik, Marta; Orlowski, Piotr; Sokolowska, Aleksandra

    2010-01-01

    Purpose The objective of the present investigation was to evaluate the morphologic characteristics of self-assemblies of diamond (nano-D), silver (nano-Ag), gold (nano-Au), and platinum (nano-Pt) nanoparticles with Staphylococcus aureus (bacteria) and Candida albicans (fungi), to determine the possibility of constructing microorganism–nanoparticle vehicles. Methods Hydrocolloids of individual nanoparticles were added to suspensions of S. aureus and C. albicans. Immediately after mixing, the samples were inspected by transmission electron microscopy. Results Visualization of the morphologic interaction between the nanoparticles and microorganisms showed that nano-D, which are dielectrics and exhibit a positive zeta potential, were very different from the membrane potentials of microorganisms, and uniformly surrounded the microorganisms, without causing visible damage and destruction of cells. All metal nanoparticles with negative zeta potential had cell damaging properties. Nano-Ag showed the properties of self-organization with the cells, disintegrating the cell walls and cytoplasmic membranes, and releasing a substance (probably cytoplasm) outside the cell. Arrangement of nano-Au with microorganisms did not create a system of self-organization, but instead a “noncontact” interaction between the nanoparticles and microorganisms was observed to cause damage to fungal cells. Nano-Pt caused both microorganisms to release a substance outside the cell and disintegrated the cytoplasmic membrane and cell wall. Conclusion Nano-Ag, nano-Au, and nano-Pt (all metal nanoparticles) are harmful to bacteria and fungi. In contrast, nano-D bind closely to the surface of microorganisms without causing visible damage to cells, and demonstrating good self-assembling ability. The results indicate that both microorganisms could be used as potential carriers for nano-D. PMID:21270959

  20. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment.

    PubMed

    Lee, Dong Wan; Lee, Hanbyul; Kwon, Bong-Oh; Khim, Jong Seong; Yim, Un Hyuk; Kim, Beom Seok; Kim, Jae-Jin

    2018-05-25

    Crude oil and its derivatives are considered as one group of the most pervasive environmental pollutants in marine environments. Bioremediation using oil-degrading bacteria has emerged as a promising green cleanup alternative in more recent years. The employment of biosurfactant-producing and hydrocarbon-utilizing indigenous bacteria enhances the effectiveness of bioremediation by making hydrocarbons bioavailable for degradation. In this study, the best candidates of biosurfactant-producing indigenous bacteria were selected by screening of biochemical tests. The selected bacteria include Bacillus algicola (003-Phe1), Rhodococcus soli (102-Na5), Isoptericola chiayiensis (103-Na4), and Pseudoalteromonas agarivorans (SDRB-Py1). In general, these isolated species caused low surface tension values (33.9-41.3 mN m -1 ), high oil spreading (1.2-2.4 cm), and hydrocarbon emulsification (up to 65%) warranting active degradation of hydrocarbons. FT-IR and LC-MS analyses indicated that the monorhamnolipid (Rha-C 16:1 ) and dirhamnolipid (Rha-Rha-C 6 -C 6:1 ) were commonly produced by the bacteria as potent biosurfactants. The residual crude oil after the biodegradation test was quantitated using GC-MS analysis. The bacteria utilized crude oil as their sole carbon source while the amount of residual crude oil significantly decreased. In addition the cell-free broth containing biosurfactants produced by bacterial strains significantly desorbed crude oil in oil-polluted marine sediment. The selected bacteria might hold additional capacity in crude oil degradation. Biosurfactant-producing indigenous bacteria therefore degrade crude oil hydrocarbon compounds, produce biosurfactants that can increase the emulsification of crude oil and are thus more conducive to the degradation of crude oil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Imaging of bacteria: is there any hope for the future based on past experience?

    PubMed

    Ebenhan, Thomas; Lazzeri, Elena; Gheysens, Olivier

    2017-11-21

    Infectious diseases remain a major health problem and cause of death worldwide. It is expected that the socio-economic impact will further intensify due to escalating resistance to antibiotics, an ageing population and an increase in the number of patients under immunosuppressive therapy and implanted medical devices. Even though radiolabeled probes and leukocytes are routinely used in clinical practice, it might still be difficult to distinguish sterile inflammation from inflammation caused by bacteria. Moreover, the majority of these probes are based on the attraction of leukocytes which may be hampered in neutropenic patients. Novel approaches that can be implemented in clinical practice and allow for swift diagnosis of infection by targeting the microorganism directly, are posing an attractive strategy. Here we review the current strategies to directly image bacteria using radionuclides and we provide an overview of the preclinical efforts to develop and validate new approaches. Indeed, significant progress has been made in the past years, but very few radiopharmaceuticals (that were promising in preclinical studies) have made it into clinical practice. We will discuss the challenges that remain to select good candidates for imaging agents targeting bacteria. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  3. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber.

    PubMed

    Khabbaz, Salah Eddin; Abbasi, Pervaiz A

    2014-01-01

    Antagonistic bacteria are common soil inhabitants with potential to be developed into biofungicides for the management of seedling damping-off, root rot, and other soil-borne diseases of various crops. In this study, antagonistic bacteria were isolated from a commercial potato field and screened for their growth inhibition of fungal and oomycete pathogens in laboratory tests. The biocontrol potential of the 3 most effective antagonistic bacteria from the in vitro tests was evaluated against seedling damping-off and root rot of cucumber caused by Pythium ultimum. Based on phenotypic characteristics, biochemical tests, and sequence analysis of 16S-23S rDNA gene, the 3 antagonistic bacteria were identified as Pseudomonas fluorescens (isolate 9A-14), Pseudomonas sp. (isolate 8D-45), and Bacillus subtilis (isolate 8B-1). All 3 bacteria promoted plant growth and suppressed Pythium damping-off and root rot of cucumber seedlings in growth-room assays. Both pre- and post-planting application of these bacteria to an infested peat mix significantly increased plant fresh masses by 113%-184% and percentage of healthy seedlings by 100%-290%, and decreased damping-off and root rot severity by 27%-50%. The peat and talc formulations of these antagonistic bacteria applied as seed or amendment treatments to the infested peat mix effectively controlled Pythium damping-off and root rot of cucumber seedlings and enhanced plant growth. The survival of all 3 antagonistic bacteria in peat and talc formulations decreased over time at room temperature, but the populations remained above 10(8) CFU/g during the 180-day storage period. The peat formulation of a mixture of 3 bacteria was the best seed treatment, significantly increasing the plant fresh masses by 245% as compared with the Pythium control, and by 61.4% as compared with the noninfested control. This study suggests that the indigenous bacteria from agricultural soils can be developed and formulated as biofungicides for minimizing

  4. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations.

    PubMed

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2005-03-01

    Microorganisms, such as bacteria, which might be present as contamination inside an industrial food or pharmaceutical clean room process need to be identified on short time scales in order to minimize possible health hazards as well as production downtimes causing financial deficits. Here we describe the first results of single-particle micro-Raman measurements in combination with a classification method, the so-called support vector machine technique, allowing for a fast, reliable, and nondestructive online identification method for single bacteria.

  5. Chemotaxonomic Identification of Single Bacteria by Micro-Raman Spectroscopy: Application to Clean-Room-Relevant Biological Contaminations

    PubMed Central

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2005-01-01

    Microorganisms, such as bacteria, which might be present as contamination inside an industrial food or pharmaceutical clean room process need to be identified on short time scales in order to minimize possible health hazards as well as production downtimes causing financial deficits. Here we describe the first results of single-particle micro-Raman measurements in combination with a classification method, the so-called support vector machine technique, allowing for a fast, reliable, and nondestructive online identification method for single bacteria. PMID:15746368

  6. Psychrotrophic bacteria in milk: How much do we really know?

    PubMed Central

    de Oliveira, Gislene B.; Favarin, Luciana; Luchese, Rosa H.; McIntosh, Douglas

    2015-01-01

    The occurrence of psychrotrophic bacteria in raw milk is studied worldwide due to the difficulties associated with controlling their growth during cold storage and the consequent negative effects upon fluid milk or dairy products. Among the psychrotrophic bacteria, the genus Pseudomonas (represented primarily by P. fluorescens) has been highlighted as the cause of numerous defects in dairy products. In light of its perceived predominance, this species has frequently been chosen as a model organism to assess the effects of psychrotrophic bacteria on milk or to evaluate the efficacy of control measures. However, recent findings derived from the application of molecular biological techniques have exposed a number of deficiencies in our knowledge of the biology of milk-associated psychrotrophs. Furthermore, it has been revealed that microbe to microbe communication plays a significant role in determining both the identities and the extent to which different groups of microbes develop during cold storage. The application of molecular identification methods has exposed errors in the classification of members of the genus Pseudomonas isolated from cold stored milk and has stimulated a reevaluation of the presumed status of P. fluorescens as the predominant milk-associated psychrotrophic species. This article presents a succinct review of data from studies on psychrotrophic bacteria in milk, some of which contest established theories in relation to the microbiology of cold stored raw milk, and poses the question: how much do we really know? PMID:26273245

  7. Psychrotrophic bacteria in milk: How much do we really know?

    PubMed

    de Oliveira, Gislene B; Favarin, Luciana; Luchese, Rosa H; McIntosh, Douglas

    2015-06-01

    The occurrence of psychrotrophic bacteria in raw milk is studied worldwide due to the difficulties associated with controlling their growth during cold storage and the consequent negative effects upon fluid milk or dairy products. Among the psychrotrophic bacteria, the genus Pseudomonas (represented primarily by P. fluorescens) has been highlighted as the cause of numerous defects in dairy products. In light of its perceived predominance, this species has frequently been chosen as a model organism to assess the effects of psychrotrophic bacteria on milk or to evaluate the efficacy of control measures. However, recent findings derived from the application of molecular biological techniques have exposed a number of deficiencies in our knowledge of the biology of milk-associated psychrotrophs. Furthermore, it has been revealed that microbe to microbe communication plays a significant role in determining both the identities and the extent to which different groups of microbes develop during cold storage. The application of molecular identification methods has exposed errors in the classification of members of the genus Pseudomonas isolated from cold stored milk and has stimulated a reevaluation of the presumed status of P. fluorescens as the predominant milk-associated psychrotrophic species. This article presents a succinct review of data from studies on psychrotrophic bacteria in milk, some of which contest established theories in relation to the microbiology of cold stored raw milk, and poses the question: how much do we really know?

  8. Bacteria in the apical root canals of teeth with apical periodontitis.

    PubMed

    Lee, Li-Wan; Lee, Ya-Ling; Hsiao, Sheng-Huang; Lin, Hung-Pin

    2017-06-01

    Bacteria in the tooth root canal may cause apical periodontitis. This study examined the bacterial species present in the apical root canal of teeth with apical periodontitis. Antibiotic sensitivity tests were performed to evaluate whether these identified bacterial species were susceptible to specific kinds of antibiotics. Selective media plating and biochemical tests were used first to detect the bacterial species in samples taken from the apical portion of root canals of 62 teeth with apical periodontitis. The isolated bacterial species were further confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. We found concomitant presence of two (32 teeth) or three species (18 teeth) of bacteria in 50 (80.6%) out of 62 tested teeth. However, only 34 bacterial species were identified. Of a total of 118 bacterial isolates (83 anaerobes and 35 aerobes), Prophyromonas endodontalis was detected in 10; Bacteroides, Dialister invisus or Fusobacterium nucleatum in 9; Treponema denticola or Enterococcus faecalis in 8; Peptostreptococcus or Olsenella uli in 6; and Veillonella in 5 teeth. The other 25 bacterial species were detected in fewer than five teeth. Approximately 80-95% of bacterial isolates of anaerobes were sensitive to ampicillin/sulbactam (Unasyn), amoxicillin/clavulanate (Augmentin), cefoxitin, and clindamycin. For E. faecalis, 85-90% of bacterial isolates were sensitive to gentamicin and linezolid. Root canal infections are usually caused by a mixture of two or three species of bacteria. Specific kinds of antibiotic can be selected to control these bacterial infections after antibiotic sensitivity testing. Copyright © 2016. Published by Elsevier B.V.

  9. Development of a multiplex PCR assay for rapid and simultaneous detection of four genera of fish pathogenic bacteria.

    PubMed

    Zhang, D F; Zhang, Q Q; Li, A H

    2014-11-01

    Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This m

  10. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter.

    PubMed

    Liu, Huan; Zhang, Xu; Zhang, Hao; Yao, Xiangwu; Zhou, Meng; Wang, Jiaqi; He, Zhanfei; Zhang, Huihui; Lou, Liping; Mao, Weihua; Zheng, Ping; Hu, Baolan

    2018-02-01

    In recent years, air pollution events have occurred frequently in China during the winter. Most studies have focused on the physical and chemical composition of polluted air. Some studies have examined the bacterial bioaerosols both indoors and outdoors. But few studies have focused on the relationship between air pollution and bacteria, especially pathogenic bacteria. Airborne PM samples with different diameters and different air quality index values were collected in Hangzhou, China from December 2014 to January 2015. High-throughput sequencing of 16S rRNA was used to categorize the airborne bacteria. Based on the NCBI database, the "Human Pathogen Database" was established, which is related to human health. Among all the PM samples, the diversity and concentration of total bacteria were lowest in the moderately or heavily polluted air. However, in the PM2.5 and PM10 samples, the relative abundances of pathogenic bacteria were highest in the heavily and moderately polluted air respectively. Considering the PM samples with different particle sizes, the diversities of total bacteria and the proportion of pathogenic bacteria in the PM10 samples were different from those in the PM2.5 and TSP samples. The composition of PM samples with different sizes range may be responsible for the variances. The relative humidity, carbon monoxide and ozone concentrations were the main factors, which affected the diversity of total bacteria and the proportion of pathogenic bacteria. Among the different environmental samples, the compositions of the total bacteria were very similar in all the airborne PM samples, but different from those in the water, surface soil, and ground dust samples. Which may be attributed to that the long-distance transport of the airflow may influence the composition of the airborne bacteria. This study of the pathogenic bacteria in airborne PM samples can provide a reference for environmental and public health researchers. Copyright © 2017 Elsevier Ltd

  11. Survival of hydrogen sulfide oxidizing bacteria on corroded concrete surfaces of sewer systems.

    PubMed

    Jensen, H S; Nielsen, A H; Hvitved-Jacobsen, T; Vollertsen, J

    2008-01-01

    The activity of hydrogen sulfide oxidizing bacteria within corroded concrete from a sewer manhole was investigated. The bacteria were exposed to hydrogen sulfide starvation for up till 18 months, upon which their hydrogen sulfide oxidizing activity was measured. It was tested whether the observed reduction in biological activity was caused by a biological lag phase or by decay of the bacteria. The results showed that the bacterial activity declined with approximately 40% pr. month during the first two months of hydrogen sulfide starvation. After 2-3 months of starvation, the activity stabilized. Even after 6 months of starvation, exposure to hydrogen sulfide for 6 hours a day on three successive days could restore the bacteriological activity to about 80% of the initial activity. After 12 months of starvation, the activity could, however, not be restored, and after 18 months the biological activity approached zero. The long-term survival aspect of concrete corroding bacteria has implications for predicting hydrogen sulfide corrosion in sewer systems subject to irregular hydrogen sulfide loadings, e.g. as they occur in temperate climates where hydrogen sulfide often is a summer-problem only.

  12. Application of micro-PIV to the study of staphylococci bacteria bio-film dynamics

    NASA Astrophysics Data System (ADS)

    Sherman, Erica; Bayles, Kenneth; Moormeier, Derek; Wei, Timothy

    2012-11-01

    Staphylococci bacteria are recognized as the most frequent cause of biofilm-associated infections. Although humans are regularly exposed to staphylococcus bacteria without consequence, a localized staph infection has the potential to enter the bloodstream and lead to serious infections such as endocarditis, pneumonia, or toxic shock syndrome. The mechanics of staphylococci biofilm formation and dispersion through the bloodstream are not well known. It has recently been observed that under certain flow conditions, bacteria grow in stable bio-films. Under other conditions, they organize in tower-like structures which break and are transported downstream by the flow. The fundamental questions addressed in this study are i) whether or not fluid mechanics plays a role in differentiating between film or tower formation and ii) whether or not the faulty towers are a bio-film propagation mechanism. This talk focuses on the application of micro-PIV to study this problem. Bacteria were cultured in a glass microchannel and subjected to a range of steady shear rates. Micro-PIV measurements were made to map the flow over and around different types of bio-film structures. Measurements and control volume analysis will be presented quantifying forces acting on these structures.

  13. Changing epidemiology of infections due to extended spectrum beta-lactamase producing bacteria

    PubMed Central

    2014-01-01

    Background Community-associated infections caused by extended-spectrum beta-lactamase (ESBL) producing bacteria are a growing concern. Methods Retrospective cohort study of clinical infections due to ESBL-producing bacteria requiring admission from 2006-2011 at a tertiary care academic medical center in Providence, RI. Results A total of 321 infections due to ESBL-producing bacteria occurred during the study period. Fifty-eight cases (18%) were community-acquired, 170 (53%) were healthcare–associated, and 93 (29%) were hospital-acquired. The incidence of ESBL infections per 10,000 discharges increased during the study period for both healthcare-associated infections, 1.9 per year (95% CI 1-2.8), and for community-acquired infections, 0.85 per year (95% CI 0.3-1.4) but the rate remained unchanged for hospital-acquired infections. For ESBL-producing E. coli isolates, resistance to both ciprofloxacin and trimethoprim-sulfamethoxazole was 95% and 65%, respectively but 94% of isolates were susceptible to nitrofurantoin. Conclusions Community-acquired and healthcare-associated infections due to ESBL-producing bacteria are increasing in our community, particularly urinary tract infections due to ESBL-producing E. coli. Most isolates are resistant to oral antibiotics commonly used to treat urinary tract infections. Thus, our findings have important implications for outpatient management of such infections. PMID:24666610

  14. INTERNAL AMPLIFICATION CONTROL FOR USE IN QUANTITATIVE POLYMERASE CHAIN REACTION FECAL INDICATOR BACTERIA ASSAYS

    EPA Science Inventory

    Quantitative polymerase chain reaction (QPCR) can be used as a rapid method for detecting fecal indicator bacteria. Because false negative results can be caused by PCR inhibitors that co-extract with the DNA samples, an internal amplification control (IAC) should be run with eac...

  15. Risk factors for infection with multidrug-resistant bacteria in non-ventilated patients with hospital-acquired pneumonia.

    PubMed

    Seligman, Renato; Ramos-Lima, Luis Francisco; Oliveira, Vivian do Amaral; Sanvicente, Carina; Sartori, Juliana; Pacheco, Elyara Fiorin

    2013-01-01

    To identify risk factors for the development of hospital-acquired pneumonia (HAP) caused by multidrug-resistant (MDR) bacteria in non-ventilated patients. This was a retrospective observational cohort study conducted over a three-year period at a tertiary-care teaching hospital. We included only non-ventilated patients diagnosed with HAP and presenting with positive bacterial cultures. Categorical variables were compared with chi-square test. Logistic regression analysis was used to determine risk factors for HAP caused by MDR bacteria. Of the 140 patients diagnosed with HAP, 59 (42.1%) were infected with MDR strains. Among the patients infected with methicillin-resistant Staphylococcus aureus and those infected with methicillin-susceptible S. aureus, mortality was 45.9% and 50.0%, respectively (p = 0.763). Among the patients infected with MDR and those infected with non-MDR gram-negative bacilli, mortality was 45.8% and 38.3%, respectively (p = 0.527). Univariate analysis identified the following risk factors for infection with MDR bacteria: COPD; congestive heart failure; chronic renal failure; dialysis; urinary catheterization; extrapulmonary infection; and use of antimicrobial therapy within the last 10 days before the diagnosis of HAP. Multivariate analysis showed that the use of antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria (OR = 3.45; 95% CI: 1.56-7.61; p = 0.002). In this single-center study, the use of broad-spectrum antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria in non-ventilated patients with HAP.

  16. Risk factors for infection with multidrug-resistant bacteria in non-ventilated patients with hospital-acquired pneumonia*,**

    PubMed Central

    Seligman, Renato; Ramos-Lima, Luis Francisco; Oliveira, Vivian do Amaral; Sanvicente, Carina; Sartori, Juliana; Pacheco, Elyara Fiorin

    2013-01-01

    OBJECTIVE: To identify risk factors for the development of hospital-acquired pneumonia (HAP) caused by multidrug-resistant (MDR) bacteria in non-ventilated patients. METHODS: This was a retrospective observational cohort study conducted over a three-year period at a tertiary-care teaching hospital. We included only non-ventilated patients diagnosed with HAP and presenting with positive bacterial cultures. Categorical variables were compared with chi-square test. Logistic regression analysis was used to determine risk factors for HAP caused by MDR bacteria. RESULTS: Of the 140 patients diagnosed with HAP, 59 (42.1%) were infected with MDR strains. Among the patients infected with methicillin-resistant Staphylococcus aureus and those infected with methicillin-susceptible S. aureus, mortality was 45.9% and 50.0%, respectively (p = 0.763). Among the patients infected with MDR and those infected with non-MDR gram-negative bacilli, mortality was 45.8% and 38.3%, respectively (p = 0.527). Univariate analysis identified the following risk factors for infection with MDR bacteria: COPD; congestive heart failure; chronic renal failure; dialysis; urinary catheterization; extrapulmonary infection; and use of antimicrobial therapy within the last 10 days before the diagnosis of HAP. Multivariate analysis showed that the use of antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria (OR = 3.45; 95% CI: 1.56-7.61; p = 0.002). CONCLUSIONS: In this single-center study, the use of broad-spectrum antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria in non-ventilated patients with HAP. PMID:23857697

  17. Clay-Bacteria Systems and Biofilm Production

    NASA Astrophysics Data System (ADS)

    Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

    2007-12-01

    Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

  18. Human body may produce bacteria.

    PubMed

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Extracellular polysaccharides produced by cooling water tower biofilm bacteria and their possible degradation.

    PubMed

    Ceyhan, Nur; Ozdemir, Guven

    2008-01-01

    The extracellular polymers (EPS) of biofilm bacteria that can cause heat and mass transfer problems in cooling water towers in the petrochemical industry were investigated. In addition, these microorganisms were screened for their ability to grow and degrade their own EPS and the EPS of other species. Twelve bacteria producing the most EPS were isolated from cooling water towers and characterized biochemically by classic and commercial systems. These were species of Pseudomonas, Burkholderia, Aeromonas, Pasteurella, Pantoea, Alcaligenes and Sphingomonas. EPS of these species were obtained by propan-2-ol precipitation and centrifugation from bacterial cultures in media enriched with glucose, sucrose or galactose. EPS yields were of 1.68-4.95 g l(-1). These EPS materials were characterized for total sugar and protein contents. Their total sugar content ranged from 24 to 56% (g sugar g(-1) EPS), and their total protein content ranged from 10 to 28% (g protein g(-1) EPS). The monosaccharide compositions of EPS were determined by HPLC. Generally, these compositions were enriched in galactose and glucose, with lesser amounts of mannose, rhamnose, fructose and arabinose. All bacteria were investigated in terms of EPS degradation. Eight of the bacteria were able to utilize EPS from Burkholderia cepacia, seven of the bacteria were able to utilize EPS from Pseudomonas sp. and Sphingomonas paucimobilis. The greatest viscosity reduction of B. cepacia was obtained with Pseudomonas sp. The results show that the bacteria in this study are able to degrade EPS from biofilms in cooling towers.

  20. Prevalence of antibiotic resistance in bacteria isolated from drinking well water available in Guinea-Bissau (West Africa).

    PubMed

    Machado, A; Bordalo, A A

    2014-08-01

    The dissemination of antibiotic-resistant bacteria and the spread of antibiotic resistance genes are a major public health concern worldwide, being even proposed as emerging contaminants. The aquatic environment is a recognized reservoir of antibiotic resistant bacteria, and antibiotic resistance genes have been recently detected in drinking water. In this study, the water quality and the prevalence of antibiotic resistance of heterotrophic culturable bacteria were characterized seasonally in wells that serve the population of Guinea-Bissau (West Africa) as the sole source of water for drinking and other domestic proposes. The results revealed that well water was unfit for human consumption independently of the season, owing to high acidity and heavy fecal contamination. Moreover, potentially pathogenic bacteria, which showed resistance to the most prescribed antibiotics in Guinea-Bissau, were isolated from well water, posing an additional health risk. Our results suggest that well water not only fosters the transmission of potential pathogenic bacteria, but also represents an important reservoir for the proliferation of antibiotic resistant bacteria, that can aggravate the potential to cause disease in a very vulnerable population that has no other alternative but to consume such water. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Physical mechanisms for chemotactic pattern formation by bacteria.

    PubMed Central

    Brenner, M P; Levitov, L S; Budrene, E O

    1998-01-01

    This paper formulates a theory for chemotactic pattern formation by the bacteria Escherichia coli in the presence of excreted attractant. In a chemotactically neutral background, through chemoattractant signaling, the bacteria organize into swarm rings and aggregates. The analysis invokes only those physical processes that are both justifiable by known biochemistry and necessary and sufficient for swarm ring migration and aggregate formation. Swarm rings migrate in the absence of an external chemoattractant gradient. The ring motion is caused by the depletion of a substrate that is necessary to produce attractant. Several scaling laws are proposed and are demonstrated to be consistent with experimental data. Aggregate formation corresponds to finite time singularities in which the bacterial density diverges at a point. Instabilities of swarm rings leading to aggregate formation occur via a mechanism similar to aggregate formation itself: when the mass density of the swarm ring exceeds a threshold, the ring collapses cylindrically and then destabilizes into aggregates. This sequence of events is demonstrated both in the theoretical model and in the experiments. PMID:9545032

  2. Microbial Transformation of Dicarboxylic Acids by Airborne Bacteria

    NASA Astrophysics Data System (ADS)

    Cote, V.; Ariya, P.

    2004-05-01

    Organic aerosols are assumed to be key players in driving climatic changes and can cause health problems for human. Dicarboxylic acids (DCA) include a large fraction of identified important class of organic aerosols. In addition to direct sources, DCA are partly formed as the result of ozonolysis of terpenes and cyclic alkenes. Previous works in our laboratory show that airborne fungi collected from urban and suburban air play an important role in the transformation of severals organic aerosols such as DCA. Our present study focuses on understanding the potential chemical transformation induced by airborne bacteria and on identification of the transformation products. Airborne bacteria have been collected using a biosampler and cultivated on a solid media. Each bacterial colony is being tested by HPLC for their ability to transform DCA in liquid cultures. Also, GC-MS, SPME and NMR are being used to identify the metabolites generated from the transformation. We will present our preliminary results and we will discuss the application of bacterial activities on the chemical transformation of organics in atmosphere.

  3. SOS, the formidable strategy of bacteria against aggressions.

    PubMed

    Baharoglu, Zeynep; Mazel, Didier

    2014-11-01

    The presence of an abnormal amount of single-stranded DNA in the bacterial cell constitutes a genotoxic alarm signal that induces the SOS response, a broad regulatory network found in most bacterial species to address DNA damage. The aim of this review was to point out that beyond being a repair process, SOS induction leads to a very strong but transient response to genotoxic stress, during which bacteria can rearrange and mutate their genome, induce several phenotypic changes through differential regulation of genes, and sometimes acquire characteristics that potentiate bacterial survival and adaptation to changing environments. We review here the causes and consequences of SOS induction, but also how this response can be modulated under various circumstances and how it is connected to the network of other important stress responses. In the first section, we review articles describing the induction of the SOS response at the molecular level. The second section discusses consequences of this induction in terms of DNA repair, changes in the genome and gene expression, and sharing of genomic information, with their effects on the bacteria's life and evolution. The third section is about the fine tuning of this response to fit with the bacteria's 'needs'. Finally, we discuss recent findings linking the SOS response to other stress responses. Under these perspectives, SOS can be perceived as a powerful bacterial strategy against aggressions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Lactic Acid Bacteria Producing Inhibitor of Alpha Glucosidase Isolated from Ganyong (Canna Edulis) and Kimpul (Xanthosoma sagittifolium)

    NASA Astrophysics Data System (ADS)

    Nurhayati, Rifa; Miftakhussolikhah; Frediansyah, Andri; Lailatul Rachmah, Desy

    2017-12-01

    Type 2 diabetes is a disease that caused by the failure of insulin secretion by the beta cells of the pancreas and insulin resistance in peripheral levels. One therapy for diabetics is by inhibiting the activity of α-glucosidase. Lactic acid bacteria have the ability to inhibit of α-glucosidase activity. The aims of this research was to isolation and screening of lactic acid bacteria from ganyong tuber (Canna Edulis) and kimpul tuber (Xanthosoma sagittifolium), which has the ability to inhibit the activity of α-glucosidase. Eightteen isolates were identified as lactic acid bacteria and all of them could inhibit the activity of α-glukosidase. The GN 8 isolate was perform the highest inhibition acivity.

  5. Clinical characteristics and outcomes of prosthetic joint infection caused by small colony variant staphylococci.

    PubMed

    Tande, Aaron J; Osmon, Douglas R; Greenwood-Quaintance, Kerryl E; Mabry, Tad M; Hanssen, Arlen D; Patel, Robin

    2014-09-30

    Small colony variants (SCVs) are naturally occurring subpopulations of bacteria. The clinical characteristics and treatment outcomes of patients with prosthetic joint infection (PJI) caused by staphylococcal SCVs are unknown. This study was a retrospective series of 113 patients with staphylococcal PJI, with prospective testing of archived sonicate fluid samples. SCVs were defined using two-investigator review. Treatment failure was defined as (i) subsequent revision surgery for any reason, (ii) PJI after the index surgery, (iii) prosthesis nonreimplantation due to ongoing infection, or (iv) amputation of the affected limb. There were 38 subjects (34%) with SCVs and 75 (66%) with only normal-phenotype (NP) bacteria. Subjects with SCVs were more likely to have been on chronic antimicrobials prior to surgery (P = 0.048), have had prior surgery for PJI (P = 0.03), have had a longer duration of symptoms (P = 0.0003), and have had a longer time since joint implantation (P = 0.007), compared to those with only NP bacteria. Over a median follow-up of 30.6 months, 9 subjects (24%) with SCVs and 23 (32%) with only NP bacteria experienced treatment failure (P = 0.51). Subjects infected with Staphylococcus aureus were more likely to fail than were those infected with Staphylococcus epidermidis (hazard ratio [HR], 4.03; 95% confidence interval [CI], 1.80 to 9.04). While frequently identified in subjects with PJI and associated with several potential predisposing factors, SCVs were not associated with excess treatment failure compared to NP infections in this study, where they were primarily managed with two-stage arthroplasty exchange. Bacteria with the small colony variant (SCV) phenotype are described in small case series as causing persistent or relapsing infection, but there are insufficient data to suggest that they should be managed differently than infection with normal-phenotype bacteria. In an effort to investigate the clinical importance of this phenotype, we

  6. Some bacteria are beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  7. Enteric bacteria in aerobically digested sludge.

    PubMed Central

    Farrah, S R; Bitton, G

    1984-01-01

    Indicator bacteria, Salmonella spp., and total aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic digestion. Aerobic sludge digestion reduced the level of indicator bacteria by 1 to 2 log10 per g. The level of Salmonella spp. was also reduced during aerobic treatment of sludge. In general, aerobic treatment of sludge reduced, but did not eliminate, indicator bacteria and Salmonella spp. PMID:6721492

  8. Antibiotic Production by Anaerobic Bacteria1

    PubMed Central

    Sturgen, Nancy O.; Casida, L. E.

    1962-01-01

    Soils from aerobic and anaerobic sources were investigated for the possible presence of bacteria which produce antibiotics under anaerobic conditions of growth. The screening techniques devised for this study yielded 157 soil bacteria which, during anaerobic growth, produced antibiotic activity against aerobic test bacteria. Studies on choice of media, presence of oxygen, and changes in antibiotic activity during growth indicated that representative strains of these bacteria produced mixtures of antibiotics. The activity was heat labile. PMID:13918037

  9. Behaviour of co-inoculated pathogenic and spoilage bacteria on poultry following several decontamination treatments.

    PubMed

    Alonso-Hernando, Alicia; Capita, Rosa; Alonso-Calleja, Carlos

    2012-10-01

    The potential of chemical decontaminants to cause harmful effects on human health is among the causes of the rejection of antimicrobial treatments for removing surface contamination from poultry carcasses in the European Union. This study was undertaken to determine whether decontaminants might give a competitive advantage to pathogenic bacteria on poultry and involve a potential risk to consumer. A total of 144 chicken legs were co-inoculated with similar concentrations of pathogenic bacteria (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica serotype Enteritidis or Escherichia coli) and spoilage bacteria (Brochothrix thermosphacta or Pseudomonas fluorescens). Samples were dipped for 15min in solutions (w/v) of trisodium phosphate (12%; TSP), acidified sodium chlorite (1200ppm; ASC), citric acid (2%; CA), peroxyacids (220ppm; PA) or chlorine dioxide (50ppm; CD), or were left untreated (control). Microbiological analyses were carried out on day 0 and every 24h until day 7 of storage (at 10±1°C). The modified Gompertz equation was used as the primary model to fit observed data. TSP, ASC and CA were effective in extending the lag phase (L, ranging from 1.47±1.34days to 4.06±1.16days) and in decreasing the concentration of bacteria during the stationary phase (D, ranging from 2.46±0.51 log(10) cfu/cm(2) to 8.64±0.53 log(10) cfu/cm(2)), relative to the control samples (L values ranging from 0.59±0.38days and 2.52±2.28days, and D values ranging from 6.32±0.89 log(10) cfu/cm(2) to 9.39±0.39 log(10) cfu/cm(2), respectively). Both on untreated and on most decontaminated samples the overgrowth of spoilage bacteria among the species tested was observed throughout storage, suggesting that spoilage would occur prior to any noteworthy increase in the levels of pathogenic microorganisms. However, L. monocytogenes counts similar to, or higher than, those for spoilage bacteria were observed on samples treated with TSP, ASC or CA, suggesting that these

  10. Development of Vaccines to Prevent Wound Infections due to Anaerobic Bacteria

    DTIC Science & Technology

    1980-08-01

    organism from neutrophil killing. A series of experiments were designed in the model of intraabdominal sepsis to determine the cellular mechanisms of...abscess, intraabdominal sepsis , and infections of the female genital tract (1). When optimal bacteriologic techniques are used, anaerobic bacteria can... sepsis or bacteremia. Members of the genus Bacteroides were second only to Escherichia coli as a cause of gram-negative septicemia in patients at the

  11. Bioautography-guided isolation of antibacterial compounds of essential oils from Thai spices against histamine-producing bacteria.

    PubMed

    Lomarat, Pattamapan; Phanthong, Phanida; Wongsariya, Karn; Chomnawang, Mullika Traidej; Bunyapraphatsara, Nuntavan

    2013-05-01

    The outbreak of histamine fish poisoning has been being an issue in food safety and international trade. The growth of contaminated bacterial species including Morganella morganii which produce histidine decarboxylase causes histamine formation in fish during storage. Histamine, the main toxin, causes mild to severe allergic reaction. At present, there is no well-established solution for histamine fish poisoning. This study was performed to determine the antibacterial activity of essential oils from Thai spices against histamine-producing bacteria. Among the essential oils tested, clove, lemongrass and sweet basil oils were found to possess the antibacterial activity. Clove oil showed the strongest inhibitory activity against Morganella morganii, followed by lemongrass and sweet basil oils. The results indicated that clove, lemongrass and sweet basil oils could be useful for the control of histamine-producing bacteria. The attempt to identify the active components using preparative TLC and GC/MS found eugenol, citral and methyl chavicol as the active components of clove, lemongrass and sweet basil oils, respectively. The information from this study would be useful in the research and development for the control of histamine-producing bacteria in fish or seafood products to reduce the incidence of histamine fish poisoning.

  12. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria.

    PubMed

    Cermak, Pavel; Olsovska, Jana; Mikyska, Alexandr; Dusek, Martin; Kadleckova, Zuzana; Vanicek, Jiri; Nyc, Otakar; Sigler, Karel; Bostikova, Vanda; Bostik, Pavel

    2017-11-01

    Anaerobic bacteria, such as Bacteroides fragilis or Clostridium perfringens, are part of indigenous human flora. However, Clostridium difficile represents also an important causative agent of nosocomial infectious antibiotic-associated diarrhoea. Treatment of C. difficile infection is problematic, making it imperative to search for new compounds with antimicrobial properties. Hops (Humulus lupulus L.) contain substances with antibacterial properties. We tested antimicrobial activity of purified hop constituents humulone, lupulone and xanthohumol against anaerobic bacteria. The antimicrobial activity was established against B. fragilis, C. perfringens and C. difficile strains according to standard testing protocols (CLSI, EUCAST), and the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were calculated. All C. difficile strains were toxigenic and clinically relevant, as they were isolated from patients with diarrhoea. Strongest antimicrobial effects were observed with xanthohumol showing MIC and MBC values of 15-107 μg/mL, which are close to those of conventional antibiotics in the strains of bacteria with increased resistance. Slightly higher MIC and MBC values were obtained with lupulone followed by higher values of humulone. Our study, thus, shows a potential of purified hop compounds, especially xanthohumol, as alternatives for treatment of infections caused by select anaerobic bacteria, namely nosocomial diarrhoea caused by resistant strains. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  13. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations.

    PubMed

    Damgaard, Christian; Magnussen, Karin; Enevold, Christian; Nilsson, Martin; Tolker-Nielsen, Tim; Holmstrup, Palle; Nielsen, Claus Henrik

    2015-01-01

    Infection remains a leading cause of post-transfusion mortality and morbidity. Bacterial contamination is, however, detected in less than 0.1% of blood units tested. The aim of the study was to identify viable bacteria in standard blood-pack units, with particular focus on bacteria from the oral cavity, and to determine the distribution of bacteria revealed in plasma and in the red blood cell (RBC)-fraction. Cross-sectional study. Blood were separated into plasma and RBC-suspensions, which were incubated anaerobically or aerobically for 7 days on trypticase soy blood agar (TSA) or blue lactose plates. For identification colony PCR was performed using primers targeting 16S rDNA. Blood donors attending Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Hvidovre, Denmark, October 29th to December 10th 2013. 60 donors (≥50 years old), self-reported medically healthy. Bacterial growth was observed on plates inoculated with plasma or RBCs from 62% of the blood donations. Growth was evident in 21 (35%) of 60 RBC-fractions and in 32 (53%) of 60 plasma-fractions versus 8 of 60 negative controls (p = 0.005 and p = 2.6x10-6, respectively). Propionibacterium acnes was found in 23% of the donations, and Staphylococcus epidermidis in 38%. The majority of bacteria identified in the present study were either facultative anaerobic (59.5%) or anaerobic (27.8%) species, which are not likely to be detected during current routine screening. Viable bacteria are present in blood from donors self-reported as medically healthy, indicating that conventional test systems employed by blood banks insufficiently detect bacteria in plasma. Further investigation is needed to determine whether routine testing for anaerobic bacteria and testing of RBC-fractions for adherent bacteria should be recommended.

  14. Association of plasma 25-hydroxyvitamin d concentrations and pathogenic oral bacteria in postmenopausal females.

    PubMed

    Sahli, Michelle W; Wactawski-Wende, Jean; Ram, Pavani K; LaMonte, Michael J; Hovey, Kathleen M; Genco, Robert J; Andrews, Christopher A; Millen, Amy E

    2014-07-01

    Previous findings of an association between 25-hydroxyvitamin D [25(OH)D] concentrations and periodontal disease may be partially explained by the antimicrobial properties of vitamin D. To the best of the authors' knowledge, no study has investigated the association between 25(OH)D and pathogenic oral bacteria, a putative cause of periodontal disease. The association between plasma 25(OH)D concentrations and pathogenic oral bacteria was examined among postmenopausal females in the Buffalo Osteoporosis and Periodontal Disease Study (1997 to 2000), an ancillary study of the Women's Health Initiative Observational Study. Subgingival plaque samples were assessed using immunofluorescence for the presence of Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Prevotella intermedia, and Campylobacter rectus. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for prevalent bacteria by quintile (Q) of 25(OH)D concentrations, adjusting for age and body mass index. Of the 855 participants, 288 (34%) had deficient/inadequate (<50 nmol/L) 25(OH)D concentrations, and 496 (58%) had at least one species of pathogenic bacteria. No significant association was found between 25(OH)D and presence of any of these bacteria (adjusted OR for high [Q5] compared to low [Q1] 25(OH)D = 0.96; 95% CI: 0.61 to 1.50; P for trend = 0.50). Inverse, although not statistically significant, associations were found between 25(OH)D and more than one species of pathogenic bacteria (adjusted OR for adequate compared to deficient/inadequate 25(OH)D = 0.85; 95% CI: 0.60 to 1.19). No association was observed between pathogenic oral bacteria and 25(OH)D concentrations in postmenopausal females. This may be attributable to the species of bacteria assessed, small effect size, or a true absence of an association.

  15. Microscopic, chemical, and molecular-biological investigation of the decayed medieval stained window glasses of two Catalonian churches

    PubMed Central

    Piñar, Guadalupe; Garcia-Valles, Maite; Gimeno-Torrente, Domingo; Fernandez-Turiel, Jose Luis; Ettenauer, Jörg; Sterflinger, Katja

    2013-01-01

    We investigated the decayed historical church window glasses of two Catalonian churches, both under Mediterranean climate. Glass surfaces were studied by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD). Their chemical composition was determined by wavelength-dispersive spectrometry (WDS) microprobe analysis. The biodiversity was investigated by molecular methods: DNA extraction from glass, amplification by PCR targeting the16S rRNA and ITS regions, and fingerprint analyses by denaturing gradient gel electrophoresis (DGGE). Clone libraries containing either PCR fragments of the bacterial 16S rDNA or the fungal ITS regions were screened by DGGE. Clone inserts were sequenced and compared with the EMBL database. Similarity values ranged from 89 to 100% to known bacteria and fungi. Biological activity in both sites was evidenced in the form of orange patinas, bio-pitting, and mineral precipitation. Analyses revealed complex bacterial communities consisting of members of the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Fungi showed less diversity than bacteria, and species of the genera Cladosporium and Phoma were dominant. The detected Actinobacteria and fungi may be responsible for the observed bio-pitting phenomenon. Moreover, some of the detected bacteria are known for their mineral precipitation capabilities. Sequence results also showed similarities with bacteria commonly found on deteriorated stone monuments, supporting the idea that medieval stained glass biodeterioration in the Mediterranean area shows a pattern comparable to that on stone. PMID:24092957

  16. Pigment gallstone pathogenesis: slime production by biliary bacteria is more important than beta-glucuronidase production.

    PubMed

    Stewart, L; Ponce, R; Oesterle, A L; Griffiss, J M; Way, L W

    2000-01-01

    Pigment stones are thought to form as a result of deconjugation of bilirubin by bacterial beta-glucuronidase, which results in precipitation of calcium bilirubinate. Calcium bilirubinate is then aggregated into stones by an anionic glycoprotein. Slime (glycocalyx), an anionic glycoprotein produced by bacteria causing foreign body infections, has been implicated in the formation of the precipitate that blocks biliary stents. We previously showed that bacteria are present within the pigment portions of gallstones and postulated a bacterial role in pigment stone formation through beta-glucuronidase or slime production. Ninety-one biliary bacterial isolates from 61 patients and 12 control stool organisms were tested for their production of beta-glucuronidase and slime. The average slime production was 42 for biliary bacteria and 2.5 for stool bacteria (P <0.001). Overall, 73% of biliary bacteria and 8% of stool bacteria produced slime (optical density >3). In contrast, only 38% of biliary bacteria produced beta-glucuronidase. Eighty-two percent of all patients, 90% of patients with common bile duct (CBD) stones, 100% of patients with primary CBD stones, and 93% of patients with biliary tubes had one or more bacterial species in their stones that produced slime. By comparison, only 47% of all patients, 60% of patients with CBD stones, 62% of patients with primary CBD stones, and 50% of patients with biliary tubes had one or more bacteria that produced beta-glucuronidase. Most biliary bacteria produced slime, and slime production correlated better than beta-glucuronidase production did with stone formation and the presence of biliary tubes or stents. Patients with primary CBD stones and biliary tubes had the highest incidence of slime production. These findings suggest that bacterial slime is important in gallstone formation and the blockage of biliary tubes.

  17. Water-soluble Moringa oleifera lectin interferes with growth, survival and cell permeability of corrosive and pathogenic bacteria.

    PubMed

    Moura, M C; Napoleão, T H; Coriolano, M C; Paiva, P M G; Figueiredo, R C B Q; Coelho, L C B B

    2015-09-01

    This work evaluated the antibacterial activity of a water-soluble Moringa oleifera seed lectin (WSMoL) by evaluating its effect on growth, survival and cell permeability of Bacillus sp., Bacillus cereus, Bacillus pumillus, Bacillus megaterium, Micrococcus sp., Pseudomonas sp., Pseudomonas fluorescens, Pseudomonas stutzeri and Serratia marcescens. In addition, the effect of lectin on membrane integrity of most sensitive species was also evaluated. All the tested bacteria are able to cause biocorrosion and some are also responsible for human infections. WSMoL inhibited the bacterial growth, induced agglutination and promoted the leakage of proteins from cells of all strains. Bactericidal effect was detected against Bacillus sp., B. pumillus, B. megaterium, Ps. fluorescens and Ser. marcescens. The bacteriostatic effect of lectin was evident with only 6 h of incubation. Fluorescence microscopy of Ser. marcescens showed that WSMoL caused loss of cell integrity and indicated an anti-biofilm activity of the lectin. WSMoL was active against the bacteria by inhibiting growth and affecting cell permeability. The lectin also interfered with membrane integrity of Ser. marcescens, the most sensitive species. The study indicates that WSMoL was active against bacteria that cause serious problems in both industrial and health sectors. Also, the study contributes for the 'state-of-art' on antibacterial mechanisms of lectins. © 2015 The Society for Applied Microbiology.

  18. Disinfection of S. mutans Bacteria Using a Plasma Needle at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Hansen, S.; Goree, J.; Liu, Bin; Drake, D.

    2007-11-01

    The plasma needle device produces a millimeter-size low-power glow discharge at atmospheric-pressure. It is intended for dental or medical applications. Radio-frequency high voltage is applied to a single needle electrode located inside a concentric gas-flow nozzle. A low-speed helium plasma jet flows out of the nozzle and mixes with ambient air. The jet is impinges on a surface that is to be treated, which in our test was a suspension of S. mutans bacteria that was plated onto the surface of agar nutrient in a Petri dish. S. mutans is the most important microorganism for causing dental caries. Imaging the sample after plasma treatment and incubation reveal the conditions where bacteria are killed, and the size of the treated spot.

  19. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms.

    PubMed

    Kertesz, Michael A; Thai, Meghann

    2018-02-01

    Mushrooms are an important food crop for many millions of people worldwide. The most important edible mushroom is the button mushroom (Agaricus bisporus), an excellent example of sustainable food production which is cultivated on a selective compost produced from recycled agricultural waste products. A diverse population of bacteria and fungi are involved throughout the production of Agaricus. A range of successional taxa convert the wheat straw into compost in the thermophilic composting process. These initially break down readily accessible compounds and release ammonia, and then assimilate cellulose and hemicellulose into compost microbial biomass that forms the primary source of nutrition for the Agaricus mycelium. This key process in composting is performed by a microbial consortium consisting of the thermophilic fungus Mycothermus thermophilus (Scytalidium thermophilum) and a range of thermophilic proteobacteria and actinobacteria, many of which have only recently been identified. Certain bacterial taxa have been shown to promote elongation of the Agaricus hyphae, and bacterial activity is required to induce production of the mushroom fruiting bodies during cropping. Attempts to isolate mushroom growth-promoting bacteria for commercial mushroom production have not yet been successful. Compost bacteria and fungi also cause economically important losses in the cropping process, causing a range of destructive diseases of mushroom hyphae and fruiting bodies. Recent advances in our understanding of the key bacteria and fungi in mushroom compost provide the potential to improve productivity of mushroom compost and to reduce the impact of crop disease.

  20. Affinity sensor using 3-aminophenylboronic acid for bacteria detection.

    PubMed

    Wannapob, Rodtichoti; Kanatharana, Proespichaya; Limbut, Warakorn; Numnuam, Apon; Asawatreratanakul, Punnee; Thammakhet, Chongdee; Thavarungkul, Panote

    2010-10-15

    Boronic acid that can reversibly bind to diols was used to detect bacteria through its affinity binding reaction with diol-groups on bacterial cell walls. 3-aminophenylboronic acid (3-APBA) was immobilized on a gold electrode via a self-assembled monolayer. The change in capacitance of the sensing surface caused by the binding between 3-APBA and bacteria in a flow system was detected by a potentiostatic step method. Under optimal conditions the linear range of 1.5×10(2)-1.5×10(6) CFU ml(-1) and the detection limit of 1.0×10(2) CFU ml(-1) was obtained. The sensing surface can be regenerated and reused up to 58 times. The method was used for the analysis of bacteria in several types of water, i.e., bottled, well, tap, reservoir and wastewater. Compared with the standard plate count method, the results were within one standard deviation of each other. The proposed method can save both time and cost of analysis. The electrode modified with 3-APBA would also be applicable to the detection of other cis-diol-containing analytes. The concept could be extended to other chemoselective ligands, offering less expensive and more robust affinity sensors for a wide range of compounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Bugbuster: Survivability of Living Bacteria Upon Shock Compression

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Ahrens, T. J.; Bertani, L. E.; Nash, C. Z.

    2003-12-01

    Survivability of bacteria during impact events has implications both for the transport of life between planets and development of organisms on Hadean Earth and other planets during the period of heavy bombardment which ended 3.5 Gyr before the present [1]. We envision that life existed within internal rock surfaces immersed in the early ocean. We performed shock recovery experiments on live E. coli bacteria to determine survival rate vs. shock pressure. Samples of 2x107 cells were suspended in ˜10-5 l of a buffer solution (TE: a 10:1 solution of Tris and EDTA), sealed into stainless steel chambers that are impacted by 1.5 mm thick flyer plates at 670-760 m s-1 using a 20 mm gun. Recovered liquid was mixed with a nutrient broth (LB: growth medium containing tryptone, yeast extract and NaCl) and spread on a Petrie dish containing agar (a polysaccharide growth medium extracted from marine algae Rhodophyceae). Recovered samples were cultured for ˜16 hours at 37° C. In addition, sample bacteria studied under an optical microscope with DAPI fluorescent stain to verify presence of bacteria in shock recovered samples. Initial and reverberated shock pressures in H2O varied from 0.2 to 2.0 and 2.4 to 14.9 GPa respectively. We modeled the bacteria cell walls with stilbene, ρ 0=1.16 g cm-3, US=2.866+1.588uP and the cell interiors as water. Upon initial loading the net strain imposed on E. coli that just caused non-survival for 10-6 s duration stress was 2.8. If this strain is characteristic of that tolerable by E. coli, we predict that shock stresses of 25 MPa, 25 kPa and 25 Pa are sustainable upon shock loading by 0.1 ms, 0.1 s and 100 s shock duration pulses. Such shock durations are induced by 2.5 m, 2.5 km and 2,500 km diameter silicate impactors. References: [1] Maher K.A. & Stevenson D.J., Nature, 331, pp.612-614, 1988

  2. Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus

    PubMed Central

    Becker, Matthew H.; Walke, Jenifer B.; Cikanek, Shawna; Savage, Anna E.; Mattheus, Nichole; Santiago, Celina N.; Minbiole, Kevin P. C.; Harris, Reid N.; Belden, Lisa K.; Gratwicke, Brian

    2015-01-01

    Symbiotic microbes can dramatically impact host health and fitness, and recent research in a diversity of systems suggests that different symbiont community structures may result in distinct outcomes for the host. In amphibians, some symbiotic skin bacteria produce metabolites that inhibit the growth of Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen that has caused many amphibian population declines and extinctions. Treatment with beneficial bacteria (probiotics) prevents Bd infection in some amphibian species and creates optimism for conservation of species that are highly susceptible to chytridiomycosis, the disease caused by Bd. In a laboratory experiment, we used Bd-inhibitory bacteria from Bd-tolerant Panamanian amphibians in a probiotic development trial with Panamanian golden frogs, Atelopus zeteki, a species currently surviving only in captive assurance colonies. Approximately 30% of infected golden frogs survived Bd exposure by either clearing infection or maintaining low Bd loads, but this was not associated with probiotic treatment. Survival was instead related to initial composition of the skin bacterial community and metabolites present on the skin. These results suggest a strong link between the structure of these symbiotic microbial communities and amphibian host health in the face of Bd exposure and also suggest a new approach for developing amphibian probiotics. PMID:25788591

  3. Culturable bacteria from plum fruit surfaces and their potential for controlling brown rot after harvest

    USDA-ARS?s Scientific Manuscript database

    Fruit microflora has been the richest source of antagonists against fruit decays and the active ingredient in all currently available commercial biocontrol products. A comprehensive evaluation of plum bacteria for biocontrol activity against Monilinia fructicola, causing brown rot of stone fruit, w...

  4. Antibiotic Extraction as a Recent Biocontrol Method for Aspergillus Niger andAspergillus Flavus Fungi in Ancient Egyptian mural paintings

    NASA Astrophysics Data System (ADS)

    Hemdan, R. Elmitwalli; Fatma, Helmi M.; Rizk, Mohammed A.; Hagrassy, Abeer F.

    Biodeterioration of mural paintings by Aspergillus niger and Aspergillus flavus Fungi has been proved in different mural paintings in Egypt nowadays. Several researches have studied the effect of fungi on mural paintings, the mechanism of interaction and methods of control. But none of these researches gives us the solution without causing a side effect. In this paper, for the first time, a recent treatment by antibiotic "6 penthyl α pyrone phenol" was applied as a successful technique for elimination of Aspergillus niger and Aspergillus flavus. On the other hand, it is favorable for cleaning Surfaces of Murals executed by tembera technique from the fungi metabolism which caused a black pigments on surfaces.

  5. PCR detection of uncultured rumen bacteria.

    PubMed

    Rosero, Jaime A; Strosová, Lenka; Mrázek, Jakub; Fliegerová, Kateřina; Kopečný, Jan

    2012-07-01

    16S rRNA sequences of ruminal uncultured bacterial clones from public databases were phylogenetically examined. The sequences were found to form two unique clusters not affiliated with any known bacterial species: cluster of unidentified sequences of free floating rumen fluid uncultured bacteria (FUB) and cluster of unidentified sequences of bacteria associated with rumen epithelium (AUB). A set of PCR primers targeting 16S rRNA of ruminal free uncultured bacteria and rumen epithelium adhering uncultured bacteria was designed based on these sequences. FUB primers were used for relative quantification of uncultured bacteria in ovine rumen samples. The effort to increase the population size of FUB group has been successful in sulfate reducing broth and culture media supplied with cellulose.

  6. Resolving bacterial contamination of fuel ethanol fermentations with beneficial bacteria - An alternative to antibiotic treatment.

    PubMed

    Rich, Joseph O; Bischoff, Kenneth M; Leathers, Timothy D; Anderson, Amber M; Liu, Siqing; Skory, Christopher D

    2018-01-01

    Fuel ethanol fermentations are not performed under aseptic conditions and microbial contamination reduces yields and can lead to costly "stuck fermentations". Antibiotics are commonly used to combat contaminants, but these may persist in the distillers grains co-product. Among contaminants, it is known that certain strains of lactic acid bacteria are capable of causing stuck fermentations, while other strains appear to be harmless. However, it was not previously known whether or how these strains interact one with another. In this study, more than 500 harmless strains of lactic acid bacteria were tested in a model system in combination with strains that cause stuck fermentations. Among these harmless strains, a group of beneficial strains was identified that restored ethanol production to near normal levels. Such beneficial strains may serve as an alternative approach to the use of antibiotics in fuel ethanol production. Published by Elsevier Ltd.

  7. Endophytic bacteria and their potential to enhance heavy metal phytoextraction.

    PubMed

    Rajkumar, Mani; Ae, Noriharu; Freitas, Helena

    2009-09-01

    Pollution of soils with heavy metals is becoming one of the most severe environmental and human health hazards. Due to its widespread contamination finding innovative ways to clean metal pollutant has become a priority in the remediation field. Phytoremediation, the use of plants for the restoration of environments contaminated with pollutants is a relatively new technology that is more benign than current engineering solutions to treat contaminated sites. Recently, the benefits of combining endophytic bacteria with plants for increased remediation of pollutants have been successfully tried for toxic metal removal from contaminated soils. Endophytic bacteria reside within plant hosts without causing disease symptoms. Further, the metal resistant endophytes are reported to be present in various hyperaccumulator plants growing on heavy metal contaminated soils and play an important role in successful survival and growth of plants. Moreover, the metal resistant endophytes are reported to promote plant growth by various mechanisms such as nitrogen fixation, solubilization of minerals, production of phytohormones, siderophores, utilization of 1-aminocyclopropane-1-carboxylic acid as a sole N source and transformation of nutrient elements. In this review we highlight the diversity and plant growth promoting features of metal resistant endophytic bacteria and discuss their potential in phytoextraction of heavy metals from contaminated soils.

  8. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments

    NASA Astrophysics Data System (ADS)

    Šantl-Temkiv, Tina; Sahyoun, Maher; Finster, Kai; Hartmann, Susan; Augustin-Bauditz, Stefanie; Stratmann, Frank; Wex, Heike; Clauss, Tina; Nielsen, Niels Woetmann; Sørensen, Jens Havskov; Korsholm, Ulrik Smith; Wick, Lukas Y.; Karlson, Ulrich Gosewinkel

    2015-05-01

    Some bacteria have the unique capacity of synthesising ice-nucleation-active (INA) proteins and exposing them at their outer membrane surface. As INA bacteria enter the atmosphere, they may impact the formation of clouds and precipitation. We studied members of airborne bacterial communities for their capacity to catalyse ice formation and we report on the excretion of INA proteins by airborne Pseudomonas sp. We also observed for the first time that INA biological fragments <220 nm were present in precipitation samples (199 and 482 INA fragments per L of precipitation), which confirms the presence of submicron INA biological fragments in the atmosphere. During 14 precipitation events, strains affiliated with the genus Pseudomonas, which are known to carry ina genes, were dominant. A screening for INA properties revealed that ∼12% of the cultivable bacteria caused ice formation at ≤-7 °C. They had likely been emitted to the atmosphere from terrestrial surfaces, e.g. by convective transport. We tested the ability of isolated INA strains to produce outer membrane vesicles and found that two isolates could do so. However, only very few INA vesicles were released per INA cell. Thus, the source of the submicron INA proteinaceous particles that we detected in the atmosphere remains to be elucidated.

  9. A survey of the prevalence of selected bacteria in wild birds

    USGS Publications Warehouse

    Brittingham, M.C.; Temple, S.A.; Duncan, R.M.

    1988-01-01

    We determined the prevalence of six genera of bacteria from a sample of 387 cloacal swabs from 364 passerines and woodpeckers. The prevalence of bacteria were as follows: Escherichia coli (1%), Pseudomonas spp. (22%), Salmonella spp. (0%), Staphylococcus spp. (15%), Streptococcus spp. (18%), and Yersinia spp. (1%). The prevalence of Streptococcus spp. was higher in omnivorous species than in granivorous species (20% versus 8%). Individuals captured at feeders had a lower prevalence of both Streptococcus spp. (15% versus 33%) and Escherichia coli (0.5% versus 4%) than birds that did not have access to feeders. These differences are probably not due to the feeder per se, but instead to other site related differences. The prevalence of bacteria did not differ between male and female black-capped chickadees, Parus atricapillus. For 279 color marked black-capped chickadees, we calculated the cumulative mortality rate during 12 wk following swabbing. Although the cumulative mortality rates of infected birds were consistently higher than the rates of non-infected birds, none of these differences were significant. Infections may cause slight reductions in survival rates, but we were not able to confirm this with our data.

  10. [Biochemical and genetic mechanisms for bacteria to acquire aminoglycoside antibiotic resistance].

    PubMed

    Hotta, K

    1997-05-01

    Aminoglycoside (AG)-modifying enzymes are the major biochemical basis for the AG resistance of clinically-occurring bacteria. Recent AG resistance profiles can be characterized by the involvement of AAC(6') in combination with other modifying enzymes in Gram negative bacteria. AAC(6')/APH(2") in Staphylococcus aureus is also remarkable. Genetic basis for the emergence or alteration of AG resistance profiles includes point mutations in the regulatory region or specific sites of the coding region of AG-modifying enzyme genes, and rearrangement of the genes caused by transposon and/or integron. In addition, semisynthetic AG antibiotics such as amikacin, arbekacin (ABK) and isepamicin were also reviewed for their stability to AG-modifying enzymes. ABK that has been widely used as an anti-MRSA drug in Japan is distinct from the other AGs because its monoacetylated derivatives (3"-N-acetylABK and 2'-N-acetylABK) by AG acetyltransferases, AAC(3) and AAC(2'), respectively, retain clear antibiotic activities. Based on this novel aspect and the lack of modification sites for APH(3') and ANT(4'), ABK should be regarded as the most refractory AG for bacteria to acquire resistance.

  11. Decreased waterborne pathogenic bacteria in an urban aquifer related to intense shallow geothermal exploitation.

    PubMed

    García-Gil, Alejandro; Gasco-Cavero, Samanta; Garrido, Eduardo; Mejías, Miguel; Epting, Jannis; Navarro-Elipe, Mercedes; Alejandre, Carmen; Sevilla-Alcaine, Elena

    2018-08-15

    The implications of intensive use of shallow geothermal energy resources in shallow urban aquifers are still not known for waterborne pathogens relevant to human health. Firstly, we hypothesized that waterborne enteric pathogens would be relatively increased in heated groundwater plumes. To prove this, microbiological sampling of 31 piezometers covering the domain of an urban groundwater body affected by microbiological contamination and energetically exploited by 70 groundwater heat pump systems was performed. Mean differences of pathogenic bacteria contents between impacted and non-impacted monitoring points were assessed with a two-tailed independent Student's t-test or Mann-Whitney U and correlation coefficients were also calculated. Surprisingly, the results obtained revealed a significant and generalized decrease in waterborne pathogen contents in thermally impacted piezometers compared to that of non-impacted piezometers. This decrease is hypothesized to be caused by a heat shock to bacteria within the heat exchangers. The statistically significant negative correlations obtained between waterborne pathogen counts and temperature could be explained by the spatial distribution of the bacteria, finding that bacteria start to recover with increasing distance from the injection point. Also, different behavior groups fitting exponential regression models were found for the bacteria species studied, justified by the different presence and influence of several aquifer parameters and major, minor and trace elements studied, as well as the coexistence with other bacteria species. The results obtained from this work reinforce the concept of shallow geothermal resources as a clean energy source, as they could also provide the basis to control the pathogenic bacteria contents in groundwater bodies. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Horizontal gene transfer between bacteria.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  13. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  14. Deployable micro-traps to sequester motile bacteria

    NASA Astrophysics Data System (ADS)

    di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  15. Deployable micro-traps to sequester motile bacteria

    PubMed Central

    Di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-01-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria. PMID:28378786

  16. Deployable micro-traps to sequester motile bacteria.

    PubMed

    Di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-05

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  17. Mycorrhiza helper bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveau, Aurelie; Labbe, Jessy

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help usmore » to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.« less

  18. EFFECT OF SILICATE ON GRAM STAINING AND VIABILITY OF PNEUMOCOCCI AND OTHER BACTERIA

    PubMed Central

    MacLeod, Colin M.; Roe, Amy S.

    1956-01-01

    Application of silicate solutions to living or heat-killed pneumococci and to certain "viridans" streptococci causes their conversion from a Gram-positive to a Gram-negative state. The original staining properties can be restored by suspending the silicate-treated bacteria in alkaline solutions of various salts but not by simple washing in water. Living pneumococci and the strains of streptococci whose staining properties are similarly affected are killed when suspended in silicate solutions. In other Gram-positive species silicate causes conversion to Gram negativity but restoration to positivity occurs upon washing in water. In a third group of Gram-positive organisms silicate has no effect on the Gram reaction. The viability of organisms in these two groups is unaffected by silicate under the conditions employed. No effect on staining or viability of Gram-negative bacteria has been observed. The effects of silicate on staining and viability are inhibited by nutrient broth or whole serum but not by purified serum albumin. Lecithin, choline, and other substituted ammonium compounds also inhibit the effects of silicate on pneumococci. PMID:13306854

  19. Evaluation of a Parchment Document, the 13th Century Incorporation Charter for the City of Krakow, Poland, for Microbial Hazards

    PubMed Central

    2016-01-01

    The literature of environmental microbiology broadly discusses issues associated with microbial hazards in archives, but these publications are mainly devoted to paper documents. There are few articles on historical parchment documents, which used to be very important for the development of literature and the art of writing. These studies present a broad spectrum of methods for the assessment of biodeterioration hazards of the parchment document in question. They are based on both conventional microbiological methods and advanced techniques of molecular biology. Here, a qualitative analysis was conducted, based on genetic identification of bacteria and fungi present on the document as well as denaturing gradient gel electrophoresis profiling and examining the destructive potential of isolated microbes. Moreover, the study involved a quantitative and qualitative microbiological assessment of the indoor air in the room where the parchment was kept. The microbes with the highest destructive potential that were isolated from the investigated item were Bacillus cereus and Acinetobacter lwoffii bacteria and Penicillium chrysogenum, Chaetomium globosum, and Trichoderma longibrachiatum fungi. The presence of the B. cereus strain was particularly interesting since, under appropriate conditions, it leads to complete parchment degradation within several days. PMID:26896133

  20. Evaluation of Petrifilm Lactic Acid Bacteria Plates for Counting Lactic Acid Bacteria in Food.

    PubMed

    Kanagawa, Satomi; Ohshima, Chihiro; Takahashi, Hajime; Burenqiqige; Kikuchi, Misato; Sato, Fumina; Nakamura, Ayaka; Mohamed, Shimaa M; Kuda, Takashi; Kimura, Bon

    2018-06-01

    Although lactic acid bacteria (LAB) are used widely as starter cultures in the production of fermented foods, they are also responsible for food decay and deterioration. The undesirable growth of LAB in food causes spoilage, discoloration, and slime formation. Because of these adverse effects, food companies test for the presence of LAB in production areas and processed foods and consistently monitor the behavior of these bacteria. The 3M Petrifilm LAB Count Plates have recently been launched as a time-saving and simple-to-use plate designed for detecting and quantifying LAB. This study compares the abilities of Petrifilm LAB Count Plates and the de Man Rogosa Sharpe (MRS) agar medium to determine the LAB count in a variety of foods and swab samples collected from a food production area. Bacterial strains isolated from Petrifilm LAB Count Plates were identified by 16S rDNA sequence analysis to confirm the specificity of these plates for LAB. The results showed no significant difference in bacterial counts measured by using Petrifilm LAB Count Plates and MRS medium. Furthermore, all colonies growing on Petrifilm LAB Count Plates were confirmed to be LAB, while yeast colonies also formed in MRS medium. Petrifilm LAB Count Plates eliminated the plate preparation and plate inoculation steps, and the cultures could be started as soon as a diluted food sample was available. Food companies are required to establish quality controls and perform tests to check the quality of food products; the use of Petrifilm LAB Count Plates can simplify this testing process for food companies.

  1. Inactivation of koi-herpesvirus in water using bacteria isolated from carp intestines and carp habitats.

    PubMed

    Yoshida, N; Sasaki, R-K; Kasai, H; Yoshimizu, M

    2013-12-01

    Since its first outbreak in Japan in 2003, koi-herpesvirus (KHV) remains a challenge to the carp Cyprinus carpio L. breeding industry. In this study, inactivation of KHV in water from carp habitats (carp habitat water) was investigated with the aim of developing a model for rapidly inactivating the pathogen in aquaculture effluent. Experiments with live fish showed that, in carp habitat water, KHV lost its infectivity within 3 days. Indications were that inactivation of KHV was caused by the antagonistic activity of bacteria (anti-KHV bacteria) in the water from carp habitats. Carp habitat water and the intestinal contents of carp were therefore screened for anti-KHV bacteria. Of 581 bacterial isolates, 23 showed anti-KHV activity. An effluent treatment model for the disinfection of KHV in aquaculture effluent water using anti-KHV bacteria was developed and evaluated. The model showed a decrease in cumulative mortality and in the number of KHV genome copies in kidney tissue of fish injected with treated effluent compared with a positive control. It is thought that anti-KHV bacteria isolated from the intestinal contents of carp and from carp habitat water can be used to control KHV outbreaks. © 2013 John Wiley & Sons Ltd.

  2. Methods for broth dilution susceptibility testing of bacteria isolated from aquatic animals; approved guideline-second edition

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial susceptibility testing is recommended to determine which antimicrobial agents should be considered for treating a bacterial pathogen. Many bacteria that cause disease in aquatic animals require growth conditions that vary substantially from routine terrestrial pathogens. It has thus ...

  3. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    PubMed

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  4. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  5. Yeast pro- and paraprobiotics have the capability to bind pathogenic bacteria associated with animal disease

    USDA-ARS?s Scientific Manuscript database

    Live yeast probiotics and yeast cell wall components (paraprobiotics) may serve as an alternative to the use of antibiotics in prevention and treatment of infections caused by pathogenic bacteria. Probiotics and paraprobiotics can bind directly to pathogens, which limits binding of the pathogens to ...

  6. Treatability of Aqueous Film-Forming Foams Used for Fire Fighting.

    DTIC Science & Technology

    BIODETERIORATION, *FIRE EXTINGUISHING AGENTS, SURFACE ACTIVE SUBSTANCES, FLUORINATED HYDROCARBONS, FOAM , ACTIVATED SLUDGE PROCESS, ACTIVATED CARBON, TOXICITY, WASTE DISPOSAL, TABLES(DATA), ADSORPTION.

  7. Bacteria and wound healing.

    PubMed

    Edwards, Ruth; Harding, Keith G

    2004-04-01

    Wound healing is a complex process with many potential factors that can delay healing. There is increasing interest in the effects of bacteria on the processes of wound healing. All chronic wounds are colonized by bacteria, with low levels of bacteria being beneficial to the wound healing process. Wound infection is detrimental to wound healing, but the diagnosis and management of wound infection is controversial, and varies between clinicians. There is increasing recognition of the concept of critical colonization or local infection, when wound healing may be delayed in the absence of the typical clinical features of infection. The progression from wound colonization to infection depends not only on the bacterial count or the species present, but also on the host immune response, the number of different species present, the virulence of the organisms and synergistic interactions between the different species. There is increasing evidence that bacteria within chronic wounds live within biofilm communities, in which the bacteria are protected from host defences and develop resistance to antibiotic treatment. An appreciation of the factors affecting the progression from colonization to infection can help clinicians with the interpretation of clinical findings and microbiological investigations in patients with chronic wounds. An understanding of the physiology and interactions within multi-species biofilms may aid the development of more effective methods of treating infected and poorly healing wounds. The emergence of consensus guidelines has helped to optimize clinical management.

  8. Laser-Based Identification of Pathogenic Bacteria

    ERIC Educational Resources Information Center

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  9. Extracellular deoxyribonuclease production by periodontal bacteria.

    PubMed

    Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R

    2012-08-01

    Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.

  10. Gordon Wilson Lecture: Infectious Disease Causes of Cancer: Opportunities for Prevention and Treatment.

    PubMed

    Howley, Peter M

    2015-01-01

    The role of infectious agents in cancer is generally underappreciated. However, approximately 20% of human cancers are caused by infectious agents and as such they rank second only to tobacco as a potentially preventable cause in humans. Specific viruses, parasites, and bacteria have been linked to specific human cancers. The infectious etiology for these specific cancers provides opportunities for prevention and treatment.

  11. Granzyme B Disrupts Central Metabolism and Protein Synthesis in Bacteria to Promote an Immune Cell Death Program.

    PubMed

    Dotiwala, Farokh; Sen Santara, Sumit; Binker-Cosen, Andres Ariel; Li, Bo; Chandrasekaran, Sriram; Lieberman, Judy

    2017-11-16

    Human cytotoxic lymphocytes kill intracellular microbes. The cytotoxic granule granzyme proteases released by cytotoxic lymphocytes trigger oxidative bacterial death by disrupting electron transport, generating superoxide anion and inactivating bacterial oxidative defenses. However, they also cause non-oxidative cell death because anaerobic bacteria are also killed. Here, we use differential proteomics to identify granzyme B substrates in three unrelated bacteria: Escherichia coli, Listeria monocytogenes, and Mycobacteria tuberculosis. Granzyme B cleaves a highly conserved set of proteins in all three bacteria, which function in vital biosynthetic and metabolic pathways that are critical for bacterial survival under diverse environmental conditions. Key proteins required for protein synthesis, folding, and degradation are also substrates, including multiple aminoacyl tRNA synthetases, ribosomal proteins, protein chaperones, and the Clp system. Because killer cells use a multipronged strategy to target vital pathways, bacteria may not easily become resistant to killer cell attack. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mineral deposition in bacteria-filled and bacteria-free calcium bodies in the crustacean Hyloniscus riparius (Isopoda: Oniscidea).

    PubMed

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species.

  13. Mineral Deposition in Bacteria-Filled and Bacteria-Free Calcium Bodies in the Crustacean Hyloniscus riparius (Isopoda: Oniscidea)

    PubMed Central

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species. PMID:23554963

  14. In-vitro inhibiton of Pantoea ananatis by antagonistic bacteria

    NASA Astrophysics Data System (ADS)

    Karagöz, Kenan

    2017-04-01

    Like most cultivated crops, onions (Allium cepa L.) are plagued by phytopathogenic bacteria. Although bacterial diseases of onion occur sporadically, they can cause loss of yield, in the range of a few percent up to 40%. Center rot of onion caused by Pantoea ananatis is the one of the major bacterial disease. Cultural methods and copper compounds often are recommended for control of bacterial diseases, but these are insufficient and the use of some chemicals has adverse effects. For these reasons, biological control is important manner for control of plant disease. In this study; it was researched that in-vitro inhibition effect of 271bacterial strains on P. ananatis in-vitro. Commercially available streptomycin, kanamycin and tetracycline disks were used as control. In consequence; three isolates show more or less inhibitory effect against P. ananatis.

  15. Essential Oils of Plants as Biocides against Microorganisms Isolated from Cuban and Argentine Documentary Heritage.

    PubMed

    Borrego, Sofía; Valdés, Oderlaise; Vivar, Isbel; Lavin, Paola; Guiamet, Patricia; Battistoni, Patricia; Gómez de Saravia, Sandra; Borges, Pedro

    2012-01-01

    Natural products obtained from plants with biocidal activity represent an alternative and useful source in the control of biodeterioration of documentary heritage, without negative environmental and human impacts. In this work, we studied the antimicrobial activity of seven essential oils against microorganisms associated with the biodeterioration of documentary heritage. The essential oils were obtained by steam distillation. The antimicrobial activity was analyzed using the agar diffusion method against 4 strains of fungi and 6 bacterial strains isolated from repositories air and documents of the National Archive of the Republic of Cuba and the Historical Archive of the Museum of La Plata, Argentina. Anise and garlic oils showed the best antifungal activity at all concentrations studied, while oregano oil not only was effective against fungi tested but also prevented sporulation of them all. Orange sweet and laurel oils were ineffective against fungi. Clove, garlic, and oregano oils showed the highest antibacterial activity at 25% against Enterobacter agglomerans and Streptomyces sp., while only clove and oregano oils were effective against Bacillus sp. at all concentrations studied. This study has an important implication for the possible use of the natural products from plants in the control of biodeterioration of documentary heritage.

  16. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria.

    PubMed

    Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith

    2017-01-01

    Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Standard, ATCC, strains of four anaerobic bacteria ( Clostridium difficile , Clostridium perfringens , Bacteroides fragilis , and Bacteroides thetaiotaomicron ), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections.

  17. Cable Bacteria in Freshwater Sediments

    PubMed Central

    Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  18. The antibiotic pipeline for multi-drug resistant gram negative bacteria: what can we expect?

    PubMed

    Falagas, Matthew E; Mavroudis, Andreas D; Vardakas, Konstantinos Z

    2016-08-01

    A real concern in the medical community is the increasing resistance of bacteria, especially that of Gram-negative types. New antibiotics are currently under clinical development, promising to tackle severe infections caused, especially, by multi-drug resistant (MDR) bacteria and broaden the armamentarium of clinicians. We searched PUBMED and GOOGLE databases. Combinations of already approved β-lactams or monobactams with new β-lactamase inhibitors [imipenem-cilastatin/MK-7655 (relebactam), meropenem/RPX7009 (vaborbactam), ceftaroline/avibactam, aztreonam/avibactam], new β-lactams (S-649266, BAL30072), aminoglycosides (plazomicin), quinolones (finafloxacin) and tetracyclines (eravacycline) were included in the review. Expert commentary: For the majority of the upcoming antibiotics the currently available data is limited to their microbiology and pharmacokinetics. Their effectiveness and safety against infections due to MDR bacteria remain to be proved. Significant issues are also the impact of these antibiotics on the human intestinal microbiota and their possible co-administration with already-known antimicrobial agents in difficult-to-treat-infections; further studies should be conducted for these objectives.

  19. BioNLP Shared Task--The Bacteria Track.

    PubMed

    Bossy, Robert; Jourde, Julien; Manine, Alain-Pierre; Veber, Philippe; Alphonse, Erick; van de Guchte, Maarten; Bessières, Philippe; Nédellec, Claire

    2012-06-26

    We present the BioNLP 2011 Shared Task Bacteria Track, the first Information Extraction challenge entirely dedicated to bacteria. It includes three tasks that cover different levels of biological knowledge. The Bacteria Gene Renaming supporting task is aimed at extracting gene renaming and gene name synonymy in PubMed abstracts. The Bacteria Gene Interaction is a gene/protein interaction extraction task from individual sentences. The interactions have been categorized into ten different sub-types, thus giving a detailed account of genetic regulations at the molecular level. Finally, the Bacteria Biotopes task focuses on the localization and environment of bacteria mentioned in textbook articles. We describe the process of creation for the three corpora, including document acquisition and manual annotation, as well as the metrics used to evaluate the participants' submissions. Three teams submitted to the Bacteria Gene Renaming task; the best team achieved an F-score of 87%. For the Bacteria Gene Interaction task, the only participant's score had reached a global F-score of 77%, although the system efficiency varies significantly from one sub-type to another. Three teams submitted to the Bacteria Biotopes task with very different approaches; the best team achieved an F-score of 45%. However, the detailed study of the participating systems efficiency reveals the strengths and weaknesses of each participating system. The three tasks of the Bacteria Track offer participants a chance to address a wide range of issues in Information Extraction, including entity recognition, semantic typing and coreference resolution. We found common trends in the most efficient systems: the systematic use of syntactic dependencies and machine learning. Nevertheless, the originality of the Bacteria Biotopes task encouraged the use of interesting novel methods and techniques, such as term compositionality, scopes wider than the sentence.

  20. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  1. Antibacterial Activity of Lactic Acid Bacteria Isolated from Gastrointestinal Tract of “Ayam Kampung” Chicken Against Food Pathogens

    NASA Astrophysics Data System (ADS)

    Nur Jannah, Siti; Rini Saraswati, Tyas; Handayani, Dwi; Pujiyanto, Sri

    2018-05-01

    Food borne disease results from ingestion of water and wide variety of food contaminated with pathogenic organisms. The main causes of food borne diseases are bacteria, such as Escherichia coli and Staphylococcus aureus. The objective of this study was to determine antimicrobial activity of lactic acid bacteria (LAB) isolated from local chicken gastrointestinal tract with an emphasis on their probiotic properties. The colonies of bacteria that producing clear zone on MRSA plus 0.5% CaCO3, Gram-positive and catalase-negative were isolated as lactic acid bacteria. Some of the strains (10 isolates) were tested for their ability to inhibit growth of Escherichia coli and Staphylococcus aureus, and for acid pH and bile salt tolerance. The results showed that the all selected isolates producing antimicrobial compounds inhibits the growth of Escherichia coli and Staphylococcus aureus, both in the supernatant and supernatant plus 2M NaOH, and still growing in medium condition with pH 2.0 and 0.1% bile salt. It revealing the potential use of the lactic acid bacteria from chicken gastrointestinal tract for probiotics in food.

  2. Review on SERS of Bacteria

    PubMed Central

    Mosier-Boss, Pamela A.

    2017-01-01

    Surface enhanced Raman spectroscopy (SERS) has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data. PMID:29137201

  3. Recent advances in bacteria identification by matrix-assisted laser desorption/ionization mass spectrometry using nanomaterials as affinity probes.

    PubMed

    Chiu, Tai-Chia

    2014-04-28

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided.

  4. Isolation of Acetogenic Bacteria That Induce Biocorrosion by Utilizing Metallic Iron as the Sole Electron Donor

    PubMed Central

    Yumoto, Isao; Kamagata, Yoichi

    2014-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. PMID:25304512

  5. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor.

    PubMed

    Kato, Souichiro; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride

    PubMed Central

    Webb, Jeremy S.; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Robson, Geoffrey D.; Handley, Pauline S.

    2000-01-01

    Significant substratum damage can occur when plasticized PVC (pPVC) is colonized by microorganisms. We investigated microbial colonization of pPVC in an in situ, longitudinal study. Pieces of pPVC containing the plasticizers dioctyl phthalate and dioctyl adipate (DOA) were exposed to the atmosphere for up to 2 years. Fungal and bacterial populations were quantified, and colonizing fungi were identified by rRNA gene sequencing and morphological characteristics. Aureobasidium pullulans was the principal colonizing fungus, establishing itself on the pPVC between 25 and 40 weeks of exposure. A group of yeasts and yeast-like fungi, including Rhodotorula aurantiaca and Kluyveromyces spp., established themselves on the pPVC much later (after 80 weeks of exposure). Numerically, these organisms dominated A. pullulans after 95 weeks, with a mean viable count ± standard error of 1,000 ± 200 yeast CFU cm−2, compared to 390 ± 50 A. pullulans CFU cm−2. No bacterial colonization was observed. We also used in vitro tests to characterize the deteriogenic properties of fungi isolated from the pPVC. All strains of A. pullulans tested could grow with the intact pPVC formulation as the sole source of carbon, degrade the plasticizer DOA, produce extracellular esterase, and cause weight loss of the substratum during growth in vitro. In contrast, several yeast isolates could not grow on pPVC or degrade DOA. These results suggest that microbial succession may occur during the colonization of pPVC and that A. pullulans is critical to the establishment of a microbial community on pPVC. PMID:10919769

  7. Resistance to bacteriocins produced by Gram-positive bacteria.

    PubMed

    Bastos, Maria do Carmo de Freire; Coelho, Marcus Lívio Varella; Santos, Olinda Cabral da Silva

    2015-04-01

    Bacteriocins are prokaryotic proteins or peptides with antimicrobial activity. Most of them exhibit a broad spectrum of activity, inhibiting micro-organisms belonging to different genera and species, including many bacterial pathogens which cause human, animal or plant infections. Therefore, these substances have potential biotechnological applications in either food preservation or prevention and control of bacterial infectious diseases. However, there is concern that continuous exposure of bacteria to bacteriocins may select cells resistant to them, as observed for conventional antimicrobials. Based on the models already investigated, bacteriocin resistance may be either innate or acquired and seems to be a complex phenomenon, arising at different frequencies (generally from 10(-9) to 10(-2)) and by different mechanisms, even amongst strains of the same bacterial species. In the present review, we discuss the prevalence, development and molecular mechanisms involved in resistance to bacteriocins produced by Gram-positive bacteria. These mechanisms generally involve changes in the bacterial cell envelope, which result in (i) reduction or loss of bacteriocin binding or insertion, (ii) bacteriocin sequestering, (iii) bacteriocin efflux pumping (export) and (iv) bacteriocin degradation, amongst others. Strategies that can be used to overcome this resistance are also addressed. © 2015 The Authors.

  8. Bioenergetics of photoheterotrophic bacteria in the oceans.

    PubMed

    Kirchman, David L; Hanson, Thomas E

    2013-04-01

    Photoheterotrophic microbes, such as proteorhodopsin (PR)-based phototrophic (PRP) and aerobic anoxygenic phototrophic (AAP) bacteria, are well known to be abundant in the oceans, potentially playing unique roles in biogeochemical cycles. However, the contribution of phototrophy to the energy requirements of these bacteria has not been quantitatively examined to date. To better understand the implications of photoheterophy in the oceans, we calculated energy benefits and costs of phototrophy and compared net benefits with maintenance costs. Benefits depend on the number of photosynthetic units (PSUs), absorption cross-section area of each PSU as function of wavelength, the in situ light quality, and the energy yield per absorbed photon. For costs we considered the energy required for the synthesis of pigments, amino acids and proteins in each PSU. Our calculations indicate that AAP bacteria harvest more light energy than do PRP bacteria, but the costs of phototrophy are much higher for AAP bacteria. Still, the net energy gained by AAP bacteria is often sufficient to meet maintenance costs, while that is not the case for PRP bacteria except with high light intensities and large numbers of proteorhodopsin molecules per cell. The low costs and simplicity of PR-based phototrophy explain the high abundance of proteorhodopsin genes in the oceans. However, even for AAP bacteria, the net energy yield of phototrophy is apparently too low to influence the distribution of photoheterotrophic bacteria among various marine systems. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity.

    PubMed

    Chung, Joon-hui; Song, Geun Cheol; Ryu, Choong-Min

    2016-04-01

    Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions.

  10. Septage treatments to reduce the numbers of bacteria and polioviruses.

    PubMed Central

    Stramer, S L; Cliver, D O

    1984-01-01

    Disposal of the pumped contents of septic tanks (septage) represents a possible means of dissemination of enteric pathogens including viruses, since persistence of enteroviruses in septic tank sludge for greater than 100 days has been demonstrated. The risk of exposure to potentially infectious agents can be reduced by disinfecting septages before their disposal. Of the septage disinfectants examined (technical and analytical grade glutaraldehyde, hydrogen peroxide, heat treatments, and a combination of heat and hydrogen peroxide), the treatment including hydrogen peroxide (5 mg, plus 0.33 mg of trichloroacetic acid, per ml of septage) and 55 degrees C killed virtually all the bacteria in septage within 1 h, whereas 55 degrees C alone inactivated inoculated polioviruses within 30 min. Virus was the most sensitive to heat, whereas fecal coliforms appeared to be the most sensitive to all chemical treatments. The responses of fecal streptococci and virus to both grades of glutaraldehyde (each at 1 mg/ml) were similar. Virus was more resistant than either fecal streptococci or total bacteria to low concentrations of hydrogen peroxide (1 to 5 mg/ml); however, virus and fecal streptococci were more labile than total bacteria to the highest peroxide concentration (10 mg/ml) examined. It is possible that the treatment combining heat and hydrogen peroxide was the most effective in reducing the concentrations of all bacteria, because catalase and peroxidases as well as other enzymes were heat inactivated, although catalase seems the most likely cause of damage. However, this most effective treatment does not appear to be practical for on-site use as performed, so further work on septage disinfection is recommended. PMID:6093691

  11. Anti-Pathogenic Activity of Coral Bacteria Againts White Plaque Disease of Coral Dipsastraea from Tengah Island, Karimunjawa

    NASA Astrophysics Data System (ADS)

    Imam Muchlissin, Sakti; Sabdono, Agus; Permata W, Diah

    2018-02-01

    Coral disease is main factor of degrading coral reefs, such as White Plaque (WP) disease that cause loss of epidermal tissue of corals. The purposes of this research were to identify the bacteria associated with White Plaque Disease of coral Dipsastraea and to investigate coral bacteria that have antipathogenic potency against White Plaque Disease by Coral Dipsastraea. Sampling was carried out by purposive method in Tengah Island, Karimunjawa on March 2015. Streak method was used to isolate and purify coral bacteria, while overlay and agar diffusion method were used to test antibacterial activity. Identification of selected bacteria was conducted by biochemical and molecular methods. Polyphasic identification of bacteria associated with diseased coral White Plague of Dipsastraea. It is found that TFWP1, TFWP2, TFWP3 and TFWP4 were closely related to Bacillus antracis, Virgibacillus olivae, Virgibacillus salarius and Bacillus mojavensis, respectively. While antipathogen activity bacterial isolates, NM1.3, NM1.8 and NM2.3 were closely related to Pseudoalteromonas flavipulchra, Pseudoalteromonas piscicida, and Vibrio azureus, respectively. Phylogenetic data on microbial community composition in coral will help with the knowledge in the biological control of coral diseases.

  12. The effect of protein-coated contact lenses on the adhesion and viability of gram negative bacteria.

    PubMed

    Williams, Timothy J; Schneider, Rene P; Willcox, Mark D P

    2003-10-01

    Gram negative bacterial adhesion to contact lenses can cause adverse responses. During contact lens wear, components of the tear film adsorb to the contact lens. This study aimed to investigate the effect of this conditioning film on the viability of bacteria. Bacteria adhered to contact lenses which were either unworn, worn for daily-, extended- or overnight-wear or coated with lactoferrin or lysozyme. Numbers of viable and total cells were estimated. The number of viable attached cells was found to be significantly lower than the total number of cells on worn (50% for strain Paer1 on daily-wear lenses) or lactoferrin-coated lenses (56% for strain Paer1). Lysozyme-coated lenses no statistically significant effect on adhesion. The conditioning film gained through wear may not inhibit bacterial adhesion, but may act adversely upon those bacteria that succeed in attaching.

  13. Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals.

    PubMed

    Jantakee, Kanyaluck; Tragoolpua, Yingmanee

    2015-01-16

    Honey is a natural product obtained from the nectar that is collected from flowers by bees. It has several properties, including those of being food and supplementary diet, and it can be used in cosmetic products. Honey imparts pharmaceutical properties since it has antibacterial and antioxidant activities. The antibacterial and antioxidant activities of Thai honey were investigated in this study. The honey from longan flower (source No. 1) gave the highest activity on MRSA when compared to the other types of honey, with a minimum inhibitory concentration of 12.5% (v/v) and minimum bactericidal concentration of 25% (v/v). Moreover, it was found that MRSA isolate 49 and S. aureus were completely inhibited by the 50% (v/v) longan honey (source No. 1) at 8 and 20 hours of treatment, respectively. Furthermore, it was observed that the honey from coffee pollen (source No. 4) showed the highest phenolic and flavonoid compounds by 734.76 mg gallic/kg of honey and 178.31 mg quercetin/kg of honey, respectively. The antioxidant activity of the honey obtained from coffee pollen was also found to be the highest, when investigated using FRAP and DPPH assay, with 1781.77 mg FeSO4•7H2O/kg of honey and 86.20 mg gallic/kg of honey, respectively. Additionally, inhibition of tyrosinase enzyme was found that honey from coffee flower showed highest inhibition by 63.46%. Honey demonstrates tremendous potential as a useful source that provides anti-free radicals, anti-tyrosinase and anti-bacterial activity against pathogenic bacteria causing skin diseases.

  14. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact.

    PubMed

    Trecarichi, Enrico M; Tumbarello, Mario

    2014-04-01

    In the recent years, several studies involving cancer patients have demonstrated a clear trend in the epidemiology of bacterial infections showing a shift in the prevalence from Gram-positive to Gram-negative bacteria and the extensive emergence of antimicrobial-resistant strains among Gram-negatives isolated from the blood. The aim of this systematic review was to examine the recent trends in epidemiology and antimicrobial resistance in Gram-negatives recovered from neutropenic cancer patients, with particular emphasis on the impact of antimicrobial resistance on the clinical outcome of severe infections caused by such microorganisms. Overall, from 2007 to date, the rate of Gram-negative bacteria recovery ranged from 24.7 to 75.8% (mean 51.3%) in cancer patient cohorts. Escherichia coli represented the most common species (mean frequency of isolation 32.1%) among the Gram-negatives, followed by Pseudomonas aeruginosa (mean frequency of isolation 20.1%). An increasing frequency of Acinetobacter spp. and Stenotrophomonas maltophilia was also reported. Increased rates of multidrug-resistant Gram-negative strains have been highlighted among Enterobacteriaceae and nonfermenting Gram-negative rods, despite discontinuation of fluoroquinolone-based antibacterial prophylaxis for neutropenic patients. In addition, antimicrobial resistance and/or the inadequacy of empirical antibiotic treatment have been frequently linked to a worse outcome in cancer patients with bloodstream infections caused by Gram-negative isolates. Sound knowledge of the local distribution of pathogens and their susceptibility patterns and prompt initiation of effective antimicrobial treatment for severe infections caused by Gram-negative bacteria are essential in cancer patients.

  15. Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to cocoa fermentation using inoculated organisms.

    PubMed

    Ho, Van Thi Thuy; Fleet, Graham H; Zhao, Jian

    2018-08-20

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of the bean pulp by microorganisms is essential for developing the precursors of chocolate flavour. Currently, the cocoa fermentation is still conducted by an uncontrolled traditional process via a consortium of indigenous species of yeasts, lactic acid bacteria and acetic acid bacteria. Although the essential contribution of yeasts to the production of good quality beans and, typical chocolate character is generally agreed, the roles of lactic acid bacteria and acetic acid bacteria are less certain. The objective of this study was to investigate the contribution of LAB and AAB in cocoa bean fermentation by conducting small scale laboratory fermentations under aseptic conditions, inoculated with different groups of microorganisms previously isolated from spontaneous cocoa fermentations. The inoculation protocols were: (1) four yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae; (2) four yeasts plus the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum; (3) four yeasts plus the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateuri and (4) four yeasts plus two lactic acid bacteria and two acetic acid bacteria. Only the inoculated species were detected in the microbiota of their respective fermentations. Beans from the inoculated fermentations showed no significant differences in colour, shell weights and concentrations of residual sugars, alcohols and esters (p>0.05), but they were slightly different in contents of lactic acid and acetic acid (p<0.05). All beans were fully brown and free of mould. Residual sugar levels were less than 2.6 mg/g while the shell contents and ethanol were in the range of 11-13.4% and 4.8-7 mg/g, respectively. Beans fermented in the presence of LAB contained higher levels of lactic acid (0.6-1.2 mg/g) whereas higher concentrations of acetic acid

  16. [Mutant prevention concentrations of antibacterial agents to ocular pathogenic bacteria].

    PubMed

    Liang, Qing-Feng; Wang, Zhi-Qun; Li, Ran; Luo, Shi-Yun; Deng, Shi-Jing; Sun, Xu-Guang

    2009-01-01

    To establish a method to measure mutant prevention concentration (MPC) in vitro, and to measure MPC of antibacterial agents for ocular bacteria caused keratitis. It was an experimental study. Forty strains of ocular bacteria were separated from cornea in Beijing Institute of Ophthalmology, which included 8 strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Pseudomonas aeruginosa and Klebsiella pneumoniae respectively. The minimal inhibitory concentration (MIC) of the levofloxacin (LVF), ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NFL), tobramycin (TOB) and chloromycetin (CHL) were determined by agar dilution method from National Committee of Clinical Laboratory Standard (NCCLS). The MPC were measured by accumulate-bacterial methods with bacterial population inoculated more than 1.2 x 10(10) colony forming units per milliliter with Mueller-Hinton broth and tryptic soy agar plate. With the software of SPSS 11.0, the datum such as the range of MIC, MPC, MIC90 and MPC90 were calculated, and the selection index (MPC90/ MI90) and mutant selection window (MSW) were obtained. The MI90 of LVF and TOB (4 mg/L) to Staphylococcus aureus strains were the lowest. CIP showed the lowest MIC90 (0.25 mg/L) to Pseudomonas aeruginosa among six kinds of antibacterial agents. The MIC90 of LVF to Staphylococcus epidermidis (256 mg/L), Streptococcus pneumoniae (1 mg/L) and Klebsiella pneumoniae (0.25 mg/L) were lower than other antibacterial agents. The MPC90, MSW and the MPC90/MIC90 of levofloxacin showed lower values compared with other antibacterial medicines. From all the datum, the MIC90 of CHL was the highest and the activity was the weakest. Although the activity of LVF was higher to every kind of bacteria, CIP had the highest activity antibacterial to Pseudomonas aeruginosa. The capacity of CHL and TOB was weaker than Quinolones for restricting resistant mutants on ocular bacteria. LVF had the strongest capacity for restricting resistant

  17. Honey Bee as Alternative Medicine to Treat Eleven Multidrug-Resistant Bacteria Causing Urinary Tract Infection during Pregnancy.

    PubMed

    Bouacha, Mabrouka; Ayed, Hayette; Grara, Nedjoud

    2018-04-13

    Medicinal benefits of honey bee have been recognized in the medical community since ancient times as a remedy for many diseases and infections. This study aimed to investigate the in vitro susceptibility of 11 multidrug-resistant bacterial strains, isolated from urinary tract infections of pregnant women, to six honey samples collected from different localities in the east of Algeria. The evaluation of the antibacterial activity was performed by the well method followed by the broth dilution method using two-fold dilutions of each honey sample ranging from 2.5 to 80% (w/v). The results obtained in this study revealed that all tested honeys exhibited potent antibacterial activity against the tested strains. The diameters of inhibition ranged from 19.67 to 53.33 mm, with minimum inhibitory concentrations (MICs) ranging from 2.5 to 40% (w/v) and minimum bactericidal concentration (MBCs) varied between 2.5 and 80% (w/v). Gram-positive bacteria were found to be more susceptible than Gram-negative bacteria with diameters ranging from 43.33 to 53.33 mm; MIC and MBC values ranged from 2.5 to 5% (w/v). The P.aeruginosa strain was found to be less susceptible than other strains with inhibitory diameters ranging from 19.67 to 27.33 mm; MICs ranged from 20 to 40% and MBCs ranged from 20 to 80% ( w/v ). This contribution has provided a broad overview of the antibacterial activity of Algerian honey and shown that honey bee has great potential for therapeutic use as an alternative therapy for urinary tract infection treatment which is safe and efficient during pregnancy.

  18. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete.

    PubMed

    Wang, J Y; Belie, N De; Verstraete, W

    2012-04-01

    Crack repair is crucial since cracks are the main cause for the decreased service life of concrete structures. An original and promising way to repair cracks is to pre-incorporate healing agents inside the concrete matrix to heal cracks the moment they appear. Thus, the concrete obtains self-healing properties. The goal of our research is to apply bacterially precipitated CaCO₃ to heal cracks in concrete since the microbial calcium carbonate is more compatible with the concrete matrix and more environmentally friendly relative to the normally used polymeric materials. Diatomaceous earth (DE) was used in this study to protect bacteria from the high-pH environment of concrete. The experimental results showed that DE had a very good protective effect for bacteria. DE immobilized bacteria had much higher ureolytic activity (12-17 g/l urea was decomposed within 3 days) than that of un-immobilized bacteria (less than 1 g/l urea was decomposed within the same time span) in cement slurry. The optimal concentration of DE for immobilization was 60% (w/v, weight of DE/volume of bacterial suspension). Self-healing in cracked specimens was visualized under light microscopy. The images showed that cracks with a width ranging from 0.15 to 0.17 mm in the specimens containing DE immobilized bacteria were completely filled by the precipitation. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to characterize the precipitation around the crack wall, which was confirmed to be calcium carbonate. The result from a capillary water absorption test showed that the specimens with DE immobilized bacteria had the lowest water absorption (30% of the reference ones), which indicated that the precipitation inside the cracks increased the water penetration resistance of the cracked specimens.

  19. Using Fluorescent Viruses for Detecting Bacteria in Water

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  20. Molecular methods routinely used to detect Coxiella burnetii in ticks cross-react with Coxiella-like bacteria

    PubMed Central

    Elsa, Jourdain; Duron, Olivier; Séverine, Barry; González-Acuña, Daniel; Sidi-Boumedine, Karim

    2015-01-01

    Background Q fever is a widespread zoonotic disease caused by Coxiella burnetii. Ticks may act as vectors, and many epidemiological studies aim to assess C. burnetii prevalence in ticks. Because ticks may also be infected with Coxiella-like bacteria, screening tools that differentiate between C. burnetii and Coxiella-like bacteria are essential. Methods In this study, we screened tick specimens from 10 species (Ornithodoros rostratus, O. peruvianus, O. capensis, Ixodes ricinus, Rhipicephalus annulatus, R. decoloratus, R. geigy, O. sonrai, O. occidentalis, and Amblyomma cajennense) known to harbor specific Coxiella-like bacteria, by using quantitative PCR primers usually considered to be specific for C. burnetii and targeting, respectively, the IS1111, icd, scvA, p1, and GroEL/htpB genes. Results We found that some Coxiella-like bacteria, belonging to clades A and C, yield positive PCR results when screened with primers initially believed to be C. burnetii-specific. Conclusions These results suggest that PCR-based surveys that aim to detect C. burnetii in ticks by using currently available methods must be interpreted with caution if the amplified products cannot be sequenced. Future molecular methods that aim at detecting C. burnetii need to take into account the possibility that cross-reactions may exist with Coxiella-like bacteria. PMID:26609691

  1. Molecular methods routinely used to detect Coxiella burnetii in ticks cross-react with Coxiella-like bacteria.

    PubMed

    Elsa, Jourdain; Duron, Olivier; Séverine, Barry; González-Acuña, Daniel; Sidi-Boumedine, Karim

    2015-01-01

    Q fever is a widespread zoonotic disease caused by Coxiella burnetii. Ticks may act as vectors, and many epidemiological studies aim to assess C. burnetii prevalence in ticks. Because ticks may also be infected with Coxiella-like bacteria, screening tools that differentiate between C. burnetii and Coxiella-like bacteria are essential. In this study, we screened tick specimens from 10 species (Ornithodoros rostratus, O. peruvianus, O. capensis, Ixodes ricinus, Rhipicephalus annulatus, R. decoloratus, R. geigy, O. sonrai, O. occidentalis, and Amblyomma cajennense) known to harbor specific Coxiella-like bacteria, by using quantitative PCR primers usually considered to be specific for C. burnetii and targeting, respectively, the IS1111, icd, scvA, p1, and GroEL/htpB genes. We found that some Coxiella-like bacteria, belonging to clades A and C, yield positive PCR results when screened with primers initially believed to be C. burnetii-specific. These results suggest that PCR-based surveys that aim to detect C. burnetii in ticks by using currently available methods must be interpreted with caution if the amplified products cannot be sequenced. Future molecular methods that aim at detecting C. burnetii need to take into account the possibility that cross-reactions may exist with Coxiella-like bacteria.

  2. Bacteria foraging in turbulent waters

    NASA Astrophysics Data System (ADS)

    Taylor, John; Tang, Wenbo; Stocker, Roman

    2009-11-01

    Marine bacteria are the Ocean's recyclers, contributing to as much as 50% of the productivity of the marine food web. Bacteria forage on patches of dissolved nutrients using chemotaxis, the ability to swim up chemical gradients. As turbulence is ubiquitous in the Ocean, it is important to understand how turbulent flow conditions affect bacterial foraging. We used three-dimensional, isotropic direct numerical simulations coupled with a bacterial transport equation to address this problem. After the flow is continuously forced until it reaches a steady state, microscale nutrient patches are injected into the turbulent flow, and stirring produces thin nutrient filaments. Two populations of bacteria compete against each other: one population is motile and chemotactic (`active'), the other is non-motile (`passive'). The distribution of both populations is initially uniform. Chemotaxis allows active bacteria to cluster near the center of the nutrient filaments, increasing their nutrient uptake relative to passive bacteria. Increasing the turbulence intensity increases the short-term chemotactic advantage by quickly producing large gradients in the nutrient concentration, but also leads to rapid mixing of the nutrient field, which makes the chemotactic advantage short-lived. The results suggest that the evolutionary advantage of chemotaxis, based on the increase in nutrient uptake relative to the energetic cost of swimming, strongly depends on the turbulence level.

  3. Periodontal disease bacteria specific to tonsil in IgA nephropathy patients predicts the remission by the treatment.

    PubMed

    Nagasawa, Yasuyuki; Iio, Kenichiro; Fukuda, Shinji; Date, Yasuhiro; Iwatani, Hirotsugu; Yamamoto, Ryohei; Horii, Arata; Inohara, Hidenori; Imai, Enyu; Nakanishi, Takeshi; Ohno, Hiroshi; Rakugi, Hiromi; Isaka, Yoshitaka

    2014-01-01

    Immunoglobulin (Ig)A nephropathy (IgAN) is the most common form of primary glomerulonephritis in the world. Some bacteria were reported to be the candidate of the antigen or the pathogenesis of IgAN, but systematic analysis of bacterial flora in tonsil with IgAN has not been reported. Moreover, these bacteria specific to IgAN might be candidate for the indicator which can predict the remission of IgAN treated by the combination of tonsillectomy and steroid pulse. We made a comprehensive analysis of tonsil flora in 68 IgAN patients and 28 control patients using Denaturing gradient gel electrophoresis methods. We also analyzed the relationship between several bacteria specific to the IgAN and the prognosis of the IgAN. Treponema sp. were identified in 24% IgAN patients, while in 7% control patients (P = 0.062). Haemophilus segnis were detected in 53% IgAN patients, while in 25% control patients (P = 0.012). Campylobacter rectus were identified in 49% IgAN patients, while in 14% control patients (P = 0.002). Multiple Cox proportional-hazards model revealed that Treponema sp. or Campylobactor rectus are significant for the remission of proteinuria (Hazard ratio 2.35, p = 0.019). There was significant difference in remission rates between IgAN patients with Treponema sp. and those without the bacterium (p = 0.046), and in remission rates between IgAN patients with Campylobacter rectus and those without the bacterium (p = 0.037) by Kaplan-Meier analysis. Those bacteria are well known to be related with the periodontal disease. Periodontal bacteria has known to cause immune reaction and many diseases, and also might cause IgA nephropathy. This insight into IgAN might be useful for diagnosis of the IgAN patients and the decision of treatment of IgAN.

  4. Screening and biological characteristics of fufenozide degrading bacteria

    NASA Astrophysics Data System (ADS)

    Xu, Chenhao; Gong, Mingfu; Guan, Qinlan; Deng, Xia; Deng, Hongyan; Huang, Jiao

    2018-04-01

    Fufenozide was a novel pesticide for the control of Lepidoptera pests, which was highly toxic to silkworm. Fufenozide-contaminated soil samples were collected and the bacteria that degrade fufenozide were isolated and screened by selective medium. The colony characteristics, cell characteristics and degradation characteristics in different concentrations fufenozide of the fufenozide degrading bacteria were studied. The results indicated that seven strains of fufenozide degradeing bacteria, named as DDH01, DDH03, DDH04, DDH04, DDH05, DDH07 and DDH07 respectively, were isolated from soil contaminated with fufenozide. DDH01, DDH02, DDH04 and DDH05 of seven fufenozide degrading bacteria, was gram-positive bacteria, and DDH03, DDH06 and DDH07 was gram-negative bacteria. All of seven strains of fufenozide degrading bacteria were not spores, weeks flagella, rod-shaped bacteria. DDH06 and DDH07 had capsules, and the remaining five strains had not capsule. The colonies formed by seven strains of fufenozide degradation bacteria on beef extract peptone medium plate were milky white colonies with irregular edges, thinner lawn, smaller colony with smooth surface. The growth of 7 strains of fufenozide degradation bacteria was significantly affected by the concentration of fufenozide, All of 7 strains grown in the range from 0.00025 g/mL to 1 g/mL of 10% fufenozide suspension. DDH2 was the best among the 7 strains of fufenozide degrading bacteria grown in 10% fufenozide suspension medium.

  5. Strategies and ecological roles of algicidal bacteria.

    PubMed

    Meyer, Nils; Bigalke, Arite; Kaulfuß, Anett; Pohnert, Georg

    2017-11-01

    In both freshwater and marine ecosystems, phytoplankton are the most dominant primary producers, contributing substantially to aquatic food webs. Algicidal bacteria that can associate to microalgae from the phytoplankton have the capability to control the proliferation and even to lyse them. These bacteria thus play an important role in shaping species composition in pelagic environments. In this review, we discuss and categorise strategies used by algicidal bacteria for the attack on microalgae. We highlight the complex regulation of algicidal activity and defence responses that govern alga-bacteria interactions. We also discuss how algicidal bacteria impact algal physiology and metabolism and survey the existing algicidal metabolites and enzymes. The review illustrates that the ecological role of algicidal bacteria is not yet fully understood and critically discusses the challenges in obtaining ecologically relevant data. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. [Infectious risk related to the formation of multi-species biofilms (Candida - bacteria) on peripheral vascular catheters].

    PubMed

    Seghir, A; Boucherit-Otmani, Z; Sari-Belkharroubi, L; Boucherit, K

    2017-03-01

    The Candida yeasts are the fourth leading cause of death from systemic infections, the risk may increase when the infection also involves bacteria. Yeasts and bacteria can adhere to medical implants, such as peripheral vascular catheters, and form a multicellular structures called "mixed biofilms" more resistant to antimicrobials agents. However, the formation of mixed biofilms on implants leads to long-term persistent infections because they can act as reservoirs of pathogens that have poorly understood interactions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization.

    PubMed

    Wang, Bailiang; Ye, Zi; Tang, Yihong; Han, Yuemei; Lin, Quankui; Liu, Huihua; Chen, Hao; Nan, Kaihui

    Infections after surgery or endophthalmitis are potentially blinding complications caused by bacterial adhesion and subsequent biofilm formation on the intraocular lens. Neither single-function anti-adhesion surface nor contacting killing surface can exhibit ideal antibacterial function. In this work, a novel (2-(dimethylamino)-ethyl methacrylate- co -2-methacryloyloxyethyl phosphorylcholine) (p (DMAEMA- co -MPC)) brush was synthesized by "grafting from" method through reversible-addition fragmentation chain transfer polymerization. 1-Bromoheptane was used to quaternize the p (DMAEMA- co -MPC) brush coating and to endow the surface with bactericidal function. The success of the surface functionalization was confirmed by atomic force microscopy, water contact angle, and spectroscopic ellipsometry. The quaternary ammonium salt units were employed as efficient disinfection that can eliminate bacteria through contact killing, whereas the 2-methacryloyloxyethyl phosphorylcholine units were introduced to suppress unwanted nonspecific adsorption. The functionalized poly(dimethyl siloxane) surfaces showed efficiency in reducing bovine serum albumin adsorption and in inhibiting bacteria adhesion and biofilm formation. The copolymer brushes also demonstrated excellent bactericidal function against gram-positive ( Staphylococcus aureus ) bacteria measured by bacteria live/dead staining and shake-flask culture methods. The surface biocompatibility was evaluated by morphology and activity measurement with human lens epithelial cells in vitro. The achievement of the p (DMAEMA + - co -MPC) copolymer brush coating with nonfouling, bactericidal, and bacteria corpse release properties can be used to modify intraocular lenses.

  9. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization

    PubMed Central

    Wang, Bailiang; Ye, Zi; Tang, Yihong; Han, Yuemei; Lin, Quankui; Liu, Huihua; Chen, Hao; Nan, Kaihui

    2017-01-01

    Infections after surgery or endophthalmitis are potentially blinding complications caused by bacterial adhesion and subsequent biofilm formation on the intraocular lens. Neither single-function anti-adhesion surface nor contacting killing surface can exhibit ideal antibacterial function. In this work, a novel (2-(dimethylamino)-ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine) (p (DMAEMA-co-MPC)) brush was synthesized by “grafting from” method through reversible–addition fragmentation chain transfer polymerization. 1-Bromoheptane was used to quaternize the p (DMAEMA-co-MPC) brush coating and to endow the surface with bactericidal function. The success of the surface functionalization was confirmed by atomic force microscopy, water contact angle, and spectroscopic ellipsometry. The quaternary ammonium salt units were employed as efficient disinfection that can eliminate bacteria through contact killing, whereas the 2-methacryloyloxyethyl phosphorylcholine units were introduced to suppress unwanted nonspecific adsorption. The functionalized poly(dimethyl siloxane) surfaces showed efficiency in reducing bovine serum albumin adsorption and in inhibiting bacteria adhesion and biofilm formation. The copolymer brushes also demonstrated excellent bactericidal function against gram-positive (Staphylococcus aureus) bacteria measured by bacteria live/dead staining and shake-flask culture methods. The surface biocompatibility was evaluated by morphology and activity measurement with human lens epithelial cells in vitro. The achievement of the p (DMAEMA+-co-MPC) copolymer brush coating with nonfouling, bactericidal, and bacteria corpse release properties can be used to modify intraocular lenses. PMID:28053527

  10. Bacteria-mediated bisphenol A degradation.

    PubMed

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  11. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections.

    PubMed

    Caetano da Silva, Sandro Donizete; Mendes de Souza, Maria Gorete; Oliveira Cardoso, Miguel Jorge; da Silva Moraes, Thais; Ambrósio, Sérgio Ricardo; Sola Veneziani, Rodrigo Cássio; Martins, Carlos Henrique G

    2014-12-01

    Endodontic infections have a polymicrobial nature, but anaerobic bacteria prevail among the infectious microbes. Considering that it is easy to eliminate planktonic bacteria, biofilm-forming bacteria still challenge clinicians during the fight against endodontic diseases. The chemical constituents of the oleoresin of Pinus elliottii, a plant belonging to the family Pinaceae, stand out in the search for biologically active compounds based on natural products with potential application in the treatment of endodontic infections. Indeed, plant oleoresins are an abundant natural source of diterpenes that display significant and well-defined biological activities as well as potential antimicrobial action. In this context, this study aimed to (1) evaluate the in vitro antibacterial activity of the oleoresin, fractions, and subfractions of P. elliottii as well as the action of dehydroabietic acid against 11 anaerobic bacteria that cause endodontic infection in both their planktonic and biofilm forms and (2) assess the in vitro antibiofilm activity of dehydroabietic acid against the same group of bacteria. The broth microdilution technique helped to determine the minimum inhibitory concentration (MIC) of the oleoresin and fractions. This same technique aided determination of the MIC values of nine subfractions of Fraction 1, the most active fraction. The MIC, minimum bactericidal concentration, and antibiofilm activity of dehydroabietic acid against the tested anaerobic bacteria were also examined. The oleoresin and fractions, especially fraction PE1, afforded promising MIC values, which ranged from 0.4 to 50 μg/mL. Concerning the nine evaluated subfractions, PE1.3 and PE1.4 furnished the most noteworthy MIC values, between 6.2 and 100 μg/mL. Dehydroabietic acid displayed antibacterial activity, with MIC values lying from 6.2 to 50 μg/mL, as well as bactericidal effect for all the investigated bacteria, except for Prevotella nigrescens. Assessment of the antibiofilm

  12. Recent Advances in Bacteria Identification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using Nanomaterials as Affinity Probes

    PubMed Central

    Chiu, Tai-Chia

    2014-01-01

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided. PMID:24786089

  13. Heterotrophic bacteria in drinking water distribution system: a review.

    PubMed

    Chowdhury, Shakhawat

    2012-10-01

    The microbiological quality of drinking water in municipal water distribution systems (WDS) depends on several factors. Free residual chlorine and/or chloramines are typically used to minimize bacterial recontamination and/or regrowth in WDS. Despite such preventive measures, regrowth of heterotrophic (HPC) and opportunistic bacteria in bulk water and biofilms has yet to be controlled completely. No approach has shown complete success in eliminating biofilms or HPC bacteria from bulk water and pipe surfaces. Biofilms can provide shelter for pathogenic bacteria and protect these bacteria from disinfectants. Some HPC bacteria may be associated with aesthetic and non-life threatening diseases. Research to date has achieved important success in understanding occurrence and regrowth of bacteria in bulk water and biofilms in WDS. To achieve comprehensive understanding and to provide efficient control against bacteria regrowth, future research on bacteria regrowth dynamics and their implications is warranted. In this study, a review was performed on the literature published in this area. The findings and limitations of these papers are summarized. Occurrences of bacteria in WDS, factors affecting bacteria regrowth in bulk water and biofilms, bacteria control strategies, sources of nutrients, human health risks from bacterial exposure, modelling of bacteria regrowth and methods of bacteria sampling and detection and quantification are investigated. Advances to date are noted, and future research needs are identified. Finally, research directions are proposed to effectively control HPC and opportunistic bacteria in bulk water and biofilms in WDS.

  14. Spoilage bacteria of fresh broiler chicken carcasses.

    PubMed

    Russell, S M; Fletcher, D L; Cox, N A

    1995-12-01

    Studies were conducted to identify the bacteria responsible for spoilage of fresh broiler chicken carcasses and to characterize the off-odors these bacteria produce. Broiler carcasses were collected from processing plants in the northeast Georgia area, the southeastern U.S., Arkansas, California, and North Carolina. The carcasses were allowed to spoil under controlled conditions at 3 C and spoilage bacteria were isolated. Each spoilage bacterium was separately inoculated into a sterile chicken skin medium, incubated at 25 C for 48 h, and subjectively evaluated for odor. The bacteria isolated from spoiled carcasses that consistently produced off-odors in the chicken skin medium, regardless of the geographical location from which the chickens were obtained, were Shewanella putrefaciens A, B, and D, Pseudomonas fluorescens A, B, and D, and Pseudomonas fragi. These bacteria produced off-odors that resembled "sulfur", "dishrag", "ammonia", "wet dog", "skunk", "dirty socks", "rancid fish", "unspecified bad odor", or a sweet smell resembling "canned corn". Odors produced by the spoilage bacteria were varied; however, odors most associated with spoiled poultry, such as "dishraggy" odors, were produced by the bacteria that were most consistently isolated, such as S. putrefaciens and the pseudomonads.

  15. Application of Lactic Acid Bacteria (LAB) in freshness keeping of tilapia fillets as sashimi

    NASA Astrophysics Data System (ADS)

    Cao, Rong; Liu, Qi; Chen, Shengjun; Yang, Xianqing; Li, Laihao

    2015-08-01

    Aquatic products are extremely perishable food commodities. Developing methods to keep the freshness of fish represents a major task of the fishery processing industry. Application of Lactic Acid Bacteria (LAB) as food preservative is a novel approach. In the present study, the possibility of using lactic acid bacteria in freshness keeping of tilapia fillets as sashimi was examined. Fish fillets were dipped in Lactobacillus plantarum 1.19 (obtained from China General Microbiological Culture Collection Center) suspension as LAB-treated group. Changes in K-value, APC, sensory properties and microbial flora were analyzed. Results showed that LAB treatment slowed the increase of K-value and APC in the earlier storage, and caused a smooth decrease in sensory score. Gram-negative bacteria dominated during refrigerated storage, with Pseudomonas and Aeromonas being relatively abundant. Lactobacillus plantarum 1.19 had no obvious inhibitory effect against these Gram-negatives. However, Lactobacillus plantarum 1.19 changed the composition of Gram-positive bacteria. No Micrococcus were detected and the proportion of Staphylococcus decreased in the spoiled LAB-treated samples. The period that tilapia fillets could be used as sashimi material extended from 24 h to 48 h after LAB treatment. The potential of using LAB in sashimi processing was confirmed.

  16. Incidence of Bacteriocins Produced by Food-Related Lactic Acid Bacteria Active towards Oral Pathogens

    PubMed Central

    Zoumpopoulou, Georgia; Pepelassi, Eudoxie; Papaioannou, William; Georgalaki, Marina; Maragkoudakis, Petros A.; Tarantilis, Petros A.; Polissiou, Moschos; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2013-01-01

    In the present study we investigated the incidence of bacteriocins produced by 236 lactic acid bacteria (LAB) food isolates against pathogenic or opportunistic pathogenic oral bacteria. This set of LAB contained several strains (≥17%) producing bacteriocins active against food-related bacteria. Interestingly only Streptococcus macedonicus ACA-DC 198 was able to inhibit the growth of Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii, while Lactobacillus fermentum ACA-DC 179 and Lactobacillus plantarun ACA-DC 269 produced bacteriocins solely against Streptococcus oralis. Thus, the percentage of strains that were found to produce bacteriocins against oral bacteria was ~1.3%. The rarity of bacteriocins active against oral LAB pathogens produced by food-related LAB was unexpected given their close phylogenetic relationship. Nevertheless, when tested in inhibition assays, the potency of the bacteriocin(s) of S. macedonicus ACA-DC 198 against the three oral streptococci was high. Fourier-transform infrared spectroscopy combined with principal component analysis revealed that exposure of the target cells to the antimicrobial compounds caused major alterations of key cellular constituents. Our findings indicate that bacteriocins produced by food-related LAB against oral LAB may be rare, but deserve further investigation since, when discovered, they can be effective antimicrobials. PMID:23443163

  17. Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria.

    PubMed

    Bandeira Junior, G; Sutili, F J; Gressler, L T; Ely, V L; Silveira, B P; Tasca, C; Reghelin, M; Matter, L B; Vargas, A P C; Baldisserotto, B

    2018-05-09

    This study investigated the antibacterial activity of five phytochemicals (carvacrol, citral, eugenol, linalool, and thymol) alone or in combination with florfenicol or oxytetracycline against bacteria isolated from silver catfish (Rhamdia quelen). We also analyzed the potential of these compounds to inhibit biofilm formation and hemolysis caused by the bacteria. Bacteria were tested with antimicrobials to calculate the multiple antibiotic resistance (MAR). The checkerboard assay was used to evaluate a putative synergy between five phytochemicals and antimicrobials against the strains isolated. The biofilm formation inhibition assay was performed with phytochemicals and antimicrobials, and the hemolysis inhibition assay was performed with the phytochemicals. Carvacrol, eugenol and thymol were the most effective phytochemicals. Three combinations (linalool with florfenicol or oxytetracycline against Aeromonas hydrophila and citral with oxytetracycline against Citrobacter freundii) demonstrated synergy in the checkerboard assay. All phytochemicals inhibited biofilm formation and hemolysis activity. The tested phytochemicals showed satisfactory activity against fish pathogenic bacteria. The phytochemicals did not present antagonistic interactions with the antimicrobials, allowing their combined use, which may contribute to a decrease in the use of conventional drugs and their residues in aquatic environment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Microbiology and management of joint and bone infections due to anaerobic bacteria.

    PubMed

    Brook, Itzhak

    2008-03-01

    To describes the microbiology, diagnosis, and management of septic arthritis and osteomyelitis due to anaerobic bacteria. The predominant anaerobes in arthritis are anaerobic Gram-negative bacilli (AGNB) including the Bacteroides fragilis group, Fusobacterium spp., Peptostreptococcus spp., and Propionibacterium acnes. Infection with P. acnes is associated with a prosthetic joint, previous surgery, and trauma. B. fragilis group is associated with distant infection, Clostridium spp. with trauma, and Fusobacterium spp. with oropharyngeal infection. Most cases of anaerobic arthritis, in contrast to anaerobic osteomyelitis, involved a single isolate, and most cases are secondary to hematogenous spread. The predominant anaerobes in osteomyelitis are Bacteroides, Peptostreptococcus, Fusobacterium, and Clostridium spp. as well as P. acnes. Conditions predisposing to bone infections are vascular disease, bites, contiguous infection, peripheral neuropathy, hematogenous spread, and trauma. Pigmented Prevotella and Porphyromonas spp. are mostly isolated in skull and bite infections, members of the B. fragilis group in hand and feet infections, and Fusobacterium spp. in skull, bite, and hematogenous long bone infections. Many patients with osteomyelitis due to anaerobic bacteria have evidence of an anaerobic infection elsewhere in the body that is the source of the organisms involved in the osteomyelitis. Treatment of arthritis and osteomyelitis involving anaerobic bacteria includes symptomatic therapy, immobilization in some cases, adequate drainage of purulent material, and antibiotic therapy effective against these organisms. Anaerobic bacteria can cause septic arthritis and osteomyelitis. Correct diagnosis and appropriate therapy are important contributor to successful outcome.

  19. Corrosion effect of microorganisms and their metabolite on cement mortar lined pipelines in reclaimed water distribution systems

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Chen, Minning

    2018-06-01

    The reclaimed water containing high salinity, great amounts of organic matters and high nutrients can easily lead to growth of biofilms in reclaimed water distribution systems (RWDSs). The microbes colonize the cement surface and microbial metabolites can cause cement biodeterioration. To understand the effect of microbial involvement in the degradation, this study investigated the transformation characteristics of cement-mortar lining and microbial biomass in the simulated RWDS for 1 year by X-ray diffractometer (XRD), X-Ray Fluorescenc (XRF), Heterophic bacteria count (HPC) and DAPI staining. Microbial metabolites were analyzed by GC/MS. The result shows that the carbonation reaction took place in the surface of the eroded cement-mortar lining where the content of CaCO3 was continuously increasing while the content of hydrated compounds were decreasing. The depositing layer of CaSO4·2H2O, CaAl2Si2O8·4H2O and Mg4Al2(OH)14·3H2O on the lining surface were formed by minerals such as Ca, Si, Al and Mg lost from the degraded hydrated compounds. Microbial biomass in the RWDS has maintained an increasing trend during the study. The main microbial metabolites of the biofilm on the cement surface are fatty acids, amino acids, and carbohydrate.

  20. Bacteria in atmospheric waters: Detection, characteristics and implications

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou

    2018-04-01

    In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.

  1. The effects of a new therapeutic triclosan/copolymer/sodium-fluoride dentifrice on oral bacteria, including odorigenic species.

    PubMed

    Furgang, David; Sreenivasan, Prem K; Zhang, Yun Po; Fine, Daniel H; Cummins, Diane

    2003-09-01

    and a 91.5% reduction of oral bacteria producing hydrogen sulfide compared with the control dentifrice. In conclusion, these results, taken together with the significant reductions in clinical malodor scores by Colgate Total Advanced Fresh demonstrated in organoleptic studies, strongly suggest that this dentifrice kills the bacteria that are implicated in the cause of bad breath.

  2. Comparison of apical extrusion of intracanal bacteria by various glide-path establishing systems: an in vitro study.

    PubMed

    Dagna, Alberto; El Abed, Rashid; Hussain, Sameeha; Abu-Tahun, Ibrahim H; Visai, Livia; Bertoglio, Federico; Bosco, Floriana; Beltrami, Riccardo; Poggio, Claudio; Kim, Hyeon-Cheol

    2017-11-01

    This study compared the amount of apically extruded bacteria during the glide-path preparation by using multi-file and single-file glide-path establishing nickel-titanium (NiTi) rotary systems. Sixty mandibular first molar teeth were used to prepare the test apparatus. They were decoronated, blocked into glass vials, sterilized in ethylene oxide gas, infected with a pure culture of Enterococcus faecalis, randomly assigned to 5 experimental groups, and then prepared using manual stainless-steel files (group KF) and glide-path establishing NiTi rotary files (group PF with PathFiles, group GF with G-Files, group PG with ProGlider, and group OG with One G). At the end of canal preparation, 0.01 mL NaCl solution was taken from the experimental vials. The suspension was plated on brain heart infusion agar and colonies of bacteria were counted, and the results were given as number of colony-forming units (CFU). The manual instrumentation technique tested in group KF extruded the highest number of bacteria compared to the other 4 groups ( p < 0.05). The 4 groups using rotary glide-path establishing instruments extruded similar amounts of bacteria. All glide-path establishment instrument systems tested caused a measurable apical extrusion of bacteria. The manual glide-path preparation showed the highest number of bacteria extruded compared to the other NiTi glide-path establishing instruments.

  3. Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow.

    PubMed

    van der Mei, Henny C; Atema-Smit, Jelly; Jager, Debbie; Langworthy, Don E; Collias, Dimitris I; Mitchell, Michael D; Busscher, Henk J

    2008-07-01

    In rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not allow direct observation of bacterial adhesion and the determination of viability. Here we propose to use a parallel plate flow chamber with carbon particles attached to the bottom plate to study bacterial adhesion to individual carbon particles and determine the viability of adhering bacteria. Observation and enumeration is done after live/dead staining in a confocal laser scanning microscope. Escherichiae coli adhered in higher numbers than Raoultella terrigena, except to a coconut-based carbon, which showed low bacterial adhesion compared to other wood-based carbon types. After adhesion, 83-96% of the bacteria adhering to an acidic carbon were dead, while on a basic carbon 54-56% were dead. A positively charged, basic carbon yielded 76-78% bacteria dead, while on a negatively charged coconut-based carbon only 32-37% were killed upon adhesion. The possibility to determine both adhesion as well as the viability of adhering bacteria upon adhesion to carbon particles is most relevant, because if bacteria adhere but remain viable, this still puts the water treatment system at risk, as live bacteria can grow and form a biofilm that can then be shedded to cause contamination. (c) 2008 Wiley Periodicals, Inc.

  4. Combination Approaches to Combat Multi-Drug Resistant Bacteria

    PubMed Central

    Worthington, Roberta J.; Melander, Christian

    2013-01-01

    The increasing prevalence of infections caused by multi-drug resistant bacteria is a global health problem that is exacerbated by the dearth of novel classes of antibiotics entering the clinic over the past 40 years. Herein we describe recent developments toward combination therapies for the treatment of multi-drug resistant bacterial infections. These efforts include antibiotic-antibiotic combinations, and the development of adjuvants that either directly target resistance mechanisms such as the inhibition of β-lactamase enzymes, or indirectly target resistance by interfering with bacterial signaling pathways such as two-component systems. We also discuss screening of libraries of previously approved drugs to identify non-obvious antimicrobial adjuvants. PMID:23333434

  5. Occurrence of bacteria in Blue Marsh Lake and selected tributaries, Berks County, Pennsylvania; September-October 2001

    USGS Publications Warehouse

    Zimmerman, Michele L.

    2002-01-01

    The Commonwealth of Pennsylvania has water-quality standards that limit the number of specific bacteria in water that is considered safe for recreational use. Bacteria such as fecal streptococci, fecal coliforms, and Escherichia coli (E. coli) are used to assess recreational water quality because they usually live in the intestines of warm-blooded animals. Fecal indicator bacteria commonly are associated with waterborne disease-causing organisms (pathogens). These indicator bacteria are used routinely as a measure of the quality of water for recreational activities such as swimming, boating, and water skiing. If the indicator bacteria are present, effective measures could be taken to prevent the transmission or epidemic outbreak of waterborne diseases as a result of contamination of these waters from human or animal waste.Blue Marsh Lake is on Tulpehocken Creek in Berks County, Pa., and drains a largely agricultural basin. Land use in the basin is approximately 60 percent cropland, and 85 percent of the farms are livestock and poultry farms.The potential sources of fecal bacteria are:geese that inhabit the recreational areas of the lake,humans that visit the Dry Brooks Day Use Area (swimming area), andfarm animals, wastewater facilities, and household septic systems in the basin (bacteria from these sources could enter the lake through tributaries).To meet the recreational water-quality standard, lake water may not have more than 200 colony-forming units (CFU) of fecal coliforms per 100 milliliters (mL). During the week of July 23, 2001, data collected by the U.S. Army Corps of Engineers (USACE) at the swimming area at Blue Marsh Lake showed concentrations of fecal coliforms in the water exceeding the standard. To determine the extent of elevated concentrations of fecal indicator bacteria, further study of the lake and selected tributaries was needed.

  6. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  7. Protist-Bacteria Associations: Gammaproteobacteria and Alphaproteobacteria Are Prevalent as Digestion-Resistant Bacteria in Ciliated Protozoa

    PubMed Central

    Gong, Jun; Qing, Yao; Zou, Songbao; Fu, Rao; Su, Lei; Zhang, Xiaoli; Zhang, Qianqian

    2016-01-01

    Protistan bacterivory, a microbial process involving ingestion and digestion, is ecologically important in the microbial loop in aquatic and terrestrial ecosystems. While bacterial resistance to protistan ingestion has been relatively well understood, little is known about protistan digestion in which some ingested bacteria could not be digested in cells of major protistan grazers in the natural environment. Here we report the phylogenetic identities of digestion-resistant bacteria (DRB) that could survive starvation and form relatively stable associations with 11 marine and one freshwater ciliate species. Using clone library and sequencing of 16S rRNA genes, we found that the protistan predators could host a high diversity of DRB, most of which represented novel bacterial taxa that have not been cultivated. The localization inside host cells, quantity, and viability of these bacteria were checked using fluorescence in situ hybridization. The DRB were affiliated with Actinobacteria, Bacteroidetes, Firmicutes, Parcubacteria (OD1), Planctomycetes, and Proteobacteria, with Gammaproteobacteria and Alphaproteobacteria being the most frequently occurring classes. The dominance of Gamma- and Alphaproteobacteria corresponds well to a previous study of Global Ocean Sampling metagenomic data showing the widespread types of bacterial type VI and IV secretion systems (T6SS and T4SS) in these two taxa, suggesting a putatively significant role of secretion systems in promoting marine protist-bacteria associations. In the DRB assemblages, opportunistic bacteria such as Alteromonadaceae, Pseudoalteromonadaceae, and Vibrionaceae often presented with high proportions, indicating these bacteria could evade protistan grazing thus persist and accumulate in the community, which, however, contrasts with their well-known rarity in nature. This begs the question whether viral lysis is significant in killing these indigestible bacteria in microbial communities. Taken together, our study on

  8. Cytotoxicity But No Mutagenicity In Bacteria With Externally Generated Singlet Oxygen

    NASA Astrophysics Data System (ADS)

    Midden, W. Robert; Dahl, Thomas A.; Hartman, Philip E.

    1988-02-01

    Singlet oxygen is believed to be an important intermediate responsible for the cytotoxicity of HpD phototherapy. It has been recognized as a possible intermediate in photosensitization for more than 20 years. However, it has been difficult to obtain conclusive evidence of its biological characteristics in the past because most of the methods available for its generation that are compatible with biological systems also generate other reactive intermediates whose effects are difficult to distinguish from singlet oxygen. We have used a recently devised separated-surface-sensi-tizer (S-S-S) system for singlet oxygen generation' to measure the cytotoxicity and mutagenicity of singlet oxygen in bacteria. The S-S-S system employs rose bengal as a sensitizer immobilized on one surface of a glass plate. The glass plate is placed sensitizer-side down a small distance (< 1.5 mm) above a microscopically flat membrane (MilliporeTM or NucleoporeTM) that carries a monocellular layer of bacteria. The sensi-tizer-coated plate is illuminated from above to generate singlet oxygen at the surface of the sensitizer. The singlet oxygen thus generated can diffuse the short dis-tance to the surface of the membrane to react with the bacteria. Because of the short lifetime of singlet oxygen in air, increasing the distance between the sensitizer and the membrane causes a decline in the amount of singlet oxygen reaching the membrane according to a function derived from the Einstein-Smoluchowski equation for net displacement by diffusion. Plotting the log of the effect measured (e.g., cytotoxicity) vs. the square of the distance gives a straight line. The slope of this line can be used to calculate the gas phase half life of the intermediate responsible for the observed effects. We have found that bacteria are rapidly killed in the illuminated S-S-S system and that the gas phase half life of the agent responsible for cell killing is the same as that of singlet oxygen. This observation and other

  9. The effect of immunoglobulins and somatic cells on the gravity separation of fat, bacteria, and spores in pasteurized whole milk.

    PubMed

    Geer, S R; Barbano, D M

    2014-01-01

    Our objective was to determine the role that immunoglobulins and somatic cells (SC) play in the gravity separation of milk. The experiment comprised 9 treatments: (1) low-temperature pasteurized (LTP; 72°C for 17.31s) whole milk; (2) LTP (72°C for 17.31s) whole milk with added bacteria and spores; (3) recombined LTP (72°C for 17.31s) whole milk with added bacteria and spores; (4) high-temperature pasteurized (HTP; 76°C for 7min) whole milk with added bacteria and spores; (5) HTP (76°C for 7min) whole milk with added bacteria and spores and added colostrum; (6) HTP (76°C for 7min) centrifugally separated, gravity-separated (CS GS) skim milk with HTP (76°C for 7min) low-SC cream with added bacteria and spores; (7) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) high-SC cream with added bacteria and spores; (8) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) low-SC cream with added bacteria and spores and added colostrum; and (9) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) high-SC cream with added bacteria and spores and added colostrum. The milks in the 9 treatments were gravity separated at 4°C for 23h in glass columns. Five fractions were collected by weight from each of the column treatments, starting from the bottom of the glass column: 0 to 5%, 5 to 90%, 90 to 96%, 96 to 98%, and 98 to 100%. The SC, fat, bacteria, and spores were measured in each of the fractions. The experiment was replicated 3 times in different weeks using a different batch of milk and different colostrum. Portions of the same batch of the frozen bacteria and spore solutions were used for all 3 replicates. The presence of both SC and immunoglobulins were necessary for normal gravity separation (i.e., rising to the top) of fat, bacteria, and spores in whole milk. The presence of immunoglobulins alone without SC was not sufficient to cause bacteria, fat, and spores to rise to the top. The interaction between SC and immunoglobulins was

  10. Bacterial agents as a cause of infertility in humans.

    PubMed

    Ruggeri, Melania; Cannas, Sara; Cubeddu, Marina; Molicotti, Paola; Piras, Gennarina Laura; Dessole, Salvatore; Zanetti, Stefania

    2016-07-01

    Infertility is a problem affecting almost 15% of couples. There are many causes for this condition, among which urogenital bacterial infections seem to play an important role. Many studies have explained the mechanisms by which bacteria cause infertility both in men and women. Therefore we undertook this study to evaluate the presence of genito-urinary infections in infertile couples who sought counselling to investigate their condition. Microbiological analysis was performed on semen and vaginal/cervical samples of both partners of each couple. The percentage of individuals affected by a urogenital bacterial infection was between 14 and 20%. More significantly, most of the species isolated both in men and women have been described in the literature as potential causes of infertility.

  11. Urinary tract infection caused by Chromobacterium violaceum.

    PubMed

    Pant, Narayan Dutt; Sharma, Manisha

    2015-01-01

    Chromobacterium violaceum, a proteobacterium, is a facultative anaerobe, which is generally present as the normal flora of water and soil in tropical and subtropical regions. The infection due to Chromobacterium violaceum is rare but mostly fatal. It is responsible for causing fatal cases of septicemia, visceral abscesses, skin and soft tissue infections, meningitis, diarrhea, and rarely urinary tract infection. The bacteria has high propensity to spread causing sepsis. Delayed proper treatment due to limited awareness related to the C. violaceum infection is responsible for the high mortality rate. Here, we describe a rare case of urinary tract infection by C. violaceum in a chronic kidney disease patient, which was managed with timely proper antimicrobial therapy as per the culture sensitivity report.

  12. Comparison of nitroethane, 2-nitro-1-propanol, lauric acid, Lauricidin and the Hawaiian marine algae, Chaetoceros, for potential broad-spectrum control of anaerobically grown lactic acid bacteria

    USDA-ARS?s Scientific Manuscript database

    The gastrointestinal tract of bovines often contains bacteria that contribute to disorders of the rumen and may also contain foodborne or opportunistic human pathogens as well as bacteria capable of causing mastitis in cows. Thus, there is a need to develop broad-spectrum therapies that are effecti...

  13. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms

    NASA Technical Reports Server (NTRS)

    Nichols, P. D.; Henson, J. M.; Guckert, J. B.; Nivens, D. E.; White, D. C.

    1985-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has been used to rapidly and nondestructively analyze bacteria, bacteria-polymer mixtures, digester samples and microbial biofilms. Diffuse reflectance FT-IR (DRIFT) analysis of freeze-dried, powdered samples offered a means of obtaining structural information. The bacteria examined were divided into two groups. The first group was characterized by a dominant amide I band and the second group of organisms displayed an additional strong carbonyl stretch at approximately 1740 cm-1. The differences illustrated by the subtraction spectra obtained for microbes of the two groups suggest that FT-IR spectroscopy can be utilized to recognize differences in microbial community structure. Calculation of specific band ratios has enabled the composition of bacteria and extracellular or intracellular storage product polymer mixtures to be determined for bacteria-gum arabic (amide I/carbohydrate C-O approximately 1150 cm-1) and bacteria-poly-beta-hydroxybutyrate (amide I/carbonyl approximately 1740 cm-1). The key band ratios correlate with the compositions of the material and provide useful information for the application of FT-IR spectroscopy to environmental biofilm samples and for distinguishing bacteria grown under differing nutrient conditions. DRIFT spectra have been obtained for biofilms produced by Vibrio natriegens on stainless steel disks. Between 48 and 144 h, an increase in bands at approximately 1440 and 1090 cm-1 was seen in FT-IR spectra of the V. natriegens biofilm. DRIFT spectra of mixed culture effluents of anaerobic digesters show differences induced by shifts in input feedstocks. The use of flow-through attenuated total reflectance has permitted in situ real-time changes in biofilm formation to be monitored and provides a powerful tool for understanding the interactions within adherent microbial consortia.

  14. Laser-Based Identification of Pathogenic Bacteria

    NASA Astrophysics Data System (ADS)

    Rehse, Steven J.

    2009-03-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the last 10 years, however, several events have occurred that demand the attention of the general populace — including the ranks of physicists among them.

  15. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria.

    PubMed

    Perera, Manosha; Al-Hebshi, Nezar Noor; Speicher, David J; Perera, Irosha; Johnson, Newell W

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it.

  16. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    PubMed

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.

  17. Effects of culture medium compositions on antidiabetic activity and anticancer activity of marine endophitic bacteria isolated from sponge

    NASA Astrophysics Data System (ADS)

    Maryani, Faiza; Mulyani, Hani; Artanti, Nina; Udin, Linar Zalinar; Dewi, Rizna Triana; Hanafi, Muhammad; Murniasih, Tutik

    2017-01-01

    High diversity of Indonesia marine spesies and their ability in producing secondary metabolite that can be used as a drug candidate cause this fascinating topic need to explore. Most of marine organisms explored to discover drug is macroorganism whereas microorganism (such as Indonesia marine bacteria) is very limited. Therefore, in this report, antidiabetic and anticancer activity of Indonesia marine bacteria isolated from Sponges's extract have been studied. Bacteria strain 8.9 which are collection of Research Center for Oseanography, Indonesian Institute of Sciences were from Barrang Lompo Island, Makasar, Indonesia. Bacteria were cultured in different culture medium compositions (such as: different pH, source of glucose and water) for 48 hours on a shaker, then they were extracted with ethyl asetate. Extracts of bacteria were tested by DPPH method (antioxidant activity), alpha glucosidase inhibitory activity method (antidiabetic activity), and Alamar Blue assay (anticancer activity) at 200 ppm. According to result, extract of bacteria in pH 8.0 exhibited the greatest antioxidant (19.27% inhibition), antidiabetic (63.95% inhibition) and anticancer activity of T47D cell line (44.62% cell viability) compared to other extracts. However, effect of addition of sugar sources (such as: glucose, sucrose, and soluble starch) and effect of addition of water/sea water exhibited less influence on their bioactivities. In conclusion, Indonesia marine bacteria isolated from sponge have potential a source of bioactive compound in drug discovery field.

  18. Phthalocyanine-sulfonamide conjugates: Synthesis and photodynamic inactivation of Gram-negative and Gram-positive bacteria.

    PubMed

    da Silva, Raquel Nunes; Cunha, Ângela; Tomé, Augusto C

    2018-06-25

    Phthalocyanines bearing four or eight sulfonamide units were synthesized and their efficiency in the photodynamic inactivation of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria was evaluated. Conjugates with simpler sulfonamide units (N,N-diethylbenzenesulfonamide, N-isopropylbenzenesulfonamide and N-(4-methoxyphenyl)benzenesulfonamide) caused stronger inactivation than those with heterocyclic groups (N-(thiazol-2-yl)benzenesulfonamide) or long alkyl chains (N-dodecylbenzenesulfonamide) in both bacteria. Furthermore, the encapsulation of the phthalocyanine-sulfonamide conjugates within polyvinylpyrrolidone micelles, used as drug delivery vehicles, in general showed to enhance the inactivation efficiency. The results show that encapsulated phthalocyanine-sulfonamide conjugates are a promising class of photosensitizers to be used in photodynamic antimicrobial therapy. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi.

    PubMed

    Swain, Durga Madhab; Yadav, Sunil Kumar; Tyagi, Isha; Kumar, Rahul; Kumar, Rajeev; Ghosh, Srayan; Das, Joyati; Jha, Gopaljee

    2017-09-01

    Some bacteria can feed on fungi, a phenomenon known as mycophagy. Here we show that a prophage tail-like protein (Bg_9562) is essential for mycophagy in Burkholderia gladioli strain NGJ1. The purified protein causes hyphal disintegration and inhibits growth of several fungal species. Disruption of the Bg_9562 gene abolishes mycophagy. Bg_9562 is a potential effector secreted by a type III secretion system (T3SS) and is translocated into fungal mycelia during confrontation. Heterologous expression of Bg_9562 in another bacterial species, Ralstonia solanacearum, confers mycophagous ability in a T3SS-dependent manner. We propose that the ability to feed on fungi conferred by Bg_9562 may help the bacteria to survive in certain ecological niches. Furthermore, considering its broad-spectrum antifungal activity, the protein may be potentially useful in biotechnological applications to control fungal diseases.Some bacteria can feed on live fungi through unclear mechanisms. Here, the authors show that a T3SS-secreted protein, which is homologous to phage tail proteins, allows a Burkholderia gladioli strain to kill and feed on various fungal species.

  20. Insects as alternative hosts for phytopathogenic bacteria.

    PubMed

    Nadarasah, Geetanchaly; Stavrinides, John

    2011-05-01

    Phytopathogens have evolved specialized pathogenicity determinants that enable them to colonize their specific plant hosts and cause disease, but their intimate associations with plants also predispose them to frequent encounters with herbivorous insects, providing these phytopathogens with ample opportunity to colonize and eventually evolve alternative associations with insects. Decades of research have revealed that these associations have resulted in the formation of bacterial-vector relationships, in which the insect mediates dissemination of the plant pathogen. Emerging research, however, has highlighted the ability of plant pathogenic bacteria to use insects as alternative hosts, exploiting them as they would their primary plant host. The identification of specific bacterial genetic determinants that mediate the interaction between bacterium and insect suggests that these interactions are not incidental, but have likely arisen following the repeated association of microorganisms with particular insects over evolutionary time. This review will address the biology and ecology of phytopathogenic bacteria that interact with insects, including the traditional role of insects as vectors, as well as the newly emerging paradigm of insects serving as alternative primary hosts. Also discussed is one case where an insect serves as both host and vector, which may represent a transitionary stage in the evolution of insect-phytopathogen associations. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Communication among Oral Bacteria

    PubMed Central

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  2. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    PubMed

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  3. Rare occurrence of heart lesions in Pacific oysters Crassostrea gigas caused by an unknown bacterial infection.

    PubMed

    Meyer, Gary R; Lowe, Geoffrey J; Bower, Susan M

    2017-09-20

    On rare occasions, small cream-coloured cysts have been observed in the heart and pericardial cavity of Pacific oysters Crassostrea gigas from British Columbia, Canada. Histopathology revealed the presence of large colonies of bacteria (up to 800 µm in diameter) causing significant host response and hypertrophy of the heart epithelium. The causative bacteria were characterized as follows: Gram-negative, coccoid to small rod-shaped, typically <1.5 µm in size, cell walls highly endowed with surface fimbriae and division via binary fission. Although these bacteria shared some morphological characteristics with the order Rickettsiales, they did not require an intracellular existence for multiplication. Unfortunately, a cultured isolate was not available, and a retrospective attempt to further characterize the bacteria using DNA sequence analysis of a fragment from the 16S rDNA region proved to be uninformative.

  4. Historical review of the causes of cancer

    PubMed Central

    Blackadar, Clarke Brian

    2016-01-01

    In the early 1900s, numerous seminal publications reported that high rates of cancer occurred in certain occupations. During this period, work with infectious agents produced only meager results which seemed irrelevant to humans. Then in the 1980s ground breaking evidence began to emerge that a variety of viruses also cause cancer in humans. There is now sufficient evidence of carcinogenicity in humans for human T-cell lymphotrophic virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, human papillomavirus, Epstein-Barr virus, and human herpes virus 8 according to the International Agency for Research on Cancer (IARC). Many other causes of cancer have also been identified by the IARC, which include: Sunlight, tobacco, pharmaceuticals, hormones, alcohol, parasites, fungi, bacteria, salted fish, wood dust, and herbs. The World Cancer Research Fund and the American Institute for Cancer Research have determined additional causes of cancer, which include beta carotene, red meat, processed meats, low fibre diets, not breast feeding, obesity, increased adult height and sedentary lifestyles. In brief, a historical review of the discoveries of the causes of human cancer is presented with extended discussions of the difficulties encountered in identifying viral causes of cancer. PMID:26862491

  5. [Infantile meningitis caused by respiratory syncytial virus].

    PubMed

    Shirota, Go; Morozumi, Miyuki; Ubukata, Kimiko; Shiro, Hiroyuki

    2011-11-01

    Respiratory syncytial (RS) virus commonly causes infantile respiratory tract infection causing significant morbidity and mortality, but rarely meningitis. We report a case of meningitis caused by RS virus subgroup B in a 56-day-old boy admitted for high fever who underwent blood examination and lumbar puncture. Empirical chemotherapy was started with intravenous ampicillin, gentamicin, and cefotaxime based on laboratory data on CSF cells (84/microL) and serum CRP (13.8mg/dL) data. RS virus subgroup B was only detected using real-time PCR comprehensive reverse transcription from the first CSF, but no bacterial gene was detected. No bacteria grew from his CSF, urine, or blood. Fever and serum CRP dropped in a few days. He had neither seizures nor disturbance of consciousness and was discharged on day 11 after admission. No evidence of encephalopathy was detected in brain MRI or electroencephalography. RS virus rarely causes meningitis, but a percentage of RS-virus-infected infants exhibit symptoms such as seizure and disturbance of consciousness. We should recognize that the RS virus may cause neurological complications associated with high morbidity and mortality.

  6. Historical review of the causes of cancer.

    PubMed

    Blackadar, Clarke Brian

    2016-02-10

    In the early 1900s, numerous seminal publications reported that high rates of cancer occurred in certain occupations. During this period, work with infectious agents produced only meager results which seemed irrelevant to humans. Then in the 1980s ground breaking evidence began to emerge that a variety of viruses also cause cancer in humans. There is now sufficient evidence of carcinogenicity in humans for human T-cell lymphotrophic virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, human papillomavirus, Epstein-Barr virus, and human herpes virus 8 according to the International Agency for Research on Cancer (IARC). Many other causes of cancer have also been identified by the IARC, which include: Sunlight, tobacco, pharmaceuticals, hormones, alcohol, parasites, fungi, bacteria, salted fish, wood dust, and herbs. The World Cancer Research Fund and the American Institute for Cancer Research have determined additional causes of cancer, which include beta carotene, red meat, processed meats, low fibre diets, not breast feeding, obesity, increased adult height and sedentary lifestyles. In brief, a historical review of the discoveries of the causes of human cancer is presented with extended discussions of the difficulties encountered in identifying viral causes of cancer.

  7. Interactions among sulfide-oxidizing bacteria

    NASA Technical Reports Server (NTRS)

    Poplawski, R.

    1985-01-01

    The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes.

  8. Photocatalytic inactivation of bacteria from spoiled raw chicken carcasses in aqueous suspensions by TiO2 nanoparticles

    USDA-ARS?s Scientific Manuscript database

    Bacterial spoilage is a major cause of reduced shelf life of fresh poultry; therefore, decreasing contamination by spoilage bacteria could increase the shelf life of these products. Titanium dioxide (TiO2) nanoparticles in the presence of UVA light possess antibacterial activities towards several ba...

  9. Spectroscopic diagnostics for bacteria in biologic sample

    DOEpatents

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  10. [Study on causes and treatment of repeated vulvovaginitis in girlhood].

    PubMed

    Zhang, Di-kai; Li, Xiu-yun; Yang, Dong-zi; Kuang, Jian-quan

    2006-07-01

    To explore the causes and treatment of repeated vulvovaginitis in girlhood in order to improve its prevention and treatment. Fifty-one girls with repeated vulvovaginitis (age < or = 10 years) admitted to The Second Affiliated Hospital of Sun Yat-sen University from Jan. 1990 to Nov. 2004 were reviewed retrospectively. We found 28 girls (55%) suffering from non-specific vulvovaginitis and 14 ones (27%) suffering from posterior recto-vaginal fistula with in 51 patients. Five girls (10%) were smitten with vulval ulcer and 3 ones (6%) had been were found with vaginal foreign bodies. One girl (2%) was smitten with adhesion of labia minora. The vaginal discharges taken from 21 girls were cultured. Seventeen cases found bacteria. The positive rate of bacteria culture in the 21 cases reached 81%, in which, E.coli accounted for 5 cases (24%), staphylococcus and streptococcus accounted for 3 cases (14%) respectively. Patients suffering from non-specific vulvovaginitis and vulval ulcer accepted external lotion, antibiotic ointment or combining with antibiotics. Patients suffering from posterior recto-vaginal fistula accepted fistulectomy. Three girls who found vaginal foreign bodies took out of foreign bodies by hysteroscope. Fifty-one girls all were cured after appropriate therapy. Vulvovaginitis is the most common gynecologic diagnosis in girlhood. The principal cause of repeated invasion is non-specific vulvovaginitis and the secondly one is posterior recto-vaginal fistula. It need overhaul during the diagnosis. It is very availability to use hysteroscopy and do bacteria culture + antibiotic sensitivity test for repeated pediatric vulvovaginitis.

  11. Colonisation of antibiotic resistant bacteria in a cohort of HIV infected children in Ghana.

    PubMed

    Sampane-Donkor, Eric; Badoe, Ebenezer Vincent; Annan, Jennifer Adoley; Nii-Trebi, Nicholas

    2017-01-01

    Antibiotic use not only selects for resistance in pathogenic bacteria, but also in commensal flora of exposed individuals. Little is known epidemiologically about antibiotic resistance in relation to people with HIV infection in sub-Saharan Africa. This study investigated the carriage of antibiotic resistant bacteria among HIV infected children at a tertiary hospital in Ghana. One hundred and eighteen HIV positive children were recruited at the Korle-Bu Teaching Hospital in Ghana and nasopharyngeal specimens were collected from them. The specimens were cultured for bacteria, and the isolates were identified by standard microbiological methods. Antibiotic susceptibility tests were carried out on selected bacterial organisms by the Kirby Bauer method. Bacteria isolated from the study subjects included Moraxella catarrhalis (39.8%), coagulase negative staphylococci (33.1%), Streptococcus pneumoniae (30.5%), diptheroids (29.7%), viridian streptococci (27.1%), Staphylococcus aureus (22.0%), Citrobacter spp. (4.2%) and Neisseria meningitidis (0.9%). Prevalence of antibiotic resistance of S. pneumoniae ranged from 5.6% (ceftriaxone) to 58.3% (cotrimoxazole), M. catarrhalis ranged from 2.1% (gentamicin) to 80.6% (ampicillin), and S. aureus ranged from 7.7% (cefoxitin) to 100% (penicillin). The prevalence of multiple drug resistance was 16.7% for S. pneumoniae, 57.4% for M. catarrhalis and 84.6% for S. aureus. HIV infected children in the study area commonly carry multi-drug resistant isolates of several pathogenic bacteria such as S. aureus and S. pneumoniae. Infections arising in these patients that are caused by S. aureus and S. pneumoniae could be treated with ceftriaxone and cefoxitin respectively.

  12. Using wavelength-normalized optical spectroscopy to improve the accuracy of bacteria growth rate quantification

    NASA Astrophysics Data System (ADS)

    McBirney, Samantha E.; Trinh, Kristy; Wong-Beringer, Annie; Armani, Andrea M.

    2017-02-01

    One of the fundamental analytical measurements performed in microbiology is monitoring and characterizing cell concentration in culture media. Measurement error will give rise to reproducibility problems in a wide range of applications, from biomanufacturing to basic research. Therefore, it is critical that the generated results are consistent. Single wavelength optical density (OD) measurements have become the preferred approach. Here, we compare the conventional OD600 technique with a multi-wavelength normalized scattering optical spectroscopy method to measure the growth rates of Pseudomonas aeruginosa and Staphylococcus aureus, two of the leading nosocomial pathogens with proven abilities to develop resistance. The multi-wavelength normalization process minimizes the impact of bacteria byproducts and environmental noise on the signal, thereby accurately quantifying growth rates with high fidelity at low concentrations. In contrast, due to poor absorbance and scattering at 600 nm, the classic OD600 measurement method is able to detect bacteria but cannot quantify the growth rate reliably. Our wavelength-normalization protocol to detect bacteria growth rates can be readily and easily adopted by research labs, given that it only requires the use of a standard spectrophotometer and implementation of straightforward data analysis. Measuring and monitoring bacteria growth rates play a critical role in a wide range of settings, spanning from therapeutic design and development to diagnostics and disease prevention. Having a full understanding of the growth cycles of bacteria known to cause severe infections and diseases will lead to a better understanding of the pathogenesis of these illnesses, leading to better treatment and, ultimately, the development of a cure.

  13. Colonisation of antibiotic resistant bacteria in a cohort of HIV infected children in Ghana

    PubMed Central

    Sampane-Donkor, Eric; Badoe, Ebenezer Vincent; Annan, Jennifer Adoley; Nii-Trebi, Nicholas

    2017-01-01

    Antibiotic use not only selects for resistance in pathogenic bacteria, but also in commensal flora of exposed individuals. Little is known epidemiologically about antibiotic resistance in relation to people with HIV infection in sub-Saharan Africa. This study investigated the carriage of antibiotic resistant bacteria among HIV infected children at a tertiary hospital in Ghana. One hundred and eighteen HIV positive children were recruited at the Korle-Bu Teaching Hospital in Ghana and nasopharyngeal specimens were collected from them. The specimens were cultured for bacteria, and the isolates were identified by standard microbiological methods. Antibiotic susceptibility tests were carried out on selected bacterial organisms by the Kirby Bauer method. Bacteria isolated from the study subjects included Moraxella catarrhalis (39.8%), coagulase negative staphylococci (33.1%), Streptococcus pneumoniae (30.5%), diptheroids (29.7%), viridian streptococci (27.1%), Staphylococcus aureus (22.0%), Citrobacter spp. (4.2%) and Neisseria meningitidis (0.9%). Prevalence of antibiotic resistance of S. pneumoniae ranged from 5.6% (ceftriaxone) to 58.3% (cotrimoxazole), M. catarrhalis ranged from 2.1% (gentamicin) to 80.6% (ampicillin), and S. aureus ranged from 7.7% (cefoxitin) to 100% (penicillin). The prevalence of multiple drug resistance was 16.7% for S. pneumoniae, 57.4% for M. catarrhalis and 84.6% for S. aureus. HIV infected children in the study area commonly carry multi-drug resistant isolates of several pathogenic bacteria such as S. aureus and S. pneumoniae. Infections arising in these patients that are caused by S. aureus and S. pneumoniae could be treated with ceftriaxone and cefoxitin respectively. PMID:28451037

  14. Endodontic pathogens causing deep neck space infections: clinical impact of different sampling techniques and antibiotic susceptibility.

    PubMed

    Poeschl, Paul W; Crepaz, Valentina; Russmueller, Guenter; Seemann, Rudolf; Hirschl, Alexander M; Ewers, Rolf

    2011-09-01

    The aims of the present study were to compare microbial populations in patients suffering from deep neck space abscesses caused by primary endodontic infections by sampling the infections with aspiration or swabbing techniques and to determine the susceptibility rates of the isolated bacteria to commonly used antibiotics. A total of 89 patients with deep neck space abscesses caused by primary endodontic infections requiring extraoral incision and drainage under general anesthesia were included. Either aspiration or swabbing was used to sample microbial pus specimens. The culture of the microbial specimens and susceptibility testing were performed following standard procedures. A total of 142 strains were recovered from 76 patients. In 13 patients, no bacteria were found. The predominant bacteria observed were streptococci (36%), staphylococci (13%), Prevotella (8%), and Peptostreptococcus (6%). A statistically significant greater number of obligate anaerobes were found in the aspiration group. The majority of patients presented a mixed aerobic-anaerobic population of bacterial flora (62%). The antibiotic resistance rates for the predominant bacteria were 10% for penicillin G, 9% for amoxicillin, 0% for amoxicillin clavulanate, 24% for clindamycin, and 24% for erythromycin. The results of our study indicated that a greater number of anaerobes were found when sampling using the aspiration technique. Penicillin G and aminopenicillins alone are not always sufficient for the treatment of severe deep neck space abscesses; beta-lactamase inhibitor combinations are more effective. Bacteria showed significant resistant rates to clindamycin. Thus, its single use in penicillin-allergic patients has to be carefully considered. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Antioxidant Properties of Probiotic Bacteria.

    PubMed

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-05-19

    Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  16. Antioxidant Properties of Probiotic Bacteria

    PubMed Central

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-01-01

    Oxidative stress defines a condition in which the prooxidant–antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells’ viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated. PMID:28534820

  17. Growth-inhibiting effects of seco-tanapartholides identified in Artemisia princeps var. orientalis whole plant on human intestinal bacteria.

    PubMed

    Cho, S-H; Na, Y-E; Ahn, Y-J

    2003-01-01

    The present work aimed at isolating antibacterial constituents from the whole plant of Artemisia princeps var. orientalis active towards nine human intestinal bacteria. The growth-inhibiting activities of materials derived from the Artemisia whole plant towards test bacteria were examined using an impregnated paper disc method. The biologically active constituents of the Artemisia whole plant were characterized as the sesquiterpene lactones seco-tanapartholides A and B by spectroscopic analysis. In a test using 1 mg per disc, seco-tanapartholides A and B produced a clear inhibitory effect against Clostridium perfringens, Bacteroides fragilis and Staphylococcus aureus. These compounds did not affect the growth of test lactic acid-producing bacteria (Bifidobacterium adolescentis, Bif. breve, Lactobacillus acidophilus and Lact. casei) and Escherichia coli, whereas weak growth inhibition towards Bif. bifidum was observed. At 0.5 mg per disc, seco-tanapartholides A and B exhibited moderate growth inhibition towards Cl. perfringens but weak growth inhibition towards Bact. fragilis and Staph. aureus. Inhibitory action of seco-tanapartholides A and B towards specific bacteria without any adverse effects on lactic acid-producing bacteria may be an indication of at least one of the pharmacological actions of A. princeps var. orientalis whole plant. These naturally occurring Artemisia whole plant-derived materials could be useful as a new preventive agent against various diseases caused by harmful intestinal bacteria such as clostridia.

  18. Essential Oils of Plants as Biocides against Microorganisms Isolated from Cuban and Argentine Documentary Heritage

    PubMed Central

    Borrego, Sofía; Valdés, Oderlaise; Vivar, Isbel; Lavin, Paola; Guiamet, Patricia; Battistoni, Patricia; Gómez de Saravia, Sandra; Borges, Pedro

    2012-01-01

    Natural products obtained from plants with biocidal activity represent an alternative and useful source in the control of biodeterioration of documentary heritage, without negative environmental and human impacts. In this work, we studied the antimicrobial activity of seven essential oils against microorganisms associated with the biodeterioration of documentary heritage. The essential oils were obtained by steam distillation. The antimicrobial activity was analyzed using the agar diffusion method against 4 strains of fungi and 6 bacterial strains isolated from repositories air and documents of the National Archive of the Republic of Cuba and the Historical Archive of the Museum of La Plata, Argentina. Anise and garlic oils showed the best antifungal activity at all concentrations studied, while oregano oil not only was effective against fungi tested but also prevented sporulation of them all. Orange sweet and laurel oils were ineffective against fungi. Clove, garlic, and oregano oils showed the highest antibacterial activity at 25% against Enterobacter agglomerans and Streptomyces sp., while only clove and oregano oils were effective against Bacillus sp. at all concentrations studied. This study has an important implication for the possible use of the natural products from plants in the control of biodeterioration of documentary heritage. PMID:23762760

  19. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories?

    PubMed

    Nagy, E; Boyanova, L; Justesen, U S

    2018-02-17

    There has been increased interest in the study of anaerobic bacteria that cause human infection during the past decade. Many new genera and species have been described using 16S rRNA gene sequencing of clinical isolates obtained from different infection sites with commercially available special culture media to support the growth of anaerobes. Several systems, such as anaerobic pouches, boxes, jars and chambers provide suitable anaerobic culture conditions to isolate even strict anaerobic bacteria successfully from clinical specimens. Beside the classical, time-consuming identification methods and automated biochemical tests, the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has revolutionized identification of even unusual and slow-growing anaerobes directly from culture plates, providing the possibility of providing timely information about anaerobic infections. The aim of this review article is to present methods for routine laboratories, which carry out anaerobic diagnostics on different levels. Relevant data from the literature mostly published during the last 7 years are encompassed and discussed. The review involves topics on the anaerobes that are members of the commensal microbiota and their role causing infection, the key requirements for collection and transport of specimens, processing of specimens in the laboratory, incubation techniques, identification and antimicrobial susceptibility testing of anaerobic bacteria. Advantages, drawbacks and specific benefits of the methods are highlighted. The present review aims to update and improve anaerobic microbiology in laboratories with optimal conditions as well as encourage its routine implementation in laboratories with restricted resources. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria

    PubMed Central

    Perera, Manosha; Al-hebshi, Nezar Noor; Speicher, David J.; Perera, Irosha; Johnson, Newell W.

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it. PMID:27677454

  1. Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria.

    PubMed

    Kraszewska, Joanna; Beckett, Michael C; James, Tharappel C; Bond, Ursula

    2016-07-15

    Antimicrobial peptides offer potential as novel therapeutics to combat food spoilage and poisoning caused by pathogenic and nonpathogenic bacteria. Our previous studies identified the peptide human beta-defensin 3 (HBD3) as a potent antimicrobial agent against a wide range of beer-spoiling bacteria. Thus, HBD3 is an excellent candidate for development as an additive to prevent food and beverage spoilage. To expand the repertoire of peptides with antimicrobial activity against bacteria associated with food spoilage and/or food poisoning, we carried out an in silico discovery pipeline to identify peptides with structure and activity similar to those of HBD3, focusing on peptides of plant origin. Using a standardized assay, we compared the antimicrobial activities of nine defensin-like plant peptides to the activity of HBD3. Only two of the peptides, fabatin-2 and Cp-thionin-2, displayed antimicrobial activity; however, the peptides differed from HBD3 in being sensitive to salt and were thermostable. We also compared the activities of several ultrashort peptides to that of HBD3. One of the peptides, the synthetic tetrapeptide O3TR, displayed biphasic antimicrobial activity but had a narrower host range than HBD3. Finally, to determine if the peptides might act in concert to improve antimicrobial activity, we compared the activities of the peptides in pairwise combinations. The plant defensin-like peptides fabatin-2 and Cp-thionin-2 displayed a synergistic effect with HBD3, while O3TR was antagonistic. Thus, some plant defensin-like peptides are effective antimicrobials and may act in concert with HBD3 to control bacteria associated with food spoilage and food poisoning. Food spoilage and food poisoning caused by bacteria can have major health and economic implications for human society. With the rise in resistance to conventional antibiotics, there is a need to identify new antimicrobials to combat these outbreaks in our food supply. Here we screened plant peptide

  2. Potential radiation control of biofouling bacteria on intake filters

    NASA Astrophysics Data System (ADS)

    Eichholz, Geoffrey G.; Jones, Cynthia G.; Haynes, Harold E.

    The biofouling of filters at deep wells supplying water for industrial and drinking water purposes by various iron- and sulfur-reducing bacteria is a wide-spread problem in the United States and can cause serious economic losses. Among the means of control, steam heating or chemical additives can be applied only intermittently and have their own environmental impact. Preliminary studies have shown that installation of a sealed gamma radiation source may provide an alternative solution. Analysis of a range of water samples from contaminated wells identified many of the samples as rich in barsiderocapsa and barpseudomona bacteria. Static and dynamic experiments on water samples at various does and dose rates have shown that these organisms are relatively radiation-sensitive, with a lethal dose in the range of 200-400Gy (20-40kR). Since the main objective is to restrict growth or deposit of plaque on filters, dose rates of the order of 50-75 Gy/hr would be adequate. Such dose rates could be obtained with relatively weak sources, depending on filter dimensions. A conceptual design for such systems has been proposed.

  3. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria.

    PubMed

    Plachouras, D; Karvanen, M; Friberg, L E; Papadomichelakis, E; Antoniadou, A; Tsangaris, I; Karaiskos, I; Poulakou, G; Kontopidou, F; Armaganidis, A; Cars, O; Giamarellou, H

    2009-08-01

    Colistin is used to treat infections caused by multidrug-resistant gram-negative bacteria (MDR-GNB). It is administered intravenously in the form of colistin methanesulfonate (CMS), which is hydrolyzed in vivo to the active drug. However, pharmacokinetic data are limited. The aim of the present study was to characterize the pharmacokinetics of CMS and colistin in a population of critically ill patients. Patients receiving colistin for the treatment of infections caused by MDR-GNB were enrolled in the study; however, patients receiving a renal replacement therapy were excluded. CMS was administered at a dose of 3 million units (240 mg) every 8 h. Venous blood was collected immediately before and at multiple occasions after the first and the fourth infusions. Plasma CMS and colistin concentrations were determined by a novel liquid chromatography-tandem mass spectrometry method after a rapid precipitation step that avoids the significant degradation of CMS and colistin. Population pharmacokinetic analysis was performed with the NONMEM program. Eighteen patients (6 females; mean age, 63.6 years; mean creatinine clearance, 82.3 ml/min) were included in the study. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.046 h and 2.3 h, respectively. The clearance of CMS was 13.7 liters/h. For colistin, a one-compartment model was sufficient to describe the data, and the estimated half-life was 14.4 h. The predicted maximum concentrations of drug in plasma were 0.60 mg/liter and 2.3 mg/liter for the first dose and at steady state, respectively. Colistin displayed a half-life that was significantly long in relation to the dosing interval. The implications of these findings are that the plasma colistin concentrations are insufficient before steady state and raise the question of whether the administration of a loading dose would benefit critically ill patients.

  4. Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria.

    PubMed

    Shima, Kensuke; Coopmeiners, Jonas; Graspeuntner, Simon; Dalhoff, Klaus; Rupp, Jan

    2016-11-01

    Community-acquired pneumonia is caused by intra- and extracellular bacteria, with some of these bacteria also being linked to the pathogenesis of chronic lung diseases, including asthma and chronic obstructive pulmonary disease. Chlamydia pneumoniae is an obligate intracellular pathogen that is highly sensitive to micro-environmental conditions controlling both pathogen growth and host immune responses. The availability of nutrients, as well as changes in oxygen, pH and interferon-γ levels, have been shown to directly influence the chlamydial life cycle and clearance. Although the lung has been traditionally regarded as a sterile environment, sequencing approaches have enabled the identification of a large number of bacteria in healthy and diseased lungs. The influence of the lung microbiota on respiratory infections has not been extensively studied so far and data on chlamydial infections are currently unavailable. In the present study, we speculate on how lung microbiota might interfere with acute and chronic infections by focusing exemplarily on the obligate intracellular C. pneumoniae. Furthermore, we consider changes in the gut microbiota as an additional player in the control of lung infections, especially in view the increasing evidence suggesting the involvement of the gut microbiota in various immunological processes throughout the human body. © 2016 Federation of European Biochemical Societies.

  5. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts

    PubMed Central

    Urdaneta, Verónica; Casadesús, Josep

    2017-01-01

    Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome–bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections. PMID:29043249

  6. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods.

    PubMed

    Lin, Xiao-Li; Pan, Qin-Jian; Tian, Hong-Gang; Douglas, Angela E; Liu, Tong-Xian

    2015-03-01

    Microbial abundance and diversity of different life stages (fourth instar larvae, pupae and adults) of the diamondback moth, Plutella xylostella L., collected from field and reared in laboratory, were investigated using bacteria culture-dependent method and PCR-DGGE analysis based on the sequence of bacteria 16S rRNA V3 region gene. A large quantity of bacteria was found in all life stages of P. xylostella. Field population had higher quantity of bacteria than laboratory population, and larval gut had higher quantity than pupae and adults. Culturable bacteria differed in different life stages of P. xylostella. Twenty-five different bacterial strains were identified in total, among them 20 strains were presented in larval gut, only 8 strains in pupae and 14 strains in adults were detected. Firmicutes bacteria, Bacillus sp., were the most dominant species in every life stage. 15 distinct bands were obtained from DGGE electrophoresis gel. The sequences blasted in GenBank database showed these bacteria belonged to six different genera. Phylogenetic analysis showed the sequences of the bacteria belonged to the Actinobacteri, Proteobacteria and Firmicutes. Serratia sp. in Proteobacteria was the most abundant species in larval gut. In pupae, unculturable bacteria were the most dominant species, and unculturable bacteria and Serratia sp. were the most dominant species in adults. Our study suggested that a combination of molecular and traditional culturing methods can be effectively used to analyze and to determine the diversity of gut microflora. These known bacteria may play important roles in development of P. xylostella. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  7. Measurement of fluid dynamic loading on staphylococci bacteria bio-film structures using μPIV

    NASA Astrophysics Data System (ADS)

    Sherman, Erica; Moormeier, Derek; Bayles, Kenneth; Davidson, John; Ryu, Sangjin; Wei, Timothy

    2013-11-01

    Staphylococci bacteria are recognized as the most frequent cause of biofilm-associated infections. Although humans are regularly exposed to these bacteria without consequence, a localized infection can enter the bloodstream and lead to serious infections such as endocarditis, pneumonia, or toxic shock syndrome. The mechanics of staphylococci biofilm formation and dispersion through the bloodstream are not well known. It has recently been observed that under certain flow conditions, bacteria organize in tower-like structures which break and are transported downstream by the flow. The fundamental questions of interest are i) whether or not fluid mechanics plays a role in differentiating between film or tower formation and ii) whether or not the faulty towers are a bio-film propagation mechanism. This talk focuses on the application of μPIV to study this problem. Staphylococcus aureus bacteria were cultured in the Bioflux Fluxion square microchannel of a 65 by 65 um cross section, and subjected to a steady shear rate of 0.5 dynes. μPIV measurements were made to map the flow over and around a biofilm tower structure which occluded approximately 66% of the channel width. Data were recorded around the structure at a series of two dimensional planes, which when stacked vertically show a two dimensional flow field as a function of tower height. Measurements and control volume analysis will be presented quantifying forces acting on these structures.

  8. A simple and rapid method for optical visualization and quantification of bacteria on textiles

    PubMed Central

    Stiefel, Philipp; Schneider, Jana; Amberg, Caroline; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    To prevent bacterial contamination on textiles and the associated undesired effects different biocidal coatings have been investigated and applied. However, due to health and environmental concerns anti-adhesive coatings preventing the binding of bacteria would be favored. To develop such anti-adhesive coatings simple assays for reliable and fast screening are beneficial. Here an easy-to-handle, robust and rapid assay to assess bacteria on textiles utilizing a tetrazolium salt was reported. The assay allowed direct eye visualization of the color change of the textiles containing bacteria, facilitating fast screening. Quantification of the adhered bacteria could be done by generating standard curves which correlate the staining intensity to cell numbers. An additional advantage of the described assay is that with the same detection method anti-adhesive and biocidal effects can be investigated. The method was applied to different coatings, using Pseudomonas aeruginosa and Staphylococcus aureus as model organisms. The detection limit was found to be between 2.5 * 106 and 9.4 * 108 for P. aeruginosa and between 1 * 106 and 3.3 * 108 for S. aureus. The anti-adhesive coating PLUMA was demonstrated to reduce bacterial adhesion without killing them, whereas the biocidal coating TH22-27 caused a clear reduction in the number of viable cells. PMID:28004762

  9. Distinct growth strategies of soil bacteria as revealed by large-scale colony tracking.

    PubMed

    Ernebjerg, Morten; Kishony, Roy

    2012-03-01

    Our understanding of microbial ecology has been significantly furthered in recent years by advances in sequencing techniques, but comprehensive surveys of the phenotypic characteristics of environmental bacteria remain rare. Such phenotypic data are crucial for understanding the microbial strategies for growth and the diversity of microbial ecosystems. Here, we describe a high-throughput measurement of the growth of thousands of bacterial colonies using an array of flat-bed scanners coupled with automated image analysis. We used this system to investigate the growth properties of members of a microbial community from untreated soil. The system provides high-quality measurements of the number of CFU, colony growth rates, and appearance times, allowing us to directly study the distribution of these properties in mixed environmental samples. We find that soil bacteria display a wide range of growth strategies which can be grouped into several clusters that cannot be reduced to any of the classical dichotomous divisions of soil bacteria, e.g., into copiotophs and oligotrophs. We also find that, at early times, cells are most likely to form colonies when other, nearby colonies are present but not too dense. This maximization of culturability at intermediate plating densities suggests that the previously observed tendency for high density to lead to fewer colonies is partly offset by the induction of colony formation caused by interactions between microbes. These results suggest new types of growth classification of soil bacteria and potential effects of species interactions on colony growth.

  10. Effects of Psychrotrophic Bacteria, Serratia liquefaciens and Acinetobacter genomospecies 10 on Yogurt Quality

    PubMed Central

    Shin, Yong Kook; Oh, Nam Su; Lee, Hyun Ah; Choi, Jong-Woo

    2014-01-01

    The aim of this study was to evaluate the effect of proteolytic (Serratia liquefaciens, match %: 99.39) or lipolytic (Acinetobacter genomospecies 10, match %: 99.90) psychrotrophic bacteria (bacterial counts, analysis of free fatty acids (FFA) and analysis of free amino acids) on the microbial and chemical properties (yogurt composition), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of yogurt during storage. Yogurts were prepared with raw milk preinoculated with each psychrotrophic bacteria. The total solid, fat, and protein content were not affected by preinoculation, but the pH of yogurt preinoculated with psychrotrophic bacteria was higher than in control. There was a dramatic increase in short chain free fatty acids among FFA in yogurt with Acinetobacter genomospecies 10. For 14 d of cold storage condition, SCFFA was 25.3 mg/kg to 34.4 mg/kg (1.36 times increased), MCFFA was 20.4 mg/kg to 25.7 mg/kg (1.26 times increased), and LCFFA was 240.2 mg/kg to 322.8 mg/kg (1.34 times increased). Serratia liquefaciens (match %: 99.39) in yogurt caused a greater accumulation of free amino acids (FAA), especially bitter peptides such as leucine, valine, arginine, and tyrosine, but SDS-PAGE showed that the inoculation of Serratia liquefaciens did not affect the degree of casein degradation during storage. Taken together, the excessive peptides and FFA in yogurt generated from psychrotrophic bacteria could develop off-flavors that degrade the quality of commercial yogurt products. PMID:26761293

  11. Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle

    NASA Astrophysics Data System (ADS)

    Huh, Keon; Oh, Darong; Son, Seok Young; Yoo, Hyung Jung; Song, Byeonghwa; Cho, Dong-il Dan; Seo, Jong-Mo; Kim, Sung Jae

    2016-12-01

    The concepts of microrobots has been drawn significant attentions recently since its unprecedented applicability in nanotechnology and biomedical field. Bacteria attached microparticles presented in this work are one of pioneering microrobot technology for self-propulsion or producing kinetic energy from ambient for their motions. Microfluidic device, especially utilizing laminar flow characteristics, were employed for anisotropic attachment of Salmonella typhimurium flagellated chemotactic bacteria to 30 um × 30 um and 50 um × 50 um microparticles that made of biodegradable polymer. Any toxic chemicals or harmful treatments were excluded during the attachment process and it finished within 100 s for the anisotropic attachment. The attachments were directly confirmed by fluorescent intensity changes and SEM visualization. Chemotaxis motions were tracked using aspartate and the maximum velocity of the bacteria-attached microrobot was measured to be 5 um/s which is comparable to prior state of art technologies. This reusable and scalable method could play a key role in chemotaxis delivery of functional microparticles such as drug delivery system.

  12. Bartonella Species, an Emerging Cause of Blood-Culture-Negative Endocarditis.

    PubMed

    Okaro, Udoka; Addisu, Anteneh; Casanas, Beata; Anderson, Burt

    2017-07-01

    Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana . We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella -mediated endocarditis and represents a potential reservoir for persistence by these bacteria. Copyright © 2017 American Society for Microbiology.

  13. Legionella waltersii--a novel cause of pneumonia?

    PubMed

    König, Corinne; Hebestreit, Helge; Valenza, Guiseppe; Abele-Horn, Marianne; Speer, Christian P

    2005-10-01

    A 5-y-old girl was admitted to our hospital with fever, cough, respiratory distress and rapidly increasing oxygen requirements. A chest radiograph showed bilateral central infiltrates. PCR was performed with pharyngeal washings and revealed Legionella DNA, while no genetic materials of other pathogens such as respiratory viruses, Mycoplasma and Chlamydia were detected. The clinical condition improved gradually after administration of steroids and therapy with clarithromycin. Further sequencing of Legionella DNA led to the identification of Legionella waltersii. This Legionella species has never been described as a human pathogen before. For the first time, L. waltersii was identified as a cause of severe pneumonia. Since L. waltersii is not detected by routine laboratory tests, it may be speculated that these bacteria, like other Legionella species, are underestimated as a probable cause of community-acquired pneumonia.

  14. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  15. Studying modification of aminoglycoside antibiotics by resistance-causing enzymes via microarray.

    PubMed

    Disney, Matthew D

    2012-01-01

    Widespread bacterial resistance to antibiotics is a significant public health concern. To remain a step ahead of evolving bacteria, new methods to study resistance to antibacterials and to uncover novel antibiotics that evade resistance are urgently needed. Herein, microarray-based methods that have been developed to study aminoglycoside modification by resistance-causing enzymes are reviewed. These arrays can also be used to study the binding of aminoglycoside antibiotics to a mimic of their therapeutic target, the rRNA aminoacyl site (A-site), and how modification by resistance-causing enzymes affects their abilities to bind RNA.

  16. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    PubMed

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  17. Small Universal Bacteria and Plasmid Computing Systems.

    PubMed

    Wang, Xun; Zheng, Pan; Ma, Tongmao; Song, Tao

    2018-05-29

    Bacterial computing is a known candidate in natural computing, the aim being to construct "bacterial computers" for solving complex problems. In this paper, a new kind of bacterial computing system, named the bacteria and plasmid computing system (BP system), is proposed. We investigate the computational power of BP systems with finite numbers of bacteria and plasmids. Specifically, it is obtained in a constructive way that a BP system with 2 bacteria and 34 plasmids is Turing universal. The results provide a theoretical cornerstone to construct powerful bacterial computers and demonstrate a concept of paradigms using a "reasonable" number of bacteria and plasmids for such devices.

  18. Survival of soil bacteria during prolonged desiccation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1973-01-01

    A determination was made of the kinds and numbers of bacteria surviving when two soils were maintained in the laboratory under dry conditions for more than half a year. Certain non-spore-forming bacteria were found to survive in the dry condition for long periods. A higher percentage of drought-tolerant than drought-sensitive bacteria was able to grow at low water activities. When they were grown in media with high salt concentrations, bacteria generally became more tolerant of prolonged drought and they persisted longer. The percent of cells in a bacterial population that remained viable when exposed to drought stress varied with the stage of growth.

  19. Presence of Bacteria in Spontaneous Achilles Tendon Ruptures.

    PubMed

    Rolf, Christer G; Fu, Sai-Chuen; Hopkins, Chelsea; Luan, Ju; Ip, Margaret; Yung, Shu-Hang; Friman, Göran; Qin, Ling; Chan, Kai-Ming

    2017-07-01

    The structural pathology of Achilles tendon (AT) ruptures resembles tendinopathy, but the causes remain unknown. Recently, a number of diseases were found to be attributed to bacterial infections, resulting in low-grade inflammation and progressive matrix disturbance. The authors speculate that spontaneous AT ruptures may also be influenced by the presence of bacteria. Bacteria are present in ruptured ATs but not in healthy tendons. Cross-sectional study; Level of evidence, 3. Patients with spontaneous AT ruptures and patients undergoing anterior cruciate ligament (ACL) reconstruction were recruited for this study. During AT surgical repair, excised tendinopathic tissue was collected, and healthy tendon samples were obtained as controls from hamstring tendon grafts used in ACL reconstruction. Half of every sample was reserved for DNA extraction and the other half for histology. Polymerase chain reaction (PCR) was conducted using 16S rRNA gene universal primers, and the PCR products were sequenced for the identification of bacterial species. A histological examination was performed to compare tendinopathic changes in the case and control samples. Five of 20 AT rupture samples were positive for the presence of bacterial DNA, while none of the 23 hamstring tendon samples were positive. Sterile operating and experimental conditions and tests on samples, controlling for harvesting and processing procedures, ruled out the chance of postoperative bacterial contamination. The species identified predominantly belonged to the Staphylococcus genus. AT rupture samples exhibited histopathological features characteristic of tendinopathy, and most healthy hamstring tendon samples displayed normal tendon features. There were no apparent differences in histopathology between the bacterial DNA-positive and bacterial DNA-negative AT rupture samples. The authors have demonstrated the presence of bacterial DNA in ruptured AT samples. It may suggest the potential involvement of bacteria

  20. Differential staining of bacteria: acid fast stain.

    PubMed

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. (c) 2009 by John Wiley & Sons, Inc.

  1. Transformation of gram positive bacteria by sonoporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yunfeng; Li, Yongchao

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  2. Decontamination effect of milling by a jet mill on bacteria in rice flour.

    PubMed

    Sotome, Itaru; Nei, Daisuke; Tsuda, Masuko; Mohammed, Sharif Hossen; Takenaka, Makiko; Okadome, Hiroshi; Isobe, Seiichiro

    2011-06-01

    The decontamination effect of milling by a jet mill was investigated by counting the number of bacteria in brown and white rice flour with mean particle diameters of 3, 20, and 40µm prepared by the jet mill. In the jet mill, the particles are crushed and reduced in size by the mechanical impact caused by their collision. Although the brown and white rice grains were contaminated with approximately 10(6) and 10(5) CFU/g bacteria, the microbial load of the rice flour decreased as the mean particle diameter decreased, ultimately decreasing to approximately 104 and 103 CFU/g in the brown and white rice flour. The temperature and pressure changes of the sample were not considered to have an effect on reducing the bacterial count during the milling. Hence, it was thought that the rice flour was decontaminated by other effects.

  3. Growth-Inhibiting and morphostructural effects of constituents identified in Asarum heterotropoides root on human intestinal bacteria

    PubMed Central

    2013-01-01

    the antimicrobial susceptibility of the harmful Gram-positive bacteria and the harmful and nonpathogenic Gram-negative bacteria was not observed. Scanning electron microscopy observations showed different degrees of physical damage and morphological alteration to both Gram-positive and Gram-negative bacteria treated with α-asarone, δ-3-carene, pellitorine, or ciprofloxacin, indicating that they do not share a common mode of action. Conclusion A. heterotropoides root-derived materials described merit further study as potential antibacterial products or lead molecules for the prevention or eradication from humans from diseases caused by harmful intestinal bacteria. PMID:24083511

  4. The role of adhesins in bacteria motility modification

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta; Gibiansky, Maxsim; Jin, Fan; Gordon, Vernita; Motto, Dominick; Shrout, Joshua; Parsek, Matthew; Wong, Gerard

    2010-03-01

    Bacterial biofilms are multicellular communities responsible for a broad range of infections. To investigate the early-stage formation of biofilms, we have developed high-throughput techniques to quantify the motility of surface-associated bacteria. We translate microscopy movies of bacteria into a searchable database of trajectories using tracking algorithms adapted from colloidal physics. By analyzing the motion of both wild-type (WT) and isogenic knockout mutants, we have previously characterized fundamental motility mechanisms in P. aeruginosa. Here, we develop biometric routines to recognize signatures of adhesion and trapping. We find that newly attached bacteria move faster than previously adherent bacteria, and are more likely to be oriented out-of-plane. Motility appendages influence the bacterium's ability to become trapped: WT bacteria exhibit two types of trapped trajectories, whereas flagella-deficient bacteria rarely become trapped. These results suggest that flagella play a key role in adhesion.

  5. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  6. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact.

    PubMed

    Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam

    2017-02-28

    Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    NASA Astrophysics Data System (ADS)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  8. Gastric spiral bacteria in small felids.

    PubMed

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens.

  9. Chemotactic selection of pollutant degrading soil bacteria

    DOEpatents

    Hazen, Terry C.

    1994-01-01

    A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  10. Chemotactic selection of pollutant degrading soil bacteria

    DOEpatents

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  11. Phage-bacteria infection networks: From nestedness to modularity

    NASA Astrophysics Data System (ADS)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  12. The clinical features of respiratory infections caused by the Streptococcus anginosus group.

    PubMed

    Noguchi, Shingo; Yatera, Kazuhiro; Kawanami, Toshinori; Yamasaki, Kei; Naito, Keisuke; Akata, Kentaro; Shimabukuro, Ikuko; Ishimoto, Hiroshi; Yoshii, Chiharu; Mukae, Hiroshi

    2015-10-26

    The Streptococcus anginosus group (SAG) play important roles in respiratory infections. It is ordinarily difficult to distinguish them from contaminations as the causative pathogens of respiratory infections because they are often cultured in respiratory specimens. Therefore, it is important to understand the clinical characteristics and laboratory findings of respiratory infections caused by the SAG members. The aim of this study is to clarify the role of the SAG bacteria in respiratory infections. A total of 30 patients who were diagnosed with respiratory infections which were caused by the SAG bacteria between January 2005 and February 2015 were retrospectively evaluated. Respiratory infections caused by the SAG were mostly seen in male patients with comorbid diseases and were typically complicated with pleural effusion. Pleural effusion was observed in 22 (73.3%) patients. Empyema was observed in half of the 22 patients with pleural effusion. S. intermedius, S. constellatus and S. anginosus were detected in 16 (53.3 %), 11 (36.7 %) and 3 (10.0 %) patients, respectively. Six patients had mixed-infections. The duration from the onset of symptoms to the hospital visit was significantly longer in "lung abscess" patients than in "pneumonia" patients among the 24 patients with single infections, but not among the six patients with mixed-infection. The peripheral white blood cell counts of the "pneumonia" patients were higher than those of the "lung abscess" patients and S. intermedius was identified significantly more frequently in patients with pulmonary and pleural infections (pneumonia and lung abscess) than in patients with bacterial pleurisy only. In addition, the patients in whom S. intermedius was cultured were significantly older than those in whom S. constellatus was cultured. Respiratory infections caused by the SAG bacteria tended to be observed more frequently in male patients with comorbid diseases and to more frequently involve purulent formation. In

  13. Outcome of urinary tract infections caused by extended spectrum β-lactamase-producing Enterobacteriaceae in children.

    PubMed

    Tratselas, Athanasios; Iosifidis, Elias; Ioannidou, Maria; Saoulidis, Stamatis; Kollios, Konstantinos; Antachopoulos, Charalampos; Sofianou, Danai; Roilides, Emmanuel J

    2011-08-01

    The outcome of patients with urinary tract infections caused by extended spectrum β-lactamases (ESBL)-producing bacteria (cases) was compared with that of matched controls with urinary tract infections caused by non-extended spectrum β-lactamases-producing isolates. Significantly, more case patients received inappropriate empiric therapy than controls. Nevertheless, clinical and microbiologic outcomes as well as formation of renal scars did not differ between the 2 groups.

  14. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    PubMed

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  15. Airborne Bacteria in an Urban Environment

    PubMed Central

    Mancinelli, Rocco L.; Shulls, Wells A.

    1978-01-01

    Samples were taken at random intervals over a 2-year period from urban air and tested for viable bacteria. The number of bacteria in each sample was determined, and each organism isolated was identified by its morphological and biochemical characteristics. The number of bacteria found ranged from 0.013 to 1.88 organisms per liter of air sampled. Representatives of 19 different genera were found in 21 samples. The most frequently isolated organisms and their percent of occurence were Micrococcus (41%), Staphylococcus (11%), and Aerococcus (8%). The bacteria isolated were correlated with various weather and air pollution parameters using the Pearson product-moment correlation coefficient method. Statistically significant correlations were found between the number of viable bacteria isolated and the concentrations of nitric oxide (−0.45), nitrogen dioxide (+0.43), and suspended particulate pollutants (+0.56). Calculated individually, the total number of Micrococcus, Aerococcus, and Staphylococcus, number of rods, and number of cocci isolated showed negative correlations with nitric oxide and positive correlations with nitrogen dioxide and particulates. Statistically significant positive correlations were found between the total number of rods isolated and the concentration of nitrogen dioxide (+0.54) and the percent relative humidity (+0.43). The other parameters tested, sulfur dioxide, hydrocarbons, and temperature, showed no significant correlations. Images PMID:677875

  16. Bistability, epigenetics, and bet-hedging in bacteria.

    PubMed

    Veening, Jan-Willem; Smits, Wiep Klaas; Kuipers, Oscar P

    2008-01-01

    Clonal populations of microbial cells often show a high degree of phenotypic variability under homogeneous conditions. Stochastic fluctuations in the cellular components that determine cellular states can cause two distinct subpopulations, a property called bistability. Phenotypic heterogeneity can be readily obtained by interlinking multiple gene regulatory pathways, effectively resulting in a genetic logic-AND gate. Although switching between states can occur within the cells' lifetime, cells can also pass their cellular state over to the next generation by a mechanism known as epigenetic inheritance and thus perpetuate the phenotypic state. Importantly, heterogeneous populations can demonstrate increased fitness compared with homogeneous populations. This suggests that microbial cells employ bet-hedging strategies to maximize survival. Here, we discuss the possible roles of interlinked bistable networks, epigenetic inheritance, and bet-hedging in bacteria.

  17. Bacteria-based concrete: from concept to market

    NASA Astrophysics Data System (ADS)

    Wiktor, V.; Jonkers, H. M.

    2016-08-01

    The concept of self-healing concrete—a concrete which can autonomously repair itself after crack formation, with no or limited human intervention—has received a lot of attention over the past 10 years as it could help structures to last longer and at a lower maintenance cost. This paper gives an overview on the key aspects and recent advances in the development of the bacteria-based self-healing concrete developed at the University of Technology of Delft (The Netherlands). Research started with the screening and selection of concrete compatible bacteria and nutrients. Several types of encapsulated bacteria and nutrients have been developed and tested. The functionality of these healing agents was demonstrated by showing metabolic activity of activated bacterial spores by oxygen consumption measurements and by regain of material functionality in form of regain of water tightness. Besides development of bacteria-based self-healing concrete, a bacteria-based repair mortar and liquid system were developed for the treatment of aged concrete structures. Field trials have been carried out with either type of bacteria-based systems and the promising results have led to a spinoff company Basilisk Self-Healing Concrete with the aim to further develop these systems and bring them to the market.

  18. Evaluation of a Parchment Document, the 13th Century Incorporation Charter for the City of Krakow, Poland, for Microbial Hazards.

    PubMed

    Lech, Tomasz

    2016-05-01

    The literature of environmental microbiology broadly discusses issues associated with microbial hazards in archives, but these publications are mainly devoted to paper documents. There are few articles on historical parchment documents, which used to be very important for the development of literature and the art of writing. These studies present a broad spectrum of methods for the assessment of biodeterioration hazards of the parchment document in question. They are based on both conventional microbiological methods and advanced techniques of molecular biology. Here, a qualitative analysis was conducted, based on genetic identification of bacteria and fungi present on the document as well as denaturing gradient gel electrophoresis profiling and examining the destructive potential of isolated microbes. Moreover, the study involved a quantitative and qualitative microbiological assessment of the indoor air in the room where the parchment was kept. The microbes with the highest destructive potential that were isolated from the investigated item were Bacillus cereus and Acinetobacter lwoffii bacteria and Penicillium chrysogenum,Chaetomium globosum, and Trichoderma longibrachiatum fungi. The presence of the B. cereuss train was particularly interesting since, under appropriate conditions, it leads to complete parchment degradation within several days. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Anti-bacteria effect of active ingredients of siraitia grosvenorii on the spoilage bacteria isolated from sauced pork head meat

    NASA Astrophysics Data System (ADS)

    Li, X.; Xu, L. Y.; Cui, Y. Q.; Pang, M. X.; Wang, F.; Qi, J. H.

    2018-01-01

    Extraction and anti-bacteria effect of active ingredients of Siraitia grosvenorii were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration (MIC) were valued by Oxford-cup method. The results indicated that optimum extraction condition of active ingredients extracted from Siraitia grosvenorii were described as follows: ethanol concentrations of sixty-five percent and twenty minutes with ultrasonic assisted extraction; the active ingredients of Siraitia grosvenorii had anti-bacteria effect on Staphylococcus epidermidis, Proteus vulgaris, Bacillus sp, Serratia sp and MIC was 0.125g/mL, 0.0625g/mL, 0.125g/mL and 0.125g/mL. The active constituent of Siraitia grosvenorii has obvious anti-bacteria effect on the spoilage bacteria isolated from Sauced pork head meat and can be used as a new natural food preservation to prolong the shelf-life of Low-temperature meat products.

  20. Gallstones containing bacteria are biofilms: bacterial slime production and ability to form pigment solids determines infection severity and bacteremia.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2007-08-01

    Gallstone bacteria provide a reservoir for biliary infections. Slime production facilitates adherence, whereas beta-glucuronidase and phospholipase generate colonization surface. These factors facilitate gallstone formation, but their influence on infection severity is unknown. Two hundred ninety-two patients were studied. Gallstones, bile, and blood (as applicable) were cultured. Bacteria were tested for beta-glucuronidase/phospholipase production and quantitative slime production. Infection severity was correlated with bacterial factors. Bacteria were present in 43% of cases, 13% with bacteremia. Severe infections correlated directly with beta-glucuronidase/phospholipase (55% with vs 13% without, P < 0.0001), but inversely with slime production (55 vs 8%, slime <75 or >75, P = 0.008). Low slime production and beta-glucuronidase/phospholipase production were additive: Severe infections were present in 76% with both, but 10% with either or none (P < 0.0001). beta-Glucuronidase/phospholipase production facilitated bactibilia (86% with vs 62% without, P = 0.03). Slime production was 19 (+/-8) vs 50 (+/-10) for bacteria that did or did not cause bacteremia (P = 0.004). No bacteria with slime >75 demonstrated bacteremia. Bacteria-laden gallstones are biofilms whose characteristics influence illness severity. Factors creating colonization surface (beta-glucuronidase/phospholipase) facilitated bacteremia and severe infections; but abundant slime production, while facilitating colonization, inhibited detachment and cholangiovenous reflux. This shows how properties of the gallstone biofilm determine the severity of the associated illness.