Sample records for bacteria commonly isolated

  1. Bacterial Coaggregation Among the Most Commonly Isolated Bacteria From Contact Lens Cases.

    PubMed

    Datta, Ananya; Stapleton, Fiona; Willcox, Mark D P

    2017-01-01

    To examine the coaggregation and cohesion between the commonly isolated bacteria from contact lens cases. Four or five strains each of commonly isolated bacteria from contact lens cases, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Serratia marcescens, were grown, washed, mixed in equal proportions, and allowed to coaggregate for 24 hours. Lactose (0.06 M), sucrose (0.06 M), and pronase (2 mg/mL; 2 hours, 37°C) were used to inhibit coaggregation. Oral bacterial isolates of Actinomyces naeslundii and Streptococcus sanguinis were used as a positive control for coaggregation. Cohesion was performed with the ocular bacteria that demonstrated the highest level of coaggregation. Production of growth-inhibitory substances was measured by growing strains together on agar plates. The oral bacterial pair showed >80% coaggregation. Coaggregation occurred between ocular strains of S. aureus (2/5) or S. epidermidis (2/5) with P. aeruginosa strains (3/5); 42% to 62%. There was only slight coaggregation between staphylococci and S. marcescens. Staphylococcus aureus coaggregated with S. epidermidis. Lactose or sucrose treatment of S. aureus but pronase treatment of P. aeruginosa reversed the coaggregation. There was no cohesion between the ocular isolates. P. aeruginosa was able to stop growth of S. aureus but not vice versa. This study demonstrated for the first time that ocular isolates of P. aeruginosa and S. aureus could coaggregate, probably through lectin-carbohydrate interactions. However, this may not be related to biofilm formation in contact lens cases, as there was no evidence that the coaggregation was associated with cohesion between the strains.

  2. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  3. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  4. Antimicrobial and Herbal Drug Resistance in Enteric Bacteria Isolated from Faecal Droppings of Common House Lizard/Gecko (Hemidactylus frenatus).

    PubMed

    Singh, Bhoj R; Singh, Vidya; Ebibeni, N; Singh, Raj K

    2013-01-01

    From 194 faecal dropping samples of common house geckos collected from offices (60), houses (88), integrated farm units (IFS,18) and hostels, guest houses, and dining rooms of different canteen/mess (HGM, 28), 326 bacterial isolates of enteric bacteria belonging to 17 genera and 34 species were detected. Escherichia coli were the most frequently (39) isolated followed by Citrobacter freundii (33), Klebsiella pneumonia (27), Salmonella indica (12), Enterobacter gergoviae (12), and Ent. agglomerans (11). Other important bacteria isolated from gecko droppings were Listonella damsela (2), Raoultella terrigena (3), S. salamae (2), S. houtenae (3), Edwardsiella tarda (4), Edwardsiella hoshinae (1), and Klebsiella oxytoca (2). Of the 223 isolates tested for antimicrobial drug sensitivity, 27 (12.1%) had multiple drug resistance (MDR). None of the salmonellae or edwardsiellae had MDR however, MDR strains were significantly more common among Escherichia spp. (P = 1.9 × 10(-5)) and isolates from IFS units (P = 3.58 × 10(-23)). The most effective herbal drug, Ageratum conyzoides extract, inhibited growth of only 27.8% of strains tested followed by ethanolic extract of Zanthoxylum rhetsa (13.9%), eucalyptus oil (5.4%), patchouli oil (5.4%), lemongrass oil (3.6%), and sandalwood oil (3.1%), and Artemisia vulgaris essential oil (3.1%).

  5. Isolation of carbohydrate-metabolizing, extremely halophilic bacteria.

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1972-01-01

    Four previously unrecognized strains of extremely halophilic bacteria that utilize carbohydrates have been isolated. Gas production proved an unreliable index of carbohydrate metabolism; therefore, carbohydrate utilization was measured by determining acid formation and sugar disappearance during growth. By these procedures, carbohydrate utilization was readily detected. The results suggest that carbohydrate dissimilation by extremely halophilic bacteria may be more common than previously thought and that the apparent rarity of carbohydrate-metabolizing halophiles may be an artifact of the isolation procedures used.

  6. Frequency of resistance and susceptible bacteria isolated from houseflies.

    PubMed

    Davari, B; Kalantar, E; Zahirnia, A; Moosa-Kazemi, Sh

    2010-01-01

    In this study, we determine the vector competence of Musca domestica with reference to the transmission of susceptible and resistance bacterial strains in hospitals and slaughter house in Sanandaj City, west Iran. Totally 908 houseflies were collected to isolate bacteria from their external body based on standard procedures.Antibiotic susceptibility testing was performed by Kirby-Bauer disc diffusion method on Mueller Hinton agar based on recommendations of CLSI (formerly the National Committee for Clinical Laboratory Standards). From collected houseflies, 366 bacteria species were isolated. The most common isolated bacterium at hospitals was Klebsiella pneumoniae 43.3% (n= 90) followed by Pseudomonas aeruginosa 37% (n= 77), while that of slaughterhouse was Proteus mirabilis. 29.1% (n= 46) followed by Citrobacter freundii 28.4% (n= 45). Among all the isolates from hospitals, cephalexin, chloramphenicol, ampicillin, and tetracycline, resistance rates were above 32.5% and gentamicin expressed the highest susceptibility among all the isolates from hospitals. It is worth to note that K. pneumoniae showed 61% and 44.5% resistance to cephalexin and chloramphenicol respectively. Similarly, all isolates from slaughterhouse were more than 28% and 30% resistant to cephalexin and chloramphenicol respectively. Surprisingly, among all the isolates, Citrobacter freundii were highly resistant to gentamicin. Houseflies collected from hospitals and slaughterhouse may be involved in the spread of drug resistant bacteria and may increase the potential of human exposure to drug resistant bacteria.

  7. Frequency of Resistance and Susceptible Bacteria Isolated from Houseflies

    PubMed Central

    Davari, B; Kalantar, E; Zahirnia, A; Moosa-Kazemi, SH

    2010-01-01

    Background: In this study, we determine the vector competence of Musca domestica with reference to the transmission of susceptible and resistance bacterial strains in hospitals and slaughter house in Sanandaj City, west Iran. Methods: Totally 908 houseflies were collected to isolate bacteria from their external body based on standard procedures.Antibiotic susceptibility testing was performed by Kirby-Bauer disc diffusion method on Mueller Hinton agar based on recommendations of CLSI (formerly the National Committee for Clinical Laboratory Standards). Results: From collected houseflies, 366 bacteria species were isolated. The most common isolated bacterium at hospitals was Klebsiella pneumoniae 43.3% (n= 90) followed by Pseudomonas aeruginosa 37% (n= 77), while that of slaughterhouse was Proteus mirabilis. 29.1% (n= 46) followed by Citrobacter freundii 28.4% (n= 45). Among all the isolates from hospitals, cephalexin, chloramphenicol, ampicillin, and tetracycline, resistance rates were above 32.5% and gentamicin expressed the highest susceptibility among all the isolates from hospitals. It is worth to note that K. pneumoniae showed 61% and 44.5% resistance to cephalexin and chloramphenicol respectively. Similarly, all isolates from slaughterhouse were more than 28% and 30% resistant to cephalexin and chloramphenicol respectively. Surprisingly, among all the isolates, Citrobacter freundii were highly resistant to gentamicin. Conclusion: Houseflies collected from hospitals and slaughterhouse may be involved in the spread of drug resistant bacteria and may increase the potential of human exposure to drug resistant bacteria. PMID:22808400

  8. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  9. Bacteria profile and antibiogram of the bacteria isolated from the exposed pulp of dog canine teeth.

    PubMed

    Almansa Ruiz, José Carlos; Jonker, Annelize; Bosman, Anna-Mari; Steenkamp, Gerhard

    2018-04-27

    Twenty-seven microbiological samples were taken from root canals (RC) of the canine teeth of 20 dogs where the pulps were non-vital and exposed due to complicated crown fractures. These pulps were cultured for aerobic/anaerobic bacteria. Antimicrobial susceptibility of isolates was determined using the Kirby-Bauer diffusion test. A total of 49 cultivable isolates, belonging to 27 different microbial species and 18 different genera, were recovered from the 27 RCs sampled. Twenty (40.81 per cent) of the cultivable isolates were Gram positive while 29 (59.19 per cent) were Gram negative. Facultative anaerobes were the most common bacteria (77.56 per cent). Aerobic isolates represented 18.36 per cent, and strict anaerobes 4.08 per cent. The antimicrobials with the highest in vitro efficacy were gentamicin (100 per cent) and enrofloxacin (93.32 per cent). © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. The predominant bacteria isolated from radicular cysts

    PubMed Central

    2013-01-01

    Purpose To detect predominant bacteria associated with radicular cysts and discuss in light of the literature. Material and methods Clinical materials were obtained from 35 radicular cysts by aspiration. Cultures were made from clinical materials by modern laboratory techniques, they underwent microbiologic analysis. Results The following are microorganisms isolated from cultures: Streptococcus milleri Group (SMG) (23.8%) [Streptococcus constellatus (19.1%) and Streptococcus anginosus (4.7%)], Streptococcus sanguis (14.3%), Streptococcus mitis (4.7%), Streptococcus cremoris (4.7%), Peptostreptococcus pevotii (4.7%), Prevotella buccae (4.7%), Prevotella intermedia (4.7%), Actinomyces meyeri (4.7%), Actinomyces viscosus (4.7%), Propionibacterium propionicum (4.7%), Bacteroides capillosus (4.7%), Staphylococcus hominis (4.7%), Rothia denticariosa (4.7%), Gemella haemolysans (4.7%), and Fusobacterium nucleatum (4.7%). Conclusions Results of this study demonstrated that radicular cysts show a great variety of anaerobic and facultative anaerobic bacterial flora. It was observed that all isolated microorganisms were the types commonly found in oral flora. Although no specific microorganism was found, Streptococcus spp. bacteria (47.5%) – especially SMG (23.8%) – were predominantly found in the microorganisms isolated. Furthermore, radicular cysts might be polymicrobial originated. Although radicular cyst is an inflammatory cyst, some radicular cyst fluids might be sterile. PMID:24011184

  11. Isolation of oxalotrophic bacteria associated with Varroa destructor mites.

    PubMed

    Maddaloni, M; Pascual, D W

    2015-11-01

    Bacteria associated with varroa mites were cultivated and genotyped by 16S RNA. Under our experimental conditions, the cultivable bacteria were few in number, and most of them proved to be fastidious to grow. Cultivation with seven different media under O2 /CO2 conditions and selection for colony morphology yielded a panel of species belonging to 13 different genera grouped in two different phyla, proteobacteria and actinobacteria. This study identified one species of actinobacteria that is a known commensal of the honey bee. Some isolates are oxalotrophic, a finding that may carry ramifications into the use of oxalic acid to control the number of phoretic mites in the managed colonies of honey bees. Oxalic acid, legally or brevi manu, is widely used to control phoretic Varroa destructor mites, a major drive of current honey bees' colony losses. Unsubstantiated by sanctioned research are rumours that in certain instances oxalic acid is losing efficacy, forcing beekeepers to increase the frequency of treatments. This investigation fathoms the hypothesis that V. destructor associates with bacteria capable of degrading oxalic acid. The data show that indeed oxalotrophy, a rare trait among bacteria, is common in bacteria that we isolated from V. destructor mites. This finding may have ramifications in the use of oxalic acid as a control agent. © 2015 The Society for Applied Microbiology.

  12. Simultaneous isolation of anaerobic bacteria from udder abscesses and mastitic milk in lactating dairy cows.

    PubMed

    Greeff, A S; du Preez, J H

    1985-12-01

    A variety of non-sporulating anaerobic bacterial species were isolated from udder abscesses in 10 lactating dairy cows. Fifty percent of the abscesses yielded multiple anaerobic species and the other 50% only 1 species. The anaerobic bacteria, however, were always accompanied by classical facultative anaerobic mastitogenic bacteria. In four of the five cows also afflicted with mastitis in the quarters with abscesses, the anaerobic and facultative anaerobic bacteria were identical. Peptococcus indolicus was the most commonly isolated organism followed by Eubacterium and Bacteroides spp. Bacteroides fragilis was resistant to penicillin, ampicillin and tetracycline.

  13. Potential sources of bacteria that are isolated from contact lenses during wear.

    PubMed

    Willcox, M D; Power, K N; Stapleton, F; Leitch, C; Harmis, N; Sweeney, D F

    1997-12-01

    The aim of this paper was to determine the possible contamination sources of contact lenses during wear. Potential sources of the microbiota that colonized hydrogel contact lenses during wear were examined. The microorganisms that colonize contact lenses were grown, identified, and compared to those microorganisms that colonized the lower lid margins, upper bulbar conjunctiva, hands, and contact lens cases of contact lens wearers. In addition, the incidence of contamination of the domestic water supply in the Sydney area was obtained, and this was compared to the incidence of colonization of contact lenses by microorganisms in general and gram-negative bacteria in particular. There was a wide diversity of bacteria that were isolated from each site sampled. Coagulase-negative staphylococci and Propionibacterium spp. were the most common isolates from all ocular sites examined, and constituted the normal ocular microbiota. Other bacteria, including members of the families Enterobacteriaceae and Pseudomonadaceae, were isolated infrequently from all sites, but most frequently from contact lens cases. Statistical analysis revealed that there was a correlation between the isolation of bacteria from the contact lens and the lower lid margin (p < 0.001). Analysis of this correlation revealed that this was true for the normal microbiota. A correlation was also noted between the colonization of contact lenses by gram-negative bacteria and contamination of the domestic water supply. This study has demonstrated that the likely route for the normal ocular microbiota colonizing contact lenses is via the lid margins, whereas colonization by gram-negative bacteria, including potential agents of microbial keratitis, is likely to be from the domestic water supply.

  14. Isolation of Lightning-Competent Soil Bacteria

    PubMed Central

    Cérémonie, Hélène; Buret, François; Simonet, Pascal; Vogel, Timothy M.

    2004-01-01

    Artificial transformation is typically performed in the laboratory by using either a chemical (CaCl2) or an electrical (electroporation) method. However, laboratory-scale lightning has been shown recently to electrotransform Escherichia coli strain DH10B in soil. In this paper, we report on the isolation of two “lightning-competent” soil bacteria after direct electroporation of the Nycodenz bacterial ring extracted from prairie soil in the presence of the pBHCRec plasmid (Tcr, Spr, Smr). The electrotransformability of the isolated bacteria was measured both in vitro (by electroporation cuvette) and in situ (by lightning in soil microcosm) and then compared to those of E. coli DH10B and Pseudomonas fluorescens C7R12. The electrotransformation frequencies measured reached 10−3 to 10−4 by electroporation and 10−4 to 10−5 by simulated lightning, while no transformation was observed in the absence of electrical current. Two of the isolated lightning-competent soil bacteria were identified as Pseudomonas sp. strains. PMID:15466589

  15. Isolation of bacteria-containing phagosomes by magnetic selection

    PubMed Central

    Lönnbro, Per; Nordenfelt, Pontus; Tapper, Hans

    2008-01-01

    Background There is a growing awareness of the importance of intracellular events in determining the outcome of infectious disease. To improve the understanding of such events, like phagosome maturation, we set out to develop a versatile technique for phagosome isolation that is rapid and widely applicable to different pathogens. Results We developed two different protocols to isolate phagosomes containing dead or live bacteria modified with small magnetic particles, in conjunction with a synchronized phagocytosis protocol and nitrogen cavitation. For dead bacteria, we performed analysis of the phagosome samples by microscopy and immunoblot, and demonstrated the appearance of maturation markers on isolated phagosomes. Conclusion We have presented detailed protocols for phagosome isolation, which can be adapted for use with different cell types and prey. The versatility and simplicity of the approach allow better control of phagosome isolation, the parameters of which are critical in studies of host-bacteria interaction and phagosome maturation. PMID:18588680

  16. Isolation and Identification of cellulolytic bacteria from mangrove sediment in Bangka Island

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Prihanto, A. A.; Sari, S. P.; Febriyanti, D.; Kurniawan, A.; Sambah, A. B.; Asriani, E.

    2018-04-01

    Cellulolytic bacteria is bacteria which hydrolyze cellulose to reducing sugars. This research aims to obtain cellulolytic bacteria from the sediment of mangroves in Bangka island. Reasearch was conducted from March to August 2017. Sampling was conducted at Sungailiat, and Tukak Sadai, South of Bangka. Bacteria was isolated using 1% Carboxymetyl Cellulosa (CMC). The isolation resulted in four isolates from Sungailiat and nine isolates from Tukak Sadai. Total five isolates, namely Bacillus pumilus, Pseudomonas sp., Bacillus amyloliquefacien, Bacillus alvei, Bacillus coagulant were identified. The best isolates that produced cellulose was Pseudomonas aeruginosa.

  17. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    PubMed

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  18. Antagonistic activity of isolated lactic acid bacteria from Pliek U against gram-negative bacteria Escherichia coli ATCC 25922

    NASA Astrophysics Data System (ADS)

    Kiti, A. A.; Jamilah, I.; Rusmarilin, H.

    2017-09-01

    Lactic acid bacteria (LAB) is one group of microbes that has many benefits, notably in food and health industries sector. LAB plays an important role in food fermentation and it has bacteriostatic effect against the growth of pathogenic microorganisms. The research related LAB continued to be done to increase the diversity of potential isolates derived from nature which is indigenous bacteria for biotechnological purposes. This study was aimed to isolate and characterize LAB derived from pliek u sample and to examine the potency to inhibits Escherichia coli ATCC 25922 bacteria growth. A total of 5 isolates were isolated and based on morphological and physiological characteristics of the fifth bacteria, they are allegedly belonging to the genus Bacillus. Result of antagonistic test showed that the five isolates could inhibits the growth of E. coli ATCC 25922. The highest inhibition zone is 8.5 mm was shown by isolates NQ2, while the lowest inhibition is 1.5 mm was shown by isolates NQ3.

  19. Extensive characterizations of bacteria isolated from catheterized urine and stone matrices in patients with nephrolithiasis.

    PubMed

    Tavichakorntrakool, Ratree; Prasongwattana, Vitoon; Sungkeeree, Seksit; Saisud, Phitsamai; Sribenjalux, Pipat; Pimratana, Chaowat; Bovornpadungkitti, Sombat; Sriboonlue, Pote; Thongboonkerd, Visith

    2012-11-01

    Urinary tract infections are generally known to be associated with nephrolithiasis, particularly struvite stone, in which the most common microbe found is urea-splitting bacterium, i.e. Proteus mirabilis. However, our observation indicated that it might not be the case of stone formers in Thailand. We therefore extensively characterized microorganisms associated with all types of kidney stones. A total of 100 kidney stone formers (59 males and 41 females) admitted for elective percutaneous nephrolithotomy were recruited and microorganisms isolated from catheterized urine and cortex and nidus of their stones were analyzed. From 100 stone formers recruited, 36 cases had a total of 45 bacterial isolates cultivated from their catheterized urine and/or stone matrices. Among these 36 cases, chemical analysis by Fourier-transformed infrared spectroscopy revealed that 8 had the previously classified 'infection-induced stones', whereas the other 28 cases had the previously classified 'metabolic stones'. Calcium oxalate (in either pure or mixed form) was the most common and found in 64 and 75% of the stone formers with and without bacterial isolates, respectively. Escherichia coli was the most common bacterium (approximately one-third of all bacterial isolates) found in urine and stone matrices (both nidus and periphery). Linear regression analysis showed significant correlation (r = 0.860, P < 0.001) between bacterial types in urine and stone matrices. Multidrug resistance was frequently found in these isolated bacteria. Moreover, urea test revealed that only 31% were urea-splitting bacteria, whereas the majority (69%) had negative urea test. Our data indicate that microorganisms are associated with almost all chemical types of kidney stones and urea-splitting bacteria are not the major causative microorganisms found in urine and stone matrices of the stone formers in Thailand. These data may lead to rethinking and a new roadmap for future research regarding the role of

  20. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    NASA Astrophysics Data System (ADS)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  1. Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents.

    PubMed

    Lawhon, S D; Taylor, A; Fajt, V R

    2013-11-01

    Clinical specimens from dogs, cats, and horses were examined for the presence of obligate anaerobic bacteria. Of 4,018 specimens cultured, 368 yielded 606 isolates of obligate anaerobic bacteria (248 from dogs, 50 from cats, and 308 from horses). There were 100 specimens from 94 animals from which only anaerobes were isolated (25 dogs, 8 cats, and 61 horses). The most common sites tested were abdominal fluid (dogs and cats) and intestinal contents (horses). The most common microorganism isolated from dogs, cats, and horses was Clostridium perfringens (75, 13, and101 isolates, respectively). The MICs of amoxicillin with clavulanate, ampicillin, chloramphenicol, metronidazole, and penicillin were determined using a gradient endpoint method for anaerobes. Isolates collected at necropsy were not tested for antimicrobial susceptibility unless so requested by the clinician. There were 1/145 isolates tested that were resistant to amoxicillin-clavulanate (resistance breakpoint ≥ 16/8 μg/ml), 7/77 isolates tested were resistant to ampicillin (resistance breakpoint ≥ 2 μg/ml), 4/242 isolates tested were resistant to chloramphenicol (resistance breakpoint ≥ 32 μg/ml), 12/158 isolates tested were resistant to clindamycin (resistance breakpoint ≥ 8 μg/ml), 10/247 isolates tested were resistant to metronidazole (resistance breakpoint ≥ 32 μg/ml), and 54/243 isolates tested were resistant to penicillin (resistance breakpoint ≥ 2 μg/ml). These data suggest that anaerobes are generally susceptible to antimicrobial drugs in vitro.

  2. Stalking Antibiotic-Resistant Bacteria in Common Vegetables

    ERIC Educational Resources Information Center

    Brock, David; Boeke, Caroline; Josowitz, Rebecca; Loya, Katherine

    2004-01-01

    The study developed a simple experimental protocol for studying antibiotic resistant bacteria that will allow students to determine the proportion of such bacteria found on common fruit and vegetable crops. This protocol can open up the world of environmental science and show how human behavior can dramatically alter ecosystems.

  3. Isolation, morphological identification and in vitro antibacterial activity of endophytic bacteria isolated from Azadirachta indica (neem) leaves

    PubMed Central

    Singh, Ankit Kumar; Sharma, Rajesh Kumar; Sharma, Varsha; Singh, Tanmay; Kumar, Rajesh; Kumari, Dimple

    2017-01-01

    Aim: The objective of this study was to isolate endophytic bacteria from Azadirachta indica (neem) leaves, their identification and investigate their antibacterial activity against three Gram-positive bacteria, Staphylococcus aureus, Streptococcus pyogenes and Bacillus cereus and Gram-negative bacteria Escherichia coli, Salmonella Typhimurium and Klebsiella pneumoniae. Materials and Methods: Fresh leaves of A. indica (neem) was procured from the Department of Botany, JNKVV, Jabalpur. Five samples were taken, and each sample was divided into five subsamples and separated for further isolation of endophytic bacteria. For sterilization leaves were treated with double distilled water, 0.1% sodium hypochlorite, 0.01% bavistin, 0.05% and 70% ethanol. Sterilized leaves of the plants were embedded in Kings B (KB) petri plates and incubated at 37°C for 24 h. Characterization of the bacteria was done according to its morphology and by Gram-staining. After that, a single colony was transferred into brain heart infusion (BHI) broth and incubated at 37°C for 24 h. The antibacterial effect was studied by the disk diffusion method with known antibiotic ciprofloxacin (Ci) as standard. Results: A total of 25 bacterial isolates from A. indica (neem) were obtained and identified morphologically. Most of the samples on KB media depicted irregular shape, flat elevation, undulated, rough, opaque, and white in color. Most of the samples on blood agar showed irregular, raise elevation, undulated, smooth, opaque and all the isolates were nonhemolytic and nonchromogenic. The growth of endophytic bacteria in BHI broth were all isolates showed turbidity. The microscopic examination revealed that maximum isolates were Gram-positive and rod shaped. Good antibacterial activity was observed against S. aureus, Streptococcus pyogenes, E. coli, Salmonella Typhimurium, and K. pneumoniae. Conclusions: Endophytic bacteria are present in leaves of A. indica (neem) and it possesses antibacterial

  4. Isolation and identification of cellulolytic bacteria from termites gut (Cryptotermes sp.)

    NASA Astrophysics Data System (ADS)

    Peristiwati; Natamihardja, Y. S.; Herlini, H.

    2018-05-01

    The energy and environmental crises developed due to a huge amount of cellulosic materials are disposed of as “waste.” Cellulose is the most abundant biopolymer on Earth. The hydrolysis of cellulose to glucose and soluble sugars has thus become a subject of intense research. Termites are one of the most important soil insects that efficiently decompose lignocelluloses with the aid of their associated microbial symbionts to a simpler form of sugars. The steps of this study consisted of cellulose isolation, cellulolytic bacteria isolation and identification. Cellulose degrading bacteria from termite (Cryptotermes sp.) gut flora were isolated, screened and their identification was studied which showed halo zones due to CMC agar. Among 12 isolates of bacteria, six isolates were cellulolytic. MLC-A isolate had shown a maximum in a cellulolytic index (1.32). Each isolate was identified based on standard physical and biochemical tests. Three isolates were identified in the genus of Clostridium, one isolate be placed in the group of Mycobacteriaceae, Lactobacillaceae or Coryneform and the last one in the genus Proteus.

  5. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria.

    PubMed

    Shrout, Joshua D; Scheetz, Todd E; Casavant, Thomas L; Parkin, Gene F

    2005-04-01

    Recent studies have shown that perchlorate (ClO(4) (-)) can be degraded by some pure-culture and mixed-culture bacteria with the addition of hydrogen. This paper describes the isolation of two hydrogen-utilizing perchlorate-degrading bacteria capable of using inorganic carbon for growth. These autotrophic bacteria are within the genus Dechloromonas and are the first Dechloromonas species that are microaerophilic and incapable of growth at atmospheric oxygen concentrations. Dechloromonas sp. JDS5 and Dechloromonas sp. JDS6 are the first perchlorate-degrading autotrophs isolated from a perchlorate-contaminated site. Measured hydrogen thresholds were higher than for other environmentally significant, hydrogen-utilizing, anaerobic bacteria (e.g., halorespirers). The chlorite dismutase activity of these bacteria was greater for autotrophically grown cells than for cells grown heterotrophically on lactate. These bacteria used fumarate as an alternate electron acceptor, which is the first report of growth on an organic electron acceptor by perchlorate-reducing bacteria.

  6. Isolation, Characterisation and Antagonistic Activity of Bacteria Symbionts Hardcoral Pavona sp. Isolated from Panjang Island, Jepara Against Infectious Multi-drug Resistant (MDR) Bacteria

    NASA Astrophysics Data System (ADS)

    Ayuningrum, D.; Kristiana, R.; Asagabaldan, M. A.; Sabdono, A.; Radjasa, O. K.; Nuryadi, H.; Trianto, A.

    2017-02-01

    Pavona sp. is highly spread over Indonesian waters including Panjang Island. Several studies showed that bacteria symbionts hardcoral were the big source of antibiotic product, but there was limited research of the bacteria symbionts with hardcoral Pavona sp. In this research bacteria symbionts from hardcoral Pavona sp. had been collected from Panjang Island, Jepara. Marine bacteria symbionts were isolated by serial dillution method, while antibacterial activity was performed by using overlay and agar block method. The total of 2 from 5 isolates were active to MDR bacteria such as Enterobacter aerogenes and Acinetobacter baumanii, the code were PHC 44/04 and PHC 44/05. Then both of them were identified by morphological and molecular DNA characterization using 16 S rRNA gene sequence. The result of 16 S rRNA identification shows PHC 44/04 has 99% similarities with Virgibacillus salarius strain sa-Vb 1, while PHC 44/05 shows 99% similarities with Pseudoalteromonas flavipulchra strain NCIMB 2033.

  7. Airborne Multidrug-Resistant Bacteria Isolated from a Concentrated Swine Feeding Operation

    PubMed Central

    Chapin, Amy; Rule, Ana; Gibson, Kristen; Buckley, Timothy; Schwab, Kellogg

    2005-01-01

    The use of nontherapeutic levels of antibiotics in swine production can select for antibiotic resistance in commensal and pathogenic bacteria in swine. As a result, retail pork products, as well as surface and groundwaters contaminated with swine waste, have been shown to be sources of human exposure to antibiotic-resistant bacteria. However, it is unclear whether the air within swine operations also serves as a source of exposure to antibiotic-resistant bacterial pathogens. To investigate this issue, we sampled the air within a concentrated swine feeding operation with an all-glass impinger. Samples were analyzed using a method for the isolation of Enterococcus. A total of 137 presumptive Enterococcus isolates were identified to species level using standard biochemical tests and analyzed for resistance to erythromycin, clindamycin, virginiamycin, tetracycline, and vancomycin using the agar dilution method. Thirty-four percent of the isolates were confirmed as Enterococcus, 32% were identified as coagulase-negative staphylococci, and 33% were identified as viridans group streptococci. Regardless of bacterial species, 98% of the isolates expressed high-level resistance to at least two antibiotics commonly used in swine production. None of the isolates were resistant to vancomycin, an antibiotic that has never been approved for use in livestock in the United States. In conclusion, high-level multidrug-resistant Enterococcus, coagulase-negative staphylococci, and viridans group streptococci were detected in the air of a concentrated swine feeding operation. These findings suggest that the inhalation of air from these facilities may serve as an exposure pathway for the transfer of multidrug-resistant bacterial pathogens from swine to humans. PMID:15687049

  8. Isolation and characterization of pigmented algicidal bacteria from seawater

    NASA Astrophysics Data System (ADS)

    Shaima, A.; Gires, U.; Asmat, A.

    2014-09-01

    Some dinoflagellate species are toxic and widely distributed in Malaysian marines ecosystems. They can cause many problems to aquatic life due to the production of various potential and natural toxins that accumulate in filter feeding shellfish and cause food poisoning to human. In recent decades, bacteria have been widely used as a biological control against these harmful algae. In the present study, pigmented bacteria isolated from marine water of Port Dickson beach was studied for their anti-algal activity towards toxic dinoflagellate Alexandrium minutum. Four isolates were studied and only one was capable of inhibiting algal growth when treated with bacterial culture. The algilytic effect on dinoflagellate was evaluated based on direct cell count under the microscope. Results showed that only isolate Sdpd-310 with orange colour has an inhibitory effect on A. minutum growth. This study demonstrated the rapid algicidal activity of a marine pigmented bacteria against the toxic dinoflagellate A. minutum.

  9. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays

    PubMed Central

    2017-01-01

    The combination of supramolecular hydrogels formed by low molecular weight gelator self-assembly via noncovalent interactions within a scaffold derived from polyethylene glycol (PEG) affords an interesting approach to immobilize fully functional, isolated reporter bacteria in novel microwell arrays. The PEG-based scaffold serves as a stabilizing element and provides physical support for the self-assembly of the C2-phenyl-derived gelator on the micrometer scale. Supramolecular hydrogel microwell arrays with various shapes and sizes were used to isolate single or small numbers of Escherichia coli TOP10 pTetR-LasR-pLuxR-GFP. In the presence of the autoinducer N-(3-oxododecanoyl) homoserine lactone, the entrapped E. coli in the hydrogel microwell arrays showed an increased GFP expression. The shape and size of microwell arrays did not influence the fluorescence intensity and the projected size of the bacteria markedly, while the population density of seeded bacteria affected the number of bacteria expressing GFP per well. The hydrogel microwell arrays can be further used to investigate quorum sensing, reflecting communication in inter- and intraspecies bacterial communities for biology applications in the field of biosensors. In the future, these self-assembled hydrogel microwell arrays can also be used as a substrate to detect bacteria via secreted autoinducers. PMID:28486805

  10. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays.

    PubMed

    Li, Ping; Dou, Xiaoqiu; Feng, Chuanliang; Müller, Mareike; Chang, Matthew Wook; Frettlöh, Martin; Schönherr, Holger

    2017-08-08

    The combination of supramolecular hydrogels formed by low molecular weight gelator self-assembly via noncovalent interactions within a scaffold derived from polyethylene glycol (PEG) affords an interesting approach to immobilize fully functional, isolated reporter bacteria in novel microwell arrays. The PEG-based scaffold serves as a stabilizing element and provides physical support for the self-assembly of the C 2 -phenyl-derived gelator on the micrometer scale. Supramolecular hydrogel microwell arrays with various shapes and sizes were used to isolate single or small numbers of Escherichia coli TOP10 pTetR-LasR-pLuxR-GFP. In the presence of the autoinducer N-(3-oxododecanoyl) homoserine lactone, the entrapped E. coli in the hydrogel microwell arrays showed an increased GFP expression. The shape and size of microwell arrays did not influence the fluorescence intensity and the projected size of the bacteria markedly, while the population density of seeded bacteria affected the number of bacteria expressing GFP per well. The hydrogel microwell arrays can be further used to investigate quorum sensing, reflecting communication in inter- and intraspecies bacterial communities for biology applications in the field of biosensors. In the future, these self-assembled hydrogel microwell arrays can also be used as a substrate to detect bacteria via secreted autoinducers.

  11. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  12. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria.

    PubMed

    Kaktcham, Pierre Marie; Temgoua, Jules-Bocamdé; Ngoufack Zambou, François; Diaz-Ruiz, Gloria; Wacher, Carmen; Pérez-Chabela, María de Lourdes

    2017-02-01

    The present study aimed to evaluate the bacterial load of water, Nile Tilapia and common Carp intestines from earthen ponds, isolate lactic acid bacteria (LAB) and assess their antimicrobial activity against fish spoilage and pathogenic bacteria. Following enumeration and isolation of microorganisms the antimicrobial activity of the LAB isolates was evaluated. Taxonomic identification of selected antagonistic LAB strains was assessed, followed by partial characterisation of their antimicrobial metabolites. Results showed that high counts (>4 log c.f.u ml -1 or 8 log c.f.u g -1 ) of total aerobic bacteria were recorded in pond waters and fish intestines. The microbiota were also found to be dominated by Salmonella spp., Vibrio spp., Staphylococcus spp. and Escherichia coli. LAB isolates (5.60%) exhibited potent direct and extracellular antimicrobial activity against the host-derived and non host-derived spoilage and pathogenic bacteria. These antagonistic isolates were identified and Lactococcus lactis subsp. lactis was found as the predominant (42.85%) specie. The strains displayed the ability to produce lactic, acetic, butyric, propionic and valeric acids. Bacteriocin-like inhibitory substances with activity against Gram-positive and Gram-negative (Vibrio spp. and Pseudomonas aeruginosa) bacteria were produced by three L. lactis subsp. lactis strains. In this study, the LAB from the microbiota of fish and pond water showed potent antimicrobial activity against fish spoilage or pathogenic bacteria from the same host or ecological niche. The studied Cameroonian aquatic niche is an ideal source of antagonistic LAB that could be appropriate as new fish biopreservatives or disease control agents in aquaculture under tropical conditions in particular or worldwide in general.

  13. Isolation of Rhizobium Bacteria from Forage Legumes for the Development of Ruminant Feed

    NASA Astrophysics Data System (ADS)

    Fuskhah, E.; Purbajanti, E. D.; Anwar, S.

    2018-02-01

    The aimed of the study was to explore the presence of Rhizobium bacteria along the northern coast of Central Java, to develop a saline-resistant legumes. Rhizobium bacteria is a mutualistic bacterium capable of symbiosis with legumes so that legumes crop yields increase. The research begins with sampling of soil and root nodule of forage legumes along the Northern Coast of Central Java including Tegal, Pekalongan, Semarang, Demak, Pati. Soil samples were analysed for salinity, Total Dissolved Solids, and pH. Rhizobium bacteria were isolated from the acquired root nodule, then identified by biochemical test to ensure that the isolates obtained were Rhizobium bacteria. The results showed that the five districts/municipal sites sampled by the soil have very low salinity to very high levels. The highest level of soil salinity was found in Demak (Sayung) which has an electrical conductivity value (EC) of 17.77 mmhos/cm. The EC values of legumes overgrown soils showed a low salinity level while bare soils have high salinity levels. Feed crops legumes that could be found in the northern coast of Central Java were Centrosema pubescens, Calopogonium mucunoides, Leucaena leucocephala, and Sesbania grandiflora. The study obtained 6 kinds of isolates of rhizobium bacteria isolated from forage legumes, included 1) Centrosema pubescens isolated from Pekalongan, 2) Centrosema pubescens isolated from Tegal, 3) Calopogonium mucunoides isolated from Pekalongan, 4) Leucaenaleucocephala isolated from Tegal, 5) Leucaena leucocephala isolated from Semarang, 6) Sesbania grandiflora isolated from Tegal.

  14. Effect of media composition, including gelling agents, on isolation of previously uncultured rumen bacteria.

    PubMed

    Nyonyo, T; Shinkai, T; Tajima, A; Mitsumori, M

    2013-01-01

    The aim of this study was to develop novel anaerobic media using gellan gum for the isolation of previously uncultured rumen bacteria. Four anaerobic media, a basal liquid medium (BM) with agar (A-BM), a modified BM (MBM) with agar (A-MBM), an MBM with phytagel (P-MBM) and an MBM with gelrite (G-MBM) were used for the isolation of rumen bacteria and evaluated for the growth of previously uncultured rumen bacteria. Of the 214 isolates composed of 144 OTUs, 103 isolates (83 OTUs) were previously uncultured rumen bacteria. Most of the previously uncultured strains were obtained from A-MBM, G-MBM and P-MBM, but the predominant cultural members, isolated from each medium, differed. A-MBM and G-MBM showed significantly higher numbers of different OTUs derived from isolates than A-BM (P < 0·05). The Shannon index indicated that the isolates of A-MBM showed the highest diversity (H' = 3·89) compared with those of G-MBM, P-MBM and A-BM (H' = 3·59, 3·23 and 3·39, respectively). Although previously uncultured rumen bacteria were isolated from all media used, the ratio of previously uncultured bacteria to total isolates was increased in A-MBM, P-MBM and G-MBM. © 2012 The Society for Applied Microbiology.

  15. Effects of Growth Medium, Inoculum Size, and Incubation Time on Culturability and Isolation of Soil Bacteria

    PubMed Central

    Davis, Kathryn E. R.; Joseph, Shayne J.; Janssen, Peter H.

    2005-01-01

    Soils are inhabited by many bacteria from phylogenetic groups that are poorly studied because representatives are rarely isolated in cultivation studies. Part of the reason for the failure to cultivate these bacteria is the low frequency with which bacterial cells in soil form visible colonies when inoculated onto standard microbiological media, resulting in low viable counts. We investigated the effects of three factors on viable counts, assessed as numbers of CFU on solid media, and on the phylogenetic groups to which the isolated colony-forming bacteria belong. These factors were inoculum size, growth medium, and incubation time. Decreasing the inoculum size resulted in significant increases in the viable count but did not appear to affect colony formation by members of rarely isolated groups. Some media that are traditionally used for soil microbiological studies returned low viable counts and did not result in the isolation of members of rarely isolated groups. Newly developed media, in contrast, resulted in high viable counts and in the isolation of many members of rarely isolated groups, regardless of the inoculum size. Increased incubation times of up to 3 months allowed the development of visible colonies of members of rarely isolated groups in conjunction with the use of appropriate media. Once isolated, pure cultures of members of rarely isolated groups took longer to form visible colonies than did members of commonly isolated groups. Using these new media and extended incubation times, we were able to isolate many members of the phyla Acidobacteria (subdivisions 1, 2, 3, and 4), Gemmatimonadetes, Chloroflexi, and Planctomycetes (including representatives of the previously uncultured WPS-1 lineage) as well as members of the subclasses Rubrobacteridae and Acidimicrobidae of the phylum Actinobacteria. PMID:15691937

  16. Influences of Media Compositions on Characteristics of Isolated Bacteria Exhibiting Lignocellulolytic Activities from Various Environmental Sites.

    PubMed

    Gong, Gyeongtaek; Lee, Sun-Mi; Woo, Han Min; Park, Tai Hyun; Um, Youngsoon

    2017-11-01

    Efficient isolation of lignocellulolytic bacteria is essential for the utilization of lignocellulosic biomass. In this study, bacteria with cellulolytic, xylanolytic, and lignolytic activities were isolated from environmental sites such as mountain, wetland, and mudflat using isolation media containing the combination of lignocellulose components (cellulose, xylan, and lignin). Eighty-nine isolates from the isolation media were characterized by analyzing taxonomic ranks and cellulolytic, xylanolytic, and lignolytic activities. Most of the cellulolytic bacteria showed multienzymatic activities including xylanolytic activity. The isolation media without lignin were efficient in isolating bacteria exhibiting multienzymatic activities even including lignolytic activity, whereas a lignin-containing medium was effective to isolate bacteria exhibiting lignolytic activity only. Multienzymatic activities were mainly observed in Bacillus and Streptomyces, while Burkholderia was the most abundant genus with lignolytic activity only. This study provides insight into isolation medium for efficient isolation of lignocellulose-degrading microorganisms.

  17. Antibiotic Susceptibilities of Bacteria Isolated within the Oral Flora of Florida Blacktip Sharks: Guidance for Empiric Antibiotic Therapy

    PubMed Central

    Unger, Nathan R.; Ritter, Erich; Borrego, Robert; Goodman, Jay; Osiyemi, Olayemi O.

    2014-01-01

    Sharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released. The average fork length was 146 cm (±11), suggesting the blacktip sharks were mature adults at least 8 years old. All swabs underwent standard microbiological work-up with identification of organisms and reporting of antibiotic susceptibilities using an automated microbiology system. The oral samples revealed an average of 2.72 (±1.4) bacterial isolates per shark. Gram-negative bacteria, making up 61% of all bacterial isolates, were significantly (p<0.001) more common than gram-positive bacteria (39%). The most common organisms were Vibrio spp. (28%), various coagulase-negative Staphylococcus spp. (16%), and Pasteurella spp. (12%). The overall resistance rate was 12% for all antibiotics tested with nearly 43% of bacteria resistant to at least one antibiotic. Multi-drug resistance was seen in 4% of bacteria. No association between shark gender or fork length with bacterial density or antibiotic resistance was observed. Antibiotics with the highest overall susceptibility rates included fluoroquinolones, 3rd generation cephalosporins and sulfamethoxazole/trimethoprim. Recommended empiric antimicrobial therapy for adult blacktip shark bites should encompass either a fluoroquinolone or combination of a 3rd generation cephalosporin plus doxycycline. PMID:25110948

  18. More Easily Cultivated Than Identified: Classical Isolation With Molecular Identification of Vaginal Bacteria

    PubMed Central

    Srinivasan, Sujatha; Munch, Matthew M.; Sizova, Maria V.; Fiedler, Tina L.; Kohler, Christina M.; Hoffman, Noah G.; Liu, Congzhou; Agnew, Kathy J.; Marrazzo, Jeanne M.; Epstein, Slava S.; Fredricks, David N.

    2016-01-01

    Background. Women with bacterial vaginosis (BV) have complex communities of anaerobic bacteria. There are no cultivated isolates of several bacteria identified using molecular methods and associated with BV. It is unclear whether this is due to the inability to adequately propagate these bacteria or to correctly identify them in culture. Methods. Vaginal fluid from 15 women was plated on 6 different media using classical cultivation approaches. Individual isolates were identified by 16S ribosomal RNA (rRNA) gene sequencing and compared with validly described species. Bacterial community profiles in vaginal samples were determined using broad-range 16S rRNA gene polymerase chain reaction and pyrosequencing. Results. We isolated and identified 101 distinct bacterial strains spanning 6 phyla including (1) novel strains with <98% 16S rRNA sequence identity to validly described species, (2) closely related species within a genus, (3) bacteria previously isolated from body sites other than the vagina, and (4) known bacteria formerly isolated from the vagina. Pyrosequencing showed that novel strains Peptoniphilaceae DNF01163 and Prevotellaceae DNF00733 were prevalent in women with BV. Conclusions. We isolated a diverse set of novel and clinically significant anaerobes from the human vagina using conventional approaches with systematic molecular identification. Several previously “uncultivated” bacteria are amenable to conventional cultivation. PMID:27449870

  19. Mutations and Misconceptions: The Isolation and Study of Mutant Bacteria.

    ERIC Educational Resources Information Center

    Corner, Thomas R.

    1992-01-01

    Describes simple, inexpensive activities for teaching students about mutants and mutations in bacteria. Explains how to isolate bacteria from soil and leaves and how to grow bacteria on agar or in broth. Describes how to construct a gradient plate for finding the minimum inhibitory concentration of a substance and how to use this set up to find…

  20. Biodegradation Capability of Some Bacteria Isolates to Use Lubricant Oil in Vitro

    NASA Astrophysics Data System (ADS)

    Ahda, Y.; Azhar, M.; Fitri, L.; Afnida, A.; Adha, G. S.; Alifa, W. N.; Handayani, D.; Putri, D. H.; Irdawati, I.; Chatri, M.

    2018-04-01

    Our previous study identified three species of bacteria, i.e. Alcaligenes sp., Bacillus spl, and Bacillus sp2 isolated from using lubricant oil-contaminated soil in a Padang’s workshop. However, its ability to degrade hydrocarbon were not known yet. In this extension study, we explore a wider area to find more hydrocarbonoclastic bacteria and examined its capability to degrade hydrocarbon in vitro. Seventeen isolates were characterized its capability using NA + used lubricant oil + tween + neutral red medium. Isolates A1, B2, D1 and D4 shows the high degradation index, whereas isolates A2, A3, A5, D2, B1, B3 and isolates A4, B4, D3 have medium and low degradation index, respectively. These potential hydrocarbonoclastic bacteria need in situ characterization to know their actual activities for bioremediation.

  1. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater

    PubMed Central

    Alam, Mohammad Zubair; Aqil, Farrukh; Ahmad, Iqbal; Ahmad, Shamim

    2013-01-01

    This study reports the occurrence of antibiotic resistance and production of β-lactamases including extended spectrum beta-lactamases (ESβL) in enteric bacteria isolated from hospital wastewater. Among sixty-nine isolates, tested for antibiotic sensitivity, 73.9% strains were resistant to ampicillin followed by nalidixic acid (72.5%), penicillin (63.8%), co-trimoxazole (55.1%), norfloxacin (53.6%), methicillin (52.7%), cefuroxime (39.1%), cefotaxime (23.2%) and cefixime (20.3%). Resistance to streptomycin, chloramphenicol, nitrofurantoin, tetracycline, and doxycycline was recorded in less than 13% of the strains. The minimum inhibitory concentration (MIC) showed a high level of resistance (800–1600 μg/mL) to one or more antibiotics. Sixty three (91%) isolates produced β-lactamases as determined by rapid iodometric test. Multiple antibiotic resistances were noted in both among ESβL and non-ESβL producers. The β-lactamases hydrolyzed multiple substrates including penicillin (78.8% isolates), ampicillin (62.3%), cefodroxil (52.2%), cefotoxime (21.7%) and cefuroxime (18.8%). Fifteen isolates producing ESβLs were found multidrug resistant. Four ESβL producing isolates could transfer their R-plasmid to the recipient strain E. coli K-12 with conjugation frequency ranging from 7.0 × 10−3 to 8.8 × 10−4. The findings indicated that ESβL producing enteric bacteria are common in the waste water. Such isolates may disseminate the multiple antibiotic resistance traits among bacterial community through genetic exchange mechanisms and thus requires immediate attention. PMID:24516448

  2. Isolation of antifungal bacteria from Japanese fermented soybeans, natto.

    PubMed

    Murata, Daichi; Sawano, Sayaka; Ohike, Tatsuya; Okanami, Masahiro; Ano, Takashi

    2013-12-01

    An inhibitory effect of a traditional Japanese fermented food, natto, was found against plant pathogens such as Rhizoctonia solani and Fusarium oxysporum, and the bacteria which showed inhibition were isolated from the natto. Among isolated bacteria, BC-1 and GAc exhibited a strong antagonistic effect in vitro against plant pathogens on an agar medium. The supernatant of bacterial culture also showed strong activity against R. solani, which meant the antimicrobial substances were produced and secreted into the medium. Both of the bacteria were estimated as Bacillus amyloliquefaciens from a partial sequence of the 16s rRNA gene. High performance liquid chromatography analysis clearly showed the production of the lipopeptide antibiotic iturin A by BC-1 and GAc. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  3. Antimicrobial resistance among aerobic biofilm producing bacteria isolated from chronic wounds in the tertiary care hospitals of Peshawar, Pakistan.

    PubMed

    Rahim, K; Qasim, M; Rahman, H; Khan, T A; Ahmad, I; Khan, N; Ullah, A; Basit, A; Saleha, S

    2016-08-01

    Chronic wound infections impose major medical and economic costs on health-care systems, cause significant morbidity, mortality and prolonged hospitalisation. The presence of biofilm producing bacteria in these wounds is considered as an important virulence factor that leads to chronic implications including ulceration. The undertaken study aimed to isolate and identify the biofilm aerobic bacterial pathogens from patients with chronic wound infections, and determine their antibiotics resistance profiles Method: During this study, swab specimens were collected from patients with chronic wounds at teaching hospitals of Peshawar, Pakistan between May 2013 and June 2014. The isolated aerobic bacterial pathogens were identified on the basis of standard cultural characteristics and biochemical tests. Antibiotics resistance profiles of biofilm producing bacteria against selected antibiotics were then determined. Among the chronic wound infections, diabetic foot ulcers were most common 37 (37%), followed by surgical ulcers 27 (27%). Chronic wounds were common in male patients older than 40 years. Among the total 163 isolated bacterial pathogens the most prevalent bacterial species were Pseudomonas aeruginosa 44 (27%), Klebsiella pneumoniae 26 (16%), Staphylococcus species 22 (14%) and Streptococcus spp. 21 (13%). The isolation rate of bacterial pathogens was high among patients with diabetic foot ulcers 83 (50.9%). Among bacterial isolates, 108 (66.2%) were observed as biofilm producers while 55 (33.8%) did not form biofilm in our model. The investigated biofilm producing bacterial isolates showed comparatively high resistance against tested antibiotics compared to non-biofilm producing bacterial isolates. The most effective antibiotics were amikacine and cefepime against all isolates. Increased multidrug resistance in biofilm producing bacteria associated with chronic wounds was observed in this study. Judicious use of antibiotics is needed to control the wound

  4. More Easily Cultivated Than Identified: Classical Isolation With Molecular Identification of Vaginal Bacteria.

    PubMed

    Srinivasan, Sujatha; Munch, Matthew M; Sizova, Maria V; Fiedler, Tina L; Kohler, Christina M; Hoffman, Noah G; Liu, Congzhou; Agnew, Kathy J; Marrazzo, Jeanne M; Epstein, Slava S; Fredricks, David N

    2016-08-15

    Women with bacterial vaginosis (BV) have complex communities of anaerobic bacteria. There are no cultivated isolates of several bacteria identified using molecular methods and associated with BV. It is unclear whether this is due to the inability to adequately propagate these bacteria or to correctly identify them in culture. Vaginal fluid from 15 women was plated on 6 different media using classical cultivation approaches. Individual isolates were identified by 16S ribosomal RNA (rRNA) gene sequencing and compared with validly described species. Bacterial community profiles in vaginal samples were determined using broad-range 16S rRNA gene polymerase chain reaction and pyrosequencing. We isolated and identified 101 distinct bacterial strains spanning 6 phyla including (1) novel strains with <98% 16S rRNA sequence identity to validly described species, (2) closely related species within a genus, (3) bacteria previously isolated from body sites other than the vagina, and (4) known bacteria formerly isolated from the vagina. Pyrosequencing showed that novel strains Peptoniphilaceae DNF01163 and Prevotellaceae DNF00733 were prevalent in women with BV. We isolated a diverse set of novel and clinically significant anaerobes from the human vagina using conventional approaches with systematic molecular identification. Several previously "uncultivated" bacteria are amenable to conventional cultivation. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon.

    PubMed Central

    Fuerst, J A; Gwilliam, H G; Lindsay, M; Lichanska, A; Belcher, C; Vickers, J E; Hugenholtz, P

    1997-01-01

    Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae. The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented. A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria. Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group. Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species. A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology. PMID:8979353

  6. Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE.

    PubMed

    Weyens, Nele; Taghavi, Safiyh; Barac, Tanja; van der Lelie, Daniel; Boulet, Jana; Artois, Tom; Carleer, Robert; Vangronsveld, Jaco

    2009-11-01

    Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. In this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation. Cultivable bacteria isolated from bulk soil, rhizosphere, root, stem, and leaf were genotypically characterized by amplified rDNA restriction analysis (ARDRA) of their 16S rRNA gene and identified by 16S rRNA gene sequencing. Bacteria that displayed distinct ARDRA patterns were screened for heavy metal resistance, as well as TCE tolerance and degradation, as preparation for possible future in situ inoculation experiments. Furthermore, in situ evapotranspiration measurements were performed to investigate if the degradation capacity of the associated bacteria is enough to prevent TCE evapotranspiration to the air. Between both tree species, the associated populations of cultivable bacteria clearly differed in composition. In English Oak, more species-specific, most likely obligate endophytes were found. The majority of the isolated bacteria showed increased tolerance to TCE, and TCE degradation capacity was observed in some of the strains. However, in situ evapotranspiration measurements revealed that a significant amount of TCE and its metabolites

  7. Bacteria associated with oak and ash on a TCE-contaminated site: Characterization of isolates with potential to avoid evapotranspiration of TCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weyens, N.; van der Lelie, D.; Taghavi, S.

    2009-11-01

    Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. Inmore » this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation. Cultivable bacteria isolated from bulk soil, rhizosphere, root, stem, and leaf were genotypically characterized by amplified rDNA restriction analysis (ARDRA) of their 16S rRNA gene and identified by 16S rRNA gene sequencing. Bacteria that displayed distinct ARDRA patterns were screened for heavy metal resistance, as well as TCE tolerance and degradation, as preparation for possible future in situ inoculation experiments. Furthermore, in situ evapotranspiration measurements were performed to investigate if the degradation capacity of the associated bacteria is enough to prevent TCE evapotranspiration to the air. Between both tree species, the associated populations of cultivable bacteria clearly differed in composition. In English Oak, more species-specific, most likely obligate endophytes were found. The majority of the isolated bacteria showed increased tolerance to TCE, and TCE degradation capacity was observed in some of the strains. However, in situ evapotranspiration measurements revealed that a significant amount of TCE and its

  8. [Pigments of green sulfur bacteria isolated from reservoirs of Iavoriv sulfur deposit].

    PubMed

    Baran, I M; Hudz', S P; Hnatush, S O; Fedorovych, A M

    2004-01-01

    The enormous amount of hydrogen sulfide (up to 11 mg/ml) is present in the Yavoriv sulfur deposit reservoirs owing to sulfur reductive bacteria activity. As a consequence the ecological situation is badly affected and requires recovering. The biological H2S decomposition by photosynthetic sulfur bacteria, which use the hydrogen sulfide as electron donor during photosynthesis, can be one of the possible ways of this toxic substance destruction. The qualitative and quantitative analysis of photosynthetic pigments composition that derived from green photosynthesizing sulfur bacteria from reservoirs of Yavoriv sulfur deposit is carried out. It was fixed that Pelodictyon sp., Chlorobium sp. and isolated consortia "Pelochromatium sp." contain the bacteriochlorophyll c and d. All the isolated cultures contained bacteriochlorophyll a in trace amounts. The obtained photosynthetic pigments (bacteriochlorophylls, carotenoids) were recognized by their absorption spectra in the visible and far-red region and by their quantity. The difference was not essential. All investigated cultures of isolated bacteria contain some carotenoid the Chlorobium sp. and obtained consortia possesses isorenieratene. The absorption maxima of extracted pigments from young cultures of isolated green sulfur bacteria are more definitely displayed than those from old cultures. Investigations of phototrophic sulfur bacteria were carried out in Ukraine up to now. Ecological problem that occurred in the Yavoriv sulfur deposit as a result of the deposit exploitation caused a necessity of the investigation of photosynthetic sulfur bacteria and bacterial photosynthesis mechanism. The photosynthetic pigments nature identification will promote the fast and precise identification of the new forms of photosynthetic sulfur bacteria and will extend our knowledge about their role in the anoxygenic photosynthesis.

  9. Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi.

    PubMed

    Jung, Suk Hee; Park, Joung Whan; Cho, Il Jae; Lee, Nam Keun; Yeo, In-Cheol; Kim, Byung Yong; Kim, Hye Kyung; Hahm, Young Tae

    2012-09-01

    This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively.

  10. Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi

    PubMed Central

    Jung, Suk Hee; Park, Joung Whan; Cho, Il Jae; Lee, Nam Keun; Yeo, In-Cheol; Kim, Byung Yong; Kim, Hye Kyung; Hahm, Young Tae

    2012-01-01

    This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively. PMID:24471087

  11. Detection of Extended Spectrum Beta-Lactamases Resistance Genes among Bacteria Isolated from Selected Drinking Water Distribution Channels in Southwestern Nigeria.

    PubMed

    Adesoji, Ayodele T; Ogunjobi, Adeniyi A

    2016-01-01

    Extended Spectrum Beta-Lactamases (ESBL) provide high level resistance to beta-lactam antibiotics among bacteria. In this study, previously described multidrug resistant bacteria from raw, treated, and municipal taps of DWDS from selected dams in southwestern Nigeria were assessed for the presence of ESBL resistance genes which include bla TEM, bla SHV, and bla CTX by PCR amplification. A total of 164 bacteria spread across treated (33), raw (66), and municipal taps (68), belonging to α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Flavobacteriia, Bacilli, and Actinobacteria group, were selected for this study. Among these bacteria, the most commonly observed resistance was for ampicillin and amoxicillin/clavulanic acid (61 isolates). Sixty-one isolates carried at least one of the targeted ESBL genes with bla TEM being the most abundant (50/61) and bla CTX being detected least (3/61). Klebsiella was the most frequently identified genus (18.03%) to harbour ESBL gene followed by Proteus (14.75%). Moreover, combinations of two ESBL genes, bla SHV + bla TEM or bla CTX + bla TEM, were observed in 11 and 1 isolate, respectively. In conclusion, classic bla TEM ESBL gene was present in multiple bacterial strains that were isolated from DWDS sources in Nigeria. These environments may serve as foci exchange of genetic traits in a diversity of Gram-negative bacteria.

  12. Isolation and identification of local bacteria endophyte and screening of its antimicrobial property against pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Fikri, Ahmad Syairazie Ibrahim; Rahman, Irman Abdul; Nor, Norefrina Shafinaz Md; Hamzah, Ainon

    2018-04-01

    Endophytes are organisms, often fungi and bacteria that live in living plant cells. These organisms reside in the living tissues of the host plant in a variety of relationships, ranging from symbiotic to slightly pathogenic. The endophytes may produce a plethora of substances that have potential to be used in modern medicine, agriculture and industry. The aims of this study are to isolate, identify and screening antimicrobial activity of bacterial endophytes. The endophytes were isolated using nutrient agar, incubated at 37°C for 48 hours. Identification of the isolates were done based on morphological characteristics, biochemical tests and 16S rDNA molecular analysis. Disk diffusion method was used to screen for antimicrobial activity of metabolites from endophytes against pathogenic bacteria. Screening for antifungal activity of selected endophytes was done using dual culture method againts pathogenic fungi followed by Kirby-Bauer method. Results showed endophytes designated as B2c and B7b have positive antimicrobial activity. The metabolites from isolate B2c showed antimicrobial activity against pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and Staphylococcus epidermis, while isolate B7b have positive activities againts MRSA, S. aureus and Pseudomonas aeruginosa. Isolates B2c displayed antifungal activity against Fusarium oxysporum, Fusarium solani, Phytophthora palmivora and Colletotrichum gloeosporioides. Identification using biochemical tests and 16S rDNA sequences identified isolate B2c as Pseudomonas resinovorans with 97% homology and isolate B7b as Bacillus subtilis with 98% homology.

  13. [Selective-differential nutrient medium "Shewanella IRHLS agar" for isolation of Shewanella genus bacteria].

    PubMed

    Sivolodsky, E P

    2015-01-01

    Development of a selective-differential nutrient medium for isolation of Shewanella genus bacteria. 73 strains of Shewanella bacteria (S. algae--3, S. baltica--26, S. putrefaciens--44) and 80 strains of 22 other bacteria genera were used. Shewanella species were identified by methods and criteria proposed by Nozue H. et al., 1992; Khashe S. et al., 1998. Nutrient media "Shewanella IRHLS Agar" for shewanella isolation was developed. Medium selective factors: irgazan DP-300 (I). 0.14-0.2 g/l and rifampicin (R) 0.0005-0.001 g/l. Shevanella colonies were detected by the production of hydrogen sulfide (H), lipase presence (L), lack of sorbitol fermentation (S). The medium suppressed the growth of hydrogen sulfide producers (Salmonella, Proteus) and blocked hydrogen sulfide production by Citrobacter. Growth of Escherichia, Enterobacter, Klebsiella, Shigella, Staphylococcus, Bacillus was also suppressed, Analytical sensitivity of the medium was 1-2 CFU/ml for Shewanella and Stenotrophomonas, Aerombnas, Serratia genera bacteria. 72 strains of Shewanella were isolated from water of Neva river in this medium, 91.7 ± 3.2% of those produced H2S. 1 strain of S. algae was isolated from clinical material. The developed media allows to use it in a complex for Stenotrophomo- nas sp., Aeromonas sp., Serratia sp., Citrobactersp. and Shewanella bacteria isolation.

  14. Triclosan- resistant bacteria isolated from feedlot and residential soils

    PubMed Central

    WELSCH, TANNER T.; GILLOCK, ERIC T.

    2014-01-01

    Triclosan is an antimicrobial agent that is currently incorporated into hundreds of consumer and medical products. It can be either a bacteriostatic or bactericidal agent, depending on its formulation. It has activity against Gram-positive and Gram-negative bacteria, as well as some viruses and protists. The purpose of this study was to determine whether triclosan-resistant bacteria could be isolated from the soil. Soils from cattle feedlots and residential lawns were collected and assayed for the presence of these organisms by plating samples on growth media containing triclosan. Organisms were subsequently identified by partial 16S rRNA sequencing analysis. All the organisms isolated in this study were Gram-negative rods, with members of genus Pseudomonas being particularly well represented. This result may not be surprising because Gram-negative organisms are generally more resistant to triclosan, and since Pseudomonas bacteria are known to have numerous efflux mechanisms for dealing with harmful substances. PMID:21391038

  15. Screening and isolation of halophilic bacteria producing industrially important enzymes.

    PubMed

    Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S P, Singh; S K, Khare

    2012-10-01

    Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.

  16. Screening and isolation of halophilic bacteria producing industrially important enzymes

    PubMed Central

    Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S.P., Singh; S.K., Khare

    2012-01-01

    Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3–20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology. PMID:24031991

  17. Use of mycelia as paths for the isolation of contaminant‐degrading bacteria from soil

    PubMed Central

    Furuno, Shoko; Remer, Rita; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties. PMID:22014110

  18. Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments.

    PubMed Central

    Molongoski, J J; Klug, M J

    1976-01-01

    Strict anaerobic culture techniques were used to quantitatively and qualitatively evaluate the anaerobic heterotrophic bacteria present at the sediment-water interface of hyperutrophic Wintergreen Lake (Augusta, Mich.). Anaerobic plate counts remained constant from March through December, 1973, ranging from 2.4 X 10(6) to 5.7 X 10(6) organisms/g (dry weight) of sediment. The isolatable bacteria represented a small percentage of the total microbial community, which was shown by direct microscopic counts to be 2.0 X 10'' organisms/g (dry weight) of sediment during June and July. Bacteria of the genus Clostridium dominated the isolates obtained, accounting for 71.8% of the 960 isolates examined. A single species, Clostridium bifermentens, comprised 47.7% of the total. Additional bacterial groups and the percentage in which they were isolated included: Streptococcus sp. (10.8%), unidentified curved rods (9.5%y, gram-positive nonsporing rods (5.6%), and motile gram-negative rods (1.9%). Temperature growth studies demonstrated the ability of all the isolates to grow at in situ sediment temperatures. Gas-liqid radiochromatography was used to determine the soluble metabolic end products from [U-14C]glucose and a U-14C-labeled amino acid mixture by representative sedimentary clostridial isolates and by natural sediment microbial communities. At in situ temperatures the natural sediment microflora produced soluble fermentative end products characteristic of those elaborated by the clostridial isolates tested. These results are considered strong presumptive evidence that clostridia are actively metabolizing in the sediments of Wintergreen Lake. PMID:942211

  19. Thermostable 𝜶-Amylase Activity from Thermophilic Bacteria Isolated from Bora Hot Spring, Central Sulawesi

    NASA Astrophysics Data System (ADS)

    Gazali, F. M.; Suwastika, I. N.

    2018-03-01

    α-Amylase is one of the most important enzyme in biotechnology field, especially in industrial application. Thermostability of α-Amylase produced by thermophilic bacteria improves industrial process of starch degradation in starch industry. The present study were concerned to the characterization of α-Amylase activity from indigenous thermophilic bacteria isolated from Bora hot spring, Central Sulawesi. There were 18 isolates which had successfully isolated from 90°C sediment samples of Bora hot spring and 13 of them showed amylolytic activity. The α-Amylase activity was measured qualitatively at starch agar and quantitatively based on DNS (3,5-Dinitrosalicylic acid) methods, using maltose as standard solution. Two isolates (out of 13 amylolytic bacteria), BR 002 and BR 015 showed amylolytic index of 0.8 mm and 0.5 mm respectively, after being incubated at 55°C in the 0.002% Starch Agar Medium. The α-Amylase activity was further characterized quantitatively which includes the optimum condition of pH and temperature of α-Amylase crude enzyme from each isolate. To our knowledge, this is the first report on isolation and characterization of a thermostable α-Amylase from thermophilic bacteria isolated from Central Sulawesi particularly from Bora hot spring.

  20. Frequency and antimicrobial susceptibility of gram-negative bacteria isolated from 2 hospitals in Makkah, Saudi Arabia.

    PubMed

    Asghar, Atif H; Faidah, Hani S

    2009-08-01

    To estimate the prevalence and antibiotic susceptibility of the gram-negative bacteria isolated from 2 hospitals in Makkah. This study was undertaken in 2 main tertiary care hospitals namely; Al-Noor Specialist Hospital, and Hera Hospital in Makkah, Kingdom of Saudi Arabia from October 2005 to March 2006. A total of 1137 gram-negative bacteria were identified in non-duplicate clinical specimens obtained from 965 patients of various body sites infections. Demographic data, identity of microorganisms, and antimicrobial susceptibilities were obtained from medical and laboratory records. The most prevalent gram-negative bacteria were Escherichia coli (31.6%), and Pseudomonas aeruginosa (31.2%), followed by Acinetobacter baumannii (10.8%), Klebsiella pneumoniae (8.3%), Klebsiella sp. (6.2%), Haemophilus influenzae (3.7%), Proteus sp. (3.3%), and Enterobacter sp. (1.9%). Results demonstrated that gram-negative bacteria have a high rate of resistance to commonly used antibiotics. Furthermore, multi-drug resistance was also common in this study. Our data showed a high rate of resistance among gram-negative pathogens in comparison with other countries in the world. The implementation of monitoring programs is an important part of the prevention strategy against the development of antibiotic resistance in hospitals.

  1. Stimulation of Lactic Acid Bacteria by a Micrococcus Isolate: Evidence for Multiple Effects

    PubMed Central

    Nath, K. R.; Wagner, B. J.

    1973-01-01

    Growth of, and rate of acid production by, six cultures of lactic acid bacteria were increased in the presence of Micrococcus isolate F4 or a preparation of its capsular material. Concentrations of hydrogen peroxide found in pure cultures of the lactic acid bacteria were not detectable, or were greatly reduced, in mixed culture with Micrococcus isolate F4. The capsular material was not as effective as whole cells in preventing accumulation of H2O2. Catalase stimulated growth of, and the rate of acid production by, the lactic acid bacteria, but not to the same extent as Micrococcus isolate F4 in some cultures. The existence of two mechanisms for micrococcal stimulation of the lactic acid bacteria is postulated. One mechanism involves removal of H2O2; the other has not been characterized. PMID:4199337

  2. The antimicrobial activity of honey against common equine wound bacterial isolates.

    PubMed

    Carnwath, R; Graham, E M; Reynolds, K; Pollock, P J

    2014-01-01

    Delayed healing associated with distal limb wounds is a particular problem in equine clinical practice. Recent studies in human beings and other species have demonstrated the beneficial wound healing properties of honey, and medical grade honey dressings are available commercially in equine practice. Equine clinicians are reported to source other non-medical grade honeys for the same purpose. This study aimed to assess the antimicrobial activity of a number of honey types against common equine wound bacterial pathogens. Twenty-nine honey products were sourced, including gamma-irradiated and non-irradiated commercial medical grade honeys, supermarket honeys, and honeys from local beekeepers. To exclude contaminated honeys from the project, all honeys were cultured aerobically for evidence of bacterial contamination. Aerobic bacteria or fungi were recovered from 18 products. The antimicrobial activity of the remaining 11 products was assessed against 10 wound bacteria, recovered from the wounds of horses, including methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa. Eight products were effective against all 10 bacterial isolates at concentrations varying from <2% to 16% (v/v). Overall, the Scottish Heather Honey was the best performing product, and inhibited the growth of all 10 bacterial isolates at concentrations ranging from <2% to 6% (v/v). Although Manuka has been the most studied honey to date, other sources may have valuable antimicrobial properties. Since some honeys were found to be contaminated with aerobic bacteria or fungi, non-sterile honeys may not be suitable for wound treatment. Further assessment of gamma-irradiated honeys from the best performing honeys would be useful. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    PubMed

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-07-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly.

  4. Multiresistant Bacteria Isolated from Chicken Meat in Austria

    PubMed Central

    Zarfel, Gernot; Galler, Herbert; Luxner, Josefa; Petternel, Christian; Reinthaler, Franz F.; Haas, Doris; Kittinger, Clemens; Grisold, Andrea J.; Pless, Peter; Feierl, Gebhard

    2014-01-01

    Multidrug resistant bacteria (MDR bacteria), such as extended spectrum beta-lactamase (ESBL) Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE), pose a challenge to the human health care system. In recent years, these MDR bacteria have been detected increasingly outside the hospital environment. Also the contamination of food with MDR bacteria, particularly of meat and meat products, is a concern. The aim of the study was to evaluate the occurrence of MDR bacteria in chicken meat on the Austrian market. For this study, 50 chicken meat samples were analysed. All samples originated from chickens slaughtered in Austrian slaughterhouses and were marked as produced in Austria. Samples were analysed for the presence of ESBL Enterobacteriaceae, methicillin resistant Staphylococci and VRE. Resistance genes of the isolated bacteria were characterised by PCR and sequencing. In the present study 26 ESBL producing E. coli, five mecA gene harbouring Staphylococci (but no MRSA), and four VRE were detected in chicken meat samples of Austrian origin. In 24 (48%) of the samples no ESBL Enterobacteriaceae, MRSA, methicillin resistant coagulase negative Staphylococcus (MRCNS) or VRE could be detected. None of the samples contained all three types of investigated multiresistant bacteria. In concordance to previous studies, CTX-M-1 and SHV-12 were the dominant ESBL genes. PMID:25485979

  5. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber.

    PubMed

    Khabbaz, Salah Eddin; Abbasi, Pervaiz A

    2014-01-01

    Antagonistic bacteria are common soil inhabitants with potential to be developed into biofungicides for the management of seedling damping-off, root rot, and other soil-borne diseases of various crops. In this study, antagonistic bacteria were isolated from a commercial potato field and screened for their growth inhibition of fungal and oomycete pathogens in laboratory tests. The biocontrol potential of the 3 most effective antagonistic bacteria from the in vitro tests was evaluated against seedling damping-off and root rot of cucumber caused by Pythium ultimum. Based on phenotypic characteristics, biochemical tests, and sequence analysis of 16S-23S rDNA gene, the 3 antagonistic bacteria were identified as Pseudomonas fluorescens (isolate 9A-14), Pseudomonas sp. (isolate 8D-45), and Bacillus subtilis (isolate 8B-1). All 3 bacteria promoted plant growth and suppressed Pythium damping-off and root rot of cucumber seedlings in growth-room assays. Both pre- and post-planting application of these bacteria to an infested peat mix significantly increased plant fresh masses by 113%-184% and percentage of healthy seedlings by 100%-290%, and decreased damping-off and root rot severity by 27%-50%. The peat and talc formulations of these antagonistic bacteria applied as seed or amendment treatments to the infested peat mix effectively controlled Pythium damping-off and root rot of cucumber seedlings and enhanced plant growth. The survival of all 3 antagonistic bacteria in peat and talc formulations decreased over time at room temperature, but the populations remained above 10(8) CFU/g during the 180-day storage period. The peat formulation of a mixture of 3 bacteria was the best seed treatment, significantly increasing the plant fresh masses by 245% as compared with the Pythium control, and by 61.4% as compared with the noninfested control. This study suggests that the indigenous bacteria from agricultural soils can be developed and formulated as biofungicides for minimizing

  6. Isolation of Brucella inopinata-Like Bacteria from White's and Denny's Tree Frogs.

    PubMed

    Kimura, Masanobu; Une, Yumi; Suzuki, Michio; Park, Eun-Sil; Imaoka, Koichi; Morikawa, Shigeru

    2017-05-01

    Brucella inopinata strain BO1 and B. sp. strain BO2 isolated from human patients, respectively, are genetically different from classical Brucella species. We isolated bacteria of the genus Brucella from two species of wild-caught tropical frogs kept in the facilities in Japan: White's tree frog, which inhabits Oceania, and Denny's tree frog, which inhabits Southeast Asia. Phylogenetic analyses based on 16S rRNA and recA gene sequences and multilocus sequence analysis showed that two isolates of Brucella spp. showed significant similarity to BO1, BO2, and the isolates from other wild-caught frogs. These results suggest that a variety of frog species are susceptible to a novel clade of Brucella bacteria, including B. inopinata.

  7. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls

    PubMed Central

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  8. Screening of antagonistic bacteria isolated from Amorphophallus konjac rhizosphere soil

    NASA Astrophysics Data System (ADS)

    Lin, Tianxing; Gong, Mingfu; Guan, Qinlan; Huang, Ying; Qin, Fang

    2018-04-01

    Bacteria lived in Amorphaphallus konjac rhizosphere soil have the potential ability of antagonistic bacterial pathogen activity against to Erwinia carotovora subsp carotovora (Ecc). The paper was to study and analyze all strains of 18 bacteria isolated from A. konjac rhizosphere soil with strong antagonistic effect against to Ecc and to identify antagonistic bacteria with morphology, physiology and biochemistry characteristic. The antagonistic bacterial pathogen activity of different bacterial strains were significantly different. Five of 18 strains isolated from A. konjac rhizosphere soil, including AKSB03, AKSB05, AKSB08, AKSB13 and AKSB16 was screened with antagonistic wider more than 15 mm in first screening test. Strain AKSB08 and strain AKSB16 had a strong antagonism activity for Ecc with antagonistic wider more than 20 mm in second screening test. Strain AKSB08 and strain AKSB16 belonged to Bacillus with morphology, physiology and biochemistry characteristic.

  9. Bacteriophage sensitivity patterns among bacteria isolated from marine waters

    NASA Astrophysics Data System (ADS)

    Moebus, K.; Nattkemper, H.

    1981-09-01

    Phage-host cross-reaction tests were performed with 774 bacterial strains and 298 bacteriophages. The bacteria (bacteriophages) were isolated at different times from water samples collected in the Atlantic Ocean between the European continental shelf and the Sargasso Sea: 733 (258) strains; in the North Sea near Helgoland: 31 (31) strains; and in the Bay of Biscay: 10 (9) strains. Of the Atlantic Ocean bacteria 326 were found to be susceptible to one or more Atlantic Ocean bacteriophage(s). The bacteriophage sensitivity patterns of these bacteria vary considerably, placing 225 of them in two large clusters of bacteriophage-host systems. Taking all into account, 250 of the 326 Atlantic Ocean bacteria are different from each other. This high degree of variation among the bacteria distinguishes microbial populations derived from widely separated eastern and western regions of the Atlantic Ocean. It also sets apart from each other the populations derived from samples collected at successive stations some 200 miles apart, although to a lesser degree. With bacterial populations found from samples collected on the way back and forth between Europe and the Sargasso Sea a gradual change was observed from "western" phage sensitivity patterns to "eastern" ones. Sixty-nine Atlantic Ocean bacteria are sensitive to bacteriophages isolated from the North Sea and the Bay of Biscay; of these only 26 strains are also susceptible to Atlantic Ocean phages. The interpretation of the results is based on the hydrographical conditions prevailing in the northern Atlantic Ocean including the North Sea, and on the assumption that the microbial populations investigated have undergone genetic changes while being transported within water masses from west to east.

  10. [Anaerobic bacteria isolated from patients with suspected anaerobic infections].

    PubMed

    Ercis, Serpil; Tunçkanat, Ferda; Hasçelik, Gülşen

    2005-10-01

    The study involved 394 clinical samples sent to the Clinical Microbiology Laboratory of Hacettepe University Adult Hospital between January 1997 and May 2004 for anaerobic cultivation. Since multiple cultures from the same clinical samples of the same patient were excluded, the study was carried on 367 samples. The anaerobic cultures were performed in anaerobic jar using AnaeroGen kits (Oxoid, Basingstoke, U.K.) or GENbox (bioMérieux, Lyon, France). The isolates were identified by both classical methods and "BBL Crystal System" (Becton Dickinson, U.S.A.). While no growth was detected in 120 (32.7%) of the clinical samples studied, in 144 samples (39.2%) only aerobes, in 28 (7.6%) only anaerobes and in 75 (20.5%) of the samples both aerobes and anaerobes were isolated. The number of the anaerobic isolates was 217 from 103 samples with anaerobic growth. Of these 103 samples 15 showed single bacterial growth whereas in 88 samples multiple bacterial isolates were detected. Anaerobic isolates consisted of 92 Gram negative bacilli (Bacteroides spp. 50, Prevotella spp. 14, Porphyromonas spp. 10, Fusobacterium spp. 7, Tisierella spp. 2, unidentified 9), 57 Gram positive bacilli (Clostridium spp.17, Propionibacterium spp. 16, Lactobacillus spp. 8, Actinomyces spp. 5, Eubacterium spp. 2, Bifidobacterium adolescentis 1, Mobiluncus mulieris 1, unidentified nonspore forming rods 7), 61 Gram positive cocci (anaerobic cocci 44, microaerophilic cocci 17), and 7 Gram negative cocci (Veillonella spp.). In conclusion, in the samples studied with prediagnosis of anaerobic infection, Bacteroides spp. (23%) were the most common bacteria followed by anaerobic Gram positive cocci (20.3%) and Clostridium spp (7.8%).

  11. Isolation and Characterization of Anaerobic Bacteria for Symbiotic Recycling of Uric Acid Nitrogen in the Gut of Various Termites

    PubMed Central

    Thong-On, Arunee; Suzuki, Katsuyuki; Noda, Satoko; Inoue, Jun-ichi; Kajiwara, Susumu; Ohkuma, Moriya

    2012-01-01

    Recycling of the nitrogenous waste uric acid (UA) of wood-feeding termites by their gut bacteria is one of the significant aspects of symbiosis for the conservation of nitrogen sources. Diverse anaerobic UA-degrading bacteria comprising 16 species were isolated from the gut of eight termite species, and were assigned to Clostridia, Enterobacteriaceae, and low G+C Gram-positive cocci. UA-degrading Clostridia had never been isolated from termite guts. UA-degrading ability was sporadically distributed among phylogenetically various culturable anaerobic bacteria from termite guts. A strain of Clostridium sp., which was commonly isolated from three termite species and represented a probable new species in cluster XIVa of clostridia, utilized UA as a nitrogen source but not as a sole carbon and energy source. This feature is in clear contrast to that of well-studied purinolytic clostridia or previously isolated UA degraders from termite guts, which also utilize UA as a sole carbon and energy source. Ammonia is the major nitrogenous product of UA degradation. Various purines stimulated the growth of this strain when added to an otherwise growth-limiting, nitrogen poor medium. The bacterial species involved the recycling of UA nitrogen in the gut microbial community of termites are more diverse in terms of both taxonomy and nutritional physiology than previously recognized. PMID:22791052

  12. Anti-Quorum Sensing Activity of Substances Isolated from Wild Berry Associated Bacteria

    PubMed Central

    Abudoleh, Suha M.; Mahasneh, Adel M.

    2017-01-01

    Background: Quorum Sensing (QS) is a mechanism used by bacteria to determine their physiological activities and coordinate gene expression based on cell to cell signaling. Many bacterial physiological functions are under the regulation of quorum sensing such as virulence, luminescence, motility, sporulation and biofilm formation. The aim of the present study was to isolate and characterize Quorum Sensing Inhibitory (QSI) substances from epiphytic bacteria residing on wild berries surfaces. Methods: Fifty nine bacterial isolates out of 600 screened bacteria were successfully isolated. These bacteria were obtained from berry surfaces of different plants in the wild forests of Ajloun-Jordan. Screening for QSI activity using Chromobacterium violaceum ATCC 12472 monitor strain, resulted in isolating 6 isolates exhibiting QSI activity only, 11 isolates with QSI and antibacterial activity, and 42 isolates with antibacterial activity only. Three potential isolates S 130, S 153, and S 664, were gram positive rods and spore formers, catalase positive and oxidase negative. These were chosen for further testing and characterization. Results: Different solvent extraction of the QSI substances based on polarity indicated that the activity of S 130 was in the butanol extract, S 153 activity in both chloroform and butanol; and for S 664, the activity was detected in the hexane extract. The chloroform extract of S 153 and hexane extract of S 664 were proteinaceous in nature while QSI substances of the butanol extract of S 130 and S 153 were non-proteinaceous. All the tested QSI substances showed a marked thermal stability when subjected at several time intervals to 70°C, with the highest stability observed for the butanol extract of S 153. Assessing the QSI substances using violacein quantification assay revealed varying degrees of activity depending upon the extracting solvent, type of the producer bacteria and the concentration of the substances. Conclusion: This study

  13. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    NASA Astrophysics Data System (ADS)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  14. Antibiotic resistance and biofilm formation of some bacteria isolated from sediment, water and fish farms in Malaysia

    NASA Astrophysics Data System (ADS)

    Faja, Orooba Meteab; Usup, Gires; Ahmad, Asmat

    2018-04-01

    A total of 90 isolates of bacteria were isolated, from sediment (10) samples, water (10) samples and fish (12) samples (Sea bass, Snapper, Grouper and Tilapia). These include 22 isolates of bacteria from sediment, 28 isolates from water and 40 isolates from fish. All the isolates were tested for sensitivity to 13 antibiotics using disc diffusion method. The isolates showed high resistance to some antibiotics based on samples source. Isolates from sediment showed highest resistance toward novobiocin, kanamycin, ampicillin and streptomycin while isolates from water showed highest resistance against vancomycin, penicillin, streptomycin and tetracycline, in contrast, in fish sample showed highest resistance toward vancomycin, ampicillin, streptomycin and tetracycline. Most of the isolates showed biofilm formation ability with different degrees. Out of 22 bacteria isolates from water, two isolates were weak biofilm formers, six isolates moderate biofilm formers and fourteen isolates strong biofilm formers. While, out of 28 bacteria isolates from water one isolate was weak biofilm former, five isolates moderate biofilm formers and 22 strong biofilm formers Fish isolate showed three isolates (8%) moderate biofilm formers and 27 isolates strong biofilm formers. Biofilm formation was one of the factors that lead to antibiotic resistance of the bacterial isolates from these samples.

  15. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    PubMed Central

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-01-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly. Images PMID:2202258

  16. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon.

    PubMed

    Júnior, Paulo Ivan Fernandes; Pereira, Gilmara Maria Duarte; Perin, Liamara; da Silva, Luana Mesquita; Baraúna, Alexandre Cardoso; Alvess, Francilene Muniz; Passos, Samuel Ribeiro; Zilli, Jerri Edson

    2013-06-01

    The association of wild grasses with diazotrophic bacteria in Brazilian biomes is poorly understood. The isolation and characterization of bacteria associated with wild grasses can contribute to understand the diazotrophic ecology as well as to identify bacteria with biotechnological applications. In this study, we isolated and characterized diazotrophic bacterial isolates from Oryza glumaepatula collected in Cerrado and Forest areas of the Amazon in Roraima State, Brazil. Healthy O. glumepatula plants were collected at five sampling sites at Forest and seven at Cerrado, respectively. The plants were collected at the Cerrado areas in September 2008 while the Forest plants were collected in June/2008 and April/2009. The plants and the soil adhering to the roots were transferred to pots and grown for 35 days in greenhouse conditions. During the harvest, the shoots and the roots were crushed separately in a saline solution; the suspension was diluted serially and inoculated in Petri dishes containing Dyg's medium. All distinct bacterial colonies were purified in the same medium. The diazotrophic capacity of each bacterium in microaerophilic conditions was assessed in semisolid BMGM medium. In addition, the pellicles forming bacterial isolates were also evaluated by PCR amplification for nifH gene. The diversity of nifH bacteria was analyzed by Box-PCR fingerprinting. For selected strains, the growth promoting capacity of O. sativa as a model plant was also evaluated. A total of 992 bacterial isolates were obtained. Fifty-one bacteria were able to form pellicles in the semisolid medium and 38 also positively amplified the 360 bp nifH gene fragment. Among the 38 nifH+ isolates, 24 were obtained from the shoots, while 14 originated from the roots. The Box-PCR profiles showed that the bacterial isolates obtained in this study presented a low similarity with the reference strains belonging to the Herbaspirillum, Azospirillum and Burkholderia genus. The growth

  17. Isolation and characterization of marine bacteria from macroalgae Gracilaria salicornia and Gelidium latifolium on agarolitic activity for bioethanol production

    NASA Astrophysics Data System (ADS)

    Kawaroe, M.; Pratiwi, I.; Sunudin, A.

    2017-05-01

    Gracilaria salicornia and Gelidium latifolium have high content of agar and potential to be use as raw material for bioethanol. In bioethanol production, one of the processes level is enzyme hydrolysis. Various microorganisms, one of which is bacteria, can carry out the enzyme hydrolysis. Bacteria that degrade the cell walls of macroalgae and produce an agarase enzyme called agarolytic bacteria. The purpose of this study was to isolate bacteria from macroalgae G. salicornia and G. latifolium, which has the highest agarase enzyme activities, and to obtain agarase enzyme characteristic for bioethanol production. There are two isolates bacteria resulted from G. salicornia that are N1 and N3 and there are two isolates from G. latifolium that are BSUC2 and BSUC4. The result of agarase enzyme qualitative test showed that isolates bacteria from G. latifolium were greater than G. salicornia. The highest agarolitic index of bacteria from G. salicornia produced by isolate N3 was 2.32 mm and isolate N3 was 2.27 mm. Bacteria from G. latifolium produced by isolate BSUC4 was 4.28 mm and isolate BSUC2 was 4.18 mm, respectively. Agarase enzyme activities from isolates N1 and N3 were optimum working at pH 7 and temperature 30 °C, while from isolates BSUC4 was optimum at pH 7 and temperature 50 °C. This is indicated that the four bacteria are appropriate to hydrolyze macro alga for bioethanol production.

  18. Mycoplasma and associated bacteria isolated from ovine pink-eye.

    PubMed

    Langford, E V

    1971-01-01

    A mycoplasma was recovered from the untreated conjunctival membranes of nine sheep affected by Pink-eye. It was neither isolated from the conjunctiva of treated animals which were affected nor from the conjunctiva of normal animals either in contact or not in contact with affected animals. Bacteria found on normal conjunctival membranes were Neisseria ovis, Escherichia coli, Staphylococcus epidermididis, Streptococcus and Bacillus spp. Bacteria found in clinical cases of Pink-eye were N. ovis, E. coli, a Streptococcus and Pseudomonas spp.

  19. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    PubMed Central

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  20. Identification of chitinolytic bacteria isolated from shrimp pond sediment and characterization of their chitinase encoding gene

    NASA Astrophysics Data System (ADS)

    Triwijayani, A. U.; Puspita, I. D.; Murwantoko; Ustadi

    2018-03-01

    Chitinolytic bacteria are a group of bacteria owning enzymes that able to hydrolyze chitin. Previously, we isolated chitinolytic bacteria from shrimp pond sediment in Bantul, Yogyakarta, and obtained five isolates showing high chitinolytic index named as isolate PT1, PT2, PT5, PT6 and PB2. The aims of this study were to identify chitinolytic bacteria isolated from shrimp pond sediment and to characterize the chitinase encoding gene from each isolate. The molecular technique was performed by amplification of 16S rDNA, amplification of chitinase encoding gene and sequence analysis. Two chitinolytic bacteria of PT1 and PT2 were similar to Aeromonas bivalvium strain D15, PT5 to Pseudomonas stutzeri strain BD-2.2.1, PT6 to Serratia marcescens strain FZSF02 and PB2 to Streptomyces misionensis strain OsiRt-1. The comparison of chitinase encoding gene between three isolates with those in Gen Bank shows that PT1 had similar sequences with the chi1 gene in Aeromonas sp. 17m, PT2 with chi1 gene in A. caviae (CB101) and PT6 with chiB gene in S. Marcescens (BJL200).

  1. Plant growth-promoting potential of bacteria isolated from active volcano sites of Barren Island, India.

    PubMed

    Amaresan, N; Kumar, K; Sureshbabu, K; Madhuri, K

    2014-02-01

    To elucidate the biodiversity of plant growth-promoting (PGP) bacteria in active volcano sites of Barren Island, India, a total of 102 bacteria were isolated and screened for their multifunctional PGP properties. The results revealed that 21 isolates (20.6%) survived heat shock at 72°C and 11 (10.8%) isolates were able to grow exposed to 25% NaCl (w/v). In assaying for PGP properties, 59 (57.8%) isolates shown indole acetic acid (IAA) like substances production, 57 isolates (55.9%) produced siderophore and 34 (33.3%) solubilized inorganic phosphate qualitatively. Whereas in the production of extracellular enzymes, 42 isolates (41.2%) produced protease and amylase, 26 (25.5%) isolates produced lipase and 24 (23.5%) isolates produced cellulase. In antagonistic activity, 30 isolates (29.4%) were found antagonistic against Macrophomina sp., 20 isolates (19.6%) against Rhizoctonia solani and 15 isolates (14.7%) against Sclerotium rolfsii. The results based on 16 rRNA gene sequencing revealed that the PGP bacteria belonged to 22 different species comprising 13 genera. Based on multifunctional properties, nine isolates were further selected to determine the PGP in brinjal and chilli seeds. Of the bacteria tested, the isolate BAN87 showed increased root and shoot length of both the crops followed in plant growth promotion by BAN86 and BAN43. The outcome of this research proves plausible practical applicability of these PGPB for crop production in soils of saline and arid environments. The present research shows diverse plant growth-promoting (PGP) bacteria could be isolated from the active volcano site and suggests that volcano sites represent an ecological niche, which harbours a diverse and hitherto largely uncharacterized microbial population with yet unknown and untapped potential biotechnological applications, for example, plant growth promoters, as evidenced from this study. The outcome of this research may have a practical effect on crop production methodologies in

  2. Molecular and phenotypic characterization of endophytic bacteria isolated from sulla nodules.

    PubMed

    Beghalem, Hamida; Aliliche, Khadidja; Chriki, Ali; Landoulsi, Ahmed

    2017-10-01

    In the current study, bacterial diversity was investigated in root nodules of Sulla pallida and Sulla capitata. The isolates were analyzed on the basis of their phenotypic and molecular characteristics. The phylogenetic analysis based on 16S rRNA and housekeeping genes (recA and atpD) showed that the isolated bacteria related to Sinorhizobium, Neorhizobium, Phyllobacterium, Arthrobacter, Variovorax and Pseudomonas genera. This is the first report of Neorhizobium genus associated with Hedysarum genus. Phenotypically, all strains tolerate the elevated temperature of 40 °C, and salt stress at a concentration of 2%. In addition, the isolates failed to induce nodulation on their original host; and the symbiotic genes could not be amplified, suggesting that these strains are endophytic bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    PubMed

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Using phenotype microarrays in the assessment of the antibiotic susceptibility profile of bacteria isolated from wastewater in on-site treatment facilities.

    PubMed

    Jałowiecki, Łukasz; Chojniak, Joanna; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna

    2017-11-01

    The scope of the study was to apply Phenotype Biolog MicroArray (PM) technology to test the antibiotic sensitivity of the bacterial strains isolated from on-site wastewater treatment facilities. In the first step of the study, the percentage values of resistant bacteria from total heterotrophic bacteria growing on solid media supplemented with various antibiotics were determined. In the untreated wastewater, the average shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria were 53, 56, and 42%, respectively. Meanwhile, the shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria in the treated wastewater were 39, 33, and 29%, respectively. To evaluate the antibiotic susceptibility of the bacteria present in the wastewater, using the phenotype microarrays (PMs), the most common isolates from the treated wastewater were chosen: Serratia marcescens ss marcescens, Pseudomonas fluorescens, Stenotrophomonas maltophilia, Stenotrophomonas rhizophila, Microbacterium flavescens, Alcaligenes faecalis ss faecalis, Flavobacterium hydatis, Variovorax paradoxus, Acinetobacter johnsonii, and Aeromonas bestiarum. The strains were classified as multi-antibiotic-resistant bacteria. Most of them were resistant to more than 30 antibiotics from various chemical classes. Phenotype microarrays could be successfully used as an additional tool for evaluation of the multi-antibiotic resistance of environmental bacteria and in preliminary determination of the range of inhibition concentration.

  5. Rapid Isolation of Phenol Degrading Bacteria by Fourier Transform Infrared (FTIR) Spectroscopy.

    PubMed

    Li, Fei; Song, Wen-jun; Wei, Ji-ping; Wang, Su-ying; Liu, Chong-ji

    2015-05-01

    Phenol is an important chemical engineering material and ubiquitous in industry wastewater, its existence has become a thorny issue in many developed and developing country. More and more stringent standards for effluent all over the world with human realizing the toxicity of phenol have been announced. Many advanced biological methods are applied to industrial wastewater treatment with low cost, high efficiency and no secondary pollution, but the screening of function microorganisms is certain cumbersome process. In our study a rapid procedure devised for screening bacteria on solid medium can degrade phenol coupled with attenuated total reflection fourier transform infrared (ATR-FTIR) which is a detection method has the characteristics of efficient, fast, high fingerprint were used. Principal component analysis (PCA) is a method in common use to extract fingerprint peaks effectively, it couples with partial least squares (PLS) statistical method could establish a credible model. The model we created using PCA-PLS can reach 99. 5% of coefficient determination and validation data get 99. 4%, which shows the promising fitness and forecasting of the model. The high fitting model is used for predicting the concentration of phenol at solid medium where the bacteria were grown. The highly consistent result of two screening methods, solid cultural with ATR-FTIR detected and traditional liquid cultural detected by GC methods, suggests the former can rapid isolate the bacteria which can degrade substrates as well as traditional cumbersome liquid cultural method. Many hazardous substrates widely existed in industry wastewater, most of them has specialize fingerprint peaks detected by ATR-FTIR, thereby this detected method could be used as a rapid detection for isolation of functional microorganisms those can degrade many other toxic substrates.

  6. [The antagonistic properties of microaerophilic bacteria isolated from the human and mink digestive tracts].

    PubMed

    Sudenko, V I; Groma, L I; Podgorskiĭ, V S

    1996-01-01

    Study of antagonistic properties of microaerophilic bacteria isolated from human and mink gastroenteric tract have helped to establish differences in species composition, quantity and level of antagonistic activity of the studied microorganisms in respect to pathogenic microflora. It is shown that lactic acid bacteria identified as Lactobacillus fermentum and L. reuteri prevail among the strains isolated from the stomach and thin intestine of minks kept in the 30-km zone of Chernobyl NPP. Species composition of microaerophilic bacteria isolated from the digestive tract of the control minks is more variable. Antagonistically active bifidobacteria prevail in large intestine of experimental and control animals. Strains of lactic acid bacteria with the expressed antagonistic activity belonging to L. bavaricus, L. reuteri, L. coryniformis and L. maltaromicus have been found parallel with such known producers of antibiotic-like substances as L. fermentum. L. acidophilum. Streptococcus faecalis and bifidobacteria. L. maltaromicus most frequently occurred among antagonistically active strains revealed in feces of people which stayed in the zone of liquidation of the Chernobyl accident. Microaerophilic strains of bacteria (lactic acid, bifidobacteria and enterococci) manifest the expressed antagonistic activity connected with the capacity to not only acid formation but also to accumulation of antibiotic products of unknown nature. A strain of lactic acid bacteria L. fermentum 91 has been isolated from the contents of human gastroenteric tract. These bacteria are distinguished by most expressed and stable antagonism and characterized by the lack of pathogenicity in respect of albino mice that may be used to raise the microorganism resistance to gastric diseases.

  7. Characterization of culturable bacteria isolated from the cold-water coral Lophelia pertusa

    USGS Publications Warehouse

    Galkiewicz, Julia P.; Pratte, Zoe A.; Gray, Michael A.; Kellogg, Christina A.

    2011-01-01

    Microorganisms associated with corals are hypothesized to contribute to the function of the host animal by cycling nutrients, breaking down carbon sources, fixing nitrogen, and producing antibiotics. This is the first study to culture and characterize bacteria from Lophelia pertusa, a cold-water coral found in the deep sea, in an effort to understand the roles that the microorganisms play in the coral microbial community. Two sites in the northern Gulf of Mexico were sampled over 2 years. Bacteria were cultured from coral tissue, skeleton, and mucus, identified by 16S rRNA genes, and subjected to biochemical testing. Most isolates were members of the Gammaproteobacteria, although there was one isolate each from the Betaproteobacteria and Actinobacteria. Phylogenetic results showed that both sampling sites shared closely related isolates (e.g. Pseudoalteromonas spp.), indicating possible temporally and geographically stable bacterial-coral associations. The Kirby-Bauer antibiotic susceptibility test was used to separate bacteria to the strain level, with the results showing that isolates that were phylogenetically tightly grouped had varying responses to antibiotics. These results support the conclusion that phylogenetic placement cannot predict strain-level differences and further highlight the need for culture-based experiments to supplement culture-independent studies.

  8. Alternative methodology for isolation of biosurfactant-producing bacteria.

    PubMed

    Krepsky, N; Da Silva, F S; Fontana, L F; Crapez, M A C

    2007-02-01

    Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g x L(-1)) and Arabian Light oil (2 g x L(-1)) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase) did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  9. Amoeba-Resisting Bacteria and Ventilator-Associated Pneumonia

    PubMed Central

    La Scola, Bernard; Boyadjiev, Ioanna; Greub, Gilbert; Khamis, Atieh; Martin, Claude

    2003-01-01

    To evaluate the role of amoeba-associated bacteria as agents of ventilator-associated pneumonia (VAP), we tested the water from an intensive care unit (ICU) every week for 6 months for such bacteria isolates; serum samples and bronchoalveolar lavage samples (BAL) were also obtained from 30 ICU patients. BAL samples were examined for amoeba-associated bacteria DNA by suicide-polymerase chain reaction, and serum samples were tested against ICU amoeba-associated bacteria. A total of 310 amoeba-associated bacteria from10 species were isolated. Twelve of 30 serum samples seroconverted to one amoeba-associated bacterium isolated in the ICU, mainly Legionella anisa and Bosea massiliensis, the most common isolates from water (p=0.021). Amoeba-associated bacteria DNA was detected in BAL samples from two patients whose samples later seroconverted. Seroconversion was significantly associated with VAP and systemic inflammatory response syndrome, especially in patients for whom no etiologic agent was found by usual microbiologic investigations. Amoeba-associated bacteria might be a cause of VAP in ICUs, especially when microbiologic investigations are negative. PMID:12890321

  10. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davey, R.A.; Lappin-Scott, H.

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducingmore » the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.« less

  11. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    PubMed

    Gilardi, G L; Faur, Y C

    1984-10-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. The remaining seven strains represented an undescribed taxon. These pink bacteria appear to be invaders of debilitated patients with an underlying chronic disease.

  12. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    PubMed Central

    Gilardi, G L; Faur, Y C

    1984-01-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. The remaining seven strains represented an undescribed taxon. These pink bacteria appear to be invaders of debilitated patients with an underlying chronic disease. PMID:6490848

  13. [Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa].

    PubMed

    Teng, Songshan; Liu, Yanping; Zhao, Lei

    2010-11-01

    We Isolated and characterized 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing endophytic bacteria from halophyte Suaeda salsa to understand the interactions between endophytes and halophyte. ACC deaminase-containing endophytic bacteria were isolated from root, stalk and leaf of Suaeda salsa and were identified based on morphological, physiological-biochemical properties, API and 16S rRNA sequence analysis. Isolates were evaluated for their ACC deaminase, antifungal, protease activity, siderophores and phytohormones, such as indole-3-acetic acid, gibberellic acid and abscisic acid production, as well as atmospheric nitrogen fixation and phosphate solubilization. Four ACC deaminase-containing endophytic bacteria strains named as LP11, SS12, TW1 and TW2 were isolated and identified as Pseudomonas oryzihabitans, Pseudomonas sp., Pantoea agglomerans and Pseudomonas putida respectively. All the strains possessed the phosphate-solubilizing ability and could produce siderophores and phytohormones more or less. None of them could fix atmospheric nitrogen or produce protease. Only strain SS12 showed antagonism against two phytopathogenic fungi viz Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. cucumerinum. ACC deaminase-containing endophytic bacteria of Pseudomonas sp. and Pantoea sp. isolated from halophyte Suaeda salsa have abundant biological characteristics related to plant growth promotion, stress homeostasis regulation and biocontrol activity.

  14. Evaluation of the Vitek 2 ANC card for identification of clinical isolates of anaerobic bacteria.

    PubMed

    Lee, E H L; Degener, J E; Welling, G W; Veloo, A C M

    2011-05-01

    An evaluation of the Vitek 2 ANC card (bioMérieux, Marcy l'Etoile, France) was performed with 301 anaerobic isolates. Each strain was identified by 16S rRNA gene sequencing, which is considered to be the reference method. The Vitek 2 ANC card correctly identified 239 (79.4%) of the 301 clinical isolates to the genus level, including 100 species that were not represented in the database. Correct species identification was obtained for 60.1% (181/301) of the clinical isolates. For the isolates not identified to the species level, a correct genus identification was obtained for 47.0% of them (47/100), and 16 were accurately designated not identified. Although the Vitek 2 ANC card allows the rapid and acceptable identification of the most common clinically important anaerobic bacteria within 6 h, improvement is required for the identification of members of the genera Fusobacterium, Prevotella, and Actinomyces and certain Gram-positive anaerobic cocci (GPAC).

  15. Diverse bacteria isolated from microtherm oil-production water.

    PubMed

    Sun, Ji-Quan; Xu, Lian; Zhang, Zhao; Li, Yan; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-02-01

    In total, 435 pure bacterial strains were isolated from microtherm oil-production water from the Karamay Oilfield, Xinjiang, China, by using four media: oil-production water medium (Cai medium), oil-production water supplemented with mineral salt medium (CW medium), oil-production water supplemented with yeast extract medium (CY medium), and blood agar medium (X medium). The bacterial isolates were affiliated with 61 phylogenetic groups that belong to 32 genera in the phyla Actinobacteria, Firmicutes, and Proteobacteria. Except for the Rhizobium, Dietzia, and Pseudomonas strains that were isolated using all the four media, using different media led to the isolation of bacteria with different functions. Similarly, nonheme diiron alkane monooxygenase genes (alkB/alkM) also clustered according to the isolation medium. Among the bacterial strains, more than 24 % of the isolates could use n-hexadecane as the sole carbon source for growth. For the first time, the alkane-degrading ability and alkB/alkM were detected in Rhizobium, Rhodobacter, Trichococcus, Micrococcus, Enterococcus, and Bavariicoccus strains, and the alkM gene was detected in Firmicutes strains.

  16. Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf.

    PubMed

    Bayat, Zeynab; Hassanshahian, Mehdi; Hesni, Majid Askari

    2015-12-15

    To date, little is known about existing relationships between mussels and bacteria in hydrocarbon-contaminated marine environments. The aim of this study is to find crude oil degrading bacteria in some mussels at the Persian Gulf. Twenty eight crude oil degrading bacteria were isolated from three mussels species collected from oil contaminated area at Persian Gulf. According to high growth and degradation of crude oil four strains were selected between 28 isolated strains for more study. Determination the nucleotide sequence of the gene encoding for 16S rRNA show that these isolated strains belong to: Shewanella algae isolate BHA1, Micrococcus luteus isolate BHA7, Pseudoalteromonas sp. isolate BHA8 and Shewanella haliotis isolate BHA35. The residual crude oil in culture medium was analysis by Gas Chromatography (GC). The results confirmed that these strains can degrade: 47.24%, 66.08%, 27.13% and 69.17% of crude oil respectively. These strains had high emulsification activity and biosurfactant production. Also, the effects of some factors on crude oil degradation by isolated strains were studied. The results show that the optimum concentration of crude oil was 2.5% and the best degradation take place at 12% of salinity. This research is the first reports on characterization of crude oil degrading bacteria from mussels at Persian Gulf and by using of these bacteria in the field the effect of oil pollution can be reduce on this marine environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Lactic acid bacteria as functional probiotic isolates for inhibiting the growth of Aspergillus flavus, A. parasiticus, A. niger and Penicillium chrysogenum.

    PubMed

    Abbaszadeh, S; Tavakoli, R; Sharifzadeh, A; Shokri, H

    2015-12-01

    The aim of this study was to assess the potential of lactic acid bacteria (LAB) such as Lactobacillus acidophilus, L. rhamnosus, L. casei, L. paracasei and Bifidobacterium bifidum to inhibit the outgrowth of some common food-spoiling fungi including Aspergillus niger, A. flavus, A. parasiticus and Penicillium chrysogenum. Bacterial isolates were cultured on Mann Rogosa Sharpe (MRS) broth and liquid cultures and supernatants were prepared. The antifungal activity was tested using the agar well diffusion method. Both liquid culture and supernatant of L. casei isolate exhibited high antifungal activity, followed by L. acidophilus and L. paracasei isolates. The least activity was recorded for the isolates B. bifidum, while the isolate L. rhamnosus was moderately active against tested fungi. The antifungal activity of the supernatants obtained from all probiotic isolates against fungi was significantly less than that of liquid cultures (P<0.05). Antifungal activity evaluation showed that A. flavus was the most inhibited fungus by probiotic bacteria, followed by P. chrysogenum, A. niger and A. parasiticus. These results suggest that probiotic bacteria strains have the ability to prevent the growth of pathogenic and mycotoxigenic fungi as antifungal agents for various biomedical applications. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Isolation and identification of bacteria to improve the strength of concrete.

    PubMed

    Krishnapriya, S; Venkatesh Babu, D L; G, Prince Arulraj

    2015-05-01

    The objective of this research work is to isolate and identify calcite precipitating bacteria and to check the suitability of these bacteria for use in concrete to improve its strength. Bacteria to be incorporated in concrete should be alkali resistant to endure the high pH of concrete and endospore forming to withstand the mechanical stresses induced in concrete during mixing. They must exhibit high urease activity to precipitate calcium carbonate in the form of calcite. Bacterial strains were isolated from alkaline soil samples of a cement factory and were tested for urease activity, potential to form endospores and precipitation of calcium carbonate. Based on these results, three isolates were selected and identified by 16S rRNA gene sequencing. They were identified as Bacillus megaterium BSKAU, Bacillus licheniformis BSKNAU and Bacillus flexus BSKNAU. The results were compared with B. megaterium MTCC 1684 obtained from Microbial Type Culture Collection and Gene Bank, Chandigarh, India. Experimental work was carried out to assess the influence of bacteria on the compressive strength and tests revealed that bacterial concrete specimens showed enhancement in compressive strength. The efficiency of bacteria toward crack healing was also tested. Substantial increase in strength and complete healing of cracks was observed in concrete specimens cast with B. megaterium BSKAU, B. licheniformis BSKNAU and B. megaterium MTCC 1684. This indicates the suitability of these bacterial strains for use in concrete. The enhancement of strength and healing of cracks can be attributed to the filling of cracks in concrete by calcite which was visualized by scanning electron microscope. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods.

    PubMed

    Grosu-Tudor, Silvia-Simona; Stancu, Mihaela-Marilena; Pelinescu, Diana; Zamfir, Medana

    2014-09-01

    Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.

  20. Production of halomethanes and isoprene in the culture of bacteria isolated from brackish water

    NASA Astrophysics Data System (ADS)

    Fujimori, T.; Taniai, G.; Kurihara, M.; Tamegai, H.; Hashimoto, S.

    2010-12-01

    Halomethanes produced naturally are important source of halogen in troposphere and stratosphere. In the ocean, macroalgae and phytoplankton have been considered to be the main producers of halomethanes. Recent investigations have shown that marine bacteria also produces halomethane such as iodomethane. However, knowledge of aquatic halomethane production, especially by bacteria, is insufficient. Here we survey bacteria, which produce volatile organic compounds (VOCs) including halomethanes, from brackish area (salinity: about 5‰) where high halomethane productions were observed. Bacteria was isolated and incubated in marine broth 2216, which is the media for marine bacteria. The VOCs such as halomethanes in the gas phase above cultured samples was determined using dynamic headspace (GESTEL DHS) - gas chromatograph (Agilent 6890N)- mass spectrometer (Agilent 5975C). The optical density at 600 nm (OD600) was also measured during the cultured period. From the result of the isolation and measurement of VOCs, some of the isolated bacteria produced halomethanes. For example, monohalomethanes (from 1 to about 600 nM) and isoprene (up to about 400 nM) were increased for several days in the culture (dibromomethane, chloroiodomethane, bromoiodomethane, and tribromomethane were not detected). Since halomethanes are abundant at the sampling point (under 1% of light intensity of the surface), bacteria is one of the possible candidates for halomethane producer there. Now, we are studying on the identification by 16S rRNA sequence analysis of bacteria collected from brackish water.

  1. Isolation and Characterization of Bacteria from Ancient Siberian Permafrost Sediment

    PubMed Central

    Zhang, De-Chao; Brouchkov, Anatoli; Griva, Gennady; Schinner, Franz; Margesin, Rosa

    2013-01-01

    In this study, we isolated and characterized bacterial strains from ancient (Neogene) permafrost sediment that was permanently frozen for 3.5 million years. The sampling site was located at Mammoth Mountain in the Aldan river valley in Central Yakutia in Eastern Siberia. Analysis of phospolipid fatty acids (PLFA) demonstrated the dominance of bacteria over fungi; the analysis of fatty acids specific for Gram-positive and Gram-negative bacteria revealed an approximately twofold higher amount of Gram-negative bacteria compared to Gram-positive bacteria. Direct microbial counts after natural permafrost enrichment showed the presence of (4.7 ± 1.5) × 108 cells g−1 sediment dry mass. Viable heterotrophic bacteria were found at 0 °C, 10 °C and 25 °C, but not at 37 °C. Spore-forming bacteria were not detected. Numbers of viable fungi were low and were only detected at 0 °C and 10 °C. Selected culturable bacterial isolates were identified as representatives of Arthrobacter phenanthrenivorans, Subtercola frigoramans and Glaciimonas immobilis. Representatives of each of these species were characterized with regard to their growth temperature range, their ability to grow on different media, to produce enzymes, to grow in the presence of NaCl, antibiotics, and heavy metals, and to degrade hydrocarbons. All strains could grow at −5 °C; the upper temperature limit for growth in liquid culture was 25 °C or 30 °C. Sensitivity to rich media, antibiotics, heavy metals, and salt increased when temperature decreased (20 °C > 10 °C > 1 °C). In spite of the ligninolytic activity of some strains, no biodegradation activity was detected. PMID:24832653

  2. The Most Common Detected Bacteria in Sputum of Patients with Community Acquired Pneumonia (CAP) Treated In Hospital

    PubMed Central

    Cukic, Vesna; Hadzic, Armin

    2016-01-01

    Introduction: Community acquired pneumonia (CAP) is the most common infective pulmonary disease. Objective: To show the most common detected bacteria in bacterial culture of sputum in patients with CAP hospitalized in Clinic for Pulmonary Diseases and TB “Podhrastovi” in four-year period: from 2012 to 2015. Material and methods: This is the retrospective analysis. Each patient gave sputum 3 days in a row when admitted to hospital. Sputum has been examined: bacterial culture with antibiotics sensitivity, Gram stain, Mycobacterium tuberculosis; in cases with high temperature blood cultures were done; when we were suspicious about bronchial carcinoma bronchoscopy with BAL (bronchoalveolar lavage) was done. We show analyzed patients according to age, sex, whether they had pneumonia or bronchopneumonia, bacteria isolated in sputum and in BAL. Results: 360 patients with CAP were treated in four-year period (247 males and 113 females). 167 or 43, 39 % had pneumonia (119 males and 48 females). Number of males was significantly bigger (χ2 = 30,186; p<0,001). 193 or 53, 61 % had bronchopneumonia (128 males and 65 females). Number of males was significantly bigger (χ2 = 20,556; p<0,001). Number of patients with negative bacterial culture of sputum (131–78, 44%) was significantly bigger than number of patients with positive culture (36–21, 56%) (χ2 = 50,042; p<0,001) in pneumonia. Number of patients with negative bacterial culture of sputum (154- 79, 79%) was significantly bigger than number of patients with positive culture (39- 20, 21%) (χ2 = 68,523; p<0,001) in bronchopneumonia. Streptococcus pneumoniae was significantly most common detected bacterium compared with the number of other isolated bacteria; in pneumonia (χ2 =33,222; p<0,001) and in bronchopneumonia (χ2 =51,231; p<0,001). Conclusion: It is very important to detect the bacterial cause of CAP to administrate the targeted antibiotic therapy. PMID:27994296

  3. Epidemiological study on the penicillin resistance of clinical Streptococcus pneumoniae isolates identified as the common sequence types.

    PubMed

    Gao, Wei; Shi, Wei; Chen, Chang-hui; Wen, De-nian; Tian, Jin; Yao, Kai-hu

    2016-10-20

    There were some limitation in the current interpretation about the penicillin resistance mechanism of clinical Streptococcus pneumoniae isolates at the strain level. To explore the possibilities of studying the mechanism based on the sequence types (ST) of this bacteria, 488 isolates collected in Beijing from 1997-2014 and 88 isolates collected in Youyang County, Chongqing and Zhongjiang County, Sichuan in 2015 were analyzed by penicillin minimum inhibitory concentration (MIC) distribution and annual distribution. The results showed that the penicillin MICs of the all isolates covering by the given ST in Beijing have a defined range, either <0.25 mg/L or≥0.25 mg/L, except for the ST342. The isolates with penicillin MIC <0.25 mg/L were mainly collected before 2001, after which the isolates with MIC≥0.25 mg/L occurred and became the major population gradually. This law of year distribution, however, was not obvious for any specific ST. The isolates covering by any given ST could be determined with different penicillin MICs in the first few years after it was identified. The penicillin MIC of isolates identified as common STs and collected in Youyang County, Chongqing and Sichuan Zhongjiang County, including the ST271, ST320 and ST81, was around 0.25~2 mg/L (≥0.25 mg/L). Our study revealed the epidemiological distribution of penicillin MICs of the given STs determined in clinical S. pneumoniae isolates, suggesting that it is reasonable to research the penicillin resistance mechanism based on the STs of this bacteria.

  4. The Effectiveness of Heterotrophic Bacteria Isolated from Dumai Marine Waters of Riau, Used as Antibacterial against Pathogens in Fish Culture

    NASA Astrophysics Data System (ADS)

    Feliatra, F.; Nursyirwani; Tanjung, A.; Adithiya, DS; Susanna, M.; Lukystyowati, I.

    2018-02-01

    Heterotrophic bacteria have an important role as decomposer of organic compounds (mineralization) derived from industrial waste, decomposition of unconsumed feed, faecal, excretion of fish, and have the ability to inhibit the growth of pathogenic bacteria. We investigated the role of heterotrophic bacteria used as antibacterial against pathogens in fish culture.This research was conducted from January until March 2017. The phylogenitic of the isolated bacterial was determined by 16S rDNA sequences analysis. Antagonism test showed that the bacteria had the ability to inhibit the growth of pathogenic bacteria (Vibrio alginolyticus, Aeromonas hydrophila and Pseudomonas sp.) Three isolates (Dm5, Dm6 and Dm4) indicated high inhibition zones which were classified into strong category with the average from 10.5 to 11.8 mm toward V. alginolitycus. Other isolates were classified into medium and weak category. Based on DNA analysis of heterotrophic bacteria isolated from marine waters of industrial area and low salinity of estuarine waters twelve strains of bacteria were identified, and all had highest level of homology to Bacillus sp.,one isolates has similarity to Enterobacter cloacae, other isolates to Clostridium cetobutylicum. Most of isolated bacteria obtained from the waters of industrial area due to it received much of nutrients that very influenced the growth of bacteria.

  5. Characterization of sulfate reducing bacteria isolated from urban soil

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  6. The isolation and identification of endophytic bacteria from mangrove (Sonneratia alba) that produces gelatinase

    NASA Astrophysics Data System (ADS)

    Nursyam, H.; Prihanto, A. A.; Warasari, N. I.; Saadah, M.; Masrifa, R. E.; Nabila, N. A.; Istiqfarin, N.; Siddiq, I. J.

    2018-04-01

    Gelatinase is an enzyme that hydrolyze gelatin into gelatin hydrolyzate. The purpose of this study was to isolate and to identify endophytic bacteria from Sonneratia alba mangrove which able to produce gelatinase enzyme. Sonneratia alba mangroves was obtained from Bajul Mati Beach, Malang Regency. The samples in this study were, stems, and leaves. Pure cultured bacteria were investigated for its capability for producing gelatinase enzyme by using gelatin media. Best producer would further be analyzed its species using microbact system. Screening process resulted in 3 positive isolates, namely code isolate of R, B, and L. R which was isolate from root of S. alba was the best producer for gelatinase. Identification process with morphology and microbact system revelaed that A. SBM is a Gram-negative bacterium that has a basil cell shape, with a diameter colony of 2.19 mm. Based on the microbact system test carried out, the bacteria is Pseudomonas aeruginosa.

  7. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment.

    PubMed

    Lee, Dong Wan; Lee, Hanbyul; Kwon, Bong-Oh; Khim, Jong Seong; Yim, Un Hyuk; Kim, Beom Seok; Kim, Jae-Jin

    2018-05-25

    Crude oil and its derivatives are considered as one group of the most pervasive environmental pollutants in marine environments. Bioremediation using oil-degrading bacteria has emerged as a promising green cleanup alternative in more recent years. The employment of biosurfactant-producing and hydrocarbon-utilizing indigenous bacteria enhances the effectiveness of bioremediation by making hydrocarbons bioavailable for degradation. In this study, the best candidates of biosurfactant-producing indigenous bacteria were selected by screening of biochemical tests. The selected bacteria include Bacillus algicola (003-Phe1), Rhodococcus soli (102-Na5), Isoptericola chiayiensis (103-Na4), and Pseudoalteromonas agarivorans (SDRB-Py1). In general, these isolated species caused low surface tension values (33.9-41.3 mN m -1 ), high oil spreading (1.2-2.4 cm), and hydrocarbon emulsification (up to 65%) warranting active degradation of hydrocarbons. FT-IR and LC-MS analyses indicated that the monorhamnolipid (Rha-C 16:1 ) and dirhamnolipid (Rha-Rha-C 6 -C 6:1 ) were commonly produced by the bacteria as potent biosurfactants. The residual crude oil after the biodegradation test was quantitated using GC-MS analysis. The bacteria utilized crude oil as their sole carbon source while the amount of residual crude oil significantly decreased. In addition the cell-free broth containing biosurfactants produced by bacterial strains significantly desorbed crude oil in oil-polluted marine sediment. The selected bacteria might hold additional capacity in crude oil degradation. Biosurfactant-producing indigenous bacteria therefore degrade crude oil hydrocarbon compounds, produce biosurfactants that can increase the emulsification of crude oil and are thus more conducive to the degradation of crude oil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. B. Johnson; N. Okibe; F. F. Roberto

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30–83 °C) acidic (pH 2.7– 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 °C, and pH 1.0–1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstonemore » strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.« less

  9. Isolation and analysis of bacteria associated with spores of Gigaspora margarita.

    PubMed

    Cruz, A F; Horii, S; Ochiai, S; Yasuda, A; Ishii, T

    2008-06-01

    The aim of this work was to observe bacteria associated with the spores of Gigaspora margarita, an arbuscular mycorrhizal fungus (AMF). First, a direct analysis of DNA from sterilized spores indicated the bacteria belonging to the genus Janthinobacterium. In the second assay, two bacterial strains were isolated by osmosis from protoplasts, which were derived from spores by using two particular enzymes: lysing enzymes and yatalase. After isolation, cultivation and identification by their DNA as performed in the first experiment, the species with the closest relation were Janthinobacterium lividum (KCIGM01) and Paenibacillus polymyxa (KCIGM04) isolated with lysing enzymes and yatalase respectively. Morphologically, J. lividum was Gram negative and oval, while P. polymyxa was also oval, but Gram positive. Both strains had antagonistic effects to the pathogenic fungi Rosellimia necatrix, Pythium ultimum, Fusarium oxysporum and Rhizoctonia solani. In particular, J. lividum was much stronger in this role. However, in phosphorus (P) solubilization P. polymyxa functioned better than J. lividum. This experiment had revealed two new bacteria species (P. polymyxa and J. lividum), associated with AMF spores, which functioned to suppress diseases and to solubilize P. AMF spores could be a useful source for bacterial antagonists to soil-borne diseases and P solubilization.

  10. Optimization of Cellulase Production from Bacteria Isolated from Soil

    PubMed Central

    Sethi, Sonia; Datta, Aparna; Gupta, B. Lal; Gupta, Saksham

    2013-01-01

    Cellulase-producing bacteria were isolated from soil and identified as Pseudomonas fluorescens, Bacillus subtilIs, E. coli, and Serratia marcescens. Optimization of the fermentation medium for maximum cellulase production was carried out. The culture conditions like pH, temperature, carbon sources, and nitrogen sources were optimized. The optimum conditions found for cellulase production were 40°C at pH 10 with glucose as carbon source and ammonium sulphate as nitrogen source, and coconut cake stimulates the production of cellulase. Among bacteria, Pseudomonas fluorescens is the best cellulase producer among the four followed by Bacillus subtilis, E. coli, and Serratia marscens. PMID:25937986

  11. Physiological characteristics of bacteria isolated from water brines within permafrost

    NASA Astrophysics Data System (ADS)

    Shcherbakova, V.; Rivkina, E.; Laurinavichuis, K.; Pecheritsina, S.; Gilichinsky, D.

    2004-01-01

    In the Arctic there are lenses of overcooled water brines (cryopegs) sandwiched within permafrost marine sediments 100 120 thousand years old. We have investigated the physiological properties of the pure cultures of anaerobic Clostridium sp. strain 14D1 and two strains of aerobic bacteria Psychrobacter sp. isolated from these cryopegs. The structural and physiological characteristics of new bacteria from water brines have shown their ability to survive and develop under harsh conditions, such as subzero temperatures and high salinity.

  12. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Potential of bacteria isolated from landfill soil in degrading low density polyethylene plastic

    NASA Astrophysics Data System (ADS)

    Munir, E.; Sipayung, F. C.; Priyani, N.; Suryanto, D.

    2018-03-01

    Plastic is an important material and used for many purposes. It is returned to the environment as a waste which is recently considered as the second largest solid waste. The persistency of plastic in the environment has been attracted researchers from a different point of view. The study of the degradation of plastic using bacteria isolated from local landfill soil was conducted. Low density polyethylene (LDPE) plastic was used as tested material. Potential isolates were obtained by culturing the candidates in mineral salt medium broth containing LDPE powder. Two of ten exhibited better growth response in the selection media and were used in degradation study. Results showed that isolate SP2 and SP4 reduced the weight of LDPE film significantly to a weight loss of 10.16% and 12.06%, respectively after four weeks of incubation. Scanning electron micrograph analyses showed the surface of LDPE changed compared to the untreated film. It looked rough and cracked, and bacteria cells attached to the surface was also noticed. Fourier transform infrared spectroscopy analyses confirmed the degradation of LDPE film. These results indicated that bacteria isolated from landfill might play an important role in degrading plastic material in the landfill.

  14. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.

    PubMed Central

    Calomiris, J J; Armstrong, J L; Seidler, R J

    1984-01-01

    Bacterial isolates from the drinking water system of an Oregon coastal community were examined to assess the association of metal tolerance with multiple antibiotic resistance. Positive correlations between tolerance to high levels of Cu2+, Pb2+, and Zn2+ and multiple antibiotic resistance were noted among bacteria from distribution waters but not among bacteria from raw waters. Tolerances to higher levels of Al3+ and Sn2+ were demonstrated more often by raw water isolates which were not typically multiple antibiotic resistant. A similar incidence of tolerance to Cd2+ was demonstrated by isolates of both water types and was not associated with multiple antibiotic resistance. These results suggest that simultaneous selection phenomena occurred in distribution water for bacteria which exhibited unique patterns of tolerance to Cu2+, Pb2+, and Zn2+ and antibiotic resistance. PMID:6742841

  15. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.

    PubMed

    Calomiris, J J; Armstrong, J L; Seidler, R J

    1984-06-01

    Bacterial isolates from the drinking water system of an Oregon coastal community were examined to assess the association of metal tolerance with multiple antibiotic resistance. Positive correlations between tolerance to high levels of Cu2+, Pb2+, and Zn2+ and multiple antibiotic resistance were noted among bacteria from distribution waters but not among bacteria from raw waters. Tolerances to higher levels of Al3+ and Sn2+ were demonstrated more often by raw water isolates which were not typically multiple antibiotic resistant. A similar incidence of tolerance to Cd2+ was demonstrated by isolates of both water types and was not associated with multiple antibiotic resistance. These results suggest that simultaneous selection phenomena occurred in distribution water for bacteria which exhibited unique patterns of tolerance to Cu2+, Pb2+, and Zn2+ and antibiotic resistance.

  16. Characterization of acetanilide herbicides degrading bacteria isolated from tea garden soil.

    PubMed

    Wang, Yei-Shung; Liu, Jian-Chang; Chen, Wen-Ching; Yen, Jui-Hung

    2008-04-01

    Three different green manures were added to the tea garden soils separately and incubated for 40 days. After, incubation, acetanilide herbicides alachlor and metolachlor were spiked into the soils, separately, followed by the isolation of bacteria in each soil at designed intervals. Several bacterial strains were isolated from the soils and identified as Bacillus silvestris, B. niacini, B. pseudomycoides, B. cereus, B. thuringiensis, B. simplex, B. megaterium, and two other Bacillus sp. (Met1 and Met2). Three unique strains with different morphologies were chosen for further investigation. They were B. megaterium, B. niacini, and B. silvestris. The isolated herbicide-degrading bacteria showed optimal performance among three incubation temperatures of 30 degrees C and the best activity in the 10 to 50 microg/ml concentration of the herbicide. Each bacterial strain was able to degrade more than one kind of test herbicides. After incubation for 119 days, B. cereus showed the highest activity to degrade alachlor and propachlor, and B. thuringiensis to degrade metolachlor.

  17. ATMOSPHERIC NITROGEN FIXATION BY METHANE-OXIDIZING BACTERIA

    PubMed Central

    Davis, J. B.; Coty, V. F.; Stanley, J. P.

    1964-01-01

    Davis, J. B. (Socony Mobil Oil Co., Inc., Dallas, Tex.), V. F. Coty, and J. P. Stanley. Atmospheric nitrogen fixation by methane-oxidizing bacteria. J. Bacteriol. 88:468–472. 1964.—Methane-oxidizing bacteria capable of fixing atmospheric nitrogen were isolated from garden soil, pond mud, oil field soil, and soil exposed to natural gas, indicating a rather wide prevalence in nature. This may explain the high concentration of organic nitrogen commonly found in soils exposed to gas leakage from pipelines or natural-gas seeps. Added molybdenum was a requirement for growth in a nitrogen-free mineral salts medium. All nitrogen-fixing, methane-oxidizing bacteria isolated were gram-negative, nonsporeforming, usually motile rods. Colonies were light yellow, yellow, or white. The most common isolate, which formed light-yellow colonies, is referred to as Pseudomonas methanitrificans sp. n., and is distinguished from Pseudomonas (Methanomonas) methanica by nitrogen-fixing ability and a preponderance of poly-β-hydroxybutyrate in the cellular lipid fraction. Images PMID:14203365

  18. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    PubMed

    Hoyt, Joseph R; Cheng, Tina L; Langwig, Kate E; Hee, Mallory M; Frick, Winifred F; Kilpatrick, A Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species.

  19. Bacteria Isolated from Bats Inhibit the Growth of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome

    PubMed Central

    Hoyt, Joseph R.; Cheng, Tina L.; Langwig, Kate E.; Hee, Mallory M.; Frick, Winifred F.; Kilpatrick, A. Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species. PMID:25853558

  20. Isolation and identification of halotolerant soil bacteria from coastal Patenga area.

    PubMed

    Rahman, Shafkat Shamim; Siddique, Romana; Tabassum, Nafisa

    2017-10-30

    Halotolerant bacteria have multiple uses viz. fermentation with lesser sterility control and industrial production of bioplastics. Moreover, it may increase the crop productivity of coastal saline lands in Bangladesh by transferring the salt tolerant genes into the plants. The study focused on the isolation and identification of the halotolerant bacteria from three soil samples, collected from coastal Patenga area. The samples were inoculated in nutrient media containing a wide range of salt concentrations. All the samples showed 2, 4 and 6% (w/v) salt tolerance. The isolates from Patenga soil (4, 6%) and beach soil (2%) showed catalase activity and all the isolates showed negative results for oxidase activity, indole production, lactose and motility. All the samples provided positive results for dextrose fermentation. Other tests provided mixed results. Based on the morphological characteristics, biochemical tests and ABIS software analysis the isolates fall within the Enterobacteriaceae, Clostridium and Corynebacterium, with a predominance of Vibrios. Overall the isolates can be considered as mild halotolerant, with the best growth observed at lower salinities and no halophilism detected. Among many possibilities, the genes responsible for the salt tolerant trait in these species can be identified, extracted and inserted into the crop plants to form a transgenic plant to result in higher yield for the rest of the year.

  1. Aerobic salivary bacteria in wild and captive Komodo dragons.

    PubMed

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals.

  2. Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, P.A.; Okpokwasili, G.C.; Brayton, P.R.

    1984-11-01

    Phenanthrene-degrading bacteria were isolated from Chesapeake Bay samples by the use of a solid medium which had been overlaid with an ethanol solution of phenanthrene before inoculation. Eighteen representative strains of phenanthrene-degrading bacteria with 21 type and reference bacteria were examined for 123 characteristics representing physiological, biochemical, and nutritional properties. Relationships between strains were computed with several similarity coefficients. The phenogram constructed by unweighted-pair-group arithmetic average linkage and use of the simple Jaccard (S/sub J/) coefficient was used to identify seven phena. Phenanthrene-degrading bacteria were identified as Vibrio parahaemolyticus and Vibrio fluvialis by their clustering with type and reference strains.more » Several phenanthrene-degrading bacteria resembled Enterobacteriaceae family members, although some Vibrio-like phenanthrene degraders could not be identified. 22 references, 1 figure, 2 tables.« less

  3. [Community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan salt lake on Qinghai-Tibet Plateau].

    PubMed

    Shen, Shuo

    2017-04-04

    I studied the community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake. I isolated and cultured the moderate halophilic bacteria on different selective media. After the 16S rRNA gene sequences was amplified and measured, I constructed the phylogenic tree, analyzed the community structure and calculated the diversity indexes according to the 16S rRNA gene information. A total of 421 moderate halophilic bacteria were isolated from water and mud samples in Qrhan Salt Lake. The 16S rRNA gene information showed that 4 potential novel species belonged to the family Bacillaceae. Eighty-three model strains belonged to 3 phylurms 6 families 16 genus. Among them, Bacillus sp., Oceanobacillus sp. and Halomonas sp. were dominant species. Diversity analysis showed that the diversity of strains isolated from water sample was higher than that from mud sample, but the dominance degree of strains isolated from mud sample was higher than that from water sample. The genetic diversity of moderate halophilic bacteria isolated from Qrhan Salt Lake was abundant. Also, there were dominant and novel species of culturable moderate halophilic bacteria in this lake.

  4. Isolation and identification of chitinolytic bacteria of pohara river of South East Sulawesi and the optimization production of chitinase enzyme

    NASA Astrophysics Data System (ADS)

    Halimahtussadiyah, R.; Natsir, Muh.; Kurniawati, Desy; Utamy, Sukma Puspita

    2017-03-01

    Isolation and identification of chitinolytic bacteria from pohara river and optimation of chitinase enzyme production has been conducted. The aims of the study were isolation, characterize and optimaze of chitinase enzyme production. This study was carried out in three stages; isolation and selection of chitinolytic bacteria, characterization and identification of selected bacteria; optimization of the production of the enzyme (substrate concentration, temperature, and pH), and the determination of growth curve of T3 isolate. The chitinase activity assay was carried out using Schales method. The results of the screening obtained 6 isolates of potential bacteria of chitinolytic. The T3 isolate then was selected for the enzyme production, because it had the highest chitinolytic index of 22.31 mm. The morphological and biochemical observation showed that T3 isolate as a group of bacteria Aerobacter with Gram-negative nature, and shaped bacillus. The optimum condition for chitinase enzyme production was in chitin substrat concentration 0.06%, temperature of 30°C, and pH of 6.

  5. [Diversity and antimicrobial activities of cultivable bacteria isolated from Jiaozhou Bay].

    PubMed

    Wang, Yiting; Zhang, Chuanbo; Qi, Lin; Jia, Xiaoqiang; Lu, Wenyu

    2016-12-04

    Marine microorganisms have a great potential in producing biologically active secondary metabolites. In order to study the diversity and antimicrobial activity, we explored 9 sediment samples in different observation sites of Jiaozhou bay. We used YPD and Z2216E culture medium to isolate bacteria from the sediments; 16S rRNA was sequenced for classification and identification of the isolates. Then, we used Oxford cup method to detect antimicrobial activities of the isolated bacteria against 7 test strains. Lastly, we selected 16 representatives to detect secondary-metabolite biosynthesis genes:PKSI, NRPS, CYP, PhzE, dTGD by PCR specific amplification. A total of 76 bacterial strains were isolated from Jiaozhou bay; according to the 16S rRNA gene sequence analysis. These strains could be sorted into 11 genera belonging to 8 different families:Aneurinibacillus, Brevibacillus, Microbacterium, Oceanisphae, Bacillus, Marinomonas, Staphylococcus, Kocuria, Arthrobacters, Micrococcus and Pseudoalteromonas. Of them 34 strains showed antimicrobial activity against at least one of the tested strains. All 16 strains had at least one function genes, 5 strains possessed more than three function genes. Jiaozhou bay area is rich in microbial resources with potential in providing useful secondary metabolites.

  6. The antagonistic activity of lactic acid bacteria isolated from peda, an Indonesian traditional fermented fish

    NASA Astrophysics Data System (ADS)

    Putra, T. F.; Suprapto, H.; Tjahjaningsih, W.; Pramono, H.

    2018-04-01

    Peda is an Indonesian traditional fermented whole fish prepared by addition of salt prior to fermentation and drying process. Salt used to control the growth of the lactic acid bacteria for the fermentation process. The objectives of this study were isolating and characterize the potential lactic acid bacteria (LAB) from peda as culture starter candidate, particularly its activity against pathogenic bacteria. A total of five samples from five regions of East Java Province was collected and subjected to LAB isolation. Fifty-seven of 108 colonies that show clear zone in de Man, Rogosa and Sharpe (MRS) agar supplemented with 0.5% CaCO3 were identified as LAB. Twenty-seven of the LAB isolates were exhibit inhibition against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 27853. Isolate Aerococcus NJ-20 was exhibited strong inhibition against S. aureus ATCC 6538 (7.6 ± 1.35 mm inhibition zone) but was not produce bacteriocin. This finding suggests that the isolate Aerococcus NJ-20 can be applied as biopreservative culture starter on peda production. Further analysis on technological properties of isolates will be needed prior to application.

  7. Isolation of iron bacteria from terrestrial and aquatic environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Bertram; Szewzyk, Ulrich

    2010-05-01

    Bacteria, which are capable of iron oxidation or at least iron deposition are widely distributed in environments where zones of dissolved ferrous iron and oxygen gradients are overlapping [1]. They take part in the biological cycling of iron and influence other cycles of elements for example carbon [2]. Manganese can be used for similar metabolic purposes as iron, because it can be biologically oxidized by chemolithotrophs or can be reduced by respirating bacteria as well [3, 4]. Bacterial activity is responsible for the accumulation of ferric iron compounds in their surroundings. The formation of bog ore is a well known example for a soil horizon, with an extreme enrichment of biogenic ferric iron [5]. We focused on the isolation of neutrophilic iron bacteria and bacteria capable of manganese oxidation. We used samples from Tierra del Fuego (Argentina) the National Park "Unteres Odertal" (Germany) and Berlin ground water wells. Microscopic examination of the samples revealed a considerable diversity of iron encrusted structures of bacterial origin. Most of these morphologic types are already well known. The taxonomic classification of many of these organisms is based on morphologic features and is not reliable compared to recent methods of molecular biology. That is mainly due to the fact, that most of these bacteria are hardly culturable or do not show their characteristic morphologic features under culture conditions. We established a collection of more than 300 iron depositing strains. Phylogenetic analyses showed that we have many yet uncultured strains in pure culture. We obtained many isolates which form distinct branches within long known iron bacteria groups like the Sphaerotilus-Leptothrix cluster. But some of the strains belong to groups, which have not yet been associated with iron oxidation activity. The strains deposit high amounts of oxidized iron and manganese compounds under laboratory conditions. However it is unclear if these precipitations are

  8. [Isolation and identification of rumen bacteria for cellulolytic enzyme production].

    PubMed

    Aihemaiti, Maierhaba; Zhen, Fan; Li, Yuezhong; Aibaidoula, Gulisimayi; Yimit, Wusiman

    2013-05-04

    We screened aerobic bacteria with cellulolytic activity from ruminal fluid of sheep, cattle and camel in Xinjiang. Fresh ruminal fluid was inoculated on sterilized sodium carboxymethylcellulose agar plates. Highly cellulolytic aerobic bacteria were screened out by using Congo red staining and liquid secondary screening culture media. The combination of morphological and biochemical test with 16SrDNA sequence analysis were used to classify the strains. Enzymatic activities of four strains with strong cellulose-decomposing abilities were studied under different culture conditions. Out 84 isolated cellulolytic strains, 40 exhibited strong abilities in decomposing cellulose. They are including 37 Gram-negative isolates and 3 Gram-positive strains. Identification of these 40 strains shows that they belong to 11 species of 6 genera, 16 strains in Stenotrophomonas maltophilia, 10 Ochrobactrum, 5 Sphingobacterium, 3 Microbacterium, 3 Paracoccus and 2 Pseudomonas. The results of the enzymatic studies of four strains with strong cellulolytic abilities indicates that the strains have the best enzyme producing property when straw powder was chosen as the carbon source; the pH at 5.5 -6.0 and temperature at 37 degrees C. The strains with highly cellulolytic abilities isolated from ruminal fluid show strong abilities in cellulose decomposition.

  9. Common Cutaneous Bacteria Isolated from Snakes Inhibit Growth of Ophidiomyces ophiodiicola.

    PubMed

    Hill, Aubree J; Leys, Jacob E; Bryan, Danny; Erdman, Fantasia M; Malone, Katherine S; Russell, Gabrielle N; Applegate, Roger D; Fenton, Heather; Niedringhaus, Kevin; Miller, Andrew N; Allender, Matthew C; Walker, Donald M

    2018-03-01

    There is increasing concern regarding potential impacts of snake fungal disease (SFD), caused by Ophidiomyces ophiodiicola (Oo), on free-ranging snake populations in the eastern USA. The snake cutaneous microbiome likely serves as the first line of defense against Oo and other pathogens; however, little is known about microbial associations in snakes. The objective of this study was to better define the composition and immune function of the snake cutaneous microbiome. Eight timber rattlesnakes (Crotalus horridus) and four black racers (Coluber constrictor) were captured in Arkansas and Tennessee, with some snakes exhibiting signs of SFD. Oo was detected through real-time qPCR in five snakes. Additional histopathological techniques confirmed a diagnosis of SFD in one racer, the species' first confirmed case of SFD in Tennessee. Fifty-eight bacterial and five fungal strains were isolated from skin swabs and identified with Sanger sequencing. Non-metric multidimensional scaling and PERMANOVA analyses indicated that the culturable microbiome does not differ between snake species. Fifteen bacterial strains isolated from rattlesnakes and a single strain isolated from a racer inhibited growth of Oo in vitro. Results shed light on the culturable cutaneous microbiome of snakes and probiotic members that may play a role in fighting an emergent disease.

  10. Phenotypic and Genotypic Characterization of Some Lactic Acid Bacteria Isolated from Bee Pollen: A Preliminary Study

    PubMed Central

    BELHADJ, Hani; HARZALLAH, Daoud; BOUAMRA, Dalila; KHENNOUF, Seddik; Dahamna, Saliha; GHADBANE, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133. PMID:24936378

  11. Phenotypic and genotypic characterization of some lactic Acid bacteria isolated from bee pollen: a preliminary study.

    PubMed

    Belhadj, Hani; Harzallah, Daoud; Bouamra, Dalila; Khennouf, Seddik; Dahamna, Saliha; Ghadbane, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133.

  12. Isolation of marine fungi Aspergillus sp. and its in vitro antifouling activity against marine bacteria.

    PubMed

    Thiyagarajan, Santhananmari; Bavya, Manoharan; Jamal, Alruwaili

    2016-09-01

    Biofouling is considered as a main issue of concern in aquatic environment causing severe economic loss and pollution. The aim of the present study was to isolate marine fungus antagonistic to biofouling bacteria and to define antifouling compounds present in it. Using standard plate method five predominant biofouling bacteria viz., Methylococcus sp., Flavobacterium sp., Marinococcus sp., Serratia sp. and Pseudomonas sp. were isolated from marine solid substances on Zobell's agar. Tolerance range of these bacteria to NaCl was 2-10%. Isolation of fungi from mangrove and estuarine sediments and their screening identified Aspergillus sp. EF4 as a potential isolate. This isolate caused inhibition of all the five test bacterial cultures measuring zone diameters respectively of 11, 16, 12, 13 and 11mm.? Subsequent to submerged fermentation using shaking flask method this fungus produced bioactive compounds within 5 days. The culture parameters optimized were raffinose as carbon source, yeast extract as lone nitrogen source, pH up to 9.0 and temperature up to 40?C. Antifouling compounds of culture filtrate were separated and detected by a three-step procedure involving thin layer chromatography, bioautography and preparative TLC. The in vitro assay involving glass slide-wooden stick-biofilm method revealed that these compounds could cause inhibition and destruction of bacteria to an extent of 2.16 x 104 CFU ml-1 and 2.46 x 104 CFU ml-1 respectively while growth of bacteria in control beaker was enumerated to be 4.41 x 104 CFU ml-1. High performance liquid chromatography of culture filtrate indicated probable principal antifouling compound as Fumonisin B2. Isolation of antagonistic marine fungus from Indian coast and detection of its antifouling compound would help in planning effective strategies for controlling biofouling in marine environment.

  13. α-Amylase inhibitor activity of endophytic bacteria isolated from Annona muricata L

    NASA Astrophysics Data System (ADS)

    Pujiyanto, Sri; Resdiani, Merysa; Raharja, Budi; Siti Ferniah, Rejeki

    2018-05-01

    α-amylase (α-1,4-glucan-4-glucohydrolase, EC 3.2.1.1) is an enzyme that catalyzes the degradation of starch into its monomers. Most people use medicinal plants for keeping normal level of blood glucose, for example, the Annona muricata. The objectives of this study are to obtain endophytic bacteria from the plant, knowing the activity of the α-amylase inhibitor of selected isolates. Endophytic bacteria are isolated from the roots, stems, and leaves of the plant have been sterilized surface and grown in NA medium. A total of 11 isolates were found to produce α-amylase inhibitor compounds. The isolates obtained were tested for their α-amylase inhibitor activity, and isolates with the highest activity tested further. Isolate DS21 show the best activity with 72,22% inhibition. The experimental design used in this research is Completely Randomized Design (RAL). The best isolates treated by a variety of carbon sources, and the best carbon source treated with various pH. The data obtained were analyzed usingAnalysis of Variance (ANOVA). The results of statistical tests show the treatment of starch and lactose has a significant effect on the production of α-amylase inhibitors (P <0.05) and the pH 5 and 6,0 significantly affected the production of α-amylase inhibitors (P <0.05).

  14. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria.

    PubMed

    Choi, Suk-Ho

    2016-01-01

    Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares' milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10-3.36 % lactose, 1.44-2.33 % ethyl alcohol, 1.08-1.62 % lactic acid and 0.12-0.22 % acetic acid. Lactobacillus (L.) helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares' milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.

  15. In vitro activity of daptomycin against clinical isolates of Gram-positive bacteria.

    PubMed

    Piper, Kerryl E; Steckelberg, James M; Patel, Robin

    2005-08-01

    We determined the activity of daptomycin, a recently FDA-approved antimicrobial agent, against clinical isolates of Gram-positive bacteria, including viridans group streptococci (16 Streptococcus mitis species group, 12 S. mutans species group, 9 S. anginosus species group, 8 S. sanguinis species group, 5 S. salivarius species group) from patients with infective endocarditis, 32 methicillin-resistant Staphylococcus aureus, 32 high-level penicillin-resistant Streptococcus pneumoniae, 38 vancomycin-resistant enterococci (including 1 linezolid-resistant isolate), and the following unusual Gram-positive bacteria: 3 Listeria monocytogenes, 4 Erysipelothrix rhusiopathiae, 9 Corynebacterium species, 10 Abiotrophia/Granulicatella species, 2 Rothia (Stomatococcus) mucilaginosus, and 4 Gemella morbillorum. Daptomycin minimum inhibitory concentration (MIC)(90) values for the viridans group streptococci, methicillin-resistant S. aureus, penicillin-resistant S. pneumoniae, and Enterococcus species were 0.5, 0.5, < or =0.125, and 4 microg/ml, respectively. The daptomycin MIC range for the unusual Gram-positive bacteria was < or =0.125-2 microg/ml. We conclude that daptomycin has in vitro activity against viridans group streptococci associated with endocarditis as well as against several types of unusual Gram-positive bacteria that can cause endocarditis.

  16. Isolation and Molecular Detection of Gram Negative Bacteria Causing Urinary Tract Infection in Patients Referred to Shahrekord Hospitals, Iran.

    PubMed

    Tajbakhsh, Elahe; Tajbakhsh, Sara; Khamesipour, Faham

    2015-05-01

    Urinary Tract Infections (UTI), and their complications, cause serious health problems, which affect millions of people every year. Infections of the urinary tract are the second most common type of infection in the body and approximately 20% of women are especially prone to UTIs for reasons not yet well understood. Urinary Tract Infections in men are not as common as in women yet can be very serious when they do occur. Accurate identification of bacterial isolates is an essential task of the clinical microbiology laboratory. The purpose of this study was to determine the incidence and variety of the causative microbial agents of UTIs in patients who had referred to a medical laboratory of Kashani and Hajar hospital in Shahrekord, Iran. In this cross-sectional study 147 urine samples of patients (urine test results were positive for UTIs) were examined during April to September 2013. A total of 147 urine samples of patients with clinical symptoms of UTI who had been referred to a medical laboratory of Kashani and Hajar hospital in Shahrekord (Iran), were collected and processed immediately for laboratory analysis. Escherichia coli was identified as the most common causative agent of UTIs (51.70% of total isolates in both sexes), followed by Klebsiella pneumoniae (K. Pneumoniae) (16.32%). Frequency of Proteus spp., Acinetobacter spp., Entrobacter spp., Citrobacter spp., Pseudomonas aeruginosa (P. aeruginosa) and Providencia spp. was 10.88%, 6.12%, 5.44%, 4.08%, 3.40% and 2.04%, respectively. Statistical analysis by Fisher exact test showed that there was no significant relationship between the type of bacteria and gender (P > 0.05). Chi square test showed that there was no significant relationship between the type of bacteria and the use of catheter and age group (P > 0.05). However, there was a significant relationship between the type of bacteria and the history of hospitalization (P > 0.05). Our findings implied that a wide range of bacteria could be involved in

  17. Isolation of lactic acid bacteria from Malaysian foods and assessment of the isolates for industrial potential.

    PubMed

    Mohd Adnan, Ahmad Faris; Tan, Irene K P

    2007-05-01

    Two traditional fermented food 'tapai' (fermented tapioca) and 'tempoyak' (fermented durian flesh), chilli puree and fresh goat's milk were used as sources for the isolation of lactic acid bacteria (LAB). A total of 126 isolates were obtained and by sequential screening for catalase activity and Gram-staining, 55 were determined to be LAB out of which 16 were established to be homofermentative by the gel plug test. Seven isolates were identified by use of the API 50CHL kit and two lactobacilli strains and one lactococci strain were selected to study their growth and lactic acid production profiles in a time course experiment. The lactobacilli strains, both isolated from 'tapai', produced higher amounts of cells and lactic acid from glucose as compared to the lactococci strain isolated from fresh goat's milk.

  18. Potentially pathogenic features of heterotrophic plate count bacteria isolated from treated and untreated drinking water.

    PubMed

    Pavlov, D; de Wet, C M E; Grabow, W O K; Ehlers, M M

    2004-05-01

    Heterotrophic plate counts (HPCs) are commonly used to assess the general microbiological quality of drinking water. Drinking water quality specifications worldwide recommend HPC limits from 100 to 500 cfu ml(-1). A number of recent studies revealed evidence that these bacteria may not be as harmless as generally accepted. It appears that immuno-compromised individuals are particularly at risk. This would include the very young and very old patients with diseases such as AIDS and patients on therapy for purposes such as organ transplantation and cancer treatment. In this study, 339 bacterial colonies were isolated at random from selected treated and untreated drinking water in South Africa using routine heterotrophic plate count tests. In a first step to screen for potentially pathogenic properties, 188 (55.5%) of the isolates showed alpha- or beta-haemolysis on human- and horse-blood agar media. Subsequent analysis of the haemolytic isolates for enzymatic properties associated with pathogenicity revealed the presence of chondroitinase in 5.3% of the isolates, coagulase in 16.0%, DNase in 60.6%, elastase in 33.0%, fibrinolysin in 53.7%, gelatinase in 62.2%, hyaluronidase in 21.3%, lecithinase in 47.9%, lipase in 54.8% and proteinase in 64.4%. Fluorescein and pyocyanin were not produced by any of the isolates. Among the haemolytic isolates, 77.7% were resistant to oxacillin 1 microg, 59.6% to penicillin G 2 units, 47.3% to penicillin G 10 units, 54.3% to ampicillin 10 microg and 43.1% to ampicillin 25 microg. Cell culture studies revealed that 96% of haemolytic isolates were cytotoxic to HEp-2 cells, and 98.9% of the 181 cytotoxic isolates adhered to HEp-2 or Caco-2 cells. HEp-2 cells were invaded by 43.6%, and Caco-2 cells by 49.7%, of the 181 cytotoxic isolates. The invasion index on HEp-2 cells ranged from 1.9 x 10(-1) to 8.9 x 10(-6), whereas the invasion index on Caco-2 cells varied between 7.7 x 10(-2) and 8.3 x 10(-6). The most commonly isolated genera with

  19. Antimicrobial activities of novel cultivable bacteria isolated from marine sponge Tedania anhelans

    NASA Astrophysics Data System (ADS)

    Zeng, Zhen; Zhao, Jing; Ke, Caihuan; Wang, Dexiang

    2013-05-01

    Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian, southeastern China, and is a potential source of natural bioactive products. The sponge harbors a large number of bacterial groups that have been identified using various techniques, including fluorescent in situ hybridization (FISH). Fractionation of dissociated sponge allowed isolation of 25 bacterial species. Based on 16S rRNA gene sequencing, phylogenetic analysis attributed most of these eubacteria to α- Proteobacteria, γ- Proteobacteria, Cytophaga / Flavobacterium / Bacteroidetes (CFB group), and the family Bacillaceae of Gram-positive bacteria. In sequence similarity, five putatively novel species were identified with less than 98% similarity to other strains in the NCBI database. Tests for antimicrobial activities were performed against Gram-positive bacteria, Gram-negative bacteria, fungi, antitumor indicators Escherichia coli 343/591 (with DNA repair deficiency), regular E. coli 343/636 (with different DNA repair capacity), and 10 bacterial isolates exhibited inhibitory bioactivities. Among these strains, three isolates were detected involving function gene NRPS-A domains, which were most closely related to the amino acid sequences of linear gramicidin synthetase and pyoverdine synthetase. These results contribute to our knowledge of the microbes associated with marine sponges and further reveal novel bacterial resources for the screening of bioactive marine natural products.

  20. Rapid isolation of gluten-digesting bacteria from human stool and saliva by using gliadin-containing plates

    PubMed Central

    Sarantopoulos, Christos; Ongchangco, Deryn; Sry, Jeremy; Cesario, Thomas

    2014-01-01

    The number of individuals with gluten intolerance has increased dramatically over the last years. To date, the only therapy for gluten intolerance is the complete avoidance of dietary gluten. To sustain a strictly gluten-free diet, however, is very challenging. Therefore, there is need for a non-dietary therapy. Any such treatment must appreciate that the immunogenic part of gluten are gliadin peptides which are poorly degraded by the enzymes of the gastrointestinal tract. Probiotic therapy and oral enzyme therapy containing gluten-degrading bacteria (GDB) and their gliadin-digesting enzymes are possible new approaches for the treatment of gluten intolerance, however effectively isolating GDB for these treatments is problematic. The goal of this study was to develop an easy technique to isolate GDB rapidly and efficiently with the hope it might lead to newer ways of developing either probiotics or traditional medicines to treat gluten intolerance. Several researchers have already isolated successfully GDB by using gluten minimal or limited agar plates. Although these plates can be used to isolate bacteria which can tolerate gluten, further assays are needed to investigate if the same bacteria can also digest gluten. The agar plates we developed can detect bacteria which cannot only tolerate gluten but are able to digest it as well. Therefore, we were able to combine two steps into one step. Using such technologies, we were able to isolate five GDB from saliva and stool, and identified three bacterial reference strains with gluten-degrading activity. The technique we developed to isolate bacteria with gluten-degrading activity is fast, effective, and easy to use. The GDB isolated by our technology could have potential as part of a probiotic or enzymatic therapy for people with gluten intolerance. PMID:25519429

  1. Inhibition of Listeria monocytogenes biofilms by bacteriocin-producing bacteria isolated from mushroom substrate.

    PubMed

    Bolocan, A S; Pennone, V; O'Connor, P M; Coffey, A; Nicolau, A I; McAuliffe, O; Jordan, K

    2017-01-01

    This study was designed to investigate the ability of naturally occurring bacteria isolated from mushroom substrate to prevent biofilm formation by Listeria monocytogenes or to remove existing biofilms in mushroom production facilities. It is generally recognized that L. monocytogenes forms biofilms that can facilitate its survival in food-processing environments. Eleven bacteriocin-producing isolates were identified and the bacteriocins characterized based on heat and enzyme inactivation studies. Further characterization was undertaken by MALDI-TOF mass spectrometry, PCR and sequencing. Production of nisin Z (by Lactococcus lactis isolates), subtilomycin (by Bacillus subtilis isolates) and lichenicidin (by Bacillus licheniformis and Bacillus sonorensis isolates) was detected. In co-culture with L. monocytogenes, the bacteriocin-producing strains could prevent biofilm formation and reduce pre-formed biofilms. Mushroom substrate can be a source of bacteriocin-producing bacteria that can antagonize L. monocytogenes. The results highlight the potential of bacteriocin-producing strains from mushroom substrate to reduce L. monocytogenes biofilm in food production environments, contributing to a reduction in the risk of food contamination from the environment. © 2016 The Society for Applied Microbiology.

  2. A comparative evaluation of antibacterial effectiveness of sodium hypochlorite, Curcuma longa, and Camellia sinensis as irrigating solutions on isolated anaerobic bacteria from infected primary teeth.

    PubMed

    Dhariwal, Neha Shashikant; Hugar, Shivayogi M; Harakuni, Sheetal; Sogi, Suma; Assudani, Harsha G; Mistry, Laresh Naresh

    2016-01-01

    In endodontics, most of the commercial intra-canal medicaments have cytotoxic reactions and because of their inability to eliminate bacteria from dentinal tubules, recent medicine has turned its attention to the usage of biologic medication prepared from natural plants. The literature to testify the efficacy of natural alternatives in primary teeth is meagre and its effects as irrigating solutions need to be evaluated. To evaluate the antibacterial effectiveness of sodium hypochlorite, ethanolic extracts of Curcuma longa (turmeric) and Camellia sinensis (green tea) as irrigating solutions against the anaerobic bacteria isolated from the root canals of infected primary teeth. Thirty patients were selected based on the selected inclusion and exclusion criteria. Preoperative radiographs were taken. Rubber dam isolation and working length estimation were done, following which thirty samples were taken from the root canals of infected primary teeth using sterile absorbent paper points and transferred to tubes containing thioglycolate transport medium. The bacteria were then isolated using standard microbiological protocols and were subjected to antibiotic sensitivity testing using the three test irrigants. SPSS 18 software using Chi-square test was used for statistical analysis. The most commonly isolated bacteria included Porphyromonas sp., Bacteroides fragilis, Peptostreptococcus, and Staphylococcus aureus. Sodium hypochlorite and C. longa (turmeric) showed good antibacterial effect and were effective against most of the isolated bacteria. There was statistically significant difference in the antibacterial effect among the three tested groups (P < 0.001). The least effective was C. sinensis (green tea). The infected primary teeth almost always present with a polymicrobial structure with a wide variety of anaerobic bacteria. The chemo-mechanical preparation plays an important role in eradicating the population of predominant micro-organisms in treating these teeth with

  3. Isolation and whole genome analysis of endospore-forming bacteria from heroin.

    PubMed

    Kalinowski, Jörn; Ahrens, Björn; Al-Dilaimi, Arwa; Winkler, Anika; Wibberg, Daniel; Schleenbecker, Uwe; Rückert, Christian; Wölfel, Roman; Grass, Gregor

    2018-01-01

    Infections caused by endospore-forming bacteria have been associated with severe illness and death among persons who inject drugs. Analysis of the bacteria residing in heroin has thus been biased towards species that affect human health. Similarly, exploration of the bacterial diversity of seized street market heroin correlated with the skin microflora of recreational heroin users insofar as different Staphylococus spp. or typical environmental endospore formers including Bacillus cereus and other Bacilli outside the B. cereus sensu lato group as well as diverse Clostridia were identified. In this work 82 samples of non-street market ("wholesale") heroin originating from the German Federal Criminal Police Office's heroin analysis program seized during the period between 2009 and 2014 were analyzed for contaminating bacteria. Without contact with the end user and with only little contaminations introduced by final processing, adulteration and cutting this heroin likely harbors original microbiota from the drug's original source or trafficking route. We found this drug to be only sparsely populated with retrievable heterotrophic, aerobic bacteria. In total, 68 isolates were retrieved from 49 out of 82 samples analyzed (60% culture positive). All isolates were endospore-forming, Gram-positive Bacilli. Completely absent were non-endospore-formers or Gram-negatives. The three most predominant species were Bacillus clausii, Bacillus (para)licheniformis, and Terribacillus saccharophilus. Whole genome sequencing of these 68 isolates was performed using Illumina technology. Sequence data sets were assembled and annotated using an automated bioinformatics pipeline. Average nucleotide identity (ANI) values were calculated for all draft genomes and all close to identical genomes (ANI>99.5%) were compared to the forensic data of the seized drug, showing positive correlations that strongly warrant further research on this subject. Copyright © 2017 Elsevier B.V. All rights

  4. Isolation and characterization of oxalotrophic bacteria from tropical soils.

    PubMed

    Bravo, Daniel; Braissant, Olivier; Cailleau, Guillaume; Verrecchia, Eric; Junier, Pilar

    2015-01-01

    The oxalate-carbonate pathway (OCP) is a biogeochemical set of reactions that involves the conversion of atmospheric CO2 fixed by plants into biomass and, after the biological recycling of calcium oxalate by fungi and bacteria, into calcium carbonate in terrestrial environments. Oxalotrophic bacteria are a key element of this process because of their ability to oxidize calcium oxalate. However, the diversity and alternative carbon sources of oxalotrophs participating to this pathway are unknown. Therefore, the aim of this study was to characterize oxalotrophic bacteria in tropical OCP systems from Bolivia, India, and Cameroon. Ninety-five oxalotrophic strains were isolated and identified by sequencing of the 16S rRNA gene. Four genera corresponded to newly reported oxalotrophs (Afipia, Polaromonas, Humihabitans, and Psychrobacillus). Ten strains were selected to perform a more detailed characterization. Kinetic curves and microcalorimetry analyses showed that Variovorax soli C18 has the highest oxalate consumption rate with 0.240 µM h(-1). Moreover, Streptomyces achromogenes A9 displays the highest metabolic plasticity. This study highlights the phylogenetic and physiological diversity of oxalotrophic bacteria in tropical soils under the influence of the oxalate-carbonate pathway.

  5. Investigation of N-acyl homoserine lactone (AHL) molecule production in Gram-negative bacteria isolated from cooling tower water and biofilm samples.

    PubMed

    Haslan, Ezgi; Kimiran-Erdem, Ayten

    2013-09-01

    In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p < 0.05). In addition, it was found that bacteria belonging to the same species isolated from cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria.

  6. Isolation and characterization of novel chitinolytic bacteria

    NASA Astrophysics Data System (ADS)

    Gürkök, Sümeyra; Görmez, Arzu

    2016-04-01

    Chitin, a linear polymer of β-1,4-N-acetylglucosamine units, is one of the most abundant biopolymers widely distributed in the marine and terrestrial environments. It is found as a structural component of insects, crustaceans and the cell walls of fungi. Chitinases, the enzymes degrading chitin by cleaving the β-(1-4) bond, have gained increased attention due to their wide range of biotechnological applications, especially for biocontrol of harmful insects and phytopathogenic fungi in agriculture. In the present study, 200 bacterial isolates from Western Anatolia Region of Turkey were screened for chitinolytic activity on agar media amended with colloidal chitin. Based on the chitin hydrolysis zone, 13 isolates were selected for further study. Bacterial isolates with the highest chitinase activity were identified as Acinetobacter calcoaceticus, Arthrobacter oxydans, Bacillus cereus, Bacillus megaterium, Brevibacillus reuszeri, Kocuria erythromyxa, Kocuria rosea, Novosphingobium capsulatum, Rhodococcus bratislaviensis, Rhodococcus fascians and Staphylococcus cohnii by MIS and BIOLOG systems. The next aims of the study are to compare the productivity of these bacteria quantitatively, to purify the enzyme from the most potent producer and to apply the pure enzyme for the fight against the phytopathogenic fungi and harmful insects.

  7. Characterization and Identification of Phosphate Solubilizing Bacteria Isolate GPC3.7 from Limestone Mining Region

    NASA Astrophysics Data System (ADS)

    Fitriyanti, D.; Mubarik, N. R.; Tjahjoleksono, A.

    2017-03-01

    Phosphate (P) are one of major macronutrients needed by plants. P in the soil are present in the organic and inorganic form. The amounts of P in marginal soil can be increased with plant growth promoting rhizobacteria (PGPR). The aim of this study was to characterize and identify P solubilizing bacteria (PSB) isolate GPC3.7 that characteristically could fix N from the soil around limestone mining area. There were 44 PSB isolates found from 15 soil samples around limestone mining area, Blindis mountain, Cirebon. The solubility index of all strain were measured about 0.125 to 2.375 on Pikovskaya media. There were 22 PSB isolates were grown on N-free bromothymol blue (NfB) medium and 19 isolates were grown on Congo Red Agar (CRA) medium. Only 10 isolates were indicated as symbiotic living microorganisms whereas 12 others were categorized as N-free fixing bacteria. Isolate GPC3.7 was chosen to be further observed, based on its P solubility index, N-fixing ability and growth stability. Phosphate quantitative estimation assay of isolate GPC3.7 was unmeasured. The P soluble concentration of GPC3.7 might be lower than 1 mg/L. The colony of GPC3.7 morphologically had round shape, entire margin, raised elevation and white color. Isolate GPC3.7 was Gram negative bacteria with coccus cell shape. Based on 16S rRNA gene, GPC3.7 was closely relative to Acinetobacter baumannii.

  8. Antibacterial Activity of Lactic Acid Bacteria Isolated from Gastrointestinal Tract of “Ayam Kampung” Chicken Against Food Pathogens

    NASA Astrophysics Data System (ADS)

    Nur Jannah, Siti; Rini Saraswati, Tyas; Handayani, Dwi; Pujiyanto, Sri

    2018-05-01

    Food borne disease results from ingestion of water and wide variety of food contaminated with pathogenic organisms. The main causes of food borne diseases are bacteria, such as Escherichia coli and Staphylococcus aureus. The objective of this study was to determine antimicrobial activity of lactic acid bacteria (LAB) isolated from local chicken gastrointestinal tract with an emphasis on their probiotic properties. The colonies of bacteria that producing clear zone on MRSA plus 0.5% CaCO3, Gram-positive and catalase-negative were isolated as lactic acid bacteria. Some of the strains (10 isolates) were tested for their ability to inhibit growth of Escherichia coli and Staphylococcus aureus, and for acid pH and bile salt tolerance. The results showed that the all selected isolates producing antimicrobial compounds inhibits the growth of Escherichia coli and Staphylococcus aureus, both in the supernatant and supernatant plus 2M NaOH, and still growing in medium condition with pH 2.0 and 0.1% bile salt. It revealing the potential use of the lactic acid bacteria from chicken gastrointestinal tract for probiotics in food.

  9. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    PubMed

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  10. The Most Common Detected Bacteria in Sputum of Patients with the Acute Exacerbation of COPD

    PubMed Central

    Cukic, Vesna

    2013-01-01

    Introduction: Acute exacerbation of COPD (AECOPD) may be triggered by infection with bacteria or viruses or by environmental pollutants; the cause of about one-third of exacerbations cannot be identified. Objective: To determine the most common bacteria in sputum culture of patients with AECOPD hospitalized in Intensive care unit of Clinic for pulmonary disease and TB “Podhrastovi” in the 2012. Material and methods: This is a retrospective analysis of sputum bacterial cultures of patients with AECOPD treated in the Intensive care unit of Clinic for pulmonary disease and TB “Podhrastovi” during 2012 .year. Each patient was required to give two sputum for bacterial examination. Each patient was treated with antibiotics prior to admission in Clinic “Podhrastovi”. The results of sputum bacterial culture findings are expressed in absolute number and percentage of examined patients. Results: In 2012, 75 patients with AECOPD were treated in Intensive care unit of Clinic for pulmonary disease and TB“Podhrastovi”. 44 (58.66%) of patients had normal –nonpathogenic – usual bacterial flora isolated in sputum cultures, 31 (41.34%) had a pathogen bacteria in sputum culture as follows: 7 had Streptoccocus pneumoniae, 8 had Klebsiella pneumoniae (2 with Streptococcus pneumoniae, one with Acinetobacter baumani) ,4 Escherichia colli, others are one or two cases with other bacteria. Conclusion: Bacterial airway infections play a great role in many, but not in all, of cases of AECOPD. So there is the need to do a sputum bacterial culture examination in each patient with AECOPD and with appropriate antibiotics to contribute to curing of them. PMID:24511262

  11. Stone-isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone.

    PubMed

    Jroundi, Fadwa; Gómez-Suaga, Patricia; Jimenez-Lopez, Concepción; González-Muñoz, Maria Teresa; Fernandez-Vivas, Maria Antonia

    2012-05-15

    Stone consolidation treatments that use bacterial biomineralization are mainly based on two strategies: (1) the inoculation of a bacterial culture with proven carbonatogenic ability and/or (2) the application of a culture medium capable of activating those bacteria able to induce the formation of calcium carbonate, from amongst the bacterial community of the stone. While the second strategy has been demonstrated to be effective and, unlike first strategy, it does not introduce any exogenous microorganism into the stone, problems may arise when the bacterial community of the stone is altered, for instance by the use of biocides in the cleaning process. In this study we isolate bacteria that belong to the natural microbial community of the stone and which have proven biomineralization capabilities, with the aim of preparing an inoculum that may be used in stone consolidation treatments wherein the natural community of those stones is altered. With this aim, outdoor experiments were undertaken to activate and isolate bacteria that display high biomineralization capacity from altered calcarenite stone. Most of the bacteria precipitated calcium carbonate in the form of calcite. The selected bacteria were phylogenetically affiliated with members of Actinobacteria, Gamma-proteobacteria and Firmicutes. Furthermore, the capability of these selected carbonatogenic bacteria to consolidate altered calcarenite stone slabs was studied in in vitro experiments, both in the presence and the absence of Myxococcus xanthus, as a potential reinforcement for the bacterial biomineralization. Herein, Acinetobacter species, belonging to the microbial community of the stone, are proposed as powerful carbonatogenic bacteria that, inoculated under appropriate conditions, may be used as inoculum for calcareous stone conservation/consolidation in restoration interventions where the microbial community of the stone is altered. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Lactic Acid Bacteria Producing Inhibitor of Alpha Glucosidase Isolated from Ganyong (Canna Edulis) and Kimpul (Xanthosoma sagittifolium)

    NASA Astrophysics Data System (ADS)

    Nurhayati, Rifa; Miftakhussolikhah; Frediansyah, Andri; Lailatul Rachmah, Desy

    2017-12-01

    Type 2 diabetes is a disease that caused by the failure of insulin secretion by the beta cells of the pancreas and insulin resistance in peripheral levels. One therapy for diabetics is by inhibiting the activity of α-glucosidase. Lactic acid bacteria have the ability to inhibit of α-glucosidase activity. The aims of this research was to isolation and screening of lactic acid bacteria from ganyong tuber (Canna Edulis) and kimpul tuber (Xanthosoma sagittifolium), which has the ability to inhibit the activity of α-glucosidase. Eightteen isolates were identified as lactic acid bacteria and all of them could inhibit the activity of α-glukosidase. The GN 8 isolate was perform the highest inhibition acivity.

  13. A MEMBRANE FILTER PROCEDURE FOR ASSAYING CYTOTOXIC ACTIVITY IN HETEROTROPHIC BACTERIA ISOLATED FROM DRINKING WATER

    EPA Science Inventory

    Cytotoxic activity assays of Gram-negative, heterotrophic bacteria are often laborious and time consuming. The objective of this study was to develop in situ procedures for testing potential cytotoxic activities of heterotrophic bacteria isolated from drinking water systems. Wate...

  14. Antibiogram of bacteria isolated from automated teller machines in Hamadan, West Iran

    PubMed Central

    Mahmoudi, Hassan; Arabestani, Mohammad Reza; Alikhani, Mohammad Yousef; Sedighi, Iraj; Kohan, Hamed Farhadi; Molavi, Mohammad

    2017-01-01

    Aim: Bacteria are ubiquitous in the environment. In keeping with the continued expansion of urbanization and the growing population, an increasing number of people use automated banking, i.e. automated teller machines (ATMs). The aim of this study was to investigate the bacterial contamination and its antibiotic sensitivity on computer keyboards located at ATMs in Hamadan province, Iran. Method: Out of 360 ATMs at four locations in Hamadan, 96 were randomly selected for this study. The antibiotic susceptibility pattern of all isolates was determined by the agar disk diffusion method using gentamicin (10 µg), vancomycin (30 µg), trimethoprim/sulfamethoxazole (25 µg), amikacin (30 µg), tobramycin (10 µg), cephalotin (30 µg), norfloxacin (5 µg), and ceftizoxim (30 µg) disks. Results: Melli and Saderat Banks had the most frequently contaminated ATMS, with 18 (27.7%) and 12 (18.5%), respectively. The most frequently isolated bacteria were Staphylococcus epidermidis in 12 (18.5%) ATMs, Pseudomonas aeruginosa in 12 (18.5%), Bacillus subtilis in 11 (16.9%), Escherichia coli in 6 (9.2%), Klebsiella spp. in 8 (12.3%), Enterobacter spp. in 2 (3.1%), Bacillus cereus in 6 (9.2%), Staphylococcus aureus in 3 (4.6%), and Micrococcaceae spp. in 5 (7.69%) cases. All isolated bacteria were susceptible to gentamicin, cephalotin, tobramycin, amikacin, norfloxacin, and vancomycin. The S. aureus resistance rate to trimethoprim/sulfamethoxazole was 50%. Conclusion: All tested ATM keyboards were contaminated with at least one species of bacteria. Based on these findings, it is recommendable to disinfect the hands after entering one’s own apartment, work area or a hospital, in order to hinder the spread of critical pathogens in the personal environment or in the hospital. PMID:28197394

  15. Isolation of proteolytic bacteria from mealworm (Tenebrio molitor) exoskeletons to produce chitinous material.

    PubMed

    da Silva, Fernanda Kerche Paes; Brück, Dieter W; Brück, Wolfram M

    2017-09-15

    The use of insects as a source of protein is becoming an important factor for feeding an increasing population. After protein extraction for food use, the insect exoskeleton may offer the possibility for the production of added value products. Here, the aim was to isolate bacteria from the surface of farmed mealworms (Tenebrio molitor Linnaeus, 1758) for the production of chitinous material from insect exoskeletons using microbial fermentation. Isolates were screened for proteases and acid production that may aid deproteination and demineralisation of insects through fermentation to produce chitin. Selected isolates were used single-step (isolated bacteria only) or two-step fermentations with Lactobacillus plantarum (DSM 20174). Two-step fermentations with isolates from mealworm exoskeletons resulted in a demineralisation of 97.9 and 98.5% from deproteinated mealworm fractions. Attenuated total reflectance-Fourier- transform infrared spectroscopy analysis showed that crude chitin was produced. However, further optimisation is needed before the process can be upscaled. This is, to our knowledge, the first report using microbial fermentation for the extraction of chitin from insects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. An adapted isolation procedure reveals Photobacterium spp. as common spoilers on modified atmosphere packaged meats.

    PubMed

    Hilgarth, M; Fuertes-Pèrez, S; Ehrmann, M; Vogel, R F

    2018-04-01

    The genus Photobacterium comprises species of marine bacteria, commonly found in open-ocean and deep-sea environments. Some species (e.g. Photobacterium phosphoreum) are associated with fish spoilage. Recently, culture-independent studies have drawn attention to the presence of photobacteria on meat. This study employed a comparative isolation approach of Photobacterium spp. and aimed to develop an adapted isolation procedure for recovery from food samples, as demonstrated for different meats: Marine broth is used for resuspending and dilution of food samples, followed by aerobic cultivation on marine broth agar supplemented with meat extract and vancomycin at 15°C for 72 h. Identification of spoilage-associated microbiota was carried out via Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry using a database supplemented with additional mass spectrometry profiles of Photobacterium spp. This study provides evidence for the common abundance of multiple Photobacterium species in relevant quantities on various modified atmosphere packaged meats. Photobacterium carnosum was predominant on beef and chicken, while Photobacterium iliopiscarium represented the major species on pork and Photobacterium phosphoreum on salmon, respectively. This study demonstrates highly frequent isolation of multiple photobacteria (Photobacterium carnosum, Photobacterium phosphoreum, and Photobacterium iliopiscarium) from different modified-atmosphere packaged spoiled and unspoiled meats using an adapted isolation procedure. The abundance of photobacteria in high numbers provides evidence for the hitherto neglected importance and relevance of Photobacterium spp. to meat spoilage. © 2018 The Society for Applied Microbiology.

  17. Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic.

    PubMed

    Neethu, C S; Mujeeb Rahiman, K M; Saramma, A V; Mohamed Hatha, A A

    2015-06-01

    Isolation and characterization of heterotrophic Gram-negative bacteria was carried out from the sediment and water samples collected from Kongsfjord, Arctic. In this study, the potential of Arctic bacteria to tolerate heavy metals that are of ecological significance to the Arctic (selenium (Se), mercury (Hg), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) was investigated. Quantitative assay of 130 isolates by means of plate diffusion and tube dilution methods was carried out by incorporation of different concentrations of metals. Growth in Se and Pb at a concentration of 3000 μg/L was significantly lower (P≤0.0001) than at 2000 μg/L. The minimum inhibitory concentration for Cd and Hg was 50 μg/L (P≤0.0001, F=264.23 and P≤0.0001, F=291.08, respectively) even though in the tube dilution test, Hg-containing tubes showed much less growth, revealing its superior toxicity to Cd. Thus, the level of toxicity of heavy metals was found to be in the order of Hg>Cd>Cu>Zn>Pb>Se. Multiple-metal-resistant isolates were investigated for their resistance against antibiotics, and a positive correlation was observed between antibiotic and metal resistance for all the isolates tested. The resistant organisms thus observed might influence the organic and inorganic cycles in the Arctic and affect the ecosystem.

  18. Anti-bacteria effect of active ingredients of siraitia grosvenorii on the spoilage bacteria isolated from sauced pork head meat

    NASA Astrophysics Data System (ADS)

    Li, X.; Xu, L. Y.; Cui, Y. Q.; Pang, M. X.; Wang, F.; Qi, J. H.

    2018-01-01

    Extraction and anti-bacteria effect of active ingredients of Siraitia grosvenorii were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration (MIC) were valued by Oxford-cup method. The results indicated that optimum extraction condition of active ingredients extracted from Siraitia grosvenorii were described as follows: ethanol concentrations of sixty-five percent and twenty minutes with ultrasonic assisted extraction; the active ingredients of Siraitia grosvenorii had anti-bacteria effect on Staphylococcus epidermidis, Proteus vulgaris, Bacillus sp, Serratia sp and MIC was 0.125g/mL, 0.0625g/mL, 0.125g/mL and 0.125g/mL. The active constituent of Siraitia grosvenorii has obvious anti-bacteria effect on the spoilage bacteria isolated from Sauced pork head meat and can be used as a new natural food preservation to prolong the shelf-life of Low-temperature meat products.

  19. Characterization of culturable bacteria isolated from hot springs for plant growth promoting traits and effect on tomato (Lycopersicon esculentum) seedling.

    PubMed

    Patel, Kinjal Samir; Naik, Jinal Hardik; Chaudhari, Sejal; Amaresan, Natarajan

    2017-04-01

    To elucidate the functional diversity of hot spring bacteria, 123 bacteria were isolated and screened for evaluating their multifunctional plant growth promoting (PGP) properties. The antagonistic activity against different phytopathogens showed the presence of a high amount of biocontrol bacteria in the hot springs. During screening for PGP properties, 61.0% isolates showed production of indole acetic acid and 23.6% showed inorganic phosphate solubilization qualitatively. For production of extracellular enzymes, it was found that 61.0% isolates produced lipase, 56.9% produced protease, and 43.9% produced cellulase. In extreme properties, half of the isolates showed tolerance to 5% NaCl (w/v) and 48.8% isolates survived heat shock at 70°C. The identification of 12 multipotential bacteria based on 16S rRNA gene sequencing revealed that the bacteria belonged to Aneurinibacillus aneurinilyticus and Bacillus spp. Bacterization of tomato seeds showed that the hot spring bacteria promoted shoot height, fresh shoot weight, root length, and fresh root weight of tomato seedlings, with values ranging from 3.12% to 74.37%, 33.33% to 350.0%, 16.06% to 130.41%, and 36.36% to 318.18%, respectively, over the control. This research shows that multifunctional bacteria could be isolated from the hot springs. The outcome of this research may have a potential effect on crop production methodologies used in saline and arid environments. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  20. The First Report of Drug Resistant Bacteria Isolated from the Brown-Banded Cockroach, Supella longipalpa, in Ahvaz, South-western Iran

    PubMed Central

    Vazirianzadeh, Babak; Dehghani, Rouhullah; Mehdinejad, Manijeh; Sharififard, Mona; Nasirabadi, Nersi

    2014-01-01

    Background The brown-banded cockroach, Supella longipalpa is known as a carrier of pathogenic bacteria in urban environments, but its role is not well documented regarding the carriage of antibiotic-resistant pathogenic bacteria in Iran. The aim of this study was to determine the resistance bacteria isolated from the brown-banded cockroach in Ahvaz, south west of Iran. Methods: Totally 39 cockroaches were collected from kitchen area of houses and identified. All specimens were cultured to isolate the bacterial agents on blood agar and MacConky agar media. The microorganisms were identified using necessary differential and biochemical tests. Antimicrobial susceptibility tests were performed for isolated organisms by Kirby-Bauer’s disk diffusion according to NCLI guideline, using 18 antibiotics. Results: From the 39 collected S. langipalpa, 179 bacterial agents were isolated, 92 of alimentary ducts and 87 of external body surfaces. Isolated bacteria from cockroaches were identified as Enterobacter spp., Klebsiella spp., Citrobacter spp., Escherichia coli, Salmonella spp., Proteus spp., coagulase negative staphylococci, Serratia marcescens, Staphylococcus aureus, and Bacillus species. The pattern resistance rates were determined for gram negative bacilli and gram positive cocci regarding 18 antibiotics. Conclusion: The brown-banded cockroach can be involved in the spread of drug resistant bacteria and increases the possibility of contacting human environment to drug resistant bacteria. Therefore, the potential of removing this insect should be improved. This is the first original report of drug resistant bacteria isolated from the brown-banded cockroach of Iran. PMID:25629065

  1. Bioaccumulation of Vanadium by Vanadium-Resistant Bacteria Isolated from the Intestine of Ascidia sydneiensis samea.

    PubMed

    Romaidi; Ueki, Tatsuya

    2016-06-01

    Isolation of naturally occurring bacterial strains from metal-rich environments has gained popularity due to the growing need for bioremediation technologies. In this study, we found that the vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia sydneiensis samea could reach 0.67 mM, and thus, we isolated vanadium-resistant bacteria from the intestinal contents and determined the ability of each bacterial strain to accumulate vanadium and other heavy metals. Nine strains of vanadium-resistant bacteria were successfully isolated, of which two strains, V-RA-4 and S-RA-6, accumulated vanadium at a higher rate than did the other strains. The maximum vanadium absorption by these bacteria was achieved at pH 3, and intracellular accumulation was the predominant mechanism. Each strain strongly accumulated copper and cobalt ions, but accumulation of nickel and molybdate ions was relatively low. These bacterial strains can be applied to protocols for bioremediation of vanadium and heavy metal toxicity.

  2. Isolation And Partial Characterization Of Bacteria Activity Associated With Gorgonian Euplexaura sp. Against Methicillin-Resistant Staphylococcus aureus (MRSA)

    NASA Astrophysics Data System (ADS)

    Kristiana, R.; Ayuningrum, D.; Asagabaldan, M. A.; Nuryadi, H.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infection has emerged in around the world and has been resistance to ciprofloxacin, erythromycin, clindamycin. The aims of this study were to isolate, to investigate and to characterize bacterial symbionts gorgonian having activity against MRSA. Euplexaura sp. was collected from Panjang Island, Jepara, Indonesia by snorkling 2-5 m in depth. Bacterias were isolated by using spesific media with dilution method. Bacterias were conducted by using the streak method. Antibacterial activity was investigated by overlay method. The potent bacteria was identified by using molecular identification (DNA extraction, electrophoresis, PCR and phylogenetic analysis using 16S rDNA genes with actinobacteria-spesific primers) and bio-chemical test (among 5 isolated bacteria from gorgonian showed activity against MRSA). The strain PG-344 was the best candidat that has an inhibition zone against MRSA. The result of sequencing bacteria is 100% closely related with Virgibacillus salarius. This becomes a potential new bioactive compounds to against MRSA that can be a new drug discovery.

  3. Bacteria isolated from rock art paintings: the case of Atlanterra shelter (south Spain).

    PubMed

    Gonzalez, I; Laiz, L; Hermosin, B; Caballero, B; Incerti, C; Saiz-Jimenez, C

    1999-05-01

    The Sierra de la Plata is an Aljibe yellow sandstone formation from the Acheulian period. There are a few shelters, some of them with rock art paintings. The most representative one, and subjected to anthropogenic pressure, is that of Atlanterra, situated in a residential area. This shelter contains some rock art paintings made with iron oxides. The bacteria present in these paintings were isolated and identified using an automatic method: fatty acid methyl esters profiling. Most of the bacteria belong to the Bacillus genus, B. megaterium being the most abundant species. The isolated strains are able to reduce hematite. This is significant due to the fact that Fe(III)-(hydr)oxides are the most abundant pigments in rock art.

  4. Bacterium-bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea).

    PubMed

    Lo Giudice, Angelina; Brilli, Matteo; Bruni, Vivia; De Domenico, Maria; Fani, Renato; Michaud, Luigi

    2007-06-01

    One hundred and forty bacteria isolated from Antarctic seawater samples were examined for their ability to inhibit the growth of indigenous isolates and their sensitivity to antibacterial activity expressed by one another. On the basis of 16S rRNA gene sequencing and analysis, bacterial isolates were assigned to five phylogenetically different taxa, Actinobacteria, alpha and gamma subclasses of Proteobacteria, Bacillaceae, and Bacteroidetes. Twenty-one isolates (15%), predominantly Actinobacteria, exhibited antagonistic properties against marine bacteria of Antarctic origin. Members of Bacteroidetes and Firmicutes did not show any inhibitory activity. Differences were observed among inhibition patterns of single isolates, suggesting that their activity was more likely strain-specific rather than dependent on phylogenetic affiliation. A novel analysis based on network theory confirmed these results, showing that the structure of this population is probably robust to perturbations, but also that it depends strongly on the most active strains. The determination of plasmid incidence in the bacterial strains investigated revealed that there was no correlation between their presence and the antagonistic activity. The data presented here provide evidence for the antagonistic interactions within bacterial strains inhabiting Antarctic seawater and suggest the potential exploitation of Antarctic bacteria as a novel source of antibiotics.

  5. Biofilm forming ability of bacteria isolated from necrotic roots canals of teeth

    NASA Astrophysics Data System (ADS)

    Alwan, Merriam Ghadhanfar; Usup, Gires; Heng, Lee Yook; Ahmad, Asmat

    2018-04-01

    The growth of microbes in biofilms are associated with repeated and chronic human infections and are extremely resistant to antimicrobial agents. The purpose of this study was to determine the diversity of bacteria from necrotic roots canals of teeth and to detect their biofilm formation ability. A total of 42 bacterial isolates were isolated and identified as belonging to 11 genera. These are Enterococcus sp. (21.4%) followed by Streptococcus sp. (16.8%), Bacillus sp. (11.9%), Peptostreptococcus sp. (9.5%), Staphylococcus sp. (9.5%), Bacteroides sp. (7.1%), Clostridium sp. (7.1%), Actinomyces sp. (7.1%), Fusobacterium sp. (4.76%), Provotella sp. (2.4%) and Chromobacterium sp. (2.4%). Three screening methods for biofilm forming ability were used. Congo Red Agar method (CRA), Tube method (TM) and Microtitre Plate (MTP). From the results, MTP method is a more reliable and quantitative method for the screening and detection of microorganism's ability to form biofilm. This method can be recommended and suggested as a general screening method for the detection of biofilm forming bacteria isolated from roots canals of teeth.

  6. Removal enactment of organo-phosphorous pesticide using bacteria isolated from domestic sewage.

    PubMed

    Shabbir, Md; Singh, Mukesh; Maiti, Swati; Kumar, Sunil; Saha, Samar K

    2018-05-01

    Three bacteria (MS I, II and III) i.e., Pseudomonas aeruginosa (KY781886), Enterobactor ludwigii (KX881423) and Enterobacter cloacae (KX881513) isolated from domestic sewage were identified on the basis of 16S rDNA sequencing and are capable to growth in the presence of organo-phosphorous pesticide (chlorpyrifos). The mega plasmid size >23 kb was found in MS I and III. Biosurfactants of the significant amount were produced by three isolates. The ability of the isolates to degrade pesticide over 3 days in the presence of pesticides containing chlorpyrifos as the active component was estimated. Results of UV-visible, FTIR spectroscopy and GC-MS studies confirmed the removal of chlorpyrifos rather than degradation. Pesticide uptake results showed chlorpyrifos in intracellular components and bound to the cell surface in its native state. Removal of pesticide from soil was also recorded by these bacteria. Microbial treated pesticide did not have any effect on Vigna radita seedlings and goat erythrocytes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Petroleum residues degradation in laboratory-scale by rhizosphere bacteria isolated from the mangrove ecosystem

    NASA Astrophysics Data System (ADS)

    Rinanti, A.; Nainggolan, I. J.

    2018-01-01

    This research is about petroleum bioremediation experiment to obtain bacterial isolate from mangrove ecosystem which potentially degrade petroleum. It was conducted in an Erlenmeyer batch system filled with growth medium of Stone Mineral Salt Solution (SMSS) plus petroleum residue, placed in an incubator shaker with a rotation speed of 120 rpm, temperature 3000C, for 14 research days. Indigenous bacteria that have been isolated and identified from the roots of mangrove plants are Ochrobactrum anthropi and Bacillus sp., Ralstonia pickettii and Bacillus circulans. Those bacteriain both monoculture and consortium form (mixed culture) are incorporated into erlenmeyer as remediator agents. All bacteria can utilize hydrocarbon compounds, but Ralstonia pickettii and Bacillus circulans reached exponential phase faster with more cell count than other bacteria. Compared to single cultures, petroleum degradation by a bacterial consortium provides a higher TPH reduction efficiency, i.e. at 5%, 10%, and 15% of initial TPH of 94.4%, 72%, and 80.3%, respectively. This study proved that all bacteria could optimize hydrocarbon compounds up to 15% TPH load.

  8. Antimicrobial resistance and its genetic determinants in aeromonads isolated in ornamental (koi) carp (Cyprinus carpio koi) and common carp (Cyprinus carpio).

    PubMed

    Cízek, Alois; Dolejská, Monika; Sochorová, Radana; Strachotová, Katerina; Piacková, Veronika; Veselý, Tomás

    2010-05-19

    The aim of this study was to evaluate antimicrobial susceptibility of Aeromonas spp. isolates from common carp and koi carp coming from randomly chosen farms. The isolates were tested for susceptibility to 8 antimicrobial agents using the standard agar dilution susceptibility test. In all isolates, PCR was used to detect the presence of tet(A-E) genes, integrase genes, and gene cassettes. From the total 72 isolates of motile aeromonads sampled from koi carp, 36 isolates (50%) were resistant to oxytetracycline, 18 (25%) to ciprofloxacin, 5 (7%) to chloramphenicol, 5 (7%) to florfenicol, and 11 (15%) to trimethoprim. Among 49 isolates of motile aeromonads collected from common carp, 20 (41%) were resistant to oxytetracycline, 3 (6%) to chloramphenicol, and 3 (6%) to florfenicol. The resistance of aeromonads isolated from koi carp was significantly higher to ciprofloxacin (P=0.00024). The presence of class 1 integrons was detected in these isolates only (P=0.00024). Tet genes were detected in 40% (48/121) of isolates, with tet(E) being the most dominant. Our results demonstrated a significant difference in the incidence of resistant isolates collected from koi carp and common carp (P=0.00042). This difference can be ascribed to a distinct antibiotic policy established on consumer fish farms versus ornamental fish farms. The potential risk for resistant bacteria to spread and transmit infection to humans should be considered in cases of technological crossover between the two types of fish farms. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Identification and Antibacterial Activity of Bacteria Isolated from Marine Sponge Haliclona (Reniera) sp. against Multi-Drug Resistant Human Pathogen

    NASA Astrophysics Data System (ADS)

    Ardhanu Asagabaldan, Meezan; Ayuningrum, D.; Kristiana, R.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    The marine sponge Haliclona (Reniera) sp. was a potential source of natural bioactive compounds. This sponge widely distributed along the coast of Panjang Island, Jepara, Indonesia. The aims of this research were to isolate the associated bacteria with Haliclona (Reniera) sp. and to screen the antibacterial activity against Multi-Drug Resistant (MDR) bacteria. Amount five bacteria were isolated using media selective for bacteria. The antibacterial activities of bacteria were performed by overlay methods. The bacteria strain PSP. 39-04 had the best activity against Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, and Enterobacter cloaceae. Based on colony morphology and phylogenetic characterization using 16S rRNA gene sequencing, PSP 39-04 was closely related with Chromohalobacter salixigens strain DSM3043.

  10. Isolation and identification of amylase-producing, endospore-forming bacteria from the alimentary tract of commercially processed broilers

    USDA-ARS?s Scientific Manuscript database

    Bacterial cultures of crop and cecal contents of adult poultry contain beneficial bacteria that reduce colonization of young poultry by Salmonella. Since endospore-forming bacteria may play a role in competitive exclusion of Salmonella in poultry, 3 trials were conducted to isolate these bacteria fr...

  11. Isolation of Potential Bacteria as Inoculum for Biofloc Formation in Pacific Whiteleg Shrimp, Litopenaeus vannamei Culture Ponds.

    PubMed

    Kasan, Nor Azman; Ghazali, Nurarina Ayuni; Ikhwanuddin, Mhd; Ibrahim, Zaharah

    2017-01-01

    A new green technology to reduce environmental damages while optimizing production of Pacific Whiteleg shrimp, Litopenaeus vannamei was developed known as "Biofloc technology". Microbial communities in biofloc aggregates are responsible in eliminating water exchange and producing microbial proteins that can be used as supplemented feed for L. vannamei. This study aimed to isolate and identify potential bioflocculant-producing bacteria to be used as inoculum for rapid formation of biofloc. For the purpose of this study, bacterial communities during 0, 30 and 70 days of culture (DOC) of L. vannamei grow-out ponds were isolated and identified through phenotypic and 16S rDNA sequences analysis. Phylogenetic relationships between isolated bacteria were then evaluated through phylogenetic tree analysis. One-way analysis of variance (ANOVA) was used to compare the differences of microbial communities at each DOC. Out of 125 bacterial isolates, nine species of bacteria from biofloc were identified successfully. Those bacteria species were identified as Halomonas venusta, H. aquamarina, Vibrio parahaemolyticus, Bacillus infantis, B. cereus, B. safensis, Providencia vermicola, Nitratireductor aquimarinus and Pseudoalteromonas sp., respectively. Through phylogenetic analysis, these isolates belong to Proteobacteria and Firmicutes families under the genera of Halomonas sp., Vibrio sp., Bacillus sp., Providencia sp., Nitratireductor sp. and Pseudoalteromonas sp. In this study, bioflocculant-producing bacteria were successfully identified which are perfect candidates in forming biofloc to reduce water pollution towards a sustainable aquaculture industry. Presence of Halomonas sp. and Bacillus sp. in all stages of biofloc formation reinforces the need for new development regarding the ability of these species to be used as inoculum in forming biofloc rapidly.

  12. Occurrence and molecular characterization of cultivable mesophilic and thermophilic obligate anaerobic bacteria isolated from paper mills.

    PubMed

    Suihko, Maija-Liisa; Partanen, Laila; Mattila-Sandholm, Tiina; Raaska, Laura

    2005-08-01

    The aim of this work was to characterize the cultivable obligate anaerobic bacterial population in paper mill environments. A total of 177 anaerobically grown bacterial isolates were screened for aerotolerance, from which 67 obligate anaerobes were characterized by automated ribotyping and 41 were further identified by partial 16S rDNA sequencing. The mesophilic isolates indicated 11 different taxa (species) within the genus Clostridium and the thermophilic isolates four taxa within the genus Thermoanaerobacterium and one within Thermoanaerobacter (both formerly Clostridium). The most widespread mesophilic bacterium was closely related to C. magnum and occurred in three of four mills. One mill was contaminated with a novel mesophilic bacterium most closely related to C. thiosulfatireducens. The most common thermophile was T. thermosaccharolyticum, occurring in all four mills. The genetic relationships of the mill isolates to described species indicated that most of them are potential members of new species. On the basis of identical ribotypes clay could be identified to be the contamination source of thermophilic bacteria. Automated ribotyping can be a useful tool for the identification of clostridia as soon as comprehensive identification libraries are available.

  13. Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood

    Treesearch

    Carol A. Clausen

    2000-01-01

    Bioremediation of chromated copper arsenate-treated waste wood with one or more metal-tolerant bacteria is a potential method of naturally releasing metals from treated wood fibre. Sampling eight environments with elevated levels of copper, chromium, and arsenic resulted in the isolation of 28 bacteria with the capability of releasing one or more of the components from...

  14. Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices.

    PubMed

    Ong, Yien Yien; Tan, Wen Siang; Rosfarizan, Mohamad; Chan, Eng Seng; Tey, Beng Ti

    2012-10-01

    Red dragon fruit or red pitaya is rich in potassium, fiber, and antioxidants. Its nutritional properties and unique flesh color have made it an attractive raw material of various types of food products and beverages including fermented beverages or enzyme drinks. In this study, phenotypic and genotypic methods were used to confirm the identity of lactic acid bacteria (LAB) appeared in fermented red dragon fruit (Hylocereus polyrhizus) beverages. A total of 21 isolates of LAB were isolated and characterized. They belonged to the genus of Enterococcus based on their biochemical characteristics. The isolates can be clustered into two groups by using the randomly amplified polymorphic DNA method. Nucleotide sequencing and restriction fragment length polymorphism of the 16S rRNA region suggested that they were either Enterococcus faecalis or Enterococcus durans. Current research revealed the use of biochemical analyses and molecular approaches to identify the microbial population particularly lactic acid bacteria from fermented red dragon fruit juices. © 2012 Institute of Food Technologists®

  15. New Medium for Isolation of Bacteria From Cement Kiln Dust with a Potential to Apply in Bio-Concrete

    NASA Astrophysics Data System (ADS)

    Alshalif, A. F.; Irwan, J. M.; Othman, N.; Al-Gheethi, A.

    2018-04-01

    The present study aimed to introduce a new isolation medium named kiln dust medium (KDM) for recovering of bacteria from cement kiln dust with high pH (>pH 11) without the need for nutrients additives. The cement kiln dust samples were collected from five different areas of Cement Industries of Malaysia Berhad (CIMA). The bacterial isolates were recovered on KDM by direct plating technique. The chemical components for all collected samples were identified using X-ray fluorescence (XRF). The primary identification for the bacterial isolates indicated that these bacteria belongs to Bacillus spp. Based on the morphological characteristics. The growth curve of the bacterial strains was monitored using the optical density (OD) with 650 nm wavelength, which in role confirmed that all isolated bacteria had the ability to grow successfully in the proposed medium. The ability of the bacterial strains to grow at high pH reflects their potential in the bio-concrete applications (aerated and non-aerated concrete). These findings indicated that the cement kiln dust samples from Cement Industries represent the most appropriate source for bacteria used in the bioconcrete.

  16. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    PubMed

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  17. Isolation of Viable but Non-culturable Bacteria from Printing and Dyeing Wastewater Bioreactor Based on Resuscitation Promoting Factor.

    PubMed

    Jin, Yi; Gan, Guojuan; Yu, Xiaoyun; Wu, Dongdong; Zhang, Li; Yang, Na; Hu, Jiadan; Liu, Zhiheng; Zhang, Lixin; Hong, Huachang; Yan, Xiaoqing; Liang, Yan; Ding, Linxian; Pan, Yonglong

    2017-07-01

    Printing and dyeing wastewater with high content of organic matters, high colority, and poor biochemical performance is hard to be degraded. In this study, we isolated viable but non-culturable (VBNC) bacteria from printing and dyeing wastewater with the culture media contained resuscitation promoting factor (Rpf) protein secreted by Micrococcus luteus, counted the culturable cells number with the most probable number, sequenced 16S rRNA genes, and performed polymerase chain reaction-denaturing gradient gel electrophoresis. It is obviously that the addition of Rpf in the enrichment culture could promote growth and resuscitation of bacteria in VBNC state to obtain more fastidious bacteria significantly. The identified bacteria were assigned to nine genera in the treatment group, while the two strains of Ochrobactrum anthropi and Microbacterium sp. could not be isolated from the control group. The function of isolated strains was explored and these strains could degrade the dye of Congo red. This study provides a new sight into the further study including the present state, composition, formation mechanism, and recovery mechanism about VBNC bacteria in printing and dyeing wastewater, which would promote to understand bacterial community in printing and dyeing wastewater, and to obtain VBNC bacteria from ecological environment.

  18. Isolation and Characterization of Oil-Degrading Bacteria from One of South Sumatera’s Oilfield

    NASA Astrophysics Data System (ADS)

    Purwasena, I. A.; Astuti, D. I.; Fatmawati, R.; Afinanisa, Q.

    2018-01-01

    Microbial Enhanced Oil Recovery (MEOR) is a tertiary oil recovery method that utilizes microbes to enhance oil production. This research was focused on the isolation and characterization of indigenous bacteria from a South Sumatra’s oilfield which were able to degrade heavy crude oil and decrease oil viscosity. The total of 33 colonies were successfully isolated based on sequential isolation method and screened based on oil degradation activity and SARA analysis. Isolate G3, G7, and N6 were choosen as the best candidate as they were able to reduce oil viscosity up to 22,67%; 23,14%; and 24,36% respectively. Based on 16S rRNA analysis, isolate G3 which was able to degrade aromatic fraction (38,27%) and resin (29,26%) was identified as Pseudoxhantomonas taiwanensis. Isolate G7 which degraded aromatic fraction (61,14%) was identified as Brevibacillus agri while N6 which degraded asphaltene fraction (51.76%) was identified as Bacillus subtilis. In addition, the change in nalkana fraction (C11 - C28) abundance relative to phytan showed that all of the bacterial isolates were able to change those fractions of crude oil. This study showed that three bacterial species isolated from South Sumatran Oilfield were able to degrade heavier fraction of crude oil and reduce its viscosity. This result suggests that those bacteria are highly potential to be applied for MEOR technology.

  19. How-to-Do-It: A Simple DNA Isolation Technique Using Halophilic Bacteria.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick

    1989-01-01

    Described is a simple technique for isolating DNA from halophilic bacteria. Materials, procedure, and additional experiments are outlined. It is stated that the DNA obtained will be somewhat contaminated with cellular proteins and RNA. Offers a procedure for greater purification. (RT)

  20. [Properties of pectolitic phytopathogenic bacteria isolates obtained in Ukraine].

    PubMed

    Maksimenko, L A; Parkhomenko, N I; Moroz, S N; Gorb, T E

    2013-01-01

    Bacteria obtained from potato tubers having symptoms of soft rot and grown in different regions of Ukraine are identified as Pectobacterium carotovorum subsp. carotovorum. These bacteria strains are able to produce bacteriocines. Their killer activity in respect of P. carotovorum and Esherichia coli has been studied. The sensitivity to bactericines has been shown. Purified fractions of bacteriocines having high molecular weight (MCTV) have been obtained. The difference in composition of proteins from phage tails as compared to the ones in P. carotovorum J2 has been studied by the method of electrophoresis. It was found that the composition of MCTV major proteins of studied isolates mostly corresponds to P. carotovorum J2. The set of enzyme minor fractions has some different compositions as compared to P. carotovorum J2. It has been hypothesized that this difference is responsible for killer specificity.

  1. Susceptibility to rifaximin and other antimicrobials of bacteria isolated in patients with acute gastrointestinal infections in Southeast Mexico.

    PubMed

    Novoa-Farias, O; Frati-Munari, A C; Peredo, M A; Flores-Juárez, S; Novoa-García, O; Galicia-Tapia, J; Romero-Carpio, C E

    Enteropathogenic bacteria isolated in Mexico City have shown a high rate of resistance to different antibiotics, with the exception of rifaximin (RIF). RIF is a nonabsorbable antibiotic that reaches high fecal concentrations (≈ 8,000μg/g). Susceptibility to antimicrobials can vary in different geographic regions. To study the susceptibility to rifaximin and other antimicrobials of enteropathogenic bacteria isolated in patients with acute diarrhea in the southeastern region of Mexico. A total of 614 strains of bacteria isolated from patients with acute diarrhea from 4 cities in Southeast Mexico were analyzed. An antibiogram with the following antibiotics was created: ampicillin (AMP), trimethoprim/sulfamethoxazole (T-S), neomycin (NEO), furazolidone (FUR), ciprofloxacin (CIP), chloramphenicol (CHL), and fosfomycin (FOS), assessed through the agar diffusion method at the standard concentrations recommended by the Clinical and Laboratory Standards Institute (CLSI) and the American Society for Microbiology (ASM), and RIF, assessed through microdilution at 4 concentrations. The bacteria were Escherichia coli (55%), as the majority, in all its pathogenic variants, Shigella (16.8%), Salmonella (15.3%), Aeromonas (7.8%), and less than 5% Campylobacter, Yersinia, Vibrio, and Plesiomonas. The accumulated overall susceptibility to RIF was 69.1, 90.8, 98.9, and 100% at concentrations of 100, 200, 400, and 800μg/ml, respectively. Overall susceptibility to other antibiotics was FOS 82.8%, CHL 76.8%, CIP 73.9%, FUR 64%, T-S 58.7%, NEO 55.8%, and AMP 23.8%. Susceptibility to RIF at 400 and 800μg was significantly greater than with the other antimicrobials (P<.001). The data of the present study were similar to those of a previous study carried out in Mexico City: susceptibility to RIF in > 98% of the bacterial strains and a high frequency of resistance to several common antimicrobials. Copyright © 2017 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma M

  2. Temperature range and degree of acidity growth of isolate of indigenous bacteria on fermented feed “fermege”

    NASA Astrophysics Data System (ADS)

    Isnawati; Trimulyono, G.

    2018-01-01

    Fermege is a fermented feed of ruminants, especially goats made from water hyacinth (Eichhornia crassipes). Temperature range and pH need to know in making starter formula for acceleration of fermentation process at making ruminant feed made from this materials. The starter formula expired period can be extended by adjusting starter storage temperature and pH of the starter. This research was aimed to find the temperature and pH range for the growth of isolate of indigenous bacteria “fermege.” This research is an explorative research conducted by growing bacteria isolate indigenous fermege in liquid medium with various pH and incubation in various temperature. Bacterial population was calculated based on turbidity of bacterial suspension with turbidometer. The stages of this research were to isolate the bacteria present in the fermege, purify the isolates found, and then grow the isolates in a liquid medium with various pH values. The isolated bacterials were incubated at different temperature variations. The cell population density of the isolates was calculated after incubation for 24 hours. The results showed there were eight indigenous bacterial isolates. All isolates can grow in the pH range 6 and 7. Two isolates (Bacillus subtilis and B. pumilus) can grow at 4°C. All isolates obtained can grow at a temperature of 30°C. Isolates Bacillus badius, B. subtilis, B. cereus, Pseudomonas stutzeri and P. diminuta can grow at 50°C. Based on research indicates that indigenous fermege bacterial isolates have the ability to grow in the neutral pH range and temperature range between 4°C and 50°C.

  3. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013.

    PubMed

    Novak, Anita; Rubic, Zana; Dogas, Varja; Goic-Barisic, Ivana; Radic, Marina; Tonkic, Marija

    2015-02-01

    Anaerobic bacteria play a significant role in many endogenous polymicrobial infections. Since antimicrobial resistance among anaerobes has increased worldwide, it is useful to provide local susceptibility data to guide empirical therapy. The present study reports recent data on the susceptibility of clinically relevant anaerobes in a University Hospital Centre (UHC) Split, Croatia. A total of 63 Gram-negative and 59 Gram-positive anaerobic clinical isolates from various body sites were consecutively collected from January to December 2013. Antimicrobial susceptibility testing was performed using standardized methods and interpreted using EUCAST criteria. Patient's clinical and demographic data were recorded by clinical microbiologist. Among 35 isolates of Bacteroides spp., 97.1% were resistant to penicillin (PCN), 5.7% to amoxicillin/clavulanic acid (AMC), 8.6% to piperacillin/tazobactam (TZP), 29.0% to clindamycin (CLI) and 2.9% to metronidazole (MZ). Percentages of susceptible strains to imipenem (IPM), meropenem (MEM) and ertapenem (ETP) were 94.3. Resistance of other Gram-negative bacilli was 76.0% to PCN, 8.0% to AMC, 12.0% to TZP, 28.0% to CLI and 8% to MZ. All other Gram-negative strains were fully susceptible to MEM and ETP, while 96.0% were susceptible to IPM. Clostridium spp. isolates were 100% susceptible to all tested antibiotics except to CLI (two of four tested isolates were resistant). Propionibacterium spp. showed resistance to CLI in 4.3%, while 100% were resistant to MZ. Among other Gram-positive bacilli, 18.2% were resistant to PCN, 9.1% to CLI and 54.5% to MZ, while 81.8% of isolates were susceptible to carbapenems. Gram-positive cocci were 100% susceptible to all tested antimicrobials except to MZ, where 28.6% of resistant strains were recorded. Abdomen was the most common source of isolates (82.5%). The most prevalent types of infection were abscess (22.1%), sepsis (14.8%), appendicitis (13.9%) and peritonitis (6.6%). Twenty four patients (19

  4. Isolation, Identification and Phenotypic Characterization of Microcystin-Degrading Bacteria from Lake Erie

    NASA Astrophysics Data System (ADS)

    Krishnan, A.; Mou, X. J.

    2015-12-01

    Lake Erie, the smallest and warmest lake among the Laurentian Great Lakes, is known for its problem of eutrophication and frequent occurrence of harmful cyanobacterial blooms (CyanoHABs). One major harmful effect of CyanoHABs is the production of cyanotoxins, especially microcystins. Microcystins (MC) are a group of hepatotoxins and the predominant variant of them is MC-LR. Field measurements and lab experiments indicate that MC degradation in Lake Erie is mainly carried out by indigenous bacteria. However, our knowledge on taxa involved in this process is very limited. This study aimed to fill this knowledge gap using a culture-dependent approach. Water and surface sediment samples were collected from Lake Erie in 2014 and 2015 and enriched with MC-LR. Cells were plated on a number of culturing media. The obtained pure bacterial cultures were screened for MC degrading abilities by MT2 BIO-LOG assays and by growing cells in liquid media containing MC-LR as the sole carbon source. In the latter experiment, MC concentrations were measured using HPLC. Isolates showing positive MC degradation activities in the screening steps were designated MC+ bacteria and characterized based on their phenotypic properties, including colony pigmentation, elevation, opacity, margin, gram nature and motility. The taxonomic identity of MC+ bacteria was determined by 16S rRNA gene full-length DNA sequencing. The presence of mlrA, a gene encoding MC cleavage pathway, was detected by PCR. Our culturing efforts obtained 520 pure cultures; 44 of them were identified as MC+. These MC+ isolates showed diversity in taxonomic identities and differed in their morphology, gram nature, colony characteristics and motility. PCR amplification of mlrA gene yield negative results for all MC+ isolates, indicating that the primers that were used may not be ubiquitous enough to cover the heterogeneity of mlrA genes or, more likely, alternative degradative genes/pathways were employed by Lake Erie bacteria

  5. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae)

    PubMed Central

    Graça, Ana Patrícia; Viana, Flávia; Bondoso, Joana; Correia, Maria Inês; Gomes, Luis; Humanes, Madalena; Reis, Alberto; Xavier, Joana R.; Gaspar, Helena; Lage, Olga M.

    2015-01-01

    Interest in the study of marine sponges and their associated microbiome has increased both for ecological reasons and for their great biotechnological potential. In this work, heterotrophic bacteria associated with three specimens of the marine sponge Erylus deficiens, were isolated in pure culture, phylogenetically identified and screened for antimicrobial activity. The isolation of bacteria after an enrichment treatment in heterotrophic medium revealed diversity in bacterial composition with only Pseudoalteromonas being shared by two specimens. Of the 83 selected isolates, 58% belong to Proteobacteria, 23% to Actinobacteria and 19% to Firmicutes. Diffusion agar assays for bioactivity screening against four bacterial strains and one yeast, revealed that a high number of the isolated bacteria (68.7%) were active, particularly against Candida albicans and Vibrio anguillarum. Pseudoalteromonas, Microbacterium, and Proteus were the most bioactive genera. After this preliminary screening, the bioactive strains were further evaluated in liquid assays against C. albicans, Bacillus subtilis and Escherichia coli. Filtered culture medium and acetone extracts from three and 5 days-old cultures were assayed. High antifungal activity against C. albicans in both aqueous and acetone extracts as well as absence of activity against B. subtilis were confirmed. Higher levels of activity were obtained with the aqueous extracts when compared to the acetone extracts and differences were also observed between the 3 and 5 day-old extracts. Furthermore, a low number of active strains was observed against E. coli. Potential presence of type-I polyketide synthases (PKS-I) and non-ribosomal peptide synthetases (NRPSs) genes were detected in 17 and 30 isolates, respectively. The high levels of bioactivity and the likely presence of associated genes suggest that Erylus deficiens bacteria are potential sources of novel marine bioactive compounds. PMID:25999928

  6. Gram-positive bacteria of marine origin: a numerical taxonomic study on Mediterranean isolates.

    PubMed

    Ortigosa, M; Garay, E; Pujalte, M J

    1997-12-01

    A numerical taxonomic study was performed on 65 Gram-positive wild strains of heterotrophic, aerobic, marine bacteria, and 9 reference strains. The isolates were obtained from oysters and seawater sampled monthly over one year, by direct plating on Marine Agar. The strains were characterized by 96 morphological, biochemical, physiological and nutritional tests. Clustering yielded 13 phena at 0.62 similarity level (Sl coefficient). Only one of the seven phena containing wild isolates could be identified (Bacillus marinus). A pronounced salt requirement was found in most isolates.

  7. Characterization of Lactic Acid Bacteria (LAB) isolated from Indonesian shrimp paste (terasi)

    NASA Astrophysics Data System (ADS)

    Amalia, U.; Sumardianto; Agustini, T. W.

    2018-02-01

    Shrimp paste was one of fermented products, popular as a taste enhancer in many dishes. The processing of shrimp paste was natural fermentation, depends on shrimp it self and the presence of salt. The salt inhibits the growth of undesirable microorganism and allows the salt-tolerant lactic acid bacteria (LAB) to ferment the protein source to lactic acids. The objectives of this study were to characterize LAB isolated from Indonesian shrimp paste or "Terasi" with different times of fermentation (30, 60 and 90 days). Vitech analysis showed that there were four strains of the microorganism referred to as lactic acid bacteria (named: LABS1, LABS2, LABS3 and LABS4) with 95% sequence similarity. On the basis of biochemical, four isolates represented Lactobacillus, which the name Lactobacillus plantarum is proposed. L.plantarum was play role in resulting secondary metabolites, which gave umami flavor in shrimp paste.

  8. Antibiotic susceptibility patterns of different bacteria isolated from patients with ventilator associated pneumonia (vap).

    PubMed

    Alqurashi, Abdulrahman M

    2005-09-01

    Ventilator associated pneumonia (VAP) is a frequent complication of mechanical ventilation (MV) and it is a leading cause of death in MV patients. The development of VAP has been demonstrated as being due to aspiration of oropharyngeal secretion, ventilator tubing condensate, or gastric contents that are colonized with pathogenic microorganisms. The aim of the present study is to isolate and identify bacteria that cause VAP and to study antibiotic susceptibility. This study was carried out on 95 patients who fulfilled the diagnostic criteria for VAP. Quantitative cultures of endotracheal aspirates (EA) using a cut-off point of 10(6) cfu/ml was done. The microbiological results revealed that gram negative bacilli were the most common bacterial agents responsible for VAP and accounted for 78.8% of all the causative agents. The most common isolated organisms were Klebsiella pnemouniae (30.9 %) followed by Pseudomonas aeruginosa (22.5%), Staphylococcus aureus (21.2%), Eschericia coli (12.8 %), Proteus spp. (9.8%), and Citrobacter spp. (2.8%). Blood cultures were positive in 25.9% of patients with Klebsiella pnemouniae in about 33.3%. From this study, it can be concluded that VAP is an important nosocomial infection. EA is a simple procedure to obtain respiratory samples and perform sensitivity testing in patients with VAP. Also, the commonest cause of VAP is gram negative bacilli.

  9. Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease.

    PubMed

    Proença, Diogo Neves; Francisco, Romeu; Santos, Clara Vieira; Lopes, André; Fonseca, Luís; Abrantes, Isabel M O; Morais, Paula V

    2010-12-09

    The pinewood nematode (PWN), Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD), however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one gram-positive strain (Actinobacteria) belonged to the gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD.

  10. Characterization of microbiota in Arapaima gigas intestine and isolation of potential probiotic bacteria.

    PubMed

    do Vale Pereira, G; da Cunha, D G; Pedreira Mourino, J L; Rodiles, A; Jaramillo-Torres, A; Merrifield, D L

    2017-11-01

    The aim of this study was to determine the intestinal microbiota of pirarucu (Arapaima gigas) in different growth stages (adult and fingerlings) and to isolate and identify potential probiotic bacteria. High-throughput sequencing analysis of the intestinal contents revealed that the majority of sequences belonged to the Proteobacteria, Fusobacteria and Firmicutes phyla. At the genus level, the greatest number of sequences belonged to Bradyrhizobium in adult fish, while Cetobacterium was the most abundant in juvenile fish. Twenty-three lactic-acid bacteria (LABs) were isolated on MRS agar from healthy juvenile fish. The isolates were tested in vitro for probiotic properties. Two isolates (identified as strains of Lactococcus lactis subsp. lactis and Enterococcus faecium) displayed antagonism against all 10 pathogens tested, were nonhaemolytic and maintained good viability for at least 3 weeks when supplemented to fish diets. The presence of a number of antibiotic resistance genes (ARGs), conferring resistance to erythromycin, tetracycline and chloramphenicol, was investigated by PCR. The absence of ARGs investigated the potential to antagonize pathogens, and favourable growth and survival characteristics indicate that these autochthonous isolates have the potential to be considered probiotics, which will be studied in future in vivo experiments. This study has demonstrated, for the first time, the normal microbiota in the A. gigas intestine during different life stages and the presence of LAB strains. It also demonstrated LAB antibiotic resistance and antagonistic behaviour against pathogens isolated from the same fish. © 2017 The Society for Applied Microbiology.

  11. Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event (Asian dust storm)

    PubMed Central

    Echigo, Akinobu; Hino, Miki; Fukushima, Tadamasa; Mizuki, Toru; Kamekura, Masahiro; Usami, Ron

    2005-01-01

    Background Generally, extremophiles have been deemed to survive in the extreme environments to which they had adapted to grow. Recently many extremophiles have been isolated from places where they are not expected to grow. Alkaliphilic microorganisms have been isolated from acidic soil samples with pH 4.0, and thermophiles have been isolated from samples of low temperature. Numerous moderately halophilic microorganisms, defined as those that grow optimally in media containing 0.5–2.5 Molar (3–15%) NaCl, and halotolerant microorganisms that are able to grow in media without added NaCl and in the presence of high NaCl have been isolated from saline environments such as salterns, salt lakes and sea sands. It has tacitly been believed that habitats of halophiles able to grow in media containing more than 20% (3.4 M) are restricted to saline environments, and no reports have been published on the isolation of halophiles from ordinary garden soil samples. Results We demonstrated that many halophilic bacteria that are able to grow in the presence of 20% NaCl are inhabiting in non-saline environments such as ordinary garden soils, yards, fields and roadways in an area surrounding Tokyo, Japan. Analyses of partial 16S rRNA gene sequences of 176 isolates suggested that they were halophiles belonging to genera of the family Bacillaceae, Bacillus (11 isolates), Filobacillus (19 isolates), Gracilibacillus (6 isolates), Halobacillus (102 isolates), Lentibacillus (1 isolate), Paraliobacillus (5 isolates) and Virgibacillus (17 isolates). Sequences of 15 isolates showed similarities less than 92%, suggesting that they may represent novel taxa within the family Bacillaceae. Conclusion The numbers of total bacteria of inland soil samples were in a range from 1.4 × 107/g to 1.1 × 106/g. One tenth of the total bacteria was occupied by endospore-forming bacteria. Only very few of the endospore-forming bacteria, roughly 1 out of 20,000, are halophilic bacteria. Most of the

  12. Antimicrobial resistance patterns of bacteria isolated from canine urinary samples submitted to a New Zealand veterinary diagnostic laboratory between 2005-2012.

    PubMed

    McMeekin, C H; Hill, K E; Gibson, I R; Bridges, J P; Benschop, J

    2017-03-01

    To identify and describe culture and antimicrobial resistance (AMR) patterns in bacteria isolated from canine urinary samples submitted to a New Zealand veterinary diagnostic laboratory. Records from a veterinary diagnostic laboratory were examined for bacterial isolates cultured from canine urine samples between January 2005 and December 2012. Culture and susceptibility results were compiled with information on the age, sex and breed of dog. Repeat submissions were removed. Susceptibility was assessed using results of the Kirby-Bauer disk diffusion method, for a standard panel including amoxicillin-clavulanic acid (AMC), cefovecin (from 2010-2012), cephalothin, clindamycin, enrofloxacin and trimethoprim-sulphonamide (TMS). A total of 5,786 urine samples were submitted for analysis, and 3,135 bacterial isolates were cultured from 2,184 samples. Of these 3,135 isolates, 1,104 (35.2%) were Escherichia coli, 442 (14.1%) were Staphylococcus spp., 357 (11.4%) Proteus mirabilis and 276 (8.8%) were Enterococcus spp. The frequency of culture-positive samples increased with increasing age in both female and male dogs (p<0.001). The percentage of E. coli isolates resistant to AMC and cephalothin increased between 2005 and 2012 (p<0.001), as did resistance to enrofloxacin (p=0.022), but there was no change in resistance to TMS (p=0.696). Enrofloxacin was the antimicrobial with the least resistance shown by the four most common bacteria isolated during the course of the study. The results of this study provide important regional information regarding the prevalence of bacterial uropathogens and their susceptibility patterns. There was an increase in resistance to some commonly used antimicrobials in the treatment of urinary tract infections. Having access to regional antimicrobial susceptibility results is crucial when forming guidelines for the use of antimicrobials for the treatment of urinary tract infections. Given changes in practising habits and antimicrobial usage over

  13. Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food

    NASA Astrophysics Data System (ADS)

    Damayanti, Ema; Ratisiwi, Febiyani Ndaru; Istiqomah, Lusty; Sembiring, Langkah; Febrisiantosa, Andi

    2017-03-01

    The objective of this study was to determine the potential of LAB with phytate degrading activity from fermented traditional food grain-based and legume-based. Lactic acid bacteria were isolated from different sources of traditional fermented food from Gunungkidul Yogyakarta Indonesia such as gembus tempeh (tofu waste), soybean tempeh, lamtoro tempeh (Leucaena bean) and kara tempeh. Isolation of LAB was performed using Total Plate Count (TPC) on de Man Rogosa Sharpe Agar (MRSA) medium supplemented with CaCO3. They were screened for their ability to degrade myo-inositol hexaphosphate or IP6 by using qualitative streak platemethod with modified de Man Rogosa-MorpholinoPropanesulfonic Acid Sharpe (MRS-MOPS) medium contained sodium salt of phytic acid as substrate and cobalt chloride staining (plate assay) method. The selected isolates were further assayed for phytase activities using quantitative method with spectrophotometer and the two selected isolates growth were optimized. Furthermore, thhe isolates that shown the highest phytase activity was characterized and identified using API 50 CH kitand 16S rRNA gene sequencing. The results showed that there were 18 LAB isolates obtained from samplesand 13 isolates were able to degrade sodium phytate based on qualitative screening. According to quantitative assay, the highest phytate degrading activities were found in TG-2(23.562 U/mL) and TG-1 (19.641 U/mL) isolated from gembus tempeh. The phytate activity of TG-2 was optimum at 37 °C with agitation, while the phytate activity of TG-1 was optimum at 45 °C without agitation. Characterization and identification of TG-2 isolate with the highest phytate degrading activity using API 50 CH and 16S rRNA showed that TG-2had homology with Lactobacillus fermentum. It could be concluded that LAB from from fermented traditional food grain-based and legume-based produced the extracellular phytase. Keywords: lactic acid bacteria, tempeh, phytatedegrading activity

  14. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    PubMed

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  15. [Isolation of pathogenic bacteria in pasteurized type C milk sold in Recife City, Pernambuco, Brazil].

    PubMed

    Padilha , M R; Fernandes , Z F; Leal, T C; Leal, N C; Almeida, A M

    2001-01-01

    In order to improve information about the microbiological quality of the milk commercially available in the city of Recife, 250 samples of pasteurized type-C milk and 50 samples of raw milk were analyzed for Yersinia enterocolitica and Listeria monocytogenes and verify the possible occurrence of Yersinia enterocolitica and Listeria monocytogenes. These bacteria can develop in refrigeration temperatures and are responsible for food-born diseases. Neither Y. enterocolitica nor L. monocytogenes were found in the samples analyzed. However, the presence of Y. intermedia and Y. frederiksenii was detected, these environmental species behave as opportunist pathogens. Through the methodology used for Listeria isolation, one isolate of Salmonella Montevideo was obtained from a sample of pasteurized milk and another isolated from one sample of raw milk. Besides these, several other bacteria species were found. It is likely that the large microbiota present in the samples and the procedures employed to destroy it could have hindered the isolation of Y. enterocolitica and L. monocytogenes.

  16. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    PubMed

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils.

  17. Screening of endophytic bacteria isolated from two kinds of antarctic plant antagonistic konjac soft rot disease

    NASA Astrophysics Data System (ADS)

    Gong, Mingfu; Lin, Tianxing; Huang, Jiao; Zeng, Bo

    2018-04-01

    Konjac soft rot has a serious impact on the production of konjac, the use of endophytic bacteria to inhibit konjac soft rot bacteria have many advantages. Twenty-three endophytic bacteria isolated from the medicinal plants were used to determine the antagonistic effects of endophytic bacteria on konjac soft rot in the Oxford cups. Of the strain. The results showed that 23 strains of endophytic bacteria had different antagonistic activities against konjac soft rot, 8 strains had very significant antibacterial effect, and YC06 and YC09 had strong antibacterial ability of two endophytic bacteria. Konjac soft rot fungi also have a strong antibacterial capacity.

  18. Culturable diversity of halophilic bacteria in foreshore soils

    PubMed Central

    Irshad, Aarzoo; Ahmad, Irshad; Kim, Seung Bum

    2014-01-01

    Halophilic bacteria are commonly found in natural environments containing significant concentration of NaCl such as inland salt lakes and evaporated sea-shore pools, as well as environments such as curing brines, salted food products and saline soils. Dependence on salt is an important phenotypic characteristic of halophilic bacteria, which can be used in the polyphasic characterization of newly discovered microorganisms. In this study the diversity of halophilic bacteria in foreshore soils of Daecheon, Chungnam, and Saemangeum, Jeonbuk, was investigated. Two types of media, namely NA and R2A supplemented with 3%, 5%, 9%, 15%, 20% and 30% NaCl were used. More than 200 halophilic bacteria were isolated and BOX-PCR fingerprinting analysis was done for the typing of the isolates. The BLAST identification results showed that isolated strains were composed of 4 phyla, Firmicutes (60%), Proteobacteria (31%), Bacteriodetes (5%) and Actinobacteria (4%). Isolates were affiliated with 16 genera and 36 species. Bacillus was the dominant genus in the phylum Firmicutes, comprising 24% of the total isolates. Halomonas (12%) and Shewanella (12%) were also found as the main genera. These findings show that the foreshore soil of Daecheon Beach and Saemangeum Sea of Korea represents an untapped source of bacterial biodiversity. PMID:25242943

  19. Culturable diversity of halophilic bacteria in foreshore soils.

    PubMed

    Irshad, Aarzoo; Ahmad, Irshad; Kim, Seung Bum

    2014-01-01

    Halophilic bacteria are commonly found in natural environments containing significant concentration of NaCl such as inland salt lakes and evaporated sea-shore pools, as well as environments such as curing brines, salted food products and saline soils. Dependence on salt is an important phenotypic characteristic of halophilic bacteria, which can be used in the polyphasic characterization of newly discovered microorganisms. In this study the diversity of halophilic bacteria in foreshore soils of Daecheon, Chungnam, and Saemangeum, Jeonbuk, was investigated. Two types of media, namely NA and R2A supplemented with 3%, 5%, 9%, 15%, 20% and 30% NaCl were used. More than 200 halophilic bacteria were isolated and BOX-PCR fingerprinting analysis was done for the typing of the isolates. The BLAST identification results showed that isolated strains were composed of 4 phyla, Firmicutes (60%), Proteobacteria (31%), Bacteriodetes (5%) and Actinobacteria (4%). Isolates were affiliated with 16 genera and 36 species. Bacillus was the dominant genus in the phylum Firmicutes, comprising 24% of the total isolates. Halomonas (12%) and Shewanella (12%) were also found as the main genera. These findings show that the foreshore soil of Daecheon Beach and Saemangeum Sea of Korea represents an untapped source of bacterial biodiversity.

  20. Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates.

    PubMed

    Hariharan, Harry; Matthew, Vanessa; Fountain, Jacqueline; Snell, Alicia; Doherty, Devin; King, Brittany; Shemer, Eran; Oliveira, Simone; Sharma, Ravindra N

    2011-03-01

    In a 2-year period 54 feral cats were captured in Grenada, West Indies, and a total of 383 samples consisting of swabs from rectum, vagina, ears, eyes, mouth, nose and wounds/abscesses, were cultured for aerobic bacteria and campylobacters. A total of 251 bacterial isolates were obtained, of which 205 were identified to species level and 46 to genus level. A commercial bacterial identification system (API/Biomerieux), was used for this purpose. The most common species was Escherichia coli (N=60), followed by Staphylococcus felis/simulans (40), S. hominis (16), S. haemolyticus (12), Streptococcus canis (9), Proteus mirabilis (8), Pasteurella multocida (7), Streptococcus mitis (7), Staphylococcus xylosus (7), S. capitis (6), S. chromogenes (4), S. sciuri (3), S. auricularis (2), S. lentus (2), S. hyicus (2), Streptococcus suis (2) and Pseudomonas argentinensis (2). Sixteen other isolates were identified to species level. A molecular method using 16S rRNA sequencing was used to confirm/identify 22 isolates. Salmonella or campylobacters were not isolated from rectal swabs. E. coli and S. felis/simulans together constituted 50% of isolates from vagina. S. felis/simulans was the most common species from culture positive ear and eye samples. P. multocida was isolated from 15% of mouth samples. Coagulase-negative staphylococci were the most common isolates from nose and wound swabs. Staphylococcus aureus, or S. intemedius/S. pseudintermedius were not isolated from any sample. Antimicrobial drug resistance was minimal, most isolates being susceptible to all drugs tested against, including tetracycline. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. [Isolation and Identification of Petroleum Degradation Bacteria and Interspecific Interactions Among Four Bacillus Strains].

    PubMed

    Wang, Jia-nan; Shi, Yan-yun; Zheng, Li-yan; Wang, Zhe; Cai, Zhang; Liu, Jie

    2015-06-01

    Six petroleum-degrading strains were isolated from oil-contaminated soil at Dagang oil field and oil sewage on Bohai offshore drilling platform in Tianjin using enrichment culture and isolation method. The physiological biochemical test together with 16S rDNA sequencing analysis indicated that they belonged to Bacillus (S1, S2, S3, S4), Pseudomonas (W1) and Ochrobactrum (W2), respectively. The strain S3 had the maximum degradation rate of alkane (41.3%) and aromatic hydrocarbon (30.9%) among all isolated strains showing the better degradation efficiency by endogenous bacteria when compared to that by the exogenous bacteria. The four Bacillus strains were used to construct microbiome, thereafter subjected to petroleum degradation efficiency test and analyzed. The results showed that microbiome F3 consisting of S1 and S4 had the maximum degradation rates of alkane (50.5%) and aromatic hydrocarbon (54.0%), which were 69.9% and 156.1% higher than those by single bacterium, respectively. Furthermore, they were 22.1% and 74.6% respectively higher than those by the most optimal degradation bacterium S3. Microbiome F4 consisting of S2 and S3 had the minimum degradation rates of alkane (18.5%) and aromatic hydrocarbon (18.9%) which were 55.3% and 39.0% lower than the degradation rates of single bacterium, respectively. The results also demonstrated that there were both microbial synergy promotion and antagonism inhibition among bacteria of the same genus in the petroleum degradation period. Bacteria with close affinity in Bacillus genus displayed mainly promoted petroleum degradation effect.

  2. In vitro efficacy of cefovecin against anaerobic bacteria isolated from subgingival plaque of dogs and cats with periodontal disease.

    PubMed

    Khazandi, Manouchehr; Bird, Philip S; Owens, Jane; Wilson, Gary; Meyer, James N; Trott, Darren J

    2014-08-01

    Periodontal disease is a common disease of dogs and cats often requiring antimicrobial treatment as an adjunct to mechanical debridement. However, correct compliance with oral antimicrobial therapy in companion animals is often difficult. Cefovecin is a recently introduced veterinary cephalosporin that has demonstrated prolonged concentrations in extracellular fluid, allowing for dosing intervals of up to 14 days. Subgingival samples were collected from the oral cavity of 29 dogs and eight cats exhibiting grade 2 or grade 3 periodontal disease. Samples were cultivated on Wilkin Chalgrens agar and incubated in an anaerobic chamber for seven days. Selected anaerobic bacteria were isolated and identified to species level using 16S rRNA gene sequence analysis. Minimum inhibitory concentrations were determined for cefovecin and six additional antimicrobials using the agar dilution methodology recommended by the Clinical and Laboratory Standards Institute. The 65 clinical isolates were identified as Porphyromonas gulae (n = 45), Porphyromonas crevioricanis (n = 12), Porphyromonas macacae (n = 1), Porphyromonas cangingivalis (n = 1) Fusobacterium nucleatum (n = 2), Fusobacterium russii (n = 1) and Solobacterium moorei (n = 3). This is the first report of S. moorei being isolated from companion animals with periodontal disease. All isolates were highly susceptible to cefovecin, with a MIC90 of ≤0.125 μg/ml. Conversely, different resistance rates to ampicillin, amoxicillin and erythromycin between isolates were detected. Cefovecin is thus shown to be effective in vitro against anaerobic bacteria isolated from dogs and cats with periodontal disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Isolation, Antimicrobial Susceptibility Profile and Detection of Sul1, blaTEM, and blaSHV in Amoxicillin-Clavulanate-Resistant Bacteria Isolated From Retail Sausages in Kampar, Malaysia

    PubMed Central

    Tew, Lih-Shin; She, Li-Yen; Chew, Choy-Hoong

    2016-01-01

    Background Due to the overuse of antibiotics in livestock as a growth-promoting agent, the emergence of multi-antibiotic resistant bacteria is becoming a concern. Objectives In this study, we aimed to detect the presence and discover the molecular determinants of foodborne bacteria in retail sausages resistant towards the antibacterial agent amoxicillin-clavulanate. Methods Two grams of sausages were chopped into small pieces and transferred into sterile Luria-Bertani (LB) enrichment broths overnight before they were plated on MacConkey agar petri dishes. The bacteria isolated were then screened for amoxicillin-clavulanate resistance, and an antimicrobial susceptibility test of each isolate was performed by using the disc diffusion method. Double synergy and phenotypic tests were carried out to detect the presence of extended spectrum β-lactamase (ESBL). API 20E kit was used to identify the Enterobacteriaceae. All isolates were further examined by polymerase chain reaction (PCR) for resistant genes blaOXA-1, blaOXA-10, plasmid-mediated AmpC (blaCMY and blaDHA), and the chromosome-mediated AmpC, Sul1, blaTEM, and blaSHV genes. Results A total of 18 amoxicillin-clavulanate resistant isolates were obtained from seven different types of retail sausages. Only half of them were identified as Enterobacteriaceae, but none were ESBL-producers. All the 18 isolated strains demonstrated resistance towards amoxicillin-clavulanate, penicillin and oxacillin (100%), cefotaxime (71.4%), cefpodoxime (66.7%), and ampicillin (83.3%). blaTEM was the most frequently detected β-lactamase gene. Both plasmid- and chromosomal-bound blaTEM genes were detected in all of the isolated Enterobacteriaceae. blaSHV and Sul1 accounted for 22.2% and 11.1% of the amoxicillin-clavulanate resistant isolates, respectively, whereas blaAMPC, blaCMY, blaDHA, blaOXA-1, and blaOXA-10 were not found in any of the isolates. The only one ESBL-producing bacteria detected in this study was Chryseobacterium

  4. Isolation, Antimicrobial Susceptibility Profile and Detection of Sul1, blaTEM, and blaSHV in Amoxicillin-Clavulanate-Resistant Bacteria Isolated From Retail Sausages in Kampar, Malaysia.

    PubMed

    Tew, Lih-Shin; She, Li-Yen; Chew, Choy-Hoong

    2016-10-01

    Due to the overuse of antibiotics in livestock as a growth-promoting agent, the emergence of multi-antibiotic resistant bacteria is becoming a concern. In this study, we aimed to detect the presence and discover the molecular determinants of foodborne bacteria in retail sausages resistant towards the antibacterial agent amoxicillin-clavulanate. Two grams of sausages were chopped into small pieces and transferred into sterile Luria-Bertani (LB) enrichment broths overnight before they were plated on MacConkey agar petri dishes. The bacteria isolated were then screened for amoxicillin-clavulanate resistance, and an antimicrobial susceptibility test of each isolate was performed by using the disc diffusion method. Double synergy and phenotypic tests were carried out to detect the presence of extended spectrum β-lactamase (ESBL). API 20E kit was used to identify the Enterobacteriaceae . All isolates were further examined by polymerase chain reaction (PCR) for resistant genes bla OXA-1, bla OXA-10, plasmid-mediated AmpC ( bla CMY and bla DHA), and the chromosome-mediated AmpC, Sul 1, bla TEM, and bla SHV genes. A total of 18 amoxicillin-clavulanate resistant isolates were obtained from seven different types of retail sausages. Only half of them were identified as Enterobacteriaceae , but none were ESBL-producers. All the 18 isolated strains demonstrated resistance towards amoxicillin-clavulanate, penicillin and oxacillin (100%), cefotaxime (71.4%), cefpodoxime (66.7%), and ampicillin (83.3%). bla TEM was the most frequently detected β-lactamase gene. Both plasmid- and chromosomal-bound bla TEM genes were detected in all of the isolated Enterobacteriaceae . bla SHV and Sul 1 accounted for 22.2% and 11.1% of the amoxicillin-clavulanate resistant isolates, respectively, whereas bla AMPC, bla CMY, bla DHA, bla OXA-1, and bla OXA-10 were not found in any of the isolates. The only one ESBL-producing bacteria detected in this study was Chryseobacterium meningosepticum , which

  5. Diversity of Bacteria Associated with Bursaphelenchus xylophilus and Other Nematodes Isolated from Pinus pinaster Trees with Pine Wilt Disease

    PubMed Central

    Proença, Diogo Neves; Francisco, Romeu; Santos, Clara Vieira; Lopes, André; Fonseca, Luís; Abrantes, Isabel M. O.; Morais, Paula V.

    2010-01-01

    The pinewood nematode (PWN), Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD), however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one Gram-positive strain (Actinobacteria) belonged to the Gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD. PMID:21151611

  6. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil.

    PubMed

    Park, Jin Hee; Bolan, Nanthi; Megharaj, Mallavarapu; Naidu, Ravi

    2011-01-30

    Lead (Pb), a highly toxic heavy metal forms stable compounds with phosphate (P). The potential of phosphate solubilizing bacteria (PSB) to immobilize Pb by enhancing solubilization of insoluble P compounds was tested in this research. Eighteen different PSB strains isolated from P amended and Pb contaminated soils were screened for their efficiency in P solubilization. The PSB isolated from P amended soils solubilized 217-479 mg/L of P while the PSB from Pb contaminated soil solubilized 31-293 mg/L of P. Stepwise multiple regression analysis and P solubility kinetics indicated that the major mechanism of P solubilization by PSB is the pH reduction through the release of organic acids. From the isolated bacteria, two PSB were chosen for Pb immobilization and these bacteria were identified as Pantoea sp. and Enterobacter sp., respectively. The PSB significantly increased P solubilization by 25.0% and 49.9% in the case of Pantoea sp., and 63.3% and 88.6% in the case of Enterobacter sp. for 200 and 800 mg/kg of rock phosphate (RP) addition, respectively, thereby enhancing the immobilization of Pb by 8.25-13.7% in the case of Pantoea sp. and 14.7-26.4% in the case of Enterobacter sp. The ability of PSB to solubilize P, promote plant growth, and immobilize Pb can be used for phytostabilization of Pb contaminated soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Inactivation of koi-herpesvirus in water using bacteria isolated from carp intestines and carp habitats.

    PubMed

    Yoshida, N; Sasaki, R-K; Kasai, H; Yoshimizu, M

    2013-12-01

    Since its first outbreak in Japan in 2003, koi-herpesvirus (KHV) remains a challenge to the carp Cyprinus carpio L. breeding industry. In this study, inactivation of KHV in water from carp habitats (carp habitat water) was investigated with the aim of developing a model for rapidly inactivating the pathogen in aquaculture effluent. Experiments with live fish showed that, in carp habitat water, KHV lost its infectivity within 3 days. Indications were that inactivation of KHV was caused by the antagonistic activity of bacteria (anti-KHV bacteria) in the water from carp habitats. Carp habitat water and the intestinal contents of carp were therefore screened for anti-KHV bacteria. Of 581 bacterial isolates, 23 showed anti-KHV activity. An effluent treatment model for the disinfection of KHV in aquaculture effluent water using anti-KHV bacteria was developed and evaluated. The model showed a decrease in cumulative mortality and in the number of KHV genome copies in kidney tissue of fish injected with treated effluent compared with a positive control. It is thought that anti-KHV bacteria isolated from the intestinal contents of carp and from carp habitat water can be used to control KHV outbreaks. © 2013 John Wiley & Sons Ltd.

  8. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests

    PubMed Central

    Castagnola, Anaïs; Stock, S. Patricia

    2014-01-01

    This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol. PMID:24634779

  9. Multidrug-resistant bacteria infection control: study of compliance with isolation precautions in a Paris university hospital.

    PubMed

    Vidal-Trecan, G M; Delamare, N; Tcherny-Lessenot, S; Lamory, J; Baudin, F; de Prittwitz, M; Salmon-Ceron, D

    2001-02-01

    Isolation practices in a university hospital were analyzed for 137 patients with multidrug-resistant bacteria. Isolation was ordered in writing by physicians for 40% and instituted by nurses for 60%; 74% were isolated. Compliance depended on physician ordering in writing (odds ratio, 36.3; 95% confidence interval, 4.8-274.9). Nurses complied best with hand washing.

  10. Isolation and Characterisation of 1-Alkyl-3-Methylimidazolium Chloride Ionic Liquid-Tolerant and Biodegrading Marine Bacteria

    PubMed Central

    Megaw, Julianne; Busetti, Alessandro; Gilmore, Brendan F.

    2013-01-01

    The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure. PMID:23560109

  11. Diversity of Bacteria Carried by Pinewood Nematode in USA and Phylogenetic Comparison with Isolates from Other Countries

    PubMed Central

    Proença, Diogo Neves; Fonseca, Luís; Powers, Thomas O.; Abrantes, Isabel M. O.; Morais, Paula V.

    2014-01-01

    Pine wilt disease (PWD) is native to North America and has spread to Asia and Europe. Lately, mutualistic relationship has been suggested between the pinewood nematode (PWN), Bursaphelenchus xylophilus the causal nematode agent of PWD, and bacteria. In countries where PWN occurs, nematodes from diseased trees were reported to carry bacteria from several genera. However no data exists for the United States. The objective of this study was to evaluate the diversity of the bacterial community carried by B. xylophilus, isolated from different Pinus spp. with PWD in Nebraska, United States. The bacteria carried by PWN belonged to Gammaproteobacteria (79.9%), Betaproteobacteria (11.7%), Bacilli (5.0%), Alphaproteobacteria (1.7%) and Flavobacteriia (1.7%). Strains from the genera Chryseobacterium and Pigmentiphaga were found associated with the nematode for the first time. These results were compared to results from similar studies conducted from other countries of three continents in order to assess the diversity of bacteria with associated with PWN. The isolates from the United States, Portugal and China belonged to 25 different genera and only strains from the genus Pseudomonas were found in nematodes from all countries. The strains from China were closely related to P. fluorescens and the strains isolated from Portugal and USA were phylogenetically related to P. mohnii and P. lutea. Nematodes from the different countries are associated with bacteria of different species, not supporting a relationship between PWN with a particular bacterial species. Moreover, the diversity of the bacteria carried by the pinewood nematode seems to be related to the geographic area and the Pinus species. The roles these bacteria play within the pine trees or when associated with the nematodes, might be independent of the presence of the nematode in the tree and only related on the bacteria's relationship with the tree. PMID:25127255

  12. Antibacterial activity of GUAVA, Psidium guajava Linnaeus, leaf extracts on diarrhea-causing enteric bacteria isolated from Seabob shrimp, Xiphopenaeus kroyeri (Heller).

    PubMed

    Gonçalves, Flávia A; Andrade Neto, Manoel; Bezerra, José N S; Macrae, Andrew; Sousa, Oscarina Viana de; Fonteles-Filho, Antonio A; Vieira, Regine H S F

    2008-01-01

    Guava leaf tea of Psidium guajava Linnaeus is commonly used as a medicine against gastroenteritis and child diarrhea by those who cannot afford or do not have access to antibiotics. This study screened the antimicrobial effect of essential oils and methanol, hexane, ethyl acetate extracts from guava leaves. The extracts were tested against diarrhea-causing bacteria: Staphylococcus aureus, Salmonella spp. and Escherichia coli. Strains that were screened included isolates from seabob shrimp, Xiphopenaeus kroyeri (Heller) and laboratory-type strains. Of the bacteria tested, Staphylococcus aureus strains were most inhibited by the extracts. The methanol extract showed greatest bacterial inhibition. No statistically significant differences were observed between the tested extract concentrations and their effect. The essential oil extract showed inhibitory activity against S. aureus and Salmonella spp. The strains isolated from the shrimp showed some resistance to commercially available antibiotics. These data support the use of guava leaf-made medicines in diarrhea cases where access to commercial antibiotics is restricted. In conclusion, guava leaf extracts and essential oil are very active against S. aureus, thus making up important potential sources of new antimicrobial compounds.

  13. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds.

    PubMed

    Lin, Mao; Wu, Xiaomei; Yan, Qingpi; Ma, Ying; Huang, Lixing; Qin, Yingxue; Xu, Xiaojin

    2016-07-07

    The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored.

  14. Anaerobic bacteria commonly colonize the lower airways of intubated ICU patients.

    PubMed

    Agvald-Ohman, C; Wernerman, J; Nord, C E; Edlund, C

    2003-05-01

    To investigate respiratory tract colonization by aerobic and anaerobic bacteria in mechanically ventilated patients. Bacterial colonization of the stomach and the respiratory tract was qualitatively and quantitatively analyzed over time in 41 consecutive mechanically ventilated patients in a Swedish intensive care unit (ICU), with special emphasis on elucidation of the role of anaerobic bacteria in the lower respiratory tract. Samples were taken from the oropharynx, gastric juice, subglottic space and trachea within 24 h (median 14 h) of intubation, and then every third day until day 18 and every fifth day until day 33. The patients were often heavily colonized with microorganisms not considered to belong to a healthy normal oropharyngeal and gastric flora on admission to the ICU. A majority harbored enterococci, coagulase-negative staphylococci and Candida spp. in at least one site on day 1. Anaerobic bacteria, mainly peptostreptococci and Prevotella spp., were isolated from subglottic and/or tracheal secretions in 59% of the patients. Different routes of tracheal colonization for different groups of microorganisms were found. Primary or concomitant colonization of the oropharynx with staphylococci, enterococci, enterobacteria and Candida was often seen, while Pseudomonas spp., other non-fermenting Gram-negative rods and several anaerobic species often primarily colonized the trachea, indicating exogenous or direct gastrointestinal routes of colonization. Mechanically ventilated patients were heavily colonized in their lower airways by potential pathogenic microorganisms, including a high load of anaerobic bacteria. Different routes of colonization were shown for different species.

  15. Isolation and identification of bacteria from paperboard food packaging

    PubMed Central

    Mashhadi Mohammadzadeh-Vazifeh, Mojtaba; Khajeh-Nasiri, Shamsolmoluk; Hashemi, Shabnam; Fakhari, Javad

    2015-01-01

    Background and Objectives: Paper and paperboard packaging play an important role in safety and quality of food products. Common bacteria of paper and paperboard food packaging could grow due to specific conditions included humidity, temperature and major nutrition to contaminate the food. The purpose of this research was to investigate numbers and the types of bacteria in the food packaging paperboard. Materials and Methods: The surface and the depth of the each paperboard sample were examined by the dimension of one cm2 and one gram. The paperboard samples were randomly collected from popular confectionaries and fast food restaurants in Tehran, Iran. Results: The results indicated the range of 0.2×103 to >1.0×105 cfu/1g bacterial contamination in paperboard food packaging. Also, most detected bacteria were from spore forming and family Bacillaceae. Conclusion: The bioburden paperboard used for food packaging showed high contamination rate more than standard acceptance level. PMID:26719786

  16. Identification of yellow-pigmented bacteria isolated from hospital tap water in Japan and their chlorine resistance.

    PubMed

    Furuhata, Katsunori; Kato, Yuko; Goto, Keiichi; Saitou, Keiko; Sugiyama, Jun-Ichi; Hara, Motonobu; Fukuyama, Masahumi

    2007-06-01

    Twenty-five yellow chromogenic strains isolated from hospital tap water samples collected nationwide were identified by partial 16S rDNA sequencing. In addition, the chlorine resistance of the isolates was experimentally investigated. The results showed that of the strains tested, 12 strains (48.0%) were Sphingomonas ursincola/natatoria, which was most frequently identified, followed by 2 strains (8.0%) of Mycobacterium frederiksbergense and 1 strain (4.0%) each of Sphingomonas adhaesiva, Sphingopyxis witflariensis and Porphyrobacter donghaensis. The other strains were not identified clearly but they belonged to the order of Alphaproteobacteria. On the other hand, the identification results by sequencing and biochemical property testing were not consistent in any of the strains, showing that it was difficult to accurately identify the yellow chromogenic bacteria in tap water based on only their biochemical properties. When the 25 isolates were exposed to 0.1 mg/l residual free chlorine for 1 minute, 22 isolates (88.0%) survived. When the CT (Concentration Time) value killing 99.99% of the bacteria was investigated in 6 of these survivors, M. frederiksbergense (Y-1 strain) was most resistant to chlorine with the CT value of 32 mg x min/l, followed by S. ursincola/natatoria (Y-7 strain) with the CT value of 3.3 mg x min/l. The CT values of Y-5 (Sphingomonas sp.), Y-27 (S. ursincola/natatoria) and Y-21 (Asticacaulis sp.) were within the range of 0.9-0.1 mg x min /l. Of the 6 strains, S. adhaesiva (Y-10) showed the weakest resistance with the CT value of 0.03 mg x min/l. It was clarified that most yellow chromogenic bacteria isolated from hospital tap water were Sphingomonas spp., and these bacteria were experimentally resistant to chlorine.

  17. Diversity of predominant lactic acid bacteria associated with cocoa fermentation in Nigeria.

    PubMed

    Kostinek, Melanie; Ban-Koffi, Louis; Ottah-Atikpo, Margaret; Teniola, David; Schillinger, Ulrich; Holzapfel, Wilhelm H; Franz, Charles M A P

    2008-04-01

    The fermentation of cocoa relies on a complex succession of bacteria and filamentous fungi, all of which can have an impact on cocoa flavor. So far, few investigations have focused on the diversity of lactic acid bacteria involved in cocoa fermentation, and many earlier investigations did not rely on polyphasic taxonomical approaches, which take both phenotypic and genotypic characterization techniques into account. In our study, we characterized predominant lactic acid bacteria from cocoa fermentations in Nigeria, using a combination of phenotypic tests, repetitive extragenic palindromic PCR, and sequencing of the 16S rRNA gene of representative strains for accurate species identification. Thus, of a total of 193 lactic acid bacteria (LAB) strains isolated from common media used to cultivate LAB, 40 (20.7%) were heterofermentative and consisted of either L. brevis or L. fermentum strains. The majority of the isolates were homofermentative rods (110 strains; 57% of isolates) which were characterized as L. plantarum strains. The homofermentative cocci consisted predominantly of 35 (18.1% of isolates) Pediococcus acidilactici strains. Thus, the LAB populations derived from these media in this study were accurately described. This can contribute to the further assessment of the effect of common LAB strains on the flavor characteristics of fermenting cocoa in further studies.

  18. Understanding Bacterial Isolates in Blood Culture and Approaches Used to Define Bacteria as Contaminants: A Literature Review.

    PubMed

    Hossain, Belal; Islam, Mohammad Shahidul; Rahman, Atiqur; Marzan, Mahfuza; Rafiqullah, Iftekhar; Connor, Nicholas E; Hasanuzzaman, Mohammad; Islam, Maksuda; Hamer, Davidson H; Hibberd, Patricia L; Saha, Samir K

    2016-05-01

    Interpretation of blood culture isolates is challenging due to a lack of standard methodologies for identifying contaminants. This problem becomes more complex when the specimens are from sick young infants, as a wide range of bacteria can cause illness among this group. We used 43 key words to find articles published between 1970 and 2011 on blood culture isolates and possible contaminants in the PubMed database. Experts were also consulted to obtain other relevant articles. Selection of articles followed systematic methods considering opinions from more than 1 reviewer. After reviewing the titles of 3869 articles extracted from the database, we found 307 relevant to our objective. Based on the abstracts, 42 articles were selected for the literature review. In addition, we included 7 more articles based on cross-references and expert advice. The most common methods for differentiating blood culture isolates were multiple blood cultures from the same subject, antibiograms and molecular testing. Streptococcus pneumoniae, Hemophilus influenzae, Neisseria meningitidis and group A and B streptococcus were always considered as pathogens, whereas Bacillus sp., Diphtheroids, Propionibacterium and Micrococcus were commonly regarded as contaminants. Coagulase-negative staphylococci were the most frequent isolates and usually reported as contaminants unless the patient had a specific condition, such as long-term hospitalization or use of invasive devices (catheters). Inaccurate interpretation of blood culture may falsely guide treatment and also has long-term policy implications. The combination of clinical and microbiological knowledge, patient's clinical history and laboratory findings are essential for appropriate interpretation of blood culture.

  19. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland.

    PubMed

    Marasini, S; Swift, S; Dean, S J; Ormonde, S E; Craig, J P

    2016-01-01

    Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%), followed by Pseudomonas (21.3%). Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p ≤ 0.05). Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%), cefuroxime (33.3%), and chloramphenicol (94.7%) showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51%) and ciprofloxacin (98.8%) showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres.

  20. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland

    PubMed Central

    Swift, S.; Dean, S. J.; Ormonde, S. E.

    2016-01-01

    Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%), followed by Pseudomonas (21.3%). Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p ≤ 0.05). Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%), cefuroxime (33.3%), and chloramphenicol (94.7%) showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51%) and ciprofloxacin (98.8%) showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres. PMID:27213052

  1. Biomineralization processes of calcite induced by bacteria isolated from marine sediments

    PubMed Central

    Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao

    2015-01-01

    Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10−4 mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments. PMID:26273260

  2. Isolation of Soil Bacteria Adapted To Degrade Humic Acid-Sorbed Phenanthrene

    PubMed Central

    Vacca, D. J.; Bleam, W. F.; Hickey, W. J.

    2005-01-01

    The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed “competence.” Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer. PMID:16000791

  3. Diversity of halophilic bacteria isolated from Rambla Salada, Murcia (Spain).

    PubMed

    Luque, Rocío; Béjar, Victoria; Quesada, Emilia; Llamas, Inmaculada

    2014-12-01

    In this study we analyzed the diversity of the halophilic bacteria community from Rambla Salada during the years 2006 and 2007. We collected a total of 364 strains, which were then identified by means of phenotypic tests and by the hypervariable V1-V3 region of the 16S rRNA sequences (around 500 bp). The ribosomal data showed that the isolates belonged to Proteobacteria (72.5%), Firmicutes (25.8%), Actinobacteria (1.4%), and Bacteroidetes (0.3%) phyla, with Gammaproteobacteria the predominant class. Halomonas was the most abundant genus (41.2% isolates) followed by Marinobacter (12.9% isolates) and Bacillus (12.6% isolates). In addition, 9 strains showed <97% sequence identity with validly described species and may well represent new taxa. The diversity of the bacterial community analyzed with the DOTUR package determined 139 operational taxonomic units at 3% genetic distance level. Rarefaction curves and diversity indexes demonstrated that our collection of isolates adequately represented all the bacterial community at Rambla Salada that can be grown under the conditions used in this work. We found that the sampling season influenced the composition of the bacterial community, and bacterial diversity was higher in 2007; this fact could be related to lower salinity at this sampling time.

  4. Isolation of Thermophilic Lignin Degrading Bacteria from Oil-Palm Empty Fruit Bunch (EFB) Compost

    NASA Astrophysics Data System (ADS)

    Lai, C. M. T.; Chua, H. B.; Danquah, M. K.; Saptoro, A.

    2017-06-01

    Empty Fruit Bunch (EFB) is a potential and sustainable feedstock for bioethanol production due to its high cellulosic content and availability in Malaysia. Due to high lignin content of EFB and the lack of effective delignification process, commercial bioethanol production from EFB is presently not viable. Enzymatic delignification has been identified as one of the key steps in utilising EFB as a feedstock for bioethanol conversion. To date, limited work has been reported on the isolation of lignin degrading bacteria. Hence, there is a growing interest to search for new lignin degrading bacteria with greater tolerance to temperature and high level of ligninolytic enzymes for more effective lignin degradation. This study aimed to isolate and screen thermophilic ligninolytic microorganisms from EFB compost. Ten isolates were successfully isolated from EFB compost. Although they are not capable of decolorizing Methylene Blue (MB) dye under agar plate assay method, they are able to utilize lignin mimicked compound - guaiacol as a sole carbon on the agar plate assay. This infers that there is no correlation of ligninolytic enzymes with dye decolourization for all the isolates that have been isolated. However, they are able to produce ligninolytic enzymes (Lignin peroxidase, Manganese peroxidase, Laccase) in Minimal Salt Medium with Kraft Lignin (MSM-KL) with Lignin Peroxidase (LiP) as the predominant enzyme followed by Manganese Peroxidase (MnP) and Laccase (Lac). Among all the tested isolates, CLMT 29 has the highest LiP production up to 8.7673 U/mL following 24 h of growth.

  5. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria

    PubMed Central

    Biosca, Elena G.; Flores, Raquel; Santander, Ricardo D.; Díez-Gil, José Luis; Barreno, Eva

    2016-01-01

    Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these

  6. Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes.

    PubMed

    Mohammad, Balsam T; Al Daghistani, Hala I; Jaouani, Atef; Abdel-Latif, Saleh; Kennes, Christian

    2017-01-01

    The aim of this study was the isolation and characterization of thermophilic bacteria from hot springs in Jordan. Ten isolates were characterized by morphological, microscopic, biochemical, molecular, and physiological characteristics. Sequencing of the 16S rDNA of the isolates followed by BLAST search revealed that nine strains could be identified as Bacillus licheniformis and one isolate as Thermomonas hydrothermalis . This is the first report on the isolation of Thermomonas species from Jordanian hot springs. The isolates showed an ability to produce some thermostable enzymes such as amylase, protease, cellulose, gelatins, and lecithin. Moreover, the UPGMA dendrogram of the enzymatic characteristics of the ten isolates was constructed; results indicated a high phenotypic diversity, which encourages future studies to explore further industrial and environmental applications.

  7. Biodegradation of polyether algal toxins--isolation of potential marine bacteria.

    PubMed

    Shetty, Kateel G; Huntzicker, Jacqueline V; Rein, Kathleen S; Jayachandran, Krish

    2010-12-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6×10(7) per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp.

  8. Biodegradation of polyether algal toxins–Isolation of potential marine bacteria

    PubMed Central

    SHETTY, KATEEL G.; HUNTZICKER, JACQUELINE V.; REIN, KATHLEEN S.; JAYACHANDRAN, KRISH

    2012-01-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6 × 107 per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp. PMID:20954040

  9. PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis.

    PubMed

    Liu, Yiying; De Schryver, Peter; Van Delsen, Bart; Maignien, Loïs; Boon, Nico; Sorgeloos, Patrick; Verstraete, Willy; Bossier, Peter; Defoirdt, Tom

    2010-10-01

    The use of poly-β-hydroxybutyrate (PHB) was shown to be successful in increasing the resistance of brine shrimp against pathogenic infections. In this study, we isolated for the first time PHB-degrading bacteria from a gastrointestinal environment. Pure strains of PHB-degrading bacteria were isolated from Siberian sturgeon, European sea bass and giant river prawn. The capability of selected isolates to degrade PHB was confirmed in at least two of three setups: (1) growth in minimal medium containing PHB as the sole carbon (C) source, (2) production of clearing zones on minimal agar containing PHB as the sole C source and (3) degradation of PHB (as determined by HPLC analysis) in 10% Luria-Bertani medium containing PHB. Challenge tests showed that the PHB-degrading activity of the selected isolates increased the survival of brine shrimp larvae challenged to a pathogenic Vibrio campbellii strain by a factor 2-3. Finally, one of the PHB-degrading isolates from sturgeon showed a double biocontrol effect because it was also able to inactivate acylhomoserine lactones, a type of quorum-sensing molecule that regulates the virulence of different pathogenic bacteria. Thus, the combined supplementation of a PHB-degrading bacterium and PHB as a synbioticum provides perspectives for improving the gastrointestinal health of aquatic animals. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds.

    PubMed

    Harman, Rebecca M; Yang, Steven; He, Megan K; Van de Walle, Gerlinde R

    2017-07-04

    The prevalence of chronic skin wounds in humans is high, and treatment is often complicated by the presence of pathogenic bacteria. Therefore, safe and innovative treatments to reduce the bacterial load in cutaneous wounds are needed. Mesenchymal stromal cells (MSC) are known to provide paracrine signals that act on resident skin cells to promote wound healing, but their potential antibacterial activities are not well described. The present study was designed to examine the antibacterial properties of MSC from horses, as this animal model offers a readily translatable model for MSC therapies in humans. Specifically, we aimed to (i) evaluate the in vitro effects of equine MSC on the growth of representative gram-negative and gram-positive bacterial species commonly found in skin wounds and (ii) define the mechanisms by which MSC inhibit bacterial growth. MSC were isolated from the peripheral blood of healthy horses. Gram-negative E. coli and gram-positive S. aureus were cultured in the presence of MSC and MSC conditioned medium (CM), containing all factors secreted by MSC. Bacterial growth was measured by plating bacteria and counting viable colonies or by reading the absorbance of bacterial cultures. Bacterial membrane damage was detected by incorporation of N-phenyl-1-naphthylamine (NPN). Antimicrobial peptide (AMP) gene and protein expression by equine MSC were determined by RT-PCR and Western blot analysis, respectively. Blocking of AMP activity of MSC CM was achieved using AMP-specific antibodies. We found that equine MSC and MSC CM inhibit the growth of E. coli and S. aureus, and that MSC CM depolarizes the cell membranes of these bacteria. In addition, we found that equine MSC CM contains AMPs, and blocking these AMPs with antibodies reduces the effects of MSC CM on bacteria. Our results demonstrate that equine MSC inhibit bacterial growth and secrete factors that compromise the membrane integrity of bacteria commonly found in skin wounds. We also identified

  11. An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions.

    PubMed

    Zecher, Karsten; Jagmann, Nina; Seemann, Philipp; Philipp, Bodo

    2015-12-01

    Interactions between photoautotrophic diatoms and heterotrophic bacteria are important for the biogeochemical C-cycle in the oceans. Additionally, biofilms formed by diatoms and bacteria are the initiating step of biofouling processes, which causes high costs in shipping. Despite this ecological and economical importance, the knowledge about biochemical and molecular mechanisms underlying these interkingdom interactions is relatively small. For analyzing these mechanisms, laboratory model systems are required. In this study, an efficient screening method for isolating bacteria influencing photoautotrophic diatom growth was established. First, diatom cultures of Phaeodactylum tricornutum and Thalassiosira pseudonana were made axenic by applying β-lactam antibiotics. Second, a non-invasive method for measuring growth of multiple parallel diatom cultures by chlorophyll fluorescence was established. This method allowed semi-quantitative chlorophyll determination of cultures with up to 3 μg (chlorophyll) ml(-1). Axenic diatom cultures were then used for enriching bacteria and led to the isolation of 24 strains influencing growth of both diatom strains in various ways. For example, Rheinheimera sp. strain Tn16 inhibited growth of T. pseudonana, while it stimulated growth and cell aggregation of P. tricornutum. Thus, this screening method is appropriate for isolating heterotrophic bacteria showing different interactions with different diatom species ranging from synergistic to antagonistic. In consecutive applications, this method will be useful to screen for bacterial mutants with altered phenotypes regarding the influence on diatom growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    PubMed Central

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  13. Isolation of aluminum-tolerant bacteria capable of nitrogen removal in activated sludge.

    PubMed

    Ji, Bin; Chen, Wei; Zhu, Lei; Yang, Kai

    2016-05-15

    Four strains of bacteria capable of withstanding 20mM concentration of aluminum were isolated from activated sludge in a bioreactor. 16S rRNA identification and morphological characteristics indicated that these strains were Chryseobacterium sp. B1, Brevundimonas diminuta B3, Hydrogenophaga sp. B4, and Bacillus cereus B5. Phylogenetic analysis revealed the position and interrelationships of these bacteria. B. diminuta B3 and Hydrogenophaga sp. B4 could achieve nitrate nitrogen removal of 94.0% and 76.8% within 36h of its initial concentration of 148.8 and 151.7mg/L, respectively. Meanwhile, B3 and B4 could degrade ammonia with little nitrite accumulation. Results of this study provide more information about aluminum-resistant bacteria and laid the foundation for aluminum salt when it is simultaneously used for chemical precipitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters.

    PubMed

    Kennedy, Jonathan; Baker, Paul; Piper, Clare; Cotter, Paul D; Walsh, Marcella; Mooij, Marlies J; Bourke, Marie B; Rea, Mary C; O'Connor, Paula M; Ross, R Paul; Hill, Colin; O'Gara, Fergal; Marchesi, Julian R; Dobson, Alan D W

    2009-01-01

    Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.

  15. Isolation of Optically Targeted Single Bacteria by Application of Fluidic Force Microscopy to Aerobic Anoxygenic Phototrophs from the Phyllosphere

    PubMed Central

    Stiefel, Philipp; Zambelli, Tomaso

    2013-01-01

    In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907

  16. Bacteria isolated from companion animals in Japan (2014-2016) by blood culture.

    PubMed

    Tsuyuki, Yuzo; Kurita, Goro; Murata, Yoshiteru; Takahashi, Takashi

    2018-02-24

    We aimed to identify microorganisms isolated by blood culture (BC) from companion animals and to determine antimicrobial resistance of these isolates during 2014-2016 at veterinary laboratory, in comparison with those during 2010-2013, in Japan. Clinical data (animal species, visiting animals/hospitalized animals, and others except for disease type and clinical course including history of antimicrobial agent use) on ill animals at veterinary clinics or hospitals were obtained. We retrospectively analyzed animal-origin BC results extracted from the database in 2014-2016 and those obtained in 2010-2013. BC-positive samples were from most of dogs (n = 174 in 2014-2016 and n = 86 in 2010-2013). Escherichia coli (n = 50, 25.1%) and Staphylococcus intermedius group (SIG) bacteria (n = 23, 11.6%) were most prevalent in 2014-2016, while the percentages of E. coli (n = 22, 25.3%) and SIG (n = 9, 10.3%) in 2010-2013 were similar to those in 2014-2016. Percentages of extended-spectrum β-lactamase (ESBL)-producing E. coli and methicillin-resistant staphylococci (MRS) rate of SIG bacteria isolated in 2014-2016 were 28.0% and 69.6% (vs. 22.7% and 44.4% in 2010-2013), respectively. Fourteen ESBL-producing E. coli in 2014-2016 were isolated from 7 visiting animals and 7 hospitalized ones, whereas the sixteen MRS of SIG were from 7 visiting animals and 9 hospitalized ones. Our observations support the prevalent microorganisms isolated by BC and their antimicrobial resistance patterns for two study periods. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Antibiotic resistance patterns in fecal bacteria isolated from Christmas shearwater (Puffinus nativitatis) and masked booby (Sula dactylatra) at remote Easter Island.

    PubMed

    Ardiles-Villegas, Karen; González-Acuña, Daniel; Waldenström, Jonas; Olsen, Björn; Hernández, Jorge

    2011-09-01

    Antibiotic use and its implications have been discussed extensively in the past decades. This situation has global consequences when antibiotic resistance becomes widespread in the intestinal bacterial flora of stationary and migratory birds. This study investigated the incidence of fecal bacteria and general antibiotic resistance, with special focus on extended spectrum beta-lactamase (ESBL) isolates, in two species of seabirds at remote Easter Island. We identified 11 species of bacteria from masked booby (Sula dactylatra) and Christmas shearwater (Puffinus nativitatis); five species of gram-negative bacilli, four species of Streptococcus (Enterococcus), and 2 species of Staphylococcus. In addition, 6 types of bacteria were determined barely to the genus level. General antibiotic susceptibility was measured in the 30 isolated Enterobacteriaceae to 11 antibiotics used in human and veterinary medicine. The 10 isolates that showed a phenotypic ESBL profile were verified by clavulanic acid inhibition in double mixture discs with cefpodoxime, and two ESBL strains were found, one strain in masked booby and one strain in Christmas shearwater. The two bacteria harboring the ESBL type were identified as Serratia odorifera biotype 1, which has zoonotic importance. Despite minimal human presence in the masked booby and Christmas shearwater habitats, and the extreme geographic isolation of Easter Island, we found several multiresistant bacteria and even two isolates with ESBL phenotypes. The finding of ESBLs has animal and public health significance and is of potential concern, especially because the investigation was limited in size and indicated that antibiotic-resistant bacteria now are distributed globally.

  18. Antimicrobial properties of lactic acid bacteria isolated from traditional yogurt and milk against Shigella strains.

    PubMed

    Zare Mirzaei, Elnaze; Lashani, Elahe; Davoodabadi, Abolfazl

    2018-01-01

    Background: Lactic acid bacteria (LAB) are normal flora of the mouth, intestines and the female genital tract. They are also frequently found in meat, vegetables, and dairy products. Most of probiotic bacteria belong to the LAB group. Some probiotic LAB are useful in prevention and treatment of diarrheal diseases. The aim of this study was to investigate the antimicrobial properties of LAB isolated from traditional yogurt and milk against Shigella strains. Materials and methods: Forty LAB strains were isolated from traditional yogurt and milk. The antimicrobial activity of LAB against Shigella strains (eight S. flexneri , four S. sonnei ) was examined using the agar-well diffusion assay. LAB strains with antimicrobial effect against all Shigella strains were identified by 16S rRNA gene sequencing. Results: Six LAB strains inhibited the growth of all 12 Shigella strains. Lb. paracasei Y1-3, Lb. paracasei Y8-1 and Lb. fermentum Y2-2 were isolated from yogurt. Lb. paracasei M18-1, Lb. parelimentarius M4-3 and Lb. plantarum M19-1 were isolated from milk. Conclusion: This study showed that Lactobacillus strains with good inhibitory activity against S. flexneri and S. sonnei could be isolated from traditional yogurt and milk.

  19. Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica

    NASA Astrophysics Data System (ADS)

    Arenas, Felipe A.; Pugin, Benoit; Henríquez, Nicole A.; Arenas-Salinas, Mauricio A.; Díaz-Vásquez, Waldo A.; Pozo, María F.; Muñoz, Claudia M.; Chasteen, Thomas G.; Pérez-Donoso, José M.; Vásquez, Claudio C.

    2014-03-01

    The tellurium oxyanion, tellurite, is extremely noxious to most living organisms. Its toxicity has been mainly related to the generation of reactive oxygen species (ROS) as well as to an unbalancing of the thiol:redox buffering system. Nevertheless, a few bacteria are capable of thriving at high tellurite concentrations. One mechanism of resistance is the enzymatic and non-enzymatic reduction of tellurite to the less toxic elemental tellurium. This reduction generates nano- to micrometric tellurium crystals that display different shapes and sizes. To date, a very limited number of highly tellurite-resistant and tellurite-reducing bacterial species are available from international culture collections. In this work, we decided to look for tellurite-reducing bacteria from an extreme environment, Antarctica. This environment exhibits a combination of several extreme factors such as high UV-radiation and desiccation and freezing conditions that impact directly on the local biodiversity. Since, as does, all these factors induce ROS formation, we hypothesized that Antarctic bacteria could also exhibit tellurite-resistance. In this context, we isolated 123 tellurite-resistant bacteria, and characterized six new tellurite-resistant and tellurite-reducing bacterial strains from samples collected in Antarctica. These strains were identified according to their 16S rRNA gene sequence as Staphylococcus hameolyticus, Staphylococcus sciuri, Acinetobacter haemolyticus, Pseudomonas lini, and two strains of Psychrobacter immobilis. The isolates display tellurite-resistance about 35- to 500-fold higher than Escherichia coli (Te-sensitive organism), and a high level of tellurite reduction which might be interesting for an application in the field of bioremediation or nanoparticle biosynthesis.

  20. Identification by using MALDI-TOF mass spectrometry of lactic acid bacteria isolated from non-commercial yogurts in southern Anatolia, Turkey.

    PubMed

    Karaduman, Ayse; Ozaslan, Mehmet Ozaslan; Kilic, Ibrahim H; Bayil-Oguzkan, Sibel; Kurt, Bekir S; Erdogan, Nese

    2017-03-01

    Yogurt is a dairy product obtained by bacterial fermentation of milk. Commercial yogurts are produced using standard starters while, in the production of non-commercial yogurt, the microbiota is quite different since yogurts are used as starter for years. To determine the final characteristics of the fermented product it is necessary to know the biochemical properties of the starter cultures, such as acidity, aroma and flavor. This can only be achieved by identifying and characterizing the bacteria in starter cultures. In our study, 208 non-commercial yogurt samples were collected from 9 different locations in Anatolia, southern Turkey. Their pH and lactic acid bacteria profiles were analyzed. Isolated bacteria were identified by MALDI-TOF MS (matrix-assisted laser sesorption-ionization time-of-flight, mass spectrometry), which is a fast and reliable method for identification of bacterial isolates compared to classical laboratory methods. In this study, 41% of the isolates were identified by using this method, which is 99.9% and 34.0% confidence. The isolates contained two genera (Enterococcus and Lactobacillus) and four species. Afterwards, the four lactic acid bacteria were characterized physiologically and biochemically and we found that they differed from lactic acid bacteria used in commercial yogurt production. [Int Microbiol 20(1): 25-30 (2017)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  1. Response to UVB radiation and oxidative stress of marine bacteria isolated from South Pacific Ocean and Mediterranean Sea.

    PubMed

    Matallana-Surget, S; Villette, C; Intertaglia, L; Joux, F; Bourrain, M; Lebaron, P

    2012-12-05

    Marine bacterial strains isolated from South Pacific and Mediterranean Sea were studied for their resistance to UVB radiation, their repair capacity under photoreactivating light, as well as their oxidative stress response using concentrated hydrogen peroxide (H(2)O(2)), as an oxidizer. A total of 30 marine bacteria were isolated from the hyper-oligotrophic waters of the South Pacific Gyre to the eutrophic waters of the Chilean coast during the BIOSOPE cruise (2004), and 10 strains from surface Mediterranean coastal waters. One third of bacteria presented a high resistance to UVB and almost all isolates presented an efficient post-irradiation recovery. Only few strains showed cell survival to high concentration of H(2)O(2). No correlation between the sampling sites and the bacterial UVB resistance was observed. Two marine bacteria, Erythrobacter flavus and Ruegeria mobilis, were of particular interest, presenting a good response to the three parameters (UVB and H(2)O(2) resistance/efficient repair). Unexpectedly, two resistant strains were again identified as Ruegeria species underlining that this geographically widespread genus, resist to UVB regardless the environment from which the isolates originate. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    PubMed

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  3. Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes

    PubMed Central

    Collins, Andrew J.; Fullmer, Matthew S.; Gogarten, Johann P.; Nyholm, Spencer V.

    2015-01-01

    The accessory nidamental gland (ANG) of the female Hawaiian bobtail squid, Euprymna scolopes, houses a consortium of bacteria including members of the Flavobacteriales, Rhizobiales, and Verrucomicrobia but is dominated by members of the Roseobacter clade (Rhodobacterales) within the Alphaproteobacteria. These bacteria are deposited into the jelly coat of the squid’s eggs, however, the function of the ANG and its bacterial symbionts has yet to be elucidated. In order to gain insight into this consortium and its potential role in host reproduction, we cultured 12 Rhodobacterales isolates from ANGs of sexually mature female squid and sequenced their genomes with Illumina sequencing technology. For taxonomic analyses, the ribosomal proteins of 79 genomes representing both roseobacters and non-roseobacters along with a separate MLSA analysis of 33 housekeeping genes from Roseobacter organisms placed all 12 isolates from the ANG within two groups of a single Roseobacter clade. Average nucelotide identity analysis suggests the ANG isolates represent three genera (Leisingera, Ruegeria, and Tateyamaria) comprised of seven putative species groups. All but one of the isolates contains a predicted Type VI secretion system, which has been shown to be important in secreting signaling and/or effector molecules in host–microbe associations and in bacteria–bacteria interactions. All sequenced genomes also show potential for secondary metabolite production, and are predicted to be involved with the production of acyl homoserine lactones (AHLs) and/or siderophores. An AHL bioassay confirmed AHL production in three tested isolates and from whole ANG homogenates. The dominant symbiont, Leisingera sp. ANG1, showed greater viability in iron-limiting conditions compared to other roseobacters, possibly due to higher levels of siderophore production. Future comparisons will try to elucidate novel metabolic pathways of the ANG symbionts to understand their putative role in host

  4. Symbiotic root nodule bacteria isolated from yam bean (Pachyrhizus erosus).

    PubMed

    Fuentes, Jenet B; Abe, Mikiko; Uchiumi, Toshiki; Suzuki, Akihiro; Higashi, Shiro

    2002-08-01

    A total of 25 isolates from root nodules of yam bean (Pachyrhizus erosus L. Urban), a tuber-producing leguminous plant, were characterized. All isolates formed effective nodules mainly on lateral roots while edible tubers were developed on the taproot. The root nodules formed were identified as the typical determinate type. By an analysis of the partial sequences of the 16S rRNA gene (approximately 300 bp) of 10 strains which were selected randomly, the isolated root nodule bacteria of yam bean were classified into two different genera, Rhizobium and Bradyrhizobium. Two strains, YB2 (Bradyrhizobium group) and YB4 (Rhizobium group) were selected and used for further analyses. The generation time of each strain was shown to be 22.5 h for strain YB2 and 0.8 h for strain YB4, respectively. Differences between strains YB2 and YB4 were also reflected in the bacteroid state in the symbiosome. Symbiosome in nodule cells for the strain YB4 contained one bacteroid cell in a peribacteroid membrane, whereas a symbiosome for strain YB2 contained several bacteroid cells.

  5. Prospective Source of Antimicrobial Compounds From Pigment Produced by Bacteria associated with Brown Alga ( Phaeophyceae ) Isolated from Karimunjawa island, Indonesia

    NASA Astrophysics Data System (ADS)

    Lunggani, A. T.; Darmanto, Y. S.; Radjasa, O. K.; Sabdono, A.

    2018-02-01

    Brown algae or Phaeophyceae characterized by their natural pigments that differ from other important algal classes. Several publications proves that brown algae - associated bacteria have great potential in developing marine pharmaceutical industry since they are capable to synthesized numerous bioactive metabolite compounds. However the potency of marine pigmented microbes associated with brown alga to produce natural pigments and antimicrobials has been less studied. Marine pigmented bacteria associated with brown algae collected from Karimunjawa Island were successfully isolated and screened for antimicrobial activity. The aim of this research was evaluated of the antimicrobial activity of pigments extracted from culturable marine pigmented bacteria on some pathogenic bacteria and yeast. The results showed that all isolates had antimicrobial activity and could be prospectively developed as antimicrobial agent producing pigments. The 6 marine pigmented bacteria was identified to genus level as Pseudoalteromonas, Sphingomonas, Serratia, Paracoccus, Vibrio.

  6. Antibiotic resistance of native and faecal bacteria isolated from rivers, reservoirs and sewage treatment facilities in Victoria, south-eastern Australia.

    PubMed

    Boon, P I; Cattanach, M

    1999-03-01

    The incidence of resistance to ampicillin, chloramphenicol, kanamycin, nalidixic acid, neomycin and streptomycin was significantly greater (P < 0.001) in native heterotrophic bacteria than in Escherichia coli isolated from a range of sites along the Yarra River in south-eastern Australia. There was no significant difference in the incidence of resistance between native and faecal bacteria to tetracycline. Both groups were almost totally resistant to penicillin. Multivariate analyses indicated little clear spatial pattern in the incidence of resistance in native bacteria from upstream vs downstream sites along the Yarra River. In contrast, E. coli isolated from upstream (rural) sites tended to have a lower incidence of resistance than isolates from downstream (urban) sites. These findings have implications for the use of antibiotic resistance as a bacteriological water quality parameter.

  7. Microbiota and anthropic interference on antimicrobial resistance profile of bacteria isolated from Brazilian Maned-wolf (Chrysocyon brachyurus).

    PubMed

    Vieira-da-Motta, Olney; Eckhardt-de-Pontes, Luiz Antonio; Petrucci, Melissa Paes; dos Santos, Israel Pereira; da Cunha, Isabel Candia Nunes; Morato, Ronaldo Gonçalves

    2013-12-01

    Both the study of Brazilian wild mammal fauna and the conditions that foster the preservation of endangered species, such as Brazilian Maned-wolf (Chrysocyon brachyurus), in wild life are of extreme importance. In order to study the resistance profile of microbiota bacterial colonizing Brazilian Maned-wolf, this work investigated samples from eight male captive and free roaming animals originating from different Brazilian geographical regions. Samples for microbiological purposes were collected with swabs and kept in appropriate transport medium. Using routine microbiological techniques, the isolated bacteria were tested toward antimicrobial drugs by the agar disk diffusion method. Results showed that all samples from wild animals were sensitive toward all drugs tested. Conversely, the resistance profile of bacteria isolated from captive animals varied among strains and animal body site location. Escherichia coli samples from prepuce, anus and ear showed multi-resistance toward at least four drugs, especially against erythromycin and tetracycline, followed by Proteus mirabilis and P. vulgaris strains isolated from anus and ear. Among Gram-positive bacteria, strains of coagulase-negative staphylococci showed multi-resistance mainly toward erythromycin and amoxicillin. The work discusses these findings and suggests that profile of multi-resistance bacteria from captive subjects may be attributed to direct contact with human or through lifestyle factors such as feeding, predation or contact of animals with urban animals such as birds, rodents, and insects from surrounding environments.

  8. Microbiota and anthropic interference on antimicrobial resistance profile of bacteria isolated from Brazilian maned-wolf (Chrysocyon brachyurus)

    PubMed Central

    Vieira-da-Motta, Olney; Eckhardt-de-Pontes, Luiz Antonio; Petrucci, Melissa Paes; dos Santos, Israel Pereira; da Cunha, Isabel Candia Nunes; Morato, Ronaldo Gonçalves

    2013-01-01

    Both the study of Brazilian wild mammal fauna and the conditions that foster the preservation of endangered species, such as Brazilian Maned-wolf (Chrysocyon brachyurus), in wild life are of extreme importance. In order to study the resistance profile of microbiota bacterial colonizing Brazilian Maned-wolf, this work investigated samples from eight male captive and free roaming animals originating from different Brazilian geographical regions. Samples for microbiological purposes were collected with swabs and kept in appropriate transport medium. Using routine microbiological techniques, the isolated bacteria were tested toward antimicrobial drugs by the agar disk diffusion method. Results showed that all samples from wild animals were sensitive toward all drugs tested. Conversely, the resistance profile of bacteria isolated from captive animals varied among strains and animal body site location. Escherichia coli samples from prepuce, anus and ear showed multi-resistance toward at least four drugs, especially against erythromycin and tetracycline, followed by Proteus mirabilis and P. vulgaris strains isolated from anus and ear. Among Gram-positive bacteria, strains of coagulase-negative staphylococci showed multi-resistance mainly toward erythromycin and amoxicillin. The work discusses these findings and suggests that profile of multi-resistance bacteria from captive subjects may be attributed to direct contact with human or through lifestyle factors such as feeding, predation or contact of animals with urban animals such as birds, rodents, and insects from surrounding environments. PMID:24688529

  9. Isolation and characterisation of obligately anaerobic, lipolytic bacteria from the rumen of red deer.

    PubMed

    Jarvis, G N; Strömpl, C; Moore, E R; Thiele, J H

    1998-03-01

    Two Gram-positive, obligately anaerobic, lipolytic bacteria, isolates LIP4 and LIP5, were obtained from the rumen contents of juvenile red deer. These mesophilic bacterial strains were capable of hydrolysing the neutral lipids, tallow, tripalmitin and oliver oil, into their constituent free long-chain fatty acid and glycerol moieties. The latter compound was dissimilated by both isolates, with isolate LIP4 producing propionate as the predominant product, while isolate LIP5 produced acetate, ethanol and succinate. The lactate-utilising isolate LIP4 grew on a limited range of saccharide substrates including glucose, fructose and ribose, and exhibited an unusual cell wall structure and morphology. The isolate LIP5 grew upon a wider range of saccharides, but was unable to use lactate as a substrate. Based upon phenotypic and 16S rRNA gene sequence analyses, isolate LIP4 clusters with species in the genus Propionibacterium, while isolate LIP5 is a member of clostridial cluster XIVa.

  10. Antimicrobial susceptibility of clinical isolates of anaerobic bacteria in Ontario, 2010-2011.

    PubMed

    Marchand-Austin, Alex; Rawte, Prasad; Toye, Baldwin; Jamieson, Frances B; Farrell, David J; Patel, Samir N

    2014-08-01

    The local epidemiology of antimicrobial susceptibility patterns in anaerobic bacteria is important in guiding the empiric treatment of infections. However, susceptibility data are very limited on anaerobic organisms, particularly among non-Bacteroides organisms. To determine susceptibility profiles of clinically-significant anaerobic bacteria in Ontario Canada, anaerobic isolates from sterile sites submitted to Public Health Ontario Laboratory (PHOL) for identification and susceptibility testing were included in this study. Using the E-test method, isolates were tested for various antimicrobials including, penicillin, cefoxitin, clindamycin, meropenem, piperacillin-tazobactam and metronidazole. The MIC results were interpreted based on guidelines published by Clinical and Laboratory Standards Institute. Of 2527 anaerobic isolates submitted to PHOL, 1412 were either from sterile sites or bronchial lavage, and underwent susceptibility testing. Among Bacteroides fragilis, 98.2%, 24.7%, 1.6%, and 1.2% were resistant to penicillin, clindamycin, piperacillin-tazobactam, and metronidazole, respectively. Clostridium perfringens was universally susceptible to penicillin, piperacillin-tazobactam, and meropenem, whereas 14.2% of other Clostridium spp. were resistant to penicillin. Among Gram-positive anaerobes, Actinomyces spp., Parvimonas micra and Propionibacterium spp. were universally susceptible to β-lactams. Eggerthella spp., Collinsella spp., and Eubacterium spp. showed variable resistance to penicillin. Among Gram-negative anaerobes, Fusobacterium spp., Prevotella spp., and Veillonella spp. showed high resistance to penicillin but were universally susceptible to meropenem and piperacillin-tazobactam. The detection of metronidazole resistant B. fragilis is concerning as occurrence of these isolates is extremely rare. These data highlight the importance of ongoing surveillance to provide clinically relevant information to clinicians for empiric management of

  11. [Biodiversity of phosphate-dissolving and plant growth--promoting endophytic bacteria of two crops].

    PubMed

    Huang, Jing; Sheng, Xiafang; He, Linyan

    2010-06-01

    We isolated and characterized phosphate-dissolving endophytic bacteria from two commonly cultivated crops. Phosphate-dissolving endophytic bacteria were isolated by plating and screening from interior tissues of rape and maize plants on NBRIP medium with tricalcium phosphate as sole phosphate source. Bacteria were characterized regarding characteristics that may be relevant for a beneficial plant-microbe interaction-indoleacetic acid, siderophore and 1-aminocyclopropane-1-carboxylic acid deaminase production,and further classified by restriction analysis of 16S rDNA. Eleven typical strains were identified by 16S rDNA sequence analysis. Thirty-two phosphate-dissolving endophytic bacteria were isolated from maize and rape plants and classified by restriction analysis of 16S rDNA in 8 different taxonomic groups at the similarity level of 76%. All the isolates could release phosphate from tricalcium phosphate and decrease the pH of the medium. The maximum phosphate content (537.6 mg/L) in the solution was obtained with strain M1L5. Thirteen isolates isolated from rape produced indoleacetic acid and siderophore, 68.4% and 63.2% of the strains isolated from maize produced indoleacetic acid and siderophore,respectively. 63.2% of the strains isolated from maize were able to grow on 1-aminocyclopropane-1-carboxylic acid as the sole nitrogen source. The eleven strains belonged to five different genera including Pantoea, Pseudomonas, Burkholderia, Acinetobacter and Ralstonia. Phosphate-dissolving endophytic bacteria isolated from rape and maize plants have abundant characteristics relative to promoting plant growth and genetic diversity.

  12. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria.

    PubMed

    Kaškonienė, Vilma; Stankevičius, Mantas; Bimbiraitė-Survilienė, Kristina; Naujokaitytė, Gintarė; Šernienė, Loreta; Mulkytė, Kristina; Malakauskas, Mindaugas; Maruška, Audrius

    2017-02-01

    The scientific interest for the search of natural means of microbial inhibitors has not faded for several years. A search of natural antibiotics, so-called bacteriocins which are produced by lactic acid bacteria (LAB), gains a huge attention of the scientists in the last century, in order to reduce the usage of synthetic food additives. Pure bacteriocins with wide spectra of antibacterial activity are promising among the natural biopreservatives. The usage of bacteriocin(s) producing LAB as starter culture for the fermentation of some food products, in order to increase their shelf-life, when synthetic preservatives are not allowable, is also possible. There are a lot of studies focusing on the isolation of new bacteriocins from traditional fermented food, dairy products and other foods or sometimes even from unusual non-food matrices. Bacteriocins producing bacteria have been isolated from different sources with the different antibacterial activity against food-borne microorganisms. This review covers the classification of bacteriocins, diversity of sources of bacteriocin(s) producing LAB, antibacterial spectra of isolated bacteriocins and analytical methods for the bacteriocin purification and analysis within the last 15 years.

  13. The Sweet Tooth of Bacteria: Common Themes in Bacterial Glycoconjugates

    PubMed Central

    Tytgat, Hanne L. P.

    2014-01-01

    SUMMARY Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed. PMID:25184559

  14. Characterisation of lactic acid bacteria isolated from naturally fermented Greek dry salami.

    PubMed

    Samelis, J; Maurogenakis, F; Metaxopoulos, J

    1994-10-01

    A total of 348 lactic acid bacteria isolated from five batches of naturally fermented dry salami at various stages of ripening were characterised. The majority of the strains were assigned to two main phylogenetic groups of species: (i) the psychrotrophic, formerly called atypical, meat streptobacteria (169 strains) and (ii) a new genus Weissella (120), which was recently proposed (Collins et al., 1993) to include Leuconostoc paramesenteroides and some other closely related species. Meat streptobacteria were identified as Lactobacillus curvatus (88 strains) and L. sake (76), whereas 5 strains were indistinguishable and, thus designated L. sake/curvatus. Non-psychrotrophic streptobacteria were also isolated and identified as L. plantarum (34 strains), L. farciminis (10), L. coryniformis (1) and L. casei subsp. pseudoplantarum (1). The majority of the Weissella strains (86) were leuconostoc-like bacteria; four of them were identified as W. viridescens, 11 belonged to the newly described W. hellenica (Collins et al., 1993), another 11 resembled W. paramesenteroides, whereas 60 isolates were not classified to any species. The latter group comprised strains that produced D(L)-lactate. The remaining Weissella were gas-forming, arginine-positive rods assigned to W. minor (31) and W. halotolerans (3). Other species identified were Enterococcus faecium (10), Leuconostoc mesenteroides (1), L. brevis (1) and Pediococcus sp. (1). The main criteria used to distinguish between above species as well as their distribution on the five salami batches in relation to their succession with time and suitability as starters were discussed.

  15. A simplified experimental model for clearance of some pathogenic bacteria using common bacterivorous ciliated spp. in Tigris river

    NASA Astrophysics Data System (ADS)

    Ali, Talib Hassan; Saleh, Dhuha Saad

    2014-03-01

    Bacteria-specific uptake rates of three different protozoan taxa on a pure and mixed bacterial community was studied by means of a simplified and functionally reproducible experimental model. The bacterial species Shigella flexneri, Escherichia coli and Salmonella typhi were isolated and classified from stool samples of patients suffering from diarrhea. Paramecium caudatum, Tetrahymena pyriformis and Halteria grandinella, free living ciliate Protozoans, were isolated and identified from Tigris river water. Pure and mixed ( E. coli + S. typhi), ( E. coli + Sh. flexneri) bacterial cultures were used with each ciliate genera to evaluate the following: predator duplication rate, prey reduction rate, clearance rate and net grazing rate. We used selective lactose fermentation phenomena of enteric bacteria on MacConkey medium for the quantification of bacteria cultural characteristics. The final bacteria concentration was reduced by growing protozoa of 98-99.9 % compared to protozoa-free controls. It showed that Tetrahymena pyriformis had the highest duplication rate (4.13 time/day) in both types of cultures (pure and mixed), followed by Paramecium caudatum and Halteria grandinella, respectively. Paramecium caudatum had the highest rate of ingestion in both types of cultures (26 × 103 bacteria/organism/hr) and yielded the longest time required for 90 % bacterial reduction in a pure suspension of S. typhi (166 h). Clearance rates of pathogenic bacteria by ciliates ranged between 106 nanoliter/organism/h by P. caudatum to S. typhi and 1.92 nanoliter/organism/h seen in T. pyriformis in ( E. coli + S. typhi) mixed culture. We used aquatic experimental microcosms under controlled conditions to explore bacteria-dependent ciliate growth and examined whether these ciliates could discriminate between equally sized bacterial preys in a mixture.

  16. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria

    PubMed Central

    Abdelmaksoud, Abdallah A.; Koparde, Vishal N.; Sheth, Nihar U.; Serrano, Myrna G.; Glascock, Abigail L.; Fettweis, Jennifer M.; Strauss, Jerome F.; Buck, Gregory A.

    2016-01-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( < 1 % 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12 % 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively. PMID:26747455

  17. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria.

    PubMed

    Abdelmaksoud, Abdallah A; Koparde, Vishal N; Sheth, Nihar U; Serrano, Myrna G; Glascock, Abigail L; Fettweis, Jennifer M; Strauss, Jerome F; Buck, Gregory A; Jefferson, Kimberly K

    2016-03-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( <1% 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12% 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively.

  18. Identification of pink-pigmented bacteria isolated from environmental water samples and their biofilm formation abilities.

    PubMed

    Furuhata, Katsunori; Kato, Yuko; Goto, Keiichi; Saitou, Keiko; Sugiyama, Jun-Ichi; Hara, Motonobu; Fukuyama, Masahumi

    2008-06-01

    Sixty-seven strains of pink-pigmented bacteria, which were isolated from environmental water samples collected nationwide, were identified by partial 16S rDNA sequence analysis. In addition, the biofilm formation ability of the isolates was experimentally investigated. We could identify only 2 strains at the species level: Pedobacter roseus HS-38 and Runella slithyformis HS-77. The results showed that of the strains tested, 22 strains (32.8%) were Pedobacter spp., which was most frequently identified, followed by 19 strains (28.4%) of Arcicella spp., 16 strains (23.9%) of Deinococcus spp., 5 strains (7.5%) of Roseomonas spp., 4 strains (6.0%) of Flectobacillus spp. and 1 strain (1.5%) of Runella sp. Most isolates showed low similarity values to previously known species, and they were found to be novel species. At a result, it was difficult to identify environmental water-derived pink-pigmented bacteria at the species level. On the other hand, when we measured the absorbance by the crystal violet staining to examine the quantities of biofilm formation of these strains, fifty-five (82.0%) of the 67 isolates formed biofilm. The absorbance of Deinococcus sp. HS-75 was the highest (3.56). When comparing the absorbance values among the genera, Roseomonas spp. showed the highest absorbance (mean:1.62), followed by Deinococcus spp. (mean: 1.03), and Arcicella spp. (mean: 1.01). Strains of Flectobacillus spp. (mean: 0.48) and Pedobacter spp. (mean: 0.42) showed lower absorbance values. As above, it was shown that, at the species level, the pink-pigmented bacteria in the water in the Japanese environment had various levels of ability to form biofilm.

  19. Isolation of Acetogenic Bacteria That Induce Biocorrosion by Utilizing Metallic Iron as the Sole Electron Donor

    PubMed Central

    Yumoto, Isao; Kamagata, Yoichi

    2014-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. PMID:25304512

  20. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor.

    PubMed

    Kato, Souichiro; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Characterization of radiation-resistant vegetative bacteria in beef.

    PubMed

    Welch, A B; Maxcy, R B

    1975-08-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2 to 50 C. These bacteria were relatively heat sensitive, e.g., D10 of 5.4 min at 70 C or less. The radiation resistance ranged from D10 values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized.

  2. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    PubMed Central

    Silva-Castro, G. A.; Uad, I.; Gonzalez-Martinez, A.; Rivadeneyra, A.; Gonzalez-Lopez, J.; Rivadeneyra, M. A.

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  3. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine.

    PubMed

    Silva-Castro, G A; Uad, I; Gonzalez-Martinez, A; Rivadeneyra, A; Gonzalez-Lopez, J; Rivadeneyra, M A

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments.

  4. Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage.

    PubMed

    Feng, Wei; Wang, Xiao-Qiang; Zhou, Wei; Liu, Guang-Ying; Wan, Yong-Ji

    2011-01-01

    The silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), an oligophagous insect that mainly feeds on mulberry leaves, is susceptible to entomopathogen infection when reared with tricuspid cudrania leaves. A total of 56 dominant bacterial strains, classified into 12 phylotypes based on bacteriological properties and analysis of 16S rRNA genes, were isolated from the intestine of the fourth and fifth instar silkworm larvae. Ten and seven phylotypes exist in the intestine of the silkworm larvae reared with mulberry leaves and tricuspid cudrania leaves, respectively. Four of them are common in the intestine of the two treatment groups. By screening their lipolytic ability on a Rhodamine B agar plate, nine lipase-producing bacterial strains were obtained and classified into six genera, including Bacillus, Brevibacterium, Corynebacterium, Staphylococcus, Klebsiella, and Stenotrophomonas. Except for Stenotrophomonas, which is common in both, the other genera only exist in the intestine of the silkworm larvae fed with mulberry leaves. In addition, by culture and fermentation in vitro, the maximum cell density and lipase activity of lipase-producing bacteria were examined at about 48 hours. The results indicate that diet has a significant impact on the gut bacterial community, especially lipase-producing bacteria. We suggest that the difference of lipase-producing bacterial diversity might be related to disease resistance of the silkworm.

  5. Draft genome sequences of bacteria isolated from the Deschampsia antarctica phyllosphere.

    PubMed

    Cid, Fernanda P; Maruyama, Fumito; Murase, Kazunori; Graether, Steffen P; Larama, Giovanni; Bravo, Leon A; Jorquera, Milko A

    2018-05-01

    Genome analyses are being used to characterize plant growth-promoting (PGP) bacteria living in different plant compartiments. In this context, we have recently isolated bacteria from the phyllosphere of an Antarctic plant (Deschampsia antarctica) showing ice recrystallization inhibition (IRI), an activity related to the presence of antifreeze proteins (AFPs). In this study, the draft genomes of six phyllospheric bacteria showing IRI activity were sequenced and annotated according to their functional gene categories. Genome sizes ranged from 5.6 to 6.3 Mbp, and based on sequence analysis of the 16S rRNA genes, five strains were identified as Pseudomonas and one as Janthinobacterium. Interestingly, most strains showed genes associated with PGP traits, such as nutrient uptake (ammonia assimilation, nitrogen fixing, phosphatases, and organic acid production), bioactive metabolites (indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase), and antimicrobial compounds (hydrogen cyanide and pyoverdine). In relation with IRI activity, a search of putative AFPs using current bioinformatic tools was also carried out. Despite that genes associated with reported AFPs were not found in these genomes, genes connected to ice-nucleation proteins (InaA) were found in all Pseudomonas strains, but not in the Janthinobacterium strain.

  6. Bacteria isolated from conspecific bite wounds in Norway and black rats: implications for rat bite-associated infections in people.

    PubMed

    Himsworth, Chelsea G; Zabek, Erin; Tang, Patrick; Parsons, Kirbee L; Koehn, Martha; Jardine, Claire M; Patrick, David M

    2014-02-01

    Bites associated with wild and domestic Norway and black rats (Rattus norvegicus and Rattus rattus) may have a variety of health consequences in people. Bite-related infections are among the most significant of these consequences; however, there is little data on the infectious agents that can be transmitted from rats to people through biting. This is problematic because without an accurate understanding of bite-related infection risks, it is difficult for health professionals to evaluate the adequacy of existing guidelines for empirical therapy. The objectives of this study were to increase our knowledge of the bacterial species associated with rat bites by studying bite wounds that wild rats inflict upon one another and to review the literature regarding rat bites and bite wound management. Wild Norway and black rats (n=725) were trapped in Vancouver, Canada, and examined for bite wounds in the skin. All apparently infected wounds underwent aerobic and anaerobic culture, and isolated bacteria were identified. Thirty-six rats had bite wound-related infections, and approximately 22 different species of bacteria belonging to 18 genera were identified. Staphylococcus aureus was the most common isolate; however, the majority of infections (72.5%) were polymicrobial. Rat bites can result in infection with a number of aerobic and anaerobic Gram-positive and Gram-negative bacteria. In humans, these wounds are best managed through early recognition and cleansing. The benefit of prophylactic antimicrobial treatment is debatable, but given the deep puncturing nature of rodent bites, we suggest that they should be considered a high risk for infection. Antibiotics selected should include coverage for a broad range of bacterial species.

  7. Bacteria Isolated from Conspecific Bite Wounds in Norway and Black Rats: Implications for Rat Bite–Associated Infections In People

    PubMed Central

    Zabek, Erin; Tang, Patrick; Parsons, Kirbee L.; Koehn, Martha; Jardine, Claire M.; Patrick, David M.

    2014-01-01

    Abstract Bites associated with wild and domestic Norway and black rats (Rattus norvegicus and Rattus rattus) may have a variety of health consequences in people. Bite-related infections are among the most significant of these consequences; however, there is little data on the infectious agents that can be transmitted from rats to people through biting. This is problematic because without an accurate understanding of bite-related infection risks, it is difficult for health professionals to evaluate the adequacy of existing guidelines for empirical therapy. The objectives of this study were to increase our knowledge of the bacterial species associated with rat bites by studying bite wounds that wild rats inflict upon one another and to review the literature regarding rat bites and bite wound management. Wild Norway and black rats (n=725) were trapped in Vancouver, Canada, and examined for bite wounds in the skin. All apparently infected wounds underwent aerobic and anaerobic culture, and isolated bacteria were identified. Thirty-six rats had bite wound–related infections, and approximately 22 different species of bacteria belonging to 18 genera were identified. Staphylococcus aureus was the most common isolate; however, the majority of infections (72.5%) were polymicrobial. Rat bites can result in infection with a number of aerobic and anaerobic Gram-positive and Gram-negative bacteria. In humans, these wounds are best managed through early recognition and cleansing. The benefit of prophylactic antimicrobial treatment is debatable, but given the deep puncturing nature of rodent bites, we suggest that they should be considered a high risk for infection. Antibiotics selected should include coverage for a broad range of bacterial species. PMID:24528094

  8. Isolation and Analysis of Novel Electrochemically Active Bacteria for Enhanced Power Generation in Microbial Fuel Cells

    DTIC Science & Technology

    2009-03-07

    new exoelectrogenic bacteria during this project. We isolated Rhodopseudomonas palustris DX-1, and demonstrated for the first time that a pure culture...production in these systems. Here we report that the phototrophic purple non-sulfur bacterium Rhodopseudomonas palustris DX-1, isolated from an MFC...The exoelectrogenic PPNS bacterium, Rhodopseudomonas palustris DX- 1, was examined here for hydrogen production by electrohydrogenesis due to its

  9. Patterns of isolation of common gram positive bacterial pathogens and their susceptibilities to antimicrobial agents in Jimma Hospital.

    PubMed

    Gebreselassie, Solomon

    2002-04-01

    Gram positive bacteria are frequently emerging as antibiotic resistant pathogens, causing serious infections than ever before in the ill and debilitated patients. The pattern of isolation and the antimicrobial susceptibilities of common Gram positive cocci including Staphylococcus aureus, coagulase negative staphylococcus (CoNS), Streptococcus pyogenes, Enterococcus species and Streptococcus pneumoniae was investigated between January 1997 and June 2000 in Jimma Hospital. Of the 500 specimens collected from children and adults, 116 (23.2%) consisted of one or more of the above organisms. The following strains: Staphylococcus aureus, 47 (40.5%), CoNS, 36 (31.0%), Streptococcus pneumoniae, 26 (22.4%) Streptococcus pyogenes, 5 (4.3%) and Streptococcus faecalis, 2(1.7%) were isolated from different specimens including pus, sputum, urine, stool, blood and oro/nasopharyngeal swabs of patients. The in vitro activities of 14 different antibiotics including penicillin G, ampicillin, cloxacillin, cephalothin, gentamicin, kanamycin, tetracycline, chloramphenicol, erythromycin, trimethoprim-sulfamethoxazole, streptomycin, methicillin, vancomycin and clindamycin was determined against the clinical bacterial isolates. The antimicrobial activities were evaluated by agar diffusion technique using Mueller-Hinton agar according to NCCLS recommendations. The majority of the pathogens, 59(50.9%) were recovered from upper respiratory tract infections and 17 (14.6%) from the lower respiratory tract. The resistance patterns of S. aureus, CoNS, S. pneumoniae and enterococci to penicillin was 91.5%, 94.4%, 7.7% and 100% respectively. Penicillin, ampicillin and cloxacillin showed low effects (< 60%) on both S. aureus and CoNS. Multi-drug resistance was observed in all the gram-positive isolates, especially higher in staphylococcus species. All isolates of S. aureus (100%) were susceptible to vancomycin, clindamycin and gentamicin. In order to reduce morbidity and mortality due to antibiotic

  10. Isolation and Characterization of Bacteria Capable of Tolerating the Extreme Conditions of Clean Room Environments▿

    PubMed Central

    La Duc, Myron T.; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-01-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4°C to 65°C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 106 cells/m2. However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (α- and β-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of

  11. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments.

    PubMed

    La Duc, Myron T; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-04-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4 degrees C to 65 degrees C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 10(6) cells/m(2). However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (alpha- and beta-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means

  12. Antibacterial activity of amino- and amido- terminated poly (amidoamine)-G6 dendrimer on isolated bacteria from clinical specimens and standard strains.

    PubMed

    Rastegar, Ayoob; Nazari, Shahram; Allahabadi, Ahmad; Falanji, Farahnaz; Akbari Dourbash, Fakhreddin Akbari Dourbash; Rezai, Zahra; Alizadeh Matboo, Soudabeh; Hekmat-Shoar, Reza; Mohseni, Seyed Mohsen; Majidi, Gharib

    2017-01-01

    Background: Nanoscale poly (amidoamine) dendrimers have been investigated for their biological demands, but their antibacterial activity has not been widely discovered. Thus, the sixth generation of poly (amidoamine) dendrimer (PAMAM-G6) was synthesized and its antibacterial activities were evaluated on Gram-negative bacteria; P. aeruginosa, E. coli, A. baumannii, S. typhimurium, S. dysenteriae, K. pneumoniae, P. mirabilis , and Gram-positive bacteria, and S.aureus and B. subtilis , which were isolated from different clinical specimens and standard strains of these bacteria. Methods: In this study, 980 specimens including urine (47%), blood (27%), sputum (13%), wounds (8%), and burns (5%) were collected from clinical specimens of 16 hospitals and clinics in city of Sabzevar, Iran. Then, the target bacteria were isolated and identified using standard methods. Minimum inhibitory concentration and minimum bactericidal concentrations against Gram-positive and Gram-negative bacteria were determined according to guidelines described by clinical and laboratory standards institute (CLSI). Standard discs were prepared using 0.025, 0.25, 2.5, and 25 μg/mL concentrations of PAMAM-G6 on Mueller-Hinton agar plates to determinate the zone of inhibition. The cytotoxicity of PAMAM-G6 dendrimer was evaluated in HCT116 cells by MTT assay. Results: The most important isolated bacteria were E. coli (23.65%), S. aureus (24.7%), P. aeruginosa (10.49%), B. subtilis (7.7%), S. typhimurium (8.87%), A. baumannii (7.02%), K. pneumoniae (7.1%), P. mirabilis (6.46%), and S. dysenteriae (3.6%). Moreover, it was found that poly (amidoamine)-G6 exhibited more antibacterial efficacy on standard strains than isolated bacteria from clinical samples (p<0.05). The cytotoxicity of PAMAM-G6 to the cells showed that cytotoxicity depended on the concentration level and exposure time. Conclusion: The PAMAM-G6 dendrimer showed a positive impact on the removal of dominant bacterial isolated from clinical

  13. Antibacterial activity of amino- and amido- terminated poly (amidoamine)-G6 dendrimer on isolated bacteria from clinical specimens and standard strains

    PubMed Central

    Rastegar, Ayoob; Nazari, Shahram; Allahabadi, Ahmad; Falanji, Farahnaz; Akbari Dourbash, Fakhreddin Akbari Dourbash; Rezai, Zahra; Alizadeh Matboo, Soudabeh; Hekmat-Shoar, Reza; Mohseni, Seyed Mohsen; Majidi, Gharib

    2017-01-01

    Background: Nanoscale poly (amidoamine) dendrimers have been investigated for their biological demands, but their antibacterial activity has not been widely discovered. Thus, the sixth generation of poly (amidoamine) dendrimer (PAMAM-G6) was synthesized and its antibacterial activities were evaluated on Gram-negative bacteria; P. aeruginosa, E. coli, A. baumannii, S. typhimurium, S. dysenteriae, K. pneumoniae, P. mirabilis, and Gram-positive bacteria, and S.aureus and B. subtilis, which were isolated from different clinical specimens and standard strains of these bacteria. Methods: In this study, 980 specimens including urine (47%), blood (27%), sputum (13%), wounds (8%), and burns (5%) were collected from clinical specimens of 16 hospitals and clinics in city of Sabzevar, Iran. Then, the target bacteria were isolated and identified using standard methods. Minimum inhibitory concentration and minimum bactericidal concentrations against Gram-positive and Gram-negative bacteria were determined according to guidelines described by clinical and laboratory standards institute (CLSI). Standard discs were prepared using 0.025, 0.25, 2.5, and 25 μg/mL concentrations of PAMAM-G6 on Mueller-Hinton agar plates to determinate the zone of inhibition. The cytotoxicity of PAMAM-G6 dendrimer was evaluated in HCT116 cells by MTT assay. Results: The most important isolated bacteria were E. coli (23.65%), S. aureus (24.7%), P. aeruginosa (10.49%), B. subtilis (7.7%), S. typhimurium (8.87%), A. baumannii (7.02%), K. pneumoniae (7.1%), P. mirabilis (6.46%), and S. dysenteriae (3.6%). Moreover, it was found that poly (amidoamine)–G6 exhibited more antibacterial efficacy on standard strains than isolated bacteria from clinical samples (p<0.05). The cytotoxicity of PAMAM-G6 to the cells showed that cytotoxicity depended on the concentration level and exposure time. Conclusion: The PAMAM-G6 dendrimer showed a positive impact on the removal of dominant bacterial isolated from clinical

  14. Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products.

    PubMed

    Erginkaya, Z; Turhan, E U; Tatlı, D

    2018-01-01

    In this study, the antibiotic resistance (AR) of lactic acid bacteria (LAB) isolated from traditional Turkish fermented dairy products was investigated. Yogurt, white cheese, tulum cheese, cokelek, camız cream and kefir as dairy products were collected from various supermarkets. Lactic acid bacteria such as Lactobacillus spp., Streptococcus spp., Bifidobacterium spp., and Enterecoccus spp. were isolated from these dairy products. Lactobacillus spp. were resistant to vancomycin (58%), erythromycin (10.8%), tetracycline (4.3%), gentamicin (28%), and ciprofloxacin (26%). Streptococcus spp. were resistant to vancomycin (40%), erythromycin (10%), chloramphenicol (10%), gentamicin (20%), and ciprofloxacin (30%). Bifidobacterium spp. were resistant to vancomycin (60%), E 15 (6.6%), gentamicin (20%), and ciprofloxacin (33%). Enterococcus spp. were resistant to vancomycin (100%), erythromycin (100%), rifampin (100%), and ciprofloxacin (100%). As a result, LAB islated from dairy products in this study showed mostly resistance to vancomycin.

  15. Isolation of Adherent Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Bacteria Using PAH-Sorbing Carriers

    PubMed Central

    Bastiaens, Leen; Springael, Dirk; Wattiau, Pierre; Harms, Hauke; deWachter, Rupert; Verachtert, Hubert; Diels, Ludo

    2000-01-01

    Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge. PMID:10788347

  16. The depletion of sodium nitrite by lactic acid bacteria isolated from kimchi.

    PubMed

    Oh, Chang-Kyung; Oh, Myung-Chul; Kim, Soo-Hyun

    2004-01-01

    Nitrites, whether added or naturally occurring in foods, are potential carcinogens, and controlling their concentrations is important for maintaining a safe food supply. In this study we investigated the depletion of sodium nitrite (150 microg/mL) during the fermentation in Lactobacilli MRS broth at 5, 10, 15, 20, 25, 30, and 36 degrees C by lactic acid bacteria (LAB-A, -B, -C, and -D) isolated from kimchi and Leuconostoc mesenteroides strain KCTC3100. The four species of lactic acid bacteria isolated from kimchi were identified as L. mesenteroides, and all produced depletion of less than 20% of sodium nitrite after 10 days of incubation at 5 degrees C. There was less than 40% depletion after 9 days at 10 degrees C, 86.4-92.8% after 7 days at 15 degrees C, 81.4-87.8% after 4 days and more than 90.0% after 5 days at 20 degrees C, 76.3-85.7% after 3 days and more than 90.0% after 5 days at 25 degrees C, and more than 90.0% after 2 days at 30 and 36 degrees C. The depletion by LAB isolates was similar or higher than that by L. mesenteroides strain KCTC3100, and in particular, the LAB-D strain showed the highest depletion effect of all the strains tested, up to 15 degrees C. From these results, the strains isolated from kimchi were very effective for the depletion of sodium nitrite at high temperature, and all sodium nitrite was depleted at the initial period of incubation (1-2 days) at 30 and 36 degrees C. But as the temperature was lowered, the depletion effect of sodium nitrite was decreased in all the strains tested from kimchi. This illustrates that the depletion of nitrite by each strain is subject to the influence of temperatures.

  17. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    PubMed

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed.

  18. Assessment of the in vitro bioactive properties of lactic acid bacteria isolated from native ecological niches of Ecuador.

    PubMed

    Benavides, Ana B; Ulcuango, Mario; Yépez, Lucía; Tenea, Gabriela N

    Lactic acid bacteria are known for their biotechnological potential. In various regions of Ecuador numerous indigenous biological resources are largely undocumented. In this study, we evaluated the potential probiotic characteristics and antagonistic in vitro properties of some lactic acid bacteria from native niches of the subtropical rain forests of Ecuador. These isolates were identified according to their morphological properties, standard API50CH fermentation profile and RAPD-DNA polymorphism pattern. The selected isolates were further evaluated for their probiotic potential. The isolates grew at 15°C and 45°C, survived at a pH ranging from 2.5 to 4.5 in the presence of 0.3% bile (>90%) and grew under sodium chloride conditions. All selected isolates were sensitive to ampicillin, amoxicillin and cefuroxime and some showed resistance to gentamicin, kanamycin and tetracycline. Moreover, the agar well diffusion assay showed that the supernatant of each strain at pH 3.0 and pH 4.0, but not at pH 7.0 exhibited increased antimicrobial activity (inhibition zone >15mm) against two foodborne pathogens, Escherichia coli and Salmonella spp. To our knowledge, this is the first report describing the antagonistic activity against two foodborne pathogens and the probiotic in vitro potential of lactic acid bacteria isolated from native biota of Ecuador. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs).

    PubMed

    Omer, Zahra S; Tombolini, Riccardo; Gerhardson, Berndt

    2004-03-01

    Bacteria belonging to the genus Methylobacterium are characterized by being able to rely on methanol as a sole carbon and energy source and by presenting a more or less intense pink reddish pigmentation. These bacteria, also referred to as pink-pigmented methylotrophic bacteria (PPFMs), are common inhabitants of the phyllosphere and are found in many other environmental samples. Since they grow slowly they are often overlooked and their impact on phyllosphere microbial communities and on the plants harboring them is not well studied nor has their ecology been elucidated. In a survey of PPFM colonization in three different agricultural sites, PPFM populations were identified on both red clover and winter wheat, but red clover was more consistently colonized. Isolations from collected leaves showed PPFM populations to decrease from spring towards summer, but they increased again towards the end of the cropping season. Isolates from red clover readily colonized winter wheat leaves and vice versa in greenhouse experiments, but population sizes were dependent on the application procedure. Tested isolates had also good potential to colonize the rhizosphere, especially after seed inoculations. Confocal scanning laser microscopy showed gfp-tagged isolates to colonize the surface of clover leaves by forming large aggregates.

  20. Emergence of antibiotic-resistant bacteria in patients with Fournier gangrene.

    PubMed

    Lin, Wei-Ting; Chao, Chien-Ming; Lin, Hsin-Lan; Hung, Ming-Chran; Lai, Chih-Cheng

    2015-04-01

    This study was conducted to investigate the bacteriology and associated patterns of antibiotic resistance Fournier gangrene. Patients with Fournier's gangrene from 2008 to 2012 were identified from the computerized database in a medical center in southern Taiwan. The medical records of all patients with Fournier's gangrene were reviewed retrospectively. There were 61 microorganisms, including 60 bacteria and one Candida spp, isolated from clinical wound specimens from 32 patients. The most common isolates obtained were Streptococcus spp. (n=12), Peptoniphilus spp. (n=8), Staphylococcus aureus (n=7), Escherichia coli (n=7), and Klebsiella pneumoniae (n=7). Among 21 strains of gram-negative bacilli, five (23.8%) were resistant to fluoroquinolones, and three isolates were resistant to ceftriaxone. Two E. coli strains produced extended-spectrum beta-lactamase. Four of the seven S. aureus isolates were methicillin-resistant. Among 15 anaerobic isolates, nine (60%) were resistant to penicillin, and eight (53.3%) were resistant to clindamycin. Four (26.7%) isolates were resistant to metronidazole. The only independent risk factor associated with mortality was inappropriate initial antibiotic treatment (p=0.021). Antibiotic-resistant bacteria are emerging in the clinical setting of Fournier gangrene. Clinicians should use broad-spectrum antibiotics initially to cover possible antibiotic-resistant bacteria.

  1. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    PubMed

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.

  2. Effects of culture medium compositions on antidiabetic activity and anticancer activity of marine endophitic bacteria isolated from sponge

    NASA Astrophysics Data System (ADS)

    Maryani, Faiza; Mulyani, Hani; Artanti, Nina; Udin, Linar Zalinar; Dewi, Rizna Triana; Hanafi, Muhammad; Murniasih, Tutik

    2017-01-01

    High diversity of Indonesia marine spesies and their ability in producing secondary metabolite that can be used as a drug candidate cause this fascinating topic need to explore. Most of marine organisms explored to discover drug is macroorganism whereas microorganism (such as Indonesia marine bacteria) is very limited. Therefore, in this report, antidiabetic and anticancer activity of Indonesia marine bacteria isolated from Sponges's extract have been studied. Bacteria strain 8.9 which are collection of Research Center for Oseanography, Indonesian Institute of Sciences were from Barrang Lompo Island, Makasar, Indonesia. Bacteria were cultured in different culture medium compositions (such as: different pH, source of glucose and water) for 48 hours on a shaker, then they were extracted with ethyl asetate. Extracts of bacteria were tested by DPPH method (antioxidant activity), alpha glucosidase inhibitory activity method (antidiabetic activity), and Alamar Blue assay (anticancer activity) at 200 ppm. According to result, extract of bacteria in pH 8.0 exhibited the greatest antioxidant (19.27% inhibition), antidiabetic (63.95% inhibition) and anticancer activity of T47D cell line (44.62% cell viability) compared to other extracts. However, effect of addition of sugar sources (such as: glucose, sucrose, and soluble starch) and effect of addition of water/sea water exhibited less influence on their bioactivities. In conclusion, Indonesia marine bacteria isolated from sponge have potential a source of bioactive compound in drug discovery field.

  3. Biodiversity of antifungal lactic acid bacteria isolated from raw milk samples from cow, ewe and goat over one-year period.

    PubMed

    Delavenne, E; Mounier, J; Déniel, F; Barbier, G; Le Blay, G

    2012-04-16

    Antifungal lactic acid bacteria (ALAB) biodiversity was evaluated in raw milk from ewe, cow and goat over one year period. Lactic acid bacteria were enumerated using 8 semi-selective media, and systematically screened for their antifungal activity against 4 spoilage fungi commonly encountered in dairy products. Depending on the selective medium, between 0.05% (Elliker agar) and 5.5% (LAMVAB agar) screened colonies showed an antifungal activity. The great majority of these active colonies originated from cow (49%) and goat (43%) milks, whereas only 8% were isolated from ewe milk. Penicillium expansum was the most frequently inhibited fungus with 48.5% of colonies active against P. expansum among the 1235 isolated, followed by Mucor plumbeus with 30.6% of active colonies, Kluyveromyces lactis with only 12.1% of active colonies and Pichia anomala with 8.7% of active colonies. In the tested conditions, 94% of the sequenced active colonies belonged to Lactobacillus. Among them, targeted fungal species differed according to the Lactobacillus group, whose presence largely depended on year period and milk origin. The Lb. casei and Lb. reuteri groups, predominantly recovered in summer/fall, were overrepresented in the population targeting M. plumbeus, whereas isolates from the Lb. plantarum group, predominantly recovered in spring, were overrepresented in the population targeting K. lactis, the ones belonging to the Lb. buchneri group, predominantly recovered in spring, were overrepresented in the population targeting P. anomala. Raw milk, especially cow and goat milks from the summer/fall period appeared to be a productive reservoir for antifungal lactobacilli. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Isolation of dextran-hydrolyzing intestinal bacteria and characterization of their dextranolytic activities.

    PubMed

    Kim, Jin Kyoung; Shin, So-Yeon; Moon, Jin Seok; Li, Ling; Cho, Seung Kee; Kim, Tae-Jip; Han, Nam Soo

    2015-06-01

    The aim of this study was to isolate dextran-hydrolyzing bacteria from the human intestines and to identify their dextranolytic enzymes. For this, dextranase-producing microorganisms were screened from fecal samples by using blue dextran-containing media. Colonies producing a decolorized zone were isolated and they were grouped using RAPD-PCR. 16S rRNA gene sequencing analysis revealed the isolates were Bacteroides (B.) thetaiotaomicron, B. ovatus, B. vulgatus, B. dorei, B. xylanisolvens, B. uniformis, and Veillonella (V.) rogosae. Thin layer chromatography analysis showed that the dextranases exhibit mainly endo-type activity and produce various oligosaccharides including isomaltose and isomaltotriose. Zymogram analysis demonstrated that enzymes localized mainly in the cell membrane fraction and the molecular weight was 50-70 kDa. When cultured in a dextran-containing medium, all strains isolated in this study produced short-chain fatty acids, with butyric acid as the major compound. This is the first study to report that human intestinal B. xylanisolvens, B. dorei, and V. rogosae metabolize dextran utilizing dextranolytic enzymes. © 2015 Wiley Periodicals, Inc.

  5. Multiresistant opportunistic pathogenic bacteria isolated from polluted rivers and first detection of nontuberculous mycobacteria in the Algerian aquatic environment.

    PubMed

    Djouadi, Lydia Neïla; Selama, Okba; Abderrahmani, Ahmed; Bouanane-Darenfed, Amel; Abdellaziz, Lamia; Amziane, Meriam; Fardeau, Marie-Laure; Nateche, Farida

    2017-08-01

    Opportunistic infections constitute a major challenge for modern medicine mainly because the involved bacteria are usually multiresistant to antibiotics. Most of these bacteria possess remarkable ability to adapt to various ecosystems, including those exposed to anthropogenic activities. This study isolated and identified 21 multiresistant opportunistic bacteria from two polluted rivers, located in Algiers. Cadmium, lead, and copper concentrations were determined for both water samples to evaluate heavy metal pollution. High prevalence of Enterobacteria and non-fermentative Gram-negative rods was found and a nontuberculous Mycobacterium (NTM) strain was isolated. To the best of our knowledge, this is the first detection of NTM in the Algerian environment. The strains were tested for their resistance against 34 antibiotics and 8 heavy metals. Multiple antibiotics and heavy metals resistance was observed in all isolates. The two most resistant strains, identified as Acinetobacter sp. and Citrobacter freundii, were submitted to plasmid curing to determine if resistance genes were plasmid or chromosome encoded. Citrobacter freundii strain P18 showed a high molecular weight plasmid which seems to code for resistance to zinc, lead, and tetracycline, at the same time. These findings strongly suggest that anthropized environments constitute a reservoir for multiresistant opportunistic bacteria and for circulating resistance genes.

  6. Efficient methanol-degrading aerobic bacteria isolated from a wetland ecosystem.

    PubMed

    Thulasi, Kavitha; Jayakumar, Arjun; Balakrishna Pillai, Aneesh; Gopalakrishnapillai Sankaramangalam, Vinod Kumar; Kumarapillai, Harikrishnan

    2018-04-10

    Methylotrophs present in the soil play an important role in the regulation of one carbon compounds in the environment, and thereby aid in mitigating global warming. The study envisages the isolation and characterization of methanol-degrading bacteria from Kuttanad wetland ecosystem, India. Three methylotrophs, viz. Achromobacter spanius KUT14, Acinetobacter sp. KUT26 and Methylobacterium radiotolerans KUT39 were isolated and their phylogenetic positions were determined by constructing a phylogenetic tree based on 16S rDNA sequences. In vitro activity of methanol dehydrogenase enzyme, responsible for methanol oxidation was evaluated and the genes involved in methanol metabolism, mxaF and xoxF were partially amplified and sequenced. The specific activity of methanol dehydrogenase (451.9 nmol min -1 mg -1 ) observed in KUT39 is the highest, reported ever to our knowledge from a soil bacterium. KUT14 recorded the least activity of 50.15 nmol min -1 mg -1 and is the first report on methylotrophy in A. spanius.

  7. APPLICATIONS OF THE PLASTIC FILM TECHNIQUE IN THE ISOLATION AND STUDY OF ANAEROBIC BACTERIA

    PubMed Central

    Shank, J. L.

    1963-01-01

    Shank, J. L. (Swift & Co., Chicago, Ill.). Applications of the plastic film technique in the isolation and study of anaerobic bacteria. J. Bacteriol. 86:95–100. 1963.—The use of plastic films as oxygen barriers on the surface of agar pour plates, in conjunction with thioglycolate and other selective and differential agents, allows the primary isolation and enumeration of clostridia and other anaerobes. Quantitative studies reveal little if any inhibition of the test organisms under these conditions, and toxin production, where it occurs, is shown to be virtually unimpaired. Images PMID:14051828

  8. Microbiological analysis of infected root canals from symptomatic and asymptomatic teeth with periapical periodontitis and the antimicrobial susceptibility of some isolated anaerobic bacteria.

    PubMed

    Jacinto, R C; Gomes, B P F A; Ferraz, C C R; Zaia, A A; Filho, F J Souza

    2003-10-01

    The purpose of the present study was to investigate the correlation between the composition of the bacterial flora isolated from infected root canals of teeth with apical periodontitis with the presence of clinical signs and symptoms, and to test the antibiotic susceptibility of five anaerobic bacteria mostly commonly found in the root canals of symptomatic teeth against various substances using the E-test. Microbial samples were taken from 48 root canals, 29 symptomatic and 19 asymptomatic, using adequate techniques. A total of 218 cultivable isolates were recovered from 48 different microbial species and 19 different genera. Root canals from symptomatic teeth harbored more obligate anaerobes and a bigger number of bacterial species than the asymptomatic teeth. More than 70% of the bacterial isolates were strict anaerobes. Statistical analysis used a Pearson Chi-squared test or a one-sided Fisher's Exact test as appropriate. Suggested relationships were found between specific microorganisms, especially gram-negative anaerobes, and the presence of spontaneous or previous pain, tenderness to percussion, pain on palpation and swelling amoxicillin, amoxicillin + clavulanate and cephaclor were effective against all the strains tested. The lowest susceptibility rate was presented by Prevotella intermedia/nigrescens against Penicillin G. Our results suggested that specific bacteria are associated with endodontic symptoms of infected teeth with periapical periodontitis and the majority of the anaerobic bacterial species tested were susceptible to all antibiotics studied.

  9. Coliform bacteria isolated from recreational lakes carry class 1 and class 2 integrons and virulence-associated genes.

    PubMed

    Koczura, R; Krysiak, N; Taraszewska, A; Mokracka, J

    2015-08-01

    To characterize the integron-harbouring Gram-negative bacteria in recreational lakes, with focus on the genetic content of integrons, antimicrobial resistance profiles and virulence-associated genes. The presence and structure of integrons in coliform bacteria isolated from the water of four recreational lakes located in Poznań, Poland, was determined by PCR method. Antimicrobial resistance testing was done by disc diffusion method. Virulence-associated genes in integron-bearing Escherichia coli isolates were detected by PCR. A total of 155 integron-bearing strains of coliform bacteria were cultured. Sequence analysis showed the presence of dfrA7, aadA1, dfrA1-aadA1, dfrA17-aadA5 and dfrA12-orfF-aadA2 gene cassette arrays in class 1 integrons and dfrA1-sat2-aadA1 in class 2 integrons. Higher frequency of integron-positive bacteria and higher antimicrobial resistance ranges were noted in colder months (January and November) compared with spring and summer months. The integron-harbouring E. coli carried up to nine virulence-associated genes, with the highest frequency of kpsMT (84.6%) and traT (783%), coding for group 2 capsule and determining human serum resistance respectively. Integron-bearing multidrug resistant coliform bacteria carrying virulence genes are present in waters of recreational lakes. This study presents antimicrobial resistance and virulence-associated genes in integron-bearing coliform bacteria present in the waters of recreational lakes, which showed that multidrug resistant bacteria with virulence traits might pose a threat to public health. Moreover, the presence of genes typical for enterotoxigenic and Shiga toxin-producing E. coli is a concern. © 2015 The Society for Applied Microbiology.

  10. Isolation and characterization of heterotrophic bacteria able to grow aerobically with quaternary ammonium alcohols as sole source of carbon and nitrogen.

    PubMed

    Kaech, Andres; Vallotton, Nathalie; Egli, Thomas

    2005-04-01

    The quaternary ammonium alcohols (QAAs) 2,3-dihydroxypropyl-trimethyl-ammonium (TM), dimethyl-diethanol-ammonium (DM) and methyl-triethanol-ammonium (MM) are hydrolysis products of their parent esterquat surfactants, which are widely used as softeners in fabric care. We isolated several bacteria growing with QAAs as the sole source of carbon and nitrogen. The strains were compared with a previously isolated TM-degrading bacterium, which was identified as a representative of the species Pseudomonas putida (Syst. Appl. Microbiol. 24 (2001) 252). Two bacteria were isolated with DM, referred to as strains DM 1 and DM 2, respectively. Based on 16S-rDNA analysis, they provided 97% (DM 1) and 98% (DM 2) identities to the closest related strain Zoogloea ramigera Itzigsohn 1868AL. Both strains were long, slim, motile rods but only DM 1 showed the floc forming activity, which is typical for representatives of the genus Zoogloea. Using MM we isolated a Gram-negative, non-motile rod referred to as strain MM 1. The 16S-rDNA sequence of the isolated bacterium revealed 94% identities (best match) to Rhodobacter sphaeroides only. The strains MM 1 and DM 1 exclusively grew with the QAA which was used for their isolation. DM 2 was also utilizing TM as sole source of carbon and nitrogen. However, all of the isolated bacteria were growing with the natural and structurally related compound choline.

  11. Biodegradation of 2,4-dichlorophenoxyacetic acid by bacteria with highly antibiotic-resistant pattern isolated from wheat field soils in Kurdistan, Iran.

    PubMed

    Karami, Solmaz; Maleki, Afshin; Karimi, Ebrahim; Poormazaheri, Helen; Zandi, Shiva; Davari, Behrooz; Salimi, Yahya Zand; Gharibi, Fardin; Kalantar, Enayatollah

    2016-12-01

    Recently, there has been increasing interest to clean up the soils contaminated with herbicide. Our aim was to determine the bioremediation of 2,4-dichlorophenoxyacetic acid (2,4-D) from wheat fields which have a long history of herbicide in Sanandaj. Based on our literature survey, this study is the first report to isolate and identify antimicrobial resistant bacteria from polluted wheat field soils in Sanandaj which has the capacity to degrade 2,4-D. From 150 2,4-D-exposed soil samples, five different bacteria were isolated and identified based on biochemical tests and 16S ribosomal RNA (rRNA). Pseudomonas has been the most frequently isolated genus. By sequencing the 16S rRNA gene of the isolated bacteria, the strains were detected and identified as a member of the genus Pseudomonas sp, Entrobacter sp, Bacillus sp, Seratia sp, and Staphylococcus sp. The sequence of Sanandaj 1 isolate displayed 87% similarity with the 16S rRNA gene of a Pseudomonas sp (HE995788). Similarly, all the isolates were compared to standard strains based on 16S rRNA. Small amounts of 2,4-D could be transmitted to a depth of 10-20 cm; however, in the depth of 20-40 cm, we could not detect the 2,4-D. The isolates were resistant to various antibiotics particularly, penicillin, ampicillin, and amoxicillin.

  12. Identification and characterization of the dominant lactic acid bacteria isolated from traditional fermented milk in Mongolia.

    PubMed

    Sun, Z H; Liu, W J; Zhang, J C; Yu, J; Gao, W; Jiri, M; Menghe, B; Sun, T S; Zhang, H P

    2010-05-01

    Five samples of Airag and 20 of Tarag (both in Mongolia) were collected from scattered households. One hundred strains of lactic acid bacteria (LAB) were isolated and identified from these samples according to phenotypic characterization and 16S rRNA gene sequence analysis. Eighty-five isolates belonged to the genus Lactobacillus, 15 being classified as coccoid LAB. All isolates belonged to 5 genera and 11 to different species and subspecies. Lactobacillus (Lb.) helveticus was predominant population in Airag samples, Lb. fermentum and Lb. helveticus were the major LAB microflora in Tarag.

  13. Characterization of radiation-resistant vegetative bacteria in beef

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, A.B.; Maxcy, R.B.

    1975-08-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2more » to 50 C. These bacteria were relatively heat sensitive, e.g., D$sub 10$ of 5.4 min at 70$sup 0$C or less. The radiation resistance ranged from D$sub 10$ values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized. (auth)« less

  14. Use of a Packed-Column Bioreactor for Isolation of Diverse Protease-Producing Bacteria from Antarctic Soil

    PubMed Central

    Wery, Nathalie; Gerike, Ursula; Sharman, Ajay; Chaudhuri, Julian B.; Hough, David W.; Danson, Michael J.

    2003-01-01

    Seventy-five aerobic heterotrophs have been isolated from a packed-column bioreactor inoculated with soil from Antarctica. The column was maintained at 10°C and continuously fed with a casein-containing medium to enrich protease producers. Twenty-eight isolates were selected for further characterization on the basis of morphology and production of clearing zones on skim milk plates. Phenotypic tests indicated that the strains were mainly psychrotrophs and presented a high morphological and metabolical diversity. The extracellular protease activities tested were optimal at neutral pH and between 30 and 45°C. 16S ribosomal DNA sequence analyses showed that the bioreactor was colonized by a wide variety of taxons, belonging to various bacterial divisions: α-, β-, and γ-Proteobacteria; the Flexibacter-Cytophaga-Bacteroides group; and high G+C gram-positive bacteria and low G+C gram-positive bacteria. Some strains represent candidates for new species of the genera Chryseobacterium and Massilia. This diversity demonstrates that the bioreactor is an efficient enrichment tool compared to traditional isolation strategies. PMID:12620829

  15. Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria.

    PubMed

    Dos Santos, Fernanda M; de Souza, Maria Gorete; Crotti, Antônio E Miller; Martins, Carlos H G; Ambrósio, Sérgio R; Veneziani, Rodrigo C S; E Silva, Márcio L Andrade; Cunha, Wilson R

    2012-04-01

    This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis.

  16. Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria

    PubMed Central

    dos Santos, Fernanda M.; de Souza, Maria Gorete; Crotti, Antônio E. Miller; Martins, Carlos H. G.; Ambrósio, Sérgio R.; Veneziani, Rodrigo C. S.; e Silva, Márcio L. Andrade; Cunha, Wilson R.

    2012-01-01

    This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis. PMID:24031892

  17. Comparative activity of pradofloxacin against anaerobic bacteria isolated from dogs and cats.

    PubMed

    Silley, Peter; Stephan, Bernd; Greife, Heinrich A; Pridmore, Andrew

    2007-11-01

    To compare the intrinsic activity of pradofloxacin, a new fluoroquinolone developed for use in veterinary medicine, with other fluoroquinolones, against anaerobic bacteria isolated from dogs and cats. One hundred and forty-one anaerobes were isolated from dogs and cats and comparative MICs of pradofloxacin, marbofloxacin, enrofloxacin, difloxacin and ibafloxacin were determined according to standardized agar dilution methodology. Pradofloxacin exerted the greatest antibacterial activity followed by marbofloxacin, enrofloxacin, difloxacin and ibafloxacin. Based on the distinctly lower MIC(50), MIC(90) and mode MIC values, pradofloxacin exhibited a higher in vitro activity than any of the comparator fluoroquinolones. Pradofloxacin, a novel third-generation fluoroquinolone, has broad-spectrum anti-anaerobe activity and offers utility as single-drug therapy for mixed aerobic/anaerobic infections.

  18. Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastiaens, L.; Springael, D.; Wattiau, P.

    Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp.more » Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobactereium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.« less

  19. Isolation and Characterization of Proteolytic Ruminal Bacteria from Sheep and Goats Fed the Tannin-Containing Shrub Legume Calliandra calothyrsus

    PubMed Central

    McSweeney, Christopher S.; Palmer, Brian; Bunch, Rowan; Krause, Denis O.

    1999-01-01

    Tannins in forages complex with protein and reduce the availability of nitrogen to ruminants. Ruminal bacteria that ferment protein or peptides in the presence of tannins may benefit digestion of these diets. Bacteria from the rumina of sheep and goats fed Calliandra calothyrsus (3.6% N and 6% condensed tannin) were isolated on proteinaceous agar medium overlaid with either condensed (calliandra tannin) or hydrolyzable (tannic acid) tannin. Fifteen genotypes were identified, based on 16S ribosomal DNA-restriction fragment length polymorphism analysis, and all were proteolytic and fermented peptides to ammonia. Ten of the isolates grew to high optical density (OD) on carbohydrates (glucose, cellobiose, xylose, xylan, starch, and maltose), while the other isolates did not utilize or had low growth on these substrates. In pure culture, representative isolates were unable to ferment protein that was present in calliandra or had been complexed with tannin. One isolate, Lp1284, had high protease activity (80 U), a high specific growth rate (0.28), and a high rate of ammonia production (734 nmol/min/ml/OD unit) on Casamino Acids and Trypticase Peptone. Phylogenetic analysis of the 16S ribosomal DNA sequence showed that Lp1284 was related (97.6%) to Clostridium botulinum NCTC 7273. Purified plant protein and casein also supported growth of Lp1284 and were fermented to ammonia. This is the first report of a proteolytic, ammonia-hyperproducing bacterium from the rumen. In conclusion, a diverse group of proteolytic and peptidolytic bacteria were present in the rumen, but the isolates could not digest protein that was complexed with condensed tannin. PMID:10388706

  20. Prevalence and Antibiotic Resistance of Gram-Negative Pathogenic Bacteria Species Isolated from Periplaneta americana and Blattella germanica in Varanasi, India

    PubMed Central

    Wannigama, D Leshan; Dwivedi, Rishabh; Zahraei-Ramazani, Alireza

    2014-01-01

    Background Cockroaches are among the medically important pests found within the human habitations that cause serious public health problems. They may harbor a number of pathogenic bacteria on the external surface with antibiotic resistance. Hence, they are regarded as major microbial vectors. This study investigates the prevalence and antibiotic resistance of Gram-negative pathogenic bacteria species isolated from Periplaneta americana and Blattella germanica in Varanasi, India. Methods: Totally, 203 adult cockroaches were collected form 44 households and 52 food-handling establishments by trapping. Bacteriological examination of external surfaces of Pe. americana and Bl. germanica were carried out using standard method and antibiotics susceptibility profiles of the isolates were determined using Kirby-Bauer disc diffusion methods. Results: Among the places, we found that 54% had cockroache infestation in households and 77% in food- handling establishments. There was no significant different between the overall bacteria load of the external surface in Pe. americana (64.04%) and Bl. germanica (35.96%). However the predominant bacteria on cockroaches were Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, and Pseudomonas aeruginosa. However, Kl. pneumoniae and Ps. aeruginosa were the most prevalent, drug-resistant strains were isolated from the cockroaches with 100% resistance to sulfamethoxazole/trimethoprim and ampicillin. For individual strains of bacteria, Escherichia coli was found to have multi-resistance to four antibiotic tested, Citrobacter freundii four, Enterobacter aerogenes and Proteus mirabilis to three. Conclusion: Cockroaches are uniformly distributed in domestic environment, which can be a possible vector for transmission of drug-resistant bacteria and food-borne diseases. PMID:25629061

  1. Use of an insect cell culture growth medium to isolate bacteria from horses with effusive, fibrinous pericarditis: a preliminary study.

    PubMed

    Jones, Samuel L; Valenzisi, Amy; Sontakke, Sushama; Sprayberry, Kimberly A; Maggi, Ricardo; Hegarty, Barbara; Breitschwerdt, Edward

    2007-03-31

    Effusive, fibrinous pericarditis is an uncommon disease entity in horses. In 2001, pericarditis occurred in conjunction with an epizootic in central Kentucky that was associated with exposure to eastern tent caterpillars (ETCs). Bacterial isolation from equine pericardial fluid samples was attempted using an insect cell culture growth medium (ICCGM). Using previously cultured, stored frozen samples from four horses with fibrinous pericarditis, inoculation of 10% blood agar plates yielded no growth, whereas simultaneous inoculation of ICCGM resulted in the isolation of Proprionibacterium acnes, Staphylococcus equorum, a Streptococcus sp. and Pseudomonas rhodesiae from pericardial fluid samples. A similar or novel caterpillar-associated bacteria was not identified; however, use of an ICCGM might enhance isolation of bacteria from equine pericardial fluid.

  2. Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant. [Micrococcus radiodurans; Micrococcus sp. isolate C-3; Moraxella sp isolate 4; Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, L.C.; Maxcy, R.B.

    1984-05-01

    Physiological age-dependent variation in radiation resistance was studied for three bacteria that are highly radiation resistant: Micrococcus radiodurans, Micrococcus sp. isolate C-3, and Moraxella sp. isolate 4. Stationary-phase cultures of M. radiodurans and isolate C-3 were much more resistant to gamma radiation than were log-phase cultures. This pattern of relative resistance was reversed for isolate 4. Resistance of isolate 4 to UV light was also greater during log phase, although heat resistance and NaCl tolerance after heat stresses were greater during stationary phase. Radiation-induced injury of isolate 4 compared with injury of Escherichia coli B suggested that the injury process,more » as well as the lethal process, was affected by growth phase. The hypothesis that growth rate affects radiation resistance was tested, and results were interpreted in light of the probable confounding effect of methods used to alter growth rates of bacteria. These results indicate that dose-response experiments should be designed to measure survival during the most resistant growth phase of the organism under study. The timing is particularly important when extrapolations of survival results might be made to potential irradiation processes for foods. 17 references.« less

  3. Analysis of 16S rRNA gene lactic acid bacteria (LAB) isolate from Markisa fruit (Passiflora sp.) as a producer of protease enzyme and probiotics

    NASA Astrophysics Data System (ADS)

    Hidayat, Habibi

    2017-03-01

    16S rRNA gene analysis of bacteria lactic acid (LAB) isolate from Markisa Kuning Fruit (Passiflora edulis var. flavicarpa) as a producer of protease enzyme and probiotics has been done. The aim of the study is to determine the protease enzyme activity and 16S rRNA gene amplification using PCR. The calculation procedure was done to M4 isolate bacteria lactic acid (LAB) Isolate which has been resistant to acids with pH 2.0 in the manner of screening protease enzyme activity test result 6.5 to clear zone is 13 mm againts colony diametre is 2 mm. The results of study enzyme activity used spectrophotometer UV-Vis obtainable the regression equation Y=0.02983+0.001312X, with levels of protein M4 isolate is 0.6594 mg/mL and enzyme activity of obtainable is 0.8626 unit/ml while the spesific enzyme activity produced is 1.308 unit/mg. Then, 16S rRNA gene amplificatiom and DNA sequencing has been done. The results of study showed that the bacteria species contained from M4 bacteria lactic acid (LAB) isolate is Weisella cibiria strain II-I-59. Weisella cibiria strain II-I-59 is one of bacteria could be utilized in the digestive tract.

  4. Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera).

    PubMed

    Rozas, Enrique E; Mendes, Maria A; Nascimento, Claudio A O; Espinosa, Denise C R; Oliveira, Renato; Oliveira, Guilherme; Custodio, Marcio R

    2017-05-05

    The bacteria isolated from Hymeniacidon heliophila sponge cells showed bioleaching activity. The most active strain, Hyhel-1, identified as Bacillus sp., was selected for bioleaching tests under two different temperatures, 30°C and 40°C, showing rod-shaped cells and filamentous growth, respectively. At 30°C, the bacteria secreted substances which linked to the leached copper, and at 40°C metallic nanoparticles were produced inside the cells. In addition, infrared analysis detected COOH groups and linear peptides in the tested bacteria at both temperatures. The Hyhel-1 strain in presence of electronic waste (e-waste) induced the formation of crust, which could be observed due to bacteria growing on the e-waste fragment. SEM-EDS measurements showed that the bacterial net surface was composed mostly of iron (16.1% w/w), while a higher concentration of copper was observed in the supernatant (1.7% w/w) and in the precipitated (49.8% w/w). The substances linked to copper in the supernatant were sequenced by MALDI-TOF-ms/ms and identified as macrocyclic surfactin-like peptides, similar to the basic sequence of Iturin, a lipopeptide from Bacillus subtilis. Finally, the results showed that Hyhel-1 is a bioleaching bacteria and cooper nanoparticles producer and that this bacteria could be used as a copper recovery tool from electronic waste. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Reaction of common bean lines and aggressiveness of Sclerotinia sclerotiorum isolates.

    PubMed

    Silva, P H; Santos, J B; Lima, I A; Lara, L A C; Alves, F C

    2014-11-07

    The aims of this study were to evaluate the reaction of common bean lines to white mold, the aggressiveness of different Sclerotinia sclerotiorum isolates from various common bean production areas in Brazil, and comparison of the diallel and GGE (genotype main effect plus genotype-by-environment interaction) biplot analysis procedures via study of the line-by-isolate interaction. Eleven common bean (Phaseolus vulgaris) lines derived from 3 backcross populations were used. Field experiments were performed in the experimental area of the Departamento de Biologia of the Universidade Federal de Lavras, Lavras, MG, Brazil, in the 2011 and 2012 dry crop season and 2011 winter crop season through a randomized block design with 3 replications. This study was also set up in a greenhouse. Inoculations were performed 28 days after sowing by means of the straw test method. The reaction of the bean lines to white mold was assessed according to a diagrammatic scale from 1 (plant without symptoms) to 9 (dead plant). Estimations of general reaction capacity (lines) and general aggressiveness capacity (isolates) indicated different horizontal levels of resistance in the lines and levels of aggressiveness in the isolates. Therefore, it was possible to select more resistant lines and foresee those crosses that are the most promising for increasing the level of resistance. It was also possible to identify the most aggressive isolates that were more efficient in distinguishing the lines. Both diallel and GGE biplot analyses were useful in identifying the genotypic values of lines and isolates.

  6. Isolation and preliminary characterization of aerobic heterotrophic bacteria isolated from sub-glacial Antarctic water samples

    NASA Astrophysics Data System (ADS)

    Palma-Alvarez, R.; Lanoil, B. D.

    2002-05-01

    Recently, evidence has been accumulating supporting the presence of biogeochemically active microbial communities in cold, dark, and isolated subglacial environments. These environments are important sites of rock weathering, provide insight into global biogeochemistry during glacial periods, and are potential analogues for ancient Snowball Earth events and the ice-covered oceans of the Jovian moon, Europa. However, the extent of microbial influence on subglacial geochemistry is unclear. As part of an ongoing project to address the extent of that influence, we isolated aerobic heterotrophic bacteria from sediment-laden water from beneath Ice Stream C, a fast moving region of the Western Antarctic Ice Sheet (WAIS). Plates of a standard environmental media (R2A) were prepared at three dilutions (1x, 0.1x, 0.01x) and inoculated in duplicate in a HEPA-filtered environment. One replicate was incubated at 4oC, the other at room temperature in the dark. All plates showed abundant growth, although colony size was positively correlated with media concentration. One-hundred eighty-one colonies total were picked, grown in liquid R2A (1x concentration) at the same initial temperature, and characterized for Gram character, cell shape, cell size, and production of a diffusible yellow pigment with similar chemical characteristics to the siderophore, pyoverdine. Based on these characters, a moderate level of diversity was observed in these isolates. A few types dominated the samples, with several others found only rarely. Further characterization of these isolates is ongoing, and results of these studies and their possible implications for sub-glacial biogeochemistry are discussed.

  7. Isolation and characterization of a novel Helicobacter species, Helicobacter jaachi sp. nov., from common marmosets (Callithrix jaachus)

    PubMed Central

    Shen, Zeli; Feng, Yan; Sheh, Alexander; Everitt, Jeffrey; Bertram, Frederick; Paster, Bruce J.

    2015-01-01

    Purpose-bred common marmosets from domestic sources housed in a US research facility, and used in multiple drug discovery programmes, were noted to have a high incidence of spontaneous inflammatory bowel disease and sporadic cholecystitis and cholangiohepatitis. Inflammatory infiltrates increased in incidence and severity with age. Because Helicobacter spp. have been linked to gastrointestinal diseases, samples from the gastrointestinal tracts of 39 marmosets were screened for Helicobacter spp. by culture and PCR. Helicobacter spp. were frequently detected in marmosets; 28.2 % of the marmosets were positive for a proposed novel species, Helicobacter jaachi sp. nov., by culture, and 48.7 % were positive by Helicobacter genus-specific PCR. Seventeen strains of Helicobacter sp. from 11 marmosets were cultured from various gastrointestinal sites. Older animals (age 6–11 years) had a higher helicobacter prevalence rate (57.1 %) compared with younger animals (age 3–5 years), which had a 27.2 % prevalence rate. Cells of H. jaachi sp. nov. were catalase, urease and oxidase positive and had fusiform morphology, with periplasmic fibres and multiple bipolar, sheathed flagella. All isolates had similar 16S and 23S rRNA sequences, which clustered as representatives of a novel Helicobacter species closely related to ‘Helicobacter sanguini’ (97 %), a species isolated from cotton-top tamarins and ‘Helicobacter callitrichis’ (96 %) isolated previously from the faeces of common marmosets. The whole genome sequence of one of the liver isolates, H. jaachi sp. nov. MIT 09-6949T, had a 1.9 Mb genome length with a 41 mol% DNA G+C content. The type strain of Helicobacter jaachi sp. nov., MIT 09-6949T, has been deposited in the BCCM/LMG Bacteria Collection as LMG 28613T. These findings add to the increasing number of animal species with gastrointestinal disease in which novel enterohepatic Helicobacter spp. have been isolated. PMID:26297446

  8. Newly cultured bacteria with broad diversity isolated from 8 week continuous culture enrichments of cow feces on complex polysaccharides

    USDA-ARS?s Scientific Manuscript database

    One of the fascinating functions of the mammalian intestinal microbiota is the fermentation of plant cell wall components. Eight week continuous culture enrichments of cow feces with cellulose and xylan/pectin were used to isolate bacteria from this community. A total of 459 bacterial isolates were ...

  9. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits.

    PubMed

    Lynch, Kieran M; Zannini, Emanuele; Coffey, Aidan; Arendt, Elke K

    2018-03-25

    Exopolysaccharides produced by lactic acid bacteria are a diverse group of polysaccharides produced by many species. They vary widely in their molecular, compositional, and structural characteristics, including mechanisms of synthesis. The physiochemical properties of these polymers mean that they can be exploited for the sensorial and textural enhancement of a variety of food and beverage products. Traditionally, lactic acid bacteria exopolysaccharides have an important role in fermented dairy products and more recently are being applied for the improvement of bakery products. The health benefits that are continually being associated with these polysaccharides enable the development of dual function, added-value, and clean-label products. To fully exploit and understand the functionality of these exopolysaccharides, their isolation, purification, and thorough characterization are of great importance. This review considers each of the above factors and presents the current knowledge on the importance of lactic acid bacteria exopolysaccharides in the food and beverage industry.

  10. Multiple antibiotic resistance patterns of rhizospheric bacteria isolated from Phragmites australis growing in constructed wetland for distillery effluent treatment.

    PubMed

    Chaturvedi, Sonal; Chandra, Ram; Rai, Vibhuti

    2008-01-01

    Susceptibility patterns of 12 different antibiotics were investigated against rhizospheric bacteria isolated from Phragmites australis from three different zones i.e. upper (0-5 cm), middle (5-10 cm), lower (10-15 cm) in constructed wetland system with and without distillery effluent. The major pollutants of distillery effluent were phenols, sulphide, heavy metals, and higher levels of biological oxygen demand (BOD), chemical oxygen demand (COD) etc. The antibiotic resistance properties of bacteria were correlated with the heavy metal tolerance (one of distillery pollutant). Twenty-two species from contaminated and seventeen species from non-contaminated site were tested by agar disc-diffusion method. The results revealed that more than 63% of total isolates were resistance towards one or more antibiotics tested from all the three different zones of contaminated sites. The multiple-drug resistance property was shown by total 8 isolates from effluent contaminated region out of which 3 isolates were from upper zone, 3 isolates from middle zone and 2 isolates were from lower zone. Results indicated that isolates from contaminated rhizosphere were found more resistant to antibiotics than isolates from non-contaminated rhizosphere. Further this study produces evidence suggesting that tolerance to antibiotics was acquired by isolates for the adaptation and detoxification of all the pollutants present in the effluent at contaminated site. This consequently facilitated the phytoremediation of effluent, which emerges the tolerance and increases resistance to antibiotics.

  11. Potential Applications of Some Indigenous Bacteria Isolated from Polluted Areas in the Treatment of Brewery Effluents

    PubMed Central

    2018-01-01

    Biological wastewater treatment is economically feasible and ecofriendly. This study was aimed at isolating bacteria from brewery wastes and evaluating their bioremediation potential as individual isolate and/or their consortium in reducing the pollutants of brewery effluents. A total of 40 bacterial isolates were recovered and of these the three best isolates were selected. The selected bacteria were identified to genus level by using morphological and biochemical characteristics. Accordingly, the isolates were identified as Aeromonas sp., Pseudomonas sp., and Bacillus sp. After 12 days of incubation, the removal efficiency of these three isolates and their combinations for biological oxygen demand and chemical oxygen demand varied from 73.55% to 94.85% and 76.78% to 93.25%, respectively. Total nitrogen and phosphorus removal was within the range of 54.43% to 77.21% and 41.80% to 78.18%, respectively. Total suspended solid, total solid, and total dissolved solids removal ranged from 66.74% to 90.3%, 54.69% to 88.5%, and 53.02% to 88.2%, respectively. The pH and electrical conductivity values ranged from 6.81 to 8.65 and 3.31 mS/cm to 3.67 mS/cm, respectively. The treated effluent increased Beta vulgaris seeds germination from 80% to 100%, with mean germination time of 3.1 to 5.2 days and seedlings length of 2.3 cm to 6.3 cm. Therefore, the development of this finding into a large scale offers an attractive technology for brewery waste treatment. PMID:29610687

  12. Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR) bacteria isolated from urinary tract infections (UTIs).

    PubMed

    Naderi, Atiyeh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Imani Fooladi, Abbas Ali; Abdollahpour Alitappeh, Meghdad; Saffarian, Parvaneh

    2014-03-01

    Urinary tract infection (UTI) caused by bacteria is one of the most frequent infections in human population. Inappropriate use of antibiotics, often leads to appearance of drug resistance in bacteria. However, use of probiotic bacteria has been suggested as a partial replacement. This study was aimed to assess the antagonistic effects of Lactobacillus standard strains against bacteria isolated from UTI infections. Among 600 samples; those with ≥10,000 cfu/ml were selected as UTI positive samples. Enterococcus sp., Klebsiella pneumoniae, Enterobacter sp., and Escherichia coli were found the most prevalent UTI causative agents. All isolates were screened for multi drug resistance and subjected to the antimicrobial effects of three Lactobacillus strains by using microplate technique and the MICs amounts were determined. In order to verify the origin of antibiotic resistance of isolates, plasmid curing using ethidium bromide and acridine orange was carried out. No antagonistic activity in Lactobacilli suspension was detected against test on Enterococcus and Enterobacter strains and K. pneumoniae, which were resistant to most antibiotics. However, an inhibitory effect was observed for E. coli which were resistant to 8-9 antibiotics. In addition, L. casei was determined to be the most effective probiotic. RESULTS from replica plating suggested one of the plasmids could be related to the gene responsible for ampicillin resistance. Treatment of E. coli with probiotic suspension was not effective on inhibition of the plasmid carrying hypothetical ampicillin resistant gene. Moreover, the plasmid profiles obtained from probiotic-treated isolates were identical to untreated isolates.

  13. Differential plating medium for quantitative detection of histamine-producing bacteria.

    PubMed Central

    Niven, C F; Jeffrey, M B; Corlett, D A

    1981-01-01

    A histidine-containing agar medium has been devised for quantitative detection of histamine-producing bacteria that are alleged to be associated with scombroid fish poisoning outbreaks. The responsible bacteria produce a marked pH change in the agar, with attendant color change of pH indicator adjacent to the colonies, thus facilitating their recognition. Proteus morganii and Klebsiella pneumoniae were the two most common histidine-decarboxylating species isolated from scombroid fish and mahi mahi. PMID:7013698

  14. Phylogenetic Evidence for the Existence of Novel Thermophilic Bacteria in Hot Spring Sulfur-Turf Microbial Mats in Japan

    PubMed Central

    Yamamoto, Hiroyuki; Hiraishi, Akira; Kato, Kenji; Chiura, Hiroshi X.; Maki, Yonosuke; Shimizu, Akira

    1998-01-01

    So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk DNAs of the mats. Common clones with 16S rDNA sequences with similarity levels of 94.8 to 99% were isolated from sulfur-turf mat samples from two geographically remote hot springs. Phylogenetic analysis showed that the phylotypes of the common clones formed a major cluster with members of the Aquifex-Hydrogenobacter complex, which represents the most deeply branching lineage of the domain bacteria. Furthermore, the bacteria of the sulfur-turf mat phylotypes formed a clade distinguishable from that of other members of the Aquifex-Hydrogenobacter complex at the order or subclass level. In situ hybridization with clone-specific probes for 16S rRNA revealed that the common phylotype of sulfur-turf mat bacteria is that of the predominant sausage-shaped bacteria. PMID:9572936

  15. Exploiting the fungal highway: development of a novel tool for the in situ isolation of bacteria migrating along fungal mycelium.

    PubMed

    Simon, Anaele; Bindschedler, Saskia; Job, Daniel; Wick, Lukas Y; Filippidou, Sevasti; Kooli, Wafa M; Verrecchia, Eric P; Junier, Pilar

    2015-11-01

    Fungi and bacteria form various associations that are central to numerous environmental processes. In the so-called fungal highway, bacteria disperse along fungal mycelium. We developed a novel tool for the in situ isolation of bacteria moving along fungal hyphae as well as for the recovery of fungi potentially involved in dispersal, both of which are attracted towards a target culture medium. We present the validation and the results of the first in situ test. Couples of fungi and bacteria were isolated from soil. Amongst the enriched organisms, we identified several species of fast-growing fungi (Fusarium sp. and Chaetomium sp.), as well as various potentially associated bacterial groups, including Variovorax soli, Olivibacter soli, Acinetobacter calcoaceticus, and several species of the genera Stenotrophomonas, Achromobacter and Ochrobactrum. Migration of bacteria along fungal hyphae across a discontinuous medium was confirmed in most of the cases. Although the majority of the bacteria for which migration was confirmed were also positive for flagellar motility, not all motile bacteria dispersed using their potential fungal partner. In addition, the importance of hydrophobicity of the fungal mycelial surface was confirmed. Future applications of the columns include targeting different types of microorganisms and their interactions, either by enrichment or by state of the art molecular biological methods. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Pathogenic bacteria carried by companion animals and their susceptibility to antibacterial agents.

    PubMed

    Buma, Ryoko; Maeda, Takuya; Kamei, Masaharu; Kourai, Hiroki

    2006-03-01

    Results of the investigation showed that there was a difference in the bacteria isolated from dogs, cats and their living environment. The number and species isolated from the hair and front paw samples from dogs kept outdoors and from cats were greater and more varied than those from the samples from dogs kept indoors. Staphylococcus, Micrococcus and Bacillus were frequently detected from skin surfaces. On the other hand, Escherichia, Pseudomonas, Proteus and others were detected on each sampling area on dogs kept outdoors and on cats. About 60% of the bacteria commonly causes infectious diseases and carries a risk of food poisoning. Moreover, Pasteurella multocida, which causes pasteurellasis, a kind of zoonosis, was isolated from dogs and cats. These pathogenic bacteria were transmitted from animals to humans by direct contact. This result suggests that direct contact with dogs and cats and contact with aerosols can possibly transmit infectious diseases. Most of the isolates (75.9%, 60/79) were resistant to antibacterial agents. We then investigated the effect of household detergents and pet care deodorant sprays containing antibacterial agents on isolates from dogs and cats. They were effective in preventing the transmission of pathogens from dogs and cats to humans.

  17. Identification and characterization of psychrotolerant coliform bacteria isolated from pasteurized fluid milk.

    PubMed

    Masiello, S N; Martin, N H; Trmčić, A; Wiedmann, M; Boor, K J

    2016-01-01

    The presence of coliform bacteria in pasteurized fluid milk typically indicates that product contamination occurred downstream of the pasteurizer, but it may also indicate pasteurization failure. Although coliform detection is frequently used as a hygiene indicator for dairy products, our understanding of the taxonomic and phenotypic coliform diversity associated with dairy products is surprisingly limited. Therefore, using Petrifilm Coliform Count plates (3M, St. Paul, MN), we isolated coliforms from high-temperature, short-time (HTST)-pasteurized fluid milk samples from 21 fluid milk processing plants in the northeast United States. Based on source information and initial characterization using partial 16S rDNA sequencing, 240 nonredundant isolates were obtained. The majority of these isolates were identified as belonging to the genera Enterobacter (42% of isolates), Hafnia (13%), Citrobacter (12%), Serratia (10%), and Raoultella (9%); additional isolates were classified into the genera Buttiauxella, Cedecea, Kluyvera, Leclercia, Pantoea, and Rahnella. A subset of 104 representative isolates was subsequently characterized phenotypically. Cold growth analysis in skim milk broth showed that all isolates displayed at least a 2-log increase over 10 d at 6°C; the majority of isolates (n=74) displayed more than a 5-log increase. In total, 43% of the representative isolates displayed lipolysis when incubated on spirit blue agar at 6°C for 14 d, whereas 71% of isolates displayed proteolysis when incubated on skim milk agar at 6°C for 14 d. Our data indicate that a considerable diversity of coliforms is found in HTST-pasteurized fluid milk and that a considerable proportion of these coliforms have phenotypic characteristics that will allow them to cause fluid milk spoilage. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Characterization of Radiation-Resistant Vegetative Bacteria in Beef1

    PubMed Central

    Welch, Ardyce B.; Maxcy, R. B.

    1975-01-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2 to 50 C. These bacteria were relatively heat sensitive, e.g., D10 of 5.4 min at 70 C or less. The radiation resistance ranged from D10 values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized. Images PMID:1164011

  19. Isolation and characterization of bacteriophages specific to hydrogen-sulfide-producing bacteria.

    PubMed

    Gong, Chao; Heringa, Spencer; Singh, Randhir; Kim, Jinkyung; Jiang, Xiuping

    2013-01-01

    The objectives of this study were to isolate and characterize bacteriophages specific to hydrogen-sulfide-producing bacteria (SPB) from raw animal materials, and to develop a SPB-specific bacteriophage cocktail for rendering application. Meat, chicken offal, and feather samples collected from local supermarkets and rendering processing plants were used to isolate SPB (n = 142). Bacteriophages (n = 52) specific to SPB were isolated and purified from the above samples using 18 of those isolated SPB strains as hosts. The host ranges of bacteriophages against 5 selected SPB strains (Escherichia coli, Citrobacter freundii, and Hafnia alvei) were determined. Electron microscopy observation of 9 phages selected for the phage cocktail revealed that 6 phages belonged to the family of Siphoviridae and 3 belonged to the Myoviridae family. Restriction enzyme digestion analysis with endonuclease DraI detected 6 distinguished patterns among the 9 phages. Phage treatment prevented the growth of SPB for up to 10 h with multiplicity of infection ratios of 1, 10, 100, and 1000 in tryptic soy broth at 30 °C, and extended the lag phase of SPB growth for 2 h at 22 °C with multiplicities of infection of 10, 100, and 1000. These results suggest that the selected bacteriophage cocktail has a high potential for phage application to control SPB in raw animal materials destined for the rendering process.

  20. Detection and isolation of novel rhizopine-catabolizing bacteria from the environment

    PubMed

    Gardener; de Bruijn FJ

    1998-12-01

    Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 10(6) and 10(7) catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the known mocA, mocB, and mocC genes of Sinorhizobium meliloti L5-30. Twenty-one of the isolates could utilize an SI preparation as the sole carbon and nitrogen source for growth. Partial sequencing of 16S ribosomal DNAs (rDNAs) amplified from these strains indicated that five distinct bacterial genera (Arthrobacter, Sinorhizobium, Pseudomonas, Aeromonas, and Alcaligenes) were represented in this set. Only 6 of these 21 isolates could catabolize 3-O-methyl-scyllo-inosamine under standard assay conditions. Two of these, strains D1 and R3, were found to have 16S rDNA sequences very similar to those of Sinorhizobium meliloti. However, these strains are not symbiotically effective on Medicago sativa, and DNA sequences homologous to the nodB and nodC genes were not detected in strains D1 and R3 by Southern hybridization analysis.

  1. Detection and Isolation of Novel Rhizopine-Catabolizing Bacteria from the Environment

    PubMed Central

    Gardener, Brian B. McSpadden; de Bruijn, Frans J.

    1998-01-01

    Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 106 and 107 catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the known mocA, mocB, and mocC genes of Sinorhizobium meliloti L5-30. Twenty-one of the isolates could utilize an SI preparation as the sole carbon and nitrogen source for growth. Partial sequencing of 16S ribosomal DNAs (rDNAs) amplified from these strains indicated that five distinct bacterial genera (Arthrobacter, Sinorhizobium, Pseudomonas, Aeromonas, and Alcaligenes) were represented in this set. Only 6 of these 21 isolates could catabolize 3-O-methyl-scyllo-inosamine under standard assay conditions. Two of these, strains D1 and R3, were found to have 16S rDNA sequences very similar to those of Sinorhizobium meliloti. However, these strains are not symbiotically effective on Medicago sativa, and DNA sequences homologous to the nodB and nodC genes were not detected in strains D1 and R3 by Southern hybridization analysis. PMID:9835587

  2. Isolation and Characterization of Phenanthrene Degrading Bacteria from Diesel Fuel-Contaminated Antarctic Soils

    PubMed Central

    Gran-Scheuch, Alejandro; Fuentes, Edwar; Bravo, Denisse M.; Jiménez, Juan Cristobal; Pérez-Donoso, José M.

    2017-01-01

    Antarctica is an attractive target for human exploration and scientific investigation, however the negative effects of human activity on this continent are long lasting and can have serious consequences on the native ecosystem. Various areas of Antarctica have been contaminated with diesel fuel, which contains harmful compounds such as heavy metals and polycyclic aromatic hydrocarbons (PAH). Bioremediation of PAHs by the activity of microorganisms is an ecological, economical, and safe decontamination approach. Since the introduction of foreign organisms into the Antarctica is prohibited, it is key to discover native bacteria that can be used for diesel bioremediation. By following the degradation of the PAH phenanthrene, we isolated 53 PAH metabolizing bacteria from diesel contaminated Antarctic soil samples, with three of these isolates exhibiting a high phenanthrene degrading capacity. In particular, the Sphingobium xenophagum D43FB isolate showed the highest phenanthrene degradation ability, generating up to 95% degradation of initial phenanthrene. D43FB can also degrade phenanthrene in the presence of its usual co-pollutant, the heavy metal cadmium, and showed the ability to grow using diesel-fuel as a sole carbon source. Microtiter plate assays and SEM analysis revealed that S. xenophagum D43FB exhibits the ability to form biofilms and can directly adhere to phenanthrene crystals. Genome sequencing analysis also revealed the presence of several genes involved in PAH degradation and heavy metal resistance in the D43FB genome. Altogether, these results demonstrate that S. xenophagum D43FB shows promising potential for its application in the bioremediation of diesel fuel contaminated-Antarctic ecosystems. PMID:28894442

  3. Isolation of Environmental Bacteria from Surface and Drinking Water in Mafikeng, South Africa, and Characterization Using Their Antibiotic Resistance Profiles

    PubMed Central

    Mulamattathil, Suma George; Mbewe, Moses; Ateba, Collins Njie

    2014-01-01

    The aim of this study was to isolate and identify environmental bacteria from various raw water sources as well as the drinking water distributions system in Mafikeng, South Africa, and to determine their antibiotic resistance profiles. Water samples from five different sites (raw and drinking water) were analysed for the presence of faecal indicator bacteria as well as Aeromonas and Pseudomonas species. Faecal and total coliforms were detected in summer in the treated water samples from the Modimola dam and in the mixed water samples, with Pseudomonas spp. being the most prevalent organism. The most prevalent multiple antibiotic resistance phenotype observed was KF-AP-C-E-OT-K-TM-A. All organisms tested were resistant to erythromycin, trimethoprim, and amoxicillin. All isolates were susceptible to ciprofloxacin and faecal coliforms and Pseudomonas spp. to neomycin and streptomycin. Cluster analysis based on inhibition zone diameter data suggests that the isolates had similar chemical exposure histories. Isolates were identified using gyrB, toxA, ecfX, aerA, and hylH gene fragments and gyrB, ecfX, and hylH fragments were amplified. These results demonstrate that (i) the drinking water from Mafikeng contains various bacterial species and at times faecal and total coliforms. (ii) The various bacteria are resistant to various classes of antibiotics. PMID:25105027

  4. Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuzhuo; Wang, Duanchao; Li, Mengmeng; Xiang, Wei-Ning; Achal, Varenyam

    2014-03-01

    Two indigenous bacteria of petroleum contaminated soil were characterized to utilize diesel fuel as the sole carbon and energy sources in this work. 16S rRNA gene sequence analysis identified these bacteria as Sphingomonas sp. and Acinetobacter junii. The ability to degrade diesel fuel has been demonstrated for the first time by these isolates. The results of IR analyses showed that Sphingomonas sp. VA1 and A. junii VA2 degraded up to 82.6% and 75.8% of applied diesel over 15 days, respectively. In addition, Sphingomonas sp. VA1 possessed the higher cellular hydrophobicities of 94% for diesel compared to 81% by A. junii VA2. The isolates Sphingomonas sp. VA1 and A. junii VA2 exhibited 24% and 18%, respectively emulsification activity. This study reports two new diesel degrading bacterial species, which can be effectively used for bioremediation of petroleum contaminated sites.

  5. Combating Drug Resistant Pathogenic Bacteria Isolated from Clinical Infections, with Silver Oxide Nanoparticles

    PubMed Central

    Sangappa, M.; Thiagarajan, Padma

    2015-01-01

    The antibiogram study of methicillin resistant Staphylococcus aureus isolates revealed 100% resistance to vancomycin, bacitracin, erythromycin, ciprofloxacin and nalidixic acid. Eight isolates (53.3%) showed resistance to co-trimoxazole and one isolate to rifampicin, which was the drug of choice. An effort was made to evaluate the antimethicillin resistant Staphylococcus aureus activity of silver oxide (Ag2O) nanoparticles synthesized from Aspergillus terreus VIT 2013. Production of Ag2O nanoparticles was confirmed by color change of fungal filtrate and UV light absorption at 450 nm. X-ray diffraction pattern showed 2θ values at 27, 32, 38 and 57°, which corresponded to the cubic structure of Ag2O nanocrystals. Fourier transform infrared spectroscopy indicated the presence of primary amine, carbonyl group, NO2 and silver, revealing protein mediated nanoparticle production. The scanning electron microscope image showed freely dispersed Ag2O nanoparticles. The nanoparticles were active against all methicillin resistant isolates and hence can be used as antibacterial agents against drug resistant bacteria. PMID:26009646

  6. The effect of lactic acid bacteria isolates on the urinary tract pathogens to infants in vitro.

    PubMed

    Lim, In Seok; Lee, Ho Seok; Kim, Won Yong

    2009-01-01

    Urinary tract infections are common clinical problems in children, even though lots of treatment strategies have been tried. Many studies of the application of probiotics for urinary tract infection in female adults exist, but there is a lack of studies in children. The aims of this study were to screen probiotic strains for inhibiting the uropathogens in vitro, to find candidates for in vivo study. Nine strains of E. coli were isolated from children with urinary tract infection and six uropathogens were obtained from Korean Collection for Type Cultures and American Type Culture Collection. Also 135 lactic acid bacteria (LAB) strains were isolated from healthy children, and were identified through physiologic, biochemical methods, 16S rDNA PCR, and data analysis. And with agar disk diffusion assay technique the antimicrobial activities of these LAB strains against those uropathogens were examined. Three strains of separated LAB strains demonstrated major antimicrobial activity against all the uropathogens. In the agar disk diffusion assay technique, antimicrobial activities increased most in the 4th day culture broth with separated Lactobacillus. In summary, some LAB can be used as candidates to develop the probiotic microorganisms that inhibit uropathogens in children, and are expected to be applied to treatment and prevention of pediatric urinary tract infection.

  7. Isolation and Identification of Sodium Fluoroacetate Degrading Bacteria from Caprine Rumen in Brazil

    PubMed Central

    Camboim, Expedito K. A.; Almeida, Arthur P.; Tadra-Sfeir, Michelle Z.; Junior, Felício G.; Andrade, Paulo P.; McSweeney, Chris S.; Melo, Marcia A.; Riet-Correa, Franklin

    2012-01-01

    The objective of this paper was to report the isolation of two fluoroacetate degrading bacteria from the rumen of goats. The animals were adult goats, males, crossbred, with rumen fistula, fed with hay, and native pasture. The rumen fluid was obtained through the rumen fistula and immediately was inoculated 100 μL in mineral medium added with 20 mmol L−1 sodium fluoroacetate (SF), incubated at 39°C in an orbital shaker. Pseudomonas fluorescens (strain DSM 8341) was used as positive control for fluoroacetate dehalogenase activity. Two isolates were identified by 16S rRNA gene sequencing as Pigmentiphaga kullae (ECPB08) and Ancylobacter dichloromethanicus (ECPB09). These bacteria degraded sodium fluoroacetate, releasing 20 mmol L−1 of fluoride ion after 32 hours of incubation in Brunner medium containing 20 mmol L−1 of SF. There are no previous reports of fluoroacetate dehalogenase activity for P. kullae and A. dichloromethanicus. Control measures to prevent plant intoxication, including use of fences, herbicides, or other methods of eliminating poisonous plants, have been unsuccessful to avoid poisoning by fluoroacetate containing plants in Brazil. In this way, P. kullae and A. dichloromethanicus may be used to colonize the rumen of susceptible animals to avoid intoxication by fluoroacetate containing plants. PMID:22919294

  8. Potential virulence factors of bacteria associated with tail fan necrosis in the spiny lobster, Jasus edwardsii.

    PubMed

    Zha, H; Jeffs, A; Dong, Y; Lewis, G

    2018-05-01

    Tail fan necrosis (TFN) is a common condition found in commercially exploited spiny lobsters that greatly diminishes their commercial value. Bacteria possessing proteolytic, chitinolytic and lipolytic capabilities were associated with TFN in spiny lobsters, Jasus edwardsii. In this study, 69 bacterial isolates exhibiting all the three enzymatic capabilities from the haemolymph and tail fans of J. edwardsii with and without TFN were further characterized and compared, including morphology, biofilm formation, antimicrobial activity, antimicrobial resistance, and production of siderophores, melanin and ammonia. The genomic patterns of the most common Vibrio crassostreae isolates were also compared between TFN-affected and unaffected lobsters. Biofilm formation was stronger in bacterial isolates from both haemolymph and tail fans of TFN-affected lobsters compared to those from the unaffected lobsters, while melanin production and siderophore production were stronger in the isolates from tail fans of lobsters with TFN. By contrast, the other characteristics of isolates were similar in lobsters with and without TFN. The Vib. crassostreae isolates from the affected lobsters had similar genomic patterns. Overall, the results indicate that in addition to proteolytic, chitinolytic and lipolytic activities, the bacteria associated with TFN commonly have enhanced activity of important virulence factors, including biofilm formation, melanin production and siderophore production. © 2018 John Wiley & Sons Ltd.

  9. Phylogeny and bioactivity of epiphytic Gram-positive bacteria isolated from three co-occurring antarctic macroalgae.

    PubMed

    Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio; Leiva, Sergio

    2018-02-19

    Marine macroalgae are emerging as an untapped source of novel microbial diversity and, therefore, of new bioactive secondary metabolites. This study was aimed at assessing the diversity and antimicrobial activity of the culturable Gram-positive bacteria associated with the surface of three co-occurring Antarctic macroalgae. Specimens of Adenocystis utricularis (brown alga), Iridaea cordata (red alga) and Monostroma hariotii (green alga) were collected from the intertidal zone of King George Island, Antarctica. Gram-positive bacteria were investigated by cultivation-based methods and 16S rRNA gene sequencing, and screened for antimicrobial activity against a panel of pathogenic microorganisms. Isolates were found to belong to 12 families, with a dominance of Microbacteriaceae and Micrococcaceae. Seventeen genera of Actinobacteria and 2 of Firmicutes were cultured from the three macroalgae, containing 29 phylotypes. Three phylotypes within Actinobacteria were regarded as potentially novel species. Sixteen isolates belonging to the genera Agrococcus, Arthrobacter, Micrococcus, Pseudarthrobacter, Pseudonocardia, Sanguibacter, Staphylococcus, Streptomyces and Tessaracoccus exhibited antibiotic activity against at least one of the indicator strains. The bacterial phylotype composition was distinct among the three macroalgae species, suggesting that these macroalgae host species-specific Gram-positive associates. The results highlight the importance of Antarctic macroalgae as a rich source of Gram-positive bacterial diversity and potentially novel species, and a reservoir of bacteria producing biologically active compounds with pharmacological potential.

  10. Isolation and Physiological Characterization of Psychrophilic Denitrifying Bacteria from Permanently Cold Arctic Fjord Sediments (Svalbard, Norway)

    NASA Technical Reports Server (NTRS)

    Canion, Andy; Prakash, Om; Green, Stefan J.; Jahnke, Linda; Kuypers, Marcel M. M.; Kostka, Joel E.

    2013-01-01

    A large proportion of reactive nitrogen loss from polar sediments is mediated by denitrification, but microorganisms mediating denitrification in polar environments remain poorly characterized. A combined approach of most-probable-number (MPN) enumeration, cultivation and physiological characterization was used to describe psychrophilic denitrifying bacterial communities in sediments of three Arctic fjords in Svalbard (Norway). A MPN assay showed the presence of 10(sup 3)-10(sup 6) cells of psychrophilic nitrate-respiring bacteria g(sup -1) of sediment. Fifteen strains within the Proteobacteria were isolated using a systematic enrichment approach with organic acids as electron donors and nitrate as an electron acceptor. Isolates belonged to five genera, including Shewanella, Pseudomonas, Psychromonas (Gammaproteobacteria), Arcobacter (Epsilonproteobacteria) and Herminiimonas (Betaproteobacteria). All isolates were denitrifiers, except Shewanella, which exhibited the capacity for dissimilatory nitrate reduction to ammonium (DNRA). Growth from 0 to 40 degC demonstrated that all genera except Shewanella were psychrophiles with optimal growth below 15 degC, and adaptation to low temperature was demonstrated as a shift from primarily C16:0 saturated fatty acids to C16:1 monounsaturated fatty acids at lower temperatures. This study provides the first targeted enrichment and characterization of psychrophilic denitrifying bacteria from polar sediments, and two genera, Arcobacter and Herminiimonas, are isolated for the first time from permanently cold marine sediments.

  11. Diversity of bacteria isolated from crustacea larvae and their rearing water

    NASA Astrophysics Data System (ADS)

    Haryanti; Sugama, Ketut; Nishijima, Toshitaka

    2003-04-01

    The bacteria in the genus Vibrio are heterothrophic, which exist in the larval rearing water of Crustacea and often show diverse pathogenicities to marine animals. In order to assess the bacterial diversity associated with Crustacean seed production, 32 strains were isolated from black tiger shrimp (Penaeus monodon) and mangrove crab (Scylla paramamosain) larvae and their rearing-water and characterized using biochemical and molecular approaches. Two or more genotypically different species were identified. The vibriosis of black tiger shrimp was causes by V. harveyi, V. alginolyticus and Vibrio spp. predominantly, while that of crab by V. harveyi and V. alginolyticus only.

  12. Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion.

    PubMed

    Zhang, Jian; Wang, Peng Cheng; Fang, Ling; Zhang, Qi-An; Yan, Cong Sheng; Chen, Jing Yi

    2017-03-30

    Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.

  13. Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land)

    NASA Technical Reports Server (NTRS)

    Siebert, J.; Hirsch, P.; Friedmann, E. I. (Principal Investigator)

    1988-01-01

    Approximately 1500 cultures of microorganisms were isolated from rocks and soils of the Ross Desert (McMurdo-Dry Valleys). From these, 15 coccoid strains were chosen for more detailed investigation. They were characterized by morphological, physiological and chemotaxonomical properties. All isolates were Gram-positive, catalase-positive and nonmotile. Six strains showed red pigmentation and could be identified as members of the genera Micrococcus (M. roseus, M. agilis) or Deinococcus. In spite of their coccoid morphology, the remaining nine strains had to be associated with coryneform bacteria (Arthrobacter, Brevibacterium), because of their cell wall composition and G+C ratios. Most of the strains were psychrotrophic, but one strain was even obligately psychrophilic, with a temperature maximum below 20 degrees C. Red cocci had in vitro pH optima above 9.0 although they generally originated from acid samples. Most isolates showed a preference for sugar alcohols and organic acids, compounds which are commonly known to be released by lichens, molds and algae, the other components of the cryptoendolithic ecosystem. These properties indicate that our strains are autochthonous members of the natural Antarctic microbial population.

  14. Method of dispersing a hydrocarbon using bacteria

    DOEpatents

    Tyndall, Richard L.

    1996-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  15. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea.

    PubMed

    Park, Myoungsu; Kim, Chungwoo; Yang, Jinchul; Lee, Hyoungseok; Shin, Wansik; Kim, Seunghwan; Sa, Tongmin

    2005-01-01

    Free-living nitrogen fixing bacteria were isolated from rhizosphere of seven different plant namely sesame, maize, wheat, soybean, lettuce, pepper and rice grown in Chungbuk Province, Korea. Five isolates with nitrogenase activity above 150nmol(-1) mg(-1) protein were identified based on, phenotypic and 16S rDNA sequences analysis. The strains were identified as Stenotrophomonas maltophilia (PM-1, PM-26), Bacillus fusiformis (PM-5, PM-24) and Pseudomonas fluorescens (PM-13), respectively. All the isolates produced indole-3-acetic acid (IAA), in the presence of tryptophan, ranging from 100.4 microg ml(-1) (PM-13) to 255 microg ml(-1) (PM-24). The isolate PM-24 (Bacillus fusiformis) exhibiting highest nitrogenase activity (3677.81 nmol h(-1) mg(-1) protein) and IAA production (255microg ml(-1)) has a promising potential for developing as a plant growth promoting rhizobacteria.

  16. A scanning electron microscopic evaluation of in vitro dentinal tubules penetration by selected anaerobic bacteria.

    PubMed

    Siqueira, J F; De Uzeda, M; Fonseca, M E

    1996-06-01

    In vitro root canal dentinal tubule invasion by selected anaerobic bacteria commonly isolated from endodontic infections was evaluated. Dentinal cylinders obtained from bovine incisors were inoculated with bacteria, and microbial penetration into tubules was demonstrated by scanning electron microscopy. The results indicated that all bacterial strains tested were able to penetrate into dentinal tubules, but to different extents.

  17. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ.

    PubMed

    Wang, Guang-Yu; Wang, Hu-Hu; Han, Yi-Wei; Xing, Tong; Ye, Ke-Ping; Xu, Xing-Lian; Zhou, Guang-Hong

    2017-05-01

    Microorganisms play an important role in the spoilage of chilled chicken. In this study, a total of 53 isolates, belonging to 7 species of 3 genera, were isolated using a selective medium based on the capacity to spoil chicken juice. Four isolates, namely Aeromonas salmonicida 35, Pseudomonas fluorescens H5, Pseudomonas fragi H8 and Serratia liquefaciens 17, were further characterized to assess their proteolytic activities in vitro using meat protein extracts and to evaluate their spoilage potential in situ. The in vitro studies showed that A. salmonicida 35 displayed the strongest proteolytic activity against both sarcoplasmic and myofibrillar proteins. However, the major spoilage isolate in situ was P. fragi H8, which exhibited a fast growth rate, slime formation and increased pH and total volatile basic nitrogen (TVBN) on chicken breast fillets. The relative amounts of volatile organic compounds (VOCs) originating from the microorganisms, including alcohols, aldehydes, ketones and several sulfur compounds, increased during storage. In sum, this study demonstrated the characteristics of 4 potential spoilage bacteria on chilled yellow-feather chicken and provides a simple and convenient method to assess spoilage bacteria during quality management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cellulose degrading bacteria isolated from industrial samples and the gut of native insects from Northwest of Argentina.

    PubMed

    Manfredi, Adriana P; Perotti, Nora I; Martínez, María A

    2015-12-01

    The raw materials used to produce bioethanol mostly are food crops, which has led to conflicts on food security. It is, therefore, recommended the gradual replacement for second generation substrates such as lignocellulosic materials. Herein, cellulolytic bacteria were isolated from the gut content of native larvae from Lepidoptera, Coleoptera, and adults of Isoptera. Few environmental samples from the pulp and paper feedstock were also assessed. A total of 233 isolates were obtained using enrichment cultures and classic criteria. Interestingly, several halo-forming colonies were found to be bacterial consortia that presented difficulties to take apart the microbial members. Those pure isolates which hydrolyzed cellulose in larger extend (45 strains) were selected and identified by means of 16S rRNA sequence analysis. Firmicutes was the prevalent phylum (62.2%) being Bacillus spp. the most frequent genus, while Paenibacillus, Brevibacillus, Cohnella, and Staphylococcus species were less frequent. The phylum Actinobacteria (6.7%) was represented by isolates related to Agromyces spp. and Microbacterium spp. Regarding Gram-negative bacteria (31.1%), the more depicted genus was Pseudomonas spp., and members of Achromobacter spp., Enterobacter spp., and Bacteroidetes phylum were also selected. These native bacterial strains are expected to enlarge the cellulolytic toolbox for efficient biomass deconstruction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The study of Nickel Resistant Bacteria (NiRB) isolated from wastewaters polluted with different industrial sources

    PubMed Central

    2014-01-01

    Background Pollution due to the heavy metals is a problem that may have negative consequences on the hydrosphere. One of the best procedures in removing the toxic metals from the environment is using metal resistant bacteria. Results In the present study eight nickel resistant bacteria were isolated from industrial wastewaters. Three of them were selected as the most resistant based on their Maximum tolerable concentration (8, 16 and 24 mM Ni2+). Their identification was done according to morphological, biochemical characteristics and 16SrDNA gene sequencing and they were identified as Cupriavidus sp ATHA3, Klebsiella oxytoca ATHA6 and Methylobacterium sp ATHA7. The accession numbers assigned to ATHA3, ATHA6 and ATHA7 strains are JX120152, JX196648 and JX457333 respectively. The Growth rate of the most resistant isolate, Klebsiella oxytoca strain ATHA6, in the presence of Ni2+ and the reduction in Ni2+ concentration was revealed that K oxytoca ATHA6 could decrease 83 mg/mL of nickel from the medium after 3 days. Conclusion It can be concluded that the identified Ni resistant bacteria could be valuable for the bioremediation of Ni polluted waste water and sewage. PMID:24475932

  20. Application of immobilized synthetic anti-lipopolysaccharide peptides for the isolation and detection of bacteria.

    PubMed

    Sandetskaya, N; Engelmann, B; Brandenburg, K; Kuhlmeier, D

    2015-08-01

    The molecular detection of microorganisms in liquid samples generally requires their enrichment or isolation. The aim of our study was to evaluate the capture and pre-concentration of bacteria by immobilized particular cationic antimicrobial peptides, called synthetic anti-lipopolysaccharide peptides (SALP). For the proof-of-concept and screening of different SALP, the peptides were covalently immobilized on glass slides, and the binding of bacteria was confirmed by microscopic examination of the slides or their scanning, in case of fluorescent bacterial cells. The most efficient SALP was further tethered to magnetic beads. SALP beads were used for the magnetic capture of Escherichia coli in liquid samples. The efficiency of this strategy was evaluated using polymerase chain reaction (PCR). Covalently immobilized SALP were capable of capturing bacteria in liquid samples. However, PCR was hampered by the unspecific binding of DNA to the positively charged peptide. We developed a method for DNA recovery by the enzymatic digestion of the peptide, which allowed for a successful PCR, though the method had its own adverse impact on the detection and, thus, did not allow for the reliable quantitative analysis of the pathogen enrichment. Immobilized SALP can be used as capture molecules for bacteria in liquid samples and can be recommended for the design of the assays or decontamination of the fluids. For the accurate subsequent detection of bacteria, DNA-independent methods should be used.

  1. Alimentary Tract Bacteria Isolated and Identified with API-20E and Molecular Cloning Techniques from Australian Tropical Fruit Flies, Bactrocera cacuminata and B. tryoni

    PubMed Central

    Thaochan, N.; Drew, R. A. I.; Hughes, J. M.; Vijaysegaran, S.; Chinajariyawong, A.

    2010-01-01

    Bacteria were isolated from the crop and midgut of field collected Bactrocera cacuminata (Hering) and Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Two methods were used, firstly isolation onto two types of bacteriological culture media (PYEA and TSA) and identification using the API-20E diagnostic kit, and secondly, analysis of samples using the 16S rRNA gene molecular diagnostic method. Using the API-20E method, 10 genera and 17 species of bacteria in the family Enterobacteriaceae were identified from cultures growing on the nutrient agar. The dominant species in both the crop and midgut were Citrobacter freundii, Enterobacter cloacae and Klebsiella oxytoca. Providencia rettgeri, Klebsiella pneumoniae ssp ozaenae and Serratia marcescens were isolated from B. tryoni only. Using the molecular cloning technique that is based on 16S rRNA gene sequences, five bacteria classes were dignosed — Alpha-, Beta-, Gamma- and Delta- Proteobacteria and Firmicutes — including five families, Leuconostocaceae, Enterococcaceae, Acetobacteriaceae, Comamonadaceae and Enterobacteriaceae. The bacteria affiliated with Firmicutes were found mainly in the crop while the Gammaproteobacteria, especially the family Enterobacteriaceae, was dominant in the midgut. This paper presents results from the first known application of molecular cloning techniques to study bacteria within tephritid species and the first record of Firmicutes bacteria in these flies. PMID:20883132

  2. Biogeochemistry and Genetic Potential related to Denitrification of Heterotrophic Bacteria isolated from Lake Vida Cryobrine

    NASA Astrophysics Data System (ADS)

    Trubl, G.; Kuhn, E.; Ichimura, A.; Fritsen, C. H.; Murray, A. E.

    2012-12-01

    Lake Vida, one of the largest lakes in McMurdo Dry Valleys, Antarctica, is a thick block of ice permeated by brine channels below 16 m that contain the highest levels of nitrous oxide (N2O) that have been reported from a terrestrial environment (86.6 ± 5.9 μM). The subzero -13.4oC brine (18% salinity) has an unusual geochemistry with high levels of iron, dissolved organic carbon, nitrate, and ammonium. A number of heterotrophic bacteria were cultivated from this unusual, extreme ecosystem that has been isolated for at least three thousand years. The aim of this research was to phylogenetically characterize the bacterial isolates (using 16S ribosomal RNA analysis) and investigate their denitrifying abilities and genetic potential related to key reactions in the denitrification cycle. Fifteen phylotypes were isolated from Lake Vida brine among three phyla: Gammaproteobacteria, Actinobacteria, and Firmicutes. Based on the 16S ribosomal RNA analysis, Marinobacter was the most abundant (56%) genus identified among the 57 isolates. The other isolates were related to the genera Psychrobacter, Exiguobacterium, Kocuria, and Microbacterium. Representatives of each phylotype were characterized and verified for: (1) Nitrate (NO3-) reduction to either N2O or dinitrogen (N2) by Gas Chromatography; (2) presence of the genes nirK or nirS for NO3- reduction and nosZ for nitric oxide (NO) reduction by polymerase chain reaction (PCR); and (3) growth response to salinity and temperature gradients. Thirty five of the Lake Vida isolates produced either N2O or N2 coupled to cell growth. All 57 isolates have grown across a 32°C temperature range (-10°C to 22°C) and 54 isolates were halotolerant bacteria (growing in 0% to 16% salinity), while the last three isolates were halophilic. Electron microscopy revealed membrane vesicles and extracellular polymeric substances (EPS) around the Lake Vida isolates, which may be a survival adaptation. Investigating the denitrification and other

  3. Antimicrobial activity of lactic acid bacteria isolated from bekasam against staphylococcus aureus ATCC 25923, escherichia coli ATCC 25922, and salmonella sp

    NASA Astrophysics Data System (ADS)

    Sari, Melia; Suryanto, Dwi; Yurnaliza

    2018-03-01

    Bekasam is an Indonesian fermented food made of fish. As a fermented food, this food may contain some beneficial bacteria like lactic acid bacteria (LAB), which usually have antimicrobial properties such as organic acid, hydrogen peroxide, and a bacteriocin. A study on antimicrobial activity of LAB isolated from bekasam against some pathogenic bacteria has been conducted. The purpose of this study was to know the ability of crude bacteriocin produced LAB of bekasam against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Salmonella sp. Bekasam sample was taken from South Sumatera. LAB isolation was done using de Man Rogosa and Sharpe agar. A bacterial colony with clear zone was selected and purified to get a single colony. The antagonistic assay of the LAB was conducted in Muller-Hinton agar Selected isolates with higher clearing zone were assayed for antibacterial effect of their crude bacteriocin of different culture incubation time of 6, 9, and 12 hours. The results showed that the crude extract bacteriocin of isolate MS2 of 9 hours culture incubation time inhibited more in Staphylococcus aureus ATCC 25923 with inhibition zone of 13.1 mm, whereas isolate MS9 of 9 hours culture incubation time inhibited more in Escherichia coli ATCC 25922 and Salmonella sp. with inhibition zone of 12.7 and 7.3 mm, respectively.

  4. Isolation and identification of culturable bacteria, capable of heterotrophic growth, from rapid sand filters of drinking water treatment plants.

    PubMed

    Vandermaesen, Johanna; Lievens, Bart; Springael, Dirk

    The microbial community in sand filters (SFs) of drinking water treatment plants (DWTPs) likely contributes to SF functionalities, such as organic carbon removal through heterotrophic metabolism. However, the dynamics and functionality of the SF microbiome and microbial communities in oligotrophic freshwater environments in general, are poorly understood. Therefore, the availability of bacterial strains from these oligotrophic environments is of great interest, but such organisms are currently underrepresented in culture collections. Focusing on heterotrophic carbon metabolism, bacteria were isolated from SFs using conventional media and media that contained SF extracts to mimic the SF environment. The majority of isolates belonged to Betaproteobacteria, more specifically to the families Comamonadaceae (genera Acidovorax, Curvibacter, Hydrogenophaga, Simplicispira, Paucibacter, Pelomonas, Piscinibacter and Rhodoferax) and Oxalobacteraceae (Undibacterium). Additionally, members of Alphaproteobacteria (Mesorhizobium), Gammaproteobacteria (Aeromonas and Perlucidibaca) and Actinobacteria (Rhodococcus and Brachybacterium) were isolated. Several of those genera have only rarely been described, but appear typical inhabitants of oligotrophic freshwater environments. In this regard, the Comamonadaceae isolates are of particular interest. Our study shows that bacteria representative of oligotrophic environments can be isolated using simple isolation procedures. The isolates provide a microbial framework for extending our knowledge of the taxonomy, physiology and functionality of oligotrophic freshwater microbiomes and their interactions with possible invaders. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Biosorption of Heavy Metals from Aqueous Solution by Bacteria Isolated from Contaminated Soil.

    PubMed

    Dhanwal, Pradeep; Kumar, Anil; Dudeja, Shruti; Badgujar, Hemlata; Chauhan, Rohit; Kumar, Abhishek; Dhull, Poonam; Chhokar, Vinod; Beniwal, Vikas

    2018-05-01

      This study was carried out to analyze the heavy metals biosorption potential of bacteria isolated from soil contaminated with electroplating industrial effluents. Bacterial isolates were screened for their multi-metal biosorption potential against copper, nickel, lead, and chromium. Bacterial isolate CU4A showed the maximum uptake of copper, nickel, lead, and chromium in aqueous solution, with a biosorption efficiency of 87.16 %, 79.62%, 84.92%, and 68.12%, respectively. The bacterial strain CU4A was identified as Bacillus cereus, following 16S rRNA gene sequence analysis. The surface chemical functional groups of bacterial biomass were identified by Fourier transform infrared (FTIR) spectroscopy as hydroxyl, carboxyl, amine, and halide, which may be involved in the biosorption of heavy metals. Analysis with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed the adsorption of metals on the bacterial cell mass. The results of this study are significant and could be further investigated for the removal of heavy metals from contaminated environments.

  6. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates.

    PubMed

    López-Moreno, Angélica; Sepúlveda-Sánchez, José David; Mercedes Alonso Guzmán, Elia Mercedes; Le Borgne, Sylvie

    2014-01-01

    Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria.

  7. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture.

    PubMed

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik; Aarestrup, Frank M; Phu, Tran Minh; Dalsgaard, Anders

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened

  8. Numerical taxonomy of heavy metal tolerant bacteria isolated from the estuarine environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.A.; Austin, B.; Mills, A.L.

    1977-01-01

    Metal tolerant bacteria, totalling 301 strains, were isolated from water and sediment samples collected from Chesapeake Bay. Growth in the presence of 100 ppm cadmium, chromium, cobalt, lead, mercury and molybdenum was tested. In addition, the strains were examined for 118 biochemical, cultural, morphological, nutritional and physiological, characters and the data were analyzed by computer, using the simple matching and Jaccard coefficients. From sorted similarity matrices, 293 strains, 97% of the total, were removed in 12 clusters defined at the 80 to 85% similarity level. The clusters included Bacillus and Pseudomonas spp. and genera and species of Enterobacteriaceae. Three clusters,more » containing gram negative rods, were not identified. Several of the clusters were composed of strains exhibiting tolerance to a wide range of heavy metals, whereas three of the clusters contained bacteria that were capable of growth in the presence of only a few of the metals examined in this study. Antibiotic resistance of the metal resistant strains has also been examined.« less

  9. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories?

    PubMed

    Nagy, E; Boyanova, L; Justesen, U S

    2018-02-17

    There has been increased interest in the study of anaerobic bacteria that cause human infection during the past decade. Many new genera and species have been described using 16S rRNA gene sequencing of clinical isolates obtained from different infection sites with commercially available special culture media to support the growth of anaerobes. Several systems, such as anaerobic pouches, boxes, jars and chambers provide suitable anaerobic culture conditions to isolate even strict anaerobic bacteria successfully from clinical specimens. Beside the classical, time-consuming identification methods and automated biochemical tests, the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has revolutionized identification of even unusual and slow-growing anaerobes directly from culture plates, providing the possibility of providing timely information about anaerobic infections. The aim of this review article is to present methods for routine laboratories, which carry out anaerobic diagnostics on different levels. Relevant data from the literature mostly published during the last 7 years are encompassed and discussed. The review involves topics on the anaerobes that are members of the commensal microbiota and their role causing infection, the key requirements for collection and transport of specimens, processing of specimens in the laboratory, incubation techniques, identification and antimicrobial susceptibility testing of anaerobic bacteria. Advantages, drawbacks and specific benefits of the methods are highlighted. The present review aims to update and improve anaerobic microbiology in laboratories with optimal conditions as well as encourage its routine implementation in laboratories with restricted resources. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. [Analysis of pathogenic bacteria and drug resistance in neonatal purulent meningitis].

    PubMed

    Zhu, Minli; Hu, Qianhong; Mai, Jingyun; Lin, Zhenlang

    2015-01-01

    To study the clinical characteristics, pathogenic bacteria, and antibiotics resistance of neonatal purulent meningitis in order to provide the guide for early diagnosis and appropriate treatment. A retrospective review was performed and a total of 112 cases of neonatal purulent meningitis (male 64, female 58) were identified in the neonatal intensive care unit of Yuying Children's Hospital of Wenzhou Medical University seen from January 1, 2004 to December 31, 2013. The clinical information including pathogenic bacterial distribution, drug sensitivity, head imageology and therapeutic outcome were analyzed. Numeration data were shown in ratio and chi square test was applied for group comparison. Among 112 cases, 46 were admitted from 2004 to 2008 and 66 from 2009 to 2013, 23 patients were preterm and 89 were term, 20 were early onset (occurring within 3 days of life) and 92 were late onset meningitis (occurring after 3 days of life). In 62 (55.4%) cases the pathogens were Gram-positive bacteria and in 50 (44.6%) were Gram-negative bacteria. The five most frequently isolated pathogens were Escherichia coli (32 cases, 28.6%), coagulase-negative staphylococcus (CNS, 20 cases, 17.9%), Streptococcus (18 cases, 16.1%, Streptococcus agalactiae 15 cases), Enterococci (13 cases, 11.6%), Staphylococcus aureus (9 cases, 8.0%). Comparison of pathogenic bacterial distribution between 2004-2008 and 2009-2013 showed that Gram-positive bacteria accounted for more than 50% in both period. Escherichia coli was the most common bacterium, followed by Streptococcus in last five years which was higher than the first five years (22.7% (15/66) vs. 6.5% (3/46), χ(2) = 5.278, P < 0.05). Klebsiella pneumoniae was more common isolate in preterm infants than in term infants (13.0% (3/23) vs. 1.1% (1/89), χ(2) = 7.540, P < 0.05). Streptococcus (most were Streptococcus agalactiae) was the most common bacteria in early onset meningitis and higher than those in late onset meningitis (35.0% (7

  11. Phytochemical Screening and Antimicrobial Activity of Some Medicinal Plants Against Multi-drug Resistant Bacteria from Clinical Isolates

    PubMed Central

    Dahiya, Praveen; Purkayastha, Sharmishtha

    2012-01-01

    The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60%) inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%). The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml) were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus. PMID:23716873

  12. [Inactivation of the chlorine-resistant bacteria isolated from the drinking water distribution system].

    PubMed

    Chen, Yu-Qiao; Duan, Xiao-Di; Lu, Pin-Pin; Wang, Qian; Zhang, Xiao-Jian; Chen, Chao

    2012-01-01

    Inactivation experiments of seven strains of chlorine-resistant bacteria, isolated from a drinking water distribution system, were conducted with four kinds of disinfectants. All the bacteria showed high resistance to chlorine, especially for Mycobacterium mucogenicum. The CT value of 99.9% inactivation for M. mucogenicum, Sphingomonas sanguinis and Methylobacterium were 120 mg x (L x min)(-1), 7 mg x (L x min)(-1) and 4 mg x (L x min)(-1), respectively. The results of inactivation experiments showed that chlorine dioxide and potassium monopersulfate could inactive 5 lg of M. mucogenicum within 30 min, which showed significantly higher efficiency than free chlorine and monochloramine. Free chlorine was less effective because the disinfectant decayed very quickly. Chloramination needed higher concentration to meet the disinfection requirements. The verified dosage of disinfectants, which could effectively inactivate 99.9% of the highly chlorine-resistant M. mucogenicum within 1 h, were 3.0 mg/L monochloramine, 1.0 mg/L chlorine dioxide (as Cl2), and 1.0 mg/L potassium monopersulfate (as Cl2). It was suggested that the water treatment plants increase the concentration of monochloramine or apply chlorine dioxide intermittently to control the disinfectant-resistant bacteria.

  13. Bacteria mediate oviposition by the black soldier fly, Hermetia illucens (L.), (Diptera: Stratiomyidae).

    PubMed

    Zheng, Longyu; Crippen, Tawni L; Holmes, Leslie; Singh, Baneshwar; Pimsler, Meaghan L; Benbow, M Eric; Tarone, Aaron M; Dowd, Scot; Yu, Ziniu; Vanlaerhoven, Sherah L; Wood, Thomas K; Tomberlin, Jeffery K

    2013-01-01

    There can be substantial negative consequences for insects colonizing a resource in the presence of competitors. We hypothesized that bacteria, associated with an oviposition resource and the insect eggs deposited on that resource, serve as a mechanism regulating subsequent insect attraction, colonization, and potentially succession of insect species. We isolated and identified bacterial species associated with insects associated with vertebrate carrion and used these bacteria to measure their influence on the oviposition preference of adult black soldier flies which utilizes animal carcasses and is an important species in waste management and forensics. We also ascertained that utilizing a mixture of bacteria, rather than a single species, differentially influenced behavioral responses of the flies, as did bacterial concentration and the species of fly from which the bacteria originated. These studies provide insight into interkingdom interactions commonly occurring during decomposition, but not commonly studied.

  14. Recurrent isolation of extremotolerant bacteria from the clean room where Phoenix spacecraft components were assembled.

    PubMed

    Ghosh, Sudeshna; Osman, Shariff; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2010-04-01

    The microbial burden of the Phoenix spacecraft assembly environment was assessed in a systematic manner via several cultivation-based techniques and a suite of NASA-certified, cultivation-independent biomolecule-based detection assays. Extremotolerant bacteria that could potentially survive conditions experienced en route to Mars or on the planet's surface were isolated with a series of cultivation-based assays that promoted the growth of a variety of organisms, including spore formers, mesophilic heterotrophs, anaerobes, thermophiles, psychrophiles, alkaliphiles, and bacteria resistant to UVC radiation and hydrogen peroxide exposure. Samples were collected from the clean room where Phoenix was housed at three different time points, before (1P), during (2P), and after (3P) Phoenix's presence at the facility. There was a reduction in microbial burden of most bacterial groups, including spore formers, in samples 2P and 3P. Analysis of 262 isolates from the facility demonstrated that there was also a shift in predominant cultivable bacterial populations accompanied by a reduction in diversity during 2P and 3P. It is suggested that this shift was a result of increased cleaning when Phoenix was present in the assembly facility and that certain species, such as Acinetobacter johnsonii and Brevundimonas diminuta, may be better adapted to environmental conditions found during 2P and 3P. In addition, problematic bacteria resistant to multiple extreme conditions, such as Bacillus pumilus, were able to survive these periods of increased cleaning.

  15. Airborne Bacteria in an Urban Environment

    PubMed Central

    Mancinelli, Rocco L.; Shulls, Wells A.

    1978-01-01

    Samples were taken at random intervals over a 2-year period from urban air and tested for viable bacteria. The number of bacteria in each sample was determined, and each organism isolated was identified by its morphological and biochemical characteristics. The number of bacteria found ranged from 0.013 to 1.88 organisms per liter of air sampled. Representatives of 19 different genera were found in 21 samples. The most frequently isolated organisms and their percent of occurence were Micrococcus (41%), Staphylococcus (11%), and Aerococcus (8%). The bacteria isolated were correlated with various weather and air pollution parameters using the Pearson product-moment correlation coefficient method. Statistically significant correlations were found between the number of viable bacteria isolated and the concentrations of nitric oxide (−0.45), nitrogen dioxide (+0.43), and suspended particulate pollutants (+0.56). Calculated individually, the total number of Micrococcus, Aerococcus, and Staphylococcus, number of rods, and number of cocci isolated showed negative correlations with nitric oxide and positive correlations with nitrogen dioxide and particulates. Statistically significant positive correlations were found between the total number of rods isolated and the concentration of nitrogen dioxide (+0.54) and the percent relative humidity (+0.43). The other parameters tested, sulfur dioxide, hydrocarbons, and temperature, showed no significant correlations. Images PMID:677875

  16. Isolation, cloning, and characterization of a partial novel aro A gene in common reed (Phragmites australis).

    PubMed

    Taravat, Elham; Zebarjadi, Alireza; Kahrizi, Danial; Yari, Kheirollah

    2015-05-01

    Among the essential amino acids, phenylalanine, tryptophan, and tyrosine are aromatic amino acids which are synthesized by the shikimate pathway in plants and bacteria. Herbicide glyphosate can inhibit the biosynthesis of these amino acids. So, identification of the gene tolerant to glyphosate is very important. It has been shown that the common reed or Phragmites australis Cav. (Poaceae) is relatively tolerant to glyphosate. The aim of the current research is identification, cloning, sequencing, and registering of partial aro A gene of the common reed P. australis. The partial aro A gene of common reed (P. australis) was cloned in Escherichia coli and the amino acid sequence was identified/determined for the first time. This is the first report for isolation, cloning, and sequencing of a part of aro A gene from the common reed. A 670 bp fragment including two introns (86 bp and 289 bp) was obtained. The open reading frame (ORF) region in part of gene was encoded for 98 amino acids. Alignment showed high similarity among this region with Zea mays (L.) (Poaceae) (94.6%), Eleusine indica L. Gaertn (Poaceae) (94.2%), and Zoysia japonica Steud. (Poaceae) (94.2%). The alignment of amino acid sequence of the investigated part of the gene showed a homology with aro A from several other plants. This conserved region forms the enzyme active site. The alignment results of nucleotide and amino acid residues with related sequences showed that there are some differences among them. The relative glyphosate tolerance in the common reed may be related to these differences.

  17. Isolation and assessment of gut bacteria from the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae), for paratransgenesis research and application.

    PubMed

    Tikhe, Chinmay V; Sethi, Amit; Delatte, Jennifer; Husseneder, Claudia

    2017-02-01

    Paratransgenesis targeting the gut protozoa is being developed as an alternative method for the control of the Formosan subterranean termite (FST). This method involves killing the cellulose-digesting gut protozoa using a previously developed antiprotozoal peptide consisting of a target specific ligand coupled to an antimicrobial peptide (Hecate). In the future, we intend to genetically engineer termite gut bacteria as "Trojan Horses" to express and spread ligand-Hecate in the termite colony. The aim of this study was to assess the usefulness of bacteria strains isolated from the gut of FST as "Trojan Horses." We isolated 135 bacteria from the guts of workers from 3 termite colonies. Sequencing of the 16S rRNA gene identified 20 species. We tested 5 bacteria species that were previously described as part of the termite gut community for their tolerance against Hecate and ligand-Hecate. Results showed that the minimum concentration required to inhibit bacteria growth was always higher than the concentration required to kill the gut protozoa. Out of the 5 bacteria tested, we engineered Trabulsiella odontotermitis, a termite specific bacterium, to express green fluorescent protein as a proof of concept that the bacteria can be engineered to express foreign proteins. Engineered T. odontotermitis was fed to FST to study if the bacteria are ingested. This feeding experiment confirmed that engineered T. odontotermitis is ingested by termites and can survive in the gut for at least 48 h. Here we report that T. odontotermitis is a suitable delivery and expression system for paratransgenesis in a termite species. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  18. Antimicrobial property of lemongrass (Cymbopogon citratus) oil against pathogenic bacteria isolated from pet turtles.

    PubMed

    De Silva, B C J; Jung, Won-Gi; Hossain, Sabrina; Wimalasena, S H M P; Pathirana, H N K S; Heo, Gang-Joon

    2017-06-01

    The usage of essential oils as antimicrobial agents is gaining attention. Besides, pet turtles were known to harbor a range of pathogenic bacteria while the turtle keeping is a growing trend worldwide.The current study examined the antimicrobial activity of lemon grass oil (LGO) against seven species of Gram negative bacteria namely; Aeromonas hydrophila , A. caviae , Citrobacter freundii , Salmonella enterica , Edwardsiella tarda , Pseudomonas aeruginosa , and Proteus mirabilis isolated from three popular species of pet turtles. Along with the results of disc diffusion, minimum inhibitory and minimum bactericidal concentration (MIC and MBC) tests, LGO was detected as effective against 6 species of bacteria excluding P. aeruginosa . MIC of LGO for the strains except P. aeruginosa ranged from 0.016 to 0.5% (V/V). The lowest MIC recorded in the E. tarda strain followed by A. hydrophilla , C. freundii , P. mirabilis , and S. enterica . Interestingly, all the bacterial species except E. tarda were showing high multiple antimicrobial resistance (MAR) index values ranging from 0.36 to 0.91 upon the 11 antibiotics tested although they were sensitive to LGO.

  19. Antimicrobial property of lemongrass (Cymbopogon citratus) oil against pathogenic bacteria isolated from pet turtles

    PubMed Central

    De Silva, B.C.J.; Jung, Won-Gi; Hossain, Sabrina; Wimalasena, S.H.M.P.; Pathirana, H.N.K.S.

    2017-01-01

    The usage of essential oils as antimicrobial agents is gaining attention. Besides, pet turtles were known to harbor a range of pathogenic bacteria while the turtle keeping is a growing trend worldwide.The current study examined the antimicrobial activity of lemon grass oil (LGO) against seven species of Gram negative bacteria namely; Aeromonas hydrophila, A. caviae, Citrobacter freundii, Salmonella enterica, Edwardsiella tarda, Pseudomonas aeruginosa, and Proteus mirabilis isolated from three popular species of pet turtles. Along with the results of disc diffusion, minimum inhibitory and minimum bactericidal concentration (MIC and MBC) tests, LGO was detected as effective against 6 species of bacteria excluding P. aeruginosa. MIC of LGO for the strains except P. aeruginosa ranged from 0.016 to 0.5% (V/V). The lowest MIC recorded in the E. tarda strain followed by A. hydrophilla, C. freundii, P. mirabilis, and S. enterica. Interestingly, all the bacterial species except E. tarda were showing high multiple antimicrobial resistance (MAR) index values ranging from 0.36 to 0.91 upon the 11 antibiotics tested although they were sensitive to LGO. PMID:28747972

  20. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia

    PubMed Central

    Elazzazy, Ahmed M.; Abdelmoneim, T.S.; Almaghrabi, O.A.

    2014-01-01

    Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems. PMID:26150754

  1. Intravenous immunoglobulin enhances the killing activity and autophagy of neutrophils isolated from immunocompromised patients against multidrug-resistant bacteria.

    PubMed

    Matsuo, Hidemasa; Itoh, Hiroshi; Kitamura, Naoko; Kamikubo, Yasuhiko; Higuchi, Takeshi; Shiga, Shuichi; Ichiyama, Satoshi; Kondo, Tadakazu; Takaori-Kondo, Akifumi; Adachi, Souichi

    2015-08-14

    Intravenous immunoglobulin (IVIG) is periodically administered to immunocompromised patients together with antimicrobial agents. The evidence that supports the effectiveness of IVIG is mostly based on data from randomized clinical trials; the underlying mechanisms are poorly understood. A recent study revealed that killing of multidrug-resistant bacteria and drug-sensitive strains by neutrophils isolated from healthy donors is enhanced by an IVIG preparation. However, the effectiveness of IVIG in immunocompromised patients remains unclear. The present study found that IVIG increased both killing activity and O2(-) release by neutrophils isolated from six patients receiving immune-suppressive drugs after hematopoietic stem cell transplantation (HSCT); these neutrophils killed both multidrug-resistant extended-spectrum β-lactamase-producing Escherichia coli (E. coli) and multidrug-resistant Pseudomonas aeruginosa (P. aeruginosa). Moreover, IVIG increased the autophagy of the neutrophils, which is known to play an important role in innate immunity. These results suggest that IVIG promotes both the killing activity and autophagy of neutrophils isolated from immunocompromised patients against multidrug-resistant bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia.

    PubMed

    Elazzazy, Ahmed M; Abdelmoneim, T S; Almaghrabi, O A

    2015-07-01

    Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems.

  3. Prevalence of antibiotic resistance in bacteria isolated from drinking well water available in Guinea-Bissau (West Africa).

    PubMed

    Machado, A; Bordalo, A A

    2014-08-01

    The dissemination of antibiotic-resistant bacteria and the spread of antibiotic resistance genes are a major public health concern worldwide, being even proposed as emerging contaminants. The aquatic environment is a recognized reservoir of antibiotic resistant bacteria, and antibiotic resistance genes have been recently detected in drinking water. In this study, the water quality and the prevalence of antibiotic resistance of heterotrophic culturable bacteria were characterized seasonally in wells that serve the population of Guinea-Bissau (West Africa) as the sole source of water for drinking and other domestic proposes. The results revealed that well water was unfit for human consumption independently of the season, owing to high acidity and heavy fecal contamination. Moreover, potentially pathogenic bacteria, which showed resistance to the most prescribed antibiotics in Guinea-Bissau, were isolated from well water, posing an additional health risk. Our results suggest that well water not only fosters the transmission of potential pathogenic bacteria, but also represents an important reservoir for the proliferation of antibiotic resistant bacteria, that can aggravate the potential to cause disease in a very vulnerable population that has no other alternative but to consume such water. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Rapid Identification of Bacteria in Positive Blood Culture Broths by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry▿

    PubMed Central

    Stevenson, Lindsay G.; Drake, Steven K.; Murray, Patrick R.

    2010-01-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid, accurate method for identifying bacteria and fungi recovered on agar culture media. We report herein a method for the direct identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. A total of 212 positive cultures were examined, representing 32 genera and 60 species or groups. The identification of bacterial isolates by MALDI-TOF mass spectrometry was compared with biochemical testing, and discrepancies were resolved by gene sequencing. No identification (spectral score of <1.7) was obtained for 42 (19.8%) of the isolates, due most commonly to insufficient numbers of bacteria in the blood culture broth. Of the bacteria with a spectral score of ≥1.7, 162 (95.3%) of 170 isolates were correctly identified. All 8 isolates of Streptococcus mitis were misidentified as being Streptococcus pneumoniae isolates. This method provides a rapid, accurate, definitive identification of bacteria within 1 h of detection in positive blood cultures with the caveat that the identification of S. pneumoniae would have to be confirmed by an alternative test. PMID:19955282

  5. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Stevenson, Lindsay G; Drake, Steven K; Murray, Patrick R

    2010-02-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid, accurate method for identifying bacteria and fungi recovered on agar culture media. We report herein a method for the direct identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. A total of 212 positive cultures were examined, representing 32 genera and 60 species or groups. The identification of bacterial isolates by MALDI-TOF mass spectrometry was compared with biochemical testing, and discrepancies were resolved by gene sequencing. No identification (spectral score of < 1.7) was obtained for 42 (19.8%) of the isolates, due most commonly to insufficient numbers of bacteria in the blood culture broth. Of the bacteria with a spectral score of > or = 1.7, 162 (95.3%) of 170 isolates were correctly identified. All 8 isolates of Streptococcus mitis were misidentified as being Streptococcus pneumoniae isolates. This method provides a rapid, accurate, definitive identification of bacteria within 1 h of detection in positive blood cultures with the caveat that the identification of S. pneumoniae would have to be confirmed by an alternative test.

  6. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products.

    PubMed

    Dewan, Sailendra; Tamang, Jyoti Prakash

    2007-10-01

    Ethnic people of the Himalayan regions of India, Nepal, Bhutan and China consume a variety of indigenous fermented milk products made from cows milk as well as yaks milk. These lesser-known ethnic fermented foods are dahi, mohi, chhurpi, somar, philu and shyow. The population of lactic acid bacteria (LAB) ranged from 10(7) to 10(8) cfu/g in these Himalayan milk products. A total of 128 isolates of LAB were isolated from 58 samples of ethnic fermented milk products collected from different places of India, Nepal and Bhutan. Based on phenotypic characterization including API sugar test, the dominant lactic acid bacteria were identified as Lactobacillus bifermentans, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus kefir, Lactobacillus hilgardii, Lactobacillus alimentarius, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris and Enterococcus faecium. LAB produced a wide spectrum of enzymes and showed high galactosidase, leucine-arylamidase and phosphatase activities. They showed antagonistic properties against selected Gram-negative bacteria. None of the strains produced bacteriocin and biogenic amines under the test conditions used. Most strains of LAB coagulated skim milk with a moderate drop in pH. Some strains of LAB showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential. This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas.

  7. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters.

    PubMed

    Farnelid, Hanna; Harder, Jens; Bentzon-Tilia, Mikkel; Riemann, Lasse

    2014-10-01

    The wide distribution of diverse nitrogenase (nifH) genes affiliated with those of heterotrophic bacteria in marine and estuarine waters indicates ubiquity and an ecologically relevant role for heterotrophic N2 -fixers (diazotrophs) in aquatic nitrogen (N) cycling. However, the lack of cultivated representatives currently precludes an evaluation of their N2 -fixing capacity. In this study, microoxic or anoxic N-free media were inoculated with estuarine Baltic Sea surface water to select for N2 -fixers. After visible growth and isolation of single colonies on oxic plates or in anoxic agar tubes, nifH gene amplicons were obtained from 64 strains and nitrogenase activity, applying the acetylene reduction assay, was confirmed for 40 strains. Two strains, one Gammaproteobacterium affiliated with Pseudomonas and one Alphaproteobacterium affiliated with Rhodopseudomonas were shown to represent established members of the indigenous diazotrophic community in the Baltic Sea, with abundances of up to 7.9 × 10(4) and 4.7 × 10(4)  nifH copies l(-1) respectively. This study reports media for successful isolation of heterotrophic diazotrophs. The applied methodology and the obtained strains will facilitate future identification of factors controlling heterotrophic diazotrophic activity in aquatic environments, which is a prerequisite for understanding and evaluating their ecology and contribution to N cycling at local and regional scales. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers.

    PubMed

    McFrederick, Quinn S; Vuong, Hoang Q; Rothman, Jason A

    2018-06-01

    Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 T (=DSM 104126 T ,=NRRL B-65473 T ), Lactobacillus timberlakei with the type strain HV_12 T (=DSM 104128 T ,=NRRL B-65472 T ), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 T (=DSM 104127 T ,=NRRL B-65474 T ).

  9. The frequency and some characteristics of anaerobic bacteria isolated from various forms of bovine mastitis.

    PubMed

    Greeff, A S; Du Preez, J H; De Beer, M

    1983-03-01

    The prevalence of strictly anaerobic bacteria in the secretions from untreated cases of mastitis in lactating dairy cows was investigated. The study involved 147 Friesland cows in 12 highveld herds. All herds yielded cows with anaerobic udder infections. No anaerobic bacteria were recovered from cows with normal quarters or those with latent aerobic infections. Only anaerobes were present in 10% of so-called 'aseptic' mastitis cases. A variety of anaerobic organisms was isolated concurrently with facultative bacteria from 5,3% and 58,8% of cases classified as subclinical and clinical respectively. Peptococcus spp. was associated with Corynebacterium pyogenes and Bacteroides spp. with Staphylococcus aureus and/or Streptococcus agalactiae in 80% anaerobic udder infections. Gram positive anaerobic species were mostly sensitive to penicillin-G but all the Gram negative rods were resistant. In addition, all B. fragilis strains produced beta-lactamase. The ability to produce heparinase was demonstrated in one strain of Peptococcus indolicus and a Peptostreptococcus sp.

  10. Isolation of Inositol Hexaphosphate (IHP)-Degrading Bacteria from Arbuscular Mycorrhizal Fungal Hyphal Compartments Using a Modified Baiting Method Involving Alginate Beads Containing IHP

    PubMed Central

    Hara, Shintaro; Saito, Masanori

    2016-01-01

    Phytate (inositol hexaphosphate; IHP)-degrading microbes have been suggested to contribute to arbuscular mycorrhizal fungi (AMF)-mediated P transfer from IHP to plants; however, no IHP degrader involved in AMF-mediated P transfer has been isolated to date. We herein report the isolation of IHP-degrading bacteria using a modified baiting method. We applied alginate beads as carriers of IHP powder, and used them as recoverable IHP in the AM fungal compartment of plant cultivation experiments. P transfer from IHP in alginate beads via AMF was confirmed, and extracted DNA from alginate beads was analyzed by denaturing gradient gel electrophoresis targeting the 16S rRNA gene and a clone library method for the beta-propeller phytase (BPP) gene. The diversities of the 16S rRNA and BPP genes of microbes growing on IHP beads were simple and those of Sphingomonas spp. and Caulobacter spp. dominated. A total of 187 IHP-utilizing bacteria were isolated and identified, and they were consistent with the results of DNA analysis. Furthermore, some isolated Sphingomonas spp. and Caulobacter sp. showed IHP-degrading activity. Therefore, we successfully isolated dominant IHP-degrading bacteria from IHP in an AMF hyphal compartment. These strains may contribute to P transfer from IHP via AMF. PMID:27383681

  11. Isolation and Characterization of Two Proteins from Moraxella catarrhalis That Bear a Common Epitope

    PubMed Central

    McMichael, John C.; Fiske, Michael J.; Fredenburg, Ross A.; Chakravarti, Deb N.; VanDerMeid, Karl R.; Barniak, Vicki; Caplan, Jeffrey; Bortell, Eric; Baker, Steven; Arumugham, Rasappa; Chen, Dexiang

    1998-01-01

    The UspA1 and UspA2 proteins of Moraxella catarrhalis are potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspA1 exhibited a molecular weight of approximately 350,000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100°C. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspA1 and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspA1 was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspA1 and UspA2 serve different virulence functions and that both are promising vaccine candidates. PMID:9712790

  12. Method of dispersing a hydrocarbon using bacteria

    DOEpatents

    Tyndall, R.L.

    1996-09-24

    A new protozoan derived microbial consortia and method for their isolation are provided. The isolated consortia and bacteria are useful for treating wastes such as trichloroethylene and trinitrotoluene. The isolated consortia, bacteria, and dispersants are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  13. Method of separating bacteria from free living amoebae

    DOEpatents

    Tyndall, Richard L.

    1994-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  14. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  15. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products.

    PubMed

    D'Aimmo, Maria Rosaria; Modesto, Monica; Biavati, Bruno

    2007-04-01

    The outlines of antibiotic resistance of some probiotic microorganisms were studied. This study was conducted with the double purpose of verifying their ability to survive if they are taken simultaneously with an antibiotic therapy and to increase the selective properties of suitable media for the isolation of samples containing mixed bacterial populations. We isolated from commercial dairy and pharmaceutical products, 34 strains declared as probiotics, belonging to the genera Bifidobacterium and Lactobacillus, and 21 strains of starter culture bacteria. All the microorganisms have been compared by electrophoresis of the soluble proteins for the purpose of identifying them. A Multiplex-PCR with genus- and species-specific primers was used to detect for Bifidobacterium animalis subsp. lactis presence. All bifidobacteria were B. animalis subsp. lactis except one Bifidobacterium longum. Sometimes the identification showed that the used strain was not the one indicated on the label. The lactobacilli were Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus. The streptococci were all Streptococcus thermophilus. The minimal inhibitory concentration (MIC) of 24 common antibiotic substances has been valued by the broth microdilution method. All tested strains were susceptible to ampicillin, bacitracin, clindamycin, dicloxacillin, erytromycin, novobiocin, penicillin G, rifampicin (MIC(90) ranging from 0.01 to 4 microg/ml); resistant to aztreonam, cycloserin, kanamycin, nalidixic acid, polymyxin B and spectinomycin (MIC(90) ranging from 64 to >1000 microg/ml). The susceptibility to cephalothin, chloramphenicol, gentamicin, lincomycin, metronidazole, neomycin, paromomycin, streptomycin, tetracycline and vancomycin was variable and depending on the species.

  16. Molecular Detection, Isolation, and Physiological Characterization of Functionally Dominant Phenol-Degrading Bacteria in Activated Sludge

    PubMed Central

    Watanabe, Kazuya; Teramoto, Maki; Futamata, Hiroyuki; Harayama, Shigeaki

    1998-01-01

    DNA was isolated from phenol-digesting activated sludge, and partial fragments of the 16S ribosomal DNA (rDNA) and the gene encoding the largest subunit of multicomponent phenol hydroxylase (LmPH) were amplified by PCR. An analysis of the amplified fragments by temperature gradient gel electrophoresis (TGGE) demonstrated that two major 16S rDNA bands (bands R2 and R3) and two major LmPH gene bands (bands P2 and P3) appeared after the activated sludge became acclimated to phenol. The nucleotide sequences of these major bands were determined. In parallel, bacteria were isolated from the activated sludge by direct plating or by plating after enrichment either in batch cultures or in a chemostat culture. The bacteria isolated were classified into 27 distinct groups by a repetitive extragenic palindromic sequence PCR analysis. The partial nucleotide sequences of 16S rDNAs and LmPH genes of members of these 27 groups were then determined. A comparison of these nucleotide sequences with the sequences of the major TGGE bands indicated that the major bacterial populations, R2 and R3, possessed major LmPH genes P2 and P3, respectively. The dominant populations could be isolated either by direct plating or by chemostat culture enrichment but not by batch culture enrichment. One of the dominant strains (R3) which contained a novel type of LmPH (P3), was closely related to Valivorax paradoxus, and the result of a kinetic analysis of its phenol-oxygenating activity suggested that this strain was the principal phenol digester in the activated sludge. PMID:9797297

  17. [The antagonistic properties of bacteria isolated from the digestive tract of female mink housed in the area of the Chernobyl Atomic Electric Power Station].

    PubMed

    Sudenko, V I; Groma, L I; Podgorskiĭ, V S

    1996-01-01

    Differences in species composition, number and level of antagonistic activity of bacteria isolated from the digestive tract of Chernobyl female minks of various age and with different immunological state have been established. Prevalence of anaerobes (bifidobacteria) and microaerophils (lactic acid bacteria) with the increase of microorganisms concentration along the channel: stomach, small and large intestine (10(7)-10(10)/g) was found in all the departments of digestive tract of minks. Among the identified lactic-acid bacteria Lactobacillus helveticus (10(7)-10(8)/g) prevailed in the stomach of the studied female minks, L. coryniformis (10(9)-10(10)/g) in the small intestine, L. casei (10(10)/g) in the large one. Antagonistic activity was most expressed in the strains of L. helveticus and L. casei, isolated from the younger (1.5 year-old) minks. Enterococcus faecalis isolated from the stomach of 1.5 year-old female minks was distinguished by the greatest antagonistic activity among identified enterococci. Strains of E. faecium isolated from the thin intestine of the young female minks (1.5 year-old) and from the large intestine of more nature animals (2.5 years) who received thymogen were characterized by the most expressed antibiosis among enterococci isolated bacteria a conclusion was made that the mechanisms of inhibitory effect of the studied microorganisms are underlied by not only their capacity to form organic acids but also by the capacity to produce antibiotic products.

  18. Anaerobic Bacteria in Clinical Specimens - Frequent, But a Neglected Lot: A Five Year Experience at a Tertiary Care Hospital.

    PubMed

    Shenoy, Padmaja Ananth; Vishwanath, Shashidhar; Gawda, Ashwini; Shetty, Seema; Anegundi, Renuka; Varma, Muralidhar; Mukhopadhyay, Chiranjay; Chawla, Kiran

    2017-07-01

    Anaerobic bacteria which constitute a significant proportion of the normal microbiota also cause variety of infections involving various anatomic sites. Considering the tedious culture techniques with longer turnaround time, anaerobic cultures are usually neglected by clinicians and microbiologists. To study the frequency of isolation of different anaerobic bacteria from various clinical specimens. A retrospective study to analyse the frequency of isolation of different anaerobic bacteria, was conducted over a period of five years from 2011 to 2015 including various clinical specimens submitted to anaerobic division of Microbiology laboratory. Anaerobic bacteria were isolated and identified following standard bacteriological techniques. Pathogenic anaerobes (n=336) were isolated from 278 (12.48%) of overall 2227 specimens processed with an average yield of 1.2 isolates. Anaerobes were isolated as polymicrobial flora with or without aerobic bacterial pathogens in 159 (57.2%) patients. Anaerobic Gram-negative bacilli (140, 41.7%) were the predominant isolates. B. fragilis group (67, 19.9%) were the most commonly isolated anaerobic pathogens. Anaerobes were predominantly isolated from deep seated abscess (23.9%). Pathogenic anaerobes were isolated from various infection sites. Unless culture and susceptibility tests are performed as a routine, true magnitude of antimicrobial resistance among anaerobic pathogens will not be known. Knowledge of the distribution of these organisms may assist in the selection of appropriate empirical therapy for anaerobic infections.

  19. Susceptibility of Salmonella Biofilm and Planktonic Bacteria to Common Disinfectant Agents Used in Poultry Processing.

    PubMed

    Chylkova, Tereza; Cadena, Myrna; Ferreiro, Aura; Pitesky, Maurice

    2017-07-01

    Poultry contaminated with Salmonella enterica subsp. enterica are a major cause of zoonotic foodborne gastroenteritis. Salmonella Heidelberg is a common serotype of Salmonella that has been implicated as a foodborne pathogen associated with the consumption of improperly prepared chicken. To better understand the effectiveness of common antimicrobial disinfectants (i.e., peroxyacetic acid [PAA], acidified hypochlorite [aCH], and cetylpyridinium chloride [CPC]), environmental isolates of nontyphoidal Salmonella were exposed to these agents under temperature, concentration, and contact time conditions consistent with poultry processing. Under simulated processing conditions (i.e., chiller tank and dipping stations), the bacteriostatic and bactericidal effects of each disinfectant were assessed against biofilm and planktonic cultures of each organism in a disinfectant challenge. Log reductions, planktonic MICs, and mean biofilm eradication concentrations were computed. The biofilms of each Salmonella isolate were more resistant to the disinfectants than were their planktonic counterparts. Although PAA was bacteriostatic and bactericidal against the biofilm and planktonic Salmonella isolates tested at concentrations up to 64 times the concentrations commonly used in a chiller tank during poultry processing, aCH was ineffective against the same isolates under identical conditions. At the simulated 8-s dipping station, CPC was bacteriostatic against all seven and bactericidal against six of the seven Salmonella isolates in their biofilm forms at concentrations within the regulatory range. These results indicate that at the current contact times and concentrations, aCH and PAA are not effective against these Salmonella isolates in their biofilm state. The use of CPC should be considered as a tool for controlling Salmonella biofilms in poultry processing environments.

  20. Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal.

    PubMed

    Shakya, S; Pradhan, B; Smith, L; Shrestha, J; Tuladhar, S

    2012-03-01

    Arsenic (As) contamination of groundwater is a serious Environmental Health Management issue of drinking water sources especially in Terai region of Nepal. Many studies have reported that due to natural abundance of arsenic in the environment, various bacteria have developed different resistance mechanisms for arsenic compound. In this study, the culturable arsenic-resistant bacteria indigenous to surfacewater as well as groundwater from Rautahat District of Nepal were randomly isolated by standard plate count method on the basis of viable growth on plate count agar amended with arsenate ranging from 0, 0.5, 10, 40, 80 to 160 milligram per liter (mg/l). With respect to the morphological and biochemical tests, nine morphologically distinct potent arsenate tolerant bacteria showed relatedness with Micrococcus varians, Micrococcus roseus, Micrococcus luteus, Pseudomonas maltophilia, Pseudomonas sp., Vibrio parahaemolyticus, Bacillus cereus, Bacillus smithii 1 and Bacillus smithii 2. The isolates were capable of tolerating more than 1000 mg/l of arsenate and 749 mg/l of arsenite. Likewise, bioaccumulation capability was highest with M. roseus (85.61%) and the least with B. smithii (47.88%) indicating the potential of the organisms in arsenic resistance and most probably in bioremediation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia).

    PubMed

    Ribeiro, Carlos Marcelo; Cardoso, Elke Jurandy Bran Nogueira

    2012-01-20

    Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Genomic, proteomic and bioinformatic analysis of two temperate phages in Roseobacter clade bacteria isolated from the deep-sea water.

    PubMed

    Tang, Kai; Lin, Dan; Zheng, Qiang; Liu, Keshao; Yang, Yujie; Han, Yu; Jiao, Nianzhi

    2017-06-27

    Marine phages are spectacularly diverse in nature. Dozens of roseophages infecting members of Roseobacter clade bacteria were isolated and characterized, exhibiting a very high degree of genetic diversity. In the present study, the induction of two temperate bacteriophages, namely, vB_ThpS-P1 and vB_PeaS-P1, was performed in Roseobacter clade bacteria isolated from the deep-sea water, Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014, respectively. Two novel phages in morphological, genomic and proteomic features were presented, and their phylogeny and evolutionary relationships were explored by bioinformatic analysis. Electron microscopy showed that the morphology of the two phages were similar to that of siphoviruses. Genome sequencing indicated that the two phages were similar in size, organization, and content, thereby suggesting that these shared a common ancestor. Despite the presence of Mu-like phage head genes, the phages are more closely related to Rhodobacter phage RC1 than Mu phages in terms of gene content and sequence similarity. Based on comparative genomic and phylogenetic analysis, we propose a Mu-like head phage group to allow for the inclusion of Mu-like phages and two newly phages. The sequences of the Mu-like head phage group were widespread, occurring in each investigated metagenomes. Furthermore, the horizontal exchange of genetic material within the Mu-like head phage group might have involved a gene that was associated with phage phenotypic characteristics. This study is the first report on the complete genome sequences of temperate phages that infect deep-sea roseobacters, belonging to the Mu-like head phage group. The Mu-like head phage group might represent a small but ubiquitous fraction of marine viral diversity.

  3. Piezophilic Bacteria Isolated from Sediment of the Shimokita Coalbed, Japan

    NASA Astrophysics Data System (ADS)

    Fang, J.; Kato, C.; Hori, T.; Morono, Y.; Inagaki, F.

    2013-12-01

    The Earth is a cold planet as well as pressured planet, hosting both the surface biosphere and the deep biosphere. Pressure ranges over four-orders of magnitude in the surface biosphere and probably more in the deep biosphere. Pressure is an important thermodynamic property of the deep biosphere that affects microbial physiology and biochemistry. Bacteria that require high-pressure conditions for optimal growth are called piezophilic bacteria. Subseafloor marine sediments are one of the most extensive microbial habitats on Earth. Marine sediments cover more than two-thirds of the Earth's surface, and represent a major part of the deep biosphere. Owing to its vast size and intimate connection with the surface biosphere, particularly the oceans, the deep biosphere has enormous potential for influencing global-scale biogeochemical processes, including energy, climate, carbon and nutrient cycles. Therefore, studying piezophilic bacteria of the deep biosphere has important implications in increasing our understanding of global biogeochemical cycles, the interactions between the biosphere and the geosphere, and the evolution of life. Sediment samples were obtained during IODP Expedition 337, from 1498 meters below sea floor (mbsf) (Sample 6R-3), 1951~1999 mbsf (19R-1~25R-3; coalbed mix), and 2406 mbsf (29R-7). The samples were mixed with MB2216 growth medium and cultivated under anaerobic conditions at 35 MPa (megapascal) pressure. Growth temperatures were adjusted to in situ environmental conditions, 35°C for 6R-3, 45°C for 19R-1~25R-3, and 55°C for 29R-7. The cultivation was performed three times, for 30 days each time. Microbial cells were obtained and the total DNA was extracted. At the same time, isolation of microbes was also performed under anaerobic conditions. Microbial communities in the coalbed sediment were analyzed by cloning, sequencing, and terminal restriction fragment length polymorphism (t-RFLP) of 16S ribosomal RNA genes. From the partial 16S r

  4. Isolation and characterization of new strains of cholesterol-reducing bacteria from baboons.

    PubMed

    Brinkley, A W; Gottesman, A R; Mott, G E

    1982-01-01

    We isolated and characterized nine new strains of cholesterol-reducing bacteria from feces and intestinal contents of baboons. Cholesterol-brain agar was used for the primary isolation, and subsequent biochemical tests were done in a lecithin-cholesterol broth containing plasmenylethanolamine and various substrates. All strains had similar colony and cell morphology, hydrolyzed the beta-glucosides esculin and amygdalin, metabolized pyruvate, and produced acetate and acetoin. Unlike previously reported strains, the nine new strains did not require cholesterol and an alkenyl ether lipid (e.g., plasmalogen) for growth; however, only two strains reduced cholesterol in the absence of the plasmalogen. These two strains also produced succinate as an end product. Carbohydrate fermentation was variable; some strains produced weak acid (pH 5.5 to 6.0) from only a few carbohydrates, whereas other strains produced strong acid reactions (pH less than or equal to 5.5) from a wide variety of carbohydrates.

  5. Metal and antibiotic resistance of bacteria isolated from the Baltic Sea.

    PubMed

    Moskot, Marta; Kotlarska, Ewa; Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Fari, Karolina; Wegrzyn, Grzegorz; Wróbel, Borys

    2012-09-01

    The resistance of 49 strains of bacteria isolated from surface Baltic Sea waters to 11 antibiotics was analyzed and the resistance of selected strains to three metal ions (Ni2+, Mn2+, Zn2+) was tested. Most isolates belonged to Gammaproteobacteria (78%), while Alphaproteobacteria (8%), Actinobacteria (10%), and Bacteroidetes (4%) were less abundant. Even though previous reports suggested relationships between resistance and the presence of plasmids or the ability to produce pigments, no compelling evidence for such relationships was obtained for the strains isolated in this work. In particular, strains resistant to multiple antibiotics did not carry plasmids more frequently than sensitive strains. A relation between resistance and the four aminoglycosides tested (gentamycin, kanamycin, neomycin, and streptomycin), but not to spectinomycin, was demonstrated. This observation is of interest given that spectinomycin is not always classified as an aminoglycoside because it lacks a traditional sugar moiety. Statistical analysis indicated relationships between resistance to some antibiotics (ampicillin and erythromycin, chloramphenicol and erythromycin, chloramphenicol and tetracycline, erythromycin and tetracycline), suggesting the linkage of resistance genes for antibiotics belonging to different classes. The effects of NiSO4, ZnCl2 and MnCl2 on various media suggested that the composition of Marine Broth might result in low concentrations of Mn2+ due to chemical interactions that potentially lead to precipitation.

  6. Bacteria Mediate Oviposition by the Black Soldier Fly, Hermetia illucens (L.), (Diptera: Stratiomyidae)

    PubMed Central

    Zheng, Longyu; Crippen, Tawni L.; Holmes, Leslie; Singh, Baneshwar; Pimsler, Meaghan L.; Benbow, M. Eric; Tarone, Aaron M.; Dowd, Scot; Yu, Ziniu; Vanlaerhoven, Sherah L.; Wood, Thomas K.; Tomberlin, Jeffery K.

    2013-01-01

    There can be substantial negative consequences for insects colonizing a resource in the presence of competitors. We hypothesized that bacteria, associated with an oviposition resource and the insect eggs deposited on that resource, serve as a mechanism regulating subsequent insect attraction, colonization, and potentially succession of insect species. We isolated and identified bacterial species associated with insects associated with vertebrate carrion and used these bacteria to measure their influence on the oviposition preference of adult black soldier flies which utilizes animal carcasses and is an important species in waste management and forensics. We also ascertained that utilizing a mixture of bacteria, rather than a single species, differentially influenced behavioral responses of the flies, as did bacterial concentration and the species of fly from which the bacteria originated. These studies provide insight into interkingdom interactions commonly occurring during decomposition, but not commonly studied. PMID:23995019

  7. Identification of astilbin metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS.

    PubMed

    Zhao, Min; Xu, Jun; Qian, Dawei; Guo, Jianming; Jiang, Shu; Shang, Er-xin; Duan, Jin-ao

    2014-07-01

    Astilbin, mainly isolated from a commonly used herbal medicine, Smilax glabra Roxb (SGR), exhibits a variety of pharmacological activities and biological effects. It is metabolized by intestinal bacteria after oral administration which leads to the variation of ethnopharmacological profile of this traditional medicine. However, little is known on the interactions of this active compound with intestinal bacteria, which would be very helpful in unravelling how SGR works. In this study, different pure bacteria from human feces were isolated and were used to investigate their conversion capability of astilbin. Ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technique combined with Metabolynx(TM) software was used to analyze astilbin and its metabolites. The parent compound and two metabolites (quercetin and eriodictyol) were detected in the isolated bacterial samples compared with blank samples. Quercetin was present in Enterococcus sp. 8B, 8-2 and 9-2 samples. Eriodictyol was only identified in Enterococcus sp. 8B sample. The metabolic routes and metabolites of astilbin produced by the different intestinal bacteria are reported for the first time. This will be useful for the investigation of the pharmacokinetic study of astilbin in vivo and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Changing epidemiology of infections due to extended spectrum beta-lactamase producing bacteria

    PubMed Central

    2014-01-01

    Background Community-associated infections caused by extended-spectrum beta-lactamase (ESBL) producing bacteria are a growing concern. Methods Retrospective cohort study of clinical infections due to ESBL-producing bacteria requiring admission from 2006-2011 at a tertiary care academic medical center in Providence, RI. Results A total of 321 infections due to ESBL-producing bacteria occurred during the study period. Fifty-eight cases (18%) were community-acquired, 170 (53%) were healthcare–associated, and 93 (29%) were hospital-acquired. The incidence of ESBL infections per 10,000 discharges increased during the study period for both healthcare-associated infections, 1.9 per year (95% CI 1-2.8), and for community-acquired infections, 0.85 per year (95% CI 0.3-1.4) but the rate remained unchanged for hospital-acquired infections. For ESBL-producing E. coli isolates, resistance to both ciprofloxacin and trimethoprim-sulfamethoxazole was 95% and 65%, respectively but 94% of isolates were susceptible to nitrofurantoin. Conclusions Community-acquired and healthcare-associated infections due to ESBL-producing bacteria are increasing in our community, particularly urinary tract infections due to ESBL-producing E. coli. Most isolates are resistant to oral antibiotics commonly used to treat urinary tract infections. Thus, our findings have important implications for outpatient management of such infections. PMID:24666610

  9. Volatiles emitted from eight wound-isolated bacteria differentially attract and stimulate gravid screwworm flies (Diptera: Calliphoridae) to oviposit

    USDA-ARS?s Scientific Manuscript database

    Bovine blood inoculated with bacteria isolated from screwworm-infested animal wounds was tested against gravid screwworm flies, Cochliomyia hominivorax (Coquerel) in the laboratory in a cage bioassay as an attractant for oviposition. Eight species of gram-negative coliform (Enterobacteriaceae) bacte...

  10. The effects of metabolite molecules produced by drinking water-isolated bacteria on their single and multispecies biofilms.

    PubMed

    Simões, Lúcia Chaves; Simões, Manuel; Vieira, Maria João

    2011-08-01

    The elucidation of the mechanisms by which diverse species survive and interact in drinking water (DW) biofilm communities may allow the identification of new biofilm control strategies. The purpose of the present study was to investigate the effects of metabolite molecules produced by bacteria isolated from DW on biofilm formation. Six opportunistic bacteria, viz. Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp. isolated from a drinking water distribution systems (DWDS) were used to form single and multispecies biofilms in the presence and absence of crude cell-free supernatants produced by the partner bacteria. Biofilms were characterized in terms of mass and metabolic activity. Additionally, several physiological aspects regulating interspecies interactions (sessile growth rates, antimicrobial activity of cell-free supernatants, and production of iron chelators) were studied to identify bacterial species with biocontrol potential in DWDS. Biofilms of Methylobacterium sp. had the highest growth rate and M. mucogenicum biofilms the lowest. Only B. cepacia was able to produce extracellular iron-chelating molecules. A. calcoaceticus, B. cepacia, Methylobacterium sp. and M. mucogenicum biofilms were strongly inhibited by crude cell-free supernatants from the other bacteria. The crude cell-free supernatants of M. mucogenicum and S. capsulata demonstrated a high potential for inhibiting the growth of counterpart biofilms. Multispecies biofilm formation was strongly inhibited in the absence of A. calcoaceticus. Only crude cell-free supernatants produced by B. cepacia and A. calcoaceticus had no inhibitory effects on multispecies biofilm formation, while metabolite molecules of M. mucogenicum showed the most significant biocontrol potential.

  11. Determination of antimicrobial and heavy metal resistance profiles of some bacteria isolated from aquatic amphibian and reptile species.

    PubMed

    Hacioglu, Nurcihan; Tosunoglu, Murat

    2014-01-01

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from aquatic animals (Lissotriton vulgaris, Pelophylax ridibundus, Emys orbicularis, Mauremys rivulata, and Natrix natrix) in Turkey (Kavak Delta). A total of 153 bacteria have been successfully isolated from cloaca and oral samples of the aquatic amphibians and reptilians which were found, namely, Aeromonas sp. (n = 29), Plesiomonas sp. (n = 7), Vibrio sp. (n = 12), Citrobacter sp. (n = 12), Enterobacter sp. (n = 11), Escherichia sp. (n = 22), Klebsiella sp. (n = 22), Edwardsiella sp. (n = 6), Hafnia sp. (n = 1), Proteus sp. (n = 19), Providencia sp. (n = 8), and Pseudomonas sp. (n = 4). In terms of antibiotic and heavy metal susceptibility testing, each isolate was tested against 12 antibiotics and 4 metals. There was a high incidence of resistance to cefoxitin (46.40 %), ampicillin (44.44 %), erythromycin (35.29 %), and a low incidence of resistance to gentamicin (6.53 %), kanamycin (8.49 %), chloramphenicol (9.15 %), and cefotaxime (10.45 %). The multiple antibiotic resistance index of each bacterial species indicated that bacteria from raised amphibians and reptiles have been exposed to tested antibiotics, with results ranging from 0 to 0.58. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from100 to >3,200 μg/mL. According to these results, a significant occurrence of bacteria in the internal organs of reptiles and amphibians, with a high incidence of resistance against antibiotics and heavy metals, may risk aquatic animals and the public health. These data appoint the importance of epidemiological surveillance and microbiological monitoring and reinforce the need to implement environment protection programs for amphibian and reptile species.

  12. Microfluidic-Based Bacteria Isolation from Whole Blood for Diagnostics of Blood Stream Infection.

    PubMed

    Zelenin, Sergey; Ramachandraiah, Harisha; Faridi, Asim; Russom, Aman

    2017-01-01

    Bacterial blood stream infection (BSI) potentially leads to life-threatening clinical conditions and medical emergencies such as severe sepsis, septic shock, and multi organ failure syndrome. Blood culturing is currently the gold standard for the identification of microorganisms and, although it has been automated over the decade, the process still requires 24-72 h to complete. This long turnaround time, especially for the identification of antimicrobial resistance, is driving the development of rapid molecular diagnostic methods. Rapid detection of microbial pathogens in blood related to bloodstream infections will allow the clinician to decide on or adjust the antimicrobial therapy potentially reducing the morbidity, mortality, and economic burden associated with BSI. For molecular-based methods, there is a lot to gain from an improved and straightforward method for isolation of bacteria from whole blood for downstream processing.We describe a microfluidic-based sample-preparation approach that rapidly and selectively lyses all blood cells while it extracts intact bacteria for downstream analysis. Whole blood is exposed to a mild detergent, which lyses most blood cells, and then to osmotic shock using deionized water, which eliminates the remaining white blood cells. The recovered bacteria are 100 % viable, which opens up possibilities for performing drug susceptibility tests and for nucleic-acid-based molecular identification.

  13. New methods for isolation of keratolytic bacteria inducing intractable hoof wall cavity (Gidoh) in a horse; double screening procedures of the horn powder agar-translucency test and horn zymography

    PubMed Central

    KUWANO, Atsutoshi; NIWA, Hidekazu; ARAI, Katsuhiko

    2017-01-01

    ABSTRACT To establish a new system to isolate keratolytic bacteria from the hoof wall cavity (Gidoh) of a racehorse, we invented the horn powder agar-translucency (HoPAT) test and horn zymography (HZ). Using routine bacteriological techniques and these methods, we isolated five strains of keratolytic soil bacteria, which were then identified by means of 16S ribosomal RNA (rRNA) gene sequencing analysis. The findings from the study on the horse suggested that Brevibacterium luteolum played the main role in the local fragility of the hoof, eventually forming a Gidoh in coordination with four other strains of keratolytic bacteria. The double screening procedures of the HoPAT test and HZ were useful and easy techniques for isolating the keratolytic bacteria from the horn lesions. PMID:28400703

  14. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees.

    PubMed

    Etminani, Faegheh; Harighi, Behrouz

    2018-06-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees ( Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas , Stenotrophomonas , Bacillus , Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea , Bacillus , Pseudomonas , Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

  15. Fibrolytic Bacteria Isolated from the Rumen of North American Moose (Alces alces) and Their Use as a Probiotic in Neonatal Lambs

    PubMed Central

    Ishaq, Suzanne L.; Kim, Christina J.; Reis, Doug; Wright, André-Denis G.

    2015-01-01

    Fibrolytic bacteria were isolated from the rumen of North American moose (Alces alces), which eat a high-fiber diet of woody browse. It was hypothesized that fibrolytic bacteria isolated from the moose rumen could be used as probiotics to improve fiber degradation and animal production. Thirty-one isolates (Bacillus, n = 26; Paenibacillus, n = 1; and Staphylococcus, n = 4) were cultured from moose rumen digesta samples collected in Vermont. Using Sanger sequencing of the 16S rRNA gene, culturing techniques, and optical densities, isolates were identified and screened for biochemical properties important to plant carbohydrate degradation. Five isolates were selected as candidates for use as a probiotic, which was administered daily to neonate lambs for 9 weeks. It was hypothesized that regular administration of a probiotic to improve fibrolysis to neonate animals through weaning would increase the developing rumen bacterial diversity, increase animal production, and allow for long-term colonization of the probiotic species. Neither weight gain nor wool quality was improved in lambs given a probiotic, however, dietary efficiency was increased as evidenced by the reduced feed intake (and rearing costs) without a loss to weight gain. Experimental lambs had a lower acetate to propionate ratio than control lambs, which was previously shown to indicate increased dietary efficiency. Fibrolytic bacteria made up the majority of sequences, mainly Prevotella, Butyrivibrio, and Ruminococcus. While protozoal densities increased over time and were stable, methanogen densities varied greatly in the first six months of life for lambs. This is likely due to the changing diet and bacterial populations in the developing rumen. PMID:26716685

  16. Fibrolytic Bacteria Isolated from the Rumen of North American Moose (Alces alces) and Their Use as a Probiotic in Neonatal Lambs.

    PubMed

    Ishaq, Suzanne L; Kim, Christina J; Reis, Doug; Wright, André-Denis G

    2015-01-01

    Fibrolytic bacteria were isolated from the rumen of North American moose (Alces alces), which eat a high-fiber diet of woody browse. It was hypothesized that fibrolytic bacteria isolated from the moose rumen could be used as probiotics to improve fiber degradation and animal production. Thirty-one isolates (Bacillus, n = 26; Paenibacillus, n = 1; and Staphylococcus, n = 4) were cultured from moose rumen digesta samples collected in Vermont. Using Sanger sequencing of the 16S rRNA gene, culturing techniques, and optical densities, isolates were identified and screened for biochemical properties important to plant carbohydrate degradation. Five isolates were selected as candidates for use as a probiotic, which was administered daily to neonate lambs for 9 weeks. It was hypothesized that regular administration of a probiotic to improve fibrolysis to neonate animals through weaning would increase the developing rumen bacterial diversity, increase animal production, and allow for long-term colonization of the probiotic species. Neither weight gain nor wool quality was improved in lambs given a probiotic, however, dietary efficiency was increased as evidenced by the reduced feed intake (and rearing costs) without a loss to weight gain. Experimental lambs had a lower acetate to propionate ratio than control lambs, which was previously shown to indicate increased dietary efficiency. Fibrolytic bacteria made up the majority of sequences, mainly Prevotella, Butyrivibrio, and Ruminococcus. While protozoal densities increased over time and were stable, methanogen densities varied greatly in the first six months of life for lambs. This is likely due to the changing diet and bacterial populations in the developing rumen.

  17. Anaerobic Bacteria in Clinical Specimens – Frequent, But a Neglected Lot: A Five Year Experience at a Tertiary Care Hospital

    PubMed Central

    Shenoy, Padmaja Ananth; Gawda, Ashwini; Shetty, Seema; Anegundi, Renuka; Varma, Muralidhar; Mukhopadhyay, Chiranjay; Chawla, Kiran

    2017-01-01

    Introduction Anaerobic bacteria which constitute a significant proportion of the normal microbiota also cause variety of infections involving various anatomic sites. Considering the tedious culture techniques with longer turnaround time, anaerobic cultures are usually neglected by clinicians and microbiologists. Aim To study the frequency of isolation of different anaerobic bacteria from various clinical specimens. Materials and Methods A retrospective study to analyse the frequency of isolation of different anaerobic bacteria, was conducted over a period of five years from 2011 to 2015 including various clinical specimens submitted to anaerobic division of Microbiology laboratory. Anaerobic bacteria were isolated and identified following standard bacteriological techniques. Results Pathogenic anaerobes (n=336) were isolated from 278 (12.48%) of overall 2227 specimens processed with an average yield of 1.2 isolates. Anaerobes were isolated as polymicrobial flora with or without aerobic bacterial pathogens in 159 (57.2%) patients. Anaerobic Gram-negative bacilli (140, 41.7%) were the predominant isolates. B. fragilis group (67, 19.9%) were the most commonly isolated anaerobic pathogens. Anaerobes were predominantly isolated from deep seated abscess (23.9%). Conclusion Pathogenic anaerobes were isolated from various infection sites. Unless culture and susceptibility tests are performed as a routine, true magnitude of antimicrobial resistance among anaerobic pathogens will not be known. Knowledge of the distribution of these organisms may assist in the selection of appropriate empirical therapy for anaerobic infections. PMID:28892897

  18. Bacteria associated with larvae and adults of the Asian longhorned beetle (Coleoptera: Cerambycidae)

    Treesearch

    John D. Podgwaite; Vincent D' Amico; Roger T. Zerillo; Heidi Schoenfeldt

    2013-01-01

    Bacteria representing several genera were isolated from integument and alimentary tracts of live Asian longhorned beetle, Anaplophora glabripennis (Motschulsky), larvae and adults. Insects examined were from infested tree branches collected from sites in New York and Illinois. Staphylococcus sciuri (Kloos) was the most common...

  19. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water.

    PubMed

    Khan, Sadia; Beattie, Tara K; Knapp, Charles W

    2016-06-01

    Chlorination is commonly used to control levels of bacteria in drinking water; however, viable bacteria may remain due to chlorine resistance. What is concerning is that surviving bacteria, due to co-selection factors, may also have increased resistance to common antibiotics. This would pose a public health risk as it could link resistant bacteria in the natural environment to human population. Here, we investigated the relationship between chlorine- and antibiotic-resistances by harvesting 148 surviving bacteria from chlorinated drinking-water systems and compared their susceptibilities against chlorine disinfectants and antibiotics. Twenty-two genera were isolated, including members of Paenibacillus, Burkholderia, Escherichia, Sphingomonas and Dermacoccus species. Weak (but significant) correlations were found between chlorine-tolerance and minimum inhibitory concentrations against the antibiotics tetracycline, sulfamethoxazole and amoxicillin, but not against ciprofloxacin; this suggest that chlorine-tolerant bacteria are more likely to also be antibiotic resistant. Further, antibiotic-resistant bacteria survived longer than antibiotic-sensitive organisms when exposed to free chlorine in a contact-time assay; however, there were little differences in susceptibility when exposed to monochloramine. Irrespective of antibiotic-resistance, spore-forming bacteria had higher tolerance against disinfection compounds. The presence of chlorine-resistant bacteria surviving in drinking-water systems may carry additional risk of antibiotic resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Biodiversity and γ-Aminobutyric Acid Production by Lactic Acid Bacteria Isolated from Traditional Alpine Raw Cow's Milk Cheeses

    PubMed Central

    Nardin, Tiziana; Schiavon, Silvia; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M.

    2015-01-01

    “Nostrano-cheeses” are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of “Nostrano-cheeses” and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus. PMID:25802859

  1. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses.

    PubMed

    Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M

    2015-01-01

    "Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.

  2. Isolation and identification of bacteria causing mastitis in small ruminants and their susceptibility to antibiotics, honey, essential oils, and plant extracts

    PubMed Central

    Abdalhamed, Abeer Mostafa; Zeedan, Gamil Sayed Gamil; Zeina, Hala Abdoula Ahmed Abou

    2018-01-01

    Aim: The present work aims to isolate and identify bacteria that cause mastitis in small ruminants and evaluates the antibacterial activity of some antibiotics, honey, essential oils, and plant extracts. Materials and Methods: A total of 289 milk samples were collected from udder secretions of sheep (n=189) and goat (n=100) from El-Fayoum, Beni-Suef, and Giza governorates. Screening subclinical mastitis (SCM) was done using California Mastitis Test (CMT); identification of the isolates was achieved using Gram’s staining, hemolytic pattern, colony morphology, and biochemical tests using Analytical Profile Index. Results: On clinical examination, the incidence of clinical mastitis (CM) was found to be 5.88% and 7% in sheep and goat, respectively. On CMT, SCM was found to be 25 (13.23%) and 11 (10%) in sheep and goat, respectively. Bacteriological examination of all milk samples found the presence of Staphylococcus aureus (SA) (31.1%), coagulase-negative staphylococci (CNS) (19.5%), Escherichia coli (EC) (8.3%), Streptococcus spp. (5.6%), Klebsiella spp. (3.77%), and Pseudomonas spp. (1.89%), while no bacteria were cultured from 81.66% of the samples. Identification of 9 isolates of CNS was achieved by using API staph test to Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus cohnii, and Staphylococcus saprophyticus. The highest bacterial resistance was found in EC (67.14%) followed by Kp (45.28%) and SA (26.57%). Conclusion: Onion and black cumin essential oils followed by Egyptian honey showed strong antibacterial effects against multidrug-resistant bacteria. Finally, our study proved that Egyptian honey, onion, and black cumin essential oils have a marked strong antibacterial effect against bacteria isolated from small ruminant mastitis, but still further extensive studies are needed to discover the therapeutic properties of these plant extracts and honey. PMID:29657429

  3. Significance of bacteria associated with invertebrates in drinking water distribution networks.

    PubMed

    Wolmarans, E; du Preez, H H; de Wet, C M E; Venter, S N

    2005-01-01

    The implication of invertebrates found in drinking water distribution networks to public health is of concern to water utilities. Previous studies have shown that the bacteria associated with the invertebrates could be potentially pathogenic to humans. This study investigated the level and identity of bacteria commonly associated with invertebrates collected from the drinking water treatment systems as well as from the main pipelines leaving the treatment works. On all sampling occasions bacteria were isolated from the invertebrate samples collected. The highest bacterial counts were observed for the samples taken before filtration as was expected. There were, however, indications that optimal removal of invertebrates from water did not always occur. During the investigation, 116 colonies were sampled for further identification. The isolates represent several bacterial genera and species that are pathogenic or opportunistic pathogens of humans. Diarrhoea, meningitis, septicaemia and skin infections are among the diseases associated with these organisms. The estimated number of bacteria that could be associated with a single invertebrate (as based on average invertebrate numbers) could range from 10 to 4000 bacteria per organism. It can, therefore, be concluded that bacteria associated with invertebrates might under the worst case scenario pose a potential health risk to water users. In the light of the above findings it is clear that invertebrates in drinking water should be controlled at levels as low as technically and economically feasible.

  4. Number of viable bacteria and presumptive antibiotic residues in milk fed to calves on commercial dairies.

    PubMed

    Selim, S A; Cullor, J S

    1997-10-15

    To assess the number of bacteria and presumptive antibiotic residues in milk fed to calves and to identify those bacteria and the antibiotic susceptibility of selected bacterial strains. Cross-sectional prospective study. 189 samples obtained from 12 local dairies. Samples of waste milk and milk-based fluids (eg, milk replacer, colostrum, bulk-tank milk) were obtained. Cumulative number of viable bacteria was determined. Bacteria were cultured aerobically, and antibiotic susceptibility testing of selected strains was performed. Presumptive antibiotic residues were detected by use of test kits. Geometric mean of the cumulative number of bacteria for waste milk samples was significantly higher than for other types of milk or milk-based products. Streptococcus sp (84/165 samples) and Enterobacteriaceae (83/165 samples) were the predominant bacteria identified, followed by Staphylococcus sp (68/165 samples). Escherichia coli was the gram-negative species most commonly isolated (52/165 samples; 32%); however, none were strain O157. Salmonella sp or Mycoplasma sp were not isolated. Of 189 samples, 119 (63%) were positive when tested for beta-lactams or tetracycline by use of 2 commercially available assays. In vitro, some bacteria were resistant to commonly used antibiotics. Waste milk that has not been effectively treated (eg, pasteurization) to reduce microbial load prior to use as calf feed should be used with caution, because it may contain a high number of bacteria that may be pathogenic to cattle and human beings. Antibiotic residues that would constitute violative amounts and existence of multiple antibiotic resistant bacterial strains are concerns in calf health management and dairy food safety.

  5. Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum.

    PubMed

    Urrea, R; Cabezas, L; Sierra, R; Cárdenas, M; Restrepo, S; Jiménez, P

    2011-09-01

    Cape gooseberries (Physalis peruviana) have become increasingly important in Colombia for both domestic consumption and the international export market. Vascular wilting caused by Fusarium oxysporum is the most damaging disease to P. peruviana crops in Colombia. The control of this pathogen is mainly carried out by chemical and cultural practices, increasing production costs and generating resistance. Therefore, the objectives of this study were to test rhizobacteria isolates from P. peruviana rhizosphere against F. oxysporum under in vitro and in vivo conditions. Over 120 strains were isolated, and five were selected for their high inhibition of F. oxysporum growth and conidia production under in vitro conditions. These strains inhibited growth by 41-58% and reduced three- to fivefold conidia production. In the in vivo assays, all the tested isolates significantly reduced fungal pathogenicity in terms of virulence. Isolate B-3.4 was the most efficient in delaying the onset of the first symptoms. All isolates were identified as belonging to the genus Pseudomonas except for A-19 (Bacillus sp.). Our results confirmed that there are prospective rhizobacteria strains that can be used as biological control agents; some of them being able to inhibit in vitro F. oxysporum growth and sporulation. Incorporating these bacteria into biological control strategies for the disease that causes high economical losses in the second most exported fruit from Colombia would result in a reduced impact on environment and economy. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Lactic acid bacteria isolated from apples are able to catabolise arginine.

    PubMed

    Savino, María J; Sánchez, Leandro A; Saguir, Fabiana M; de Nadra, María C Manca

    2012-03-01

    We investigated the potentiality of lactic acid bacteria (LAB) isolated from two apples variety to utilize arginine at different initial pH values. Apples surface contained average levels of bacteria ranging from log 2.49 ± 0.53 to log 3.73 ± 0.48 cfu/ml for Red Delicious and Golden Delicious varieties, respectively. Thirty-one strains able to develop in presence of arginine at low pH were phenotypically and genotipically identified as belonging to Lactobacillus, Pediococcus and Leuconostoc genera. In general, they did not produce ammonia from arginine when cultivated in basal medium with arginine (BMA) at pH 4.5 or 5.2. When this metabolite was quantified only six strains belonging to Leuconostoc dextranicum, Lactobacillus brevis and Lactobacillus plantarum species formed higher ammonia amounts in BMA as compared to control. This was correlated with arginine utilization and it was more pronounced at pH 4.5 than 5.2. Analysis of citrulline production confirmed the arginine utilization in these bacteria by the arginine deiminase (ADI) pathway. Maxima citrulline production was observed for Lactobacillus brevis M15 at the two pH values. In this strain ammonia was formed at higher rate than citrulline, which was detected in concentration lower than 1 mM. Thus, main LAB species found on apple surfaces with abilities to degrade arginine by the ADI pathway under different conditions were reported here at the first time. The results suggested that the ADI pathway in apples LAB might not be mainly relevant for their survival in the acid natural environmental, despite leading to the ammonia formation, which may contribute to the increase in pH, coping the acid stress.

  7. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    PubMed

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria

    PubMed Central

    2014-01-01

    Background Worldwide, the emergence of multidrug-resistant gram-negative bacteria is a clinical problem. Surface disinfectant cleaners (SDCs) that are effective against these bacteria are needed for use in high risk areas around patients and on multi-touch surfaces. We determined the efficacy of several SDCs against clinically relevant bacterial species with and without common types of multidrug resistance. Methods Bacteria species used were ATCC strains; clinical isolates classified as antibiotic-susceptible; and multi-resistant clinical isolates from Klebsiella oxytoca, Klebsiella pneumoniae, and Serratia marcescens (all OXA-48 and KPC-2); Acinetobacter baumannii (OXA-23); Pseudomonas aeruginosa (VIM-1); and Achromobacter xylosoxidans (ATCC strain). Experiments were carried out according to EN 13727:2012 in quadruplicate under dirty conditions. The five evaluated SDCs were based on alcohol and an amphoteric substance (AAS), an oxygen-releaser (OR), surface-active substances (SAS), or surface-active-substances plus aldehydes (SASA; two formulations). Bactericidal concentrations of SDCs were determined at two different contact times. Efficacy was defined as a log10 ≥ 5 reduction in bacterial cell count. Results SDCs based on AAS, OR, and SAS were effective against all six species irrespective of the degree of multi-resistance. The SASA formulations were effective against the bacteria irrespective of degree of multi-resistance except for one of the four P. aeruginosa isolates (VIM-1). We found no general correlation between SDC efficacy and degree of antibiotic resistance. Conclusions SDCs were generally effective against gram-negative bacteria with and without multidrug resistance. SDCs are therefore suitable for surface disinfection in the immediate proximity of patients. Single bacterial isolates, however, might have reduced susceptibility to selected biocidal agents. PMID:24885029

  9. Isolation of Endohyphal Bacteria from Foliar Ascomycota and In Vitro Establishment of Their Symbiotic Associations

    PubMed Central

    Arendt, Kayla R.; Hockett, Kevin L.; Araldi-Brondolo, Sarah J.; Baltrus, David A.

    2016-01-01

    Endohyphal bacteria (EHB) can influence fungal phenotypes and shape the outcomes of plant-fungal interactions. Previous work has suggested that EHB form facultative associations with many foliar fungi in the Ascomycota. These bacteria can be isolated in culture, and fungi can be cured of EHB using antibiotics. Here, we present methods for successfully introducing EHB into axenic mycelia of strains representing two classes of Ascomycota. We first establish in vitro conditions favoring reintroduction of two strains of EHB (Luteibacter sp.) into axenic cultures of their original fungal hosts, focusing on fungi isolated from healthy plant tissue as endophytes: Microdiplodia sp. (Dothideomycetes) and Pestalotiopsis sp. (Sordariomycetes). We then demonstrate that these EHB can be introduced into a novel fungal host under the same conditions, successfully transferring EHB between fungi representing different classes. Finally, we manipulate conditions to optimize reintroduction in a focal EHB-fungal association. We show that EHB infections were initiated and maintained more often under low-nutrient culture conditions and when EHB and fungal hyphae were washed with MgCl2 prior to reassociation. Our study provides new methods for experimental assessment of the effects of EHB on fungal phenotypes and shows how the identity of the fungal host and growth conditions can define the establishment of these widespread and important symbioses. PMID:26969692

  10. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

    PubMed Central

    Etminani, Faegheh; Harighi, Behrouz

    2018-01-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity. PMID:29887777

  11. Isolation of AHL-degrading bacteria from micro-algal cultures and their impact on algal growth and on virulence of Vibrio campbellii to prawn larvae.

    PubMed

    Pande, Gde Sasmita Julyantoro; Natrah, Fatin Mohd Ikhsan; Flandez, Ace Vincent Bravo; Kumar, Uday; Niu, Yufeng; Bossier, Peter; Defoirdt, Tom

    2015-12-01

    Inactivation of quorum sensing (QS) signal molecules, such as acylhomoserine lactones (AHLs) of pathogenic bacteria, has been proposed as a novel method to combat bacterial diseases in aquaculture. Despite the importance of micro-algae for aquaculture, AHL degradation by bacteria associated with micro-algal cultures has thus far not been investigated. In this study, we isolated Pseudomonas sp. NFMI-T and Bacillus sp. NFMI-C from open cultures of the micro-algae Tetraselmis suecica and Chaetoceros muelleri, respectively. An AHL degradation assay showed that either monocultures or co-cultures of the isolates were able to degrade the AHL N-hexanoyl-L-homoserine lactone. In contrast, only Bacillus sp. NFMI-C was able to inactivate N-hydroxybutanoyl-L-homoserine lactone, the AHL produced by Vibrio campbellii. The isolated bacteria were able to persist for up to 3 weeks in conventionalized micro-algal cultures, indicating that they were able to establish and maintain themselves within open algal cultures. Using gnotobiotic algal cultures, we found that the isolates did not affect growth of the micro-algae from which they were isolated, whereas a mixture of both isolates increased the growth of Tetraselmis and decreased the growth of Chaetoceros. Finally, addition of Bacillus sp. NFMI-C to the rearing water of giant river prawn (Macrobrachium rosenbergii) larvae significantly improved survival of the larvae when challenged with pathogenic V. campbellii, whereas it had no effect on larval growth.

  12. Isolation and characterization of two new methanesulfonic acid-degrading bacterial isolates from a Portuguese soil sample.

    PubMed

    De Marco, P; Murrell, J C; Bordalo, A A; Moradas-Ferreira, P

    2000-02-01

    Two novel bacterial strains that can utilize methanesulfonic acid as a source of carbon and energy were isolated from a soil sample collected in northern Portugal. Morphological, physiological, biochemical and molecular biological characterization of the two isolates indicate that strain P1 is a pink-pigmented facultative methylotroph belonging to the genus Methylobacterium, while strain P2 is a restricted methylotroph belonging to the genus Hyphomicrobium. Both strains are strictly aerobic, degrade methanesulfonate, and release small quantities of sulfite into the medium. Growth on methanesulfonate induces a specific polypeptide profile in each strain. This, together with the positive hybridization to a DNA probe that carries the msm genes of Methylosulfonomonas methylovora strain M2, strongly endorses the contention that a methanesulfonic acid monooxygenase related to that found in the previously known methanesulfonate-utilizing bacteria is present in strains P1 and P2. The isolation of bacteria containing conserved msm genes from diverse environments and geographical locations supports the hypothesis that a common enzyme may be globally responsible for the oxidation of methanesulfonate by natural methylotrophic communities.

  13. Presence of Thermophilic Bacteria in Laundry and Domestic Hot-Water Heaters

    PubMed Central

    Brock, Thomas D.; Boylen, Kathryn L.

    1973-01-01

    Thermophilic bacteria resembling Thermus aquaticus were isolated from hot water taken from domestic and commercial hot-water tanks. Cold water from the same locations never yielded thermophilic bacteria, suggesting that the bacteria were growing in the tanks. In contrast to the T. aquaticus isolates from hot springs, the present isolates were rarely pigmented. In general, the hotter sources more frequently yielded bacteria. PMID:4568892

  14. Antibacterial activities of multi drug resistant Myroides odoratimimus bacteria isolated from adult flesh flies (Diptera: sarcophagidae) are independent of metallo beta-lactamase gene

    PubMed Central

    Dharne, M.S.; Gupta, A.K.; Rangrez, A.Y.; Ghate, H.V.; Patole, M.S.; Shouche, Y.S.

    2008-01-01

    Flesh flies (Diptera: Sarcophagidae) are well known cause of myiasis and their gut bacteria have never been studied for antimicrobial activity against bacteria. Antimicrobial studies of Myroides spp. are restricted to nosocomial strains. A Gram-negative bacterium, Myroides sp., was isolated from the gut of adult flesh flies (Sarcophaga sp.) and submitted to evaluation of nutritional parameters using Biolog GN, 16S rRNA gene sequencing, susceptibility to various antimicrobials by disc diffusion method and detection of metallo β-lactamase genes (TUS/MUS). The antagonistic effects were tested on Gram-negative and Gram-positive bacteria isolated from human clinical specimens, environmental samples and insect mid gut. Bacterial species included were Aeromonas hydrophila, A. culicicola, Morganella morganii subsp. sibonii, Ochrobactrum anthropi, Weissella confusa, Escherichia coli, Ochrobactrum sp., Serratia sp., Kestersia sp., Ignatzschineria sp., Bacillus sp. The Myroides sp. strain was resistant to penicillin-G, erythromycin, streptomycin, amikacin, kanamycin, gentamycin, ampicillin, trimethoprim and tobramycin. These strain showed antibacterial action against all bacterial strains except W. confusa, Ignatzschineria sp., A. hydrophila and M. morganii subsp. sibonii. The multidrug resistance of the strain was similar to the resistance of clinical isolates, inhibiting growth of bacteria from clinical, environmental and insect gut samples. The metallo β-lactamase (TUS/MUS) genes were absent, and resistance due to these genes was ruled out, indicating involvement of other secretion machinery. PMID:24031236

  15. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    PubMed

    Pallavali, Roja Rani; Degati, Vijaya Lakshmi; Lomada, Dakshayani; Reddy, Madhava C; Durbaka, Vijaya Raghava Prasad

    2017-01-01

    Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS), Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100%) were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence, our results suggest

  16. Production of two bacteriocins in various growth conditions produced by gram-positive bacteria isolated from chicken cecum.

    PubMed

    Wang, Qiuju; Cui, Yizhe; Wang, Wenmei; Xu, Jili; Xu, Li

    2012-01-01

    Lactobacillus plantarum CLP29 and Enterococcus faecium CLE34 isolated from the cecal contents of young broiler chicks were identified based on physiological and biochemical characteristics, and identification was confirmed by 16S rRNA sequencing. Both bacteria showed a broad range of inhibitory action against bacteria such as Salmonella and Escherichia coli and produced two peptides, plantaricin CLP29 and enterocin CLE34. Treatment with proteinase K, trypase, or benase resulted in the loss of activity of the two peptides, confirming their proteinaceous nature. The highest activity levels for both bacteria were recorded in de Man - Rogosa - Sharpe agar at pH 5.0, 6.0, and 7.0, at 37 °C. Carbon and nitrogen sources affected the antibacterial activities of the two bacteriocins in different combinations, which suggested that the antibacterial abilities of different bacteriocins produced in nutrient sources were various.

  17. Decellularized human amniotic membrane: more is needed for an efficient dressing for protection of burns against antibiotic-resistant bacteria isolated from burn patients.

    PubMed

    Gholipourmalekabadi, M; Bandehpour, M; Mozafari, M; Hashemi, A; Ghanbarian, H; Sameni, M; Salimi, M; Gholami, M; Samadikuchaksaraei, A

    2015-11-01

    Human amniotic membranes (HAMs) have attracted the attention of burn surgeons for decades due to favorable properties such as their antibacterial activity and promising support of cell proliferation. On the other hand, as a major implication in the health of burn patients, the prevalence of bacteria resistant to multiple antibiotics is increasing due to overuse of antibiotics. The aim of this study was to investigate whether HAMs (both fresh and acellular) are an effective antibacterial agent against antibiotic-resistant bacteria isolated from burn patients. Therefore, a HAM was decellularized and tested for its antibacterial activity. Decellularization of the tissue was confirmed by hematoxylin and eosin (H&E) and 4,6-diamidino-2-phenylindole (DAPI) staining. In addition, the cyto-biocompatibility of the acellular HAM was proven by the cell viability test (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, MTT) and scanning electron microscopy (SEM). The resistant bacteria were isolated from burns, identified, and tested for their susceptibility to antibiotics using both the antibiogram and polymerase chain reaction (PCR) techniques. Among the isolated bacteria, three blaIMP gene-positive Pseudomonas aeruginosa strains were chosen for their high resistance to the tested antibiotics. The antibacterial activity of the HAM was also tested for Klebsiella pneumoniae (American Type Culture Collection (ATCC) 700603) as a resistant ATCC bacterium; Staphylococcus aureus (mecA positive); and three standard strains of ATCC bacteria including Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27833), and S. aureus (ATCC 25923). Antibacterial assay revealed that only the latter three bacteria were susceptible to the HAM. All the data obtained from this study suggest that an alternative strategy is required to complement HAM grafting in order to fully protect burns from nosocomial infections. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  18. Isolation and characterisation of new putative probiotic bacteria from human colonic flora.

    PubMed

    Raz, Irit; Gollop, Natan; Polak-Charcon, Sylvie; Schwartz, Betty

    2007-04-01

    The present study describes a novel bacterial isolate exhibiting high ability to synthesise and secrete butyrate. The novel isolated bacterium was obtained from human faeces and grown in selective liquid intestinal microflora medium containing rumen fluid under microaerobic conditions. Its probiotic properties were demonstrated by the ability of the isolate to survive high acidity and medium containing bile acids and the ability to adhere to colon cancer cells (Caco-2) in vitro. Phylogenetic identity to Enterococcus durans was established using specific primers for 16S rRNA (99% probability). PCR analyses with primers to the bacterial gene encoding butyrate kinase, present in the butyrogenic bacteria Clostridium, showed that this gene is present in E. durans. The in vivo immunoprotective and anti-inflammatory effects of E. durans were assessed in dextran sodium sulfate (DSS)-induced colitis in Balb/c mice. Administration of E. durans ameliorated histological, clinical and biochemical scores directly related to intestinal inflammation whereas the lactic acid bacterium Lactobacillus delbrueckii was ineffective in this regard. Colonic cDNA concentrations of IL-1beta and TNF-alpha were significantly down regulated in DSS-treated E. durans-fed mice but not in control or DSS-treated L. delbrueckii- fed mice. Fluorescent in situ hybridisation analyses of colonic tissue from mice fed E. durans, using a butyrate kinase probe, demonstrated that E. durans significantly adheres to the colonic tissue. The novel isolated bacterium described in the present paper, upon further characterisation, can be developed into a useful probiotic aimed at the treatment of patients suffering from ulcerative colitis.

  19. The characterization of lactic acid bacteria isolated during the traditional production of Užička sausage

    NASA Astrophysics Data System (ADS)

    Borović, B.; Velebit, B.; Vesković, S.; Lakićević, B.; Baltić, T.

    2017-09-01

    Užička sausage is a traditionally fermented dry sausage that is produced in western Serbia. It is made of beef and pork with the addition of solid fat and natural spices. The whole manufacturing process lasted for 21 days. The goal of this study was to create a collection of lactic acid bacteria isolated during the ripening and identify them using molecular methods. A total of 50 isolates from different stages of ripening (fermentation and drying) were identified by molecular methods. Leuconococcus mesenteroides, Lactobacillus brevis, and Lactobacillus sakei were the predominant microorganisms in Užička sausage.

  20. Antibacterial activity of Lactobacillus acidophilus strains isolated from honey marketed in Malaysia against selected multiple antibiotic resistant (MAR) Gram-positive bacteria.

    PubMed

    Aween, Mohamed Mustafa; Hassan, Zaiton; Muhialdin, Belal J; Eljamel, Yossra A; Al-Mabrok, Asma Saleh W; Lani, Mohd Nizam

    2012-07-01

    A total of 32 lactic acid bacteria (LAB) were isolated from 13 honey samples commercially marketed in Malaysia, 6 strains identified as Lactobacillus acidophilus by API CHL50. The isolates had antibacterial activities against multiple antibiotic resistant's Staphylococcus aureus (25 to 32 mm), Staphylococcus epidermis (14 to 22 mm) and Bacillus subtilis (12 to 19 mm) in the agar overlay method after 24 h incubation at 30 °C. The crude supernatant was heat stable at 90 °C and 121 °C for 1 h. Treatment with proteinase K and RNase II maintained the antimicrobial activity of all the supernatants except sample H006-A and H010-G. All the supernatants showed antimicrobial activities against target bacteria at pH 3 and pH 5 but not at pH 6 within 72 h incubation at 30 °C. S. aureus was not inhibited by sample H006-A isolated from Libyan honey and sample H008-D isolated from Malaysian honey at pH 5, compared to supernatants from other L. acidophilus isolates. The presence of different strains of L. acidophilus in honey obtained from different sources may contribute to the differences in the antimicrobial properties of honey. © 2012 Institute of Food Technologists®

  1. Isolation and characterization of mimosine, 3, 4 DHP and 2, 3 DHP degrading bacteria from a commercial rumen inoculum.

    PubMed

    Derakhshani, Hooman; Corley, Sean W; Al Jassim, Rafat

    2016-05-01

    The presence of the toxic amino acid mimosine in Leucaena leucocephala restricts its use as a protein source for ruminants. Rumen bacteria degrade mimosine to 3,4- and 2,3-dihydroxypyridine (DHP), which remain toxic. Synergistes jonesii is believed to be the main bacterium responsible for degradation of these toxic compounds but other bacteria may also be involved. In this study, a commercial inoculum provided by the Queensland's Department of Agriculture, Fisheries, and Forestry was screened for isolation and characterization of mimosine, 3,4- and 2,3-DHP degrading bacterial strains. A new medium for screening of 2,3-DHP degrading bacteria was developed. Molecular and biochemical approaches used in this study revealed four bacterial isolates - Streptococcus lutetiensis, Clostridium butyricum, Lactobacillus vitulinus, and Butyrivibrio fibrisolvens - to be able to completely degrade mimosine within 7 days of incubation. It was also observed that C. butyricum and L. vitulinus were able to partially degrade 2,3-DHP within 12 days of incubation, while S. lutetiensis, was able to fully degrade both 3,4 and 2,3 DHP. Collectively, we concluded that S. jonesii is not the sole bacterium responsible for detoxification of Leucaena. Comprehensive screening of rumen fluid of cattle grazing on Leucaena pastures is needed to identify additional mimosine-detoxifying bacteria and contribute to development of more effective inoculums to be used by farmers against Leucaena toxicity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The determination and arrangement of a combination of enzyme lactate dehydrogenase of bacteria Acinetobacter sp. as a device the identity important bacteria agent composts

    NASA Astrophysics Data System (ADS)

    Sukmawati, D.; Puspitaningrum, R.; Muzajjanah

    2017-07-01

    The number of garbage generated by the industry or society is a usual problem encountered by almost all urban centers, especially large cities such as Jakarta. Waste prevention strategy required quickly and accurately. One strategy for tackling the Junk was getting lactic acid-producing bacteria. It has been shown that lactic acid can increase the acceleration of organic matter such as an overhaul of lignin and cellulose as well as out causing toxic compounds arising from decay. This research will be conducted on the determination and characterization of the enzyme-producing compost bacteria LDH lactate dehydrogenase LDH - which in isolation from the garbage Landfill Rawasari. Methodology: Research carried out consists: isolation of lactic acid-producing bacteria; identification of microscopic, macroscopic and staining Gram; cellulose assay, and optimization of PCR conditions LDH enzymes producing bacteria. Isolation is performed by dilution method and the direct method. As many as 5-point sampling. Each stage is conducted from 10 grams of soil from the top surface of the compost. Isolation results obtained 100 isolate the bacteria. Base on the characteristic of macroscopic and microscopic observations retrieved 14 isolates of bacteria have shaped rods and brought forth a negative kind of Gram positive staining. Bacterial isolates with codes (BK1; BK3; BK4; BK5; BK6; BK7; BK8; BK9; BK10; BK11: BK12; BK 13). The potential bacteria with ability produce lactate dehydrogenase was BK1 and BK3. Base for analysis phylogenetic there was identification bacteria bak1 and bak3 where Acinetobacter sp.

  3. Decontamination Efficacy of Ultraviolet Radiation against Biofilms of Common Nosocomial Bacteria.

    PubMed

    Tingpej, Pholawat; Tiengtip, Rattana; Kondo, Sumalee

    2015-06-01

    Ultraviolet radiation (UV) is commonly used to destroy microorganisms in the health-care environment. However, the efficacy of UV radiation against bacteria growing within biofilms has never been studied. To measure the sterilization effectiveness of UV radiation against common healthcare associated pathogens growing within biofilms. Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Streptococcus epidermidis, Escherichia coli, ESBL-producing E. coli, Pseudomonas aeruginosa and Acinetobacter baumannii were cultivated in the Calgary Biofilm Device. Their biofilms were placed 50 cm from the UV lamp within the Biosafety Cabinet. Viability test, crystal violet assay and a scanning electron microscope were used to evaluate the germicidal efficacy. Within 5 minutes, UV radiation could kill S. aureus, MRSA, S. epidermidis, A. baumannii and ESBL-producing E. coli completely while it required 20 minutes and 30 minutes respectively to kill E. coli and P. aeruginosa. However, the amounts of biomass and the ultrastructure between UV-exposed biofilms and controls were not significantly different. UV radiation is effective in inactivating nosocomial pathogens grown within biofilms, but not removing biofilms and EPS. The biofilm of P. aeruginosa was the most durable.

  4. Phenotypic and phylogenetic characterization of ruminal tannin-tolerant bacteria.

    PubMed

    Nelson, K E; Thonney, M L; Woolston, T K; Zinder, S H; Pell, A N

    1998-10-01

    The 16S rRNA sequences and selected phenotypic characteristics were determined for six recently isolated bacteria that can tolerate high levels of hydrolyzable and condensed tannins. Bacteria were isolated from the ruminal contents of animals in different geographic locations, including Sardinian sheep (Ovis aries), Honduran and Colombian goats (Capra hircus), white-tail deer (Odocoileus virginianus) from upstate New York, and Rocky Mountain elk (Cervus elaphus nelsoni) from Oregon. Nearly complete sequences of the small-subunit rRNA genes, which were obtained by PCR amplification, cloning, and sequencing, were used for phylogenetic characterization. Comparisons of the 16S rRNA of the six isolates showed that four of the isolates were members of the genus Streptococcus and were most closely related to ruminal strains of Streptococcus bovis and the recently described organism Streptococcus gallolyticus. One of the other isolates, a gram-positive rod, clustered with the clostridia in the low-G+C-content group of gram-positive bacteria. The sixth isolate, a gram-negative rod, was a member of the family Enterobacteriaceae in the gamma subdivision of the class Proteobacteria. None of the 16S rRNA sequences of the tannin-tolerant bacteria examined was identical to the sequence of any previously described microorganism or to the sequence of any of the other organisms examined in this study. Three phylogenetically distinct groups of ruminal bacteria were isolated from four species of ruminants in Europe, North America, and South America. The presence of tannin-tolerant bacteria is not restricted by climate, geography, or host animal, although attempts to isolate tannin-tolerant bacteria from cows on low-tannin diets failed.

  5. Phenotypic and Phylogenetic Characterization of Ruminal Tannin-Tolerant Bacteria

    PubMed Central

    Nelson, Karen E.; Thonney, Michael L.; Woolston, Tina K.; Zinder, Stephen H.; Pell, Alice N.

    1998-01-01

    The 16S rRNA sequences and selected phenotypic characteristics were determined for six recently isolated bacteria that can tolerate high levels of hydrolyzable and condensed tannins. Bacteria were isolated from the ruminal contents of animals in different geographic locations, including Sardinian sheep (Ovis aries), Honduran and Colombian goats (Capra hircus), white-tail deer (Odocoileus virginianus) from upstate New York, and Rocky Mountain elk (Cervus elaphus nelsoni) from Oregon. Nearly complete sequences of the small-subunit rRNA genes, which were obtained by PCR amplification, cloning, and sequencing, were used for phylogenetic characterization. Comparisons of the 16S rRNA of the six isolates showed that four of the isolates were members of the genus Streptococcus and were most closely related to ruminal strains of Streptococcus bovis and the recently described organism Streptococcus gallolyticus. One of the other isolates, a gram-positive rod, clustered with the clostridia in the low-G+C-content group of gram-positive bacteria. The sixth isolate, a gram-negative rod, was a member of the family Enterobacteriaceae in the gamma subdivision of the class Proteobacteria. None of the 16S rRNA sequences of the tannin-tolerant bacteria examined was identical to the sequence of any previously described microorganism or to the sequence of any of the other organisms examined in this study. Three phylogenetically distinct groups of ruminal bacteria were isolated from four species of ruminants in Europe, North America, and South America. The presence of tannin-tolerant bacteria is not restricted by climate, geography, or host animal, although attempts to isolate tannin-tolerant bacteria from cows on low-tannin diets failed. PMID:9758806

  6. Cultivable bacteria isolated from apple trees cultivated under different crop systems: Diversity and antagonistic activity against Colletotrichum gloeosporioides

    PubMed Central

    dos Passos, João Frederico M.; da Costa, Pedro B.; Costa, Murilo D.; Zaffari, Gilmar R.; Nava, Gilberto; Boneti, José Itamar; de Oliveira, Andréia Mara R.; Passaglia, Luciane M.P.

    2014-01-01

    This study evaluated the diversity of cultivable plant growth-promoting (PGP) bacteria associated with apple trees cultivated under different crop management systems and their antagonistic ability against Colletotrichum gloeosporioides. Samples of roots and rhizospheric soil from apple trees cultivated in organic and conventional orchards in southern Brazil were collected, together with soil samples from an area never used for agriculture (native field). Bacteria were identified at the genus level by PCR-RFLP and partial sequencing of the 16S rRNA, and were evaluated for some PGP abilities. The most abundant bacterial genera identified were Enterobacter (27.7%), Pseudomonas (18.7%), Burkholderia (13.7%), and Rahnella (12.3%). Sixty-nine isolates presented some antagonist activity against C. gloeosporioides. In a greenhouse experiment, five days after exposure to C. gloeosporioides, an average of 30% of the leaf area of plants inoculated with isolate 89 (identified as Burkholderia sp.) were infected, whereas 60 to 73% of the leaf area of untreated plants was affected by fungal attack. Our results allowed us to infer how anthropogenic activity is affecting the bacterial communities in soil associated with apple tree crop systems, and to obtain an isolate that was able to delay the emergence of an important disease for this culture. PMID:25249780

  7. Isolation of Novel Bacteria Including Rarely Cultivated Phyla, Acidobacteria and Verrucomicrobia, from the Roots of Emergent Plants by Simple Culturing Method

    PubMed Central

    Tanaka, Yasuhiro; Matsuzawa, Hiroaki; Tamaki, Hideyuki; Tagawa, Masahiro; Toyama, Tadashi; Kamagata, Yoichi; Mori, Kazuhiro

    2017-01-01

    A number of novel bacteria including members of rarely cultivated phyla, Acidobacteria and Verrucomicrobia, were successfully isolated from the roots of two emergent plants, Iris pseudacorus and Scirpus juncoides, by a simple culturing method. A total of 47.1% (66 strains) for I. pseudacorus and 42.1% (59 strains) for S. juncoides of all isolates (140 strains from each sample) were phylogenetically novel. Furthermore, Acidobacteria and Verrucomicrobia occupied 10.7% (15 strains) and 2.9% (4 strains) of I. pseudacorus isolates, and 2.1% (3 strains) and 3.6% (5 strains) of S. juncoides isolates, respectively, indicating that plant roots are attractive sources for isolating rarely cultivated microbes. PMID:28740039

  8. Emergence of multi drug resistance among soil bacteria exposing to insecticides.

    PubMed

    Rangasamy, Kirubakaran; Athiappan, Murugan; Devarajan, Natarajan; Parray, Javid A

    2017-04-01

    Impacts of pesticide exposure on the soil microbial flora and cross resistance to antibiotics have not been well documented. Development of antibiotic resistance is a common issue among soil bacteria which are exposing to pesticides continuously at sub-lethal concentration. The present study was focused to evaluate the correlation between pesticide exposures and evolution of multi drug resistance among isolates collected from soil applied with insecticides. Twenty five insecticide (Monochrotophos) degrading bacteria were isolated from contaminated agricultural soil. The bacterial isolates Bacillus Sps, Bacillus cereus, Bacillus firmus and Bacillus thuringiensis were found to be resistant against chloramphenical, monochrotophos, ampicillin, cefotaxime, streptomycin and tetracycline antibiotics used. Involvement of plasmid in drug as well as insecticide resistant was confirmed through plasmid curing among selected bacterial strains. Bacillus Sps (MK-07), Bacillus cereus (MK-11), Bacillus firmus (MK-13) and Bacillus thuringiensis (MK-24) lost their resistant against insecticides and antibiotics once after removal of plasmid by exposing to 2% sodium dodecyl sulphate. The plasmid was transformed back to bacteria which produced similar derivatives when cultured in Minimal Salt medium (pH 7.0) supplemented with 0.4% of insecticide. Homology modeling was used to prove that organophosphorus hydrolase and able to metabolize all the antibiotics showed positive interaction with high docking score. The present study revealed that persistent of insecticides in the agricultural soil may lead to increasing development of multidrug resistance among soil bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Trend survey of ocular infections with bacteria at Toyama University Hospital over the past six years--from the standpoint of laboratory examination].

    PubMed

    Kubota, Tomomi; Hayashi, Shirou; Niimi, Hideki; Kitajima, Isao

    2012-07-01

    Specimens of bacterial ocular infections are frequently received in the clinical laboratory. However, a comprehensive trend survey of ocular infections with bacteria is very rare. Our objective is to understand the current tendency of ocular infections with bacteria in patients at Toyama University Hospital from the standpoint of laboratory examination. We studied 263 cases of ocular infection with bacteria diagnosed at Toyama University Hospital from January 2006 to December 2011. 123 were male and 140 were female, with a mean age of 61.2(0-98) years. Specimens were subjected to direct microscopy and culture. Cultures were positive in 174(66.2%) patients. The most common bacterial isolate was Staphylococcus (28.1%), followed by Corynebacterium (19.3%), Streptococcus (9.3%), and Propionibacterium (8.6%). MRSA accounted for 18.8% of all S. aureus isolates, and has increased in recent years. The number of bacteria detected was larger in March, June, July, August, and October. Age distribution indicated that around 70% of bacterial isolates were detected from patients over 60 years old. The most common specimen of ocular infections with bacteria was eye discharge (detection rate; 87.8%), followed by corneal scraping(41%), aqueous humor (19%), and vitreous body (27%). Nearly 80% of bacterial isolates were detected from patients with keratitis, endophthalmitis, dacryocystitis, and conjunctivitis. As for the disease specific detection rate, endophthalmitis was very low (38.3%). The detection rate by years indicated that the way doctors pick up the specimens greatly affects the detection rate. Based on this survey, we need close cooperation with medical doctors concerning laboratory examination in ocular infection with bacteria, and we must improve the detection sensitivity of specimens from patients with endophthalmitis.

  10. The investigation of probiotic potential of lactic acid bacteria isolated from traditional Mongolian dairy products.

    PubMed

    Takeda, Shiro; Yamasaki, Keiko; Takeshita, Masahiko; Kikuchi, Yukiharu; Tsend-Ayush, Chuluunbat; Dashnyam, Bumbein; Ahhmed, Abdulatef M; Kawahara, Satoshi; Muguruma, Michio

    2011-08-01

    The aims of this study were to investigate the diversity of lactic acid bacteria (LAB) isolated from traditional Mongolian dairy products, and to estimate the probiotic potential of the isolated strains. We collected 66 samples of the traditional Mongolian dairy products tarag (n = 45), airag (n = 7), aaruul (n = 8), byasulag (n = 1) and eezgii (n = 5), from which 543 LAB strains were isolated and identified based on 16S ribosomal DNA sequence. The predominant species of those products were Lactobacillus (L.) delbrueckii ssp. bulgaricus, L. helveticus, L. fermentum, L. delbrueckii ssp. lactis and Lactococcus lactis ssp. lactis. However, we could not detect any LAB strains from eezgii. All LAB isolates were screened for tolerance to low pH and to bile acid, gas production from glucose, and adherence to Caco-2 cells. In vitro, we found 10 strains possess probiotic properties, and almost identified them as L. plantarum or L. paracasei subspecies, based on 16S ribosomal DNA and carbohydrate fermentation pattern. These strains were differentiated from each other individually by randomly amplified polymorphic DNA analysis. Additionally, it was notable that 6/10 strains were isolated from camel milk tarag from the Dornogovi province. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  11. Antibacterial Properties of Endophytic Bacteria Isolated from a Fern Species Equisetum arvense L. Against Foodborne Pathogenic Bacteria Staphylococcus aureus and Escherichia coli O157:H7.

    PubMed

    Das, Gitishree; Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2017-01-01

    Endophytic bacteria (EB) are a rich source of secondary metabolites with medicinal importance. In this study, EB were isolated from the bottle brush herb Equisetum arvense and identified based on 16S rRNA sequencing. Evaluation of its antibacterial potential was conducted using two common foodborne pathogenic bacteria, Staphylococcus aureus ATCC 12600 and Escherichia coli O157:H7 ATCC 43890. Out of 103 identified EB, three species, Streptomyces albolongus, Dermacoccus sp., and Mycobacterium sp., showed significant antibacterial activity against S. aureus with inhibition zones of 45.34 ± 0.15, 43.28 ± 0.19, and 22.98 ± 0.18 mm, respectively, whereas only two species, Streptomyces griseoaurantiacus (EAL196) and Paenibacillus sp. (EAS116), showed moderate antibacterial activity against E. coli O157:H7 with inhibition zones of 9.41 ± 0.29 and 10.44 ± 0.31 mm, respectively. Furthermore, ethyl acetate extract of S. albolongus, Mycobacterium sp., and Dermacoccus sp. showed antibacterial activity against S. aureus, with inhibition zones of 23.43 ± 0.21, 21.18 ± 0.22, and 19.72 ± 0.10 mm, respectively. The methanol extract of Dermacoccus sp. and Paenibacillus sp. showed antibacterial activity against S. aureus and E. coli O157:H7, with inhibition zones of 11.30 ± 0.17 and 10.01 ± 0.21 mm, respectively. Scanning electron microscopy indicated swollen and lysed cell membranes of pathogens treated with ethyl acetate extract. A possible reason might be, likely due to EB metabolites penetrating the bacterial cell membranes and affecting various metabolic functions resulting in lysis. To the best of our knowledge, this is the first study to report that EB from E. arvense can be used as a source of natural antibacterial compounds against foodborne pathogenic bacteria.

  12. Spoilage bacteria of fresh broiler chicken carcasses.

    PubMed

    Russell, S M; Fletcher, D L; Cox, N A

    1995-12-01

    Studies were conducted to identify the bacteria responsible for spoilage of fresh broiler chicken carcasses and to characterize the off-odors these bacteria produce. Broiler carcasses were collected from processing plants in the northeast Georgia area, the southeastern U.S., Arkansas, California, and North Carolina. The carcasses were allowed to spoil under controlled conditions at 3 C and spoilage bacteria were isolated. Each spoilage bacterium was separately inoculated into a sterile chicken skin medium, incubated at 25 C for 48 h, and subjectively evaluated for odor. The bacteria isolated from spoiled carcasses that consistently produced off-odors in the chicken skin medium, regardless of the geographical location from which the chickens were obtained, were Shewanella putrefaciens A, B, and D, Pseudomonas fluorescens A, B, and D, and Pseudomonas fragi. These bacteria produced off-odors that resembled "sulfur", "dishrag", "ammonia", "wet dog", "skunk", "dirty socks", "rancid fish", "unspecified bad odor", or a sweet smell resembling "canned corn". Odors produced by the spoilage bacteria were varied; however, odors most associated with spoiled poultry, such as "dishraggy" odors, were produced by the bacteria that were most consistently isolated, such as S. putrefaciens and the pseudomonads.

  13. Characterization of a collection of plasmid-containing bacteria isolated from an on-farm biopurification system used for pesticide removal.

    PubMed

    Martini, María Carla; Albicoro, Francisco Javier; Nour, Eman; Schlüter, Andreas; van Elsas, Jan Dirk; Springael, Dirk; Smalla, Kornelia; Pistorio, Mariano; Lagares, Antonio; Del Papa, María Florencia

    2015-07-01

    Biopurification systems (BPS) are complex soil-related and artificially-generated environments usually designed for the removal of toxic compounds from contaminated wastewaters. The present study has been conducted to isolate and characterize a collection of cultivable plasmid-carrying bacterial isolates recovered from a BPS established for the decontamination of wastewater generated in a farmyard. Out of 1400 isolates, a collection of 75 plasmid-containing bacteria was obtained, of which 35 representative isolates comprising in total at least 50 plasmids were chosen for further characterization. Bacterial hosts were taxonomically assigned by 16S ribosomal RNA gene sequencing and phenotypically characterized according to their ability to grow in presence of different antibiotics and heavy metals. The study demonstrated that a high proportion of the isolates was tolerant to antibiotics and/or heavy metals, highlighting the on-farm BPS enrichment in such genetic traits. Several plasmids conferring such resistances in the bacterial collection were detected to be either mobilizable or selftransmissible. Occurrence of broad host range plasmids of the incompatibility groups IncP, IncQ, IncN and IncW was examined with positive results only for the first group. Presence of the IS1071 insertion sequence, frequently associated with xenobiotics degradation genes, was detected in DNA obtained from 24 of these isolates, strongly suggesting the presence of yet-hidden catabolic activities in the collection of isolates. The results showed a remarkable diversity in the plasmid mobilome of cultivable bacteria in the BPS with the presence of abundant resistance markers of different types, thus providing a suitable environment to investigate the genetic structure of the mobile genetic pool in a model on-farm biofilter for wastewater decontamination in intensive agricultural production. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [Antimicrobial susceptibility patterns of Gram-negative bacteria isolated in urinary tract infections in Venezuela: Results of the SMART study 2009-2012].

    PubMed

    Guevara, Napoleón; Guzmán, Manuel; Merentes, Altagracia; Rizzi, Adele; Papaptzikos, Juana; Rivero, Narlesky; Oranges, Carmela; Vlllarroel, Héctor; Limas, Yoxsivell

    2015-12-01

    Antimicrobial resistance of pathogens causing urinary tract infection (UTI) is a growing problem, which complicates their effective treatment. Surveillance is needed to guide appropriate empiric therapy. to describe the susceptibility patterns of Gram-negative bacteria isolated of patients with UTI to twelve antibiotics as part of the Study for Monitoring Antimicrobial Resistance Trends in Venezuela. Between 2009-2012 a total of 472 Gram-negative bacteria were isolated from hospitalized patients with UTI. The isolates were sent to Central Laboratory (Central Laboratory of International Health Management Associates) to confirm their identification, and to make susceptibility testing as recommended by the Clinical and Laboratory Standards Institute. Enterobacteriacea comprised 96.6% of the total, where Escherichia coli (76.9%) and Klebsiella pneumoniae (10.6%) were the most frequent. Extended-spectrum β-lactamases (ESBL) was detected in 21.6% of isolates. Top antimicrobial activity were ertapenem, imipenem, and amikacin (> 90.0%), slightly lower for amikacin (85.1%) in ESBL-producing strains. Resistance rates to fluoroquinolones and ampicillin/sulbactam were high (40 y 64%, respectively). These data suggest a necessary revision of the therapeutic regimens for the empirical treatment of UTI in Venezuela.

  15. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria

    PubMed Central

    Mohamed, Magdy El-Said; Al-Yacoub, Zakariya H.; Vedakumar, John V.

    2015-01-01

    Microorganisms possess enormous highly specific metabolic activities, which enable them to utilize and transform nearly every known chemical class present in crude oil. In this context, one of the most studied biocatalytic processes is the biodesulfurization (BDS) of thiophenic sulfur-containing compounds such as benzothiophene (BT) and dibenzothiophene (DBT) in crude oils and refinery streams. Three newly isolated bacterial strains, which were affiliated as Rhodococcus sp. strain SA11, Stenotrophomonas sp. strain SA21, and Rhodococcus sp. strain SA31, were enriched from oil contaminated soil in the presence of DBT as the sole S source. GC-FID analysis of DBT-grown cultures showed consumption of DBT, transient formation of DBT sulfone (DBTO2) and accumulation of 2-hydroxybiphenyl (2-HBP). Molecular detection of the plasmid-borne dsz operon, which codes for the DBT desulfurization activity, revealed the presence of dszA, dszB, and dszC genes. These results point to the operation of the known 4S pathway in the BDS of DBT. The maximum consumption rate of DBT was 11 μmol/g dry cell weight (DCW)/h and the maximum formation rate of 2-HBP formation was 4 μmol/g DCW/h. Inhibition of both cell growth and DBT consumption by 2-HBP was observed for all isolates but SA11 isolate was the least affected. The isolated biocatalysts desulfurized other model DBT alkylated homologs. SA11 isolate was capable of desulfurizing BT as well. Resting cells of SA11 exhibited 10% reduction in total sulfur present in heavy crude oil and 18% reduction in total sulfur present in the hexane-soluble fraction of the heavy crude oil. The capabilities of the isolated bacteria to survive and desulfurize a wide range of S compounds present in crude oil are desirable traits for the development of a robust BDS biocatalyst to upgrade crude oils and refinery streams. PMID:25762990

  16. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Isolation and molecular identification of lactic acid bacteria and Bifidobacterium spp. from faeces of the blue-fronted Amazon parrot in Brazil.

    PubMed

    Allegretti, L; Revolledo, L; Astolfi-Ferreira, C S; Chacón, J L; Martins, L M; Seixas, G H F; Ferreira, A J P

    2014-12-01

    In Brazil, the blue-fronted Amazon parrot (Amazona aestiva) is a common pet. The faecal microbiota of these birds include a wide variety of bacterial species, the majority of which belong to the Gram-positive lactic acid bacteria (LAB) clade. The aim of this study was to investigate differences in the diversity and abundance of LAB and Bifidobacterium spp. in the cloacae between wild and captive birds and to select, identify and characterise LAB for consideration as a parrot probiotic. Cloacal swabs were collected from 26 wild and 26 captive birds. Bacterial DNA was extracted, and the 16S rRNA genes were amplified. The numbers of PCR-positive Enterococcus, Pediococcus, and Lactobacillus species isolated from wild and captive birds were significantly different (P<0.05). Enterococcus was the most frequently isolated genus, followed by Pediococcus, Lactobacillus, Lactococcus and Bifidobacterium. Enterococcus faecium, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus coryniformis, Lactobacillus sanfranciscensis and Bifidobacterium bifidum were the most frequently isolated species from all birds. This study increases our understanding of the faecal microbiota, and may help to improve the nutrition and habitat management of captive and wild parrots. The bacterial population identified in the faecal microbiota of clinically healthy wild and captive parrots can serve as a database to analyse variations in the gut microbiota of pathogen-infected parrots and to develop probiotics specific to these genera.

  18. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    PubMed

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Antimicrobial Activity of Chlorhexidine, Peracetic acid/ Peroxide hydrogen and Alcohol based compound on Isolated Bacteria in Madani Heart Hospital, Tabriz, Azerbaijan, Iran

    PubMed Central

    Ghotaslou, Reza; Bahrami, Nashmil

    2012-01-01

    Purpose: The aim of present study was to investigate the effect of chemical agents on the clinical isolates in Madani Heart Hospital, Tabriz, Iran. Methods: The minimum bactericide concentration (MBC) of disinfectants including chlorhexidine (Fort), peracetic acid (Micro) and an alcohol based compound (Deconex) on selected bacteria at various dilutions were determined by the standard suspension technique. Results: MBC of Micro, Fort and Deconex were 2-128 mg/L, 2-64 mg/L and 4 - 32 mg/L, respectively. The Gram negative bacteria were more resistance to disinfectant relation to Gram positive bacteria. Conclusion: The results showed that these agents are able to eradicate the bacteria and they can be used lonely. PMID:24312771

  20. Characterization of lactic acid bacteria from local cow´s milk kefir

    NASA Astrophysics Data System (ADS)

    Ismail, YS; Yulvizar, C.; Mazhitov, B.

    2018-03-01

    One of products from milk fermentation is kefir. It is made by adding kefir grains which are composed of lactic acid bacteria and yeast into milk. The lactic acid bacteria are a group of bacteria that produce antimicrobial substances and able to inhibit the growth of pathogenic bacteria. In this research, the lactic acid bacteria were isolated from Aceh local cow`s milk kefir to determine the genus of the isolates. The methods used in the characterization of lactic acid bacteria are colony morphology, cell morphology, and biochemical tests which includes a catalase test; 5%, 6.5%, and 10% salt endurance tests; 37°C and 14°C temperature endurance tests, SIM test, TSIA test, MR-VP test, and O/F test. Of the four isolates found from the cow’s milk kefir, two isolates were confirmed as lactic acid bacteria (isolates SK-1 and SK-4). Both isolates are Gram positive bacteria, and have negative catalase activity. From the observations of colony morphology, cell morphology, and biochemical tests, it was found that the genus of SK-1 is Lactobacillus and the genus of SK-4 is Enterococcus.

  1. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    PubMed

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  2. Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria.

    PubMed

    Russell, Joseph A; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F

    2016-01-01

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.

  3. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides.

    PubMed

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn M; Johnson, Courtney M; Martin, Stanton L; Land, Miriam L; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A

    2012-11-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated.

  4. Plasmid incidence in bacteria from deep subsurface sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, J.K.; Hicks, R.J.; Li, S.W.

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu{sup 2+}, Cr{sup 3+}, and Hg{sup 2+} for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of themore » individual antibiotics in the disks used for assaying resistance and to the production of low levels of {beta}-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacterial to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.« less

  5. Possible Quorum Sensing in Marine Snow Bacteria: Production of Acylated Homoserine Lactones by Roseobacter Strains Isolated from Marine Snow

    PubMed Central

    Gram, Lone; Grossart, Hans-Peter; Schlingloff, Andrea; Kiørboe, Thomas

    2002-01-01

    We report here, for the first time, that bacteria associated with marine snow produce communication signals involved in quorum sensing in gram-negative bacteria. Four of 43 marine microorganisms isolated from marine snow were found to produce acylated homoserine lactones (AHLs) in well diffusion and thin-layer chromatographic assays based on the Agrobacterium tumefaciens reporter system. Three of the AHL-producing strains were identified by 16S ribosomal DNA gene sequence analysis as Roseobacter spp., and this is the first report of AHL production by these α-Proteobacteria. It is likely that AHLs in Roseobacter species and other marine snow bacteria govern phenotypic traits (biofilm formation, exoenzyme production, and antibiotic production) which are required mainly when the population reaches high densities, e.g., in the marine snow community. PMID:12147515

  6. COAGGREGATION OCCURS AMONGST BACTERIA WITHIN AND BETWEEN DOMESTIC SHOWERHEAD BIOFILMS

    PubMed Central

    Vornhagen, Jay; Stevens, Michael; McCormick, David; Dowd, Scot E.; Eisenberg, Joseph N.S.; Boles, Blaise R.; Rickard, Alexander H.

    2014-01-01

    Showerheads support the development multi-species biofilms that can be unsightly, produce malodor, and may harbor pathogens. The outer surface spray plates of many showerheads support visible biofilms that likely contain a mixture of bacteria from freshwater and potentially from human users. Coaggregation, a mechanism by which genetically distinct bacteria specifically recognize one another, may contribute to the retention and enrichment of different species within these biofilms. The aim of this work was to identify the bacterial composition of outer spray plate biofilms of three domestic shower heads and to determine the inter- and intra-biofilm coaggregation ability of each culturable isolate. The bacterial composition of the three biofilms was determined by using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) and by culturing on R2A medium. An average of 31 genera per biofilm were identified using bTEFAP and a total of 30 isolates were cultured. Even though the microbial diversity of each showerhead biofilm differed, every cultured isolate was able to coaggregate with at least one other isolate from the same or different showerhead biofilm. Promiscuous coaggregating isolates belonged to the genera Brevundimonas, Micrococcus, and Lysobacter. This work suggests that coaggregation may be a common feature of showerhead biofilms. Characterization of the mechanisms mediating coaggregation, and the inter-species interactions they facilitate, may allow for novel strategies to inhibit biofilm development. PMID:23194413

  7. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    PubMed Central

    Utturkar, Sagar M.; Klingeman, Dawn M.; Johnson, Courtney M.; Martin, Stanton L.; Land, Miriam L.; Lu, Tse-Yuan S.; Schadt, Christopher W.; Doktycz, Mitchel J.

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated. PMID:23045501

  8. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn Marie

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  9. [Susceptibility to antimicrobial agents of 2,060 strains of different bacteria isolated in infectious processes in children].

    PubMed

    Filloy, L; Borjas, E; Sierra, A

    1981-01-01

    Susceptibility to antibiotics of 2060 strains of the following bacteria was studied: Escherichia coli, Klebsiella pneumoniae, Salmonella, Shigella, Proteus, Staphylococcus aureus that were isolated in 1978-79 from different infections in children hospitalized at the Hospital Infantil de Mexico. The antimicrobials submitted to the test of susceptibility were: ampicillin, amikacin, carbenicillin, cephalothin, cefoxitin, chloramphenicol, gentamicin, kanamycin, neomycin and sulfamethoxazole-trimethoprim. Present results are compared with previous studies.

  10. Phytochemical, toxicological and antimicrobial evaluation of lawsonia inermis extracts against clinical isolates of pathogenic bacteria

    PubMed Central

    2013-01-01

    Background The emerging resistance of pathogen against the currently available antimicrobial agents demands the search of new antimicrobial agents. The use of medicinal plants as natural substitute is the paramount area of research to overwhelm the drug resistance of infectious agents. Scientists have not made enough effort on the evaluation of safety of medicinal plant yet. Methods In the present study antimicrobial activity of Lawsonia inermis is investigated against clinical isolates of seven bacteria including four Gram negative (Escherichia coli, Salmonella typhi, Klebsiella spp., Shigella sonnei) and three Gram positive (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis) using disc diffusion method. Four types of Lawsonia inermis extracts were prepared using methanol, chloroform, acetone and water as extraction solvents, while DMSO (Dimethyl sulfoxide) and water as dissolution solvents. The rate and extent of bacterial killing was estimated by time-kill kinetic assay at 1× MIC of each bacterial isolate. The overall safety of Lawsonia inermis extracts was assessed in mice. Results Lawsonia inermis displayed noteworthy antimicrobial activity against both gram positive and gram negative bacterial strains used in the study. The minimum value of MIC for different bacterial strains ranged from 2.31 mg/ml to 9.27 mg/ml. At 1x MIC of each bacterial isolate, 3log10 decrease in CFU was recorded after 6 hours of drug exposure and no growth was observed in almost all tested bacteria after 24 hours of exposure. No sign of toxidrome were observed during in vivo toxicity evaluation in mice at 300 mg/kg concentration. Conclusion In conclusion, the present study provides the scientific rational for medicinal use of Lawsonia inermis. The use of Lawsonia inermis extracts is of great significance as substitute antimicrobial agent in therapeutics. PMID:24289297

  11. Phytochemical, toxicological and antimicrobial evaluation of Lawsonia inermis extracts against clinical isolates of pathogenic bacteria.

    PubMed

    Gull, Iram; Sohail, Maria; Aslam, Muhammad Shahbaz; Amin Athar, Muhammad

    2013-12-01

    The emerging resistance of pathogen against the currently available antimicrobial agents demands the search of new antimicrobial agents. The use of medicinal plants as natural substitute is the paramount area of research to overwhelm the drug resistance of infectious agents. Scientists have not made enough effort on the evaluation of safety of medicinal plant yet. In the present study antimicrobial activity of Lawsonia inermis is investigated against clinical isolates of seven bacteria including four Gram negative (Escherichia coli, Salmonella typhi, Klebsiella spp., Shigella sonnei) and three Gram positive (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis) using disc diffusion method. Four types of Lawsonia inermis extracts were prepared using methanol, chloroform, acetone and water as extraction solvents, while DMSO (Dimethyl sulfoxide) and water as dissolution solvents. The rate and extent of bacterial killing was estimated by time-kill kinetic assay at 1× MIC of each bacterial isolate. The overall safety of Lawsonia inermis extracts was assessed in mice. Lawsonia inermis displayed noteworthy antimicrobial activity against both gram positive and gram negative bacterial strains used in the study. The minimum value of MIC for different bacterial strains ranged from 2.31 mg/ml to 9.27 mg/ml. At 1x MIC of each bacterial isolate, 3log10 decrease in CFU was recorded after 6 hours of drug exposure and no growth was observed in almost all tested bacteria after 24 hours of exposure. No sign of toxidrome were observed during in vivo toxicity evaluation in mice at 300 mg/kg concentration. In conclusion, the present study provides the scientific rational for medicinal use of Lawsonia inermis. The use of Lawsonia inermis extracts is of great significance as substitute antimicrobial agent in therapeutics.

  12. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species

    PubMed Central

    Bulgasem, Bulgasem Y.; Lani, Mohd Nizam; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G.

    2016-01-01

    The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species. PMID:28154488

  13. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species.

    PubMed

    Bulgasem, Bulgasem Y; Lani, Mohd Nizam; Hassan, Zaiton; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G

    2016-12-01

    The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly ( p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly ( p < 0.05) effective against C. krusei , C. glabrata , and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species.

  14. Characterization of rhizobia isolates obtained from nodules of wild genotypes of common bean.

    PubMed

    Cardoso, Aline Assis; Andraus, Michel de Paula; Borba, Tereza Cristina de Oliveira; Martin-Didonet, Claudia Cristina Garcia; Ferreira, Enderson Petrônio de Brito

    This study aimed to evaluate the tolerance to salinity and temperature, the genetic diversity and the symbiotic efficiency of rhizobia isolates obtained from wild genotypes of common bean cultivated in soil samples from the States of Goiás, Minas Gerais and Paraná. The isolates were subjected to different NaCl concentrations (0%, 1%, 2%, 4% and 6%) at different temperatures (28°C, 33°C, 38°C, 43°C and 48°C). Genotypic characterization was performed based on BOX-PCR, REP-PCR markers and 16S rRNA sequencing. An evaluation of symbiotic efficiency was carried out under greenhouse conditions in autoclaved Leonard jars. Among 98 isolates about 45% of them and Rhizobium freirei PRF81 showed a high tolerance to temperature, while 24 isolates and Rhizobium tropici CIAT899 were able to use all of the carbon sources studied. Clustering analysis based on the ability to use carbon sources and on the tolerance to salinity and temperature grouped 49 isolates, R. tropici CIAT899 and R. tropici H12 with a similarity level of 76%. Based on genotypic characterization, 65% of the isolates showed an approximately 66% similarity with R. tropici CIAT899 and R. tropici H12. About 20% of the isolates showed symbiotic efficiency similar to or better than the best Rhizobium reference strain (R. tropici CIAT899). Phylogenetic analysis of the 16S rRNA revealed that two efficient isolates (ALSG5A1 and JPrG6A8) belong to the group of strains used as commercial inoculant for common bean in Brazil and must be assayed in field experiments. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Zooming-in on floral nectar: a first exploration of nectar-associated bacteria in wild plant communities.

    PubMed

    Alvarez-Pérez, Sergio; Herrera, Carlos M; de Vega, Clara

    2012-06-01

    Floral nectar of some animal-pollinated plants usually harbours highly adapted yeast communities which can profoundly alter nectar characteristics and, therefore, potentially have significant impacts on plant reproduction through their effects on insect foraging behaviour. Bacteria have also been occasionally observed in floral nectar, but their prevalence, phylogenetic diversity and ecological role within plant-pollinator-yeast systems remains unclear. Here we present the first reported survey of bacteria in floral nectar from a natural plant community. Culturable bacteria occurring in a total of 71 nectar samples collected from 27 South African plant species were isolated and identified by 16S rRNA gene sequencing. Rarefaction-based analyses were used to assess operational taxonomic units (OTUs) richness at the plant community level using nectar drops as sampling units. Our results showed that bacteria are common inhabitants of floral nectar of South African plants (53.5% of samples yielded growth), and their communities are characterized by low species richness (18 OTUs at a 16S rRNA gene sequence dissimilarity cut-off of 3%) and moderate phylogenetic diversity, with most isolates belonging to the Gammaproteobacteria. Furthermore, isolates showed osmotolerance, catalase activity and the ability to grow under microaerobiosis, three traits that might help bacteria to overcome important factors limiting their survival and/or growth in nectar. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Phenotypic and Genetic Characterization of Carbapenemase and ESBLs Producing Gram-negative Bacteria (GNB) Isolated from Patients with Cystic Fibrosis (CF) in Tehran Hospitals

    PubMed Central

    Vali, Parisa; Shahcheraghi, Fereshteh; Seyfipour, Maryam; Zamani, Maryam Alsadat; Allahyar, Mohammad Reza; Feizabadi, Mohammad Mehdi

    2014-01-01

    Background: Cystic Fibrosis (CF) is an autosomal recessive genetic disorder in white populations caused by mutation in a gene that encodes Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Since frequent respiratory tract infections are the major problem in patients with CF, obligation to identify the causative bacteria and determining their antibiotic resistance pattern is crucial. The purpose of this project was to detect Gram-negative bacteria (GNB) isolated from sputa of CF patients and to determine their antibiotic resistance pattern. Materials and Methods: The sputum of 52 CF patients, treated as inpatients at hospitals in Tehran, was obtained between November 2011 and June 2012. Samples cultured in selective and non-selective media and GNB recognized by biochemical tests. Antimicrobial susceptibility testing to cephalosporins, aminoglycosides and carbapenems was performed by disk diffusion method and MICs of them were measured. For phenotypic detection of carbapenemase and ESBLs production, the Modified Hodge test, double disk synergy test and the combined disk methods were performed. Subsequently, the genes encoding the extended spectrum beta-lactamases (blaPER, blaCTX-M) and carbapenemases (blaIMP-1, blaGES, blaKPC, blaNDM, blaVIM-1, blaVIM-2, blaSPM, blaSIM) in Gram negative bacteria were targeted among the resistant isolates by using PCR. PFGE was used to determine any genetic relationship among the Pseudomonas aeruginosa isolated from these patients. Results: Fifty five GNB were isolated from 52 sputum samples including Pseudomonas aeruginosa, Klebsiella ozaenae, Alcaligenes xylosoxidans, Achromobacter denitrificans, Klebsiella pneumonia and Stenotrophomonas maltophilia. The rates of resistance to different antibiotic were as follows: cefixime (%80), ceftriaxone (%43), ceftazidime (%45) and meropenem (%7). The prevalence of genes encoding the ESBLs and Carbapenemases among the the phenotypically positive strains were as follows: bla

  17. Multicentre investigation of pathogenic bacteria and antibiotic resistance genes in Chinese patients with acute exacerbation of chronic obstructive pulmonary disease.

    PubMed

    Ma, Xiuqing; Cui, Junchang; Wang, Jing; Chang, Yan; Fang, Qiuhong; Bai, Changqing; Zhou, Xiumei; Zhou, Hong; Feng, Huasong; Wang, Ying; Zhao, Weiguo; Wen, Zhongguang; Wang, Ping; Liu, Yi; Yu, Ling; Li, Chunsun; Chen, Liangan

    2015-10-01

    A prospective observational study to investigate the distribution and antimicrobial resistance of pathogenic bacteria in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) in Beijing, China. Patients with AECOPD were recruited from 11 general hospitals. Sputum specimens were cultured and bacteria identified. Antibiotic susceptibility was determined for each isolate, and presence of antibiotic resistance genes was evaluated using polymerase chain reaction. Pathogenic bacteria were isolated from 109/318 patients (34.28%); 124 isolates of 22 pathogenic bacterial species were identified, including Klebsiella pneumoniae (16.94%), Pseudomonas aeruginosa (16.94%), Acinetobacter baumannii (11.29%), Streptococcus pneumoniae (8.87%), and Staphylococcus aureus (7.26%). S. aureus was sensitive to tigecycline, teicoplanin, vancomycin and linezolid but resistant to penicillin and levofloxacin. K.pneumoniae, P. aeruginosa, A. baumannii and E. coli were susceptible to amikacin and cefoperazone. K. pneumoniae and P. aeruginosa are the most common pathogenic bacteria in AECOPD cases in Beijing, China. Our antibiotic resistance findings may be helpful in selecting antibiotic therapy. © The Author(s) 2015.

  18. Virulence of Macrophomina phaseolina isolates in common bean (Phaseolus vulgaris) genotypes

    USDA-ARS?s Scientific Manuscript database

    Charcoal rot caused by Macrophomina phaseolina (Tassi) Goid, is an important disease in common beans (Phaseolus vulgaris) in the dry and warmer areas of Puerto Rico and in much of the tropics and subtropics worldwide. The virulence of three isolates from Isabela (Mph-ISA-TARS), Juana Diaz (Mph-JD) a...

  19. Characterization of Crude Oil Degrading Bacteria Isolated from Contaminated Soils Surrounding Gas Stations.

    PubMed

    Abou-Shanab, Reda A I; Eraky, Mohamed; Haddad, Ahmed M; Abdel-Gaffar, Abdel-Rahman B; Salem, Ahmed M

    2016-11-01

    A total of twenty bacterial cultures were isolated from hydrocarbon contaminated soil. Of the 20 isolates, RAM03, RAM06, RAM13, and RAM17 were specifically chosen based on their relatively higher growth on salt medium amended with 4 % crude oil, emulsion index, surface tension, and degradation percentage. These bacterial cultures had 16S rRNA gene sequences that were most similar to Ochrobactrum cytisi (RAM03), Ochrobactrum anthropi (RAM06 and RAM17), and Sinorhizobium meliloti (RAM13) with 96 %, 100 % and 99 %, and 99 % similarity. The tested strains revealed a promising potential for bioremediation of petroleum oil contamination as they could degrade >93 % and 54 % of total petroleum hydrocarbons (TPHs) in a liquid medium and soil amended with 4 % crude oil, respectively, after 30 day incubation. These bacteria could effectively remove both aliphatic and aromatic petroleum hydrocarbons. In conclusion, these strains could be considered as good prospects for their application in bioremediation of hydrocarbon contaminated environment.

  20. Molecular identification and antibiotic resistant bacteria isolated from primary dentition infections.

    PubMed

    Loyola-Rodriguez, J P; Garcia-Cortes, J O; Martinez-Martinez, R E; Patiño-Marin, N; Martinez-Castañon, G A; Zavala-Alonso, N V; Amano, A

    2014-12-01

    Bacterial resistance to antibiotics is a health problem in many parts of the world. The aim of this study was to identify bacteria from dental infections and determine bacterial resistance to antibiotics used in dental care in the primary dentition. This cross-sectional study comprised 60 children who presented for dental treatment for active dental infections in the primary dentition. Samples from dental infections were collected and bacteria were identified by polymerase chain reaction (PCR) assay. Bacterial resistance to antibiotics was determined by colony forming units on agar plates containing amoxicillin, clindamycin and amoxillicin-clavulanic acid (A-CA) tested at 8 μg/ml or 16 μg/ml. Clindamycin in both concentrations tested (8 μg/ml and 16 μg/ml) showed the highest bacterial resistance (85.9%), followed by amoxicillin (43.7%) and A-CA (12.0%). All comparisons among the three antibiotics used in the study exhibited statistical significance (p = <0.05) in both concentrations tested (8 μg/ml and 16 μg/ml), and under aerobic and anaerobic conditions. The most prevalent resistant species identified by PCR in primary dentition infections were: Streptococcus oralis and Prevotella intermedia (75.0%); Treponema denticola and Porphyromonas gingivalis (48.3%); Streptococcus mutans (45.0%); Campylobacter rectus; and Streptococcus salivarius (40%). This study demonstrated that A-CA exhibited the lowest bacterial resistance for clinical isolates in primary dentition infections. © 2014 Australian Dental Association.

  1. Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas.

    PubMed

    Tamang, Jyoti Prakash; Tamang, Buddhiman; Schillinger, Ulrich; Guigas, Claudia; Holzapfel, Wilhelm H

    2009-09-30

    A total of 94 strains of Lactic acid bacteria (LAB), previously isolated from ethnic fermented vegetables and tender bamboo shoots of the Himalayas, were screened for functional properties such as acidification capacity, enzymatic activities, degradation of antinutritive factors and oligosaccharides, production of biogenic amines, hydrophobicity and adherence to mucus secreting HT29 MTX cells. Strong acidification and coagulation activities of LAB strains were recorded. Most of the LAB strains showed antimicrobial activities against the used indicator strains; however, only Lb. plantarum IB2 (BFE 948) isolated from inziangsang, a fermented leafy vegetable product, produced a bacteriocin against Staphylococcus aureus S1. LAB strains showed enzymatic activities and also degraded oligosaccharides. Almost all the strains of LAB were non-producers of biogenic amines except few strains. Some strains of Lb. plantarum showed more than 70% hydrophobicity. Adherence to the mucus secreting HT29 MTX cells was also shown by seven strains indicating their probiotic nature.

  2. Diverse Responses to UV-B Radiation and Repair Mechanisms of Bacteria Isolated from High-Altitude Aquatic Environments▿

    PubMed Central

    Fernández Zenoff, V.; Siñeriz, F.; Farías, M. E.

    2006-01-01

    Acinetobacter johnsonii A2 isolated from the natural community of Laguna Azul (Andean Mountains at 4,560 m above sea level), Serratia marcescens MF42, Pseudomonas sp. strain MF8 isolated from the planktonic community, and Cytophaga sp. strain MF7 isolated from the benthic community from Laguna Pozuelos (Andean Puna at 3,600 m above sea level) were subjected to UV-B (3,931 J m−2) irradiation. In addition, a marine Pseudomonas putida strain, 2IDINH, and a second Acinetobacter johnsonii strain, ATCC 17909, were used as external controls. Resistance to UV-B and kinetic rates of light-dependent (UV-A [315 to 400 nm] and cool white light [400 to 700 nm]) and -independent reactivation following exposure were determined by measuring the survival (expressed as CFU) and accumulation of cyclobutane pyrimidine dimers (CPD). Significant differences in survival after UV-B irradiation were observed: Acinetobacter johnsonii A2, 48%; Acinetobacter johnsonii ATCC 17909, 20%; Pseudomonas sp. strain MF8, 40%; marine Pseudomonas putida strain 2IDINH, 12%; Cytophaga sp. strain MF7, 20%; and Serratia marcescens, 21%. Most bacteria exhibited little DNA damage (between 40 and 80 CPD/Mb), except for the benthic isolate Cytophaga sp. strain MF7 (400 CPD/Mb) and Acinetobacter johnsonii ATCC 17909 (160 CPD/Mb). The recovery strategies through dark and light repair were different in all strains. The most efficient in recovering were both Acinetobacter johnsonii A2 and Cytophaga sp. strain MF7; Serratia marcescens MF42 showed intermediate recovery, and in both Pseudomonas strains, recovery was essentially zero. The UV-B responses and recovery abilities of the different bacteria were consistent with the irradiation levels in their native environment. PMID:17056692

  3. Isolation and molecular identification of landfill bacteria capable of growing on di-(2-ethylhexyl) phthalate and deteriorating PVC materials

    PubMed Central

    Latorre, Isomar; Hwang, Sangchul; Montalvo-Rodriguez, Rafael

    2012-01-01

    Waste materials containing Di-(2-ethylhexyl) phthalate (DEHP), a suspected endocrine disruptor and reasonably anticipated human carcinogen, are typically disposed of in landfills. Despite this, very few studies had been conducted to isolate and identify DEHP-degrading bacteria in landfill leachate. Therefore, this study was conducted to isolate and characterize bacteria in landfill leachate growing on DEHP as the sole carbon source and deteriorating PVC materials. Four strains LHM1, LHM2, LHM3 and LHM4, not previously reported as DEHP-degraders, were identified via 16S rRNA gene sequence. Gram-positive strains LHM1 and LHM2 had a greater than 97% similarity with Chryseomicrobium imtechense MW 10(T) and Lysinibacillus fusiformis NBRC 15717(T), respectively. Gram-negative strains LHM3 and LHM4 were related to Acinetobacter calcoaceticus DSM 30006(T) (90.7% similarity) and Stenotrophomonas pavanii ICB 89(T) (96.0% similarity), respectively. Phylogenetic analysis also corroborated these similarities of strains LHM1 and LHM2 to the corresponding bacteria species. Strains LHM2 and LHM4 grew faster than strains LHM1 and LHM3 in the enrichment where DEHP was the sole carbon source. When augmented to the reactors with PVC shower curtains containing DEHP, strains LHM1 and LHM2 developed greater optical densities in the solution phase and thicker biofilm on the surfaces of the shower curtains. PMID:22934997

  4. Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria

    PubMed Central

    Russell, Joseph A.; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F.

    2016-01-01

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface. PMID:27242705

  5. Deep subsurface life from North Pond: Enrichment, isolation, characterization and genomes of heterotrophic bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less

  6. Deep subsurface life from North Pond: Enrichment, isolation, characterization and genomes of heterotrophic bacteria

    DOE PAGES

    Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly; ...

    2016-05-10

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less

  7. Isolation of non-sporing anaerobic rods from infections in children.

    PubMed

    Brook, I

    1996-07-01

    From 1974 to 1994, 2033 microbiological specimens from children were submitted for cultures for anaerobic bacteria. Fifty-seven isolates of Bifidobacterium spp. were obtained from 55 (3%) children, 67 isolates of Eubacterium spp. from 65 (3%) children and 41 isolates of Lactobacillus spp. from 40 (2%) children. Most Bifidobacterium isolates were from chronic otitis media, abscesses, peritonitis, aspiration pneumonia and paronychia. Most Eubacterium isolates were from abscesses, peritonitis, decubitus ulcers and bites. Lactobacillus spp. were mainly isolated from abscesses, aspiration pneumonia, bacteraemia and conjunctivitis. Most (> 90%) infections from which these species were isolated were polymicrobial and yielded a mixture of aerobic and anaerobic bacteria. The organisms most commonly isolated with the non-sporing anaerobic gram-positive rods were Peptostreptococcus spp., Bacteroides spp., pigmented Prevotella and Porphyromonas spp., Fusobacterium spp., Staphylococcus aureus and Escherichia coli. Most Bacteroides spp. and E. coli were isolated from intra-abdominal infection and skin and soft tissue infection around the rectal area, whereas most Prevotella, Porphyromonas and Fusobacterium isolates were from oropharyngeal, pulmonary and head and neck sites. The predisposing conditions associated with the isolation of non-sporing anaerobic gram-positive rods were previous surgery, malignancy, steroid therapy and immunodeficiency. Antimicrobial therapy was given to 149 (83%) of the 160 patients, in conjunction with surgical drainage or correction of pathology in 89 (56%).

  8. Susceptibility of bacteria isolated from acute gastrointestinal infections to rifaximin and other antimicrobial agents in Mexico.

    PubMed

    Novoa-Farías, O; Frati-Munari, A C; Peredo, M A; Flores-Juárez, S; Novoa-García, O; Galicia-Tapia, J; Romero-Carpio, C E

    2016-01-01

    Bacterial resistance may hamper the antimicrobial management of acute gastroenteritis. Bacterial susceptibility to rifaximin, an antibiotic that achieves high fecal concentrations (up to 8,000μg/g), has not been evaluated in Mexico. To determine the susceptibility to rifaximin and other antimicrobial agents of enteropathogenic bacteria isolated from patients with acute gastroenteritis in Mexico. Bacterial strains were analyzed in stool samples from 1,000 patients with diagnosis of acute gastroenteritis. The susceptibility to rifaximin (RIF) was tested by microdilution (<100, <200, <400 and <800μg/ml) and susceptibility to chloramphenicol (CHL), trimethoprim-sulfamethoxazole (T-S), neomycin (NEO), furazolidone (FUR), fosfomycin (FOS), ampicillin (AMP) and ciprofloxacin (CIP) was tested by agar diffusion at the concentrations recommended by the Clinical & Laboratory Standards Institute and the American Society for Microbiology. Isolated bacteria were: enteropathogenic Escherichia coli (E. coli) (EPEC) 531, Shigella 120, non-Typhi Salmonella 117, Aeromonas spp. 80, enterotoxigenic E. coli (ETEC) 54, Yersinia enterocolitica 20, Campylobacter jejuni 20, Vibrio spp. 20, Plesiomonas shigelloides 20, and enterohemorrhagic E. coli (EHEC 0:157) 18. The overall cumulative susceptibility to RIF at <100, <200, <400, and <800μg/ml was 70.6, 90.8, 99.3, and 100%, respectively. The overall susceptibility to each antibiotic was: AMP 32.2%, T-S 53.6%, NEO 54.1%, FUR 64.7%, CIP 67.3%, CLO 73%, and FOS 81.3%. The susceptibility to RIF <400 and RIF <800μg/ml was significantly greater than with the other antibiotics (p<0.001). Resistance of enteropathogenic bacteria to various antibiotics used in gastrointestinal infections is high. Rifaximin was active against 99-100% of these enteropathogens at reachable concentrations in the intestine with the recommended dose. Copyright © 2015 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  9. Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina pavonica

    PubMed Central

    Ismail, Amel; Ktari, Leila; Ahmed, Mehboob; Bolhuis, Henk; Boudabbous, Abdellatif; Stal, Lucas J.; Cretoiu, Mariana Silvia; El Bour, Monia

    2016-01-01

    Macroalgae belonging to the genus Padina are known to produce antibacterial compounds that may inhibit growth of human- and animal pathogens. Hitherto, it was unclear whether this antibacterial activity is produced by the macroalga itself or by secondary metabolite producing epiphytic bacteria. Here we report antibacterial activities of epiphytic bacteria isolated from Padina pavonica (Peacocks tail) located on northern coast of Tunisia. Eighteen isolates were obtained in pure culture and tested for antimicrobial activities. Based on the 16S rRNA gene sequences the isolates were closely related to Proteobacteria (12 isolates; 2 Alpha- and 10 Gammaproteobacteria), Firmicutes (4 isolates) and Actinobacteria (2 isolates). The antimicrobial activity was assessed as inhibition of growth of 12 species of pathogenic bacteria (Aeromonas salmonicida, A. hydrophila, Enterobacter xiangfangensis, Enterococcus faecium, Escherichia coli, Micrococcus sp., Salmonella typhimurium, Staphylococcus aureus, Streptococcus sp., Vibrio alginoliticus, V. proteolyticus, V. vulnificus) and one pathogenic yeast (Candida albicans). Among the Firmicutes, isolate P8, which is closely related to Bacillus pumilus, displayed the largest spectrum of growth inhibition of the pathogenic bacteria tested. The results emphasize the potential use of P. pavonica associated antagonistic bacteria as producers of novel antibacterial compounds. PMID:27462308

  10. Distribution and Identification of Luminous Bacteria from the Sargasso Sea

    PubMed Central

    Orndorff, S. A.; Colwell, R. R.

    1980-01-01

    Vibrio fischeri and Lucibacterium harveyi constituted 75 of the 83 luminous bacteria isolated from Sargasso Sea surface waters. Photobacterium leiognathi and Photobacterium phosphoreum constituted the remainder of the isolates. Luminescent bacteria were recovered at concentrations of 1 to 63 cells per 100 ml from water samples collected at depths of 160 to 320 m. Two water samples collected at the thermocline yielded larger numbers of viable, aerobic heterotrophic and luminous bacteria. Luminescent bacteria were not recovered from surface microlayer samples. The species distribution of the luminous bacteria reflected previously recognized growth patterns; i.e., L. harveyi and V. fischeri were predominant in the upper, warm waters (only one isolate of P. phosphoreum was obtained from surface tropical waters). PMID:16345575

  11. Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cow's milk cheese.

    PubMed

    Ribeiro, S C; Coelho, M C; Todorov, S D; Franco, B D G M; Dapkevicius, M L E; Silva, C C G

    2014-03-01

    Evaluate technologically relevant properties from bacteriocin-producing strains to use as starter/adjunct cultures in cheese making. Eight isolates obtained from Pico cheese produced in Azores (Portugal) were found to produce bacteriocins against Listeria monocytogenes and three isolates against Clostridium perfringens. They were identified as Lactococcus lactis and Enterococcus faecalis and submitted to technological tests: growth at different conditions of temperature and salt, acid production, proteolysis, lipolysis, coexistence, enzymatic profile and autolytic capacity. Safety evaluation was performed by evaluating haemolytic, gelatinase and DNase activity, resistance to antibiotics and the presence of virulence genes. Some isolates presented good technological features such as high autolytic activity, acid and diacetyl production. Lactococcus lactis was negative for all virulence genes tested and inhibit the growth of all Lactic acid bacteria (LAB) isolates. Enterococci were positive for the presence of some virulence genes, but none of the isolates were classified as resistant to important antibiotics. The bacteriocin-producing Lc. lactis present good potential for application in food as adjunct culture in cheese production. The study also reveals good technological features for some Enterococcus isolates. Bacteriocin-producing strains presented important technological properties to be exploited as new adjunct culture for the dairy industry, influencing flavour development and improve safety. © 2013 The Society for Applied Microbiology.

  12. Screening for and isolation and identification of malathion-degrading bacteria: cloning and sequencing a gene that potentially encodes the malathion-degrading enzyme, carboxylestrase in soil bacteria.

    PubMed

    Goda, Sayed K; Elsayed, Iman E; Khodair, Taha A; El-Sayed, Walaa; Mohamed, Mervat E

    2010-11-01

    Five malathion-degrading bacterial strains were enriched and isolated from soil samples collected from different agricultural sites in Cairo, Egypt. Malathion was used as a sole source of carbon (50 mg/l) to enumerate malathion degraders, which were designated as IS1, IS2, IS3, IS4, and IS5. They were identified, based on their morphological and biochemical characteristics, as Pseudomonas sp., Pseudomonas putida, Micrococcus lylae, Pseudomonas aureofaciens, and Acetobacter liquefaciens, respectively. IS1 and IS2, which showed the highest degrading activity, were selected for further identification by partial sequence analysis of their 16S rRNA genes. The 16S rRNA gene of IS1 shared 99% similarity with that of Alphaprotoebacterium BAL284, while IS2 scored 100% similarity with that of Pseudomonas putida 32zhy. Malathion residues almost completely disappeared within 6 days of incubation in IS2 liquid cultures. LC/ESI-MS analysis confirmed the degradation of malathion to malathion monocarboxylic and dicarboxylic acids, which formed as a result of carboxylesterase activity. A carboxylesterase gene (CE) was amplified from the IS2 genome by using specifically designed PCR primers. The sequence analysis showed a significant similarity to a known CE gene in different Pseudomonas sp. We report here the isolation of a new malathion-degrading bacteria from soils in Egypt that may be very well adapted to the climatic and environmental conditions of the country. We also report the partial cloning of a new CE gene. Due to their high biodegradation activity, the bacteria isolated from this work merit further study as potential biological agents for the remediation of soil, water, or crops contaminated with the pesticide malathion.

  13. Numerical Taxonomy of Some Bacteria Isolated from Antarctic and Tropical Seawaters1

    PubMed Central

    Pfister, Robert M.; Burkholder, Paul R.

    1965-01-01

    Pfister, Robert M. (Lamont Geological Observatory, Palisades, N.Y.), and Paul R. Burkholder. Numerical taxonomy of some bacteria isolated from Antarctic and tropical seawaters. J. Bacteriol. 90:863–872. 1965.—Microorganisms from Antarctic seas and from tropical waters near Puerto Rico were examined with a series of morphological, physiological, and biochemical tests. The results of these analyses were coded on punch cards, and similarity matrices were computed with a program for an IBM 1620 computer. When the matrix was reordered by use of the single-linkage technique, and the results were plotted with four symbols for different per cent similarity ranges, nine groups of microorganisms were revealed. The data suggest that organisms occurring in different areas of the open ocean may be profitably studied with standardized computer techniques. PMID:5847807

  14. Isolation of Bacteria Capable of Growth with 2-Methylisoborneol and Geosmin as the Sole Carbon and Energy Sources

    PubMed Central

    Guttman, Lior

    2012-01-01

    Using a relatively simple enrichment technique, geosmin and 2-methylisoborneol (MIB)-biodegrading bacteria were isolated from a digestion basin in an aquaculture unit. Comparison of 16S rRNA gene sequences affiliated one of the three isolates with the Gram-positive genus Rhodococcus, while the other two isolates were found to be closely related to the Gram-negative family Comamonadaceae (Variovorax and Comamonas). Growth rates and geosmin and MIB removal rates by the isolates were determined under aerated and nonaerated conditions in mineral medium containing either of the two compounds as the sole carbon and energy source. All isolates exhibited their fastest growth under aerobic conditions, with generation times ranging from 3.1 to 5.7 h, compared to generation times of up to 19.1 h in the nonaerated flasks. Incubation of the isolates with additional carbon sources caused a significant increase in their growth rates, while removal rates of geosmin and MIB were significantly lower than those for incubation with only geosmin or MIB. By fluorescence in situ hybridization, members of the genera Rhodococcus and Comamonas were detected in geosmin- and MIB-enriched sludge from the digestion basin. PMID:22081577

  15. Isolating and evaluating lactic acid bacteria strains for effectiveness of Leymus chinensis silage fermentation.

    PubMed

    Zhang, Q; Li, X J; Zhao, M M; Yu, Z

    2014-10-01

    Five LAB strains were evaluated using the acid production ability test, morphological observation, Gram staining, physiological, biochemical and acid tolerance tests. All five strains (LP1, LP2, LP3, LC1 and LC2) grew at pH 4·0, and LP1 grew at 15°C. Strains LP1, LP2 and LP3 were identified as Lactobacillus plantarum, whereas LC1 and LC2 were classified as Lactobacillus casei by sequencing 16S rDNA. The five isolated strains and two commercial inoculants (PS and CL) were added to native grass and Leymus chinensis (Trin.) Tzvel. for ensiling. All five isolated strains decreased the pH and ammonia nitrogen content, increased the lactic acid content and LP1, LP2 and LP3 increased the acetic content and lactic/acetic acid ratio of L. chinensis silage significantly. The five isolated strains and two commercial inoculants decreased the butyric acid content of the native grass silage. LP2 treatment had lower butyric acid content and ammonia nitrogen content than the other treatments. The five isolated strains improved the quality of L. chinensis silage. The five isolated strains and the two commercial inoculants were not effective in improving the fermentation quality of the native grass silage, but LP2 performed better comparatively. Significance and impact of the study: Leymus chinensis is an important grass in China and Russia, being the primary grass of the short grassland 'steppe' regions of central Asia. However, it has been difficult to make high-quality silage of this species because of low concentration of water-soluble carbohydrates (WSC). Isolating and evaluating lactic acid bacteria strains will be helpful for improving the silage quality of this extensively grown species. © 2014 The Society for Applied Microbiology.

  16. Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products.

    PubMed

    Simova, E D; Beshkova, D B; Dimitrov, Zh P

    2009-02-01

    To isolate bacteriocin-producing lactic acid bacteria (LAB) with high wide spectrum antibacterial activity and to characterize their inhibitory peptides. Seven LAB strains [Lactobacillus casei ssp. rhamnosus (PC5), Lactobacillus delbrueckii ssp. bulgaricus (BB18), Lactococcus lactis ssp. lactis (BCM5, BK15), Enterococcus faecium (MH3), Lactobacillus plantarum (BR12), Lactobacillus casei ssp. casei (BCZ2)], isolated from authentic Bulgarian dairy products were capable of producing bacteriocins, inhibiting the widest range of pathogenic bacteria. The bacteriocins were resistant to heating at 121 degrees C for 15 min, stable at pH 2-10, sensitive to protease, insensitive to alpha-amylase and lipase. Two of bacteriocins produced by Lact. bulgaricus BB18 (bulgaricin BB18) and E. faecium MH3 (enterocin MH3) were purified and the molecular masses were determined. The N-terminal amino acid sequence of bulgaricin BB18 did not show strong homology to other known bacteriocins. Lactobacillus bulgaricus BB18 and E. faecium MH3 produce two novel bacteriocins highly similar to the pediocin-like nonlantibiotics. The two bacteriocins are potential antimicrobial agents and, in conjunction with their producers, may have use in applications to contribute a positive effect on the balance of intestinal microflora. Furthermore, bulgaricin BB18 strongly inhibits Helicobacter pylori.

  17. Analysis of fungal type isolates taken from a 90-day manned test of an advanced regenerative life support system

    NASA Technical Reports Server (NTRS)

    Sofios, M.; Swatek, F. E.

    1972-01-01

    Fungal-like cultures isolated before, during, and after the 90-day test from samples of space station simulator (SSS) atmosphere, surfaces, subsystem componets, and crew dermal sites were identified to genus. Out of the original 525 isolates, approximately 80% were classified as bacteria. Laboratory methods (culture media, moisturization, and incubation temperatures) favored the recovery of medically significant bacteria rather than fungi. Therefore, fungal isolates were mostly, nonfastidious types which are ubiquitous in soil and air and commonly contaminate laboratory cultures of pathogens. Predominant isolates were species of Aspergillus, Penicillium, Pullularia, Rhodotorula, and various yeasts. No instances of fungal proliferation were observed; test data reflect the survival of environmental types indigenous to the SSS pretests.

  18. Colonisation of antibiotic resistant bacteria in a cohort of HIV infected children in Ghana.

    PubMed

    Sampane-Donkor, Eric; Badoe, Ebenezer Vincent; Annan, Jennifer Adoley; Nii-Trebi, Nicholas

    2017-01-01

    Antibiotic use not only selects for resistance in pathogenic bacteria, but also in commensal flora of exposed individuals. Little is known epidemiologically about antibiotic resistance in relation to people with HIV infection in sub-Saharan Africa. This study investigated the carriage of antibiotic resistant bacteria among HIV infected children at a tertiary hospital in Ghana. One hundred and eighteen HIV positive children were recruited at the Korle-Bu Teaching Hospital in Ghana and nasopharyngeal specimens were collected from them. The specimens were cultured for bacteria, and the isolates were identified by standard microbiological methods. Antibiotic susceptibility tests were carried out on selected bacterial organisms by the Kirby Bauer method. Bacteria isolated from the study subjects included Moraxella catarrhalis (39.8%), coagulase negative staphylococci (33.1%), Streptococcus pneumoniae (30.5%), diptheroids (29.7%), viridian streptococci (27.1%), Staphylococcus aureus (22.0%), Citrobacter spp. (4.2%) and Neisseria meningitidis (0.9%). Prevalence of antibiotic resistance of S. pneumoniae ranged from 5.6% (ceftriaxone) to 58.3% (cotrimoxazole), M. catarrhalis ranged from 2.1% (gentamicin) to 80.6% (ampicillin), and S. aureus ranged from 7.7% (cefoxitin) to 100% (penicillin). The prevalence of multiple drug resistance was 16.7% for S. pneumoniae, 57.4% for M. catarrhalis and 84.6% for S. aureus. HIV infected children in the study area commonly carry multi-drug resistant isolates of several pathogenic bacteria such as S. aureus and S. pneumoniae. Infections arising in these patients that are caused by S. aureus and S. pneumoniae could be treated with ceftriaxone and cefoxitin respectively.

  19. Colonisation of antibiotic resistant bacteria in a cohort of HIV infected children in Ghana

    PubMed Central

    Sampane-Donkor, Eric; Badoe, Ebenezer Vincent; Annan, Jennifer Adoley; Nii-Trebi, Nicholas

    2017-01-01

    Antibiotic use not only selects for resistance in pathogenic bacteria, but also in commensal flora of exposed individuals. Little is known epidemiologically about antibiotic resistance in relation to people with HIV infection in sub-Saharan Africa. This study investigated the carriage of antibiotic resistant bacteria among HIV infected children at a tertiary hospital in Ghana. One hundred and eighteen HIV positive children were recruited at the Korle-Bu Teaching Hospital in Ghana and nasopharyngeal specimens were collected from them. The specimens were cultured for bacteria, and the isolates were identified by standard microbiological methods. Antibiotic susceptibility tests were carried out on selected bacterial organisms by the Kirby Bauer method. Bacteria isolated from the study subjects included Moraxella catarrhalis (39.8%), coagulase negative staphylococci (33.1%), Streptococcus pneumoniae (30.5%), diptheroids (29.7%), viridian streptococci (27.1%), Staphylococcus aureus (22.0%), Citrobacter spp. (4.2%) and Neisseria meningitidis (0.9%). Prevalence of antibiotic resistance of S. pneumoniae ranged from 5.6% (ceftriaxone) to 58.3% (cotrimoxazole), M. catarrhalis ranged from 2.1% (gentamicin) to 80.6% (ampicillin), and S. aureus ranged from 7.7% (cefoxitin) to 100% (penicillin). The prevalence of multiple drug resistance was 16.7% for S. pneumoniae, 57.4% for M. catarrhalis and 84.6% for S. aureus. HIV infected children in the study area commonly carry multi-drug resistant isolates of several pathogenic bacteria such as S. aureus and S. pneumoniae. Infections arising in these patients that are caused by S. aureus and S. pneumoniae could be treated with ceftriaxone and cefoxitin respectively. PMID:28451037

  20. Selection and Characterization of Biofuel-Producing Environmental Bacteria Isolated from Vegetable Oil-Rich Wastes

    PubMed Central

    Escobar-Niño, Almudena; Luna, Carlos; Luna, Diego; Marcos, Ana T.; Cánovas, David; Mellado, Encarnación

    2014-01-01

    Fossil fuels are consumed so rapidly that it is expected that the planet resources will be soon exhausted. Therefore, it is imperative to develop alternative and inexpensive new technologies to produce sustainable fuels, for example biodiesel. In addition to hydrolytic and esterification reactions, lipases are capable of performing transesterification reactions useful for the production of biodiesel. However selection of the lipases capable of performing transesterification reactions is not easy and consequently very few biodiesel producing lipases are currently available. In this work we first isolated 1,016 lipolytic microorganisms by a qualitative plate assay. In a second step, lipolytic bacteria were analyzed using a colorimetric assay to detect the transesterification activity. Thirty of the initial lipolytic strains were selected for further characterization. Phylogenetic analysis revealed that 23 of the bacterial isolates were Gram negative and 7 were Gram positive, belonging to different clades. Biofuel production was analyzed and quantified by gas chromatography and revealed that 5 of the isolates produced biofuel with yields higher than 80% at benchtop scale. Chemical and viscosity analysis of the produced biofuel revealed that it differed from biodiesel. This bacterial-derived biofuel does not require any further downstream processing and it can be used directly in engines. The freeze-dried bacterial culture supernatants could be used at least five times for biofuel production without diminishing their activity. Therefore, these 5 isolates represent excellent candidates for testing biofuel production at industrial scale. PMID:25099150

  1. Gardnerella vaginalis and anaerobic bacteria in genital disease.

    PubMed Central

    Tabaqchali, S; Wilks, M; Thin, R N

    1983-01-01

    In a study of Gardnerella vaginalis and anaerobic bacteria in non-specific vaginitis (NSV) and other genital disease 89 patients attending a genital medicine clinic had vaginal samples examined for conventional pathogens and for quantitative analysis of G vaginalis and aerobic and anaerobic bacterial flora. The overall incidence of G vaginalis was 20%; G vaginalis (mean concentration 7.0 log10/g of secretion) occurred predominantly in patients with NSV (57%) but also in sexual contacts of non-specific urethritis (NSU) (37.5%) and in patients with other conditions (11.8%). G vaginalis is therefore a relatively common isolate in patients with vaginal discharge. The concentration of aerobic and anaerobic bacteria ranged from 4.9-11.0 log10/g of secretion with an anaerobe-to-aerobe ratio of 10:1. Anaerobic bacteria, particularly anaerobic Gram-positive cocci (mean concentrations 7.7 log10/g), were present in patients with NSV and in association with G vaginalis, but they also occurred in other clinical groups and with other pathogens, particularly Trichomonas vaginalis. Anaerobic bacteria may therefore play an important role in the pathogenesis of vaginal infections. PMID:6600955

  2. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    PubMed

    Fraqueza, Maria João

    2015-11-06

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. High-Quality Draft Genome Sequences of Four Lignocellulose-Degrading Bacteria Isolated from Puerto Rican Forest Soil: Gordonia sp., Paenibacillus sp., Variovorax sp., and Vogesella sp.

    DOE PAGES

    Woo, Hannah L.; DeAngelis, Kristen M.; Teshima, Hazuki; ...

    2017-05-04

    In this paper, we report the high-quality draft genome sequences of four phylogenetically diverse lignocellulose-degrading bacteria isolated from tropical soil ( Gordonia sp., Paenibacillus sp., Variovorax sp., and Vogesella sp.) to elucidate the genetic basis of their ability to degrade lignocellulose. These isolates may provide novel enzymes for biofuel production.

  4. High-Quality Draft Genome Sequences of Four Lignocellulose-Degrading Bacteria Isolated from Puerto Rican Forest Soil: Gordonia sp., Paenibacillus sp., Variovorax sp., and Vogesella sp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Hannah L.; DeAngelis, Kristen M.; Teshima, Hazuki

    In this paper, we report the high-quality draft genome sequences of four phylogenetically diverse lignocellulose-degrading bacteria isolated from tropical soil ( Gordonia sp., Paenibacillus sp., Variovorax sp., and Vogesella sp.) to elucidate the genetic basis of their ability to degrade lignocellulose. These isolates may provide novel enzymes for biofuel production.

  5. What bacteria are living in my food? An open-ended practical series involving identification of unknown foodborne bacteria using molecular techniques.

    PubMed

    Prasad, Prascilla; Turner, Mark S

    2011-01-01

    This open-ended practical series titled "Molecular Identification of Unknown Food Bacteria" which extended over a 6-week period was designed with the aims of giving students an opportunity to gain an understanding of naturally occurring food bacteria and skills in contemporary molecular methods using real food samples. The students first isolated two unknown bacterial strains from two food sources from which they extracted DNA and performed PCR targeting the 16S rRNA gene. Gel electrophoresis was used to analyze both genomic DNA preparations and PCR products. Following purification of PCR products, DNA sequencing was carried out and sequence trace quality was analyzed. The students successfully identified the two unknown bacteria using the BLAST search engine and a wide variety of different organisms were found. Assessment of their understanding of the procedure and ability to explain their findings using supporting primary research literature was via an individually prepared written report. Feedback from students over 2 years (n = 52) in a questionnaire revealed that the practical series was an engaging learning experience and lead to perceived improvements in knowledge of molecular techniques and bioinformatics and also about commonly occurring bacteria in foods. Copyright © 2011 Wiley Periodicals, Inc.

  6. Recovery of Humic-Reducing Bacteria from a Diversity of Environments

    PubMed Central

    Coates, John D.; Ellis, Debra J.; Blunt-Harris, Elizabeth L.; Gaw, Catherine V.; Roden, Eric E.; Lovley, Derek R.

    1998-01-01

    To evaluate which microorganisms might be responsible for microbial reduction of humic substances in sedimentary environments, humic-reducing bacteria were isolated from a variety of sediment types. These included lake sediments, pristine and contaminated wetland sediments, and marine sediments. In each of the sediment types, all of the humic reducers recovered with acetate as the electron donor and the humic substance analog, 2,6-anthraquinone disulfonate (AQDS), as the electron acceptor were members of the family Geobacteraceae. This was true whether the AQDS-reducing bacteria were enriched prior to isolation on solid media or were recovered from the highest positive dilutions of sediments in liquid media. All of the isolates tested not only conserved energy to support growth from acetate oxidation coupled to AQDS reduction but also could oxidize acetate with highly purified soil humic acids as the sole electron acceptor. All of the isolates tested were also able to grow with Fe(III) serving as the sole electron acceptor. This is consistent with previous studies that have suggested that the capacity for Fe(III) reduction is a common feature of all members of the Geobacteraceae. These studies demonstrate that the potential for microbial humic substance reduction can be found in a wide variety of sediment types and suggest that Geobacteraceae species might be important humic-reducing organisms in sediments. PMID:9546186

  7. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    PubMed

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-04

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  8. Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae).

    PubMed

    Briones-Roblero, Carlos I; Rodríguez-Díaz, Roberto; Santiago-Cruz, José A; Zúñiga, Gerardo; Rivera-Orduña, Flor N

    2017-01-01

    Bark beetles (Curculionidae: Scolytinae) feed on the xylem and phloem of their host, which are composed of structural carbohydrates and organic compounds that are not easily degraded by the insects. Some of these compounds might be hydrolyzed by digestive enzymes produced by microbes present in the gut of these insects. In this study, we evaluated the enzymatic capacity of bacteria (Acinetobacter lwoffii, Arthrobacter sp., Pseudomonas putida, Pseudomonas azotoformans, and Rahnella sp.) and yeasts (Candida piceae, Candida oregonensis, Cyberlindnera americana, Zygoascus sp., and Rhodotorula mucilaginosa) isolated from the Dendroctonus rhizophagus gut to hydrolyze cellulose, xylan, pectin, starch, lipids, and esters. All isolates, with the exception of C. piceae, showed lipolytic activity. Furthermore, P. putida, P. azotoformans, C. americana, C. piceae, and R. mucilaginosa presented amylolytic activity. Esterase activity was shown by A. lwoffii, P. azotoformans, and Rahnella sp. Cellulolytic and xylanolytic activities were present only in Arthrobacter sp. and P. azotoformans. The pectinolytic activity was not recorded in any isolate. This is the first study to provide evidence on the capacity of microbes associated with the D. rhizophagus gut to hydrolyze specific substrates, which might cover part of the nutritional requirements for the development, fitness, and survival of these insects.

  9. Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products.

    PubMed

    Katla, A K; Kruse, H; Johnsen, G; Herikstad, H

    2001-07-20

    Commercial starter culture bacteria are widely used in the production of dairy products and could represent a potential source for spread of genes encoding resistance to antimicrobial agents. To learn more about the antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products, a total of 189 isolates of lactic acid bacteria were examined for susceptibility to ampicillin, penicillin G, cephalothin, vancomycin, bacitracin, gentamicin, streptomycin, erythromycin, tetracycline, chloramphenicol, quinupristin/dalfopristin, ciprofloxacin, trimethoprim and sulphadiazine using Etest for MIC determination. Most of the isolates (140) originated from 39 dairy products (yoghurt, sour cream, fermented milk and cheese), while 49 were isolated directly from nine commercial cultures. The bacteria belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Streptococcus. Only one of the 189 isolates was classified as resistant to an antimicrobial agent included in the study. This isolate, a lactobacillus, was classified as high level resistant to streptomycin. The remaining isolates were not classified as resistant to the antimicrobial agents included other than to those they are known to have a natural reduced susceptibility to. Thus, starter culture bacteria in Norwegian dairy products do not seem to represent a source for spread of genes encoding resistance to antimicrobial agents.

  10. Prevalence and antimicrobial susceptibilities of anaerobic bacteria isolated from perforated corneal ulcers by culture and multiplex PCR: an evaluation in cases with keratitis and endophthalmitis.

    PubMed

    Tokman, Hrisi Bahar; İskeleli, Güzin; Dalar, Zeynep Güngördü; Kangaba, Achille Aime; Demirci, Mehmet; Akay, Hatice K; Borsa, Bariş Ata; Algingil, Reyhan Çalişkan; Kocazeybek, Bekir S; Torun, Müzeyyen Mamal; Kiraz, Nuri

    2014-01-01

    Anaerobic bacteria play an important role in eye infections; however, there is limited epidemiologic data based on the the role of these bacteria in the etiology of keratitis and endophthalmitis. The aim of this re- search is to determine the prevalence of anaerobic bacteria in perforated corneal ulcers of patients with keratitis and endophthalmitis and to evaluate their antimicrobial susceptibilities. Corneal scrapings were taken by the ophthalmologist using sterile needles. For the isolation of anaerobic bacteria, samples were inoculated on specific media and were incubated under anaerobic conditions obtained with Anaero-Gen (Oxoid & Mitsubishi Gas Company) in anaerobic jars (Oxoid USA, Inc. Columbia, MD, USA). The molecular identification of anaerobic bacteria was performed by multiplex PCR and the susceptibilities of an- aerobic bacteria to penicillin, chloramphenicol, and clindamycin were determined with the E test (bioMerieux). 51 strains of anaerobic bacteria belonging to four different genuses were detected by multiplex PCR and only 46 strains were isolated by culture. All of them were found susceptible to chloramphenicol whereas penicillin resistance was found in 13.3% of P.anaerobius strains, clindamycin resistance was found in 34.8% of P.acnes and 13.3% of P. anaerobius strains. Additionnaly, one strain of P. granulosum was found resistant to clindamycin, one strain of B. fragilis and one strain of P.melaninogenica were found resistant to penicillin and clindamycin. Routine analyses of anaerobes in perforated corneal ulcers is inevitable and usage of appropriate molecular methods, for the detection of bacteria responsible from severe infections which might not be deter- mined by cultivation, may serve for the early decision of the appropriate treatment. Taking into account the in- creasing antimicrobial resistance of anaerobic bacteria, alternative eye specific antibiotics effective against anaer- obes are needed to achieve a successful treatment.

  11. Monitoring of drug resistance amplification and attenuation with the use of tetracycline-resistant bacteria during wastewater treatment

    NASA Astrophysics Data System (ADS)

    Harnisz, Monika; Korzeniewska, Ewa; Niestępski, Sebastian; Osińska, Adriana; Nalepa, Beata

    2017-11-01

    The objective of this study was to monitor changes (amplification or attenuation) in antibiotic resistance during wastewater treatment based on the ecology of tetracycline-resistant bacteria. The untreated and treated wastewater were collected in four seasons. Number of tetracycline-(TETR) and oxytetracycline-resistant (OTCR) bacteria, their qualitative composition, minimum inhibitory concentrations (MICs), sensitivity to other antibiotics, and the presence of tet (A, B, C, D, E) resistance genes were determined. TETR and OTCR counts in untreated wastewater were 100 to 1000 higher than in treated effluent. OTCR bacterial counts were higher than TETR populations in both untreated and treated wastewater. TETR isolates were not dominated by a single bacterial genus or species, whereas Aeromonas hydrophila and Aeromonas sobria were the most common in OTCR isolates. The treatment process attenuated the drug resistance of TETR bacteria and amplified the resistance of OTCR bacteria. In both microbial groups, the frequency of tet(A) gene increased in effluent in comparison with untreated wastewater. Our results also indicate that treated wastewater is a reservoir of multiple drug-resistant bacteria as well as resistance determinants which may pose a health hazard for humans and animals when released to the natural environment.

  12. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R. (Inventor); Kern, Roger G. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  13. Population dynamics of bacteria associated with different strains of the pine wood nematode Bursaphelenchus xylophilus after inoculation in maritime pine (Pinus pinaster).

    PubMed

    Roriz, Mariana; Santos, Carla; Vasconcelos, Marta W

    2011-08-01

    For a long time it was thought that Bursaphelenchus xylophilus was the only agent of the pine wilt disease. Recently, it was discovered that there are bacteria associated with the nematodes that contribute to the pathogenesis of this disease, mainly through the release of toxins that promote the death of the pines. Among the species most commonly found, are bacteria belonging to the Bacillus, Pantoea, Pseudomonas and Xanthomonas genera. The main objective of this work was to study the effect of inoculation of maritime pine (Pinus pinaster) with four different nematode isolates, in the bacterial population of nematodes and trees, at different stages of disease progression. The monitoring of progression of disease symptoms was also recorded. Also, the identification of bacteria isolated from the xylem of trees and the surface of nematodes was performed by classical identification methods, by the API20E identification system and by sequencing of bacterial DNA. The results showed that for the symptoms progression, the most striking difference was observed for the pines inoculated with the avirulent isolate, C14-5, which led to a slower and less severe aggravation of symptoms than in pines inoculated with the virulent isolates. In general, it was found that bacterial population, inside the tree, increased with disease progression. A superior bacterial quantity was isolated from pines inoculated with the nematode isolates HF and 20, and, comparatively, few bacteria were isolated from pines inoculated with the avirulent isolate. The identification system API20E was insufficient in the identification of bacterial species; Enterobacter cloacae species was identified in 79% of the isolated bacterial colonies and seven of these colonies could not be identified by this method. Molecular identification methods, through bacterial DNA sequencing, allowed a more reliable identification: eleven different bacterial species within the Bacillus, Citrobacter, Enterobacter, Escherichia

  14. Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis.

    PubMed

    Lacava, P T; Araújo, W L; Marcon, J; Maccheroni, W; Azevedo, J L

    2004-01-01

    To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.

  15. Synergetic Antimicrobial Effects of Mixtures of Ethiopian Honeys and Ginger Powder Extracts on Standard and Resistant Clinical Bacteria Isolates

    PubMed Central

    Ewnetu, Yalemwork; Lemma, Wossenseged; Birhane, Nega

    2014-01-01

    Purpose. To evaluate antimicrobial effects of mixtures of Ethiopian honeys and ginger rhizome powder extracts on Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Staphylococcus aureus (MRSA), Escherichia coli (R), and Klebsiella pneumoniae (R). Methods. Agar diffusion and broth assays were performed to determine susceptibility of these standard and resistant clinical bacteria isolates using honey-ginger powder extract mixtures. Results. Honey-ginger powder extract mixtures produced the highest mean inhibition (25.62 mm ± 2.55) compared to the use of honeys (21.63 mm ± 3.30) or ginger extracts (19.23 mm ± 3.42) individually. The ranges of inhibitions produced by honey-ginger extract mixtures on susceptible test organisms (26–30 mm) and resistant strains (range: 19–27 mm) were higher compared to 7–22 mm and 0–14 mm by standard antibiotic discs. Minimum inhibitory concentrations (MIC) of mixture of honeys-ginger extracts were 6.25% (0.625 v/mL) on the susceptible bacteria compared to 75% for resistant clinical isolates. Minimum bactericidal concentration (MBC) of honey-ginger extracts was 12.5% (0.125 g/mL) for all the test organisms. Conclusion. The result of this study showed that honey-ginger powder extract mixtures have the potential to serve as cheap source of antibacterial agents especially for the drug resistant bacteria strains. PMID:24772182

  16. Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization.

    PubMed

    Smitinont, T; Tansakul, C; Tanasupawat, S; Keeratipibul, S; Navarini, L; Bosco, M; Cescutti, P

    1999-10-15

    Lactic Acid Bacteria (LAB) isolated from various traditional Thai fermented foods were screened for exopolysaccharides (EPS) production. From 104 isolates, two rod-shaped and five coccal-shaped LAB were able to produce EPS from sucrose on solid media. However, only the cocci were capable of producing EPS in liquid media and these were identified as Pediococcus pentosaceus. Pediococcus pentosaceus strains AP-1 and AP-3 produced EPS in high yield. In liquid media containing sucrose as carbon source, the amount of EPS produced by AP-1 and AP-3 strains was 6.0 and 2.5 g/L, respectively. The isolated and purified EPSs were chemically characterized. On the basis of sugar composition, methylation analysis and nuclear magnetic resonance spectroscopy, both the EPSs were shown to belong to the same dextran class. In particular, both EPSs differed from linear dextran by branching through 3,6-di-Osubstituted alpha-D-glucopyranosyl residues. The EPS from P. pentosaceus AP-3 was characterized by a relatively higher degree of branching and by a higher molecular weight than that from P. pentosaceus AP-1.

  17. Exopolysaccharides Isolated from Hydrothermal Vent Bacteria Can Modulate the Complement System

    PubMed Central

    Courtois, Anthony; Berthou, Christian; Guézennec, Jean

    2014-01-01

    The complement system is involved in the defence against bacterial infection, or in the elimination of tumour cells. However, disturbances in this system contributes to the pathogenesis of various inflammatory diseases. The efficiency of therapeutic anti-tumour antibodies is enhanced when the complement system is stimulated. In contrast, cancer cells are able to inhibit the complement system and thus proliferate. Some marine molecules are currently being developed as new drugs for use in humans. Among them, known exopolyssacharides (EPSs) generally originate from fungi, but few studies have been performed on bacterial EPSs and even fewer on EPSs extracted from deep-sea hydrothermal vent microbes. For use in humans, these high molecular weight EPSs must be depolymerised. Furthermore, the over-sulphation of EPSs can modify their biological activity. The aim of this study was to investigate the immunodulation of the complement system by either native or over-sulphated low molecular weight EPSs isolated from vent bacteria in order to find pro or anti-activators of complement. PMID:24736648

  18. Bacterial Coaggregation and Cohesion Among Isolates From Contact Lens Cases.

    PubMed

    Datta, Ananya; Stapleton, Fiona; Willcox, Mark D P

    2018-06-01

    The aim of this study was to examine cohesion, coaggregation, and coculture between bacteria commonly isolated from contact lens cases. Staphylococcus epidermidis, Staphylococcus haemolyticus, Micrococcus luteus, and Acinetobacter radioresistens (two strains each) isolated from contact lens cases of two asymptomatic wearers were used in this study. In the cohesion assay, bacteria were grown, washed, and examined by incubating lens cases with two different types of bacteria sequentially and assessing the number of adhered cells of each isolate. The ability of isolates to interfere with the growth of other isolates was tested by growing strains in cocultures for 24 hours and determining the numbers of cells of individual strains. For coaggregation, equal proportions of two bacterial suspensions were mixed and allowed to coaggregate for 24 hours. Inhibition of coaggregation was tested by the addition of lactose (0.06 M) or sucrose (0.06 M) or pronase. The initial adhesion of M. luteus or A. radioresistens significantly (P < 0.05) enhanced the subsequent adhesion of the staphylococci. The addition of A. radioresistens in liquid media significantly (P < 0.05) enhanced the growth of staphylococci. S. epidermidis or S. haemolyticus coaggregated with M. luteus or A. radioresistens. The degree of coaggregation varied between 30% and 54%. The highest coaggregation (54% ± 5%) was seen between A. radioresistens 22-1 and S. epidermidis 22-1, isolated from the same lens case. Only lactose or sucrose treatment of staphylococci could partly inhibit coaggregation of some pairs. Coaggregation, cohesion, and growth promotion may facilitate the process of bacterial colonization of contact lens cases.

  19. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines.

    PubMed

    García G, Mariandrea; Márquez G, Marco Antonio; Moreno H, Claudia Ximena

    2016-01-01

    Bacterial carbonate precipitation has implications in geological processes and important biotechnological applications. Bacteria capable of precipitating carbonates have been isolated from different calcium carbonate deposits (speleothems) in caves, soil, freshwater and seawater around the world. However, the diversity of bacteria from calcareous deposits in Colombia, and their ability to precipitate carbonates, remains unknown. In this study, conventional microbiological methods and molecular tools, such as temporal temperature gradient electrophoresis (TTGE), were used to assess the composition of bacterial communities associated with carbonate deposits and drip-waters from two Colombian mines. A genetic analysis of these bacterial communities revealed a similar level of diversity, based on the number of bands detected using TTGE. The dominant phylogenetic affiliations of the bacteria, determined using 16S rRNA gene sequencing, were grouped into two phyla: Proteobacteria and Firmicutes. Within these phyla, seven genera were capable of precipitating calcium carbonates: Lysinibacillus, Bacillus, Strenotophomonas, Brevibacillus, Methylobacterium, Aeromicrobium and Acinetobacter. FTIR and SEM/EDX were used to analyze calcium carbonate crystals produced by isolated Acinetobacter gyllenbergii. The results showed that rhombohedral and angular calcite crystals with sizes of 90μm were precipitated. This research provides information regarding the presence of complex bacterial communities in secondary carbonate deposits from mines and their ability to precipitate calcium carbonate from calcareous deposits of Colombian mines. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Antibacterial metabolites synthesized by psychrotrophic bacteria isolated from cold-freshwater environments.

    PubMed

    Barros, Javier; Becerra, José; González, Carlos; Martínez, Miguel

    2013-03-01

    The ability of three psychrotrophic Gram-negative bacilli isolated from Chilean Patagonian cold freshwater rivers to produce bioactive metabolites was evaluated. The strains were isolated from cold waters rivers and identified by their biochemical properties and 16S rRNA gene analysis. The metabolites fractions showing antibacterial activity were obtained by solvent extraction and partially characterized by gas-mass chromatography (GC-MS). Antibacterial activity of the fractions was evaluated by an agar-well diffusion test upon 14 bacterial strains, both Gram positive and Gram negative. Thermal and proteolytic resistances of the antibacterial metabolites fractions were also evaluated. Molecular analysis allows the identification of the three Patagonian strains as Pseudomonas sp. RG-6 (Pseudomonas brenneri 99.6 % identity), Pseudomonas sp. RG-8 (Pseudomonas trivialis 99.6 % identity) and Yersinia sp. RP-3 (Yersinia aldovae 99.5 % identity). These extracts were able to inhibit both Gram-positive and Gram-negative bacteria but not Listeria monocytogenes. The antibacterial activity of the filtrated supernatants was lost at temperatures ≥60 °C, and was not affected by proteinase K treatment. The chemical structure of the active molecule remains to be elucidated, although the GC-MS analysis of the filtrates suggests that compounds like sesquiterpenes derivatives from β-maaliene or δ-selinene could be responsible of this antibacterial activity. Pristine cold freshwater streams showed to be interesting sources of metabolites-producing microorganisms with antibacterial activity.