Sample records for bacteria contribute minimally

  1. Evidence for only minor contributions from bacteria to sedimentary organic carbon

    NASA Technical Reports Server (NTRS)

    Hartgers, W. A.; Sinninghe Damste, J. S.; Requejo, A. G.; Allan, J.; Hayes, J. M.; de Leeuw, J. W.

    1994-01-01

    Because their molecular signatures are often prominent in extracts of sediments, bacteria are thought to be important contributors to petroleum source beds. It has been shown recently, however, that abundances of biomarkers do not always reflect relative contributions to sedimentary organic carbon (Corg). The contribution of photosynthetic green sulphur bacteria to sediments can be assessed effectively because the diagenetic products of distinctive carotenoids from these organisms occur widely and their biomass is isotopically labelled, being enriched in 13C. We show here that, although sediments and oils from the Western Canada and Williston basins contain prominent biomarkers of photosynthetic bacteria, the absence of 13C enrichment in the total Corg requires that the bacterial contribution is in fact minimal. Although the importance of bacterial reworking of sedimentary debris cannot be doubted, we argue that our findings, when considered in conjunction with those from other settings, suggest that bacterial biomass may commonly represent only a minor component of total Corg in carbonaceous rocks.

  2. Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to cocoa fermentation using inoculated organisms.

    PubMed

    Ho, Van Thi Thuy; Fleet, Graham H; Zhao, Jian

    2018-08-20

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of the bean pulp by microorganisms is essential for developing the precursors of chocolate flavour. Currently, the cocoa fermentation is still conducted by an uncontrolled traditional process via a consortium of indigenous species of yeasts, lactic acid bacteria and acetic acid bacteria. Although the essential contribution of yeasts to the production of good quality beans and, typical chocolate character is generally agreed, the roles of lactic acid bacteria and acetic acid bacteria are less certain. The objective of this study was to investigate the contribution of LAB and AAB in cocoa bean fermentation by conducting small scale laboratory fermentations under aseptic conditions, inoculated with different groups of microorganisms previously isolated from spontaneous cocoa fermentations. The inoculation protocols were: (1) four yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae; (2) four yeasts plus the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum; (3) four yeasts plus the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateuri and (4) four yeasts plus two lactic acid bacteria and two acetic acid bacteria. Only the inoculated species were detected in the microbiota of their respective fermentations. Beans from the inoculated fermentations showed no significant differences in colour, shell weights and concentrations of residual sugars, alcohols and esters (p>0.05), but they were slightly different in contents of lactic acid and acetic acid (p<0.05). All beans were fully brown and free of mould. Residual sugar levels were less than 2.6 mg/g while the shell contents and ethanol were in the range of 11-13.4% and 4.8-7 mg/g, respectively. Beans fermented in the presence of LAB contained higher levels of lactic acid (0.6-1.2 mg/g) whereas higher concentrations of acetic acid

  3. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance.

    PubMed

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas C G

    2015-07-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection.

  4. Contribution of acetate to butyrate formation by human faecal bacteria.

    PubMed

    Duncan, Sylvia H; Holtrop, Grietje; Lobley, Gerald E; Calder, A Graham; Stewart, Colin S; Flint, Harry J

    2004-06-01

    Acetate is normally regarded as an endproduct of anaerobic fermentation, but butyrate-producing bacteria found in the human colon can be net utilisers of acetate. The butyrate formed provides a fuel for epithelial cells of the large intestine and influences colonic health. [1-(13)C]Acetate was used to investigate the contribution of exogenous acetate to butyrate formation. Faecalibacterium prausnitzii and Roseburia spp. grown in the presence of 60 mm-acetate and 10 mm-glucose derived 85-90 % butyrate-C from external acetate. This was due to rapid interchange between extracellular acetate and intracellular acetyl-CoA, plus net acetate uptake. In contrast, a Coprococcus-related strain that is a net acetate producer derived only 28 % butyrate-C from external acetate. Different carbohydrate-derived energy sources affected butyrate formation by mixed human faecal bacteria growing in continuous or batch cultures. The ranking order of butyrate production rates was amylopectin > oat xylan > shredded wheat > inulin > pectin (continuous cultures), and inulin > amylopectin > oat xylan > shredded wheat > pectin (batch cultures). The contribution of external acetate to butyrate formation in these experiments ranged from 56 (pectin) to 90 % (xylan) in continuous cultures, and from 72 to 91 % in the batch cultures. This is consistent with a major role for bacteria related to F. prausnitzii and Roseburia spp. in butyrate formation from a range of substrates that are fermented in the large intestine. Variations in the dominant metabolic type of butyrate producer between individuals or with variations in diet are not ruled out, however, and could influence butyrate supply in the large intestine.

  5. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains.

    PubMed

    Ortiz, N; Armada, E; Duque, E; Roldán, A; Azcón, R

    2015-02-01

    Autochthonous microorganisms [a consortium of arbuscular-mycorrhizal (AM) fungi and Bacillus thuringiensis (Bt)] were assayed and compared to Rhizophagus intraradices (Ri), Bacillus megaterium (Bm) or Pseudomonas putida (Psp) and non-inoculation on Trifolium repens in a natural arid soil under drought conditions. The autochthonous bacteria Bt and the allochthonous bacteria Psp increased nutrients and the relative water content and decreased stomatal conductance, electrolyte leakage, proline and APX activity, indicating their abilities to alleviate the drought stress. Mycorrhizal inoculation significantly enhanced plant growth, nutrient uptake and the relative water content, particularly when associated with specific bacteria minimizing drought stress-imposed effects. Specific combinations of autochthonous or allochthonous inoculants also contributed to plant drought tolerance by changing proline and antioxidative activities. However, non-inoculated plants had low relative water and nutrients contents, shoot proline accumulation and glutathione reductase activity, but the highest superoxide dismutase activity, stomatal conductance and electrolyte leakage. Microbial activities irrespective of the microbial origin seem to be coordinately functioning in the plant as an adaptive response to modulated water stress tolerance and minimizing the stress damage. The autochthonous AM fungi with Bt or Psp and those allochthonous Ri with Bm or Psp inoculants increased water stress alleviation. The autochthonous Bt showed the greatest ability to survive under high osmotic stress compared to the allochthonous strains, but when single inoculated or associated with Ri or AM fungi were similarly efficient in terms of physiological and nutritional status and in increasing plant drought tolerance, attenuating and compensating for the detrimental effect of water limitation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Contribution of bacteria-like particles to PM2.5 aerosol in urban and rural environments

    NASA Astrophysics Data System (ADS)

    Wolf, R.; El-Haddad, I.; Slowik, J. G.; Dällenbach, K.; Bruns, E.; Vasilescu, J.; Baltensperger, U.; Prévôt, A. S. H.

    2017-07-01

    We report highly time-resolved estimates of airborne bacteria-like particle concentrations in ambient aerosol using an Aerodyne aerosol mass spectrometer (AMS). AMS measurements with a newly developed PM2.5 and the standard (PM1) aerodynamic lens were performed at an urban background site (Zurich) and at a rural site (Payerne) in Switzerland. Positive matrix factorization using the multilinear engine (ME-2) implementation was used to estimate the contribution of bacteria-like particles to non-refractory organic aerosol. The success of the method was evaluated by a size-resolved analysis of the organic mass and the analysis of single particle mass spectra, which were detected with a light scattering system integrated into the AMS. Use of the PM2.5 aerodynamic lens increased measured bacteria-like concentrations, supporting the analysis method. However, at all sites, the low concentrations of this component suggest that airborne bacteria constitute a minor fraction of non-refractory PM2.5 organic aerosol mass. Estimated average mass concentrations were below 0.1 μg/m3 and relative contributions were lower than 2% at both sites. During rainfall periods, concentrations of the bacteria-like component increased considerably reaching a short-time maximum of approximately 2 μg/m3 at the Payerne site in summer.

  7. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis.

    PubMed

    Zenobia, Camille; Luo, Xiao Long; Hashim, Ahmed; Abe, Toshiharu; Jin, Lijian; Chang, Yucheng; Jin, Zhi Chao; Sun, Jian Xun; Hajishengallis, George; Curtis, Mike A; Darveau, Richard P

    2013-08-01

    The oral and intestinal host tissues both carry a heavy microbial burden. Although commensal bacteria contribute to healthy intestinal tissue structure and function, their contribution to oral health is poorly understood. A crucial component of periodontal health is the recruitment of neutrophils to periodontal tissue. To elucidate this process, gingival tissues of specific-pathogen-free and germ-free wild-type mice and CXCR2KO and MyD88KO mice were examined for quantitative analysis of neutrophils and CXCR2 chemoattractants (CXCL1, CXCL2). We show that the recruitment of neutrophils to the gingival tissue does not require commensal bacterial colonization but is entirely dependent on CXCR2 expression. Strikingly, however, commensal bacteria selectively upregulate the expression of CXCL2, but not CXCL1, in a MyD88-dependent way that correlates with increased neutrophil recruitment as compared with germ-free conditions. This is the first evidence that the selective use of chemokine receptor ligands contributes to neutrophil homing to healthy periodontal tissue. © 2013 John Wiley & Sons Ltd.

  8. Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables.

    PubMed

    de Sousa, Jossana Pereira; de Azerêdo, Geíza Alves; de Araújo Torres, Rayanne; da Silva Vasconcelos, Margarida Angélica; da Conceição, Maria Lúcia; de Souza, Evandro Leite

    2012-03-15

    This study assessed the occurrence of an enhancing inhibitory effect of the combined application of carvacrol and 1,8-cineole against bacteria associated with minimally processed vegetables using the determination of Fractional Inhibitory Concentration (FIC) index, time-kill assay in vegetable broth and application in vegetable matrices. Their effects, individually and in combination, on the sensory characteristics of the vegetables were also determined. Carvacrol and 1,8-cineole displayed Minimum Inhibitory Concentration (MIC) in a range of 0.6-2.5 and 5-20 μL/mL, respectively, against the organisms studied. FIC indices of the combined application of the compounds were 0.25 against Listeria monocytogenes, Aeromonas hydrophila and Pseudomonas fluorescens, suggesting a synergic interaction. Application of carvacrol and 1,8-cineole alone (MIC) or in a mixture (1/8 MIC+1/8 MIC or 1/4 MIC+1/4 MIC) in vegetable broth caused a significant decrease (p<0.05) in bacterial count over 24h. Mixtures of carvacrol and 1,8-cineole reduced (p<0.05) the inocula of all bacteria in vegetable broth and in experimentally inoculated fresh-cut vegetables. A similar efficacy was observed in the reduction of naturally occurring microorganisms in vegetables. Sensory evaluation revealed that the scores of the most-evaluated attributes fell between "like slightly" and "neither like nor dislike." The combination of carvacrol and 1,8-cineole at sub-inhibitory concentrations could constitute an interesting approach to sanitizing minimally processed vegetables. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Bacteria contribute to pesticide degradation in cryoconite holes in an Alpine glacier.

    PubMed

    Ferrario, Claudia; Pittino, Francesca; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Franzetti, Andrea; Ambrosini, Roberto; Villa, Sara

    2017-11-01

    Organic contaminants deposited on glacier snow and ice are subject to partitioning and degradation processes that determine their environmental fate and, consequently, their accumulation in ice bodies. Among these processes, organic compound degradation by supraglacial bacteria has been investigated to a lesser extent than photo- and chemical degradation. We investigated biodegradation of the organophosphorus insecticide chlorpyrifos (CPF), a xenobiotic tracer that accumulates on glaciers after atmospheric medium- and long-range transport, by installing in situ microcosms on an Alpine glacier to simulate cryoconite hole systems. We found that biodegradation contributed to the removal of CPF from the glacier surface more than photo- and chemical degradation. The high concentration of CPF (2-3 μg g -1 w.w.) detected in cryoconite holes and the estimated half-life of this compound (35-69 days in glacier environment) indicated that biodegradation can significantly reduce CPF concentrations on glaciers and its runoff to downstream ecosystems. The metabolic versatility of cryoconite bacteria suggests that these habitats might contribute to the degradation of a wide class of pollutants. We therefore propose that cryoconite acts as a "biofilter" by accumulating both pollutants and biodegradative microbial communities. The contribution of cryoconite to the removal of organic pollutants should be included in models predicting the environmental fate of these compounds in cold areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.)

    PubMed Central

    2011-01-01

    Background The insect gut harbors a variety of microorganisms that probably exceed the number of cells in insects themselves. These microorganisms can live and multiply in the insect, contributing to digestion, nutrition, and development of their host. Recent studies have shown that midgut bacteria appear to strengthen the mosquito's immune system and indirectly enhance protection from invading pathogens. Nevertheless, the physiological significance of these bacteria for mosquitoes has not been established to date. In this study, oral administration of antibiotics was employed in order to examine the contribution of gut bacteria to blood digestion and fecundity in Aedes aegypti. Results The antibiotics carbenicillin, tetracycline, spectinomycin, gentamycin and kanamycin, were individually offered to female mosquitoes. Treatment of female mosquitoes with antibiotics affected the lysis of red blood cells (RBCs), retarded the digestion of blood proteins and reduced egg production. In addition, antibiotics did not affect the survival of mosquitoes. Mosquito fertility was restored in the second gonotrophic cycle after suspension of the antibiotic treatment, showing that the negative effects of antibiotics in blood digestion and egg production in the first gonotrophic cycle were reversible. Conclusions The reduction of bacteria affected RBC lysis, subsequently retarded protein digestion, deprived mosquito from essential nutrients and, finally, oocyte maturation was affected, resulting in the production of fewer viable eggs. These results indicate that Ae. aegypti and its midgut bacteria work in synergism to digest a blood meal. Our findings open new possibilities to investigate Ae. aegypti-associated bacteria as targets for mosquito control strategies. PMID:21672186

  11. Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone.

    PubMed

    Shrivastava, Sajal; Lee, Won-Il; Lee, Nae-Eung

    2018-06-30

    A critical unmet need in the diagnosis of bacterial infections, which remain a major cause of human morbidity and mortality, is the detection of scarce bacterial pathogens in a variety of samples in a rapid and quantitative manner. Herein, we demonstrate smartphone-based detection of Staphylococcus aureus in a culture-free, rapid, quantitative manner from minimally processed liquid samples using aptamer-functionalized fluorescent magnetic nanoparticles. The tagged S. aureus cells were magnetically captured in a detection cassette, and then fluorescence was imaged using a smartphone camera with a light-emitting diode as the excitation source. Our results showed quantitative detection capability with a minimum detectable concentration as low as 10 cfu/ml by counting individual bacteria cells, efficiently capturing S. aureus cells directly from a peanut milk sample within 10 min. When the selectivity of detection was investigated using samples spiked with other pathogenic bacteria, no significant non-specific detection occurred. Furthermore, strains of S. aureus from various origins showed comparable results, ensuring that the approach can be widely adopted. Therefore, the quantitative fluorescence imaging platform on a smartphone could allow on-site detection of bacteria, providing great potential assistance during major infectious disease outbreaks in remote and resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Contributions of ammonia-oxidizing archaea and bacteria to nitrification in Oregon forest soils

    Treesearch

    Xinda Lu; Peter J. Bottomley; David D. Myrold

    2015-01-01

    Ammonia oxidation, the first step of nitrification, is mediated by both ammonia-oxidizing archaea (AOA) and bacteria (AOB); however, the relative contributions of AOA and AOB to soil nitrification are not well understood. In this study we used 1-octyne to discriminate between AOA-and AOB-supported nitrifi-cation determined both in soil-water slurries and in unsaturated...

  13. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture

    PubMed Central

    2018-01-01

    Rhizosphere microbiome which has been shown to enhance plant growth and yield are modulated or influenced by a few environmental factors such as soil type, plant cultivar, climate change and anthropogenic activities. In particular, anthropogenic activity, such as the use of nitrogen-based chemical fertilizers, is associated with environmental destruction and this calls for a more ecofriendly strategy to increase nitrogen levels in agricultural land. This feat is attainable by harnessing nitrogen-fixing endophytic and free-living rhizobacteria. Rhizobium, Pseudomonas, Azospirillum and Bacillus, have been found to have positive impacts on crops by enhancing both above and belowground biomass and could therefore play positive roles in achieving sustainable agriculture outcomes. Thus, it is necessary to study this rhizosphere microbiome with more sophisticated culture-independent techniques such as next generation sequencing (NGS) with the prospect of discovering novel bacteria with plant growth promoting traits. This review is therefore aimed at discussing factors that can modulate rhizosphere microbiome with focus on the contributions of nitrogen fixing bacteria towards sustainable agricultural development and the techniques that can be used for their study. PMID:29570619

  14. Supergravity contributions to inflation in models with non-minimal coupling to gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Kumar; Dutta, Koushik; Domcke, Valerie, E-mail: kumar.das@saha.ac.in, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: koushik.dutta@saha.ac.in

    2017-03-01

    This paper provides a systematic study of supergravity contributions relevant for inflationary model building in Jordan frame supergravity. In this framework, canonical kinetic terms in the Jordan frame result in the separation of the Jordan frame scalar potential into a tree-level term and a supergravity contribution which is potentially dangerous for sustaining inflation. We show that if the vacuum energy necessary for driving inflation originates dominantly from the F-term of an auxiliary field (i.e. not the inflaton), the supergravity corrections to the Jordan frame scalar potential are generically suppressed. Moreover, these supergravity contributions identically vanish if the superpotential vanishes alongmore » the inflationary trajectory. On the other hand, if the F-term associated with the inflaton dominates the vacuum energy, the supergravity contributions are generically comparable to the globally supersymmetric contributions. In addition, the non-minimal coupling to gravity inherent to Jordan frame supergravity significantly impacts the inflationary model depending on the size and sign of this coupling. We discuss the phenomenology of some representative inflationary models, and point out the relation to the recently much discussed cosmological 'attractor' models.« less

  15. Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion.

    PubMed

    Ben-Yosef, Michael; Aharon, Yael; Jurkevitch, Edouard; Yuval, Boaz

    2010-05-22

    Olive flies (Bactrocera oleae) are intimately associated with bacteria throughout their life cycle, and both larvae and adults are morphologically adapted for housing bacteria in the digestive tract. We tested the hypothesis that these bacteria contribute to the adult fly's fitness in a diet-dependent fashion. We predicted that when dietary protein is superabundant, bacterial contribution will be minimal. Conversely, in the absence of protein, or when only non-essential amino acids are present (as in the fly's natural diet), we predicted that bacterial contribution to fitness will be significant. Accordingly, we manipulated diet and the presence of bacteria in female olive flies, and monitored fecundity--an indirect measure of fitness. Bacteria did not affect fecundity when females were fed a nutritionally poor diet of sucrose, or a protein-rich, nutritionally complete diet. However, when females were fed a diet containing non-essential amino acids as the sole source of amino nitrogen, egg production was significantly enhanced in the presence of bacteria. These results suggest that bacteria were able to compensate for the skewed amino acid composition of the diet and may be indispensable for wild adult olive flies that subsist mainly on nitrogen-poor resources such as honeydew.

  16. Microeconomic principles explain an optimal genome size in bacteria.

    PubMed

    Ranea, Juan A G; Grant, Alastair; Thornton, Janet M; Orengo, Christine A

    2005-01-01

    Bacteria can clearly enhance their survival by expanding their genetic repertoire. However, the tight packing of the bacterial genome and the fact that the most evolved species do not necessarily have the biggest genomes suggest there are other evolutionary factors limiting their genome expansion. To clarify these restrictions on size, we studied those protein families contributing most significantly to bacterial-genome complexity. We found that all bacteria apply the same basic and ancestral 'molecular technology' to optimize their reproductive efficiency. The same microeconomics principles that define the optimum size in a factory can also explain the existence of a statistical optimum in bacterial genome size. This optimum is reached when the bacterial genome obtains the maximum metabolic complexity (revenue) for minimal regulatory genes (logistic cost).

  17. Bacteria–bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance

    PubMed Central

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas CG

    2015-01-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection. PMID:25514534

  18. Does Initial Leaf Chemistry Affect the Contribution of Insects, Fungi, and Bacteria to Leaf Breakdown in a Lowland Tropical Stream?

    NASA Astrophysics Data System (ADS)

    Ardon, M.; Pringle, C. M.

    2005-05-01

    We examined effects of initial leaf chemistry of six common riparian species on the relative contribution of fungi, bacteria, and invertebrates to leaf breakdown in a lowland stream in Costa Rica. We hypothesized that fungi and bacteria would contribute more to the breakdown of species with low concentrations of secondary (tannins and phenolics) and structural (cellulose and lignin) compounds, while invertebrates would be more important in the processing of species with high concentrations of secondary and structural compounds. We incubated single species leaf bags of six common riparian species, representing a range in secondary and structural compounds, in a third-order stream at La Selva Biological Station, Costa Rica. We measured leaf chemistry during the breakdown process. We determined fungal biomass using ergosterol methods, bacteria using DAPI counts, and invertebrate biomass using length-weight regressions. We then used biomass estimates for each group to determine their contribution to the overall breakdown process. Breakdown rates ranged from very fast (Trema integerima, k = 0.23 day-1) to slow (Zygia longifolia , k = 0.011 day-1). While analyses are still under way, preliminary results support our initial hypothesis that fungi contribute more to the break down of leaves from tree species with low concentrations of secondary and structural compounds.

  19. Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation.

    PubMed

    Men, Yujie; Achermann, Stefan; Helbling, Damian E; Johnson, David R; Fenner, Kathrin

    2017-02-01

    Improved micropollutant (MP) biotransformation during biological wastewater treatment has been associated with high ammonia oxidation activities, suggesting co-metabolic biotransformation by ammonia oxidizing bacteria as an underlying mechanism. The goal of this study was to clarify the contribution of ammonia oxidizing bacteria to increased MP degradation in nitrifying activated sludge (NAS) communities using a series of inhibition experiments. To this end, we treated a NAS community with two different ammonia oxidation inhibitors, namely octyne (OCT), a mechanistic inhibitor that covalently binds to ammonia monooxygenases, and allylthiourea (ATU), a copper chelator that depletes copper ions from the active center of ammonia monooxygenases. We investigated the biotransformation of 79 structurally different MPs by the inhibitor-treated and untreated sludge communities. Fifty-five compounds exhibited over 20% removal in the untreated control after a 46 h-incubation. Of these, 31 compounds were significantly inhibited by either ATU and/or OCT. For 17 of the 31 MPs, the inhibition by ATU at 46 h was substantially higher than by OCT despite the full inhibition of ammonia oxidation by both inhibitors. This was particularly the case for almost all thioether and phenylurea compounds tested, suggesting that in nitrifying activated sludge communities, ATU does not exclusively act as an inhibitor of bacterial ammonia oxidation. Rather, ATU also inhibited enzymes contributing to MP biotransformation but not to bulk ammonia oxidation. Thus, inhibition studies with ATU tend to overestimate the contribution of ammonia-oxidizing bacteria to MP biotransformation in nitrifying activated sludge communities. Biolog tests revealed only minor effects of ATU on the heterotrophic respiration of common organic substrates by the sludge community, suggesting that ATU did not affect enzymes that were essential in energy conservation and central metabolism of heterotrophs. By comparing ATU

  20. Lactic acid bacteria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb's lettuce.

    PubMed

    Siroli, Lorenzo; Patrignani, Francesca; Serrazanetti, Diana I; Tabanelli, Giulia; Montanari, Chiara; Gardini, Fausto; Lanciotti, Rosalba

    2015-05-01

    Outbreaks of food-borne disease associated with the consumption of fresh and minimally processed fruits and vegetables have increased dramatically over the last few years. Traditional chemical sanitizers are unable to completely eradicate or kill the microorganisms on fresh produce. These conditions have stimulated research to alternative methods for increasing food safety. The use of protective cultures, particularly lactic acid bacteria (LAB), has been proposed for minimally processed products. However, the application of bioprotective cultures has been limited at the industrial level. From this perspective, the main aims of this study were to select LAB from minimally processed fruits and vegetables to be used as biocontrol agents and then to evaluate the effects of the selected strains, alone or in combination with natural antimicrobials (2-(E)-hexenal/hexanal, 2-(E)-hexenal/citral for apples and thyme for lamb's lettuce), on the shelf-life and safety characteristics of minimally processed apples and lamb's lettuce. The results indicated that applying the Lactobacillus plantarum strains CIT3 and V7B3 to apples and lettuce, respectively, increased both the safety and shelf-life. Moreover, combining the selected strains with natural antimicrobials produced a further increase in the shelf-life of these products without detrimental effects on the organoleptic qualities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Managing the potential risks of using bacteria-laden water in mineral processing to protect freshwater.

    PubMed

    Liu, Wenying; Moran, Chris J; Vink, Sue

    2013-06-18

    The minerals industry is being driven to access multiple water sources and increase water reuse to minimize freshwater withdrawal. Bacteria-laden water, such as treated effluent, has been increasingly used as an alternative to freshwater for mineral processing, in particular flotation, where conditions are favorable for bacterial growth. However, the risk posed by bacteria to flotation efficiency is poorly understood. This could be a barrier to the ongoing use of this water source. This study tested the potential of a previously published risk-based approach as a management tool to both assist mine sites in quantifying the risk from bacteria, and finding system-wide cost-effective solutions for risk mitigation. The result shows that the solution of adjusting the flotation chemical regime could only partly control the risk. The second solution of using tailings as an absorbent was shown to be effective in the laboratory in reducing bacterial concentration and thus removing the threat to flotation recovery. The best solution is likely to combine internal and external approaches, that is, inside and outside processing plants. Findings in this study contribute possible methods applicable to managing the risk from water-borne bacteria to plant operations that choose to use bacteria-containing water, when attempting to minimize freshwater use, and avoiding the undesirable consequences of increasing its use.

  2. Peroxidasin contributes to lung host defense by direct binding and killing of gram-negative bacteria.

    PubMed

    Shi, Ruizheng; Cao, Zehong; Li, Hong; Graw, Jochen; Zhang, Guogang; Thannickal, Victor J; Cheng, Guangjie

    2018-05-01

    Innate immune recognition is classically mediated by the interaction of host pattern-recognition receptors and pathogen-associated molecular patterns; this triggers a series of downstream signaling events that facilitate killing and elimination of invading pathogens. In this report, we provide the first evidence that peroxidasin (PXDN; also known as vascular peroxidase-1) directly binds to gram-negative bacteria and mediates bactericidal activity, thus, contributing to lung host defense. PXDN contains five leucine-rich repeats and four immunoglobulin domains, which allows for its interaction with lipopolysaccharide, a membrane component of gram-negative bacteria. Bactericidal activity of PXDN is mediated via its capacity to generate hypohalous acids. Deficiency of PXDN results in a failure to eradicate Pseudomonas aeruginosa and increased mortality in a murine model of Pseudomonas lung infection. These observations indicate that PXDN mediates previously unrecognized host defense functions against gram-negative bacterial pathogens.

  3. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing.

    PubMed

    Di Cagno, Raffaella; Cardinali, Gainluigi; Minervini, Giovanna; Antonielli, Livio; Rizzello, Carlo Giuseppe; Ricciuti, Patrizia; Gobbetti, Marco

    2010-05-01

    Pichia guilliermondii was the only identified yeast in pineapple fruits. Lactobacillus plantarum and Lactobacillus rossiae were the main identified species of lactic acid bacteria. Typing of lactic acid bacteria differentiated isolates depending on the layers. L. plantarum 1OR12 and L. rossiae 2MR10 were selected within the lactic acid bacteria isolates based on the kinetics of growth and acidification. Five technological options, including minimal processing, were considered for pineapple: heating at 72 degrees C for 15 s (HP); spontaneous fermentation without (FP) or followed by heating (FHP), and fermentation by selected autochthonous L. plantarum 1OR12 and L. rossiae 2MR10 without (SP) or preceded by heating (HSP). After 30 days of storage at 4 degrees C, HSP and SP had a number of lactic acid bacteria 1000 to 1,000,000 times higher than the other processed pineapples. The number of yeasts was the lowest in HSP and SP. The Community Level Catabolic Profiles of processed pineapples indirectly confirmed the capacity of autochthonous starters to dominate during fermentation. HSP and SP also showed the highest antioxidant activity and firmness, the better preservation of the natural colours and were preferred for odour and overall acceptability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Bacteria contributing to behaviour of radiocarbon in sodium acetate.

    PubMed

    Ishii, Nobuyoshi; Uchida, Shigeo

    2011-07-01

    An acetate-utilising bacterium was isolated and identified from deionised water that was used for flooding of paddy soils in this study's batch culture experiments. Bacteria in the deionised water samples formed colonies on agar plates containing [1,2-(14)C] sodium acetate, and the autoradiograms showed that all the colonies were positive for (14)C utilisation. Then one of the acetate-utilising bacteria was isolated. The isolate was characterised by phylogenetic analysis, cell morphology, Gram staining and growth at 30 °C. Phylogenetic analysis based on 16S rRNA sequencing showed that the isolate belonged to the genus Burkholderia. The bacterium was gram-negative rods and grew at 30 °C under aerobic conditions. Based on these characteristics, the isolate was identified as Burkholderia gladioli. Because B. gladioli is often found in soil, water and the rhizosphere, attention must be paid to the relationships between bacteria and the behaviour of (14)C to for the safety assessment of geological disposal of transuranic waste.

  5. Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats.

    PubMed

    Hanske, Laura; Engst, Wolfram; Loh, Gunnar; Sczesny, Silke; Blaut, Michael; Braune, Annett

    2013-04-28

    Cyanidin 3-glucoside (C3G) is one of the major dietary anthocyanins implicated in the prevention of chronic diseases. To evaluate the impact of human intestinal bacteria on the fate of C3G in the host, we studied the metabolism of C3G in human microbiota-associated (HMA) rats in comparison with germ-free (GF) rats. Urine and faeces of the rats were analysed for C3G and its metabolites within 48 h after the application of 92 μmol C3G/kg body weight. In addition, we tested the microbial C3G conversion in vitro by incubating C3G with human faecal slurries and selected human gut bacteria. The HMA rats excreted with faeces a three times higher percentage of unconjugated C3G products and a two times higher percentage of conjugated C3G products than the GF rats. These differences were mainly due to the increased excretion of 3,4-dihydroxybenzoic acid, 2,4,6-trihydroxybenzaldehyde and 2,4,6-trihydroxybenzoic acid. Only the urine of HMA rats contained peonidin and 3-hydroxycinnamic acid and the percentage of conjugated C3G products in the urine was decreased compared with the GF rats. Overall, the presence of intestinal microbiota resulted in a 3·7% recovery of the C3G dose in HMA rats compared with 1·7% in GF rats. Human intestinal bacteria rapidly degraded C3G in vitro. Most of the C3G products were also found in the absence of bacteria, but at considerably lower levels. The higher concentrations of phenolic acids observed in the presence of intestinal bacteria may contribute to the proposed beneficial health effects of C3G.

  6. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  7. Differential effects of catecholamines on in vitro growth of pathogenic bacteria

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Sonnenfeld, Gerald

    2002-01-01

    Supplementation of minimal medium inoculated with bacterial cultures with norepinephrine, epinephrine, dopamine, or isoproterenol resulted in marked increases in growth compared to controls. Norepinephrine and dopamine had the greatest enhancing effects on growth of cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae, while epinephrine and isoproterenol also enhanced growth to a lesser extent. The growth of Escherichia coli in the presence of norepinephrine was greater than growth in the presence of the three other neurochemicals used in the study. Growth of Staphylococcus aureus was also enhanced in the presence of norepinephrine, but not to the same degree as was the growth of gram negative bacteria. Addition of culture supernatants from E. coli cultures that had been grown in the presence of norepinephrine was able to enhance the growth of K. pneumoniae. Addition of the culture supernatant fluid culture from E. coli cultures that had been grown in the presence of norepinephrine did not enhance growth of P. aeruginosa or S. aureus. Culture supernatant fluids from bacteria other than E. coli grown in the presence of norepinephrine were not able to enhance the growth of any bacteria tested. The results suggest that catecholamines can enhance growth of pathogenic bacteria, which may contribute to development of pathogenesis; however, there is no uniform effect of catecholamines on bacterial growth.

  8. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter

    Treesearch

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then...

  9. Symbiotic bacteria contribute to increasing the population size of a freshwater crustacean, Daphnia magna.

    PubMed

    Peerakietkhajorn, Saranya; Tsukada, Koji; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2015-04-01

    The filter-feeding crustacean Daphnia is a key organism in freshwater ecosystems. Here, we report the effect of symbiotic bacteria on ecologically important life history traits, such as population dynamics and longevity, in Daphnia magna. By disinfection of the daphniid embryos with glutaraldehyde, aposymbiotic daphniids were prepared and cultured under bacteria-free conditions. Removal of bacteria from the daphniids was monitored by quantitative polymerase chain reaction for bacterial 16S rRNA gene. The population of aposymbiotic daphniids was reduced 10-folds compared with that of the control daphniids. Importantly, re-infection with symbiotic bacteria caused daphniids to regain bacteria and increase their fecundity to the level of the control daphniids, suggesting that symbiotic bacteria regulate Daphnia fecundity. To identify the species of symbiotic bacteria, 16S rRNA genes of bacteria in daphniids were sequenced. This revealed that 50% of sequences belonged to the Limnohabitans sp. of the Betaproteobacteria class and that the diversity of bacterial taxa was relatively low. These results suggested that symbiotic bacteria have a beneficial effect on D. magna, and that aposymbiotic Daphnia are useful tools in understanding the role of symbiotic bacteria in the environmental responses and evolution of their hosts. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Question 7: Biosynthesis of Phosphatidic Acid in Liposome Compartments Toward the Self-Reproduction of Minimal Cells

    NASA Astrophysics Data System (ADS)

    Kuruma, Yutetsu

    2007-10-01

    Self-reproduction is one of main properties that define living cells. In order to explore the self-reproduction process for the study of early cells, and to develop a research line somehow connected to the origin of life, we have built up a constructive ‘synthetic cells (minimal cells)’ approach. The minimal cells approach consists in the investigation of the minimal number of elements to accomplish simple cell-like processes like self-reproduction. Such approach belongs to the field of synthetic biology. The minimal cells are reconstructed from a totally reconstituted cell-free protein synthesis system (PURESYSTEM) and liposome compartments as containers. Based on this approach, we synthesized two membrane proteins (enzymes), GPAT and LPAAT, which are involved in the phosphatidic acid biosynthesis in bacteria. Both membrane proteins were successfully synthesized by PURESYSTEM encapsulated inside POPC liposomes. Additionally, the enzymatic activity of GPAT was restored by mixing the expressed enzyme with lipid and by forming liposomes in situ. Through these experimental evidences, here we present a possible model to achieve self-reproduction in minimal cells. Our results would contribute to the idea that early cells could have been built by an extremely small number of genes.

  11. Direct Quantification of Ice Nucleation Active Bacteria in Aerosols and Precipitation: Their Potential Contribution as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Hill, T. C.; DeMott, P. J.; Garcia, E.; Moffett, B. F.; Prenni, A. J.; Kreidenweis, S. M.; Franc, G. D.

    2013-12-01

    Ice nucleation active (INA) bacteria are a potentially prodigious source of highly active (≥-12°C) atmospheric ice nuclei, especially from agricultural land. However, we know little about the conditions that promote their release (eg, daily or seasonal cycles, precipitation, harvesting or post-harvest decay of litter) or their typical contribution to the pool of boundary layer ice nucleating particles (INP). To initiate these investigations we developed a quantitative Polymerase Chain Reaction (qPCR) test of the ina gene, the gene that codes for the ice nucleating protein, to directly count INA bacteria in environmental samples. The qPCR test amplifies most forms of the gene and is highly sensitive, able to detect perhaps a single gene copy (ie, a single bacterium) in DNA extracted from precipitation. Direct measurement of the INA bacteria is essential because environmental populations will be a mixture of living, viable-but-not culturable, moribund and dead cells, all of which may retain ice nucleating proteins. Using the qPCR test on leaf washings of plants from three farms in Wyoming, Colorado and Nebraska we found INA bacteria to be abundant on crops, especially on cereals. Mid-summer populations on wheat and barley were ~108/g fresh weigh of foliage. Broadleaf crops, such as corn, alfalfa, sugar beet and potato supported 105-107/g. Unexpectedly, however, in the absence of a significant physical disturbance, such as harvesting, we were unable to detect the ina gene in aerosols sampled above the crops. Likewise, in fresh snow samples taken over two winters, ina genes from a range of INA bacteria were detected in about half the samples but at abundances that equated to INA bacterial numbers that accounted for only a minor proportion of INP active at -10°C. By contrast, in a hail sample from a summer thunderstorm we found 0.3 INA bacteria per INP at -10°C and ~0.5 per hail stone. Although the role of the INA bacteria as warm-temperature INP in these samples

  12. Identification of Mucosa-Invading and Intravascular Bacteria in Feline Small Intestinal Lymphoma.

    PubMed

    Hoehne, S N; McDonough, S P; Rishniw, M; Simpson, K W

    2017-03-01

    Persistent bacterial infections of the gastrointestinal mucosa are causally linked to gastric carcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma in people and laboratory animals. We examined the relationship of mucosa-associated bacteria to alimentary lymphoma in cats. Intestinal biopsies from 50 cats with alimentary lymphoma (small cell, n = 33; large cell, n = 17) and 38 controls without lymphoma (normal to minimal change on histopathology, n = 18; lymphocytic-plasmacytic enteritis, n = 20) were evaluated. The number and spatial distribution of bacteria (ie, in luminal cellular debris, villus-associated mucus, adherent to epithelium, mucosal invasion, intravascular, or serosal) were determined by fluorescence in situ hybridization with the eubacterial probe EUB-338. Mucosa-invasive bacteria were more frequently observed in cats with large cell lymphoma (82%, P ≤ .001) than in cats with small cell lymphoma (18%), normal to minimal change on histopathology, and lymphocytic-plasmacytic enteritis (3%). Intravascular bacteria were observed solely in large cell lymphoma (29%), and serosal colonization was more common in cats with large cell lymphoma (57%) than with small cell lymphoma (11%, P ≤ .01), normal to minimal change (8%, P ≤ .01), and lymphocytic-plasmacytic enteritis (6%, P ≤ .001). The high frequency of invasive bacteria within blood vessels and serosa of cats with large cell lymphoma may account for the sepsis-related complications associated with large cell lymphoma and inform clinical management. Further studies are required to determine the role of intramucosal bacteria in the etiopathogenesis of feline alimentary lymphoma.

  13. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria.

    PubMed

    Pacheco-Ordaz, R; Wall-Medrano, A; Goñi, M G; Ramos-Clamont-Montfort, G; Ayala-Zavala, J F; González-Aguilar, G A

    2018-01-01

    Fruit extracts from different tissues (pulp, seed and peel) have shown antimicrobial and prebiotic activities related to their phenolic profile, although structure-specific evaluations have not been reported yet. The effect of five phenolic compounds (catechin and gallic, vanillic, ferulic and protocatechuic acids) identified in different fruits, particularly in mango, was evaluated on the growth of two probiotic (Lactobacillus rhamnosusGG ATCC 53103 and Lactobacillus acidophilusNRRLB 4495) and two pathogenic (Escherichia coli 0157:H7 ATCC 43890 and Salmonella enterica serovar Typhimurium ATCC 14028) bacteria. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of phenolic acids ranged from 15-20 mmol l -1 and 20-30 mmol l -1 against E. coli and S. Typhimurium, respectively. For catechin, the MIC and MBC were 35 mmol l -1 and >35 mmol l -1 against E. coli and S. Typhimurium, respectively. The presence of catechin and gallic, protocatechuic and vanillic acids in MRS broth without dextrose allowed the growth of lactobacilli. Catechin combined with protocatechuic or vanillic acid mildly allowed the growth of both probiotics. In conclusion, phenolic compounds can selectively inhibit the growth of pathogenic bacteria without affecting the viability of probiotics. This study provides relevant information about the effects of phenolic compounds commonly present in fruit and vegetables on the growth of probiotic and pathogenic bacteria. The compounds selectively allowed the growth of probiotic lactobacilli (Lactobacillus rhamnosus GG and Lactobacillus acidophilus) and inhibited pathogenic bacteria (Escherichia coli and Salmonella Typhimurium) at the same concentration (20 mmol l -1 ). These findings can contribute to the formulation of nutraceutical products, such as synbiotics, that can restore or maintain an optimal composition of human microbiota, potentially improving the overall health of the consumer. © 2017 The

  14. Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria

    PubMed Central

    Ilmjärv, Tanel; Naanuri, Eve; Kivisaar, Maia

    2017-01-01

    Bacteria can rapidly evolve mechanisms allowing them to use toxic environmental pollutants as a carbon source. In the current study we examined whether the survival and evolution of indigenous bacteria with the capacity to degrade organic pollutants could be connected with increased mutation frequency. The presence of constitutive and transient mutators was monitored among 53 pollutants-degrading indigenous bacterial strains. Only two strains expressed a moderate mutator phenotype and six were hypomutators, which implies that constitutively increased mutability has not been prevalent in the evolution of pollutants degrading bacteria. At the same time, a large proportion of the studied indigenous strains exhibited UV-irradiation-induced mutagenesis, indicating that these strains possess error-prone DNA polymerases which could elevate mutation frequency transiently under the conditions of DNA damage. A closer inspection of two Pseudomonas fluorescens strains PC20 and PC24 revealed that they harbour genes for ImuC (DnaE2) and more than one copy of genes for Pol V. Our results also revealed that availability of other nutrients in addition to aromatic pollutants in the growth environment of bacteria affects mutagenic effects of aromatic compounds. These results also implied that mutagenicity might be affected by a factor of how long bacteria have evolved to use a particular pollutant as a carbon source. PMID:28777807

  15. Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation.

    PubMed

    Fukuhara, Yuki; Horii, Sachie; Matsuno, Toshihide; Matsumiya, Yoshiki; Mukai, Masaki; Kubo, Motoki

    2013-05-01

    A real-time PCR quantification method for indigenous hydrocarbon-degrading bacteria (HDB) carrying the alkB gene in the soil environment was developed to investigate their distribution in soil. The detection limit of indigenous HDB by the method was 1 × 10(6) cells/g-soil. The indigenous HDB were widely distributed throughout the soil environment and ranged from 3.7 × 10(7) to 5.0 × 10(8) cells/g-soil, and the ratio to total bacteria was 0.1-4.3 %. The dynamics of total bacteria, indigenous HDB, and Rhodococcus erythropolis NDKK6 (carrying alkB R2) during bioremediation were analyzed. During bioremediation with an inorganic nutrient treatment, the numbers of these bacteria were slightly increased. The numbers of HDB (both indigenous bacteria and strain NDKK6) were gradually decreased from the middle stage of bioremediation. Meanwhile, the numbers of these bacteria were highly increased and were maintained during bioremediation with an organic nutrient. The organic treatment led to activation of not only the soil bacteria but also the HDB, so an efficient bioremediation was carried out.

  16. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  17. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials

    PubMed Central

    Taylor, Anne E; Zeglin, Lydia H; Wanzek, Thomas A; Myrold, David D; Bottomley, Peter J

    2012-01-01

    It is well known that the ratio of ammonia-oxidizing archaea (AOA) and bacteria (AOB) ranges widely in soils, but no data exist on what might influence this ratio, its dynamism, or how changes in relative abundance influences the potential contributions of AOA and AOB to soil nitrification. By sampling intensively from cropped-to-fallowed and fallowed-to-cropped phases of a 2-year wheat/fallow cycle, and adjacent uncultivated long-term fallowed land over a 15-month period in 2010 and 2011, evidence was obtained for seasonal and cropping phase effects on the soil nitrification potential (NP), and on the relative contributions of AOA and AOB to the NP that recovers after acetylene inactivation in the presence and absence of bacterial protein synthesis inhibitors. AOB community composition changed significantly (P⩽0.0001) in response to cropping phase, and there were both seasonal and cropping phase effects on the amoA gene copy numbers of AOA and AOB. Our study showed that the AOA:AOB shifts were generated by a combination of different phenomena: an increase in AOA amoA abundance in unfertilized treatments, compared with their AOA counterparts in the N-fertilized treatment; a larger population of AOB under the N-fertilized treatment compared with the AOB community under unfertilized treatments; and better overall persistence of AOA than AOB in the unfertilized treatments. These data illustrate the complexity of the factors that likely influence the relative contributions of AOA and AOB to nitrification under the various combinations of soil conditions and NH4+-availability that exist in the field. PMID:22695861

  18. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials.

    PubMed

    Taylor, Anne E; Zeglin, Lydia H; Wanzek, Thomas A; Myrold, David D; Bottomley, Peter J

    2012-11-01

    It is well known that the ratio of ammonia-oxidizing archaea (AOA) and bacteria (AOB) ranges widely in soils, but no data exist on what might influence this ratio, its dynamism, or how changes in relative abundance influences the potential contributions of AOA and AOB to soil nitrification. By sampling intensively from cropped-to-fallowed and fallowed-to-cropped phases of a 2-year wheat/fallow cycle, and adjacent uncultivated long-term fallowed land over a 15-month period in 2010 and 2011, evidence was obtained for seasonal and cropping phase effects on the soil nitrification potential (NP), and on the relative contributions of AOA and AOB to the NP that recovers after acetylene inactivation in the presence and absence of bacterial protein synthesis inhibitors. AOB community composition changed significantly (P0.0001) in response to cropping phase, and there were both seasonal and cropping phase effects on the amoA gene copy numbers of AOA and AOB. Our study showed that the AOA:AOB shifts were generated by a combination of different phenomena: an increase in AOA amoA abundance in unfertilized treatments, compared with their AOA counterparts in the N-fertilized treatment; a larger population of AOB under the N-fertilized treatment compared with the AOB community under unfertilized treatments; and better overall persistence of AOA than AOB in the unfertilized treatments. These data illustrate the complexity of the factors that likely influence the relative contributions of AOA and AOB to nitrification under the various combinations of soil conditions and NH(4)(+)-availability that exist in the field.

  19. Drug Resistance and Gene Transfer Mechanisms in Respiratory/Oral Bacteria.

    PubMed

    Jiang, S; Zeng, J; Zhou, X; Li, Y

    2018-06-01

    Growing evidence suggests the existence of new antibiotic resistance mechanisms. Recent studies have revealed that quorum-quenching enzymes, such as MacQ, are involved in both antibiotic resistance and cell-cell communication. Furthermore, some small bacterial regulatory RNAs, classified into RNA attenuators and small RNAs, modulate the expression of resistance genes. For example, small RNA sprX, can shape bacterial resistance to glycopeptide antibiotics via specific downregulation of protein SpoVG. Moreover, some bacterial lipocalins capture antibiotics in the extracellular space, contributing to severe multidrug resistance. But this defense mechanism may be influenced by Agr-regulated toxins and liposoluble vitamins. Outer membrane porin proteins and efflux pumps can influence intracellular concentrations of antibiotics. Alterations in target enzymes or antibiotics prevent binding to targets, which act to confer high levels of resistance in respiratory/oral bacteria. As described recently, horizontal gene transfer, including conjugation, transduction and transformation, is common in respiratory/oral microflora. Many conjugative transposons and plasmids discovered to date encode antibiotic resistance proteins and can be transferred from donor bacteria to transient recipient bacteria. New classes of mobile genetic elements are also being identified. For example, nucleic acids that circulate in the bloodstream (circulating nucleic acids) can integrate into the host cell genome by up-regulation of DNA damage and repair pathways. With multidrug resistant bacteria on the rise, new drugs have been developed to combate bacterial antibiotic resistance, such as innate defense regulators, reactive oxygen species and microbial volatile compounds. This review summaries various aspects and mechanisms of antibiotic resistance in the respiratory/oral microbiota. A better understanding of these mechanisms will facilitate minimization of the emergence of antibiotic resistance.

  20. Contribution of Vegetation to the Microbial Composition of Nearby Outdoor Air

    PubMed Central

    Adams, Rachel I.

    2016-01-01

    ABSTRACT Given that epiphytic microbes are often found in large population sizes on plants, we tested the hypothesis that plants are quantitatively important local sources of airborne microorganisms. The abundance of microbial communities, determined by quantifying bacterial 16S RNA genes and the fungal internal transcribed spacer (ITS) region, in air collected directly above vegetation was 2- to 10-fold higher than that in air collected simultaneously in an adjacent nonvegetated area 50 m upwind. Nonmetric multidimensional scaling revealed that the composition of airborne bacteria in upwind air samples grouped separately from that of downwind air samples, while communities on plants and downwind air could not be distinguished. In contrast, fungal taxa in air samples were more similar to each other than to the fungal epiphytes. A source-tracking algorithm revealed that up to 50% of airborne bacteria in downwind air samples were presumably of local plant origin. The difference in the proportional abundances of a given operational taxonomic unit (OTU) between downwind and upwind air when regressed against the proportional representation of this OTU on the plant yielded a positive slope for both bacteria and fungi, indicating that those taxa that were most abundant on plants proportionally contributed more to downwind air. Epiphytic fungi were less of a determinant of the microbiological distinctiveness of downwind air and upwind air than epiphytic bacteria. Emigration of epiphytic bacteria and, to a lesser extent, fungi, from plants can thus influence the microbial composition of nearby air, a finding that has important implications for surrounding ecosystems, including the built environment into which outdoor air can penetrate. IMPORTANCE This paper addresses the poorly understood role of bacterial and fungal epiphytes, the inhabitants of the aboveground plant parts, in the composition of airborne microbes in outdoor air. It is widely held that epiphytes contribute

  1. Contribution of Vegetation to the Microbial Composition of Nearby Outdoor Air.

    PubMed

    Lymperopoulou, Despoina S; Adams, Rachel I; Lindow, Steven E

    2016-07-01

    Given that epiphytic microbes are often found in large population sizes on plants, we tested the hypothesis that plants are quantitatively important local sources of airborne microorganisms. The abundance of microbial communities, determined by quantifying bacterial 16S RNA genes and the fungal internal transcribed spacer (ITS) region, in air collected directly above vegetation was 2- to 10-fold higher than that in air collected simultaneously in an adjacent nonvegetated area 50 m upwind. Nonmetric multidimensional scaling revealed that the composition of airborne bacteria in upwind air samples grouped separately from that of downwind air samples, while communities on plants and downwind air could not be distinguished. In contrast, fungal taxa in air samples were more similar to each other than to the fungal epiphytes. A source-tracking algorithm revealed that up to 50% of airborne bacteria in downwind air samples were presumably of local plant origin. The difference in the proportional abundances of a given operational taxonomic unit (OTU) between downwind and upwind air when regressed against the proportional representation of this OTU on the plant yielded a positive slope for both bacteria and fungi, indicating that those taxa that were most abundant on plants proportionally contributed more to downwind air. Epiphytic fungi were less of a determinant of the microbiological distinctiveness of downwind air and upwind air than epiphytic bacteria. Emigration of epiphytic bacteria and, to a lesser extent, fungi, from plants can thus influence the microbial composition of nearby air, a finding that has important implications for surrounding ecosystems, including the built environment into which outdoor air can penetrate. This paper addresses the poorly understood role of bacterial and fungal epiphytes, the inhabitants of the aboveground plant parts, in the composition of airborne microbes in outdoor air. It is widely held that epiphytes contribute to atmospheric

  2. Heterotrophic bacteria in drinking water distribution system: a review.

    PubMed

    Chowdhury, Shakhawat

    2012-10-01

    The microbiological quality of drinking water in municipal water distribution systems (WDS) depends on several factors. Free residual chlorine and/or chloramines are typically used to minimize bacterial recontamination and/or regrowth in WDS. Despite such preventive measures, regrowth of heterotrophic (HPC) and opportunistic bacteria in bulk water and biofilms has yet to be controlled completely. No approach has shown complete success in eliminating biofilms or HPC bacteria from bulk water and pipe surfaces. Biofilms can provide shelter for pathogenic bacteria and protect these bacteria from disinfectants. Some HPC bacteria may be associated with aesthetic and non-life threatening diseases. Research to date has achieved important success in understanding occurrence and regrowth of bacteria in bulk water and biofilms in WDS. To achieve comprehensive understanding and to provide efficient control against bacteria regrowth, future research on bacteria regrowth dynamics and their implications is warranted. In this study, a review was performed on the literature published in this area. The findings and limitations of these papers are summarized. Occurrences of bacteria in WDS, factors affecting bacteria regrowth in bulk water and biofilms, bacteria control strategies, sources of nutrients, human health risks from bacterial exposure, modelling of bacteria regrowth and methods of bacteria sampling and detection and quantification are investigated. Advances to date are noted, and future research needs are identified. Finally, research directions are proposed to effectively control HPC and opportunistic bacteria in bulk water and biofilms in WDS.

  3. Release of Antibiotic Resistant Bacteria by a Waste Treatment Plant from Romania.

    PubMed

    Lupan, Iulia; Carpa, Rahela; Oltean, Andreea; Kelemen, Beatrice Simona; Popescu, Octavian

    2017-09-27

    The occurrence and spread of bacterial antibiotic resistance are subjects of great interest, and the role of wastewater treatment plants has been attracting particular interest. These stations are a reservoir of bacteria, have a large range of organic and inorganic substances, and the amount of bacteria released into the environment is very high. The main purpose of the present study was to assess the removal degree of bacteria with resistance to antibiotics and identify the contribution of a wastewater treatment plant to the microbiota of Someşul Mic river water in Cluj county. The resistance to sulfamethoxazole and tetracycline and some of their representative resistance genes: sul1, tet(O), and tet(W) were assessed in this study. The results obtained showed that bacteria resistant to sulphonamides were more abundant than those resistant to tetracycline. The concentration of bacteria with antibiotic resistance changed after the treatment, namely, bacteria resistant to sulfamethoxazole. The removal of all bacteria and antibiotic-resistant bacteria was 98-99% and the degree of removal of bacteria resistant to tetracycline was higher than the bacteria resistant to sulfamethoxazole compared to total bacteria. The wastewater treatment plant not only contributed to elevating ARG concentrations, it also enhanced the possibility of horizontal gene transfer (HGT) by increasing the abundance of the intI1 gene. Even though the treatment process reduced the concentration of bacteria by two orders of magnitude, the wastewater treatment plant in Cluj-Napoca contributed to an increase in antibiotic-resistant bacteria concentrations up to 10 km downstream of its discharge in Someşul Mic river.

  4. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  5. Symmetry breaking for drag minimization

    NASA Astrophysics Data System (ADS)

    Roper, Marcus; Squires, Todd M.; Brenner, Michael P.

    2005-11-01

    For locomotion at high Reynolds numbers drag minimization favors fore-aft asymmetric slender shapes with blunt noses and sharp trailing edges. On the other hand, in an inertialess fluid the drag experienced by a body is independent of whether it travels forward or backward through the fluid, so there is no advantage to having a single preferred swimming direction. In fact numerically determined minimum drag shapes are known to exhibit almost no fore-aft asymmetry even at moderate Re. We show that asymmetry persists, albeit extremely weakly, down to vanishingly small Re, scaling asymptotically as Re^3. The need to minimize drag to maximize speed for a given propulsive capacity gives one possible mechanism for the increasing asymmetry in the body plans seen in nature, as organisms increase in size and swimming speed from bacteria like E-Coli up to pursuit predator fish such as tuna. If it is the dominant mechanism, then this signature scaling will be observed in the shapes of motile micro-organisms.

  6. Horizontal gene transfer between bacteria.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  7. Strategies and ecological roles of algicidal bacteria.

    PubMed

    Meyer, Nils; Bigalke, Arite; Kaulfuß, Anett; Pohnert, Georg

    2017-11-01

    In both freshwater and marine ecosystems, phytoplankton are the most dominant primary producers, contributing substantially to aquatic food webs. Algicidal bacteria that can associate to microalgae from the phytoplankton have the capability to control the proliferation and even to lyse them. These bacteria thus play an important role in shaping species composition in pelagic environments. In this review, we discuss and categorise strategies used by algicidal bacteria for the attack on microalgae. We highlight the complex regulation of algicidal activity and defence responses that govern alga-bacteria interactions. We also discuss how algicidal bacteria impact algal physiology and metabolism and survey the existing algicidal metabolites and enzymes. The review illustrates that the ecological role of algicidal bacteria is not yet fully understood and critically discusses the challenges in obtaining ecologically relevant data. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Significance of beach geomorphology on fecal indicator bacteria levels.

    PubMed

    Donahue, Allison; Feng, Zhixuan; Kelly, Elizabeth; Reniers, Ad; Solo-Gabriele, Helena M

    2017-08-15

    Large databases of fecal indicator bacteria (FIB) measurements are available for coastal waters. With the assistance of satellite imagery, we illustrated the power of assessing data for many sites by evaluating beach features such as geomorphology, distance from rivers and canals, presence of piers and causeways, and degree of urbanization coupled with the enterococci FIB database for the state of Florida. We found that beach geomorphology was the primary characteristic associated with enterococci levels that exceeded regulatory guidelines. Beaches in close proximity to marshes or within bays had higher enterococci exceedances in comparison to open coast beaches. For open coast beaches, greater enterococci exceedances were associated with nearby rivers and higher levels of urbanization. Piers and causeways had a minimal contribution, as their effect was often overwhelmed by beach geomorphology. Results can be used to understand the potential causes of elevated enterococci levels and to promote public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria

    PubMed Central

    Beltran-Garcia, Miguel J.; White, Jr., James F.; Prado, Fernanda M.; Prieto, Katia R.; Yamaguchi, Lydia F.; Torres, Monica S.; Kato, Massuo J.; Medeiros, Marisa H. G.; Di Mascio, Paolo

    2014-01-01

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from 15N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with 15NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of 15N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes. PMID:25374146

  10. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    PubMed

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  11. Antibiotic-induced population fluctuations and stochastic clearance of bacteria

    PubMed Central

    Le, Dai; Şimşek, Emrah; Chaudhry, Waqas

    2018-01-01

    Effective antibiotic use that minimizes treatment failures remains a challenge. A better understanding of how bacterial populations respond to antibiotics is necessary. Previous studies of large bacterial populations established the deterministic framework of pharmacodynamics. Here, characterizing the dynamics of population extinction, we demonstrated the stochastic nature of eradicating bacteria with antibiotics. Antibiotics known to kill bacteria (bactericidal) induced population fluctuations. Thus, at high antibiotic concentrations, the dynamics of bacterial clearance were heterogeneous. At low concentrations, clearance still occurred with a non-zero probability. These striking outcomes of population fluctuations were well captured by our probabilistic model. Our model further suggested a strategy to facilitate eradication by increasing extinction probability. We experimentally tested this prediction for antibiotic-susceptible and clinically-isolated resistant bacteria. This new knowledge exposes fundamental limits in our ability to predict bacterial eradication. Additionally, it demonstrates the potential of using antibiotic concentrations that were previously deemed inefficacious to eradicate bacteria. PMID:29508699

  12. Bacteria Contribute to Sediment Nutrient Release and Reflect Progressed Eutrophication-Driven Hypoxia in an Organic-Rich Continental Sea

    PubMed Central

    Sinkko, Hanna; Lukkari, Kaarina; Sihvonen, Leila M.; Sivonen, Kaarina; Leivuori, Mirja; Rantanen, Matias; Paulin, Lars; Lyra, Christina

    2013-01-01

    In the sedimental organic matter of eutrophic continental seas, such as the largest dead zone in the world, the Baltic Sea, bacteria may directly participate in nutrient release by mineralizing organic matter or indirectly by altering the sediment’s ability to retain nutrients. Here, we present a case study of a hypoxic sea, which receives riverine nutrient loading and in which microbe-mediated vicious cycles of nutrients prevail. We showed that bacterial communities changed along the horizontal loading and vertical mineralization gradients in the Gulf of Finland of the Baltic Sea, using multivariate statistics of terminal restriction fragments and sediment chemical, spatial and other properties of the sampling sites. The change was mainly explained by concentrations of organic carbon, nitrogen and phosphorus, which showed strong positive correlation with Flavobacteria, Sphingobacteria, Alphaproteobacteria and Gammaproteobacteria. These bacteria predominated in the most organic-rich coastal surface sediments overlain by oxic bottom water, whereas sulphate-reducing bacteria, particularly the genus Desulfobacula, prevailed in the reduced organic-rich surface sediments in the open sea. They correlated positively with organic nitrogen and phosphorus, as well as manganese oxides. These relationships suggest that the bacterial groups participated in the aerobic and anaerobic degradation of organic matter and contributed to nutrient cycling. The high abundance of sulphate reducers in the surficial sediment layers reflects the persistence of eutrophication-induced hypoxia causing ecosystem-level changes in the Baltic Sea. The sulphate reducers began to decrease below depths of 20 cm, where members of the family Anaerolineaceae (phylum Chloroflexi) increased, possibly taking part in terminal mineralization processes. Our study provides valuable information on how organic loading affects sediment bacterial community compositions, which consequently may maintain active

  13. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems.

    PubMed

    Chandran, Kartik; Stein, Lisa Y; Klotz, Martin G; van Loosdrecht, Mark C M

    2011-12-01

    Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO₂⁻) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N₂O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O₂) is associated with N₂O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N₂O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N₂O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N₂O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N₂O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.

  14. The effect of lactic acid bacteria on cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  15. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  16. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  17. Bacteria foraging in turbulent waters

    NASA Astrophysics Data System (ADS)

    Taylor, John; Tang, Wenbo; Stocker, Roman

    2009-11-01

    Marine bacteria are the Ocean's recyclers, contributing to as much as 50% of the productivity of the marine food web. Bacteria forage on patches of dissolved nutrients using chemotaxis, the ability to swim up chemical gradients. As turbulence is ubiquitous in the Ocean, it is important to understand how turbulent flow conditions affect bacterial foraging. We used three-dimensional, isotropic direct numerical simulations coupled with a bacterial transport equation to address this problem. After the flow is continuously forced until it reaches a steady state, microscale nutrient patches are injected into the turbulent flow, and stirring produces thin nutrient filaments. Two populations of bacteria compete against each other: one population is motile and chemotactic (`active'), the other is non-motile (`passive'). The distribution of both populations is initially uniform. Chemotaxis allows active bacteria to cluster near the center of the nutrient filaments, increasing their nutrient uptake relative to passive bacteria. Increasing the turbulence intensity increases the short-term chemotactic advantage by quickly producing large gradients in the nutrient concentration, but also leads to rapid mixing of the nutrient field, which makes the chemotactic advantage short-lived. The results suggest that the evolutionary advantage of chemotaxis, based on the increase in nutrient uptake relative to the energetic cost of swimming, strongly depends on the turbulence level.

  18. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria.

    PubMed

    Perera, Manosha; Al-Hebshi, Nezar Noor; Speicher, David J; Perera, Irosha; Johnson, Newell W

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it.

  19. Bacteria on external fixators: which prep is best?

    PubMed

    Stinner, Daniel J; Beltran, Michael J; Masini, Brendan D; Wenke, Joseph C; Hsu, Joseph R

    2012-03-01

    There are no established guidelines for the surgical prep of an external fixator in the operative field. This study investigates the effectiveness of different prep solutions and methods of application. Forty external fixator constructs, consisting of a rod, pin, and pin to rod coupling device, were immersed in a broth of Staphylococcus aureus (lux) for 12 hours. Constructs were then randomized into four treatment groups: chlorhexidine-gluconate (CHG) (4%) scrub, CHG (4%) spray, povidone-iodine (PI) (10%) scrub, and PI (10%) spray. Each construct was imaged with a specialized photon capturing camera system yielding the quantitative and spatial distribution of bacteria both before and after the prep. Each pin to bar clamp was loosened and moved 2 cm down the construct, simulating an external fixator adjustment, and reimaged. Spatial distribution of bacteria and total bacteria counts were compared. There was a similar reduction in bacteria after surgical prep when comparing all four groups independently (p = 0.19), method of application (spray vs. scrub, p = 0.27), and different solutions (CHG vs. PI, p = 0.41). Although bacteria were evident in newly exposed areas after external fixator adjustment, most notably within the loosened pin to bar clamp, it did not result in an increase in bacteria counts (all four groups, p = 0.11; spray vs. scrub, p = 0.18; CHG vs. PI, p = 0.99). Although there was no increase in bacteria counts after the simulated external fixator adjustment, it did expose additional bacteria previously unseen. Although there was no difference in surgical prep solution or method of application, consideration must be given to performing an additional surgical prep of the newly exposed surface after loosening of each individual external fixator component as this may further minimize potential bacteria exposure.

  20. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt.

    PubMed

    Aunsbjerg, S D; Honoré, A H; Marcussen, J; Ebrahimi, P; Vogensen, F K; Benfeldt, C; Skov, T; Knøchel, S

    2015-02-02

    Lactic acid bacteria with antifungal properties can be used to control spoilage of food and feed. Previously, most of the identified metabolites have been isolated from cell-free fermentate of lactic acid bacteria with methods suboptimal for detecting possible contribution from volatiles to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile produced by L. paracasei DGCC 2132 in CDIM. When the strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both volatiles, including diacetyl, and the antifungal activity towards two strains of Penicillium spp. When adding diacetyl to CDIM or yogurt without L. paracasei DGCC 2132, marked inhibition was observed. Besides diacetyl, the antifungal properties of acetoin were examined, but no antifungal activity was observed. Overall, the results demonstrate the contribution of diacetyl in the antifungal effect of L. paracasei DGCC 2132 and indicate that the importance of volatiles may have been previously underestimated. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Surface-enhanced Raman scattering spectroscopy characterization and identification of foodborne bacteria

    NASA Astrophysics Data System (ADS)

    Liu, Yongliang; Chen, Yud-Ren; Nou, Xiangwu; Chao, Kaunglin

    2007-09-01

    Rapid and routine identification of foodborne bacteria are considerably important, because of bio- / agro- terrorism threats, public health concerns, and economic loss. Conventional, PCR, and immunoassay methods for the detection of bacteria are generally time-consuming, chemical reagent necessary and multi-step procedures. Fast microbial detection requires minimal sample preparation, permits the routine analysis of large numbers of samples with negligible reagent costs, and is easy to operate. Therefore, we have developed silver colloidal nanoparticle based surface-enhanced Raman scattering (SERS) spectroscopy as a potential tool for the rapid and routine detection of E. coli and L. monocytogenes. This study presents the further results of our examination on S. typhimonium, one of the most commonly outbreak bacteria, for the characteristic bands and subsequent identification.

  2. Stenotrophomonas-Like Bacteria Are Widespread Symbionts in Cone Snail Venom Ducts.

    PubMed

    Torres, Joshua P; Tianero, Maria Diarey; Robes, Jose Miguel D; Kwan, Jason C; Biggs, Jason S; Concepcion, Gisela P; Olivera, Baldomero M; Haygood, Margo G; Schmidt, Eric W

    2017-12-01

    Cone snails are biomedically important sources of peptide drugs, but it is not known whether snail-associated bacteria affect venom chemistry. To begin to answer this question, we performed 16S rRNA gene amplicon sequencing of eight cone snail species, comparing their microbiomes with each other and with those from a variety of other marine invertebrates. We show that the cone snail microbiome is distinct from those in other marine invertebrates and conserved in specimens from around the world, including the Philippines, Guam, California, and Florida. We found that all venom ducts examined contain diverse 16S rRNA gene sequences bearing closest similarity to Stenotrophomonas bacteria. These sequences represent specific symbionts that live in the lumen of the venom duct, where bioactive venom peptides are synthesized. IMPORTANCE In animals, symbiotic bacteria contribute critically to metabolism. Cone snails are renowned for the production of venoms that are used as medicines and as probes for biological study. In principle, symbiotic bacterial metabolism could either degrade or synthesize active venom components, and previous publications show that bacteria do indeed contribute small molecules to some venoms. Therefore, understanding symbiosis in cone snails will contribute to further drug discovery efforts. Here, we describe an unexpected, specific symbiosis between bacteria and cone snails from around the world. Copyright © 2017 American Society for Microbiology.

  3. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels.

    PubMed

    Argou-Cardozo, Isadora; Zeidán-Chuliá, Fares

    2018-04-04

    Nowadays, there seems to be a consensus about the multifactorial nature of autism spectrum disorders (ASD). The literature provides hypotheses dealing with numerous environmental factors and genes accounting for the apparently higher prevalence of this condition. Researchers have shown evidence regarding the impact of gut bacteria on neurological outcomes, altering behavior and potentially affecting the onset and/or severity of psychiatric disorders. Pesticides and agrotoxics are also included among this long list of ASD-related environmental stressors. Of note, ingestion of glyphosate (GLY), a broad-spectrum systemic herbicide, can reduce beneficial bacteria in the gastrointestinal tract microbiota without exerting any effects on the Clostridium population, which is highly resistant to this herbicide. In the present study, (i) we performed a systematic review to evaluate the relationship between Clostridium bacteria and the probability of developing and/or aggravating autism among children. For that purpose, electronic searches were performed on Medline/PubMed and Scielo databases for identification of relevant studies published in English up to December 2017. Two independent researches selected the studies and analyzed the data. The results of the present systematic review demonstrate an interrelation between Clostridium bacteria colonization of the intestinal tract and autism. Finally, (ii) we also hypothesize about how environmental GLY levels may deleteriously influence the gut-brain axis by boosting the growth of Clostridium bacteria in autistic toddlers.

  4. Beer spoilage bacteria and hop resistance.

    PubMed

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  5. Bioenergetics of photoheterotrophic bacteria in the oceans.

    PubMed

    Kirchman, David L; Hanson, Thomas E

    2013-04-01

    Photoheterotrophic microbes, such as proteorhodopsin (PR)-based phototrophic (PRP) and aerobic anoxygenic phototrophic (AAP) bacteria, are well known to be abundant in the oceans, potentially playing unique roles in biogeochemical cycles. However, the contribution of phototrophy to the energy requirements of these bacteria has not been quantitatively examined to date. To better understand the implications of photoheterophy in the oceans, we calculated energy benefits and costs of phototrophy and compared net benefits with maintenance costs. Benefits depend on the number of photosynthetic units (PSUs), absorption cross-section area of each PSU as function of wavelength, the in situ light quality, and the energy yield per absorbed photon. For costs we considered the energy required for the synthesis of pigments, amino acids and proteins in each PSU. Our calculations indicate that AAP bacteria harvest more light energy than do PRP bacteria, but the costs of phototrophy are much higher for AAP bacteria. Still, the net energy gained by AAP bacteria is often sufficient to meet maintenance costs, while that is not the case for PRP bacteria except with high light intensities and large numbers of proteorhodopsin molecules per cell. The low costs and simplicity of PR-based phototrophy explain the high abundance of proteorhodopsin genes in the oceans. However, even for AAP bacteria, the net energy yield of phototrophy is apparently too low to influence the distribution of photoheterotrophic bacteria among various marine systems. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets

    PubMed Central

    Wang, Shaopu; Giller, Katrin; Kreuzer, Michael; Ulbrich, Susanne E.; Braun, Ueli; Schwarm, Angela

    2017-01-01

    Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I), without archaea (–A), without fungi (–F), without protozoa (–P) and with bacteria only (–AFP). A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower (Carthamus tinctorius) or poppy (Papaver somniferum) or camelina (Camelina sativa) at 70 g oil kg−1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, –F decreased organic matter (OM) degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in –F was greater with camelina seeds (−12 vs.−7% with I, P = 0.06), but smaller with poppy seeds (−4 vs. −8% with I, P = 0.03), and not affected with safflower seeds. With –P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08). Hydrogen recovery was improved with –P in any oilseeds compared to non-supplemented control. No methane emission was detected with the –A and –AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea associated

  7. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets.

    PubMed

    Wang, Shaopu; Giller, Katrin; Kreuzer, Michael; Ulbrich, Susanne E; Braun, Ueli; Schwarm, Angela

    2017-01-01

    Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I), without archaea (-A), without fungi (-F), without protozoa (-P) and with bacteria only (-AFP). A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower ( Carthamus tinctorius ) or poppy ( Papaver somniferum ) or camelina ( Camelina sativa ) at 70 g oil kg -1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, -F decreased organic matter (OM) degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in -F was greater with camelina seeds (-12 vs.-7% with I, P = 0.06), but smaller with poppy seeds (-4 vs. -8% with I, P = 0.03), and not affected with safflower seeds. With -P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08). Hydrogen recovery was improved with -P in any oilseeds compared to non-supplemented control. No methane emission was detected with the -A and -AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea associated with protozoa. This

  8. Distribution and characteristic of nitrite-dependent anaerobic methane oxidation bacteria by comparative analysis of wastewater treatment plants and agriculture fields in northern China

    PubMed Central

    Ma, Ru

    2016-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered biological process which has been arousing global attention because of its potential in minimizing greenhouse gases emissions. In this study, molecular biological techniques and potential n-damo activity batch experiments were conducted to investigate the presence and diversity of M. oxyfera bacteria in paddy field, corn field, and wastewater treatment plant (WWTP) sites in northern China, as well as lab-scale n-damo enrichment culture. N-damo enrichment culture showed the highest abundance of M. oxyfera bacteria, and positive correlation was observed between potential n-damo rate and abundance of M. oxyfera bacteria. Both paddy field and corn field sites were believed to be better inoculum than WWTP for the enrichment of M. oxyfera bacteria due to their higher abundance and the diversity of M. oxyfera bacteria. Comparative analysis revealed that long biomass retention time, low NH\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{4}^{+}$\\end{document}4+ and high NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{2}^{-}$\\end{document}2− content were suitable for the growth of M. oxyfera bacteria. PMID:27994974

  9. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria

    PubMed Central

    Perera, Manosha; Al-hebshi, Nezar Noor; Speicher, David J.; Perera, Irosha; Johnson, Newell W.

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it. PMID:27677454

  10. Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin

    PubMed Central

    Cash, Heather L.; Whitham, Cecilia V.; Behrendt, Cassie L.; Hooper, Lora V.

    2009-01-01

    The mammalian intestine harbors complex societies of beneficial bacteria that are maintained in the lumen with minimal penetration of mucosal surfaces. Microbial colonization of germ-free mice triggers epithelial expression of RegIIIγ, a secreted C-type lectin. RegIIIγ binds intestinal bacteria but lacks the complement recruitment domains present in other microbe-binding mammalian C-type lectins. We show that RegIIIγ and its human counterpart, HIP/PAP, are directly antimicrobial proteins that bind their bacterial targets via interactions with peptidoglycan carbohydrate. We propose that these proteins represent an evolutionarily primitive form of lectin-mediated innate immunity, and that they reveal intestinal strategies for maintaining symbiotic host-microbial relationships. PMID:16931762

  11. Methylotrophic bacteria symbiosis with the higher plants as means of minimization of the lower hydrocarbons concentration during artificial ecosystem gas exchange

    NASA Astrophysics Data System (ADS)

    Berkovich, Yuliy; Smolyanina, Svetlana; Moukhamedieva, Lana; Mardanov, Robert; Doronina, Nina; Ivanova, Ekaterina

    Plant growth unit should be included in the LSS for the space vehicles for vitamin greens supply and psychological support of cosmonauts during long-term missions. The lower hydrocarbons such as methane, methanol, methylated sulfuric compounds and methylated amines, ethylene and so on, are the natural products of human and plant metabolism and usually considered as the air pollutions. It is shown, that one way to decrease the lower hydrocarbons concentration in the artificial ecosystems could be colonization of the plants by methylotrophic bacteria. The aerobic methylotrophic bacteria possess unique ability to use methane and its oxidized or replaced derivatives without food damage and human, animals or plants infection. We have found that methylotrophic bacteria are the phyto-symbiotic bacteria: they stimulate growth and development of the colonized plants because of synthesizing cytokinins and auxins, and vitamin B12.Two collection strains of the obligate methylotrophic bacteria - Methylovorus mays C and Methylomonas metanica S - were chosen because of their high activity to assimilate the lower hydrocarbons due to functioning of methanoldehydrogenase, methanmonooxigenase and ribulose monophosphate cycle enzymes system.Colonization of the leaf cabbage Brassica chinensis L. by these strains led to approximately 30 % reduce of methanol and methane concentration in the air inside phytotron. Experimental estimations of the influence of methylotrophic bacteria on leafy greens growth and development are obtained.

  12. Salmonella and fecal indicator bacteria survival in soils amended with poultry manure

    USDA-ARS?s Scientific Manuscript database

    Minimizing the risks associated with manure-borne pathogenic microorganisms requires an understanding of microbial survival under realistic field conditions. The objective of this 3-year study was to assess the fate of Salmonella (SALM) and fecal indicator bacteria (FIB), E. coli (EC) and enterococc...

  13. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts.

    PubMed

    Friedman, Mendel

    2015-04-22

    Foodborne antibiotic-resistant pathogenic bacteria such as Campylobacter jejuni, Bacillus cereus, Clostridium perfringens, Escherichia coli, Salmonella enterica, Staphylococcus aureus, Vibrio cholerae, and Vibrio parahemolyticus can adversely affect animal and human health, but a better understanding of the factors involved in their pathogenesis is needed. To help meet this need, this overview surveys and interprets much of our current knowledge of antibiotic (multidrug)-resistant bacteria in the food chain and the implications for microbial food safety and animal and human health. Topics covered include the origin and prevalence of resistant bacteria in the food chain (dairy, meat, poultry, seafood, and herbal products, produce, and eggs), their inactivation by different classes of compounds and plant extracts and by the use of chlorine and physicochemical methods (heat, UV light, pulsed electric fields, and high pressure), the synergistic antimicrobial effects of combinations of natural antimicrobials with medicinal antibiotics, and mechanisms of antimicrobial activities and resistant effects. Possible areas for future research are suggested. Plant-derived and other safe natural antimicrobial compounds have the potential to control the prevalence of both susceptible and resistant pathogens in various environments. The collated information and suggested research will hopefully contribute to a better understanding of approaches that could be used to minimize the presence of resistant pathogens in animal feed and human food, thus reducing adverse effects, improving microbial food safety, and helping to prevent or treat animal and human infections.

  14. Bacterial Stressors in Minimally Processed Food

    PubMed Central

    Capozzi, Vittorio; Fiocco, Daniela; Amodio, Maria Luisa; Gallone, Anna; Spano, Giuseppe

    2009-01-01

    Stress responses are of particular importance to microorganisms, because their habitats are subjected to continual changes in temperature, osmotic pressure, and nutrients availability. Stressors (and stress factors), may be of chemical, physical, or biological nature. While stress to microorganisms is frequently caused by the surrounding environment, the growth of microbial cells on its own may also result in induction of some kinds of stress such as starvation and acidity. During production of fresh-cut produce, cumulative mild processing steps are employed, to control the growth of microorganisms. Pathogens on plant surfaces are already stressed and stress may be increased during the multiple mild processing steps, potentially leading to very hardy bacteria geared towards enhanced survival. Cross-protection can occur because the overlapping stress responses enable bacteria exposed to one stress to become resistant to another stress. A number of stresses have been shown to induce cross protection, including heat, cold, acid and osmotic stress. Among other factors, adaptation to heat stress appears to provide bacterial cells with more pronounced cross protection against several other stresses. Understanding how pathogens sense and respond to mild stresses is essential in order to design safe and effective minimal processing regimes. PMID:19742126

  15. Identification of active fluorescence stained bacteria by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krause, Mario; Beyer, Beatrice; Pietsch, Christian; Radt, Benno; Harz, Michaela; Rösch, Petra; Popp, Jürgen

    2008-04-01

    Microorganisms can be found everywhere e.g. in food both as useful ingredients or harmful contaminations causing food spoilage. Therefore, a fast and easy to handle analysis method is needed to detect bacteria in different kinds of samples like meat, juice or air to decide if the sample is contaminated by harmful microorganisms. Conventional identification methods in microbiology require always cultivation and therefore are time consuming. In this contribution we present an analysis approach to identify fluorescence stained bacteria on strain level by means of Raman spectroscopy. The stained bacteria are highlighted and can be localized easier against a complex sample environment e.g. in food. The use of Raman spectroscopy in combination with chemometrical methods allows the identification of single bacteria within minutes.

  16. Copper tolerance and virulence in bacteria

    PubMed Central

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  17. Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem

    Treesearch

    Fiona L. Jordan; J. Jason L. Cantera; Mark E. Fenn; Lisa Y. Stein

    2005-01-01

    Deposition rates of atmospheric nitrogenous pollutants to forests in the San Bernardino Mountains range east of Los Angeles, California, are the highest reported in North America. Acidic soils from the west end of the range are N-saturated and have elevated rates of N-mineralization, nitrification, and nitrate leaching. We assessed the impact of this heavy nitrogen...

  18. Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis.

    PubMed

    Lacava, P T; Araújo, W L; Marcon, J; Maccheroni, W; Azevedo, J L

    2004-01-01

    To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.

  19. [Predation of micro-protozoa on bacteria in Taihu Lake].

    PubMed

    Chen, Mo; Gao, Guang; Zhu, Li-Ping; Feng, Sheng

    2007-10-01

    With dilution method, this paper studied the predation of different size micro-protozoa on bacteria in Taihu Lake, and approached the effects of the predation on bacterial growth and of the water temperature on the predation. The results showed that in the water body of Taihu Lake, the predation rate of micro-protozoa with its size less than 32 microm was 5.07 d(-1), and the nano-size (less than 16 microm) protozoa contributed about 90.7%. The predation of nano-protozoa reduced the abundance of bacteria significantly. With the increase of water temperature, the predation rate of nano-protozoa and the growth rate of bacteria increased obviously.

  20. Investigation of diverse bacteria in cloud water at Mt. Tai, China.

    PubMed

    Xu, Caihong; Wei, Min; Chen, Jianmin; Sui, Xiao; Zhu, Chao; Li, Jiarong; Zheng, Lulu; Sui, Guodong; Li, Weijun; Wang, Wenxing; Zhang, Qingzhu; Mellouki, Abdelwahid

    2017-02-15

    Bacteria are abundant in atmospheric water phase with the potential to influence atmospheric processes and human health, yet relatively little information is known about the bacterial characteristics at high altitudes. Here we investigated the bacterial community by high throughput sequencing in 24 cloud water samples collected from September 26 to October 31, at the summit of Mt. Tai (36°15' N, 117°06' E, 1534m a.s.l) in China. Diverse bacterial population were identified and the gram-negative bacteria contributed the majority of total bacteria including Proteobacteria (81.6%) and Bacteroidetes (3.9%), followed by gram-positive bacteria Firmicutes (7.1%) and Actinobacteria (2.3%). These gram-negative taxa mainly inhabited in leaf-surface and cold environments. Meanwhile bacteria involved in the cloud condensation nuclei and ice nuclei formation were observed such as Sphingomonas (6.7%), Pseudomonas (4.1%), and Bacillus (1.1%). In addition, Sphingmonas was more active than that in daytime and participated in the cloud chemistry process. Meanwhile O 3 and SO 2 critically contributed to the variation of bacterial community. It is the first report on the bacterial community structure of cloud water over Asian area. Our results can serve as an important reference for environmental scientists, and biologists. Copyright © 2016. Published by Elsevier B.V.

  1. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    PubMed

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  2. Metagenomic Analysis of Nitrate-Reducing Bacteria in the Oral Cavity: Implications for Nitric Oxide Homeostasis

    PubMed Central

    Hyde, Embriette R.; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K.; Torregrossa, Ashley C.; Tribble, Gena; Kaplan, Heidi B.; Petrosino, Joseph F.; Bryan, Nathan S.

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria. PMID:24670812

  3. Pervasive transcription: detecting functional RNAs in bacteria.

    PubMed

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  4. Gut bacteria mediate aggregation in the German cockroach

    PubMed Central

    Wada-Katsumata, Ayako; Zurek, Ludek; Nalyanya, Godfrey; Roelofs, Wendell L.; Zhang, Aijun; Schal, Coby

    2015-01-01

    Aggregation of the German cockroach, Blattella germanica, is regulated by fecal aggregation agents (pheromones), including volatile carboxylic acids (VCAs). We demonstrate that the gut microbial community contributes to production of these semiochemicals. Chemical analysis of the fecal extract of B. germanica revealed 40 VCAs. Feces from axenic cockroaches (no microorganisms in the alimentary tract) lacked 12 major fecal VCAs, and 24 of the remaining compounds were represented at extremely low amounts. Olfactory and aggregation bioassays demonstrated that nymphs strongly preferred the extract of control feces over the fecal extract of axenic cockroaches. Additionally, nymphs preferred a synthetic blend of 6 fecal VCAs over a solvent control or a previously identified VCA blend. To test whether gut bacteria contribute to the production of fecal aggregation agents, fecal aerobic bacteria were cultured, isolated, and identified. Inoculation of axenic cockroaches with individual bacterial taxa significantly rescued the aggregation response to the fecal extract, and inoculation with a mix of six bacterial isolates was more effective than with single isolates. The results indicate that the commensal gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community. Our results highlight the pivotal role of gut bacteria in mediating insect–insect communication. Moreover, because the gut microbial community reflects the local environment, local plasticity in fecal aggregation pheromones enables colony-specific odors and fidelity to persistent aggregation sites. PMID:26644557

  5. Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate.

    PubMed

    Teixeira, César R V; Lana, Rogério de Paula; Tao, Junyi; Hackmann, Timothy J

    2017-06-01

    When given excess carbohydrate, certain microbial species respond by storing energy (synthesizing reserve carbohydrate), but other species respond by dissipating the energy as heat (spilling energy). To determine the importance of these responses in the rumen microbial community, this study quantified the responses of mixed ciliate protozoa vs bacteria to glucose. We hypothesized that ciliates would direct more glucose to synthesis of reserve carbohydrate (and less to energy spilling) than would bacteria. Ciliates and bacteria were isolated from rumen fluid using filtration and centrifugation, resuspended in nitrogen-free buffer to limit growth, and dosed with 5 mM glucose. Compared with bacteria, ciliates consumed glucose >3-fold faster and synthesized reserve carbohydrate 4-fold faster. They incorporated 53% of glucose carbon into reserve carbohydrate-nearly double the value (27%) for bacteria. Energy spilling was not detected for ciliates, as all heat production (104%) was accounted by synthesis of reserve carbohydrate and endogenous metabolism. For bacteria, reserve carbohydrate and endogenous metabolism accounted for only 68% of heat production, and spilling was detected within 11 min of dosing glucose. These results suggest that ciliates alter the course of ruminal carbohydrate metabolism by outcompeting bacteria for excess carbohydrate, maximizing reserve carbohydrate synthesis, and minimizing energy spilling. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria.

    PubMed

    Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L

    2015-01-01

    The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.

  7. In-vitro activity of sodium-hypochlorite gel on bacteria associated with periodontitis.

    PubMed

    Jurczyk, Karolina; Nietzsche, Sandor; Ender, Claudia; Sculean, Anton; Eick, Sigrun

    2016-11-01

    The aim of the present study was to assess the antimicrobial activity of a sodium hypochlorite formulation including its components against bacteria associated with periodontal disease. Sodium hypochlorite formulation (NaOCl gel), its components sodium hypochlorite (NaOCl), and the activating vehicle were compared with 0.1 % chlorhexidine digluconate (CHX) solution. The antimicrobial activity was proven by determination of minimal inhibitory concentrations (MIC), minimal bactericidal concentrations, and killing assays. Furthermore, the influence on formation as well as on a 4-day-old 6-species biofilm was tested. Except for one strain (Parvimonas micra ATCC 33270 in case of NaOCl gel), the MICs both of the CHX solution and NaOCl gel did not exceed 10 % of the formulations' concentration. In general, MICs of the NaOCl gel were equal as of the CHX solution against Gram-negatives but higher against Gram-positive bacteria. CHX but not NaOCl gel clearly inhibited biofilm formation; however, the activity of NaOCl gel was more remarkable on a 4-day-old biofilm. NaOCl killed bacteria in the biofilm and interfered with the matrix. The NaOCl gel acts antimicrobial in particular against Gram-negative species associated with periodontitis. Moreover, its component NaOCl hypochlorite is able to alter biofilm matrices. The NaOCl gel may represent a potential alternative for adjunctive topical antimicrobial treatment in periodontitis.

  8. Molecular and chemical dialogues in bacteria-protozoa interactions.

    PubMed

    Song, Chunxu; Mazzola, Mark; Cheng, Xu; Oetjen, Janina; Alexandrov, Theodore; Dorrestein, Pieter; Watrous, Jeramie; van der Voort, Menno; Raaijmakers, Jos M

    2015-08-06

    Protozoan predation of bacteria can significantly affect soil microbial community composition and ecosystem functioning. Bacteria possess diverse defense strategies to resist or evade protozoan predation. For soil-dwelling Pseudomonas species, several secondary metabolites were proposed to provide protection against different protozoan genera. By combining whole-genome transcriptome analyses with (live) imaging mass spectrometry (IMS), we observed multiple changes in the molecular and chemical dialogues between Pseudomonas fluorescens and the protist Naegleria americana. Lipopeptide (LP) biosynthesis was induced in Pseudomonas upon protozoan grazing and LP accumulation transitioned from homogeneous distributions across bacterial colonies to site-specific accumulation at the bacteria-protist interface. Also putrescine biosynthesis was upregulated in P. fluorescens upon predation. We demonstrated that putrescine induces protozoan trophozoite encystment and adversely affects cyst viability. This multifaceted study provides new insights in common and strain-specific responses in bacteria-protozoa interactions, including responses that contribute to bacterial survival in highly competitive soil and rhizosphere environments.

  9. Survival of human-associated bacteria in SLS

    NASA Astrophysics Data System (ADS)

    Fu, Yuming; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..; Khizhnyak, Sergey; Kovalev, Vladimir

    2016-07-01

    Management of microbial communities to minimize the potential for risk to the crew and to the plants to be used for supporting the crew is an essential component of successful bioregenerative life support systems (BLSS). Previously it was shown that soil-like substrate (SLS), obtained as a result of bioconversion of non-edible plant biomass in the higher plants based BLSS, demonstrates strong anti-fungal activity against soil-borne plant pathogens (Nesterenko et al., 2009). The present study is devoted to the estimation of anti-bacterial activity of SLS against gram-negative (presented with Escherichia coli) and gram-positive (presented with Staphylococcus aureus) human-associated bacteria, both of which belong to the group of opportunistic pathogen. In vitro effects of different types of SLS on E. coli and S. aureus and in situ survival curves of the bacteria with corresponding math models are presented. Additionally we have examined the influence of community richness (the indigenous community of SLS) on the ability of introduced human-associated bacteria to persist within SLS. The work was carried out within the frames of the state task on the subject No 56.1.4 of the Basic Research Program (Section VI) of Russian State Academies for 2013-2020.

  10. Comparative innate immune interactions of human and bovine secretory IgA with pathogenic and non-pathogenic bacteria.

    PubMed

    Hodgkinson, Alison J; Cakebread, Julie; Callaghan, Megan; Harris, Paul; Brunt, Rachel; Anderson, Rachel C; Armstrong, Kelly M; Haigh, Brendan

    2017-03-01

    Secretory IgA (SIgA) from milk contributes to early colonization and maintenance of commensal/symbiotic bacteria in the gut, as well as providing defence against pathogens. SIgA binds bacteria using specific antigenic sites or non-specifically via its glycans attached to α-heavy-chain and secretory component. In our study, we tested the hypothesis that human and bovine SIgA have similar innate-binding activity for bacteria. SIgAs, isolated from human and bovine milk, were incubated with a selection of commensal, pathogenic and probiotic bacteria. Using flow cytometry, we measured numbers of bacteria binding SIgA and their level of SIgA binding. The percentage of bacteria bound by human and bovine SIgA varied from 30 to 90% depending on bacterial species and strains, but was remarkably consistent between human and bovine SIgA. The level of SIgA binding per bacterial cell was lower for those bacteria that had a higher percentage of SIgA-bound bacteria, and higher for those bacteria that had lower percentage of SIgA-bound bacteria. Overall, human and bovine SIgA interacted with bacteria in a comparable way. This contributes to longer term research about the potential benefits of bovine SIgA for human consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  12. On the convergence of nonconvex minimization methods for image recovery.

    PubMed

    Xiao, Jin; Ng, Michael Kwok-Po; Yang, Yu-Fei

    2015-05-01

    Nonconvex nonsmooth regularization method has been shown to be effective for restoring images with neat edges. Fast alternating minimization schemes have also been proposed and developed to solve the nonconvex nonsmooth minimization problem. The main contribution of this paper is to show the convergence of these alternating minimization schemes, based on the Kurdyka-Łojasiewicz property. In particular, we show that the iterates generated by the alternating minimization scheme, converges to a critical point of this nonconvex nonsmooth objective function. We also extend the analysis to nonconvex nonsmooth regularization model with box constraints, and obtain similar convergence results of the related minimization algorithm. Numerical examples are given to illustrate our convergence analysis.

  13. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    PubMed Central

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and remove them from the oral cavity. To test this hypothesis, we developed two methods to quantify numbers of bacteria trapped in chewed gum. In the first method, known numbers of bacteria were finger-chewed into gum and chewed gums were molded to standard dimensions, sonicated and plated to determine numbers of colony-forming-units incorporated, yielding calibration curves of colony-forming-units retrieved versus finger-chewed in. In a second method, calibration curves were created by finger-chewing known numbers of bacteria into gum and subsequently dissolving the gum in a mixture of chloroform and tris-ethylenediaminetetraacetic-acid (TE)-buffer. The TE-buffer was analyzed using quantitative Polymerase-Chain-Reaction (qPCR), yielding calibration curves of total numbers of bacteria versus finger-chewed in. Next, five volunteers were requested to chew gum up to 10 min after which numbers of colony-forming-units and total numbers of bacteria trapped in chewed gum were determined using the above methods. The qPCR method, involving both dead and live bacteria yielded higher numbers of retrieved bacteria than plating, involving only viable bacteria. Numbers of trapped bacteria were maximal during initial chewing after which a slow decrease over time up to 10 min was observed. Around 108 bacteria were detected per gum piece depending on the method and gum considered. The number of species trapped in chewed gum increased with chewing time. Trapped bacteria were clearly visualized in chewed gum using scanning-electron-microscopy. Summarizing, using novel methods to quantify and qualify oral bacteria trapped in chewed gum, the hypothesis is confirmed that chewing of gum can trap

  14. Bad bacteria in acute appendicitis: rare but relevant.

    PubMed

    Reinisch, Alexander; Malkomes, Patrizia; Habbe, Nils; Bechstein, Wolf Otto; Liese, Juliane

    2017-09-01

    Bacterial infections are a factor for morbidity in patients with acute appendicitis (AA). The spreading of multidrug-resistant (MDR) bacteria is a significant problem in surgery, and the most relevant MDR pathogens are summarized as Enterobacteriaceae, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococci (ESKAPE) bacteria. Data regarding the species and distribution of bacteria in AA are available, but information about the resistances and their relevance is deficient. In this retrospective study, we analyzed microbiological swabs of patients with AA. The outcome parameters of patients after laparoscopic appendectomy were analyzed against microbiological results, including antibiotic resistance testing. Positive swabs were compared with bacteria cultivated after alternative abdominal emergency surgery (AES). In total, 584 patients with AA were included and had a mean age of 35.5 years. In 216 patients (36.9%), a swab was taken, and in 128 (59.3%) swabs, bacteria could be cultivated. The most frequent organisms were Escherichia coli, Bacteroides species, and Pseudomonas. In 9.4% of the positive AA swabs, MDR germs were cultivated, and all of them were ESKAPE pathogens. Patients with MDR bacteria in AA suffered more infectious complications (p = 0.006) and needed longer hospitalizations (p < 0.009). In AES, aside from appendicitis, a different spectrum containing more MDR bacteria was cultivated (5.9 vs. 20.9%; p < 0.0001). Although they occur less frequently in appendectomy compared to emergency surgeries for other abdominal diseases, MDR bacteria are traceable in this common disease and contribute to additional morbidity.

  15. Survival, injury and inactivation of Escherichia coli 0157:H7, salmonella and aerobic mesophilic bacteria in apple juice and cider amended with nisin-edta

    USDA-ARS?s Scientific Manuscript database

    For health reasons, people are consuming fresh juices or minimally processed fruit and vegetable juices, thereby, exposing themselves to the risk of foodborne illness if such juices are contaminated with bacteria pathogens. Behavior of aerobic mesophilic bacteria, Escherichia coli O157:H7 and Salmon...

  16. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria.

    PubMed

    Kartal, Boran; Geerts, Wim; Jetten, Mike S M

    2011-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite under anoxic conditions. The anammox process is currently used to remove ammonium from wastewater and contributes significantly to the loss of fixed nitrogen from the oceans. In this chapter, we focus on the ecophysiology of anammox bacteria and describe new methodologies to grow these microorganisms. Now, it is possible to enrich anammox bacteria up to 95% with a membrane bioreactor that removes forces of selection for fast settling aggregates and facilitates the growth of planktonic cells. The biomass from this system has a high anaerobic ammonium oxidation rate (50 fmol NH(4)(+) · cell(-1) day(-1)) and is suitable for many ecophysiological and molecular experiments. A high throughput Percoll density gradient centrifugation protocol may be applied on this biomass for further enrichment (>99.5%) of anammox bacteria. Furthermore, we provide an up-to-date list of commonly used primers and introduce protocols for quantification and detection of functional genes of anammox bacteria in their natural environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Bacteria may contribute to distant species recognition in ant-aphid mutualistic relationships.

    PubMed

    Fischer, Christophe Y; Detrain, Claire; Thonart, Philippe; Haubruge, Eric; Francis, Frédéric; Verheggen, François J; Lognay, Georges C

    2017-04-01

    Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction. Here, ant's ability to distantly discriminate 2 aphid species was investigated based on bacterial honeydew semiochemicals emissions using a two-way olfactometer. Both the mutualistic aphid Aphis fabae L. and the nonmyrmecophilous aphid Acyrthosiphon pisum Harris were found to be attractive for the ant Lasius niger L. The level of attraction was similar in both assays (control vs. one of the aphid species). However, when given a choice between these 2 aphid species, ants showed a significant preference for Aphis fabae. Honeydew volatiles, mostly from bacterial origins, are known to be a key element in ant attraction. Using the same olfactometry protocol, the relative attractiveness of volatiles emitted by honeydews collected from each aphid species and by bacteria isolated from each honeydew was investigated. Again, ants significantly preferred volatiles released by Aphis fabae honeydew and bacteria. This information suggests that microbial honeydew volatiles enable ants to distantly discriminate aphid species. These results strengthen the interest of studying the occurrence and potential impact of microorganisms in insect symbioses. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  18. High microbial loads found in minimally-processed sliced mushrooms from Italian market.

    PubMed

    Jiang, Haiyang; Miraglia, Dino; Ranucci, David; Donnini, Domizia; Roila, Rossana; Branciari, Raffaella; Li, Cheng

    2018-03-31

    There is an increased consumer interest in minimally processed vegetables that has led to the development of products, such as pre-cut sliced mushrooms. Few data are available on the hygienic condition and the presence of foodborne pathogens in such products. Therefore, the current study aimed to evaluate the safety and hygienic characteristics of both ready-to-eat and ready-to-cook, pre-cut sliced mushrooms obtained from a local Italian market. For the evaluation of the hygienic condition, the aerobic mesophilic bacteria, aerobic psychrotrophic bacteria and Escherichia coli enumerations were performed. Salmonella spp., Listeria monocytogenes and Campylobacter spp. were considered in the assessment of the foodborne pathogens. High microbial loads were detected, including counts higher than 5 log CFU/g for E. coli and 6 log CFU/g for the other bacteria counts considered, but no pathogens were found. Ready-to-eat and ready-to-cook products differed only for aerobic mesophilic counts (7.87 and 8.26 log CFU/g, respectively, P=0.003). Strategies to enhance the hygienic level of the mushrooms, particularly the ready-to-eat products, are needed.

  19. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations.

    PubMed

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2005-03-01

    Microorganisms, such as bacteria, which might be present as contamination inside an industrial food or pharmaceutical clean room process need to be identified on short time scales in order to minimize possible health hazards as well as production downtimes causing financial deficits. Here we describe the first results of single-particle micro-Raman measurements in combination with a classification method, the so-called support vector machine technique, allowing for a fast, reliable, and nondestructive online identification method for single bacteria.

  20. Chemotaxonomic Identification of Single Bacteria by Micro-Raman Spectroscopy: Application to Clean-Room-Relevant Biological Contaminations

    PubMed Central

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2005-01-01

    Microorganisms, such as bacteria, which might be present as contamination inside an industrial food or pharmaceutical clean room process need to be identified on short time scales in order to minimize possible health hazards as well as production downtimes causing financial deficits. Here we describe the first results of single-particle micro-Raman measurements in combination with a classification method, the so-called support vector machine technique, allowing for a fast, reliable, and nondestructive online identification method for single bacteria. PMID:15746368

  1. SERS as analytical tool for detection of bacteria

    NASA Astrophysics Data System (ADS)

    Cialla, Dana; Rösch, Petra; Möller, Robert; Popp, Jürgen

    2007-07-01

    The detection of single bacteria should be improved by lowering the acquisition time via the application of SERS (surface enhanced Raman spectroscopy). Nano structured colloids or surfaces consisting of gold or silver can be used as SERS active substrates. However, for biological applications mostly gold is used as SERS active substrate since silver is toxic for bacterial cells. Furthermore, the application of gold as a SERS-active substrate allows the usage of Raman excitation wavelengths in the red part of the electromagnetic spectrum. For the SERS investigations on bacteria different colloids (purchased and self prepared, preaggregated and non-aggregated) are chosen as SERS active substrates. The application of different gold colloids under gently mixing conditions to prevent the bacterial damage allowed the recording of reproducible SERS spectra of bacteria. The SERS spectra of B. pumilus are dominated by contributions of ingredients of the outer cell wall, e.g. the peptidoglycan layer. SEM images of the coated bacteria demonstrate the incomplete adsorption most probably due to variations within the binding affinities between different outer cell components and the gold colloids.

  2. Scrubbing technique for needleless connectors to minimize contamination risk.

    PubMed

    Satou, K; Kusanagi, R; Nishizawa, A; Hori, S

    2018-03-21

    This study aimed to investigate the appropriate scrubbing technique for needleless connectors to minimize contamination risk. To demonstrate a highly effective scrubbing technique to physically eliminate bacteria, needleless connectors were contaminated with Geobacillus stearothermophilus spores and then scrubbed. The study showed that the highest bacterial elimination rate was achieved by scrubbing an access port in a straight line with an alcohol cotton swab, applying a force that was almost equal to an arterial compression haemostasis to the access port, and repeating this procedure once using a new alcohol cotton swab. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Growth-Inhibiting and morphostructural effects of constituents identified in Asarum heterotropoides root on human intestinal bacteria

    PubMed Central

    2013-01-01

    Background The growth-inhibiting and morphostructural effects of seven constituents identified in Asarum heterotropoides root on 14 intestinal bacteria were compared with those of the fluoroquinolone antibiotic ciprofloxacin. Method A microtiter plate-based bioassay in sterile 96-well plates was used to evaluate the minimal inhibitory concentrations (MICs) of the test materials against the organisms. Results δ-3-Carene (5) exhibited the most potent growth inhibition of Gram-positive bacteria (Clostridium difficile ATCC 9689, Clostridium paraputrificum ATCC 25780, Clostridium perfringens ATCC 13124, and Staphylococcus aureus ATCC 12600) and Gram-negative bacteria (Escherichia coli ATCC 11775 and Bacteroides fragilis ATCC 25285) (minimal inhibitory concentrations (MIC), 0.18–0.70 mg/mL) except for Salmonella enterica serovar Typhimurium ATCC 13311 (MIC, 2.94 mg/mL). The MIC of methyleugenol (2), 1,8-cineole (3), α-asarone (4), (−)-asarinin (6), and pellitorine (7) was between 1.47 and 2.94 mg/mL against all test bacteria (except for compound 2 against C. difficile (0.70 mg/mL); compounds 1 (23.50 mg/mL) and 4 (5.80 mg/mL) against C. paraputricum; compounds 2 (5.80 mg/mL), 4 (12.0 mg/mL), and 7 (0.70 mg/mL) against C. perfringens); compound 1 against E. coli (7.20 mg/mL) and S. enterica serovar Typhimurium (12.0 mg/mL). Overall, all of the constituents were less potent at inhibiting microbial growth than ciprofloxacin (MIC, 0.063–0.25 mg/ mL). The lactic acid-producing bacteria (four bifidobacteria and two lactobacilli) and one acidulating bacterium Clostridium butyricum ATCC 25779 were less sensitive and more susceptible than the five harmful bacteria and two nonpathogenic bacteria (B. fragilis and E. coli) to the constituents and to ciprofloxacin, respectively. Beneficial Gram-positive bacteria and harmful and nonpathogenic Gram-negative bacteria were observed to have different degrees of antimicrobial susceptibility to the constituents, although

  4. Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria.

    PubMed

    Jiang, Tony T; Shao, Tzu-Yu; Ang, W X Gladys; Kinder, Jeremy M; Turner, Lucien H; Pham, Giang; Whitt, Jordan; Alenghat, Theresa; Way, Sing Sing

    2017-12-13

    Commensal intestinal microbes are collectively beneficial in preventing local tissue injury and augmenting systemic antimicrobial immunity. However, given the near-exclusive focus on bacterial species in establishing these protective benefits, the contributions of other types of commensal microbes remain poorly defined. Here, we show that commensal fungi can functionally replace intestinal bacteria by conferring protection against injury to mucosal tissues and positively calibrating the responsiveness of circulating immune cells. Susceptibility to colitis and influenza A virus infection occurring upon commensal bacteria eradication is efficiently overturned by mono-colonization with either Candida albicans or Saccharomyces cerevisiae. The protective benefits of commensal fungi are mediated by mannans, a highly conserved component of fungal cell walls, since intestinal stimulation with this moiety alone overrides disease susceptibility in mice depleted of commensal bacteria. Thus, commensal enteric fungi safeguard local and systemic immunity by providing tonic microbial stimulation that can functionally replace intestinal bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Amino acid composition of rumen bacteria and protozoa in cattle.

    PubMed

    Sok, M; Ouellet, D R; Firkins, J L; Pellerin, D; Lapierre, H

    2017-07-01

    Because microbial crude protein (MCP) constitutes more than 50% of the protein digested in cattle, its AA composition is needed to adequately estimate AA supply. Our objective was to update the AA contributions of the rumen microbial AA flowing to the duodenum using only studies from cattle, differentiating between fluid-associated bacteria (FAB), particle-associated bacteria (PAB), and protozoa, based on published literature (53, 16, and 18 treatment means were used for each type of microorganism, respectively). In addition, Cys and Met reported concentrations were retained only when an adequate protection of the sulfur groups was performed before the acid hydrolysis. The total AA (or true protein) fraction represented 82.4% of CP in bacteria. For 10 AA, including 4 essential AA, the AA composition differed between protozoa and bacteria. The most noticeable differences were a 45% lower Lys concentration and 40% higher Ala concentration in bacteria than in protozoa. Differences between FAB and PAB were less pronounced than differences between bacteria and protozoa. Assuming 33% FAB, 50% PAB, and 17% of protozoa in MCP duodenal flow, the updated concentrations of AA would decrease supply estimates of Met, Thr, and Val originating from MCP and increase those of Lys and Phe by 5 to 10% compared with those calculated using the FAB composition reported previously. Therefore, inclusion of the contribution of PAB and protozoa to the duodenal MCP flow is needed to adequately estimate AA supply from microbial origin when a factorial method is used to estimate duodenal AA flow. Furthermore, acknowledging the fact that hydrolysis of 1 kg of true microbial protein yields 1.16 kg of free AA substantially increases the estimates of AA supply from MCP. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. From the volcano effect to banding: a minimal model for bacterial behavioral transitions near chemoattractant sources.

    PubMed

    Javens, Gregory; Jashnsaz, Hossein; Pressé, Steve

    2018-04-30

    Sharp chemoattractant (CA) gradient variations near food sources may give rise to dramatic behavioral changes of bacteria neighboring these sources. For instance, marine bacteria exhibiting run-reverse motility are known to form distinct bands around patches (large sources) of chemoattractant such as nutrient-soaked beads while run-and-tumble bacteria have been predicted to exhibit a 'volcano effect' (spherical shell-shaped density) around a small (point) source of food. Here we provide the first minimal model of banding for run-reverse bacteria and show that, while banding and the volcano effect may appear superficially similar, they are different physical effects manifested under different source emission rate (and thus effective source size). More specifically, while the volcano effect is known to arise around point sources from a bacterium's temporal differentiation of signal (and corresponding finite integration time), this effect alone is insufficient to account for banding around larger patches as bacteria would otherwise cluster around the patch without forming bands at some fixed radial distance. In particular, our model demonstrates that banding emerges from the interplay of run-reverse motility and saturation of the bacterium's chemoreceptors to CA molecules and our model furthermore predicts that run-reverse bacteria susceptible to banding behavior should also exhibit a volcano effect around sources with smaller emission rates.

  7. Bacteria Mediate Methylation of Iodine in Marine and Terrestrial Environments

    PubMed Central

    Amachi, Seigo; Kamagata, Yoichi; Kanagawa, Takahiro; Muramatsu, Yasuyuki

    2001-01-01

    Methyl iodide (CH3I) plays an important role in the natural iodine cycle and participates in atmospheric ozone destruction. However, the main source of this compound in nature is still unclear. Here we report that a wide variety of bacteria including terrestrial and marine bacteria are capable of methylating the environmental level of iodide (0.1 μM). Of the strains tested, Rhizobium sp. strain MRCD 19 was chosen for further analysis, and it was found that the cell extract catalyzed the methylation of iodide with S-adenosyl-l-methionine as the methyl donor. These results strongly indicate that bacteria contribute to iodine transfer from the terrestrial and marine ecosystems into the atmosphere. PMID:11375186

  8. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity.

    PubMed

    Chen, Zhongyi; Guo, Lilu; Zhang, Yongqin; Walzem, Rosemary L; Pendergast, Julie S; Printz, Richard L; Morris, Lindsey C; Matafonova, Elena; Stien, Xavier; Kang, Li; Coulon, Denis; McGuinness, Owen P; Niswender, Kevin D; Davies, Sean S

    2014-08-01

    Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.

  9. Symbiotic bacteria enable olive fly larvae to overcome host defences

    PubMed Central

    Ben-Yosef, Michael; Pasternak, Zohar; Jurkevitch, Edouard; Yuval, Boaz

    2015-01-01

    Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein—the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae. PMID:26587275

  10. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary

    PubMed Central

    Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

    2014-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell 3H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect 3H-leucine incorporation in light–dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance. PMID:24824666

  11. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary.

    PubMed

    Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

    2014-11-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell (3)H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect (3)H-leucine incorporation in light-dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance.

  12. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change

    PubMed Central

    Lladó, Salvador; López-Mondéjar, Rubén

    2017-01-01

    SUMMARY The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. PMID:28404790

  13. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    PubMed

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  14. Temporospatial fate of bacteria and immune effector expression in house flies (Musca domestica L.) fed GFP-E. coli O157:H7

    PubMed Central

    Fleming, A.; Kumar, H.V.; Joyner, C.; Reynolds, A.; Nayduch, D.

    2014-01-01

    House flies (Diptera: Muscidae; Musca domestica L.) harbor and transmit a variety of human enteropathogens including E. coli O157:H7. Interactions between ingested bacteria and the fly gut directly impact bacterial persistence, survival and ultimately fly vector competence. We assessed the temporospatial fate of GFP-E. coli O157:H7 (GFP-ECO157) in house flies along with fly antimicrobial responses for 12 h post-ingestion. In flies fed GFP-ECO157, culture and microscopy revealed a steady decrease in bacterial load over 12 h, which was likely attributable to the combined effects of immobilization within the peritrophic matrix, lysis and peristaltic excretion. However, flies can putatively transmit this pathogen in excreta because intact bacteria were observed in the crop and rectum. qRT-PCR analysis of antimicrobial peptides (AMP) and lysozyme gene expression showed minimal upregulation in both the gut and carcass of house flies fed GFP-ECO157. However, these genes were upregulated in fly heads and salivary glands, and effector proteins were detected in the gut of some flies. Collectively, these data indicate that house flies can serve as reservoirs of E. coli O157:H7 for up to 12 h, and factors in addition to AMPs and lysozyme may contribute to bacteria destruction in the gut. PMID:24712451

  15. Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging.

    PubMed

    Lee, Hoonsoo; Kim, Moon S; Song, Yu-Rim; Oh, Chang-Sik; Lim, Hyoun-Sub; Lee, Wang-Hee; Kang, Jum-Soon; Cho, Byoung-Kwan

    2017-03-01

    There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. The seaweed holobiont: understanding seaweed-bacteria interactions.

    PubMed

    Egan, Suhelen; Harder, Tilmann; Burke, Catherine; Steinberg, Peter; Kjelleberg, Staffan; Thomas, Torsten

    2013-05-01

    Seaweeds (macroalgae) form a diverse and ubiquitous group of photosynthetic organisms that play an essential role in aquatic ecosystems. These ecosystem engineers contribute significantly to global primary production and are the major habitat formers on rocky shores in temperate waters, providing food and shelter for aquatic life. Like other eukaryotic organisms, macroalgae harbor a rich diversity of associated microorganisms with functions related to host health and defense. In particular, epiphytic bacterial communities have been reported as essential for normal morphological development of the algal host, and bacteria with antifouling properties are thought to protect chemically undefended macroalgae from detrimental, secondary colonization by other microscopic and macroscopic epibiota. This tight relationship suggests that macroalgae and epiphytic bacteria interact as a unified functional entity or holobiont, analogous to the previously suggested relationship in corals. Moreover, given that the impact of diseases in marine ecosystems is apparently increasing, understanding the role of bacteria as saprophytes and pathogens in seaweed communities may have important implications for marine management strategies. This review reports on the recent advances in the understanding of macroalgal-bacterial interactions with reference to the diversity and functional role of epiphytic bacteria in maintaining algal health, highlighting the holobiont concept. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity?

    PubMed

    Rathnayake, I V N; Megharaj, Mallavarapu; Krishnamurti, G S R; Bolan, Nanthi S; Naidu, Ravi

    2013-01-01

    A new minimal medium was formulated considering the limitations of the existing media for testing heavy metal sensitivity to bacteria. Toxicity of cadmium and copper to three bacteria was investigated in the new medium and compared with three other media commonly used to study the effect of the toxic metals. Based on speciation data arrived at using ion-selective electrodes, the available free-metal concentration in solution was highest in the MES-buffered medium. This finding was strongly supported by the estimated EC(50) values for the metals tested based on the toxicity bioassays. The free-ionic cadmium and copper concentrations in the medium provide more accurate determination of metal concentrations that affects the bacteria, than with most of other existing media. This will avoid doubts on other media and misleading conclusions relevant to the toxicity of heavy metals to bacteria and provides a better option for the study of metal-bacteria interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.

    PubMed

    Barton, Larry L; Fauque, Guy D

    2009-01-01

    Chemolithotrophic bacteria that use sulfate as terminal electron acceptor (sulfate-reducing bacteria) constitute a unique physiological group of microorganisms that couple anaerobic electron transport to ATP synthesis. These bacteria (220 species of 60 genera) can use a large variety of compounds as electron donors and to mediate electron flow they have a vast array of proteins with redox active metal groups. This chapter deals with the distribution in the environment and the major physiological and metabolic characteristics of sulfate-reducing bacteria (SRB). This chapter presents our current knowledge of soluble electron transfer proteins and transmembrane redox complexes that are playing an essential role in the dissimilatory sulfate reduction pathway of SRB of the genus Desulfovibrio. Environmentally important activities displayed by SRB are a consequence of the unique electron transport components or the production of high levels of H(2)S. The capability of SRB to utilize hydrocarbons in pure cultures and consortia has resulted in using these bacteria for bioremediation of BTEX (benzene, toluene, ethylbenzene and xylene) compounds in contaminated soils. Specific strains of SRB are capable of reducing 3-chlorobenzoate, chloroethenes, or nitroaromatic compounds and this has resulted in proposals to use SRB for bioremediation of environments containing trinitrotoluene and polychloroethenes. Since SRB have displayed dissimilatory reduction of U(VI) and Cr(VI), several biotechnology procedures have been proposed for using SRB in bioremediation of toxic metals. Additional non-specific metal reductase activity has resulted in using SRB for recovery of precious metals (e.g. platinum, palladium and gold) from waste streams. Since bacterially produced sulfide contributes to the souring of oil fields, corrosion of concrete, and discoloration of stonework is a serious problem, there is considerable interest in controlling the sulfidogenic activity of the SRB. The

  19. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?

    PubMed

    Celli, Jean; Tsolis, Renée M

    2015-02-01

    The unfolded protein response (UPR) is a cytoprotective response that is aimed at restoring cellular homeostasis following physiological stress exerted on the endoplasmic reticulum (ER), which also invokes innate immune signalling in response to invading microorganisms. Although it has been known for some time that the UPR is modulated by various viruses, recent evidence indicates that it also has multiple roles during bacterial infections. In this Review, we describe how bacteria interact with the ER, including how bacteria induce the UPR, how subversion of the UPR promotes bacterial proliferation and how the UPR contributes to innate immune responses against invading bacteria.

  20. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  1. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  2. Laser-induced breakdown spectroscopy (LIBS): An innovative tool for studying bacteria

    NASA Astrophysics Data System (ADS)

    Mohaidat, Qassem I.

    Laser-induced breakdown spectroscopy (LIBS) has gained a reputation as a flexible and convenient technique for rapidly determining the elemental composition of samples with minimal or no sample preparation. In this dissertation, I will describe the benefits of using LIBS for the rapid discrimination and identification of bacteria (both pathogenic and non-pathogenic) based on the relative concentration of trace inorganic elements such as Mg, P, Ca, and Na. The speed, portability, and robustness of the technique suggest that LIBS may be applicable as a rapid point-of-care medical diagnostic technology. LIBS spectra of multiple genera of bacteria such as Escherichia, Streptococcus, Mycobacterium, and Staphylococcus were acquired and successfully analyzed using a computerized discriminant function analysis (DFA). It was shown that a LIBS-based bacterial identification might be insensitive to a wide range of biological changes that could occur in the bacterial cell due to a variety of environmental stresses that the cell may encounter. The effect of reducing the number of bacterial cells on the LIBS-based classification was also studied. These results showed that with 2500 bacteria, the identification of bacterial specimens was still possible. Importantly, it was shown that bacteria in mixed samples (more than one type of bacteria being present) were identifiable. The dominant or majority component of a two-component mixture was reliably identified as long as it comprised 70% of the mixture or more. Finally, to simulate a clinical specimen in a precursor to actual clinical tests, Staphylococcus epidermidis bacteria were collected from urine samples (to simulate a urinary tract infection specimen) and were tested via LIBS without washing. The analysis showed that these bacteria possessed exactly the same spectral fingerprint as control bacteria obtained from sterile deionized water, resulting in a 100% correct classification. This indicates that the presence of other

  3. High microbial loads found in minimally-processed sliced mushrooms from Italian market

    PubMed Central

    Jiang, Haiyang; Miraglia, Dino; Ranucci, David; Donnini, Domizia; Roila, Rossana; Branciari, Raffaella; Li, Cheng

    2018-01-01

    There is an increased consumer interest in minimally processed vegetables that has led to the development of products, such as pre-cut sliced mushrooms. Few data are available on the hygienic condition and the presence of foodborne pathogens in such products. Therefore, the current study aimed to evaluate the safety and hygienic characteristics of both ready-to-eat and ready-to-cook, pre-cut sliced mushrooms obtained from a local Italian market. For the evaluation of the hygienic condition, the aerobic mesophilic bacteria, aerobic psychrotrophic bacteria and Escherichia coli enumerations were performed. Salmonella spp., Listeria monocytogenes and Campylobacter spp. were considered in the assessment of the foodborne pathogens. High microbial loads were detected, including counts higher than 5 log CFU/g for E. coli and 6 log CFU/g for the other bacteria counts considered, but no pathogens were found. Ready-to-eat and ready-to-cook products differed only for aerobic mesophilic counts (7.87 and 8.26 log CFU/g, respectively, P=0.003). Strategies to enhance the hygienic level of the mushrooms, particularly the ready-to-eat products, are needed. PMID:29732334

  4. Soil-borne reservoirs of antibiotic-resistant bacteria are established following therapeutic treatment of dairy calves.

    PubMed

    Liu, Jinxin; Zhao, Zhe; Orfe, Lisa; Subbiah, Murugan; Call, Douglas R

    2016-02-01

    We determined if antibiotics residues that are excreted from treated animals can contribute to persistence of resistant bacteria in agricultural environments. Administration of ceftiofur, a third-generation cephalosporin, resulted in a ∼ 3 log increase in ceftiofur-resistant Escherichia coli found in the faeces and pen soils by day 10 (P = 0.005). This resistant population quickly subsided in faeces, but was sustained in the pen soil (∼ 4.5 log bacteria g(-1)) throughout the trial (1 month). Florfenicol treatment resulted in a similar pattern although the loss of florfenicol-resistant E. coli was slower for faeces and remained stable at ∼ 6 log bacteria g(-1) in the soil. Calves were treated in pens where eGFP-labelled E. coli were present in the bedding (∼ 2 log g(-1)) resulting in amplification of the eGFP E. coli population ∼ 2.1 log more than eGFP E. coli populations in pens with untreated calves (day 4; P < 0.005). Excreted residues accounted for > 10-fold greater contribution to the bedding reservoir compared with shedding of resistant bacteria in faeces. Treatment with therapeutic doses of ceftiofur or florfenicol resulted in 2-3 log g(-1) more bacteria than the estimated ID50 (2.83 CFU g(-1)), consistent with a soil-borne reservoir emerging after antibiotic treatment that can contribute to the long-term persistence of antibiotic resistance in animal agriculture. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity

    PubMed Central

    Chen, Zhongyi; Guo, Lilu; Zhang, Yongqin; L. Walzem, Rosemary; Pendergast, Julie S.; Printz, Richard L.; Morris, Lindsey C.; Matafonova, Elena; Stien, Xavier; Kang, Li; Coulon, Denis; McGuinness, Owen P.; Niswender, Kevin D.; Davies, Sean S.

    2014-01-01

    Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person’s microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders. PMID:24960158

  6. Characterization of radiation-resistant vegetative bacteria in beef.

    PubMed

    Welch, A B; Maxcy, R B

    1975-08-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2 to 50 C. These bacteria were relatively heat sensitive, e.g., D10 of 5.4 min at 70 C or less. The radiation resistance ranged from D10 values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized.

  7. From the volcano effect to banding: a minimal model for bacterial behavioral transitions near chemoattractant sources

    NASA Astrophysics Data System (ADS)

    Javens, Gregory; Jashnsaz, Hossein; Pressé, Steve

    2018-07-01

    Sharp chemoattractant (CA) gradient variations near food sources may give rise to dramatic behavioral changes of bacteria neighboring these sources. For instance, marine bacteria exhibiting run-reverse motility are known to form distinct bands around patches (large sources) of chemoattractant such as nutrient-soaked beads while run-and-tumble bacteria have been predicted to exhibit a ‘volcano effect’ (spherical shell-shaped density) around a small (point) source of food. Here we provide the first minimal model of banding for run-reverse bacteria and show that, while banding and the volcano effect may appear superficially similar, they are different physical effects manifested under different source emission rate (and thus effective source size). More specifically, while the volcano effect is known to arise around point sources from a bacterium’s temporal differentiation of signal (and corresponding finite integration time), this effect alone is insufficient to account for banding around larger patches as bacteria would otherwise cluster around the patch without forming bands at some fixed radial distance. In particular, our model demonstrates that banding emerges from the interplay of run-reverse motility and saturation of the bacterium’s chemoreceptors to CA molecules and our model furthermore predicts that run-reverse bacteria susceptible to banding behavior should also exhibit a volcano effect around sources with smaller emission rates.

  8. Identification of bacteria causing acute otitis media using Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Ayala, Oscar D.; Wakeman, Catherine A.; Skaar, Eric P.; Mahadevan-Jansen, Anita

    2016-03-01

    Otitis media (OM) is the leading cause of acute physician visits and prescription of antibiotics for children. Current standard techniques to diagnose acute otitis media (AOM) are limited by their ability to probe only changes in symptoms of the bacterial infection that cause AOM. Furthermore, they are not able to detect the presence of or identify bacteria causing AOM, which is important for diagnosis and proper antibiotic treatment. Our goal is to detect the presence of and identify the pathogens involved in causing AOM based on their biochemical profile using Raman spectroscopy (RS). An inVia confocal Raman microscope (Renishaw) at 785 nm was used to detect bacteria causing AOM in vitro. The three main bacteria that cause AOM, Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae were cultured in chocolate agar and Mueller-Hinton agar to determine which agar type would minimize Raman signal from the growth agar. Preliminary results identified specific Raman spectral features characteristic of S. pneumoniae. RS has the potential to accurately diagnose AOM, which will help in identifying the antibiotic that will be most beneficial for the patient and ultimately decrease the course of infection.

  9. Minimal Absent Words in Four Human Genome Assemblies

    PubMed Central

    Garcia, Sara P.; Pinho, Armando J.

    2011-01-01

    Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef) than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH). Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species. PMID:22220210

  10. Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape.

    PubMed

    Ioriatti, Claudio; Guzzon, Raffaele; Anfora, Gianfranco; Ghidoni, Franca; Mazzoni, Valerio; Villegas, Tomas Roman; Dalton, Daniel T; Walton, Vaughn M

    2018-02-09

    This research aimed to more clearly describe the interactions of Drosophila suzukii (Matsumura; Diptera: Drosophilidae) with microorganisms that may contribute to spoilage or quality loss of wine grapes during harvest. Experiments were conducted in controlled laboratory experiments and under field conditions to determine these effects. Laboratory trials determined the role of insect contact and oviposition to vector spoilage bacteria onto wine grapes. In the field, the roles of key organoleptic parameters in grape fruit ripening were assessed to determine their relative contribution to oviposition potential as fruit ripened. Finally, field trials determined the relationships of egg and larval infestation to sour rot levels. Non-ovipositional trials indicated elevated levels of microbiota when D. suzukii was present. D. suzukii oviposition exponentially increased the concentration of acetic acid bacteria. Both incised and sound berries showed a significant increase in concentrations of acetic acid bacteria exposed to D. suzukii. Volatile acidity was higher in treatments infested with D. suzukii. Fruit with only eggs did not develop a significant increase of volatile acidity. Larva-infested grape berries in 9.5% of samples developed higher volatile acidity after 14 d. Sound grape berries were less susceptible to the development of microbiota associated with sour rot and spoilage. D. suzukii oviposition and larval development increase risk of spoilage bacteria vectored by D. suzukii adults. Acetic acid bacteria induced fermentation and produced several volatile compounds contributing to spoilage. Spoilage bacteria may create a positive feedback loop that attracts both D. suzukii and other drosophilids, which may contribute to additional spoilage. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi.

    PubMed

    Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian

    2016-06-30

    Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health.

  12. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi

    PubMed Central

    Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian

    2016-01-01

    Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health. PMID:27376311

  13. Phenotypic changes contributing to Enterobacter gergoviae biocide resistance.

    PubMed

    Périamé, M; Philippe, N; Condell, O; Fanning, S; Pagès, J-M; Davin-Regli, A

    2015-08-01

    Enterobacter gergoviae is a recurrent contaminant of cosmetic and hygiene products. To understand how this bacterium adapts to biocides, we studied Ent. gergoviae CIP 76.01 and its triclosan and Methylisothiazolinone-chloromethylisothiazolinone (MIT-CMIT) tolerant isogenic mutants. They were compared with others also isolated from contaminated cosmetics. Phenotypic differences were noted and these included changes in the bacterial envelope and flagella along with differences in motility, and biofilm growth rates. Triclosan and MIT-CMIT derivatives expressed flagella and other MIT-CMIT derivatives exhibited some external appendages. Those bacteria expressing a high-level minimal inhibitory concentration to MIT-CMIT, expressed a strong biofilm formation. No differential phenotypes were noted for carbon source utilisation. Enterobacter gergoviae demonstrated a diverse response to both of these preservatives contained in cosmetic preparations, depending on their concentrations. Interestingly, this adaptive response is associated with modifications of filament structure-related proteins contributing to increase the organism motility and the production of biofilm. Recurrent contaminations of cosmetics products by Ent. gergoviae, needed a better understanding concerning the bacterial adaptation to preservative agents, with particular concern to triclosan and MIT-CMIT. We demonstrated that bacteria response is associated to various mechanisms represented by expression of external appendages (pili or fimbriae) that control cell motility and biofilm formation and evolving as the concentration of biocides adaptation increased. Such mechanisms which are not chemical specific can also promote a cross-resistance to other biocidal agents. The characterization of Ent. gergoviae adaptability to biocides allows industry to adjust the ranges of concentrations and composition of preservatives in formula. © 2015 The Society for Applied Microbiology.

  14. Functional elements in the minimal promoter of the human proton-coupled folate transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Michal; Gonen, Nitzan; Assaraf, Yehuda G., E-mail: assaraf@tx.technion.ac.il

    2009-10-09

    The proton-coupled folate transporter (PCFT) is the dominant intestinal folate transporter, however, its promoter has yet to be revealed. Hence, we here cloned a 3.1 kb fragment upstream to the first ATG of the human PCFT gene and generated sequential deletion constructs evaluated in luciferase reporter assay. This analysis mapped the minimal promoter to 157 bp upstream to the first ATG. Crucial GC-box sites were identified within the minimal promoter and in its close vicinity which substantially contribute to promoter activity, as their disruption resulted in 94% loss of luciferase activity. We also identified upstream enhancer elements including YY1 andmore » AP1 which, although distantly located, prominently transactivated the minimal promoter, as their inactivation resulted in 50% decrease in reporter activity. This is the first functional identification of the minimal PCFT promoter harboring crucial GC-box elements that markedly contribute to its transcriptional activation via putative interaction with distal YY1 and AP1 enhancer elements.« less

  15. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinically Important Bacteria and Yeasts.

    PubMed

    Wilson, Deborah A; Young, Stephen; Timm, Karen; Novak-Weekley, Susan; Marlowe, Elizabeth M; Madisen, Neil; Lillie, Jennifer L; Ledeboer, Nathan A; Smith, Rebecca; Hyke, Josh; Griego-Fullbright, Christen; Jim, Patricia; Granato, Paul A; Faron, Matthew L; Cumpio, Joven; Buchan, Blake W; Procop, Gary W

    2017-06-01

    A report on the multicenter evaluation of the Bruker MALDI Biotyper CA System (MBT-CA; Bruker Daltonics, Billerica, MA) for the identification of clinically important bacteria and yeasts. In total, 4,399 isolates of medically important bacteria and yeasts were assessed in the MBT-CA. These included 2,262 aerobic gram-positive (AGP) bacteria, 792 aerobic gram-negative (AGN) bacteria 530 anaerobic (AnA) bacteria, and 815 yeasts (YSTs). Three processing methods were assesed. Overall, 98.4% (4,329/4,399) of all bacterial and yeast isolates were correctly identified to the genus and species/species complex level, and 95.7% of isolates were identified with a high degree of confidence. The percentage correctly identified and the percentage identified correctly with a high level of confidence, respectively, were as follows: AGP bacteria (98.6%/96.5%), AGN bacteria (98.5%/96.8%), AnA bacteria (98.5%/97.4%), and YSTs (97.8%/87.6%). The extended direct transfer method was only minimally superior to the direct transfer method for bacteria (89.9% vs 86.8%, respectively) but significantly superior for yeast isolates (74.0% vs 48.9%, respectively). The Bruker MALDI Biotyper CA System accurately identifies most clinically important bacteria and yeasts and has optional processing methods to improve isolate characterization. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Systems Biology Perspectives on Minimal and Simpler Cells

    PubMed Central

    Xavier, Joana C.; Patil, Kiran Raosaheb

    2014-01-01

    SUMMARY The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells. PMID:25184563

  17. Systems biology perspectives on minimal and simpler cells.

    PubMed

    Xavier, Joana C; Patil, Kiran Raosaheb; Rocha, Isabel

    2014-09-01

    The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. The ability of selected plant essential oils to enhance the action of recommended antibiotics against pathogenic wound bacteria.

    PubMed

    Sienkiewicz, Monika; Łysakowska, Monika; Kowalczyk, Edward; Szymańska, Grażyna; Kochan, Ewa; Krukowska, Jolanta; Olszewski, Jurek; Zielińska-Bliźniewska, Hanna

    2017-03-01

    The aim of this work was to characterize the ability of essential oils to support antibiotics against pathogenic bacteria in wounds. Gram-positive and Gram-negative bacteria obtained from wound infections were identified according to standard microbiological methods. Essential oils were analysed by GC-FID-MS. The susceptibility of bacteria to antibiotics, essential oils and their combination was assessed using the disc-diffusion method. The Minimal Inhibitory Concentration and Minimum Bactericidal Concentration of the essential oils were established by the micro-dilution broth method. Although cinnamon, clove, thyme and lavender essential oils were found to have the greatest antibacterial activity when used alone, the greatest additive and synergistic effects against pathogenic wound bacteria in combination with recommended antibiotics were demonstrated by basil, clary sage and rosemary oils. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  19. Effects of minimal exposures to atmospheric pressure plasma on the activity of Salmonella Typhimurium: Deactivation of bacterial motility and suppression of host-cell invasion.

    PubMed

    Park, Jin-Sung; Kim, Kijung; Han, Je-Hyun; Gweon, Bomi; Ko, Ung Hyun; Yoo, Suk Jae; Choe, Wonho; Shin, Jennifer H

    2016-09-01

    Atmospheric pressure plasma (APP) has been shown effective in sterilization by reducing the number of viable microbes during surface cleaning, food processing, or human tissue treatment. For safe conduct, the majority of previous research focused on complete abolition of microbes, which may require severe treatments. Our aim is to investigate the minimal treatment conditions necessary for effective inactivation of bacteria in such a manner that the APP treated bacteria would not be able to harm the host cells. For this, we ought to identify the objective criteria to make the bacteria dysfunctional. We choose the motile properties and the host-cell invasion capability as two measures to quantify the pathogenic state of bacteria. In this paper, we investigated how the APP treatment in a minimal dosage affects the activity of Salmonella Typhimurium. At 100 W and 15 kHz for 20 s, the APP treatment effectively suppressed active "run and tumble" type motility and induced formation of abnormally long structures. With 20 s exposure, the bacterial cells failed to cause pyroptosis in the host cells with >90% survival after 12 h of co-incubation. Our results suggest novel measures to evaluate the functional pathogenic state for identifying safe APP treatment conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Helicobacter infections with rare bacteria or minimal gastritis: Expecting the unexpected.

    PubMed

    Glickman, Jonathan N; Noffsinger, Amy; Nevin, Daniel T; Ray, Mukunda; Lash, Richard H; Genta, Robert M

    2015-07-01

    The routine use of special stains for detection of Helicobacter remains controversial. To determine the frequency of histologically atypical Helicobacter infection. All gastric biopsies received at a large pathology reference laboratory over a 6-month period were stained for Helicobacter, and the histologic and clinicopathologic parameters evaluated. Amongst 7663 Helicobacter-positive biopsies, 823 (10.7%) did not show typical chronic active gastritis with numerous Helicobacter organisms, and were therefore considered histologically atypical. Rare Helicobacter pylori organisms accounted for 58.0% of all atypical infections; the next most common atypical Helicobacter infection was that with minimal or no gastric inflammation (23.3% of atypical infections). Patients in these groups did not differ demographically from those with other forms of atypical or typical Helicobacter infection, although a small subgroup (6%) was more likely to have had a previously treated infection. In many of these atypical infections, Helicobacter would not have been suspected based on the histologic findings alone, and would have been missed without routine special stains. Performing a sensitive stain could prevent additional testing and allow prompt treatment of the affected patients, thus substantially reducing the risk for peptic ulcer and gastric cancer and preventing the transmission of the infection to family members. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  1. Microbiome of Total Versus Live Bacteria in the Gut of Rex Rabbits

    PubMed Central

    Fu, Xiangchao; Zeng, Bo; Wang, Ping; Wang, Lihuan; Wen, Bin; Li, Ying; Liu, Hanzhong; Bai, Shiqie; Jia, Gang

    2018-01-01

    Gastrointestinal bacteria are essential for host health, and only viable microorganisms contribute to gastrointestinal functions. When evaluating the gut microbiota by next generation sequencing method, dead bacteria, which compose a proportion of gut bacteria, may distort analysis of the live gut microbiota. We collected stomach, jejunum, ileum, cecum, and colon contents from Rex rabbits. A modified propidium monoazide (PMA) treatment protocol was used to exclude DNA from dead bacteria. Analysis of untreated samples yielded total bacteria, and analysis of PMA-treated samples yielded live bacteria. Quantitative polymerase chain reaction and 16S rRNA gene sequencing were performed to evaluate the live-to-total bacteria ratio and compare the difference between live and total microbiota in the entire digestive tract. A low proportion of live bacteria in the foregut (stomach 1.12%, jejunum 1.2%, ileum 2.84%) and a high proportion of live bacteria in the hindgut (cecum 24.66%, colon 19.08%) were observed. A significant difference existed between total and live microbiota. Clostridiales, Ruminococcaceae, and S24-7 dominated the hindgut of both groups, while Acinetobacter and Cupriavidus dominated only in live foregut microbiota. Clostridiales and Ruminococcaceae abundance decreased, while S24-7 increased in live hindgut microbiota. The alpha- and beta-diversities differed significantly between groups. Analysis of networks showed the mutual relationship between live bacteria differed vastly when compared with total bacteria. Our study revealed a large number of dead bacteria existed in the digestive tract of Rex rabbits and distorted the community profile of the live microbiota. Total bacteria is an improper representation of the live gut microbiota, particularly in the foregut. PMID:29692775

  2. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry for quick detection of sulfur-oxidizing bacteria in environmental water samples

    NASA Astrophysics Data System (ADS)

    Sun, Chengjun; Jiang, Fenghua; Gao, Wei; Li, Xiaoyun; Yu, Yanzhen; Yin, Xiaofei; Wang, Yong; Ding, Haibing

    2017-01-01

    Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry (EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time (within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.

  3. Single-Cell Force Spectroscopy of Probiotic Bacteria

    PubMed Central

    Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Herman, Philippe; Alsteens, David; Mahillon, Jacques; Hols, Pascal; Dufrêne, Yves F.

    2013-01-01

    Single-cell force spectroscopy is a powerful atomic force microscopy modality in which a single living cell is attached to the atomic force microscopy cantilever to quantify the forces that drive cell-cell and cell-substrate interactions. Although various single-cell force spectroscopy protocols are well established for animal cells, application of the method to individual bacterial cells remains challenging, mainly owing to the lack of appropriate methods for the controlled attachment of single live cells on cantilevers. We present a nondestructive protocol for single-bacterial cell force spectroscopy, which combines the use of colloidal probe cantilevers and of a bioinspired polydopamine wet adhesive. Living cells from the probiotic species Lactobacillus plantarum are picked up with a polydopamine-coated colloidal probe, enabling us to quantify the adhesion forces between single bacteria and biotic (lectin monolayer) or abiotic (hydrophobic monolayer) surfaces. These minimally invasive single-cell experiments provide novel, to our knowledge, insight into the specific and nonspecific forces driving the adhesion of L. plantarum, and represent a generic platform for studying the molecular mechanisms of cell adhesion in probiotic and pathogenic bacteria. PMID:23663831

  4. A Precision Nitrogen Management Approach to Minimize Impacts

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer is a crucial input for crop production but contributes to agriculture’s environmental footprint via CO2 emissions, N2O emissions, and eutrophication of coastal waters. The low-cost way to minimize this impact is to eliminate over-application of N. This is more difficult than it s...

  5. Fresh-Cut Pineapple as a New Carrier of Probiotic Lactic Acid Bacteria

    PubMed Central

    Russo, Pasquale; de Chiara, Maria Lucia Valeria; Vernile, Anna; Amodio, Maria Luisa; Arena, Mattia Pia; Capozzi, Vittorio; Massa, Salvatore; Spano, Giuseppe

    2014-01-01

    Due to the increasing interest for healthy foods, the feasibility of using fresh-cut fruits to vehicle probiotic microorganisms is arising scientific interest. With this aim, the survival of probiotic lactic acid bacteria, belonging to Lactobacillus plantarum and Lactobacillus fermentum species, was monitored on artificially inoculated pineapple pieces throughout storage. The main nutritional, physicochemical, and sensorial parameters of minimally processed pineapples were monitored. Finally, probiotic Lactobacillus were further investigated for their antagonistic effect against Listeria monocytogenes and Escherichia coli O157:H7 on pineapple plugs. Our results show that at eight days of storage, the concentration of L. plantarum and L. fermentum on pineapples pieces ranged between 7.3 and 6.3 log cfu g−1, respectively, without affecting the final quality of the fresh-cut pineapple. The antagonistic assays indicated that L. plantarum was able to inhibit the growth of both pathogens, while L. fermentum was effective only against L. monocytogenes. This study suggests that both L. plantarum and L. fermentum could be successfully applied during processing of fresh-cut pineapples, contributing at the same time to inducing a protective effect against relevant foodborne pathogens. PMID:25093163

  6. Characterization of radiation-resistant vegetative bacteria in beef

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, A.B.; Maxcy, R.B.

    1975-08-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2more » to 50 C. These bacteria were relatively heat sensitive, e.g., D$sub 10$ of 5.4 min at 70$sup 0$C or less. The radiation resistance ranged from D$sub 10$ values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized. (auth)« less

  7. Micrometric periodic assembly of magnetotactic bacteria and magnetic nanoparticles using audio tapes

    NASA Astrophysics Data System (ADS)

    Godoy, M.; Moreno, A. J.; Jorge, G. A.; Ferrari, H. J.; Antonel, P. S.; Mietta, J. L.; Ruiz, M.; Negri, R. M.; Pettinari, M. J.; Bekeris, V.

    2012-02-01

    We report micrometric periodic assembly of live and dead magnetotactic bacteria, Magnetospirillum magneticum AMB-1, which synthesize chains of magnetic nanoparticles inside their bodies, and of superparamagnetic Fe3O4 and ferromagnetic CoFe2O4 nanoparticles in aqueous suspensions using periodically magnetized audio tapes. The distribution of the stray magnetic field at the surface of the tapes was determined analytically and experimentally by magneto-optic imaging. Calculations showed that the magnetic field close to the tape surface was of the order of 100 mT, and the magnetic field gradient was larger than 1 T mm-1. Drops of aqueous solutions were deposited on the tapes, and bacteria and particles were trapped at locations where magnetic energy is minimized, as observed using conventional optical microscopy. Suspensions of M. magneticum AMB-1 treated with formaldehyde and kanamycin were studied, and patterns of trapped dead bacteria indicated that magnetic forces dominate over self-propelling forces in these experiments, in accordance with calculated values. The behavior of the different types of samples is discussed.

  8. Influence of surfaces on sulphidogenic bacteria.

    PubMed

    Bass, C J; Webb, J S; Sanders, P F; Lappin-Scott, H M

    1996-01-01

    Sulphidogenic bacteria in oil reservoirs are of great economic importance in terms of souring, fouling and corrosion. Mixed cultures containing these bacteria were isolated from chalk formations in North Sea oil reservoirs. These were thermophilic cultures, growing optimally at 60°C. Oil formations are porous matrices, providing a very large surface area and ideal conditions for bacterial attachment, survival and growth. This study included assessments of sulphide production rates of thermophilic (t-)sulphidogen consortia with and without additional surfaces. The availability of a surface contributed significantly to the rate and extent of sulphide generation. Surfaces were offered in varying amounts to growing planktonic cultures: significantly more sulphide was produced from cultures in contact with a surface than from identical cultures in the absence of a surface. In another series of experiments, t-sulphidogens were added to chalk rock chips in the presence of nutrients and incubated for several months. This resulted in rapid sulphide generation, the final concentration being related to the initial nutrient concentration. Subsequent nutrient addition resulted in renewed sulphide generation. It is suggested that bacteria in reservoirs can withstand long periods of nutrient deprivation while attached within the porous rock matrix and opportunistically utilise nutrients when they become available.

  9. Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests.

    PubMed

    Peters, Christian; Hoop, Marcus; Pané, Salvador; Nelson, Bradley J; Hierold, Christofer

    2016-01-20

    Superparamagnetic nanoparticles and a functional, degradable polymer matrix based on poly(ethylene glycol) are combined to enable fully degradable magnetic microdevices for minimally invasive biomedical applications. A bioinspired helical microrobot platform mimicking Escherichia coli bacteria is fabricated and actuated using weak rotating magnetic fields. Locomotion based on corkscrew propulsion, targeted drug delivery, and low-degradation-product cytotoxicity are demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Impact of Oral Commensal Bacteria on Degradation of Periodontal Connective Tissue in Mice.

    PubMed

    Irie, Koichiro; Tomofuji, Takaaki; Ekuni, Daisuke; Morita, Manabu; Shimazaki, Yoshihiro; Darveau, Richard P

    2015-07-01

    Innate and adaptive immunosurveillance mechanisms in response to the normal commensal bacteria can affect periodontal innate defense status. However, it is still unclear how commensal bacteria contribute to the inflammatory responses of junctional epithelium (JE) and periodontal connective tissue (PCT). The aim of the present study is to investigate the contribution of commensal bacteria on inflammatory responses in JE and PCT in mice. The periodontal tissue of germ-free (GF) and specific-pathogen-free (SPF) mice were compared at age 11 to 12 weeks (n = 6 per group). In this study, the number of neutrophils and expression of intercellular adhesion molecule (ICAM)-1, fibroblast growth factor receptor (FGFR)-1, matrix metalloproteinase (MMP)-1, and MMP-8 within the JE and the PCT are evaluated. The collagen density was also determined in PCT stained with picrosirius red (PSR). PSR staining combined with or without polarized light microscopy has been used to assess the organization and maturation of collagen matrix. In the present findings, the area of JE in SPF mice was significantly greater than that in GF mice (P <0.05). In addition, the JE and PCT in SPF mice showed greater migration of neutrophils and higher expression of ICAM-1, FGFR-1, MMP-1, and MMP-8 than those in GF mice (P <0.05). Furthermore, the density of collagen in PCT in SPF mice was lower compared to GF mice (P <0.05). These results indicate that commensal bacteria induced a low-grade inflammatory state in JE and that such conditions may contribute to degradation of collagen in PCT in mice.

  11. TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer's disease patients and normal subjects.

    PubMed

    Kamer, Angela R; Craig, Ronald G; Pirraglia, Elizabeth; Dasanayake, Ananda P; Norman, Robert G; Boylan, Robert J; Nehorayoff, Andrea; Glodzik, Lidia; Brys, Miroslaw; de Leon, Mony J

    2009-11-30

    The associations of inflammation/immune responses with clinical presentations of Alzheimer's disease (AD) remain unclear. We hypothesized that TNF-alpha and elevated antibodies to periodontal bacteria would be greater in AD compared to normal controls (NL) and their combination would aid clinical diagnosis of AD. Plasma TNF-alpha and antibodies against periodontal bacteria were elevated in AD patients compared with NL and independently associated with AD. The number of positive IgG to periodontal bacteria incremented the TNF-alpha classification of clinical AD and NL. This study shows that TNF-alpha and elevated numbers of antibodies against periodontal bacteria associate with AD and contribute to the AD diagnosis.

  12. Effects of Baseplates of Orthodontic Appliances with in situ generated Silver Nanoparticles on Cariogenic Bacteria: A Randomized, Double-blind Cross-over Clinical Trial.

    PubMed

    Ghorbanzadeh, Roghayeh; Pourakbari, Babak; Bahador, Abbas

    2015-04-01

    Polymethyl-methacrylate (PMMA) is commonly used primarily for baseplates of orthodontic appliances (BOA). The activities of cariogenic bacteria in biofilm on these surfaces may contribute to dental caries, gingival inflammation and periodontal disease. The PMMA incorporated with nanoparticles of silver (NanoAg-I-PMMA) and NanoAg in situ in PMMA (NanoAg-IS-PMMA) have been shown to control the growth of cariogenic bacteria, but clinical trial of anti-cariogenic application of these novel materials in orthodontics has not been evaluated. The main aim of the study is to compare the clinical effectiveness of using NanoAg-IS-PMMA and NanoAg-I-PMMA for construction of new BOA in inhibiting the planktonic growth and biofilm formation of the cariogenic bacteria. Twenty four patients with a median age of 12.6 years (7-15) harboring Streptococcus mutans, Streptococcus sobrinus and Lactobacillus acidophilus as well as Lactobacillus casei participated in the randomized, double-blind, cross-over study. The experimental BOA, NanoAg-IS-BOA and NanoAg-I-BOA, contained 0.5% w/w NanoAg while the control BOA was standard PMMA. Antibacterial effect of NanoAg-IS-BOA and NanoAg-I-BOA was assessed against test cariogenic bacteria by planktonic and biofilm bacterial cells growth inhibition. The average levels of test cariogenic bacteria in saliva decreased about 2 to 70 fold (30.9-98.4%) compared to baseline depending on the microorganism type and test BOA. Biofilm inhibition analysis demonstrated that NanoAg-I-BOA and NanoAg-IS-BOA inhibited the biofilm of all test bacteria by 20.1 to 79.9% compared to BOA. NanoAg-IS-BOA had a strong anti-biofilm effect against S. mutans, S. sobrinus and L. casei. However, NanoAg-I-BOA showed only slight anti-biofilm effects on test bacteria. Most notably, at all period of the clinical trial, NanoAg-IS-BOA showed a higher antibacterial activity than NanoAg-I-BOA. Based on the novel data that presented here, the NanoAg-IS-BOA had strong antimicrobial

  13. Division-Based, Growth Rate Diversity in Bacteria

    PubMed Central

    Gangwe Nana, Ghislain Y.; Ripoll, Camille; Cabin-Flaman, Armelle; Gibouin, David; Delaune, Anthony; Janniere, Laurent; Grancher, Gerard; Chagny, Gaelle; Loutelier-Bourhis, Corinne; Lentzen, Esther; Grysan, Patrick; Audinot, Jean-Nicolas; Norris, Vic

    2018-01-01

    To investigate the nature and origins of growth rate diversity in bacteria, we grew Escherichia coli and Bacillus subtilis in liquid minimal media and, after different periods of 15N-labeling, analyzed and imaged isotope distributions in individual cells with Secondary Ion Mass Spectrometry. We find a striking inter- and intra-cellular diversity, even in steady state growth. This is consistent with the strand-dependent, hyperstructure-based hypothesis that a major function of the cell cycle is to generate coherent, growth rate diversity via the semi-conservative pattern of inheritance of strands of DNA and associated macromolecular assemblies. We also propose quantitative, general, measures of growth rate diversity for studies of cell physiology that include antibiotic resistance. PMID:29867792

  14. Bacteria versus selenium: A view from the inside out

    USGS Publications Warehouse

    Staicu, Lucian; Oremland, Ronald S.; Tobe, Ryuta; Mihara, Hisaaki

    2017-01-01

    Bacteria and selenium (Se) are closely interlinked as the element serves both essential nutrient requirements and energy generation functions. However, Se can also behave as a powerful toxicant for bacterial homeostasis. Conversely, bacteria play a tremendous role in the cycling of Se between different environmental compartments, and bacterial metabolism has been shown to participate to all valence state transformations undergone by Se in nature. Bacteria possess an extensive molecular repertoire for Se metabolism. At the end of the 1980s, a novel mode of anaerobic respiration based on Se oxyanions was experimentally documented for the first time. Following this discovery, specific enzymes capable of reducing Se oxyanions and harvesting energy were found in a number of anaerobic bacteria. The genes involved in the expression of these enzymes have later been identified and cloned. This iterative approach undertaken outside-in led to the understanding of the molecular mechanisms of Se transformations in bacteria. Based on the extensive knowledge accumulated over the years, we now have a full(er) view from the inside out, from DNA-encoding genes to enzymes and thermodynamics. Bacterial transformations of Se for assimilatory purposes have been the object of numerous studies predating the investigation of Se respiration. Remarkable contributions related to the understating of the molecular picture underlying seleno-amino acid biosynthesis are reviewed herein. Under certain circumstances, Se is a toxicant for bacterial metabolism and bacteria have evolved strategies to counteract this toxicity, most notably by the formation of elemental Se (nano)particles. Several biotechnological applications, such as the production of functional materials and the biofortification of crop species using Se-utilizing bacteria, are presented in this chapter.

  15. BF-30 effectively inhibits ciprofloxacin-resistant bacteria in vitro and in a rat model of vaginosis.

    PubMed

    Wang, Jing; Li, Bing; Li, Yang; Dou, Jie; Hao, Qingru; Tian, Yuwei; Wang, Hui; Zhou, Changlin

    2014-07-01

    Bacterial infections are becoming increasingly difficult to treat due to the increasing number of multidrug-resistant strains. Cathelicidin-BF (BF-30) is a cathelicidin-like antimicrobial peptide and exhibits broad antimicrobial activity against bacteria. In the present study, the antibacterial activity of BF-30 against ciprofloxacin-resistant Escherichia coli and Staphylococcus aureus was examined, and the protective effects of this peptide against these bacteria in rats with bacterial vaginosis were identified for the first time. The data showed that BF-30 had effective antimicrobial activities against ciprofloxacin-resistant E. coli and S. aureus. The minimal inhibitory concentrations for both bacterial strains were 16 μg/ml, and the minimal bactericidal concentrations were 64 and 128 μg/ml, respectively. A time course experiment showed that the CFU counts rapidly decreased after BF-30 treatment, and the bacteria were nearly eliminated within 4 h. BF-30 could reduce the fold change (CFU/ml) in local colonization by drug-resistant E. coli and S. aureus to 0.01 at a dose of 0.8 mg/kg/day in the rats' vaginal secretions. In addition, BF-30 induced membrane permeabilization and bound to the genomic DNA, interrupting protein synthesis. Taken together, our data demonstrate that BF-30 has potential therapeutic value for the prevention and treatment of bacterial vaginosis.

  16. Mycoplasmas and their host: emerging and re-emerging minimal pathogens.

    PubMed

    Citti, Christine; Blanchard, Alain

    2013-04-01

    Commonly known as mycoplasmas, bacteria of the class Mollicutes include the smallest and simplest life forms capable of self replication outside of a host. Yet, this minimalism hides major human and animal pathogens whose prevalence and occurrence have long been underestimated. Owing to advances in sequencing methods, large data sets have become available for a number of mycoplasma species and strains, providing new diagnostic approaches, typing strategies, and means for comprehensive studies. A broader picture is thus emerging in which mycoplasmas are successful pathogens having evolved a number of mechanisms and strategies for surviving hostile environments and adapting to new niches or hosts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Virulence of Entamoeba histolytica trophozoites. Effects of bacteria, microaerobic conditions, and metronidazole

    PubMed Central

    1984-01-01

    The association of axenically grown trophozoites of Entamoeba histolytica strains HK-9 or HM-1:IMSS with various types of gram- negative bacteria for relatively short periods markedly increased their virulence, as evidenced by their ability to destroy monolayers of tissue-cultured cells. Interaction of trophozoites with bacteria that were heat inactivated, glutaraldehyde fixed, or disrupted by sonication, or bacteria treated with inhibitors of protein synthesis, did not augment amebic virulence. Lethally irradiated bacteria, however, retained their stimulative properties and trophozoites that ingested bacteria were protected from the toxic effects of added hydrogen peroxide. An increase in virulent properties of amebae was also found in experiments carried out under microaerobic conditions (5% O2, 10% CO2). The augmentation of amebic virulence due to association with bacteria was specifically blocked by metronidazole, but not by tetracycline or aminoglycosides, and the rate of metronidazole uptake in stimulated trophozoites was two to three times higher. The results obtained suggest that virulence of axenically grown E. histolytica trophozoites may depend to a considerable extent on the cell's reducing power. Both microaerobic conditions and the association with bacteria apparently stimulate the electron transport system of the ameba. Bacteria may function as broad range scavengers for oxidized molecules and metabolites through the contribution of enzymatic systems, components, or products. PMID:6088660

  18. 'Rare biosphere' bacteria as key phenanthrene degraders in coastal seawaters.

    PubMed

    Sauret, Caroline; Séverin, Tatiana; Vétion, Gilles; Guigue, Catherine; Goutx, Madeleine; Pujo-Pay, Mireille; Conan, Pascal; Fagervold, Sonja K; Ghiglione, Jean-François

    2014-11-01

    By coupling DNA-SIP and pyrosequencing approaches, we identified Cycloclasticus sp. as a keystone degrader of polycyclic aromatic hydrocarbons (PAH) despite being a member of the 'rare biosphere' in NW Mediterranean seawaters. We discovered novel PAH-degrading bacteria (Oceanibaculum sp., Sneathiella sp.) and we identified other groups already known to possess this function (Alteromonas sp., Paracoccus sp.). Together with Cycloclasticus sp., these groups contributed to potential in situ phenanthrene degradation at a rate >0.5 mg l(-1) day(-1), sufficient to account for a considerable part of PAH degradation. Further, we characterized the PAH-tolerant bacterial communities, which were much more diverse in the polluted site by comparison to unpolluted marine references. PAH-tolerant bacteria were also members of the rare biosphere, such as Glaciecola sp. Collectively, these data show the complex interactions between PAH-degraders and PAH-tolerant bacteria and provide new insights for the understanding of the functional ecology of marine bacteria in polluted waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Excitons in intact cells of photosynthetic bacteria.

    PubMed

    Freiberg, Arvi; Pajusalu, Mihkel; Rätsep, Margus

    2013-09-26

    Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.

  20. Carriage of multi-drug resistant bacteria among foreigners seeking medical care.

    PubMed

    Benenson, Shmuel; Nir-Paz, Ran; Golomb, Mordechai; Schwartz, Carmela; Amit, Sharon; Moses, Allon E; Cohen, Matan J

    2018-06-21

    Medical tourism has a potential of spreading multi-drug resistant bacteria (MDR). The Hadassah Medical Center serves as a referral center for global medical tourists and for Palestinian Authority residents. In order to assess whether patients of these groups are more likely to harbor MDR bacteria than local residents, we reviewed data from all patients admitted to our institution between 2009 and 2014. We compared MDR rates between countries of residency, controlling for gender, age, previous hospitalization and time from admission to MDR detection. Overall, among 111,577 patients with at least one microbiological specimen taken during hospitalization, there were 3,985 (3.5%) patients with at least one MDR-positive culture. Compared to Israeli patients, tourists and patients from the Palestinian Authority had increased rates of MDR positivity (OR, 95%CI): 2.3 (1.6 to 2.3) and 8.0 (6.3 to 10.1), respectively. Our data show that foreign patients seeking advanced medical care are more likely to carry MDR bacteria than the resident population. Strategies to minimize MDR spread, such as pre-admission screening or pre-emptive isolation should be considered in this population.

  1. Standoff detection and classification of bacteria by multispectral laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Duschek, Frank; Fellner, Lea; Gebert, Florian; Grünewald, Karin; Köhntopp, Anja; Kraus, Marian; Mahnke, Peter; Pargmann, Carsten; Tomaso, Herbert; Walter, Arne

    2017-04-01

    Biological hazardous substances such as certain fungi and bacteria represent a high risk for the broad public if fallen into wrong hands. Incidents based on bio-agents are commonly considered to have unpredictable and complex consequences for first responders and people. The impact of such an event can be minimized by an early and fast detection of hazards. The presented approach is based on optical standoff detection applying laser-induced fluorescence (LIF) on bacteria. The LIF bio-detector has been designed for outdoor operation at standoff distances from 20 m up to more than 100 m. The detector acquires LIF spectral data for two different excitation wavelengths (280 and 355 nm) which can be used to classify suspicious samples. A correlation analysis and spectral classification by a decision tree is used to discriminate between the measured samples. In order to demonstrate the capabilities of the system, suspensions of the low-risk and non-pathogenic bacteria Bacillus thuringiensis, Bacillus atrophaeus, Bacillus subtilis, Brevibacillus brevis, Micrococcus luteus, Oligella urethralis, Paenibacillus polymyxa and Escherichia coli (K12) have been investigated with the system, resulting in a discrimination accuracy of about 90%.

  2. Screening of the Antimicrobial Activity against Drug Resistant Bacteria of Photorhabdus and Xenorhabdus Associated with Entomopathogenic Nematodes from Mae Wong National Park, Thailand

    PubMed Central

    Muangpat, Paramaporn; Yooyangket, Temsiri; Fukruksa, Chamaiporn; Suwannaroj, Manawat; Yimthin, Thatcha; Sitthisak, Sutthirat; Chantratita, Narisara; Vitta, Apichat; Tobias, Nicholas J.; Bode, Helge B.; Thanwisai, Aunchalee

    2017-01-01

    Photorhabdus and Xenorhabdus are symbiotic with entomopathogenic nematodes (EPNs) of the genera Heterorhabditis and Steinernema, respectively. These bacteria produce several secondary metabolites including antimicrobial compounds. The objectives of this study were to isolate and identify EPNs and their symbiotic bacteria from Mae Wong National Park, Thailand and to evaluate the antibacterial activities of symbiont extracts against drug resistant bacteria. A total of 550 soil samples from 110 sites were collected between August 2014 and July 2015. A total of EPN isolates were obtained through baiting and White trap methods, which yielded 21 Heterorhabditis and 3 Steinernema isolates. Based on molecular identification and phylogenetic analysis, the most common species found in the present study was P. luminescens subsp. akhurstii associated with H. indica. Notably, two species of EPNs, H. zealandica and S. kushidai, and two species of symbiotic bacteria, X. japonica and P. temperata subsp. temperata represented new recorded organisms in Thailand. Furthermore, the association between P. temperata subsp. temperata and H. zealandica has not previously been reported worldwide. Disk diffusion, minimal inhibitory concentration, and minimal bactericidal concentration analyses demonstrated that the crude compound extracted by ethyl acetate from P. temperata subsp. temperata could inhibit the growth of up to 10 strains of drug resistant bacteria. Based on HPLC-MS analysis, compound classes in bacterial extracts were identified as GameXPeptide, xenoamicin, xenocoumacin, mevalagmapeptide phurealipids derivatives, and isopropylstilbene. Together, the results of this study provide evidence for the diversity of EPNs and their symbiotic bacteria in Mae Wong National Park, Thailand and demonstrate their novel associations. These findings also provide an important foundation for further research regarding the antimicrobial activity of Photorhabdus bacteria. PMID:28702004

  3. Sunlight modulates the relative importance of heterotrophic bacteria and picophytoplankton in DMSP-sulphur uptake

    PubMed Central

    Ruiz-González, Clara; Simó, Rafel; Vila-Costa, Maria; Sommaruga, Ruben; Gasol, Josep M

    2012-01-01

    There is a large body of evidence supporting a major role of heterotrophic bacteria in dimethylsulphoniopropionate (DMSP) utilisation as a source of reduced sulphur. However, a role for phototrophic microorganisms has been only recently described and little is known about their contribution to DMSP consumption and the potential modulating effects of sunlight. In an attempt to ascertain the relative quantitative roles of heterotrophic bacteria and picophytoplankton in the osmoheterotrophic uptake of DMSP-sulphur upon exposure to natural sunlight conditions, we incubated northwestern Mediterranean waters under various optical filters and used an array of bulk and single-cell activity methods to trace the fate of added 35S-DMSP. Flow cytometry cell sorting confirmed dark 35S uptake by Prochlorococcus, Synechococcus and heterotrophic bacteria, the latter being the most efficient in terms of uptake on a cell volume basis. Under exposure to full sunlight, however, the relative contribution of Synechococcus was significantly enhanced, mainly because of the inhibition of heterotrophic bacteria. Microautoradiography showed a strong increase in the proportion of Synechococcus cells actively taking up 35S-DMSP, which, after full sunlight exposure, made up to 15% of total active Bacteria. Parallel incubations with 3H-leucine generally showed no clear responses to light. Finally, size-fractionated assimilation experiments showed greater relative cyanobacterial assimilation during the day than at night compared with that of heterotrophic bacteria. Our results show for the first time a major influence of sunlight in regulating the competition among autotrophic and heterotrophic picoplankton for DMSP uptake at both the daily and seasonal time scales. PMID:21955992

  4. Prediction of serine/threonine phosphorylation sites in bacteria proteins.

    PubMed

    Li, Zhengpeng; Wu, Ping; Zhao, Yuanyuan; Liu, Zexian; Zhao, Wei

    2015-01-01

    As a critical post-translational modification, phosphorylation plays important roles in regulating various biological processes, while recent studies suggest that phosphorylation in bacteria is also critical for functional signaling transduction. Since identification of phosphorylation substrates and sites is fundamental for understanding the phosphorylation mediated regulatory mechanism, a number of studies have been contributed to this area. Since experimental identification of phosphorylation sites is time-consuming and labor-intensive, computational predictions attract much attention for its convenience to provide helpful information. However, although there are a large number of computational studies in eukaryotes, predictions in bacteria are still rare. In this study, we present a new predictor of cPhosBac to predict phosphorylation serine/threonine in bacteria proteins. The predictor is developed with CKSAAP algorithm, which was combined with motif length selection to optimize the prediction, which achieves promising performance. The online service of cPhosBac is available at: http://netalign.ustc.edu.cn/cphosbac/ .

  5. Pyrosequencing reveals benthic bacteria changes responsing to heavy deposition of Microcystis scum in lab — searching bacteria for bloom control

    NASA Astrophysics Data System (ADS)

    Tang, Yali; Cheng, Dongmei; Guan, Baohua; Zhang, Xiufeng; Liu, Zhengwen; Liu, Zejun

    2017-05-01

    Bacteria capable of degrading cyanobacteria Microcystis are crucial for determining the ecological consequences of Microcystis blooms in freshwater lakes. Scum derived from Microcystis blooms tends to accumulate in bays of large lakes and then sink to the sediments where it is finally consumed by benthic bacteria. Understanding the response of benthic bacterial communities to massive Microcystis deposition events may help identify the bacteria best suited to Microcystis hydrolyzation and even bloom control. For that purpose, an experimental system was set up in which intact sediment cores were incubated in the laboratory with normal and heavy deposits of Microcystis detritus. Pyrosequencing was performed in order to describe a phylogenetic inventory of bacterial communities in samples taken at 0-1, 1-2 and 2-3 cm depths in incubated sediments and in original untreated sediment. A hierarchical cluster tree was constructed expose differences between sediments. Similarity percentage calculations were also performed to identify the bacterial species contributing to variation. The results of this study suggest that: (1) deposition of Microcystis scums exerts a strong effect on the bacterial community composition in the surface (0-1 cm) and sub-surface (1-2 cm) sediment layers; (2) bacterial community responses to Microcystis detritus deposition vary across vertical gradients. A list of bacteria with potential roles in Microcystis degradation was compiled. These findings may inform the development of future measures for Microcystis bloom control in lakes.

  6. Microfluidic concentration of bacteria by on-chip electrophoresis

    PubMed Central

    Puchberger-Enengl, Dietmar; Podszun, Susann; Heinz, Helene; Hermann, Carsten; Vulto, Paul; Urban, Gerald A.

    2011-01-01

    In this contribution, we present a system for efficient preconcentration of pathogens without affecting their viability. Development of miniaturized molecular diagnostic kits requires concentration of the sample, molecule extraction, amplification, and detection. In consequence of low analyte concentrations in real-world samples, preconcentration is a critical step within this workflow. Bacteria and viruses exhibit a negative surface charge and thus can be electrophoretically captured from a continuous flow. The concept of phaseguides was applied to define gel membranes, which enable effective and reversible collection of the target species. E. coli of the strains XL1-blue and K12 were used to evaluate the performance of the device. By suppression of the electroosmotic flow both strains were captured with efficiencies of up to 99%. At a continuous flow of 15 μl/min concentration factors of 50.17 ± 2.23 and 47.36 ± 1.72 were achieved in less than 27 min for XL1-blue and K12, respectively. These results indicate that free flow electrophoresis enables efficient concentration of bacteria and the presented device can contribute to rapid analyses of swab-derived samples. PMID:22207893

  7. Oral Anaerobic Bacteria in the Etiology of Ankylosing Spondylitis

    PubMed Central

    Öğrendik, Mesut

    2017-01-01

    Ankylosing spondylitis (AS) is associated with periodontitis. Anti–Porphyromonas gingivalis and anti–Prevotella intermedia antibody titers were higher in patients with spondyloarthritis than in healthy people. Sulfasalazine is an effective antibiotic treatment for AS. Moxifloxacin and rifamycin were also found to be significantly effective. The etiology hypothesis suggests that oral anaerobic bacteria such as Porphyromonas spp and Prevotella spp contribute to the disease. These bacteria have been identified in AS, and we will discuss their pathogenic properties with respect to our knowledge of the disease. Periodontal pathogens are likely to be responsible for the development of AS in genetically susceptible individuals. This finding should guide the development of more comprehensive and efficacious treatment strategies for AS. PMID:28638241

  8. Phosphate and ATP uptake by lake bacteria: does taxonomical identity matter?

    PubMed Central

    Sommaruga, Ruben; Teresa Pérez, María

    2016-01-01

    Summary Phosphorus often limits bacterial production in freshwater ecosystems. However, little is known on whether different bacteria contribute to inorganic and organic phosphorus uptake proportionally to their relative abundance and production. Here, we followed the temporal dynamics of the main heterotrophic bacterial taxa taking up inorganic phosphate (33P‐Pi) and organic phosphorus (33P‐ATP) in two mountain lakes and compared them to their contribution to bacterial production (3H‐leucine uptake). The short turnover times for Pi and ATP suggested that in both lakes, phosphorus was limiting most of the year. The bulk uptake rates and the fractions of cells labelled positive for Pi and ATP uptake followed a seasonal trend with minima in winter and maxima in summer. Generally, the bacterial taxa examined contributed to Pi and ATP uptake proportionally to their relative abundance, but not always to their contribution to bacterial production. For instance, AcI Actinobacteria were often underrepresented in phosphorus uptake compared with leucine incorporation suggesting they might have high intracellular C:P ratios. Our results emphasize that ATP utilization is widespread among freshwater bacteria and indicate that members within the dominant bacterial taxa (Actinobacteria and Betaproteobacteria) have variable phosphorus requirements, probably due to their different growth potential and variable degrees of homeostasis. PMID:27130525

  9. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  10. Minimal Impact Education: A New Approach To Walking Softly.

    ERIC Educational Resources Information Center

    Bauchop, Deborah; Parkin, Danny

    2000-01-01

    Introduces protected areas as opportunities for outdoor education and considers the possibility that outdoor education may contribute to the ecological degradation of these areas through overuse or poor outdoor practices. Provides a new approach to minimal impact education through the promotion of individual change. (Contains 24 references.)…

  11. Clay-Bacteria Systems and Biofilm Production

    NASA Astrophysics Data System (ADS)

    Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

    2007-12-01

    Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

  12. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria

    PubMed Central

    Delmotte, Nathanaël; Knief, Claudia; Chaffron, Samuel; Innerebner, Gerd; Roschitzki, Bernd; Schlapbach, Ralph; von Mering, Christian; Vorholt, Julia A.

    2009-01-01

    Aerial plant surfaces represent the largest biological interface on Earth and provide essential services as sites of carbon dioxide fixation, molecular oxygen release, and primary biomass production. Rather than existing as axenic organisms, plants are colonized by microorganisms that affect both their health and growth. To gain insight into the physiology of phyllosphere bacteria under in situ conditions, we performed a culture-independent analysis of the microbiota associated with leaves of soybean, clover, and Arabidopsis thaliana plants using a metaproteogenomic approach. We found a high consistency of the communities on the 3 different plant species, both with respect to the predominant community members (including the alphaproteobacterial genera Sphingomonas and Methylo bacterium) and with respect to their proteomes. Observed known proteins of Methylobacterium were to a large extent related to the ability of these bacteria to use methanol as a source of carbon and energy. A remarkably high expression of various TonB-dependent receptors was observed for Sphingomonas. Because these outer membrane proteins are involved in transport processes of various carbohydrates, a particularly large substrate utilization pattern for Sphingomonads can be assumed to occur in the phyllosphere. These adaptations at the genus level can be expected to contribute to the success and coexistence of these 2 taxa on plant leaves. We anticipate that our results will form the basis for the identification of unique traits of phyllosphere bacteria, and for uncovering previously unrecorded mechanisms of bacteria-plant and bacteria-bacteria relationships. PMID:19805315

  13. PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis.

    PubMed

    Liu, Yiying; De Schryver, Peter; Van Delsen, Bart; Maignien, Loïs; Boon, Nico; Sorgeloos, Patrick; Verstraete, Willy; Bossier, Peter; Defoirdt, Tom

    2010-10-01

    The use of poly-β-hydroxybutyrate (PHB) was shown to be successful in increasing the resistance of brine shrimp against pathogenic infections. In this study, we isolated for the first time PHB-degrading bacteria from a gastrointestinal environment. Pure strains of PHB-degrading bacteria were isolated from Siberian sturgeon, European sea bass and giant river prawn. The capability of selected isolates to degrade PHB was confirmed in at least two of three setups: (1) growth in minimal medium containing PHB as the sole carbon (C) source, (2) production of clearing zones on minimal agar containing PHB as the sole C source and (3) degradation of PHB (as determined by HPLC analysis) in 10% Luria-Bertani medium containing PHB. Challenge tests showed that the PHB-degrading activity of the selected isolates increased the survival of brine shrimp larvae challenged to a pathogenic Vibrio campbellii strain by a factor 2-3. Finally, one of the PHB-degrading isolates from sturgeon showed a double biocontrol effect because it was also able to inactivate acylhomoserine lactones, a type of quorum-sensing molecule that regulates the virulence of different pathogenic bacteria. Thus, the combined supplementation of a PHB-degrading bacterium and PHB as a synbioticum provides perspectives for improving the gastrointestinal health of aquatic animals. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Alternative sanitization methods for minimally processed lettuce in comparison to sodium hypochlorite.

    PubMed

    Bachelli, Mara Lígia Biazotto; Amaral, Rívia Darla Álvares; Benedetti, Benedito Carlos

    2013-01-01

    Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L(-1)/10 min), peracetic acid (100 mg L(-1)/15 min) and ozonated water (1.2 mg L(-1)/1 min) as alternative sanitizers to sodium hypochlorite (150 mg L(-1) free chlorine/15 min) were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 °C with the product packaged on LDPE bags of 60 μm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days.

  15. Plants as sources of airborne bacteria, including ice nucleation-active bacteria.

    PubMed

    Lindemann, J; Constantinidou, H A; Barchet, W R; Upper, C D

    1982-11-01

    Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colony-forming units per m over young corn and wet soil to 663 colony-forming units per m over dry soil and 6,500 colony-forming units per m over a closed wheat canopy. In simultaneous samples, concentrations of viable bacteria in the air 10 m inside an alfalfa field were fourfold higher than those over a field with dry, bare soil immediately upwind. The upward flux of viable bacteria over alfalfa was three- to fourfold greater than over dry soil. Concentrations of ice nucleation-active bacteria were higher over plants than over soil. Thus, plant canopies may constitute a major source of bacteria, including ice nucleation-active bacteria, in the air.

  16. On 3D minimal massive gravity

    NASA Astrophysics Data System (ADS)

    Alishahiha, Mohsen; Qaemmaqami, Mohammad M.; Naseh, Ali; Shirzad, Ahmad

    2014-12-01

    We study linearized equations of motion of the newly proposed three dimensional gravity, known as minimal massive gravity, using its metric formulation. By making use of a redefinition of the parameters of the model, we observe that the resulting linearized equations are exactly the same as that of TMG. In particular the model admits logarithmic modes at critical points. We also study several vacuum solutions of the model, specially at a certain limit where the contribution of Chern-Simons term vanishes.

  17. Macrotextured Breast Implants with Defined Steps to Minimize Bacterial Contamination around the Device: Experience in 42,000 Implants.

    PubMed

    Adams, William P; Culbertson, Eric J; Deva, Anand K; R Magnusson, Mark; Layt, Craig; Jewell, Mark L; Mallucci, Patrick; Hedén, Per

    2017-09-01

    Bacteria/biofilm on breast implant surfaces has been implicated in capsular contracture and breast implant-associated anaplastic large-cell lymphoma (ALCL). Macrotextured breast implants have been shown to harbor more bacteria than smooth or microtextured implants. Recent reports also suggest that macrotextured implants are associated with a significantly higher incidence of breast implant-associated ALCL. Using techniques to reduce the number of bacteria around implants, specifically, the 14-point plan, has successfully minimized the occurrence of capsular contracture. The authors hypothesize that a similar effect may be seen in reducing the risk of breast implant-associated ALCL. Pooled data from eight plastic surgeons assessed the use of macrotextured breast implants (Biocell and polyurethane) and known cases of breast implant-associated ALCL. Surgeon adherence to the 14-point plan was also analyzed. A total of 42,035 Biocell implants were placed in 21,650 patients; mean follow-up was 11.7 years (range, 1 to 14 years). A total of 704 polyurethane implants were used, with a mean follow-up of 8.0 years (range, 1 to 20 years). The overall capsular contracture rate was 2.2 percent. There were no cases of implant-associated ALCL. All surgeons routinely performed all 13 perioperative components of the 14-point plan; two surgeons do not routinely prescribe prophylaxis for subsequent unrelated procedures. Mounting evidence implicates the role of a sustained T-cell response to implant bacteria/biofilm in the development of breast implant-associated ALCL. Using the principles of the 14-point plan to minimize bacterial load at the time of surgery, the development and subsequent sequelae of capsular contracture and breast implant-associated ALCL may be reduced, especially with higher-risk macrotextured implants. Therapeutic, IV.

  18. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.

    PubMed

    Rashid, Muhammad Imtiaz; Mujawar, Liyakat Hamid; Shahzad, Tanvir; Almeelbi, Talal; Ismail, Iqbal M I; Oves, Mohammad

    2016-02-01

    Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Emergence of multi drug resistance among soil bacteria exposing to insecticides.

    PubMed

    Rangasamy, Kirubakaran; Athiappan, Murugan; Devarajan, Natarajan; Parray, Javid A

    2017-04-01

    Impacts of pesticide exposure on the soil microbial flora and cross resistance to antibiotics have not been well documented. Development of antibiotic resistance is a common issue among soil bacteria which are exposing to pesticides continuously at sub-lethal concentration. The present study was focused to evaluate the correlation between pesticide exposures and evolution of multi drug resistance among isolates collected from soil applied with insecticides. Twenty five insecticide (Monochrotophos) degrading bacteria were isolated from contaminated agricultural soil. The bacterial isolates Bacillus Sps, Bacillus cereus, Bacillus firmus and Bacillus thuringiensis were found to be resistant against chloramphenical, monochrotophos, ampicillin, cefotaxime, streptomycin and tetracycline antibiotics used. Involvement of plasmid in drug as well as insecticide resistant was confirmed through plasmid curing among selected bacterial strains. Bacillus Sps (MK-07), Bacillus cereus (MK-11), Bacillus firmus (MK-13) and Bacillus thuringiensis (MK-24) lost their resistant against insecticides and antibiotics once after removal of plasmid by exposing to 2% sodium dodecyl sulphate. The plasmid was transformed back to bacteria which produced similar derivatives when cultured in Minimal Salt medium (pH 7.0) supplemented with 0.4% of insecticide. Homology modeling was used to prove that organophosphorus hydrolase and able to metabolize all the antibiotics showed positive interaction with high docking score. The present study revealed that persistent of insecticides in the agricultural soil may lead to increasing development of multidrug resistance among soil bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Optical microcavities for real-time detection of bacteria

    NASA Astrophysics Data System (ADS)

    Ghali, Hala

    resonator, it increases the optical path length and changes the refractive index, which leads to a shift of the resonance peaks towards longer wavelengths. This shift can give practical information about the kinetics of the binding between the bacteria and the protein. For a concentration of 5.109 cfu/ml, a shift of 0.22 nm was observed. When the concentration was decreased, the value of the shift also decreased, meaning less bacteria bind to the surface of the resonator. Using the approximate expression of the electric field inside a microdisk, a theoretical formulation of the wavelength shift was developed for the first time. It helped give an approximation of the number of bacteria that attach to the surface. For the 0.22 nm shift, around 46 bacteria bound to the sensitive area of the microdisk and contributed to the shift. It takes about 15 minutes to attach a maximum number of bacteria.

  1. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.

    PubMed

    Afzal, Muhammad; Khan, Qaiser M; Sessitsch, Angela

    2014-12-01

    Recently, there has been an increased effort to enhance the efficacy of phytoremediation of contaminated environments by exploiting plant-microbe interactions. The combined use of plants and endophytic bacteria is an emerging approach for the clean-up of soil and water polluted with organic compounds. In plant-endophyte partnerships, plants provide the habitat as well as nutrients to their associated endophytic bacteria. In response, endophytic bacteria with appropriate degradation pathways and metabolic activities enhance degradation of organic pollutants, and diminish phytotoxicity and evapotranspiration of organic pollutants. Moreover, endophytic bacteria possessing plant growth-promoting activities enhance the plant's adaptation and growth in soil and water contaminated with organic pollutants. Overall, the application of endophytic bacteria gives new insights into novel protocols to improve phytoremediation efficiency. However, successful application of plant-endophyte partnerships for the clean-up of an environment contaminated with organic compounds depends on the abundance and activity of the degrading endophyte in different plant compartments. Although many endophytic bacteria have the potential to degrade organic pollutants and improve plant growth, their contribution to enhance phytoremediation efficiency is still underestimated. A better knowledge of plant-endophyte interactions could be utilized to increase the remediation of polluted soil environments and to protect the foodstuff by decreasing agrochemical residues in food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.

    PubMed

    Marinho, Palloma Rodrigues; Moreira, Ana Paula Barbosa; Pellegrino, Flávia Lúcia Piffano Costa; Muricy, Guilherme; Bastos, Maria do Carmo de Freire; Santos, Kátia Regina Netto dos; Giambiagi-deMarval, Marcia; Laport, Marinella Silva

    2009-08-01

    Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  3. Characterization of Radiation-Resistant Vegetative Bacteria in Beef1

    PubMed Central

    Welch, Ardyce B.; Maxcy, R. B.

    1975-01-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2 to 50 C. These bacteria were relatively heat sensitive, e.g., D10 of 5.4 min at 70 C or less. The radiation resistance ranged from D10 values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized. Images PMID:1164011

  4. c-kit+ Cells Minimally Contribute Cardiomyocytes to the Heart

    PubMed Central

    van Berlo, Jop H.; Kanisicak, Onur; Maillet, Marjorie; Vagnozzi, Ronald J.; Karch, Jason; Lin, Suh-Chin J.; Middleton, Ryan C.; Marbán, Eduardo; Molkentin, Jeffery D.

    2014-01-01

    If and how the heart regenerates after an injury event is highly debated. c-kit-expressing cardiac progenitor cells have been reported as the primary source for generation of new myocardium after injury. Here we generated two genetic approaches in mice to examine if endogenous c-kit+ cells contribute differentiated cardiomyocytes to the heart during development, with aging or after injury in adulthood. A cDNA encoding either Cre recombinase or a tamoxifen inducible MerCreMer chimeric protein was targeted to the Kit locus in mice and then bred with reporter lines to permanently mark cell lineage. Endogenous c-kit+ cells did produce new cardiomyocytes within the heart, although at a percentage of ≈0.03% or less, and if a preponderance towards cellular fusion is considered, the percentage falls below ≈0.008%. In contrast, c-kit+ cells amply generated cardiac endothelial cells. Thus, endogenous c-kit+ cells can generate cardiomyocytes within the heart, although likely at a functionally insignificant level. PMID:24805242

  5. Number of Bacteria and Time of Coincubation With Bacteria Required for the Development of Acanthamoeba Keratitis.

    PubMed

    Nakagawa, Hayate; Hattori, Takaaki; Koike, Naohito; Ehara, Tomoko; Narimatsu, Akitomo; Kumakura, Shigeto; Matsumoto, Tetsuya; Goto, Hiroshi

    2017-03-01

    We hypothesized that bacteria may be a factor contributing to the development of Acanthamoeba keratitis (AK). We investigated interactions between Acanthamoeba and Pseudomonas aeruginosa for the development of keratitis in rabbit corneas. Acanthamoeba castellanii (ATCC50492) and P. aeruginosa (PAO-1) were used. Two densities of P. aeruginosa (high, 1 × 10/mL; low, 3 × 10/mL) and 2 durations of coincubation (long, 6 h; short, 2 h) of Acanthamoeba with 1 × 10/mL of P. aeruginosa were tested. Acanthamoeba alone or Acanthamoeba coincubated with P. aeruginosa was inoculated into rabbit corneas. After inoculation, levofloxacin (LVFX) eye drops were administered. The clinical score of the cornea was evaluated after inoculation. Acanthamoeba alone did not produce keratitis during a 5-day observation period. Rabbit corneas inoculated with Acanthamoeba coincubated with low-density P. aeruginosa followed by topical LVFX were clear with few infiltrates. Corneas inoculated with Acanthamoeba coincubated with high-density P. aeruginosa followed by LVFX treatment developed severe keratitis, and clinical scores were significantly higher compared with high-density P. aeruginosa alone followed by LVFX treatment (scores 7, 9.6, 8.5 vs. 3, 3.5, 3.25 on days 1-3, all P < 0.01). The long (6 h) coincubation time of Acanthamoeba with high-density P. aeruginosa resulted in more severe keratitis compared with short (2 h) coincubation (scores, 9.7, 12.7, 12.1, 9.8, 8.7 vs. 7, 9.6, 8.5, 6.9, 5.6 on days 1-5, all P < 0.01). These results suggest that the presence of bacteria is essential and a critical number of bacteria is required for the development of AK. The time of coexistence with bacteria may be an important determinant of the severity of AK.

  6. Reach-to-grasp movement as a minimization process.

    PubMed

    Yang, Fang; Feldman, Anatol G

    2010-02-01

    It is known that hand transport and grasping are functionally different but spatially coordinated components of reach-to-grasp (RTG) movements. As an extension of this notion, we suggested that body segments involved in RTG movements are controlled as a coherent ensemble by a global minimization process associated with the necessity for the hand to reach the motor goal. Different RTG components emerge following this process without pre-programming. Specifically, the minimization process may result from the tendency of neuromuscular elements to diminish the spatial gap between the actual arm-hand configuration and its virtual (referent) configuration specified by the brain. The referent configuration is specified depending on the object shape, localization, and orientation. Since the minimization process is gradual, it can be interrupted and resumed following mechanical perturbations, at any phase during RTG movements, including hand closure. To test this prediction of the minimization hypothesis, we asked subjects to reach and grasp a cube placed within the reach of the arm. Vision was prevented during movement until the hand returned to its initial position. As predicted, by arresting wrist motion at different points of hand transport in randomly selected trials, it was possible to halt changes in hand aperture at any phase, not only during hand opening but also during hand closure. Aperture changes resumed soon after the wrist was released. Another test of the minimization hypothesis was made in RTG movements to an object placed beyond the reach of the arm. It has previously been shown (Rossi et al. in J Physiol 538:659-671, 2002) that in such movements, the trunk motion begins to contribute to hand transport only after a critical phase when the shifts in the referent arm configuration have finished (at about the time when hand velocity is maximal). The minimization rule suggests that when the virtual contribution of the arm to hand transport is completed

  7. Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints.

    PubMed

    Liu, Gang; Zhang, Ya; van der Mark, Ed; Magic-Knezev, Aleksandra; Pinto, Ameet; van den Bogert, Bartholomeus; Liu, Wentso; van der Meer, Walter; Medema, Gertjan

    2018-07-01

    The general consensus is that the abundance of tap water bacteria is greatly influenced by water purification and distribution. Those bacteria that are released from biofilm in the distribution system are especially considered as the major potential risk for drinking water bio-safety. For the first time, this full-scale study has captured and identified the proportional contribution of the source water, treated water, and distribution system in shaping the tap water bacterial community based on their microbial community fingerprints using the Bayesian "SourceTracker" method. The bacterial community profiles and diversity analyses illustrated that the water purification process shaped the community of planktonic and suspended particle-associated bacteria in treated water. The bacterial communities associated with suspended particles, loose deposits, and biofilm were similar to each other, while the community of tap water planktonic bacteria varied across different locations in distribution system. The microbial source tracking results showed that there was not a detectable contribution of source water to bacterial community in the tap water and distribution system. The planktonic bacteria in the treated water was the major contributor to planktonic bacteria in the tap water (17.7-54.1%). The particle-associated bacterial community in the treated water seeded the bacterial community associated with loose deposits (24.9-32.7%) and biofilm (37.8-43.8%) in the distribution system. In return, the loose deposits and biofilm showed a significant influence on tap water planktonic and particle-associated bacteria, which were location dependent and influenced by hydraulic changes. This was revealed by the increased contribution of loose deposits to tap water planktonic bacteria (from 2.5% to 38.0%) and an increased contribution of biofilm to tap water particle-associated bacteria (from 5.9% to 19.7%) caused by possible hydraulic disturbance from proximal to distal regions

  8. Does virus-bacteria coinfection increase the clinical severity of acute respiratory infection?

    PubMed

    Damasio, Guilherme A C; Pereira, Luciane A; Moreira, Suzana D R; Duarte dos Santos, Claudia N; Dalla-Costa, Libera M; Raboni, Sonia M

    2015-09-01

    This retrospective cohort study investigated the presence of bacteria in respiratory secretions of patients hospitalized with acute respiratory infections and analyzed the impact of viral and bacterial coinfection on severity and the mortality rate. A total of 169 patients with acute respiratory infections were included, viruses and bacteria in respiratory samples were detected using molecular methods. Among all samples, 73.3% and 59.7% were positive for viruses and bacteria, respectively; 45% contained both virus and bacteria. Bacterial coinfection was more frequent in patients infected by community respiratory viruses than influenza A H1N1pdm (83.3% vs. 40.6%). The most frequently bacteria detected were Streptococcus pneumoniae and Haemophilus influenzae. Both species were co-detected in 54 patients and identified alone in 22 and 21 patients, respectively. Overall, there were no significant differences in the period of hospitalization, severity, or mortality rate between patients infected with respiratory viruses alone and those coinfected by viruses and bacteria. The detection of mixed respiratory pathogens is frequent in hospitalized patients with acute respiratory infections, but its impact on the clinical outcome does not appear substantial. However, it should be noted that most of the patients received broad-spectrum antibiotic therapy, which may have contributed to this favorable outcome. © 2015 Wiley Periodicals, Inc.

  9. Transcriptional Control in Marine Copiotrophic and Oligotrophic Bacteria with Streamlined Genomes.

    PubMed

    Cottrell, Matthew T; Kirchman, David L

    2016-10-01

    Bacteria often respond to environmental stimuli using transcriptional control, but this may not be the case for marine bacteria such as "Candidatus Pelagibacter ubique," a cultivated representative of the SAR11 clade, the most abundant organism in the ocean. This bacterium has a small, streamlined genome and an unusually low number of transcriptional regulators, suggesting that transcriptional control is low in Pelagibacter and limits its response to environmental conditions. Transcriptome sequencing during batch culture growth revealed that only 0.1% of protein-encoding genes appear to be under transcriptional control in Pelagibacter and in another oligotroph (SAR92) whereas >10% of genes were under transcriptional control in the copiotrophs Polaribacter sp. strain MED152 and Ruegeria pomeroyi When growth levels changed, transcript levels remained steady in Pelagibacter and SAR92 but shifted in MED152 and R. pomeroyi Transcript abundances per cell, determined using an internal RNA sequencing standard, were low (<1 transcript per cell) for all but a few of the most highly transcribed genes in all four taxa, and there was no correlation between transcript abundances per cell and shifts in the levels of transcription. These results suggest that low transcriptional control contributes to the success of Pelagibacter and possibly other oligotrophic microbes that dominate microbial communities in the oceans. Diverse heterotrophic bacteria drive biogeochemical cycling in the ocean. The most abundant types of marine bacteria are oligotrophs with small, streamlined genomes. The metabolic controls that regulate the response of oligotrophic bacteria to environmental conditions remain unclear. Our results reveal that transcriptional control is lower in marine oligotrophic bacteria than in marine copiotrophic bacteria. Although responses of bacteria to environmental conditions are commonly regulated at the level of transcription, metabolism in the most abundant bacteria in the

  10. An enteric virus can replace the beneficial function of commensal bacteria

    PubMed Central

    Kernbauer, Elisabeth; Ding, Yi; Cadwell, Ken

    2014-01-01

    Intestinal microbial communities have profound effects on host physiology1. Whereas the symbiotic contribution of commensal bacteria is well established, the role of eukaryotic viruses that are present in the gastrointestinal tract under homeostatic conditions is undefined2,3. Here, we demonstrate that a common enteric RNA virus can replace the beneficial function of commensal bacteria in the intestine. Murine norovirus (MNV) infection of germfree or antibiotics-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease. The presence of MNV also suppressed an expansion of group 2 innate lymphoid cells (ILCs) observed in the absence of bacteria, and induced transcriptional changes in the intestine associated with immune development and type I interferon (IFN) signaling. Consistent with this observation, the IFNα receptor was essential for the ability of MNV to compensate for bacterial depletion. Importantly, MNV infection offset the deleterious effect of antibiotics-treatment in models of intestinal injury and pathogenic bacterial infection. These data indicate that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity akin to commensal bacteria. PMID:25409145

  11. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  12. The role of anaerobic bacteria in the cystic fibrosis airway.

    PubMed

    Sherrard, Laura J; Bell, Scott C; Tunney, Michael M

    2016-11-01

    Anaerobic bacteria are not only normal commensals, but are also considered opportunistic pathogens and have been identified as persistent members of the lower airway community in people with cystic fibrosis of all ages and stages of disease. Currently, the role of anaerobic bacteria in cystic fibrosis lower airway disease is not well understood. Therefore, this review describes the recent studies relating to the potential pathophysiological role(s) of anaerobes within the cystic fibrosis lungs. The most frequently identified anaerobic bacteria in the lower airways are common to both cystic fibrosis and healthy lungs. Studies have shown that in cystic fibrosis, the relative abundance of anaerobes fluctuates in the lower airways with reduced lung function and increased inflammation associated with a decreased anaerobic load. However, anaerobes found within the lower airways also produce virulence factors, may cause a host inflammatory response and interact synergistically with recognized pathogens. Anaerobic bacteria are potentially members of the airway microbiota in health but could also contribute to the pathogenesis of lower airway disease in cystic fibrosis via both direct and indirect mechanisms. A personalized treatment strategy that maintains a normal microbial community may be possible in the future.

  13. The use of minimum selectable concentrations (MSCs) for determining the selection of antimicrobial resistant bacteria.

    PubMed

    Khan, Sadia; Beattie, Tara K; Knapp, Charles W

    2017-03-01

    The use of antimicrobial compounds is indispensable in many industries, especially drinking water production, to eradicate microorganisms. However, bacterial growth is not unusual in the presence of disinfectant concentrations that would be typically lethal, as bacterial populations can develop resistance. The common metric of population resistance has been based on the Minimum Inhibitory Concentration (MIC), which is based on bacteria lethality. However, sub-lethal concentrations may also select for resistant bacteria due to the differences in bacterial growth rates. This study determined the Minimal Selective Concentrations (MSCs) of bacterial populations exposed to free chlorine and monochloramine, representing a metric that possibly better reflects the selective pressures occurring at lower disinfectant levels than MIC. Pairs of phylogenetically similar bacteria were challenged to a range of concentrations of disinfectants. The MSCs of free chlorine and monochloramine were found to range between 0.021 and 0.39 mg L -1 , which were concentrations 1/250 to 1/5 than the MICs of susceptible bacteria (MIC susc ). This study indicates that sub-lethal concentrations of disinfectants could result in the selection of resistant bacterial populations, and MSCs would be a more sensitive indicator of selective pressure, especially in environmental systems.

  14. Patterns and sources of fecal coliform bacteria in three streams in Virginia, 1999-2000

    USGS Publications Warehouse

    Hyer, Kenneth; Moyer, Douglas

    2003-01-01

    Surface-water impairment by fecal coliform bacteria is a water-quality issue of national scope and importance. In Virginia, more than 175 stream segments are on the Commonwealth's 1998 303(d) list of impaired waters because of elevated concentrations of fecal coliform bacteria. These fecal coliform-impaired stream segments require the development of total maximum daily load (TMDL) and associated implementation plans, but accurate information on the sources contributing these bacteria usually is lacking. The development of defendable fecal coliform TMDLs and management plans can benefit from reliable information on the bacteria sources that are responsible for the impairment. Bacterial source tracking (BST) recently has emerged as a powerful tool for identifying the sources of fecal coliform bacteria that impair surface waters. In a demonstration of BST technology, three watersheds on Virginia's 1998 303(d) list with diverse land-use practices (and potentially diverse bacteria sources) were studied. Accotink Creek is dominated by urban land uses, Christians Creek by agricultural land uses, and Blacks Run is affected by both urban and agricultural land uses. During the 20-month field study (March 1999?October 2000), water samples were collected from each stream during a range of flow conditions and seasons. For each sample, specific conductance, dissolved oxygen concentration, pH, turbidity, flow, and water temperature were measured. Fecal coliform concentrations of each water sample were determined using the membrane filtration technique. Next, Escherichia coli (E. coli) were isolated from the fecal coliform bacteria and their sources were identified using ribotyping (a method of 'genetic fingerprinting'). Study results provide enhanced understanding of the concentrations and sources of fecal coliform bacteria in these three watersheds. Continuum sampling (sampling along the length of the streams) indicated that elevated concentrations of fecal coliform bacteria

  15. Modeling of Protein Subcellular Localization in Bacteria

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohua; Kulkarni, Rahul

    2006-03-01

    Specific subcellular localization of proteins is a vital component of important bacterial processes: e.g. the Min proteins which regulate cell division in E. coli and Spo0J-Soj system which is critical for sporulation in B. subtilis. We examine how the processes of diffusion and membrane attachment contribute to protein subcellular localization for the above systems. We use previous experimental results to suggest minimal models for these processes. For the minimal models, we derive analytic expressions which provide insight into the processes that determine protein subcellular localization. Finally, we present the results of numerical simulations for the systems studied and make connections to the observed experiemental phenomenology.

  16. A novel antimicrobial peptide derived from modified N-terminal domain of bovine lactoferrin: design, synthesis, activity against multidrug-resistant bacteria and Candida.

    PubMed

    Mishra, Biswajit; Leishangthem, Geeta Devi; Gill, Kamaldeep; Singh, Abhay K; Das, Swagata; Singh, Kusum; Xess, Immaculata; Dinda, Amit; Kapil, Arti; Patro, Ishan K; Dey, Sharmistha

    2013-02-01

    Lactoferrin (LF) is believed to contribute to the host's defense against microbial infections. This work focuses on the antibacterial and antifungal activities of a designed peptide, L10 (WFRKQLKW) by modifying the first eight N-terminal residues of bovine LF by selective homologous substitution of amino acids on the basis of hydrophobicity, L10 has shown potent antibacterial and antifungal properties against clinically isolated extended spectrum beta lactamases (ESBL), producing gram-negative bacteria as well as Candida strains with minimal inhibitory concentrations (MIC) ranging from 1 to 8 μg/mL and 6.5 μg/mL, respectively. The peptide was found to be least hemolytic at a concentration of 800 μg/mL. Interaction with lipopolysaccharide (LPS) and lipid A (LA) suggests that the peptide targets the membrane of gram-negative bacteria. The membrane interactive nature of the peptide, both antibacterial and antifungal, was further confirmed by visual observations employing electron microscopy. Further analyses, by means of propidium iodide based flow cytometry, also supported the membrane permeabilization of Candida cells. The peptide was also found to possess anti-inflammatory properties, by virtue of its ability to inhibit cyclooxygenase-2 (COX-2). L10 therefore emerges as a potential therapeutic remedial solution for infections caused by ESBL positive, gram-negative bacteria and multidrug-resistant (MDR) fungal strains, on account of its multifunctional activities. This study may open up new approach to develop and design novel antimicrobials. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. SAR11 bacteria linked to ocean anoxia and nitrogen loss

    NASA Astrophysics Data System (ADS)

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M.; Burns, Andrew S.; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R.; Padilla, Cory C.; Stone, Benjamin K.; Bristow, Laura A.; Larsen, Morten; Glass, Jennifer B.; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T.; Stewart, Frank J.

    2016-08-01

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.

  18. SAR11 bacteria linked to ocean anoxia and nitrogen loss.

    PubMed

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M; Burns, Andrew S; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R; Padilla, Cory C; Stone, Benjamin K; Bristow, Laura A; Larsen, Morten; Glass, Jennifer B; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T; Stewart, Frank J

    2016-08-11

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.

  19. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    PubMed Central

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  20. Essential oils against foodborne pathogens and spoilage bacteria in minced meat.

    PubMed

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella; Fernandes, Ary

    2009-01-01

    The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC(90%) values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC(90%) values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC(90%) assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms.

  1. Essential Oils Against Foodborne Pathogens and Spoilage Bacteria in Minced Meat

    PubMed Central

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella

    2009-01-01

    Abstract The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC90% values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC90% values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC90% assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms. PMID:19580445

  2. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  3. Protein secretion and surface display in Gram-positive bacteria

    PubMed Central

    Schneewind, Olaf; Missiakas, Dominique M.

    2012-01-01

    The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions. PMID:22411983

  4. Impact of feathers and feather follicles on broiler carcass bacteria.

    PubMed

    Cason, J A; Hinton, A; Buhr, R J

    2004-08-01

    Genetically featherless and feathered broiler siblings were used to test the contribution of feathers and feather follicles to the numbers of aerobic bacteria, Escherichia coli, and Campylobacter in whole-carcass rinse samples taken immediately after carcasses were defeathered for 30 or 60 s. Numbers of spoilage bacteria were counted after the same fully processed carcasses were stored for 1 wk at 2 degrees C. In each of 3 replications, twenty-eight 11-wk-old, mixed-sex, genetically featherless or feathered broilers were processed in a laboratory processing facility. Immediately after individual defeathering in a mechanical picker, carcasses were sampled using a carcass rinse technique. Carcasses were eviscerated, immersion chilled at 2 degrees C for 30 min, individually bagged, and stored for 1 wk at 2 degrees C, after which all carcasses were rinsed again, and spoilage bacteria in the rinsate were enumerated. There were no significant differences (P < or = 0.05) between the featherless and feathered broilers in numbers of aerobic bacteria, E. coli, and Campylobacter in rinse samples taken immediately after defeathering and no differences between carcasses picked for 30 or 60 s. There were no differences in numbers of spoilage bacteria after 1 wk of refrigeration for any of the feather presence-picking length combinations. Although the defeathering step in poultry processing has been identified as an opportunity for bacterial contamination from the intestinal tract and cross-contamination between carcasses, the presence of feathers and feather follicles does not make a significant difference in carcass bacterial contamination immediately after defeathering or in spoilage bacteria after 1 wk of refrigeration.

  5. Centrifugal sedimentation immunoassays for multiplexed detection of enteric bacteria in ground water

    PubMed Central

    Litvinov, Julia; Moen, Scott T.; Koh, Chung-Yan; Singh, Anup K.

    2016-01-01

    Waterborne pathogens pose significant threat to the global population and early detection plays an important role both in making drinking water safe, as well as in diagnostics and treatment of water-borne diseases. We present an innovative centrifugal sedimentation immunoassay platform for detection of bacterial pathogens in water. Our approach is based on binding of pathogens to antibody-functionalized capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk. Beads at the distal end of the disk are imaged to quantify the fluorescence and determine the bacterial concentration. Our platform is fast (20 min), can detect as few as ∼10 bacteria with minimal sample preparation, and can detect multiple pathogens simultaneously. The platform was used to detect a panel of enteric bacteria (Escherichia coli, Salmonella typhimurium, Shigella, Listeria, and Campylobacter) spiked in tap and ground water samples. PMID:26858815

  6. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes

    PubMed Central

    Pierson, Elizabeth A.

    2010-01-01

    Phenazines constitute a large group of nitrogen-containing heterocyclic compounds produced by a diverse range of bacteria. Both natural and synthetic phenazine derivatives are studied due their impacts on bacterial interactions and biotechnological processes. Phenazines serve as electron shuttles to alternate terminal acceptors, modify cellular redox states, act as cell signals that regulate patterns of gene expression, contribute to biofilm formation and architecture, and enhance bacterial survival. Phenazines have diverse effects on eukaryotic hosts and host tissues, including the modification of multiple host cellular responses. In plants, phenazines also may influence growth and elicit induced systemic resistance. Here, we discuss emerging evidence that phenazines play multiple roles for the producing organism and contribute to their behavior and ecological fitness. PMID:20352425

  7. Alternative sanitization methods for minimally processed lettuce in comparison to sodium hypochlorite

    PubMed Central

    Bachelli, Mara Lígia Biazotto; Amaral, Rívia Darla Álvares; Benedetti, Benedito Carlos

    2013-01-01

    Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L−1/10 min), peracetic acid (100 mg L−1/15 min) and ozonated water (1.2 mg L−1 /1 min) as alternative sanitizers to sodium hypochlorite (150 mg L−1 free chlorine/15 min) were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 °C with the product packaged on LDPE bags of 60 μm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days. PMID:24516433

  8. Relative and contextual contribution of different sources to the composition and abundance of indoor air bacteria in residences.

    PubMed

    Miletto, Marzia; Lindow, Steven E

    2015-12-10

    The study of the microbial communities in the built environment is of critical importance as humans spend the majority of their time indoors. While the microorganisms in living spaces, especially those in the air, can impact health and well-being, little is known of their identity and the processes that determine their assembly. We investigated the source-sink relationships of airborne bacteria in 29 homes in the San Francisco Bay Area. Samples taken in the sites expected to be source habitats for indoor air microbes were analyzed by 16S rRNA-based pyrosequencing and quantitative PCR. The community composition was related to the characteristics of the household collected at the time of sampling, including the number of residents and pets, activity levels, frequency of cooking and vacuum cleaning, extent of natural ventilation, and abundance and type of vegetation surrounding the building. Indoor air harbored a diverse bacterial community dominated by Diaphorobacter sp., Propionibacterium sp., Sphingomonas sp., and Alicyclobacillus sp. Source-sink analysis suggested that outdoor air was the primary source of indoor air microbes in most homes. Bacterial phylogenetic diversity and relative abundance in indoor air did not differ statistically from that in outdoor air. Moreover, the abundance of bacteria in outdoor air was positively correlated with that in indoor air, as would be expected if outdoor air was the main contributor to the bacterial community in indoor bioaerosols. The number of residents, presence of pets, and local tap water also influenced the diversity and size of indoor air microbes. The bacterial load in air increased with the number of residents, activity, and frequency of natural ventilation, and the proportion of bacteria putatively derived from skin increased with the number of residents. Vacuum cleaning increased the signature of pet- and floor-derived bacteria in indoor air, while the frequency of natural ventilation decreased the relative

  9. Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants.

    PubMed

    Jiao, Shuo; Luo, Yantao; Lu, Mingmei; Xiao, Xiao; Lin, Yanbing; Chen, Weimin; Wei, Gehong

    2017-06-01

    Elucidating the driving forces behind the temporal dynamics of abundant and rare microbes is essential for understanding the assembly and succession of microbial communities. Here, we explored the successional trajectories and mechanisms of abundant and rare bacteria via soil-enrichment subcultures in response to various pollutants (phenanthrene, n-octadecane, and CdCl 2 ) using time-series Illumina sequencing datasets. The results reveal different successional patterns of abundant and rare sub-communities in eighty pollutant-degrading consortia and two original soil samples. A temporal decrease in α-diversity and high turnover rate for β-diversity indicate that deterministic processes are the main drivers of the succession of the abundant sub-community; however, the high cumulative species richness indicates that stochastic processes drive the succession of the rare sub-community. A functional prediction showed that abundant bacteria contribute primary functions to the pollutant-degrading consortia, such as amino acid metabolism, cellular responses to stress, and hydrocarbon degradation. Meanwhile, rare bacteria contribute a substantial fraction of auxiliary functions, such as carbohydrate-active enzymes, fermentation, and homoacetogenesis, which indicates their roles as a source of functional diversity. Our study suggests that the temporal succession of microbes in polluted microcosms is mainly associated with abundant bacteria rather than the high proportion of rare taxa. The major forces (i.e., stochastic or deterministic processes) driving microbial succession could be dependent on the low- or high-abundance community members in temporal microcosms with pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    PubMed

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk.

    PubMed

    O'Connor, Roberta M; Fung, Jennifer M; Sharp, Koty H; Benner, Jack S; McClung, Colleen; Cushing, Shelley; Lamkin, Elizabeth R; Fomenkov, Alexey I; Henrissat, Bernard; Londer, Yuri Y; Scholz, Matthew B; Posfai, Janos; Malfatti, Stephanie; Tringe, Susannah G; Woyke, Tanja; Malmstrom, Rex R; Coleman-Derr, Devin; Altamia, Marvin A; Dedrick, Sandra; Kaluziak, Stefan T; Haygood, Margo G; Distel, Daniel L

    2014-11-25

    Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.

  12. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology.

    PubMed

    Reyes, Leticia; Herrera, David; Kozarov, Emil; Roldán, Silvia; Progulske-Fox, Ann

    2013-04-01

    The objective of this review was to perform a systematic evaluation of the literature reporting current scientific evidence for periodontal bacteria as contributors to atherosclerosis. Literature from epidemiological, clinical and experimental studies concerning periodontal bacteria and atherosclerosis were reviewed. Gathered data were categorized into seven "proofs" of evidence that periodontal bacteria: 1) disseminate from the oral cavity and reach systemic vascular tissues; 2) can be found in the affected tissues; 3) live within the affected site; 4) invade affected cell types in vitro; 5) induce atherosclerosis in animal models of disease; 6) non-invasive mutants of periodontal bacteria cause significantly reduced pathology in vitro and in vivo; and 7) periodontal isolates from human atheromas can cause disease in animal models of infection. Substantial evidence for proofs 1 to 6 was found. However, proof 7 has not yet been fulfilled. Despite the lack of evidence that periodontal bacteria obtained from human atheromas can cause atherosclerosis in animal models of infection, attainment of proofs 1 to 6 provides support that periodontal pathogens can contribute to atherosclerosis. © 2013 European Federation of Periodontology and American Academy of Periodontology.

  13. Airborne bacteria associated with corrosion of mild steel 1010 and aluminum alloy 1100.

    PubMed

    Rajasekar, Aruliah; Xiao, Wang; Sethuraman, Manivannan; Parthipan, Punniyakotti; Elumalai, Punniyakotti

    2017-03-01

    A novel approach to measure the contribution of airborne bacteria on corrosion effects of mild steel (MS) and aluminum alloy (AA) as a function of their exposure period, and the atmospheric chemical composition was investigated at an urban industrial coastal site, Singapore. The 16S rRNA and phylogenetic analyses showed that Firmicutes are the predominant bacteria detected in AA and MS samples. The dominant bacterial groups identified were Bacillaceae, Staphylococcaceae, and Paenibacillaceae. The growth and proliferation of these bacteria could be due to the presence of humidity and chemical pollutants in the atmosphere, leading to corrosion. Weight loss showed stronger corrosion resistance of AA (1.37 mg/cm 2 ) than MS (26.13 mg/cm 2 ) over the exposure period of 150 days. The higher corrosion rate could be a result of simultaneous action of pollutants and bacterial exopolysaccharides on the metal surfaces. This study demonstrates the significant involvement of airborne bacteria on atmospheric corrosion of engineering materials.

  14. Load emphasizes muscle effort minimization during selection of arm movement direction

    PubMed Central

    2012-01-01

    Background Directional preferences during center-out horizontal shoulder-elbow movements were previously established for both the dominant and non-dominant arm with the use of a free-stroke drawing task that required random selection of movement directions. While the preferred directions were mirror-symmetrical in both arms, they were attributed to a tendency specific for the dominant arm to simplify control of interaction torque by actively accelerating one joint and producing largely passive motion at the other joint. No conclusive evidence has been obtained in support of muscle effort minimization as a contributing factor to the directional preferences. Here, we tested whether distal load changes directional preferences, making the influence of muscle effort minimization on the selection of movement direction more apparent. Methods The free-stroke drawing task was performed by the dominant and non-dominant arm with no load and with 0.454 kg load at the wrist. Motion of each arm was limited to rotation of the shoulder and elbow in the horizontal plane. Directional histograms of strokes produced by the fingertip were calculated to assess directional preferences in each arm and load condition. Possible causes for directional preferences were further investigated by studying optimization across directions of a number of cost functions. Results Preferences in both arms to move in the diagonal directions were revealed. The previously suggested tendency to actively accelerate one joint and produce passive motion at the other joint was supported in both arms and load conditions. However, the load increased the tendency to produce strokes in the transverse diagonal directions (perpendicular to the forearm orientation) in both arms. Increases in required muscle effort caused by the load suggested that the higher frequency of movements in the transverse directions represented increased influence of muscle effort minimization on the selection of movement direction. This

  15. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization.

    PubMed

    Udikovic-Kolic, Nikolina; Wichmann, Fabienne; Broderick, Nichole A; Handelsman, Jo

    2014-10-21

    The increasing prevalence of antibiotic-resistant bacteria is a global threat to public health. Agricultural use of antibiotics is believed to contribute to the spread of antibiotic resistance, but the mechanisms by which many agricultural practices influence resistance remain obscure. Although manure from dairy farms is a common soil amendment in crop production, its impact on the soil microbiome and resistome is not known. To gain insight into this impact, we cultured bacteria from soil before and at 10 time points after application of manure from cows that had not received antibiotic treatment. Soil treated with manure contained a higher abundance of β-lactam-resistant bacteria than soil treated with inorganic fertilizer. Functional metagenomics identified β-lactam-resistance genes in treated and untreated soil, and indicated that the higher frequency of resistant bacteria in manure-amended soil was attributable to enrichment of resident soil bacteria that harbor β-lactamases. Quantitative PCR indicated that manure treatment enriched the blaCEP-04 gene, which is highly similar (96%) to a gene found previously in a Pseudomonas sp. Analysis of 16S rRNA genes indicated that the abundance of Pseudomonas spp. increased in manure-amended soil. Populations of other soil bacteria that commonly harbor β-lactamases, including Janthinobacterium sp. and Psychrobacter pulmonis, also increased in response to manure treatment. These results indicate that manure amendment induced a bloom of certain antibiotic-resistant bacteria in soil that was independent of antibiotic exposure of the cows from which the manure was derived. Our data illustrate the unintended consequences that can result from agricultural practices, and demonstrate the need for empirical analysis of the agroecosystem.

  16. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization

    PubMed Central

    Udikovic-Kolic, Nikolina; Wichmann, Fabienne; Broderick, Nichole A.; Handelsman, Jo

    2014-01-01

    The increasing prevalence of antibiotic-resistant bacteria is a global threat to public health. Agricultural use of antibiotics is believed to contribute to the spread of antibiotic resistance, but the mechanisms by which many agricultural practices influence resistance remain obscure. Although manure from dairy farms is a common soil amendment in crop production, its impact on the soil microbiome and resistome is not known. To gain insight into this impact, we cultured bacteria from soil before and at 10 time points after application of manure from cows that had not received antibiotic treatment. Soil treated with manure contained a higher abundance of β-lactam–resistant bacteria than soil treated with inorganic fertilizer. Functional metagenomics identified β-lactam–resistance genes in treated and untreated soil, and indicated that the higher frequency of resistant bacteria in manure-amended soil was attributable to enrichment of resident soil bacteria that harbor β-lactamases. Quantitative PCR indicated that manure treatment enriched the blaCEP-04 gene, which is highly similar (96%) to a gene found previously in a Pseudomonas sp. Analysis of 16S rRNA genes indicated that the abundance of Pseudomonas spp. increased in manure-amended soil. Populations of other soil bacteria that commonly harbor β-lactamases, including Janthinobacterium sp. and Psychrobacter pulmonis, also increased in response to manure treatment. These results indicate that manure amendment induced a bloom of certain antibiotic-resistant bacteria in soil that was independent of antibiotic exposure of the cows from which the manure was derived. Our data illustrate the unintended consequences that can result from agricultural practices, and demonstrate the need for empirical analysis of the agroecosystem. PMID:25288759

  17. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  18. Shelf-life extension of minimally processed carrots by gaseous chlorine dioxide.

    PubMed

    Gómez-López, V M; Devlieghere, F; Ragaert, P; Debevere, J

    2007-05-10

    Chlorine dioxide (ClO(2)) gas is a strong oxidizing and sanitizing agent that has a broad and high biocidal effectiveness and big penetration ability; its efficacy to prolong the shelf-life of a minimally processed (MP) vegetable, grated carrots (Daucus carota L.), was tested in this study. Carrots were sorted, their ends removed, hand peeled, cut, washed, spin dried and separated in 2 portions, one to be treated with ClO(2) gas and the other to remain untreated for comparisons. MP carrots were decontaminated in a cabinet at 91% relative humidity and 28 degrees C for up to 6 min, including 30 s of ClO(2) injection to the cabinet, then stored under equilibrium modified atmosphere (4.5% O(2), 8.9% CO(2), 86.6% N(2)) at 7 degrees C for shelf-life studies. ClO(2) concentration in the cabinet rose to 1.33 mg/l after 30 s of treatment, and then fell to nil before 6 min. The shelf-life study included: O(2) and CO(2) headspace concentrations, microbiological quality (mesophilic aerobic bacteria, psychrotrophs, lactic acid bacteria, and yeasts), sensory quality (odour, flavour, texture, overall visual quality, and white blushing), and pH. ClO(2) did not affect respiration rate of MP carrots significantly (alpha< or =0.05), and lowered the pH significantly (alpha< or =0.05). The applied packaging configuration kept O(2) headspace concentrations in treated samples in equilibrium and prevented CO(2) accumulation. After ClO(2) treatment, the decontamination levels (log CFU/g) achieved were 1.88, 1.71, 2.60, and 0.66 for mesophilic aerobic bacteria, psychrotrophs, and yeasts respectively. The initial sensory quality of MP carrots was not impaired significantly (alpha< or =0.05). A lag phase of at least 2 days was observed for mesophilic aerobic bacteria, psychrotrophs, and lactic acid bacteria in treated samples, while mesophilic aerobic bacteria and psychrotrophs increased parallelly. Odour was the only important attribute in sensory deterioration, but it reached an

  19. [Mutant prevention concentrations of antibacterial agents to ocular pathogenic bacteria].

    PubMed

    Liang, Qing-Feng; Wang, Zhi-Qun; Li, Ran; Luo, Shi-Yun; Deng, Shi-Jing; Sun, Xu-Guang

    2009-01-01

    To establish a method to measure mutant prevention concentration (MPC) in vitro, and to measure MPC of antibacterial agents for ocular bacteria caused keratitis. It was an experimental study. Forty strains of ocular bacteria were separated from cornea in Beijing Institute of Ophthalmology, which included 8 strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Pseudomonas aeruginosa and Klebsiella pneumoniae respectively. The minimal inhibitory concentration (MIC) of the levofloxacin (LVF), ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NFL), tobramycin (TOB) and chloromycetin (CHL) were determined by agar dilution method from National Committee of Clinical Laboratory Standard (NCCLS). The MPC were measured by accumulate-bacterial methods with bacterial population inoculated more than 1.2 x 10(10) colony forming units per milliliter with Mueller-Hinton broth and tryptic soy agar plate. With the software of SPSS 11.0, the datum such as the range of MIC, MPC, MIC90 and MPC90 were calculated, and the selection index (MPC90/ MI90) and mutant selection window (MSW) were obtained. The MI90 of LVF and TOB (4 mg/L) to Staphylococcus aureus strains were the lowest. CIP showed the lowest MIC90 (0.25 mg/L) to Pseudomonas aeruginosa among six kinds of antibacterial agents. The MIC90 of LVF to Staphylococcus epidermidis (256 mg/L), Streptococcus pneumoniae (1 mg/L) and Klebsiella pneumoniae (0.25 mg/L) were lower than other antibacterial agents. The MPC90, MSW and the MPC90/MIC90 of levofloxacin showed lower values compared with other antibacterial medicines. From all the datum, the MIC90 of CHL was the highest and the activity was the weakest. Although the activity of LVF was higher to every kind of bacteria, CIP had the highest activity antibacterial to Pseudomonas aeruginosa. The capacity of CHL and TOB was weaker than Quinolones for restricting resistant mutants on ocular bacteria. LVF had the strongest capacity for restricting resistant

  20. The effect of surface charge, negative and bipolar ionization on the deposition of airborne bacteria.

    PubMed

    Meschke, S; Smith, B D; Yost, M; Miksch, R R; Gefter, P; Gehlke, S; Halpin, H A

    2009-04-01

    A series of experiments were conducted to evaluate the effect of surface charge and air ionization on the deposition of airborne bacteria. The interaction between surface electrostatic potential and the deposition of airborne bacteria in an indoor environment was investigated using settle plates charged with electric potentials of 0, +/-2.5kV and +/-5kV. Results showed that bacterial deposition on the plates increased proportionally with increased potential to over twice the gravitational sedimentation rate at +5kV. Experiments were repeated under similar conditions in the presence of either negative or bipolar air ionization. Bipolar air ionization resulted in reduction of bacterial deposition onto the charged surfaces to levels nearly equal to gravitational sedimentation. In contrast, diffusion charging appears to have occurred during negative air ionization, resulting in an even greater deposition onto the oppositely charged surface than observed without ionization. Static charges on fomitic surfaces may attract bacteria resulting in deposition in excess of that expected by gravitational sedimentation or simple diffusion. Implementation of bipolar ionization may result in reduction of bacterial deposition. Fomitic surfaces are important vehicles for the transmission of infectious organisms. This study has demonstrated a simple strategy for minimizing charge related deposition of bacteria on surfaces.

  1. Centrifugal sedimentation immunoassays for multiplexed detection of enteric bacteria in ground water

    DOE PAGES

    Litvinov, Julia; Moen, Scott T.; Koh, Chung-Yan; ...

    2016-01-01

    Water-born pathogens pose significant threat to the global population and early detection plays an important role both in making drinking water safe, as well as in diagnostics and treatment of water-borne diseases. We present an innovative centrifugal microfluidic platform (SpinDx) for detection of bacterial pathogens using bead-based immunoassays. Our approach is based on binding of pathogens to antibody-functionalized capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by fluorescence microscopy. Our platform is fast (20 min), sensitive (10 3 CFU/mL), requires minimal sample preparation, and can detect multiple pathogens simultaneously with sensitivitymore » similar to that required by the EPA. We demonstrate detection of a panel of enteric bacteria (Escherichia coli, Salmonella typhimurium, Shigella, Listeria, and Campylobacter) at concentrations as low as 10 3 CFU/mL or 30 bacteria per reaction.« less

  2. Hitting bacteria at the heart of the central dogma: sequence-specific inhibition.

    PubMed

    Rasmussen, Louise Carøe Vohlander; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk

    2007-08-10

    An important objective in developing new drugs is the achievement of high specificity to maximize curing effect and minimize side-effects, and high specificity is an integral part of the antisense approach. The antisense techniques have been extensively developed from the application of simple long, regular antisense RNA (asRNA) molecules to highly modified versions conferring resistance to nucleases, stability of hybrid formation and other beneficial characteristics, though still preserving the specificity of the original nucleic acids. These new and improved second- and third-generation antisense molecules have shown promising results. The first antisense drug has been approved and more are in clinical trials. However, these antisense drugs are mainly designed for the treatment of different human cancers and other human diseases. Applying antisense gene silencing and exploiting RNA interference (RNAi) are highly developed approaches in many eukaryotic systems. But in bacteria RNAi is absent, and gene silencing by antisense compounds is not nearly as well developed, despite its great potential and the intriguing possibility of applying antisense molecules in the fight against multiresistant bacteria. Recent breakthrough and current status on the development of antisense gene silencing in bacteria including especially phosphorothioate oligonucleotides (PS-ODNs), peptide nucleic acids (PNAs) and phosphorodiamidate morpholino oligomers (PMOs) will be presented in this review.

  3. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  4. A mathematical model for expected time to extinction of pathogenic bacteria through antibiotic

    NASA Astrophysics Data System (ADS)

    Ghosh, M. K.; Nandi, S.; Roy, P. K.

    2016-04-01

    Application of antibiotics in human system to prevent bacterial diseases like Gastritis, Ulcers, Meningitis, Pneumonia and Gonorrhea are indispensable. Antibiotics saved innumerable lives and continue to be a strong support for therapeutic application against pathogenic bacteria. In human system, bacterial diseases occur when pathogenic bacteria gets into the body and begin to reproduce and crowd out healthy bacteria. In this process, immature bacteria releases enzyme which is essential for bacterial cell-wall biosynthesis. After complete formation of cell wall, immature bacteria are converted to mature or virulent bacteria which are harmful to us during bacterial infections. Use of antibiotics as drug inhibits the bacterial cell wall formation. After application of antibiotics within body, the released bacterial enzyme binds with antibiotic molecule instead of its functional site during the cell wall synthesis in a competitive inhibition approach. As a consequence, the bacterial cell-wall formation as well as maturation process of pathogenic bacteria is halted and the disease is cured with lysis of bacterial cells. With this idea, a mathematical model has been developed in the present research investigation to review the inhibition of biosynthesis of bacterial cell wall by the application of antibiotics as drug in the light of enzyme kinetics. This approach helps to estimate the expected time to extinction of the pathogenic bacteria. Our mathematical approach based on the enzyme kinetic model for finding out expected time to extinction contributes favorable results for understanding of disease dynamics. Analytical and numerical results based on simulated findings validate our mathematical model.

  5. Detection of periodontal bacteria in thrombi of patients with acute myocardial infarction by polymerase chain reaction.

    PubMed

    Ohki, Takahiro; Itabashi, Yuji; Kohno, Takashi; Yoshizawa, Akihiro; Nishikubo, Shuichi; Watanabe, Shinya; Yamane, Genyuki; Ishihara, Kazuyuki

    2012-02-01

    Numerous reports have demonstrated that periodontal bacteria are present in plaques from atherosclerotic arteries. Although periodontitis has recently been recognized as a risk factor for coronary artery disease, the direct relationship between periodontal bacteria and coronary artery disease has not yet been clarified. It has been suggested that these bacteria might contribute to inflammation and plaque instability. We assumed that if periodontal bacteria induce inflammation of plaque, the bacteria would be released into the bloodstream when vulnerable plaque ruptures. To determine whether periodontal bacteria are present in thrombi at the site of acute myocardial infarction, we tried to detect periodontal bacteria in thrombi of patients with acute myocardial infarction by polymerase chain reaction (PCR). We studied 81 consecutive adults with ST-segment elevation acute myocardial infarction who underwent primary percutaneous coronary intervention (PCI). All patients underwent removal of thrombus with aspiration catheters at the beginning of percutaneous coronary intervention, and a small sample of thrombus was obtained for PCR. The detection rates of periodontal bacteria by PCR were 19.7% for Aggregatibacter actinomycetemcomitans, 3.4% for Porphyromonas gingivalis, and 2.3% for Treponema denticola. Three species of periodontal bacteria were detected in the thrombi of patients with acute myocardial infarction. This raises the possibility that such bacteria are latently present in plaque and also suggests that these bacteria might have a role in plaque inflammation and instability. Copyright © 2012 Mosby, Inc. All rights reserved.

  6. Characterization of the volatile profile of Antarctic bacteria by using solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Romoli, Riccardo; Papaleo, Maria Cristiana; de Pascale, Donatella; Tutino, Maria Luisa; Michaud, Luigi; LoGiudice, Angelina; Fani, Renato; Bartolucci, Gianluca

    2011-10-01

    Bacteria belonging to the Burkholderia cepacia complex (Bcc) are significant pathogens in Cystic Fibrosis (CF) patients and are resistant to a plethora of antibiotics. In this context, microorganisms from Antarctica are interesting because they produce antimicrobial compounds inhibiting the growth of other bacteria. This is particularly true for bacteria isolated from Antarctic sponges. The aim of this work was to characterize a set of Antarctic bacteria for their ability to produce new natural drugs that could be exploited in the control of infections in CF patients by Bcc bacteria. Hence, 11 bacterial strains allocated to different genera (e.g., Pseudoalteromonas, Arthrobacter and Psychrobacter) were tested for their ability to inhibit the growth of 21 Bcc strains and some other human pathogens. All these bacteria completely inhibited the growth of most, if not all, Bcc strains, suggesting a highly specific activity toward Bcc strains. Experimental evidences showed that the antimicrobial compounds are small volatile organic compounds, and are constitutively produced via an unknown pathway. The microbial volatile profile was obtained by SPME-GC-MS within the m/z interval of 40-450. Solid phase micro extraction technique affords the possibility to extract the volatile compounds in head space with a minimal sample perturbation. Principal component analysis and successive cluster discriminant analysis was applied to evaluate the relationships among the volatile organic compounds with the aim of classifying the microorganisms by their volatile profile. These data highlight the potentiality of Antarctic bacteria as novel sources of antibacterial substances to face Bcc infections in CF patients. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Comprehensive Training Curricula for Minimally Invasive Surgery

    PubMed Central

    Palter, Vanessa N

    2011-01-01

    Background The unique skill set required for minimally invasive surgery has in part contributed to a certain portion of surgical residency training transitioning from the operating room to the surgical skills laboratory. Simulation lends itself well as a method to shorten the learning curve for minimally invasive surgery by allowing trainees to practice the unique motor skills required for this type of surgery in a safe, structured environment. Although a significant amount of important work has been done to validate simulators as viable systems for teaching technical skills outside the operating room, the next step is to integrate simulation training into a comprehensive curriculum. Objectives This narrative review aims to synthesize the evidence and educational theories underlining curricula development for technical skills both in a broad context and specifically as it pertains to minimally invasive surgery. Findings The review highlights the critical aspects of simulation training, such as the effective provision of feedback, deliberate practice, training to proficiency, the opportunity to practice at varying levels of difficulty, and the inclusion of both cognitive teaching and hands-on training. In addition, frameworks for integrating simulation training into a comprehensive curriculum are described. Finally, existing curricula on both laparoscopic box trainers and virtual reality simulators are critically evaluated. PMID:22942951

  8. [Immobilization of introduced bacteria and degradation of pyrene and benzo(alpha) pyrene in soil by immobilized bacteria].

    PubMed

    Wang, Xin; Li, Peijun; Song, Shouzhi; Zhong, Yong; Zhang, Hui; Verkhozina, E V

    2006-11-01

    In this study, introduced bacteria were applied in the bioremediation of pyrene and benzo (alpha) pyrene in organic pollutants-contaminated soils, aimed to test whether it was feasible to introduce bacteria to environmental engineering. Three introduced bacteria were immobilized separately or together to degrade the pyrene and benzo (alpha) pyrene in soil, taking dissociated bacteria as the control, and comparing with three indigenous bacteria. The results showed that immobilized introduced bacteria, either single or mixed, had higher degradation efficiency than dissociated bacteria. Compared with indigenous bacteria, some introduced bacteria had predominance to some degree. The introduced bacteria-mixture had better degradation efficiency after being immobilized. The degradation rate of pyrene and benzo(alpha) pyrene after treated with immobilized bacteria-( B61-B67)-mixture for 96 hours was 43.49% and 38.55%, respectively.

  9. Pathogenic mechanisms of intracellular bacteria.

    PubMed

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  10. SAR11 bacteria linked to ocean anoxia and nitrogen loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N 2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here in this paper, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductasesmore » (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. Finally, these results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.« less

  11. SAR11 bacteria linked to ocean anoxia and nitrogen loss

    DOE PAGES

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; ...

    2016-08-03

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N 2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here in this paper, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductasesmore » (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. Finally, these results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.« less

  12. Plant growth-promoting bacteria as inoculants in agricultural soils

    PubMed Central

    de Souza, Rocheli; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2015-01-01

    Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  13. Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria

    PubMed Central

    McTaggart, Tami L.; Beck, David A. C.; Setboonsarng, Usanisa; Shapiro, Nicole; Woyke, Tanja; Lidstrom, Mary E.; Kalyuzhnaya, Marina G.; Chistoserdova, Ludmila

    2015-01-01

    Gram-positive methylotrophic bacteria have been known for a long period of time, some serving as model organisms for characterizing the specific details of methylotrophy pathways/enzymes within this group. However, genome-based knowledge of methylotrophy within this group has been so far limited to a single species, Bacillus methanolicus (Firmicutes). The paucity of whole-genome data for Gram-positive methylotrophs limits our global understanding of methylotrophy within this group, including their roles in specific biogeochemical cycles, as well as their biotechnological potential. Here, we describe the isolation of seven novel strains of Gram-positive methylotrophs that include two strains of Bacillus and five representatives of Actinobacteria classified within two genera, Arthrobacter and Mycobacterium. We report whole-genome sequences for these isolates and present comparative analysis of the methylotrophy functional modules within these genomes. The genomic sequences of these seven novel organisms, all capable of growth on methylated amines, present an important reference dataset for understanding the genomic basis of methylotrophy in Gram-positive methylotrophic bacteria. This study is a major contribution to the field of methylotrophy, aimed at closing the gap in the genomic knowledge of methylotrophy within this diverse group of bacteria. PMID:27682081

  14. Biofilms Formed by Gram-Negative Bacteria Undergo Increased Lipid A Palmitoylation, Enhancing In Vivo Survival

    PubMed Central

    Chalabaev, Sabina; Chauhan, Ashwini; Novikov, Alexey; Iyer, Pavithra; Szczesny, Magdalena; Beloin, Christophe; Caroff, Martine

    2014-01-01

    ABSTRACT Bacterial biofilm communities are associated with profound physiological changes that lead to novel properties compared to the properties of individual (planktonic) bacteria. The study of biofilm-associated phenotypes is an essential step toward control of deleterious effects of pathogenic biofilms. Here we investigated lipopolysaccharide (LPS) structural modifications in Escherichia coli biofilm bacteria, and we showed that all tested commensal and pathogenic E. coli biofilm bacteria display LPS modifications corresponding to an increased level of incorporation of palmitate acyl chain (palmitoylation) into lipid A compared to planktonic bacteria. Genetic analysis showed that lipid A palmitoylation in biofilms is mediated by the PagP enzyme, which is regulated by the histone-like protein repressor H-NS and the SlyA regulator. While lipid A palmitoylation does not influence bacterial adhesion, it weakens inflammatory response and enhances resistance to some antimicrobial peptides. Moreover, we showed that lipid A palmitoylation increases in vivo survival of biofilm bacteria in a clinically relevant model of catheter infection, potentially contributing to biofilm tolerance to host immune defenses. The widespread occurrence of increased lipid A palmitoylation in biofilms formed by all tested bacteria suggests that it constitutes a new biofilm-associated phenotype in Gram-negative bacteria. PMID:25139899

  15. Using wavelength-normalized optical spectroscopy to improve the accuracy of bacteria growth rate quantification

    NASA Astrophysics Data System (ADS)

    McBirney, Samantha E.; Trinh, Kristy; Wong-Beringer, Annie; Armani, Andrea M.

    2017-02-01

    One of the fundamental analytical measurements performed in microbiology is monitoring and characterizing cell concentration in culture media. Measurement error will give rise to reproducibility problems in a wide range of applications, from biomanufacturing to basic research. Therefore, it is critical that the generated results are consistent. Single wavelength optical density (OD) measurements have become the preferred approach. Here, we compare the conventional OD600 technique with a multi-wavelength normalized scattering optical spectroscopy method to measure the growth rates of Pseudomonas aeruginosa and Staphylococcus aureus, two of the leading nosocomial pathogens with proven abilities to develop resistance. The multi-wavelength normalization process minimizes the impact of bacteria byproducts and environmental noise on the signal, thereby accurately quantifying growth rates with high fidelity at low concentrations. In contrast, due to poor absorbance and scattering at 600 nm, the classic OD600 measurement method is able to detect bacteria but cannot quantify the growth rate reliably. Our wavelength-normalization protocol to detect bacteria growth rates can be readily and easily adopted by research labs, given that it only requires the use of a standard spectrophotometer and implementation of straightforward data analysis. Measuring and monitoring bacteria growth rates play a critical role in a wide range of settings, spanning from therapeutic design and development to diagnostics and disease prevention. Having a full understanding of the growth cycles of bacteria known to cause severe infections and diseases will lead to a better understanding of the pathogenesis of these illnesses, leading to better treatment and, ultimately, the development of a cure.

  16. Inferring the Minimal Genome of Mesoplasma florum by Comparative Genomics and Transposon Mutagenesis.

    PubMed

    Baby, Vincent; Lachance, Jean-Christophe; Gagnon, Jules; Lucier, Jean-François; Matteau, Dominick; Knight, Tom; Rodrigue, Sébastien

    2018-01-01

    The creation and comparison of minimal genomes will help better define the most fundamental mechanisms supporting life. Mesoplasma florum is a near-minimal, fast-growing, nonpathogenic bacterium potentially amenable to genome reduction efforts. In a comparative genomic study of 13 M. florum strains, including 11 newly sequenced genomes, we have identified the core genome and open pangenome of this species. Our results show that all of the strains have approximately 80% of their gene content in common. Of the remaining 20%, 17% of the genes were found in multiple strains and 3% were unique to any given strain. On the basis of random transposon mutagenesis, we also estimated that ~290 out of 720 genes are essential for M. florum L1 in rich medium. We next evaluated different genome reduction scenarios for M. florum L1 by using gene conservation and essentiality data, as well as comparisons with the first working approximation of a minimal organism, Mycoplasma mycoides JCVI-syn3.0. Our results suggest that 409 of the 473 M. mycoides JCVI-syn3.0 genes have orthologs in M. florum L1. Conversely, 57 putatively essential M. florum L1 genes have no homolog in M. mycoides JCVI-syn3.0. This suggests differences in minimal genome compositions, even for these evolutionarily closely related bacteria. IMPORTANCE The last years have witnessed the development of whole-genome cloning and transplantation methods and the complete synthesis of entire chromosomes. Recently, the first minimal cell, Mycoplasma mycoides JCVI-syn3.0, was created. Despite these milestone achievements, several questions remain to be answered. For example, is the composition of minimal genomes virtually identical in phylogenetically related species? On the basis of comparative genomics and transposon mutagenesis, we investigated this question by using an alternative model, Mesoplasma florum, that is also amenable to genome reduction efforts. Our results suggest that the creation of additional minimal

  17. The population dynamics of bacteria, phage and RM Systems

    NASA Astrophysics Data System (ADS)

    Guet, Calin; Levin, Bruce; Pleska, Maros

    Viruses drive and mediate bacterial evolution as parasites and vectors of horizontal gene transfer, respectively. Temperate bacteriophages, defined by the ability to lysogenize a fraction of hosts and to transmit horizontally as well as vertically in the form of prophages, frequently carry genes that increase fitness or contribute to bacterial pathogenicity. Restriction-modification (RM) systems, which are widely diverse and ubiquitous among bacteria, can prevent infections leading to lysis, but their effect on lysogeny is not clear. We show that RM systems prevent lytic and lysogenic infections to the same extent and therefore represent a molecular barrier to prophage acquisition. Surprisingly, we find that this negative effect can be overcome and even reversed at the population level, as a consequence of dynamic interactions between viruses, hosts and RM systems. Thus the population dynamics of bacteria carrying RM systems impacts bacterial genome-wide evolution. .

  18. Development of total maximum daily loads for bacteria impaired watershed using the comprehensive hydrology and water quality simulation model.

    PubMed

    Kim, Sang M; Brannan, Kevin M; Zeckoski, Rebecca W; Benham, Brian L

    2014-01-01

    The objective of this study was to develop bacteria total maximum daily loads (TMDLs) for the Hardware River watershed in the Commonwealth of Virginia, USA. The TMDL program is an integrated watershed management approach required by the Clean Water Act. The TMDLs were developed to meet Virginia's water quality standard for bacteria at the time, which stated that the calendar-month geometric mean concentration of Escherichia coli should not exceed 126 cfu/100 mL, and that no single sample should exceed a concentration of 235 cfu/100 mL. The bacteria impairment TMDLs were developed using the Hydrological Simulation Program-FORTRAN (HSPF). The hydrology and water quality components of HSPF were calibrated and validated using data from the Hardware River watershed to ensure that the model adequately simulated runoff and bacteria concentrations. The calibrated and validated HSPF model was used to estimate the contributions from the various bacteria sources in the Hardware River watershed to the in-stream concentration. Bacteria loads were estimated through an extensive source characterization process. Simulation results for existing conditions indicated that the majority of the bacteria came from livestock and wildlife direct deposits and pervious lands. Different source reduction scenarios were evaluated to identify scenarios that meet both the geometric mean and single sample maximum E. coli criteria with zero violations. The resulting scenarios required extreme and impractical reductions from livestock and wildlife sources. Results from studies similar to this across Virginia partially contributed to a reconsideration of the standard's applicability to TMDL development.

  19. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges.

    PubMed

    Bhattacharjee, Rumpa Biswas; Singh, Aqbal; Mukhopadhyay, S N

    2008-08-01

    The potential of nitrogen-fixing (NF) bacteria to form a symbiotic relationship with leguminous plants and fix atmospheric nitrogen has been exploited in the field to meet the nitrogen requirement of the latter. This phenomenon provides an alternative to the use of the nitrogenous fertiliser whose excessive and imbalanced use over the decades has contributed to green house emission (N2O) and underground water leaching. Recently, it was observed that non-leguminous plants like rice, sugarcane, wheat and maize form an extended niche for various species of NF bacteria. These bacteria thrive within the plant, successfully colonizing roots, stems and leaves. During the association, the invading bacteria benefit the acquired host with a marked increase in plant growth, vigor and yield. With increasing population, the demand of non-leguminous plant products is growing. In this regard, the richness of NF flora within non-leguminous plants and extent of their interaction with the host definitely shows a ray of hope in developing an ecofriendly alternative to the nitrogenous fertilisers. In this review, we have discussed the association of NF bacteria with various non-leguminous plants emphasizing on their potential to promote host plant growth and yield. In addition, plant growth-promoting traits observed in these NF bacteria and their mode of interaction with the host plant have been described briefly.

  20. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria.

    PubMed

    Blaustein, Ryan A; Shelton, Daniel R; Van Kessel, Jo Ann S; Karns, Jeffrey S; Stocker, Matthew D; Pachepsky, Yakov A

    2016-01-01

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms.

  1. [Darwin and bacteria].

    PubMed

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  2. Light controlled 3D micromotors powered by bacteria

    NASA Astrophysics Data System (ADS)

    Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; di Leonardo, Roberto

    2017-06-01

    Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed.

  3. Light controlled 3D micromotors powered by bacteria

    PubMed Central

    Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; Di Leonardo, Roberto

    2017-01-01

    Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed. PMID:28656975

  4. Nitrogen-fixing bacteria in Eucalyptus globulus plantations.

    PubMed

    da Silva, Marliane de Cássia Soares; Paula, Thiago de Almeida; Moreira, Bruno Coutinho; Carolino, Manuela; Cruz, Cristina; Bazzolli, Denise Mara Soares; Silva, Cynthia Canedo; Kasuya, Maria Catarina Megumi

    2014-01-01

    Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover.

  5. Nitrogen-Fixing Bacteria in Eucalyptus globulus Plantations

    PubMed Central

    da Silva, Marliane de Cássia Soares; Paula, Thiago de Almeida; Moreira, Bruno Coutinho; Carolino, Manuela; Cruz, Cristina; Bazzolli, Denise Mara Soares; Silva, Cynthia Canedo; Kasuya, Maria Catarina Megumi

    2014-01-01

    Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover. PMID:25340502

  6. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    DOE PAGES

    Arandia-Gorostidi, Nestor; Weber, Peter K.; Alonso-Sáez, Laura; ...

    2016-12-06

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs bymore » 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Lastly, our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.« less

  7. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arandia-Gorostidi, Nestor; Weber, Peter K.; Alonso-Sáez, Laura

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs bymore » 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Lastly, our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.« less

  8. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  9. The transformation from anammox granules to deammonification granules in micro-aerobic system by facilitating indigenous ammonia oxidizing bacteria.

    PubMed

    Wang, Xiaolong; Gao, Dawen

    2018-02-01

    Granular deammonification process is a good way to retain aerobic and anaerobic ammonia oxidizing bacteria (AOB and anammox bacteria) and exhaust flocculent nitrite oxidizing bacteria (NOB). In this study, to facilitate indigenous AOB growth on anammox granules, by stepwise reducing influent nitrite, anammox granules were effectively transformed into deammonification granules in a micro-aerobic EGSB in 100 days. Total nitrogen removal efficiency of 90% and nitrogen removal rate of 2.3 g N/L/d were reached at stable deammonification stage. High influent FA and limited oxygen supply contributed suppression for Nitrospira-like NOB. In transition stages, Proteobacteria and Chloroflexi were always dominated. Anammox abundance decreased, while AOB abundance grew fast. Anammox bacteria and AOB were dominated by Brocadia fulgida and Nitrosomonas europaea, respectively. Denitrification activity and bacteria existed although without influent organic. The final AOB abundance was about 4.55-13.8 times more than anammox bacteria abundance, with almost equal potential activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery.

    PubMed

    Uribe, Juan S; Vale, Fernando L; Dakwar, Elias

    2010-12-15

    Literature review. The objective of this article is to examine current intraoperative electromyography (EMG) neurophysiologic monitoring methods and their application in minimally invasive techniques. We will also discuss the recent application of EMG and its anatomic implications to the minimally invasive lateral transpsoas approach to the spine. Minimally invasive techniques require that the same goals of surgery be achieved, with the hope of decreased morbidity to the patient. Unlike standard open procedures, direct visualization of the anatomy is decreased. To increase the safety of minimally invasive spine surgery, neurophysiological monitoring techniques have been developed. Review of the literature was performed using the National Center for Biotechnology Information databases using PUBMED/MEDLINE. All articles in the English language discussing the use of intraoperative EMG monitoring and minimally invasive spine surgery were reviewed. The role of EMG monitoring in special reference to the minimally invasive lateral transpsoas approach is also described. In total, 76 articles were identified that discussed the role of neuromonitoring in spine surgery. The majority of articles on EMG and spine surgery discuss the use of intraoperative neurophysiological monitoring (IOM) for safe and accurate pedicle screw placement. In general, there is a paucity of literature that pertains to intraoperative EMG neuromonitoring and minimally invasive spine surgery. Recently, EMG has been used during minimally invasive lateral transpsoas approach to the lumbar spine for interbody fusion. The addition of EMG to the lateral approach has contributed to decrease the complication rate from 30% to less than 1%. In minimally invasive approaches to the spine, the use of EMG IOM might provide additional safety, such as percutaneous pedicle screw placement, where visualization is limited compared with conventional open procedures. In addition to knowledge of the anatomy and image

  11. UTILIZATION OF DOC FROM SEAGRASS RHIZOMES BY SEDIMENT BACTERIA: 13C TRACER EXPERIMENTS AND MODELLING

    EPA Science Inventory

    Seagrasses are widely recognized as contributing to net ecosystem primary production and to supporting heterotrophy in estuarine systems. We investigated the linkage between seagrass (Thalassia testudinum) rhizosphere carbon exudation and sediment bacteria. In microcosms, we si...

  12. Cytotoxicity and the effect of cationic peptide fragments against cariogenic bacteria under planktonic and biofilm conditions.

    PubMed

    Kreling, Paula Fernanda; Aida, Kelly Limi; Massunari, Loiane; Caiaffa, Karina Sampaio; Percinoto, Célio; Bedran, Telma Blanca Lombardo; Spolidorio, Denise Madalena Palomari; Abuna, Gabriel Flores; Cilli, Eduardo Maffud; Duque, Cristiane

    2016-10-01

    This study evaluated the cytotoxicity and effect of fragments derived from three oral cationic peptides (CP): LL-37, D6-17 and D1-23 against cariogenic bacteria under planktonic and biofilm conditions. For cytotoxicity analysis, two epithelial cell lines were used. The minimum inhibitory concentration and the minimal bactericidal concentration were determined for the CP fragments and the control (chlorhexidine-CHX) against cariogenic bacteria. The fractional inhibitory concentration was obtained for the combinations of CP fragments on Streptococcus mutans. Biofilm assays were conducted with the best antimicrobial CP fragment against S. mutans. The results indicated that D6-17 was not cytotoxic. D1-23, LL-37 and CHX were not cytotoxic in low concentrations. D1-23 presented the best bactericidal activity against S. mutans, S. mitis and S. salivarius. Combinations of CP fragments did not show a synergic effect. D1-23 presented a higher activity against S. mutans biofilm than CHX. It was concluded that D1-23 showed a substantial effect against cariogenic bacteria and low cytotoxicity.

  13. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields

    PubMed Central

    Novickij, Vitalij; Stanevičienė, Ramunė; Vepštaitė-Monstavičė, Iglė; Gruškienė, Rūta; Krivorotova, Tatjana; Sereikaitė, Jolanta; Novickij, Jurij; Servienė, Elena

    2018-01-01

    Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs) (11–13 nm) capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm-1 electric field pulses (100 μs × 8) separately and in combination with two pulsed magnetic field protocols: (1) high dB/dt 3.3 T × 50 and (2) 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high dB/dt pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections. PMID:29375537

  14. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields.

    PubMed

    Novickij, Vitalij; Stanevičienė, Ramunė; Vepštaitė-Monstavičė, Iglė; Gruškienė, Rūta; Krivorotova, Tatjana; Sereikaitė, Jolanta; Novickij, Jurij; Servienė, Elena

    2017-01-01

    Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs) (11-13 nm) capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm -1 electric field pulses (100 μs × 8) separately and in combination with two pulsed magnetic field protocols: (1) high d B /d t 3.3 T × 50 and (2) 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high d B /d t pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections.

  15. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  16. Combined antioxidant effects of Neem extract, bacteria, red blood cells and Lysozyme: possible relation to periodontal disease.

    PubMed

    Heyman, Leali; Houri-Haddad, Yael; Heyman, Samuel N; Ginsburg, Isaac; Gleitman, Yossi; Feuerstein, Osnat

    2017-08-10

    The common usage of chewing sticks prepared from Neem tree (Azadirachta indica) in India suggests its potential efficacy in periodontal diseases. The objective of this study is to explore the antibacterial effects of Neem leaf extract on the periodontophatic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum, and its antioxidant capacities alone and in combination with bacteria and polycationic peptides that may be at the site of inflammation. Neem leaf extract was prepared by ethanol extraction. The growth kinetics of P. gingivalis and F. nucleatum under anaerobic conditions in the presence of Neem leaf extract were measured. Broth microdilution test was used to determine the Minimal Inhibitory Concentration (MIC) of Neem leaf extract against each bacterial strain. The effect of Neem leaf extract on the coaggregation of the bacteria was assessed by a visual semi-quantitative assay. The antioxidant capacities of Neem leaf extract alone and in combination with bacteria, with the addition of red blood cells or the polycationic peptides chlorhexidine and lisozyme, were determined using a chemiluminescence assay. Neem leaf extract showed prominent dose-dependent antibacterial activity against P. gingivalis, however, had no effect on the growth of F. nucleatum nor on the coaggregation of the two bacteria. Yet, it showed intense antioxidant activity, which was amplified following adherence to bacteria and with the addition of red blood cells or the polycationic peptides. Neem leaf extract, containing polyphenols that adhere to oral surfaces, have the potential to provide long-lasting antibacterial as well as synergic antioxidant activities when in complex with bacteria, red blood cells and lisozyme. Thus, it might be especially effective in periodontal diseases.

  17. Distribution and diversity of anaerobic ammonium oxidation (anammox) bacteria in the sediment of a eutrophic freshwater lake, Lake Kitaura, Japan.

    PubMed

    Yoshinaga, Ikuo; Amano, Teruki; Yamagishi, Takao; Okada, Kentaro; Ueda, Shingo; Sako, Yoshihiko; Suwa, Yuichi

    2011-01-01

    Although the emission of N(2) via anaerobic ammonium oxidation (anammox) is a key process in the elimination of nitrogenous compounds from aquatic environments, little information is available regarding its significance and the relevant microorganisms (anammox bacteria) in eutrophic freshwater lakes. In the present study, the anammox bacteria in the sediment of a eutrophic lake in Japan, Lake Kitaura, were examined using a (15)N-tracer technique to measure their potential anammox activity. Potential anammox activity was localized to the northern region of the lake where a stable supply of both NH(4)(+) and NO(3)(-) existed in the sediment. These results suggest the contribution of anammox bacteria to the total emission of N(2) from sediment in this eutrophic lake to not be negligible. Moreover, selective PCR successfully amplified anammox bacteria-related (Brocadiales-related) 16S rRNA genes from sediment samples in which potential anammox activity was observed. The clone libraries consisted of diverse phylotypes except the genus "Scalindua"-lineages, and the lineages of genus "Brocadia" were dominantly recovered, followed by the genus "Kuenenia"-lineages. Most of them, however, were novel and phylogenetically distinguishable from known Brocadiales species. A unique population of anammox bacteria inhabits and potentially contributes to the emission of N(2) from Lake Kitaura.

  18. Effects of tetracycline on antibiotic resistance and removal of fecal indicator bacteria in aerated and unaerated leachfield mesocosms.

    PubMed

    Atoyan, Janet A; Patenaude, Erika L; Potts, David A; Amador, José A

    2007-09-01

    Antibiotics can be present in low concentrations in domestic wastewater, but little is known about their effect on bacteria in onsite wastewater treatment systems. Mesocosms, consisting of soil-filled lysimeters representing the leachfield of a septic system under aerated (AIR) and unaerated (LEACH) conditions, were used to study the effects of tetracycline addition (5 mg L(-1)) to septic tank effluent on tetracycline resistance in the fecal indicator bacteria Escherichia coli and fecal streptococci, and on their removal. The mesocosms were dosed with antibiotic for 10 days, and effects monitored for 52 days. The fraction of resistant bacteria in mesocosm drainage water relative to that in septic tank effluent, GammaRes, for E. coli ranged from 0 to 0.66 in the AIR treatment and from 0 to 3.32 in the LEACH treatment. For fecal streptococci, GammaRes ranged from 0 to 0.41 and from 0.63 to 1.06 in the AIR and LEACH treatments, respectively. No significant differences in antibiotic resistance of fecal indicator bacteria were observed among sampling dates in soil or water from either treatment. Tetracycline had no significant effect on removal of fecal indicator bacteria, which ranged from 99.9 to 100% for E. coli and from 95.9 to 100% for fecal streptococci. Our results suggest that short-term addition of tetracycline at environmentally-relevant concentrations is likely to have minimal consequences on pathogen removal from wastewater and development of antibiotic resistance among pathogenic bacteria in leachfield soil.

  19. Esophagectomy - minimally invasive

    MedlinePlus

    Minimally invasive esophagectomy; Robotic esophagectomy; Removal of the esophagus - minimally invasive; Achalasia - esophagectomy; Barrett esophagus - esophagectomy; Esophageal cancer - esophagectomy - laparoscopic; Cancer of the ...

  20. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice

    PubMed Central

    Chen, Lei; Brar, Manreetpal S.; Leung, Frederick C. C.; Hsiao, W. L. Wendy

    2016-01-01

    Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and 16S rRNA gene pyrosequencing. Study showed that GpS treatment significantly reduced the number of intestinal polyps in a preventive mode. More importantly, GpS feeding strikingly reduced the sulfate-reducing bacteria lineage, which are known to produce hydrogen sulfide and contribute to damage the intestinal epithelium or even promote cancer progression. Meanwhile, GpS also boosted the beneficial microbes. In the gut barrier of the ApcMin/+ mice, GpS treatment increased Paneth and goblet cells, up-regulated E-cadherin and down-regulated N-cadherin. In addition, GpS decreased the pro-oncogenic β-catenin, p-Src and the p-STAT3. Furthermore, GpS might also improve the inflamed gut epithelium of the ApcMin/+ mice by upregulating the anti-inflammatory cytokine IL-4, while downregulating pro-inflammatory cytokines TNF-β, IL-1β and IL-18. Intriguingly, GpS markedly stimulated M2 and suppressed M1 macrophage markers, indicating that GpS altered mucosal cytokine profile in favor of the M1 to M2 macrophages switching, facilitating intestinal tissue repair. In conclusion, GpS might reverse the host's inflammatory phenotype by increasing beneficial bacteria, decreasing sulfate-reducing bacteria, and alleviating intestinal inflammatory gut environment, which might contribute to its cancer preventive effects. PMID:27121311

  1. Lipopolysaccharides in diazotrophic bacteria.

    PubMed

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  2. Lipopolysaccharides in diazotrophic bacteria

    PubMed Central

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure. PMID:25232535

  3. Bacteria-Targeting Nanoparticles for Managing Infections

    NASA Astrophysics Data System (ADS)

    Radovic-Moreno, Aleksandar Filip

    Bacterial infections continue to be a significant concern particularly in healthcare settings and in the developing world. Current challenges include the increasing spread of drug resistant (DR) organisms, the side effects of antibiotic therapy, the negative consequences of clearing the commensal bacterial flora, and difficulties in developing prophylactic vaccines. This thesis was an investigation of the potential of a class of polymeric nanoparticles (NP) to contribute to the management of bacterial infections. More specifically, steps were taken towards using these NPs (1) to achieve greater spatiotemporal control over drug therapy by more targeted antibiotic delivery to bacteria, and (2) to develop a prophylactic vaccine formulation against the common bacterial sexually transmitted disease (STD) caused by Chlamydia trachomatis. In the first part, we synthesized polymeric NPs containing poly(lactic-co-glycolic acid)-block-poly(L-histidine)-block-poly(ethylene glycol) (PLGA-PLH-PEG). We show that these NPs are able to bind to bacteria under model acidic infection conditions and are able to encapsulate and deliver vancomycin to inhibit the growth of Staphylococcus aureus bacteria in vitro. Further work showed that the PLGA-PLH-PEG-based NPs demonstrated the potential for competition for binding bacteria at a site of infection from soluble protein and model phagocytic and tissue-resident cells in a NP composition dependent manner. The NPs demonstrated low toxicity in vitro, were well tolerated by mice in vivo, and circulated in the blood on timescales comparable to control PLGA-PEG NPs. In the second part, we used PLGA-PLH-PEG-based NPs to design a prophylactic vaccine against the obligate intracellular bacterium Chlamydia trachomatis, the most common cause of bacterial STD in the world. Currently, no vaccines against this pathogen are approved for use in humans. We first formulated NPs encapsulating the TLR7 agonist R848 conjugated to poly(lactic acid) (R848-PLA

  4. Halotolerance and effect of salt on hydrophobicity in hydrocarbon-degrading bacteria.

    PubMed

    Longang, Adégilns; Buck, Chris; Kirkwood, Kathlyn M

    2016-01-01

    Hydrocarbon-contaminated environments often also experience co-contamination with elevated levels of salt. This paper investigates the occurrence of halotolerance among several hydrocarbon-degrading bacteria, as an initial assessment of the importance of salt contamination to bioremediation strategies. Halotolerance was common, but not ubiquitous, among the 12 hydrocarbon-degrading bacteria tested, with many strains growing at up to 75 or 100 g NaCl L(-1) in rich medium. Greater sensitivity to elevated salt concentrations was observed among aromatics degraders compared to saturates degraders, and in defined medium compared to rich medium. Observed effects of high salt concentrations included increased lag times and decreased maximum growth. Many strains exhibited flocculation at elevated salt concentrations, but this did not correlate to any patterns in cell surface hydrophobicity, measured using the Bacterial Adhesion to Hydrocarbon assay. The occurrence of halotolerance in hydrocarbon-degrading bacteria suggests the potential for native microorganisms to contribute to the bioremediation of oil and salt co-contaminated sites, and indicates the need for a better understanding of the relationship between halotolerance and hydrocarbon biodegradation capabilities.

  5. Agriculture and food animals as a source of antimicrobial-resistant bacteria

    PubMed Central

    Economou, Vangelis; Gousia, Panagiota

    2015-01-01

    One of the major breakthroughs in the history of medicine is undoubtedly the discovery of antibiotics. Their use in animal husbandry and veterinary medicine has resulted in healthier and more productive farm animals, ensuring the welfare and health of both animals and humans. Unfortunately, from the first use of penicillin, the resistance countdown started to tick. Nowadays, the infections caused by antibiotic-resistant bacteria are increasing, and resistance to antibiotics is probably the major public health problem. Antibiotic use in farm animals has been criticized for contributing to the emergence of resistance. The use and misuse of antibiotics in farm animal settings as growth promoters or as nonspecific means of infection prevention and treatment has boosted antibiotic consumption and resistance among bacteria in the animal habitat. This reservoir of resistance can be transmitted directly or indirectly to humans through food consumption and direct or indirect contact. Resistant bacteria can cause serious health effects directly or via the transmission of the antibiotic resistance traits to pathogens, causing illnesses that are difficult to treat and that therefore have higher morbidity and mortality rates. In addition, the selection and proliferation of antibiotic-resistant strains can be disseminated to the environment via animal waste, enhancing the resistance reservoir that exists in the environmental microbiome. In this review, an effort is made to highlight the various factors that contribute to the emergence of antibiotic resistance in farm animals and to provide some insights into possible solutions to this major health issue. PMID:25878509

  6. Particle-Associated Differ from Free-Living Bacteria in Surface Waters of the Baltic Sea

    PubMed Central

    Rieck, Angelika; Herlemann, Daniel P. R.; Jürgens, Klaus; Grossart, Hans-Peter

    2015-01-01

    Many studies on bacterial community composition (BCC) do not distinguish between particle-associated (PA) and free-living (FL) bacteria or neglect the PA fraction by pre-filtration removing most particles. Although temporal and spatial gradients in environmental variables are known to shape BCC, it remains unclear how and to what extent PA and FL bacterial diversity responds to such environmental changes. To elucidate the BCC of both bacterial fractions related to different environmental settings, we studied surface samples of three Baltic Sea stations (marine, mesohaline, and oligohaline) in two different seasons (summer and fall/winter). Amplicon sequencing of the 16 S rRNA gene revealed significant differences in BCC of both bacterial fractions among stations and seasons, with a particularly high number of PA operational taxonomic units (OTUs at genus-level) at the marine station in both seasons. “Shannon and Simpson indices” showed a higher diversity of PA than FL bacteria at the marine station in both seasons and at the oligohaline station in fall/winter. In general, a high fraction of bacterial OTUs was found exclusively in the PA fraction (52% of total OTUs). These findings indicate that PA bacteria significantly contribute to overall bacterial richness and that they differ from FL bacteria. Therefore, to gain a deeper understanding on diversity and dynamics of aquatic bacteria, PA and FL bacteria should be generally studied independently. PMID:26648911

  7. Sediment and Fecal Indicator Bacteria Loading in a Mixed Land Use Watershed: Contributions from Suspended and Bed Load Transport

    EPA Science Inventory

    Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen load...

  8. [Clinical usefulness of urine-formed elements' information obtained from bacteria detection by flow cytometry method that uses nucleic acid staining].

    PubMed

    Nakagawa, Hiroko; Yuno, Tomoji; Itho, Kiichi

    2009-03-01

    Recently, specific detection method for Bacteria, by flow cytometry method using nucleic acid staining, was developed as a function of automated urine formed elements analyzer for routine urine testing. Here, we performed a basic study on this bacteria analysis method. In addition, we also have a comparison among urine sediment analysis, urine Gram staining and urine quantitative cultivation, the conventional methods performed up to now. As a result, the bacteria analysis with flow cytometry method that uses nucleic acid staining was excellent in reproducibility, and higher sensitivity compared with microscopic urinary sediment analysis. Based on the ROC curve analysis, which settled urine culture method as standard, cut-off level of 120/microL was defined and its sensitivity = 85.7%, specificity = 88.2%. In the analysis of scattergram, accompanied with urine culture method, among 90% of rod positive samples, 80% of dots were appeared in the area of 30 degrees from axis X. In addition, one case even indicated that analysis of bacteria by flow cytometry and scattergram of time series analysis might be helpful to trace the progress of causative bacteria therefore the information supposed to be clinically significant. Reporting bacteria information with nucleic acid staining flow cytometry method is expected to contribute to a rapid diagnostics and treatment of urinary tract infections. Besides, the contribution to screening examination of microbiology and clinical chemistry, will deliver a more efficient solution to urine analysis.

  9. The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria.

    PubMed

    Dragoš, Anna; Kovács, Ákos T; Claessen, Dennis

    2017-08-07

    Amyloid fibrils play pivotal roles in all domains of life. In bacteria, these fibrillar structures are often part of an extracellular matrix that surrounds the producing organism and thereby provides protection to harsh environmental conditions. Here, we discuss the role of amyloid fibrils in the two distant Gram-positive bacteria, Streptomyces coelicolor and Bacillus subtilis . We describe how amyloid fibrils contribute to a multitude of developmental processes in each of these systems, including multicellular growth and community development. Despite this variety of tasks, we know surprisingly little about how their assembly is organized to fulfill all these roles.

  10. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria

    PubMed Central

    2013-01-01

    Background Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have dimensions in the sub-micron range, or to a larger range of growth conditions, a readily-fabricated device containing sub-micron features is required. Results Here we detail the fabrication of a versatile device with growth channels whose widths range from 0.3 μm to 0.8 μm. The device is fabricated using electron beam lithography, which provides excellent control over the shape and size of different growth channels and facilitates the rapid-prototyping of new designs. Features are successfully transferred first into silicon, and subsequently into the polydimethylsiloxane that forms the basis of the working microfluidic device. We demonstrate that the growth of sub-micron scale bacteria such as Lactococcus lactis or Escherichia coli cultured in minimal medium can be followed in such a device over several generations. Conclusions We have presented a detailed protocol based on electron beam fabrication together with specific dry etching procedures for the fabrication of a microfluidic device suited to study submicron-sized bacteria. We have demonstrated that both Gram-positive and Gram-negative bacteria can be successfully loaded and imaged over a number of generations in this device. Similar devices could potentially be used to study other submicron-sized organisms under conditions in which the height and shape of the growth channels are crucial to the experimental design. PMID:23575419

  11. Correlates of minimal dating.

    PubMed

    Leck, Kira

    2006-10-01

    Researchers have associated minimal dating with numerous factors. The present author tested shyness, introversion, physical attractiveness, performance evaluation, anxiety, social skill, social self-esteem, and loneliness to determine the nature of their relationships with 2 measures of self-reported minimal dating in a sample of 175 college students. For women, shyness, introversion, physical attractiveness, self-rated anxiety, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. For men, physical attractiveness, observer-rated social skill, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. The patterns of relationships were not identical for the 2 indicators of minimal dating, indicating the possibility that minimal dating is not a single construct as researchers previously believed. The present author discussed implications and suggestions for future researchers.

  12. INTRODUCTION TO A COMBINED MULTIPLE LINEAR REGRESSION AND ARMA MODELING APPROACH FOR BEACH BACTERIA PREDICTION

    EPA Science Inventory

    Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...

  13. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria

    PubMed Central

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2013-01-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data indicate an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological level, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may open the way to rationally develop an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. PMID:21707670

  14. Interkingdom Cross-Feeding of Ammonium from Marine Methylamine-Degrading Bacteria to the Diatom Phaeodactylum tricornutum.

    PubMed

    Suleiman, Marcel; Zecher, Karsten; Yücel, Onur; Jagmann, Nina; Philipp, Bodo

    2016-12-15

    Methylamines occur ubiquitously in the oceans and can serve as carbon, nitrogen, and energy sources for heterotrophic bacteria from different phylogenetic groups within the marine bacterioplankton. Diatoms, which constitute a large part of the marine phytoplankton, are believed to be incapable of using methylamines as a nitrogen source. As diatoms are typically associated with heterotrophic bacteria, the hypothesis came up that methylotrophic bacteria may provide ammonium to diatoms by degradation of methylamines. This hypothesis was investigated with the diatom Phaeodactylum tricornutum and monomethylamine (MMA) as the substrate. Bacteria supporting photoautotrophic growth of P. tricornutum with MMA as the sole nitrogen source could readily be isolated from seawater. Two strains, Donghicola sp. strain KarMa, which harbored genes for both monomethylamine dehydrogenase and the N methylglutamate pathway, and Methylophaga sp. strain M1, which catalyzed MMA oxidation by MMA dehydrogenase, were selected for further characterization. While strain M1 grew with MMA as the sole substrate, strain KarMa could utilize MMA as a nitrogen source only when, e.g., glucose was provided as a carbon source. With both strains, release of ammonium was detected during MMA utilization. In coculture with P. tricornutum, strain KarMa supported photoautotrophic growth with 2 mM MMA to the same extent as with the equimolar amount of NH 4 Cl. In coculture with strain M1, photoautotrophic growth of P. tricornutum was also supported, but to a much lower degree than by strain KarMa. This proof-of-principle study with a synthetic microbial community suggests that interkingdom cross-feeding of ammonium from methylamine-degrading bacteria is a contribution to phytoplankton growth which has been overlooked so far. Interactions between diatoms and heterotrophic bacteria are important for marine carbon cycling. In this study, a novel interaction is described. Bacteria able to degrade monomethylamine

  15. Interkingdom Cross-Feeding of Ammonium from Marine Methylamine-Degrading Bacteria to the Diatom Phaeodactylum tricornutum

    PubMed Central

    Suleiman, Marcel; Zecher, Karsten; Yücel, Onur; Jagmann, Nina

    2016-01-01

    ABSTRACT Methylamines occur ubiquitously in the oceans and can serve as carbon, nitrogen, and energy sources for heterotrophic bacteria from different phylogenetic groups within the marine bacterioplankton. Diatoms, which constitute a large part of the marine phytoplankton, are believed to be incapable of using methylamines as a nitrogen source. As diatoms are typically associated with heterotrophic bacteria, the hypothesis came up that methylotrophic bacteria may provide ammonium to diatoms by degradation of methylamines. This hypothesis was investigated with the diatom Phaeodactylum tricornutum and monomethylamine (MMA) as the substrate. Bacteria supporting photoautotrophic growth of P. tricornutum with MMA as the sole nitrogen source could readily be isolated from seawater. Two strains, Donghicola sp. strain KarMa, which harbored genes for both monomethylamine dehydrogenase and the N methylglutamate pathway, and Methylophaga sp. strain M1, which catalyzed MMA oxidation by MMA dehydrogenase, were selected for further characterization. While strain M1 grew with MMA as the sole substrate, strain KarMa could utilize MMA as a nitrogen source only when, e.g., glucose was provided as a carbon source. With both strains, release of ammonium was detected during MMA utilization. In coculture with P. tricornutum, strain KarMa supported photoautotrophic growth with 2 mM MMA to the same extent as with the equimolar amount of NH4Cl. In coculture with strain M1, photoautotrophic growth of P. tricornutum was also supported, but to a much lower degree than by strain KarMa. This proof-of-principle study with a synthetic microbial community suggests that interkingdom cross-feeding of ammonium from methylamine-degrading bacteria is a contribution to phytoplankton growth which has been overlooked so far. IMPORTANCE Interactions between diatoms and heterotrophic bacteria are important for marine carbon cycling. In this study, a novel interaction is described. Bacteria able to degrade

  16. Minimally invasive surgery fellowship graduates: Their demographics, practice patterns, and contributions.

    PubMed

    Park, Adrian E; Sutton, Erica R H; Heniford, B Todd

    2015-12-01

    Fellowship opportunities in minimally invasive surgery, bariatric, gastrointestinal, and hepatobiliary arose to address unmet training needs. The large cohort of non-Accreditation Council for Graduate Medical Education -accredited fellowship graduates (NACGMEG) has been difficult to track. In this, the largest survey of graduates to date, our goal was to characterize this unique group's demographics and professional activities. A total of 580 NACGMEG were surveyed covering 150 data points: demographics, practice patterns, academics, lifestyle, leadership, and maintenance of certification. Of 580 previous fellows, 234 responded. Demographics included: average age 37 years, 84% male, 75% in urban settings, 49% in purely academic practice, and 58% in practice <5 years. They averaged 337 operating room cases/year (approximately 400/year for private practice vs 300/year for academic). NACGMEG averaged 100 flexible endoscopies/year (61 esophagogastroduodenoscopies, 39 colon). In the past 24 months, 60% had submitted abstracts to a national meeting, and 54% submitted manuscripts to peer-reviewed journals. Subset analyses revealed relevant relationships. There was high satisfaction (98%) that their fellowship experience met expectations; 78% termed their fellowships, versus 50% for residencies, highly pertinent to their current practices. 63% of previous fellows occupy local leadership roles, and most engage in maintenance of certification activities. Fellowship alumnae appear to be productive contributors to American surgery. They are clinically and academically active, believe endoscopy is important, have adopted continuous learning, and most assume work leadership roles. The majority acknowledge their fellowship training as having met expectations and uniquely equipping them for their current practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria

    PubMed Central

    Chahales, Peter; Thanassi, David G.

    2015-01-01

    Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities such as biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hairlike fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections. PMID:26542038

  18. Smartphone-based rapid quantification of viable bacteria by single-cell microdroplet turbidity imaging.

    PubMed

    Cui, Xiaonan; Ren, Lihui; Shan, Yufei; Wang, Xixian; Yang, Zhenlong; Li, Chunyu; Xu, Jian; Ma, Bo

    2018-05-18

    Standard plate count (SPC) has been recognized as the golden standard for the quantification of viable bacteria. However, SPC usually takes one to several days to grow individual cells into a visible colony, which greatly hampers its application in rapid bacteria enumeration. Here we present a microdroplet turbidity imaging based digital standard plate count (dSPC) method to overcome this hurdle. Instead of cultivating on agar plates, bacteria are encapsulated in monodisperse microdroplets for single-cell cultivation. Proliferation of the encapsulated bacterial cell produced a detectable change in microdroplet turbidity, which allowed, after just a few bacterial doubling cycles (i.e., a few hours), enumeration of viable bacteria by visible-light imaging. Furthermore, a dSPC platform integrating a power-free droplet generator with smartphone-based turbidity imaging was established. As proof-of-concept demonstrations, a series of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Bacillus subtilis) samples were quantified via the smartphone dSPC accurately within 6 hours, representing a detection sensitivity of 100 CFU ml-1 and at least 3 times faster. In addition, Enterobacter sakazakii (E. sakazakii) in infant milk powder as a real sample was enumerated within 6 hours, in contrast to the 24 hours needed in traditional SPC. Results with high accuracy and reproducibility were achieved, with no difference in counts found between dSPC and SPC. By enabling label-free, rapid, portable and low-cost enumeration and cultivation of viable bacteria onsite, smartphone dSPC forms the basis for a temporally and geographically trackable network for surveying live microbes globally where every citizen with a cellphone can contribute anytime and anywhere.

  19. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks.

    PubMed

    Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein

    2015-12-01

    This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.

  20. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks

    PubMed Central

    AMANIDAZ, Nazak; ZAFARZADEH, Ali; MAHVI, Amir Hossein

    2015-01-01

    Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. Results: In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Conclusion: Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms. PMID:26811820

  1. Composition and Antibacterial Activity of the Essential Oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack against Pathogenic Oral Bacteria.

    PubMed

    Azizan, Nuramirah; Mohd Said, Shahida; Zainal Abidin, Zamirah; Jantan, Ibrahim

    2017-12-05

    In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis , Streptococcus mutans , Streptococcus mitis , Streptococcus salivarius , Aggregatibacter actinomycetemcomitans , Porphyromonas gingivalis and Fusobacterium nucleatum . Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea . The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains

  2. Increasingly minimal bias routing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bataineh, Abdulla; Court, Thomas; Roweth, Duncan

    2017-02-21

    A system and algorithm configured to generate diversity at the traffic source so that packets are uniformly distributed over all of the available paths, but to increase the likelihood of taking a minimal path with each hop the packet takes. This is achieved by configuring routing biases so as to prefer non-minimal paths at the injection point, but increasingly prefer minimal paths as the packet proceeds, referred to herein as Increasing Minimal Bias (IMB).

  3. Current status and emerging role of glutathione in food grade lactic acid bacteria

    PubMed Central

    2012-01-01

    Lactic acid bacteria (LAB) have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stress management in cell. Glutathione, a low molecular weight thiol antioxidant distributed widely in eukaryotes and Gram negative organisms, is present sporadically in Gram positive bacteria. However, new insights on its occurrence and role in the latter group are coming to light. Some LAB and closely related Gram positive organisms are proposed to possess glutathione synthesis and/or utilization machinery. Also, supplementation of glutathione in food grade LAB is gaining attention for its role in stress protection and as a nutrient and sulfur source. Owing to the immense benefits of glutathione, its release by probiotic bacteria could also find important applications in health improvement. This review presents our current understanding about the status of glutathione and its role as an exogenously added molecule in food grade LAB and closely related organisms. PMID:22920585

  4. Bacteria-surface interactions.

    PubMed

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  5. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  6. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    PubMed

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO 2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO 2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H 2 and other valuable compounds.

  8. Pathogenic psychrotolerant sporeformers: an emerging challenge for low-temperature storage of minimally processed foods.

    PubMed

    Markland, Sarah M; Farkas, Daniel F; Kniel, Kalmia E; Hoover, Dallas G

    2013-05-01

    Sporeforming bacteria are a significant problem in the food industry as they are ubiquitous in nature and capable of resisting inactivation by heat and chemical treatments designed to inactivate them. Beyond spoilage issues, psychrotolerant sporeformers are becoming increasingly recognized as a potential hazard given the ever-expanding demand for refrigerated processed foods with extended shelf-life. In these products, the sporeforming pathogens of concern are Bacillus cereus, Bacillus weihenstephanensis, and Clostridium botulinum type E. This review article examines the foods, conditions, and organisms responsible for the food safety issue caused by the germination and outgrowth of psychrotolerant sporeforming pathogens in minimally processed refrigerated foods.

  9. Diversity of predominant lactic acid bacteria associated with cocoa fermentation in Nigeria.

    PubMed

    Kostinek, Melanie; Ban-Koffi, Louis; Ottah-Atikpo, Margaret; Teniola, David; Schillinger, Ulrich; Holzapfel, Wilhelm H; Franz, Charles M A P

    2008-04-01

    The fermentation of cocoa relies on a complex succession of bacteria and filamentous fungi, all of which can have an impact on cocoa flavor. So far, few investigations have focused on the diversity of lactic acid bacteria involved in cocoa fermentation, and many earlier investigations did not rely on polyphasic taxonomical approaches, which take both phenotypic and genotypic characterization techniques into account. In our study, we characterized predominant lactic acid bacteria from cocoa fermentations in Nigeria, using a combination of phenotypic tests, repetitive extragenic palindromic PCR, and sequencing of the 16S rRNA gene of representative strains for accurate species identification. Thus, of a total of 193 lactic acid bacteria (LAB) strains isolated from common media used to cultivate LAB, 40 (20.7%) were heterofermentative and consisted of either L. brevis or L. fermentum strains. The majority of the isolates were homofermentative rods (110 strains; 57% of isolates) which were characterized as L. plantarum strains. The homofermentative cocci consisted predominantly of 35 (18.1% of isolates) Pediococcus acidilactici strains. Thus, the LAB populations derived from these media in this study were accurately described. This can contribute to the further assessment of the effect of common LAB strains on the flavor characteristics of fermenting cocoa in further studies.

  10. A novel approach for calculating shelf life of minimally processed vegetables.

    PubMed

    Corbo, Maria Rosaria; Del Nobile, Matteo Alessandro; Sinigaglia, Milena

    2006-01-15

    Shelf life of minimally processed vegetables is often calculated by using the kinetic parameters of Gompertz equation as modified by Zwietering et al. [Zwietering, M.H., Jongenburger, F.M., Roumbouts, M., van't Riet, K., 1990. Modelling of the bacterial growth curve. Applied and Environmental Microbiology 56, 1875-1881.] taking 5x10(7) CFU/g as the maximum acceptable contamination value consistent with acceptable quality of these products. As this method does not allow estimation of the standard errors of the shelf life, in this paper the modified Gompertz equation was re-parameterized to directly include the shelf life as a fitting parameter among the Gompertz parameters. Being the shelf life a fitting parameter is possible to determine its confidence interval by fitting the proposed equation to the experimental data. The goodness-of-fit of this new equation was tested by using mesophilic bacteria cell loads from different minimally processed vegetables (packaged fresh-cut lettuce, fennel and shredded carrots) that differed for some process operations or for package atmosphere. The new equation was able to describe the data well and to estimate the shelf life. The results obtained emphasize the importance of using the standard errors for the shelf life value to show significant differences among the samples.

  11. Minimally Invasive Dentistry

    MedlinePlus

    ... geta poker friv Home InfoBites Find an AGD Dentist Your Family's Oral Health About the AGD Dental ... structure. It focuses on prevention, remineralization, and minimal dentist intervention. Using scientific advances, minimally invasive dentistry allows ...

  12. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria

    PubMed Central

    Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596

  13. Modulation of Neutrophil Extracellular Trap and Reactive Oxygen Species Release by Periodontal Bacteria

    PubMed Central

    White, Phillipa C.; Milward, Michael R.; Cooper, Paul R.

    2017-01-01

    ABSTRACT Oral bacteria are the main trigger for the development of periodontitis, and some species are known to modulate neutrophil function. This study aimed to explore the release of neutrophil extracellular traps (NETs), associated antimicrobial proteins, and reactive oxygen species (ROS) in response to periodontal bacteria, as well as the underlying pathways. Isolated peripheral blood neutrophils were stimulated with 19 periodontal bacteria. NET and ROS release, as well as the expression of NET-bound antimicrobial proteins, elastase, myeloperoxidase, and cathepsin G, in response to these species was measured using fluorescence-based assays. NET and ROS release was monitored after the addition of NADP (NADPH) oxidase pathway modulators and inhibitors of Toll-like receptors (TLRs). Moreover, bacterial entrapment by NETs was visualized microscopically, and bacterial killing was assessed by bacterial culture. Certain microorganisms, e.g., Veillonella parvula and Streptococcus gordonii, stimulated higher levels of ROS and NET release than others. NETs were found to entrap, but not kill, all periodontal bacteria tested. NADPH oxidase pathway modulators decreased ROS production but not NET production in response to the bacteria. Interestingly, TLR inhibitors did not impact ROS and NET release. These data suggest that the variability in the neutrophil response toward different bacteria may contribute to the pathogenesis of periodontal diseases by mechanisms such as bacterial avoidance of host responses and activation of neutrophils. Moreover, our results indicate that bacterium-stimulated NET release may arise in part via NADPH oxidase-independent mechanisms. The role of TLR signaling in bacterium-induced ROS and NET release needs to be further elucidated. PMID:28947649

  14. Modulation of Neutrophil Extracellular Trap and Reactive Oxygen Species Release by Periodontal Bacteria.

    PubMed

    Hirschfeld, Josefine; White, Phillipa C; Milward, Michael R; Cooper, Paul R; Chapple, Iain L C

    2017-12-01

    Oral bacteria are the main trigger for the development of periodontitis, and some species are known to modulate neutrophil function. This study aimed to explore the release of neutrophil extracellular traps (NETs), associated antimicrobial proteins, and reactive oxygen species (ROS) in response to periodontal bacteria, as well as the underlying pathways. Isolated peripheral blood neutrophils were stimulated with 19 periodontal bacteria. NET and ROS release, as well as the expression of NET-bound antimicrobial proteins, elastase, myeloperoxidase, and cathepsin G, in response to these species was measured using fluorescence-based assays. NET and ROS release was monitored after the addition of NADP (NADPH) oxidase pathway modulators and inhibitors of Toll-like receptors (TLRs). Moreover, bacterial entrapment by NETs was visualized microscopically, and bacterial killing was assessed by bacterial culture. Certain microorganisms, e.g., Veillonella parvula and Streptococcus gordonii , stimulated higher levels of ROS and NET release than others. NETs were found to entrap, but not kill, all periodontal bacteria tested. NADPH oxidase pathway modulators decreased ROS production but not NET production in response to the bacteria. Interestingly, TLR inhibitors did not impact ROS and NET release. These data suggest that the variability in the neutrophil response toward different bacteria may contribute to the pathogenesis of periodontal diseases by mechanisms such as bacterial avoidance of host responses and activation of neutrophils. Moreover, our results indicate that bacterium-stimulated NET release may arise in part via NADPH oxidase-independent mechanisms. The role of TLR signaling in bacterium-induced ROS and NET release needs to be further elucidated. Copyright © 2017 American Society for Microbiology.

  15. Psl Produced by Mucoid Pseudomonas aeruginosa Contributes to the Establishment of Biofilms and Immune Evasion.

    PubMed

    Jones, Christopher J; Wozniak, Daniel J

    2017-06-20

    Despite years of research and clinical advances, chronic pulmonary infections with mucoid Pseudomonas aeruginosa remain the primary concern for cystic fibrosis patients. Much of the research on these strains has focused on the contributions of the polysaccharide alginate; however, it is becoming evident that the neutral polysaccharide Psl also contributes to biofilm formation and the maintenance of chronic infections. Here, we demonstrate that Psl produced by mucoid strains has significant roles in biofilm structure and evasion of immune effectors. Though mucoid strains produce less Psl than nonmucoid strains, the Psl that is produced is functional, since it mediates adhesion to human airway cells and epithelial cell death. Additionally, Psl protects mucoid bacteria from opsonization and killing by complement components in human serum. Psl production by mucoid strains stimulates a proinflammatory response in the murine lung, leading to reduced colonization. To determine the relevance of these data to clinical infections, we tested Psl production and biofilm formation of a panel of mucoid clinical isolates. We demonstrated three classes of mucoid isolates, those that produce Psl and form robust biofilms, those that did not produce Psl and have a poor biofilm phenotype, and exopolysaccharide (EPS) redundant strains. Collectively, these experimental results demonstrate that Psl contributes to the biofilm formation and immune evasion of many mucoid strains. This is a novel role for Psl in the establishment and maintenance of chronic pulmonary infections by mucoid strains. IMPORTANCE Cystic fibrosis patients are engaged in an ongoing battle against chronic lung infections by the bacterium Pseudomonas aeruginosa One key factor contributing to the maintenance of chronic infections is the conversion to a mucoid phenotype, where the bacteria produce copious amounts of the polysaccharide alginate. Once the bacteria become mucoid, existing treatments are poorly effective. We

  16. Evaluation of Practicing sustainable Industrial Solid Waste Minimization by Manufacturing Firms in Malaysia: Strengths and Weaknesses.

    PubMed

    Mallak, Shadi Kafi; Bakri Ishak, Mohd; Mohamed, Ahmad Fariz

    2016-09-13

    Malaysia is facing an increasing trend in industrial solid waste generation due to industrial development.Thus there is a paramount need in taking a serious action to move toward sustainable industrial waste management. The main aim of this study is to assess practicing solid waste minimization by manufacturing firms in Shah Alam industrial state, Malaysia. This paper presents a series of descriptive and inferential statistical analysis regarding the level and effects of practicing waste minimization methods, and seriousness of barriers preventing industries from practicing waste minimization methods. For this purpose the survey questions were designed such that both quantitative (questionnaire) and qualitative (semi-structures interview) data were collected concurrently. Analysis showed that, the majority of firms (92%) dispose their wastes rather than practice other sustainable waste management options. Also waste minimization methods such as segregation of wastes, on-site recycle and reuse, improve housekeeping and equipment modification were found to have significant contribution in waste reduction (p<0.05). Lack of expertise (M=3.50), lack of enough information (M= 3.54), lack of equipment modification (M= 3.16) and lack of specific waste minimization guidelines (M=3.49) have higher mean scores comparing with other barriers in different categories. These data were interpreted for elaborating of SWOT and TOWS matrix to highlight strengths, weaknesses, threats and opportunities. Accordingly, ten policies were recommended for improvement of practicing waste minimization by manufacturing firms as the main aim of this research. Implications This manuscript critically analysis waste minimization practices by manufacturing firms in Malaysia. Both qualitative and quantitative data collection and analysis were conducted to formulate SWOT and TOWS matrix in order to recommend policies and strategies for improvement of solid waste minimization by manufacturing industries

  17. Interactions between Diatoms and Bacteria

    PubMed Central

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  18. Nitrogen and Sulfur Requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on Cellulosic Substrates in Minimal Nutrient Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kridelbaugh, Donna M; Nelson, Josh C; Engle, Nancy L

    2013-01-01

    Growth media for cellulolytic Clostridium thermocellum and Caldicellulosiruptor bescii bacteria usually contain excess nutrients that would increase costs for consolidated bioprocessing for biofuel production and create a waste stream with nitrogen, sulfur and phosphate. C. thermocellum was grown on crystalline cellulose with varying concentrations of nitrogen and sulfur compounds, and growth rate and alcohol production response curves were determined. Both bacteria assimilated sulfate in the presence of ascorbate reductant, increasing the ratio of oxidized to reduced fermentation products. From these results, a low ionic strength, defined minimal nutrient medium with decreased nitrogen, sulfur, phosphate and vitamin supplements was developed formore » the fermentation of cellobiose, cellulose and acid-pretreated Populus. Carbon and electron balance calculations indicate the unidentified residual fermentation products must include highly reduced molecules. Both bacterial populations were maintained in co-cultures with substrates containing xylan or hemicellulose in defined medium with sulfate and basal vitamin supplements.« less

  19. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  20. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production.

    PubMed

    Hofmann, Andreas; Fischer, Doreen; Hartmann, Anton; Schmid, Michael

    2014-01-01

    In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system) or via agricultural soil amended with spiked organic fertilizers (soil system). In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH) was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4 × 10 CFU/ml in the axenic system or 4 × 10(5) CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in some

  1. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production

    PubMed Central

    Hofmann, Andreas; Fischer, Doreen; Hartmann, Anton; Schmid, Michael

    2014-01-01

    In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system) or via agricultural soil amended with spiked organic fertilizers (soil system). In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH) was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4 × 10 CFU/ml in the axenic system or 4 × 105 CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in some cases

  2. Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene

    PubMed Central

    Ito, Ryota; Tomich, Adam D.; Callaghan, Jake D.; McElheny, Christi L.; Mettus, Roberta T.; Sluis-Cremer, Nicolas

    2017-01-01

    ABSTRACT Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn2+ and K+-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa), whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia). FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance. PMID:28851843

  3. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  4. Production of Superoxide in Bacteria Is Stress- and Cell State-Dependent: A Gating-Optimized Flow Cytometry Method that Minimizes ROS Measurement Artifacts with Fluorescent Dyes.

    PubMed

    McBee, Megan E; Chionh, Yok H; Sharaf, Mariam L; Ho, Peiying; Cai, Maggie W L; Dedon, Peter C

    2017-01-01

    The role of reactive oxygen species (ROS) in microbial metabolism and stress response has emerged as a major theme in microbiology and infectious disease. Reactive fluorescent dyes have the potential to advance the study of ROS in the complex intracellular environment, especially for high-content and high-throughput analyses. However, current dye-based approaches to measuring intracellular ROS have the potential for significant artifacts. Here, we describe a robust platform for flow cytometric quantification of ROS in bacteria using fluorescent dyes, with ROS measurements in 10s-of-1000s of individual cells under a variety of conditions. False positives and variability among sample types (e.g., bacterial species, stress conditions) are reduced with a flexible four-step gating scheme that accounts for side- and forward-scattered light (morphological changes), background fluorescence, DNA content, and dye uptake to identify cells producing ROS. Using CellROX Green dye with Escherichia coli, Mycobacterium smegmatis , and Mycobacterium bovis BCG as diverse model bacteria, we show that (1) the generation of a quantifiable CellROX Green signal for superoxide, but not hydrogen peroxide-induced hydroxyl radicals, validates this dye as a superoxide detector; (2) the level of dye-detectable superoxide does not correlate with cytotoxicity or antibiotic sensitivity; (3) the non-replicating, antibiotic tolerant state of nutrient-deprived mycobacteria is associated with high levels of superoxide; and (4) antibiotic-induced production of superoxide is idiosyncratic with regard to both the species and the physiological state of the bacteria. We also show that the gating method is applicable to other fluorescent indicator dyes, such as the 5-carboxyfluorescein diacetate acetoxymethyl ester and 5-cyano-2,3-ditolyl tetrazolium chloride for cellular esterase and reductive respiratory activities, respectively. These results demonstrate that properly controlled flow cytometry coupled

  5. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria

    PubMed Central

    Band, Victor I.; Weiss, David S.

    2014-01-01

    Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance. PMID:25927010

  6. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows

    PubMed Central

    Pessione, Enrica

    2012-01-01

    Lactic Acid Bacteria (LAB) are ancient organisms that cannot biosynthesize functional cytochromes, and cannot get ATP from respiration. Besides sugar fermentation, they evolved electrogenic decarboxylations and ATP-forming deiminations. The right balance between sugar fermentation and decarboxylation/deimination ensures buffered environments thus enabling LAB to survive in human gastric trait and colonize gut. A complex molecular cross-talk between LAB and host exists. LAB moonlight proteins are made in response to gut stimuli and promote bacterial adhesion to mucosa and stimulate immune cells. Similarly, when LAB are present, human enterocytes activate specific gene expression of specific genes only. Furthermore, LAB antagonistic relationships with other microorganisms constitute the basis for their anti-infective role. Histamine and tyramine are LAB bioactive catabolites that act on the CNS, causing hypertension and allergies. Nevertheless, some LAB biosynthesize both gamma-amino-butyrate (GABA), that has relaxing effect on gut smooth muscles, and beta-phenylethylamine, that controls satiety and mood. Since LAB have reduced amino acid biosynthetic abilities, they developed a sophisticated proteolytic system, that is also involved in antihypertensive and opiod peptide generation from milk proteins. Short-chain fatty acids are glycolytic and phosphoketolase end-products, regulating epithelial cell proliferation and differentiation. Nevertheless, they constitute a supplementary energy source for the host, causing weight gain. Human metabolism can also be affected by anabolic LAB products such as conjugated linoleic acids (CLA). Some CLA isomers reduce cancer cell viability and ameliorate insulin resistance, while others lower the HDL/LDL ratio and modify eicosanoid production, with detrimental health effects. A further appreciated LAB feature is the ability to fix selenium into seleno-cysteine. Thus, opening interesting perspectives for their utilization as

  7. Bacterial Contribution in Chronicity of Wounds.

    PubMed

    Rahim, Kashif; Saleha, Shamim; Zhu, Xudong; Huo, Liang; Basit, Abdul; Franco, Octavio Luiz

    2017-04-01

    A wound is damage of a tissue usually caused by laceration of a membrane, generally the skin. Wound healing is accomplished in three stages in healthy individuals, including inflammatory, proliferative, and remodeling stages. Healing of wounds normally starts from the inflammatory phase and ends up in the remodeling phase, but chronic wounds remain in an inflammatory stage and do not show progression due to some specific reasons. Chronic wounds are classified in different categories, such as diabetic foot ulcer (DFU), venous leg ulcers (VLU) and pressure ulcer (PU), surgical site infection (SSI), abscess, or trauma ulcers. Globally, the incidence rate of DFU is 1-4 % and prevalence rate is 5.3-10.5 %. However, colonization of pathogenic bacteria at the wound site is associated with wound chronicity. Most chronic wounds contain more than one bacterial species and produce a synergetic effect that results in previously non-virulent bacterial species becoming virulent and causing damage to the host. While investigating bacterial diversity in chronic wounds, Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas, Finegoldia, and Serratia were found most frequently in chronic wounds. Recently, it has been observed that bacteria in chronic wounds develop biofilms that contribute to a delay in healing. In a mature biofilm, bacteria grow slowly due to deficiency of nutrients that results in the resistance of bacteria to antibiotics. The present review reflects the reasons why acute wounds become chronic. Interesting findings include the bacterial load, which forms biofilms and shows high-level resistance toward antibiotics, which is a threat to human health in general and particularly to some patients who have acute wounds.

  8. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    PubMed Central

    Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; Holden, Patricia A.

    2016-01-01

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstrate separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. The optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation. PMID:27917301

  9. Visualization and Modelling of the Thermal Inactivation of Bacteria in a Model Food

    PubMed Central

    Bellara, Sanjay R.; Fryer, Peter J.; McFarlane, Caroline M.; Thomas, Colin R.; Hocking, Paul M.; Mackey, Bernard M.

    1999-01-01

    A large number of incidents of food poisoning have been linked to undercooked meat products. The use of mathematical modelling to describe heat transfer within foods, combined with data describing bacterial thermal inactivation, may prove useful in developing safer food products while minimizing thermal overprocessing. To examine this approach, cylindrical agar blocks containing immobilized bacteria (Salmonella typhimurium and Brochothrix thermosphacta) were used as a model system in this study. The agar cylinders were subjected to external conduction heating by immersion in a water bath. They were then incubated, sliced open, and examined by image analysis techniques for regions of no bacterial growth. A finite-difference scheme was used to model thermal conduction and the consequent bacterial inactivation. Bacterial inactivation rates were modelled with values for the time required to reduce bacterial number by 90% (D) and the temperature increase required to reduce D by 90% taken from the literature. Model simulation results agreed well with experimental results for both bacteria, demonstrating the utility of the technique. PMID:10388708

  10. How To Live with Phosphorus Scarcity in Soil and Sediment: Lessons from Bacteria

    PubMed Central

    Tapia-Torres, Yunuen; Rodríguez-Torres, Maria Dolores; Islas, Africa; Souza, Valeria; García-Oliva, Felipe

    2016-01-01

    ABSTRACT Phosphorus (P) plays a fundamental role in the physiology and biochemistry of all living things. Recent evidence indicates that organisms in the oceans can break down and use P forms in different oxidation states (e.g., +5, +3, +1, and −3); however, information is lacking for organisms from soil and sediment. The Cuatro Ciénegas Basin (CCB), Mexico, is an oligotrophic ecosystem with acute P limitation, providing a great opportunity to assess the various strategies that bacteria from soil and sediment use to obtain P. We measured the activities in sediment and soil of different exoenzymes involved in P recycling and evaluated 1,163 bacterial isolates (mainly Bacillus spp.) for their ability to use six different P substrates. DNA turned out to be a preferred substrate, comparable to a more bioavailable P source, potassium phosphate. Phosphodiesterase activity, required for DNA degradation, was observed consistently in the sampled-soil and sediment communities. A capability to use phosphite (PO33−) and calcium phosphate was observed mainly in sediment isolates. Phosphonates were used at a lower frequency by both soil and sediment isolates, and phosphonatase activity was detected only in soil communities. Our results revealed that soil and sediment bacteria are able to break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Different strategies for P utilization were distributed between and within the different taxonomic lineages analyzed, suggesting a dynamic movement of P utilization traits among bacteria in microbial communities. IMPORTANCE Phosphorus (P) is an essential element for life found in molecules, such as DNA, cell walls, and in molecules for energy transfer, such as ATP. The Valley of Cuatro Ciénegas, Coahuila (Mexico), is a unique desert characterized by an extreme limitation of P and a great diversity of microbial life. How do bacteria in this valley manage to obtain P? We measured the availability

  11. How To Live with Phosphorus Scarcity in Soil and Sediment: Lessons from Bacteria.

    PubMed

    Tapia-Torres, Yunuen; Rodríguez-Torres, Maria Dolores; Elser, James J; Islas, Africa; Souza, Valeria; García-Oliva, Felipe; Olmedo-Álvarez, Gabriela

    2016-08-01

    Phosphorus (P) plays a fundamental role in the physiology and biochemistry of all living things. Recent evidence indicates that organisms in the oceans can break down and use P forms in different oxidation states (e.g., +5, +3, +1, and -3); however, information is lacking for organisms from soil and sediment. The Cuatro Ciénegas Basin (CCB), Mexico, is an oligotrophic ecosystem with acute P limitation, providing a great opportunity to assess the various strategies that bacteria from soil and sediment use to obtain P. We measured the activities in sediment and soil of different exoenzymes involved in P recycling and evaluated 1,163 bacterial isolates (mainly Bacillus spp.) for their ability to use six different P substrates. DNA turned out to be a preferred substrate, comparable to a more bioavailable P source, potassium phosphate. Phosphodiesterase activity, required for DNA degradation, was observed consistently in the sampled-soil and sediment communities. A capability to use phosphite (PO3 (3-)) and calcium phosphate was observed mainly in sediment isolates. Phosphonates were used at a lower frequency by both soil and sediment isolates, and phosphonatase activity was detected only in soil communities. Our results revealed that soil and sediment bacteria are able to break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Different strategies for P utilization were distributed between and within the different taxonomic lineages analyzed, suggesting a dynamic movement of P utilization traits among bacteria in microbial communities. Phosphorus (P) is an essential element for life found in molecules, such as DNA, cell walls, and in molecules for energy transfer, such as ATP. The Valley of Cuatro Ciénegas, Coahuila (Mexico), is a unique desert characterized by an extreme limitation of P and a great diversity of microbial life. How do bacteria in this valley manage to obtain P? We measured the availability of P and the

  12. Epiphytic marine pigmented bacteria: A prospective source of natural antioxidants

    PubMed Central

    Pawar, Ravindra; Mohandass, Chellandi; Sivaperumal, Elakkiya; Sabu, Elaine; Rajasabapathy, Raju; Jagtap, Tanaji

    2015-01-01

    Awareness on antioxidants and its significance in human healthcare has increased many folds in recent time. Increased demand requisite on welcoming newer and alternative resources for natural antioxidants. Seaweed associated pigmented bacteria screened for its antioxidant potentials reveals 55.5% of the organisms were able to synthesize antioxidant compounds. DPPH assay showed 20% of the organisms to reach a antioxidant zone of 1 cm and 8.3% of the strains more than 3 cm. Pseudomonas koreensis (JX915782) a Sargassum associated yellowish brown pigmented bacteria have better activity than known commercial antioxidant butylated hydroxytoluene (BHT) against DPPH scavenging. Serratia rubidaea (JX915783), an associate of Ulva sp. and Pseudomonas argentinensis (JX915781) an epiphyte of Chaetomorpha media , were also contributed significantly towards ABTS (7.2% ± 0.03 to 15.2 ± 0.09%; 1.8% ± 0.01 to 15.7 ± 0.22%) and FRAP (1.81 ± 0.01 to 9.35 ± 0.98; 7.97 ± 0.12 to 18.70 ± 1.84 μg/mL of AsA Eq.) respectively. 16S rRNA gene sequence analysis revealed bacteria that have higher antioxidant activity belongs to a bacterial class Gammaproteobacteria. Statistical analysis of phenolic contents in relation with other parameters like DPPH, ABTS, reducing power and FRAP are well correlated (p < 0.05). Results obtained from the current study inferred that the seaweed associated pigmented bacteria have enormous potential on antioxidant compounds and need to be extracted in a larger way for clinical applications. PMID:26221086

  13. Re-engineering bacteria for ethanol production

    DOEpatents

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  14. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  15. Microbial Evaluation of Fresh, Minimally-processed Vegetables and Bagged Sprouts from Chain Supermarkets

    PubMed Central

    Jeddi, Maryam Zare; Yunesian, Masud; Gorji, Mohamad Es'haghi; Noori, Negin; Pourmand, Mohammad Reza

    2014-01-01

    ABSTRACT The aim of this study was to evaluate the bacterial and fungal quality of minimally-processed vegetables (MPV) and sprouts. A total of 116 samples of fresh-cut vegetables, ready-to-eat salads, and mung bean and wheat sprouts were randomly collected and analyzed. The load of aerobic mesophilic bacteria was minimum and maximum in the fresh-cut vegetables and fresh mung bean sprouts respectively, corresponding to populations of 5.3 and 8.5 log CFU/g. E. coli O157:H7 was found to be absent in all samples; however,  other E. coli strains were detected in 21 samples (18.1%), and Salmonella spp. were found in one mung bean (3.1%) and one ready-to-eat salad sample (5%). Yeasts were the predominant organisms and were found in 100% of the samples. Geotrichum, Fusarium, and Penicillium spp. were the most prevalent molds in mung sprouts while Cladosporium and Penicillium spp. were most frequently found in ready-to-eat salad samples. According to results from the present study, effective control measures should be implemented to minimize the microbiological contamination of fresh produce sold in Tehran, Iran. PMID:25395902

  16. Microbial evaluation of fresh, minimally-processed vegetables and bagged sprouts from chain supermarkets.

    PubMed

    Jeddi, Maryam Zare; Yunesian, Masud; Gorji, Mohamad Es'haghi; Noori, Negin; Pourmand, Mohammad Reza; Khaniki, Gholam Reza Jahed

    2014-09-01

    The aim of this study was to evaluate the bacterial and fungal quality of minimally-processed vegetables (MPV) and sprouts. A total of 116 samples of fresh-cut vegetables, ready-to-eat salads, and mung bean and wheat sprouts were randomly collected and analyzed. The load of aerobic mesophilic bacteria was minimum and maximum in the fresh-cut vegetables and fresh mung bean sprouts respectively, corresponding to populations of 5.3 and 8.5 log CFU/g. E. coli O157:H7 was found to be absent in all samples; however,  other E. coli strains were detected in 21 samples (18.1%), and Salmonella spp. were found in one mung bean (3.1%) and one ready-to-eat salad sample (5%). Yeasts were the predominant organisms and were found in 100% of the samples. Geotrichum, Fusarium, and Penicillium spp. were the most prevalent molds in mung sprouts while Cladosporium and Penicillium spp. were most frequently found in ready-to-eat salad samples. According to results from the present study, effective control measures should be implemented to minimize the microbiological contamination of fresh produce sold in Tehran, Iran.

  17. L-form bacteria cohabitants in human blood: significance for health and diseases.

    PubMed

    Markova, Nadya D

    2017-05-01

    From a historical perspective, intriguing assumptions about unknown "live units" in human blood have attracted the attention of researchers, reflecting their desire to define a new class of microorganisms. Thus, the concept of "blood microbiota" brings about many questions about the nature, origin, and biological significance of the "unusual microbial cohabitants" in human blood. In contrast to current views that bloodstream in healthy humans is sterile, the hypothesis about the existence of microbes as L-forms (cell wall deficient bacteria) in human blood has evolved on the basis of known facts about their unique biology, as observed in our studies and those of other authors. Recently, we reported that bacterial L-forms persist in the human blood and that filterable, self-replicating bodies with a virus-like size of 100 nm are able to cross the maternal-fetal barrier by vertically transmitted pathway, then enter fetus blood circulation and colonize newborns. Subjects discussed here include the following: Is the existence of L-form bacteria in human blood a natural phenomenon? Are L-form bacteria commensal cohabitants in the human body? Since blood is an unfavorable compartment for the classical bacteria and their propagation, how do L-forms survive in blood circulation? How does L-form microbiota in blood influence the host immune system and contribute to systemic inflammatory, autoimmune, and tumor diseases? The current commentary presents the topic of "human microbiota and L-form bacteria" in its microcosm. It contains details of the hypothesis, supporting evidence and important implications.

  18. Multidrug resistant bacteria are sensitive to Euphorbia prostrata and six others Cameroonian medicinal plants extracts.

    PubMed

    Voukeng, Igor K; Beng, Veronique P; Kuete, Victor

    2017-07-25

    Multidrug resistant (MDR) bacteria are responsible for therapeutic failure and there is an urgent need for novels compounds efficient on them. Eleven methanol extracts from seven Cameroonian medicinal plants were tested for their antibacterial activity using broth micro-dilution method against 36 MDR bacterial strains including Escherichia coli, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella pneumoniae, Providencia stuartii, Pseudomonas aeruginosa and Staphylococcus aureus. Euphorbia prostrata extract was found active against all the 36 tested bacteria including Gram-negative phenotypes over-expressing efflux pumps such as P. aeruginosa PA124, E. aerogenes CM64 and E. coli AG102. E. prostrata had minimal inhibitory concentrations values between 128 and 256 µg/mL on 55.55% of the studied microorganisms. Other plants extract displayed selective antibacterial activity. Results obtained in this study highlight the antibacterial potential of the tested plants and the possible use of E. prostrata to combat bacterial infections including MDR phenotypes.

  19. The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria.

    PubMed

    Critchley, M M; Cromar, N J; McClure, N C; Fallowfield, H J

    2003-01-01

    This study investigated the influence of water chemistry on copper solvation (cuprosolvency) by pure culture biofilms of heterotrophic bacteria isolated from copper plumbing. Heterotrophic bacteria isolated from copper plumbing biofilms including Acidovorax delafieldii, Flavobacterium sp., Corynebacterium sp., Pseudomonas sp. and Stenotrophomonas maltophilia were used in laboratory coupon experiments to assess their potential for cuprosolvency. Sterile copper coupons were exposed to pure cultures of bacteria to allow biofilm formation and suspended in drinking waters with different chemical compositions. Sterile coupons not exposed to bacteria were used as controls. After 5 days of incubation, copper release and biofilm accumulation was quantified. The results demonstrated that cuprosolvency in the control experiments was influenced by water pH, total organic carbon (TOC) and conductivity. Cuprosolvency in the presence of biofilms correlated with the chemical composition of the water supplies particularly pH, Langeliers Index, chloride, alkalinity, TOC and soluble phosphate concentrations. The results suggest water quality may influence cuprosolvency by biofilms present within copper plumbing pipes. The potential for water chemistry to influence cuprosolvency by biofilms may contribute to the sporadic nature of copper corrosion problems in distribution systems.

  20. Does Minimally Invasive Spine Surgery Minimize Surgical Site Infections?

    PubMed

    Kulkarni, Arvind Gopalrao; Patel, Ravish Shammi; Dutta, Shumayou

    2016-12-01

    Retrospective review of prospectively collected data. To evaluate the incidence of surgical site infections (SSIs) in minimally invasive spine surgery (MISS) in a cohort of patients and compare with available historical data on SSI in open spinal surgery cohorts, and to evaluate additional direct costs incurred due to SSI. SSI can lead to prolonged antibiotic therapy, extended hospitalization, repeated operations, and implant removal. Small incisions and minimal dissection intrinsic to MISS may minimize the risk of postoperative infections. However, there is a dearth of literature on infections after MISS and their additional direct financial implications. All patients from January 2007 to January 2015 undergoing posterior spinal surgery with tubular retractor system and microscope in our institution were included. The procedures performed included tubular discectomies, tubular decompressions for spinal stenosis and minimal invasive transforaminal lumbar interbody fusion (TLIF). The incidence of postoperative SSI was calculated and compared to the range of cited SSI rates from published studies. Direct costs were calculated from medical billing for index cases and for patients with SSI. A total of 1,043 patients underwent 763 noninstrumented surgeries (discectomies, decompressions) and 280 instrumented (TLIF) procedures. The mean age was 52.2 years with male:female ratio of 1.08:1. Three infections were encountered with fusion surgeries (mean detection time, 7 days). All three required wound wash and debridement with one patient requiring unilateral implant removal. Additional direct cost due to infection was $2,678 per 100 MISS-TLIF. SSI increased hospital expenditure per patient 1.5-fold after instrumented MISS. Overall infection rate after MISS was 0.29%, with SSI rate of 0% in non-instrumented MISS and 1.07% with instrumented MISS. MISS can markedly reduce the SSI rate and can be an effective tool to minimize hospital costs.

  1. SAR11 bacteria linked to ocean anoxia and nitrogen loss

    PubMed Central

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M; Burns, Andrew S.; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R.; Padilla, Cory C.; Stone, Benjamin K.; Bristow, Laura A.; Larsen, Morten; Glass, Jennifer B.; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T.; Stewart, Frank J.

    2016-01-01

    Summary Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. DNA sequences from SAR11 are also abundant in oxygen minimum zones (OMZs) where oxygen falls below detection and anaerobic microbes play important roles in converting bioavailable nitrogen to N2 gas. Evidence for anaerobic metabolism in SAR11 has not yet been observed, and the question of how these bacteria contribute to OMZ biogeochemical cycling is unanswered. Here, we identify the metabolic basis for SAR11 activity in anoxic ocean waters. Genomic analysis of single cells from the world’s largest OMZ revealed diverse and previously uncharacterized SAR11 lineages that peak in abundance at anoxic depths, but are largely undetectable in oxygen-rich ocean regions. OMZ SAR11 contain adaptations to low oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalyzing the nitrite-producing first step of denitrification and constituted ~40% of all OMZ nar transcripts, with transcription peaking in the zone of maximum nitrate reduction rates. These results redefine the ecological niche of Earth’s most abundant organismal group and suggest an important contribution of SAR11 to nitrite production in OMZs, and thus to pathways of ocean nitrogen loss. PMID:27487207

  2. Diversity of Bacteria at Healthy Human Conjunctiva

    PubMed Central

    Dong, Qunfeng; Brulc, Jennifer M.; Iovieno, Alfonso; Bates, Brandon; Garoutte, Aaron; Miller, Darlene; Revanna, Kashi V.; Gao, Xiang; Antonopoulos, Dionysios A.; Slepak, Vladlen Z.

    2011-01-01

    Purpose. Ocular surface (OS) microbiota contributes to infectious and autoimmune diseases of the eye. Comprehensive analysis of microbial diversity at the OS has been impossible because of the limitations of conventional cultivation techniques. This pilot study aimed to explore true diversity of human OS microbiota using DNA sequencing-based detection and identification of bacteria. Methods. Composition of the bacterial community was characterized using deep sequencing of the 16S rRNA gene amplicon libraries generated from total conjunctival swab DNA. The DNA sequences were classified and the diversity parameters measured using bioinformatics software ESPRIT and MOTHUR and tools available through the Ribosomal Database Project-II (RDP-II). Results. Deep sequencing of conjunctival rDNA from four subjects yielded a total of 115,003 quality DNA reads, corresponding to 221 species-level phylotypes per subject. The combined bacterial community classified into 5 phyla and 59 distinct genera. However, 31% of all DNA reads belonged to unclassified or novel bacteria. The intersubject variability of individual OS microbiomes was very significant. Regardless, 12 genera—Pseudomonas, Propionibacterium, Bradyrhizobium, Corynebacterium, Acinetobacter, Brevundimonas, Staphylococci, Aquabacterium, Sphingomonas, Streptococcus, Streptophyta, and Methylobacterium—were ubiquitous among the analyzed cohort and represented the putative “core” of conjunctival microbiota. The other 47 genera accounted for <4% of the classified portion of this microbiome. Unexpectedly, healthy conjunctiva contained many genera that are commonly identified as ocular surface pathogens. Conclusions. The first DNA sequencing-based survey of bacterial population at the conjunctiva have revealed an unexpectedly diverse microbial community. All analyzed samples contained ubiquitous (core) genera that included commensal, environmental, and opportunistic pathogenic bacteria. PMID:21571682

  3. Vacuum cleaner emissions as a source of indoor exposure to airborne particles and bacteria.

    PubMed

    Knibbs, Luke D; He, Congrong; Duchaine, Caroline; Morawska, Lidia

    2012-01-03

    Vacuuming can be a source of indoor exposure to biological and nonbiological aerosols, although there are few data that describe the magnitude of emissions from the vacuum cleaner itself. We therefore sought to quantify emission rates of particles and bacteria from a large group of vacuum cleaners and investigate their potential determinants, including temperature, dust bags, exhaust filters, price, and age. Emissions of particles between 0.009 and 20 μm and bacteria were measured from 21 vacuums. Ultrafine (<100 nm) particle emission rates ranged from 4.0 × 10(6) to 1.1 × 10(11) particles min(-1). Emission of 0.54-20 μm particles ranged from 4.0 × 10(4) to 1.2 × 10(9) particles min(-1). PM(2.5) emissions were between 2.4 × 10(-1) and 5.4 × 10(3) μg min(-1). Bacteria emissions ranged from 0 to 7.4 × 10(5) bacteria min(-1) and were poorly correlated with dust bag bacteria content and particle emissions. Large variability in emission of all parameters was observed across the 21 vacuums, which was largely not attributable to the range of determinant factors we assessed. Vacuum cleaner emissions contribute to indoor exposure to nonbiological and biological aerosols when vacuuming, and this may vary markedly depending on the vacuum used.

  4. A minimally processed dietary pattern is associated with lower odds of metabolic syndrome among Lebanese adults.

    PubMed

    Nasreddine, Lara; Tamim, Hani; Itani, Leila; Nasrallah, Mona P; Isma'eel, Hussain; Nakhoul, Nancy F; Abou-Rizk, Joana; Naja, Farah

    2018-01-01

    To (i) estimate the consumption of minimally processed, processed and ultra-processed foods in a sample of Lebanese adults; (ii) explore patterns of intakes of these food groups; and (iii) investigate the association of the derived patterns with cardiometabolic risk. Cross-sectional survey. Data collection included dietary assessment using an FFQ and biochemical, anthropometric and blood pressure measurements. Food items were categorized into twenty-five groups based on the NOVA food classification. The contribution of each food group to total energy intake (TEI) was estimated. Patterns of intakes of these food groups were examined using exploratory factor analysis. Multivariate logistic regression analysis was used to evaluate the associations of derived patterns with cardiometabolic risk factors. Greater Beirut area, Lebanon. Adults ≥18 years (n 302) with no prior history of chronic diseases. Of TEI, 36·53 and 27·10 % were contributed by ultra-processed and minimally processed foods, respectively. Two dietary patterns were identified: the 'ultra-processed' and the 'minimally processed/processed'. The 'ultra-processed' consisted mainly of fast foods, snacks, meat, nuts, sweets and liquor, while the 'minimally processed/processed' consisted mostly of fruits, vegetables, legumes, breads, cheeses, sugar and fats. Participants in the highest quartile of the 'minimally processed/processed' pattern had significantly lower odds for metabolic syndrome (OR=0·18, 95 % CI 0·04, 0·77), hyperglycaemia (OR=0·25, 95 % CI 0·07, 0·98) and low HDL cholesterol (OR=0·17, 95 % CI 0·05, 0·60). The study findings may be used for the development of evidence-based interventions aimed at encouraging the consumption of minimally processed foods.

  5. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter.

    PubMed

    Liu, Huan; Zhang, Xu; Zhang, Hao; Yao, Xiangwu; Zhou, Meng; Wang, Jiaqi; He, Zhanfei; Zhang, Huihui; Lou, Liping; Mao, Weihua; Zheng, Ping; Hu, Baolan

    2018-02-01

    In recent years, air pollution events have occurred frequently in China during the winter. Most studies have focused on the physical and chemical composition of polluted air. Some studies have examined the bacterial bioaerosols both indoors and outdoors. But few studies have focused on the relationship between air pollution and bacteria, especially pathogenic bacteria. Airborne PM samples with different diameters and different air quality index values were collected in Hangzhou, China from December 2014 to January 2015. High-throughput sequencing of 16S rRNA was used to categorize the airborne bacteria. Based on the NCBI database, the "Human Pathogen Database" was established, which is related to human health. Among all the PM samples, the diversity and concentration of total bacteria were lowest in the moderately or heavily polluted air. However, in the PM2.5 and PM10 samples, the relative abundances of pathogenic bacteria were highest in the heavily and moderately polluted air respectively. Considering the PM samples with different particle sizes, the diversities of total bacteria and the proportion of pathogenic bacteria in the PM10 samples were different from those in the PM2.5 and TSP samples. The composition of PM samples with different sizes range may be responsible for the variances. The relative humidity, carbon monoxide and ozone concentrations were the main factors, which affected the diversity of total bacteria and the proportion of pathogenic bacteria. Among the different environmental samples, the compositions of the total bacteria were very similar in all the airborne PM samples, but different from those in the water, surface soil, and ground dust samples. Which may be attributed to that the long-distance transport of the airflow may influence the composition of the airborne bacteria. This study of the pathogenic bacteria in airborne PM samples can provide a reference for environmental and public health researchers. Copyright © 2017 Elsevier Ltd

  6. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae).

    PubMed

    Morales-Jiménez, Jesús; Vera-Ponce de León, Arturo; García-Domínguez, Aidé; Martínez-Romero, Esperanza; Zúñiga, Gerardo; Hernández-Rodríguez, César

    2013-07-01

    The bark beetles of the genus Dendroctonus feed on phloem that is a nitrogen-limited source. Nitrogen fixation and nitrogen recycling may compensate or alleviate such a limitation, and beetle-associated bacteria capable of such processes were identified. Raoultella terrigena, a diazotrophic bacteria present in the gut of Dendroctonus rhizophagus and D. valens, exhibited high acetylene reduction activity in vitro with different carbon sources, and its nifH and nifD genes were sequenced. Bacteria able to recycle uric acid were Pseudomonas fluorescens DVL3A that used it as carbon and nitrogen source, Serratia proteomaculans 2A CDF and Rahnella aquatilis 6-DR that used uric acid as sole nitrogen source. Also, this is the first report about the uric acid content in whole eggs, larvae, and adults (male and female) samples of the red turpentine beetle (Dendroctonus valens). Our results suggest that the gut bacteria of these bark beetles could contribute to insect N balance.

  7. Contribution of UVB radiation to bacterial inactivation by natural sunlight.

    PubMed

    Oppezzo, Oscar J

    2012-10-03

    The contribution of different components of sunlight to the lethal action exerted by this radiation on bacteria was studied using Pseudomonas aeruginosa ATCC27853 as a model organism. When solar UVB was excluded from the incident radiation by filtering it through a naphthalene solution (cut off 327 nm), significant modifications were observed in the cell-death kinetics. These modifications were comparable to those expected for a reduction of 27-32% in the dose rate, according to the model used in the analysis of the survival curves, and were also observed when the effects of sunlight filtered through polyethylene terephthalate (cut off 331 nm) or polystyrene (cut off 298 nm) were compared. Viability of P. aeruginosa remained almost unchanged when the incident radiation was filtered through a sodium nitrite solution (cut off 406 nm) in order to exclude the UVA and UVB components of sunlight. Nevertheless, a delay in colony formation was detected in bacteria treated in this way, suggesting that a non-lethal effect was exerted by visible light. The results are not consistent with a generally accepted notion which attributes the lethal action of sunlight to the radiation with wavelengths above 320 nm. The characterization of UVB contribution to the lethal effect of sunlight on bacteria is relevant for understanding of the mechanism of cell death, and for improvement of dosimetry techniques and irradiation procedures. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber.

    PubMed

    Khabbaz, Salah Eddin; Abbasi, Pervaiz A

    2014-01-01

    Antagonistic bacteria are common soil inhabitants with potential to be developed into biofungicides for the management of seedling damping-off, root rot, and other soil-borne diseases of various crops. In this study, antagonistic bacteria were isolated from a commercial potato field and screened for their growth inhibition of fungal and oomycete pathogens in laboratory tests. The biocontrol potential of the 3 most effective antagonistic bacteria from the in vitro tests was evaluated against seedling damping-off and root rot of cucumber caused by Pythium ultimum. Based on phenotypic characteristics, biochemical tests, and sequence analysis of 16S-23S rDNA gene, the 3 antagonistic bacteria were identified as Pseudomonas fluorescens (isolate 9A-14), Pseudomonas sp. (isolate 8D-45), and Bacillus subtilis (isolate 8B-1). All 3 bacteria promoted plant growth and suppressed Pythium damping-off and root rot of cucumber seedlings in growth-room assays. Both pre- and post-planting application of these bacteria to an infested peat mix significantly increased plant fresh masses by 113%-184% and percentage of healthy seedlings by 100%-290%, and decreased damping-off and root rot severity by 27%-50%. The peat and talc formulations of these antagonistic bacteria applied as seed or amendment treatments to the infested peat mix effectively controlled Pythium damping-off and root rot of cucumber seedlings and enhanced plant growth. The survival of all 3 antagonistic bacteria in peat and talc formulations decreased over time at room temperature, but the populations remained above 10(8) CFU/g during the 180-day storage period. The peat formulation of a mixture of 3 bacteria was the best seed treatment, significantly increasing the plant fresh masses by 245% as compared with the Pythium control, and by 61.4% as compared with the noninfested control. This study suggests that the indigenous bacteria from agricultural soils can be developed and formulated as biofungicides for minimizing

  9. Contribution of aerobic anoxygenic phototrophic bacteria to total organic carbon pool in aquatic system of subtropical karst catchments, Southwest China: evidence from hydrochemical and microbiological study.

    PubMed

    Li, Qiang; Song, Ang; Peng, Wenjie; Jin, Zhenjiang; Müller, Werner E G; Wang, Xiaohong

    2017-06-01

    Aerobic anoxygenic phototrophic bacteria may play a particular role in carbon cycling of aquatic systems. However, little is known about the interaction between aerobic anoxygenic phototrophic bacteria and hydrochemistry in groundwater-surface water exchange systems of subtropical karst catchments. We carried out a detailed study on the abundance of aerobic anoxygenic phototrophic bacteria and bacterioplankton, hydrochemistry and taxonomy of bacterioplankton in the Maocun watershed, Southwest China, an area with karst geological background. Our results revealed that bacteria are the important contributors to total organic carbon source/sequestration in the groundwater-surface water of this area. The aerobic anoxygenic phototrophic bacteria, including β-Proteobacteria, also appear in the studied water system. In addition to that, the genus Polynucleobacter of the phototropic β-Proteobacteria shows a close link with those sampling sites by presenting bacterial origin organic carbon on CCA biplot and is found to be positively correlated with total nitrogen, dissolved oxygen and pH (r = 0.860, 0.747 and 0.813, respectively) in the Maocun watershed. The results suggest that Polynucleobacter might be involved in the production of organic carbon and might act as the negative feedback on global warming. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. COMPARATIVE DIVERSITY OF FECAL BACTERIA IN AGRICULTURALLY SIGNIFICANT ANIMALS TO IDENTIFY ALTERNATIVE TARGETS FOR MICROBIAL SOURCE TRACKING

    EPA Science Inventory

    Animals of agricultural significance contribute a large percentage of fecal pollution to waterways via runoff contamination. The premise of microbial source tracking is to utilize fecal bacteria to identify target populations which are directly correlated to specific animal feces...

  11. Bacteria entombed in the center of cholesterol gallstones induce fewer infectious manifestations than bacteria in the matrix of pigment stones.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2007-10-01

    The clinical significance of bacteria in the pigment centers of cholesterol stones is unknown. We compared the infectious manifestations and characteristics of bacteria from pigment stones and predominantly cholesterol stones. Three hundred forty patients were studied. Bile was cultured. Gallstones were cultured and examined with scanning electron microscopy. Level of bacterial immunoglobulin G (bile, serum), complement killing, and tumor necrosis factor-alpha production were determined. Twenty-three percent of cholesterol stones and 68% of pigment stones contained bacteria (P < 0.0001). Stone culture correlated with scanning electron microscopy results. Pigment stone bacteria were more often present in bile and blood. Cholesterol stone bacteria caused more severe infections (19%) than sterile stones (0%), but less than pigment stone bacteria (57%) (P < 0.0001). Serum and bile from patients with cholesterol stone bacteria had less bacterial-specific immunoglobulin G. Cholesterol stone bacteria produced more slime. Pigment stone bacteria were more often killed by a patient's serum. Tumor necrosis factor-alpha production of the groups was similar. Bacteria are readily cultured from cholesterol stones with pigment centers, allowing for analysis of their virulence factors. Bacteria sequestered in cholesterol stones cause infectious manifestations, but less than bacteria in pigment stones. Possibly because of their isolation, cholesterol stone bacteria were less often present in bile and blood, induced less immunoglobulin G, were less often killed by a patient's serum, and demonstrated fewer infectious manifestations than pigment stone bacteria. This is the first study to analyze the clinical relevance of bacteria within cholesterol gallstones.

  12. Human body may produce bacteria.

    PubMed

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Inactivation of bacteria from contaminated streams in Limpopo, South Africa by silver- or copper-nanoparticle paper filters

    PubMed Central

    Dankovich, Theresa A.; Levine, Jonathan S.; Potgieter, Natasha; Dillingham, Rebecca; Smith, James A.

    2016-01-01

    There is an urgent need for inexpensive point-of-use methods to purify drinking water in developing countries to reduce the incidence of illnesses caused by waterborne pathogens. Previously, our work showed the deactivation of laboratory-cultured bacteria by percolation through a thick paper sheet containing either silver (Ag) or copper (Cu) nanoparticles (NP). In this study, these paper filters containing AgNPs or CuNPs have been tested with water sourced from contaminated streams in Limpopo, South Africa. Following the percolation of the contaminated stream water through the metal nanoparticle (MNP) papers, the water quality of the filtered effluent was evaluated with respect to the colony counts of total coliform and E. coli bacteria, turbidity, and either silver or copper ions. Influent total coliform bacteria concentrations from the stream water in Limpopo ranged from 250 CFU/100 mL to 1,750,000 CFU/100 mL. With the less contaminated stream water (250 - 15,000 CFU/100 mL), both AgNP and CuNP papers showed complete inactivation of the coliform bacteria. With the surface water with higher coliform bacteria levels (500,000 - 1,000,000 CFU/100 mL), both the AgNP and CuNP papers showed similar results with a slightly higher bacteria reduction of log10 5.1 for the AgNP papers than the log10 4.8 reduction for the CuNP papers. E. coli results followed similar trends. For most water purification experiments, the metal release from the sheets was minimal, with values under 0.1 ppm for Ag and 1.0 ppm for Cu (the current US EPA and WHO drinking water limits for Ag and Cu, respectively). These results show good potential for the use of paper embedded with silver and/or copper nanoparticles as effective point-of-use water purifiers. PMID:27022474

  14. Low Temperature Decreases the Phylogenetic Diversity of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofiltration Systems▿ †

    PubMed Central

    Urakawa, Hidetoshi; Tajima, Yoshiyuki; Numata, Yoshiyuki; Tsuneda, Satoshi

    2008-01-01

    The phylogenetic diversity and species richness of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were examined with aquarium biofiltration systems. Species richness, deduced from rarefaction analysis, and diversity indices indicated that the phylogenetic diversity and species richness of AOA are greater than those of AOB; the diversity of AOA and of AOB is minimized in cold-water aquaria. This finding implies that temperature is a key factor influencing the population structure and diversity of AOA and AOB in aquarium biofiltration systems. PMID:18065610

  15. Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization.

    PubMed

    Rodríguez-Sánchez, Viridiana; Guzmán-Moreno, Jesús; Rodríguez-González, Vicente; Flores-de la Torre, Juan Armando; Ramírez-Santoyo, Rosa María; Vidales-Rodríguez, Luz Elena

    2017-08-01

    The study of metal-tolerant bacteria is important for bioremediation of contaminated environments and development of green technologies for material synthesis due to their potential to transform toxic metal ions into less toxic compounds by mechanisms such as reduction, oxidation and/or sequestration. In this study, we report the isolation of seven lead-tolerant bacteria from a metal-contaminated site at Zacatecas, México. The bacteria were identified as members of the Staphylococcus and Bacillus genera by microscopic, biochemical and 16S rDNA analyses. Minimal inhibitory concentration of these isolates was established between 4.5 and 7.0 mM of Pb(NO 3 ) 2 in solid and 1.0-4.0 mM of Pb(NO 3 ) 2 in liquid media. A quantitative analysis of the lead associated to bacterial biomass in growing cultures, revealed that the percentage of lead associated to biomass was between 1 and 37% in the PbT isolates. A mechanism of complexation/biosorption of lead ions as inorganic phosphates (lead hydroxyapatite and pyromorphite) in bacterial biomass, was determined by Fourier transform infrared spectroscopy and X-ray diffraction analyses. Thus, the ability of the lead-tolerant isolates to transform lead ions into stable and highly insoluble lead minerals make them potentially useful for immobilization of lead in mining waste.

  16. Exact recovery of sparse multiple measurement vectors by [Formula: see text]-minimization.

    PubMed

    Wang, Changlong; Peng, Jigen

    2018-01-01

    The joint sparse recovery problem is a generalization of the single measurement vector problem widely studied in compressed sensing. It aims to recover a set of jointly sparse vectors, i.e., those that have nonzero entries concentrated at a common location. Meanwhile [Formula: see text]-minimization subject to matrixes is widely used in a large number of algorithms designed for this problem, i.e., [Formula: see text]-minimization [Formula: see text] Therefore the main contribution in this paper is two theoretical results about this technique. The first one is proving that in every multiple system of linear equations there exists a constant [Formula: see text] such that the original unique sparse solution also can be recovered from a minimization in [Formula: see text] quasi-norm subject to matrixes whenever [Formula: see text]. The other one is showing an analytic expression of such [Formula: see text]. Finally, we display the results of one example to confirm the validity of our conclusions, and we use some numerical experiments to show that we increase the efficiency of these algorithms designed for [Formula: see text]-minimization by using our results.

  17. Engineering solutions to improve the removal of fecal indicator bacteria by bioinfiltration systems during intermittent flow of stormwater.

    PubMed

    Mohanty, Sanjay K; Torkelson, Andrew A; Dodd, Hanna; Nelson, Kara L; Boehm, Alexandria B

    2013-10-01

    condition, could minimize the mobilization of previous attached bacteria from bioinfiltration systems, although NOM may significantly decrease these benefits.

  18. Fungal–bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality

    PubMed Central

    Fabian, Jenny; Zlatanovic, Sanja; Mutz, Michael; Premke, Katrin

    2017-01-01

    Ecological functions of fungal and bacterial decomposers vary with environmental conditions. However, the response of these decomposers to particulate organic matter (POM) quality, which varies widely in aquatic ecosystems, remains poorly understood. Here we investigated how POM pools of substrates of different qualities determine the relative contributions of aquatic fungi and bacteria to terrigenous carbon (C) turnover. To this end, surface sediments were incubated with different POM pools of algae and/or leaf litter. 13C stable-isotope measurements of C mineralization were combined with phospholipid analysis to link the metabolic activities and substrate preferences of fungal and bacterial heterotrophs to dynamics in their abundance. We found that the presence of labile POM greatly affected the dominance of bacteria over fungi within the degrader communities and stimulated the decomposition of beech litter primarily through an increase in metabolic activity. Our data indicated that fungi primarily contribute to terrigenous C turnover by providing litter C for the microbial loop, whereas bacteria determine whether the supplied C substrate is assimilated into biomass or recycled back into the atmosphere in relation to phosphate availability. Thus, this study provides a better understanding of the role of fungi and bacteria in terrestrial–aquatic C cycling in relation to environmental conditions. PMID:27983721

  19. Race-dependent association of sulfidogenic bacteria with colorectal cancer.

    PubMed

    Yazici, Cemal; Wolf, Patricia G; Kim, Hajwa; Cross, Tzu-Wen L; Vermillion, Karin; Carroll, Timothy; Augustus, Gaius J; Mutlu, Ece; Tussing-Humphreys, Lisa; Braunschweig, Carol; Xicola, Rosa M; Jung, Barbara; Llor, Xavier; Ellis, Nathan A; Gaskins, H Rex

    2017-11-01

    Colorectal cancer (CRC) incidence is higher in African Americans (AAs) compared with non-Hispanic whites (NHWs). A diet high in animal protein and fat is an environmental risk factor for CRC development. The intestinal microbiota is postulated to modulate the effects of diet in promoting or preventing CRC. Hydrogen sulfide, produced by autochthonous sulfidogenic bacteria, triggers proinflammatory pathways and hyperproliferation, and is genotoxic. We hypothesised that sulfidogenic bacterial abundance in colonic mucosa may be an environmental CRC risk factor that distinguishes AA and NHW. Colonic biopsies from uninvolved or healthy mucosa from CRC cases and tumour-free controls were collected prospectively from five medical centres in Chicago for association studies. Sulfidogenic bacterial abundance in uninvolved colonic mucosa of AA and NHW CRC cases was compared with normal mucosa of AA and NHW controls. In addition, 16S rDNA sequencing was performed in AA cases and controls. Correlations were examined among bacterial targets, race, disease status and dietary intake. AAs harboured a greater abundance of sulfidogenic bacteria compared with NHWs regardless of disease status. Bilophila wadsworthia -specific dsrA was more abundant in AA cases than controls. Linear discriminant analysis of 16S rRNA gene sequences revealed five sulfidogenic genera that were more abundant in AA cases. Fat and protein intake and daily servings of meat were significantly higher in AAs compared with NHWs, and multiple dietary components correlated with a higher abundance of sulfidogenic bacteria. These results implicate sulfidogenic bacteria as a potential environmental risk factor contributing to CRC development in AAs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Some bacteria are beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  1. Enteric bacteria in aerobically digested sludge.

    PubMed Central

    Farrah, S R; Bitton, G

    1984-01-01

    Indicator bacteria, Salmonella spp., and total aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic digestion. Aerobic sludge digestion reduced the level of indicator bacteria by 1 to 2 log10 per g. The level of Salmonella spp. was also reduced during aerobic treatment of sludge. In general, aerobic treatment of sludge reduced, but did not eliminate, indicator bacteria and Salmonella spp. PMID:6721492

  2. Antibiotic Production by Anaerobic Bacteria1

    PubMed Central

    Sturgen, Nancy O.; Casida, L. E.

    1962-01-01

    Soils from aerobic and anaerobic sources were investigated for the possible presence of bacteria which produce antibiotics under anaerobic conditions of growth. The screening techniques devised for this study yielded 157 soil bacteria which, during anaerobic growth, produced antibiotic activity against aerobic test bacteria. Studies on choice of media, presence of oxygen, and changes in antibiotic activity during growth indicated that representative strains of these bacteria produced mixtures of antibiotics. The activity was heat labile. PMID:13918037

  3. A comparison of bleeding efficiency, microbiological quality and lipid oxidation in goats subjected to conscious halal slaughter and slaughter following minimal anesthesia.

    PubMed

    Sabow, A B; Sazili, A Q; Zulkifli, I; Goh, Y M; Ab Kadir, M Z A; Abdulla, N R; Nakyinsige, K; Kaka, U; Adeyemi, K D

    2015-06-01

    The study assessed the effect of conscious halal slaughter and slaughter following minimal anesthesia on bleeding efficiency of goats and keeping quality of goat meat. Ten Boer cross bucks were divided into two groups and subjected to either halal slaughter without stunning (HS) or minimal anesthesia prior to slaughter (AS). The blood lost during exsanguination was measured. Residual blood was further quantified by determination of hemoglobin and myoglobin content in longissimus lumborum muscle. Storage stability of the meat was evaluated by microbiological analysis and lipid oxidation. Blood loss at exsanguination, residual hemoglobin and lipid oxidation were not significantly different (p>0.05) between HS and AS. Lactic acid bacteria was the only microbe that was significantly elevated after 24h of storage at 4°C in the AS group. In conclusion, slaughtering goats under minimal anesthesia or fully conscious did not affect bleeding efficiency and keeping quality of goat meat. Copyright © 2015. Published by Elsevier Ltd.

  4. The contribution of small vessel disease to subtypes of Alzheimer's disease: a study on cerebrospinal fluid and imaging biomarkers.

    PubMed

    Ferreira, Daniel; Shams, Sara; Cavallin, Lena; Viitanen, Matti; Martola, Juha; Granberg, Tobias; Shams, Mana; Aspelin, Peter; Kristoffersen-Wiberg, Maria; Nordberg, Agneta; Wahlund, Lars-Olof; Westman, Eric

    2018-05-30

    We investigated whether subtypes of Alzheimer's disease (AD), that is, typical, limbic-predominant, hippocampal-sparing, and minimal atrophy AD, had a specific signature of small vessel disease and neurodegeneration. Four hundred twenty-three clinically diagnosed AD patients were included (161 typical, 121 limbic-predominant, 70 hippocampal-sparing, 71 minimal atrophy). One hundred fifty-six fulfilled a biomarkers-based AD diagnosis. White matter hyperintensities and cerebral microbleeds (CMB) had the highest prevalence in limbic-predominant AD, and the lowest prevalence in minimal atrophy AD. CMB existed evenly in lobar and deep brain areas in limbic-predominant, typical, and hippocampal-sparing AD. In minimal atrophy AD, CMB were mainly located in brain lobar areas. Perivascular spaces in the centrum semiovale were more prevalent in typical AD. Small vessel disease contributed to the prediction of Mini-Mental State Examination. Minimal atrophy AD showed highly pathological levels of cerebrospinal fluid Aß 1-42 , total tau, and phosphorylated tau, in the absence of overt brain atrophy. Cerebral amyloid angiopathy seems to have a stronger contribution to hippocampal-sparing and minimal atrophy AD, whereas hypertensive arteriopathy may have a stronger contribution to typical and limbic-predominant AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Pathogen reduction in minimally managed composting of bovine manure.

    PubMed

    Millner, Patricia; Ingram, David; Mulbry, Walter; Arikan, Osman A

    2014-11-01

    Spread of manure pathogens is of considerable concern due to use of manure for land application. In this study, the effects of four static pile treatment options for bovine manure on die-off of a generic Escherichia coli, E. coli O157:H7 surrogate, Salmonella Senftenberg, Salm. Typhimurium, and Listeria monocytogenes were evaluated. Bovine manure spiked with these bacteria were placed in cassettes at the top, middle, and bottom sections of four static pile treatments that reflect minimal changes in pile construction with and without straw. Temperatures were monitored continuously during the 28 day self-heating period. E. coli and salmonellae were reduced from 8 to 9 log10 CFU g(-1) to undetectable levels (<1.77 log10 MPN g(-1)) at 25-30 cm depths within 7 days in all pile sections except for the manure-only pile in which 3-4 logs of reduction were obtained. No L. monocytogenes initially present at 6.62 log10 CFU g(-1) were recovered from straw-amended piles after 14 days, in contrast with manure-only treatment in which this pathogen was recovered even at 28 days. Decline of target bacterial populations corresponded to exposure to temperatures above 45°C for more than 3 days and amendments of manure with straw to increase thermophilic zones. Use of straw to increase aeration, self-heating capacity, and heat retention in manure piles provides producers a minimal management option for composting that enhances pathogen die-off and thereby reduces risk of environmental spread when manure is applied to land. Published by Elsevier Ltd.

  6. Hexavalent Chromium Minimization Strategy

    DTIC Science & Technology

    2011-05-01

    Logistics 4 Initiative - DoD Hexavalent Chromium Minimization Non- Chrome Primer IIEXAVAJ ENT CHRO:M I~UMI CHROMIUM (VII Oil CrfVli.J CANCEfl HAnRD CD...Management Office of the Secretary of Defense Hexavalent Chromium Minimization Strategy Report Documentation Page Form ApprovedOMB No. 0704-0188...00-2011 4. TITLE AND SUBTITLE Hexavalent Chromium Minimization Strategy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  7. The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica

    USGS Publications Warehouse

    Lisle, J.T.; Priscu, J.C.

    2004-01-01

    The McMurdo Dry Valleys of Antarctica form the coldest and driest ecosystem on Earth. Within this region there are a number of perennially ice-covered (3-6 m thick) lakes that support active microbial assemblages and have a paucity of metazoans. These lakes receive limited allochthonous input of carbon and nutrients, and primary productivity is limited to only 6 months per year owing to an absence of sunlight during the austral winters. In an effort to establish the role that bacteria and their associated viruses play in carbon and nutrient cycling in these lakes, indigenous bacteria, free bacteriophage, and lysogen abundances were determined. Total bacterial abundances (TDC) ranged from 3.80 ?? 104 to 2.58 ?? 107 cells mL-1 and virus-like particle (VLP) abundances ranged from 2.26 ?? 105 to 5.56 ?? 107 VLP mL-1. VLP abundances were significantly correlated (P < 0.05) with TDC, bacterial productivity (TdR), chlorophyll a (Chl a), and soluble reactive phosphorus (SRP). Lysogenic bacteria, determined by induction with mitomycin C, made up between 2.0% and 62.5% of the total population of bacteria when using significant decreases and increases in TDC and VLP abundances, respectively, and 89.5% when using increases in VLP abundances as the sole criterion for a successful induction event. The contribution of viruses released from induced lysogens contributed <0.015% to the total viral production rate. Carbohydrate and protein based organic aggregates were abundant within the water column of the lakes and were heavily colonized by bacteria and VLPs. Alkaline phosphatase activity was detected within the matrix of the aggregates, implying phosphorus deficiency and consortial nutrient exchanges among microorganisms.

  8. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria

    PubMed Central

    Biosca, Elena G.; Flores, Raquel; Santander, Ricardo D.; Díez-Gil, José Luis; Barreno, Eva

    2016-01-01

    Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these

  9. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity.

    PubMed

    Chung, Joon-hui; Song, Geun Cheol; Ryu, Choong-Min

    2016-04-01

    Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions.

  10. Antimicrobial activity of select anti-methanogenic nitro- and thio-containing compounds

    USDA-ARS?s Scientific Manuscript database

    New technologies are needed to help livestock producers maintain optimal health and wellbeing in their animals while minimizing risks of propagating and disseminating antimicrobial resistant bacteria to humans or other animals. Where possible, these interventions should contribute to the efficiency...

  11. Minimization of lumen depreciation in LED lamps using thermal transient behavior analysis and design optimizations.

    PubMed

    Khan, M Nisa

    2016-02-10

    We expansively investigate thermal behaviors of various general-purpose light-emitting diode (LED) lamps and apply our measured results, validated by simulation, to establish lamp design rules for optimizing their optical and thermal properties. These design rules provide the means to minimize lumen depreciation over time by minimizing the periods for lamps to reach thermal steady-state while maintaining their high luminous efficacy and omnidirectional light distribution capability. While it is well known that minimizing the junction temperature of an LED leads to a longer lifetime and an increased lumen output, our study demonstrates, for the first time, to the best of our knowledge, that it is also important to minimize the time it takes to reach thermal equilibrium because doing so minimizes lumen depreciation and enhances light output and color stability during operation. Specifically, we have found that, in addition to inadequate heat-sink fin areas for a lamp configuration, LEDs mounted on multiple boards, as opposed to a single board, lead to longer periods for reaching thermal equilibrium contributing to larger lumen depreciation.

  12. Antimicrobial Use for and Resistance of Zoonotic Bacteria Recovered from Nonhuman Primates.

    PubMed

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Bower, Julie K; Rinaldi, William J; Plauche, Gail B; Habing, Gregory G

    2017-02-01

    As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Largescale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuber-culosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk.

  13. Antimicrobial Use for and Resistance of Zoonotic Bacteria Recovered from Nonhuman Primates

    PubMed Central

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Bower, Julie K; Rinaldi, William J; Plauche, Gail B; Habing, Gregory G

    2017-01-01

    As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Large-scale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuberculosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk. PMID:28222842

  14. Comparison of nitroethane, 2-nitro-1-propanol, lauric acid, Lauricidin and the Hawaiian marine algae, Chaetoceros, for potential broad-spectrum control of anaerobically grown lactic acid bacteria

    USDA-ARS?s Scientific Manuscript database

    The gastrointestinal tract of bovines often contains bacteria that contribute to disorders of the rumen and may also contain foodborne or opportunistic human pathogens as well as bacteria capable of causing mastitis in cows. Thus, there is a need to develop broad-spectrum therapies that are effecti...

  15. Characterization of culturable bacteria isolated from the cold-water coral Lophelia pertusa

    USGS Publications Warehouse

    Galkiewicz, Julia P.; Pratte, Zoe A.; Gray, Michael A.; Kellogg, Christina A.

    2011-01-01

    Microorganisms associated with corals are hypothesized to contribute to the function of the host animal by cycling nutrients, breaking down carbon sources, fixing nitrogen, and producing antibiotics. This is the first study to culture and characterize bacteria from Lophelia pertusa, a cold-water coral found in the deep sea, in an effort to understand the roles that the microorganisms play in the coral microbial community. Two sites in the northern Gulf of Mexico were sampled over 2 years. Bacteria were cultured from coral tissue, skeleton, and mucus, identified by 16S rRNA genes, and subjected to biochemical testing. Most isolates were members of the Gammaproteobacteria, although there was one isolate each from the Betaproteobacteria and Actinobacteria. Phylogenetic results showed that both sampling sites shared closely related isolates (e.g. Pseudoalteromonas spp.), indicating possible temporally and geographically stable bacterial-coral associations. The Kirby-Bauer antibiotic susceptibility test was used to separate bacteria to the strain level, with the results showing that isolates that were phylogenetically tightly grouped had varying responses to antibiotics. These results support the conclusion that phylogenetic placement cannot predict strain-level differences and further highlight the need for culture-based experiments to supplement culture-independent studies.

  16. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boedicker, J.; Li, L; Kline, T

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminatingmore » the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.« less

  17. PCR detection of uncultured rumen bacteria.

    PubMed

    Rosero, Jaime A; Strosová, Lenka; Mrázek, Jakub; Fliegerová, Kateřina; Kopečný, Jan

    2012-07-01

    16S rRNA sequences of ruminal uncultured bacterial clones from public databases were phylogenetically examined. The sequences were found to form two unique clusters not affiliated with any known bacterial species: cluster of unidentified sequences of free floating rumen fluid uncultured bacteria (FUB) and cluster of unidentified sequences of bacteria associated with rumen epithelium (AUB). A set of PCR primers targeting 16S rRNA of ruminal free uncultured bacteria and rumen epithelium adhering uncultured bacteria was designed based on these sequences. FUB primers were used for relative quantification of uncultured bacteria in ovine rumen samples. The effort to increase the population size of FUB group has been successful in sulfate reducing broth and culture media supplied with cellulose.

  18. Willing to walk: a creative strategy to minimize stress related to floating.

    PubMed

    Good, Eileen; Bishop, Paula

    2011-05-01

    Asking a nurse to float has traditionally been fraught with anxiety, fear, and frustration. Floating can result in nursing dissatisfaction and high turnover rates. The authors discuss a strategy to minimize nurse anxiety and enhance nurse autonomy. The strategy has been successful for more than 6 years and contributed to a positive trend in nursing satisfaction with a very low turnover rate.

  19. Holographic microscopy for 3D tracking of bacteria

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Cho, Yong Bin; El-Kholy, Marwan; Bedrossian, Manuel; Rider, Stephanie; Lindensmith, Christian; Wallace, J. Kent

    2016-03-01

    Understanding when, how, and if bacteria swim is key to understanding critical ecological and biological processes, from carbon cycling to infection. Imaging motility by traditional light microscopy is limited by focus depth, requiring cells to be constrained in z. Holographic microscopy offers an instantaneous 3D snapshot of a large sample volume, and is therefore ideal in principle for quantifying unconstrained bacterial motility. However, resolving and tracking individual cells is difficult due to the low amplitude and phase contrast of the cells; the index of refraction of typical bacteria differs from that of water only at the second decimal place. In this work we present a combination of optical and sample-handling approaches to facilitating bacterial tracking by holographic phase imaging. The first is the design of the microscope, which is an off-axis design with the optics along a common path, which minimizes alignment issues while providing all of the advantages of off-axis holography. Second, we use anti-reflective coated etalon glass in the design of sample chambers, which reduce internal reflections. Improvement seen with the antireflective coating is seen primarily in phase imaging, and its quantification is presented here. Finally, dyes may be used to increase phase contrast according to the Kramers-Kronig relations. Results using three test strains are presented, illustrating the different types of bacterial motility characterized by an enteric organism (Escherichia coli), an environmental organism (Bacillus subtilis), and a marine organism (Vibrio alginolyticus). Data processing steps to increase the quality of the phase images and facilitate tracking are also discussed.

  20. Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria

    PubMed Central

    Dy, Ron L; Pitman, Andrew R; Fineran, Peter C

    2013-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated (Cas) proteins form adaptive immune systems in bacteria to combat phage and other foreign genetic elements. Typically, short spacer sequences are acquired from the invader DNA and incorporated into CRISPR arrays in the bacterial genome. Small RNAs are generated that contain these spacer sequences and enable sequence-specific destruction of the foreign nucleic acids. Occasionally, spacers are acquired from the chromosome, which instead leads to targeting of the host genome. Chromosomal targeting is highly toxic to the bacterium, providing a strong selective pressure for a variety of evolutionary routes that enable host cell survival. Mutations that inactivate the CRISPR-Cas functionality, such as within the cas genes, CRISPR repeat, protospacer adjacent motifs (PAM), and target sequence, mediate escape from toxicity. This self-targeting might provide some explanation for the incomplete distribution of CRISPR-Cas systems in less than half of sequenced bacterial genomes. More importantly, self-genome targeting can cause large-scale genomic alterations, including remodeling or deletion of pathogenicity islands and other non-mobile chromosomal regions. While control of horizontal gene transfer is perceived as their main function, our recent work illuminates an alternative role of CRISPR-Cas systems in causing host genomic changes and influencing bacterial evolution. PMID:24251073

  1. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.

    PubMed

    Martin, Gaëtan; Guggiari, Matteo; Bravo, Daniel; Zopfi, Jakob; Cailleau, Guillaume; Aragno, Michel; Job, Daniel; Verrecchia, Eric; Junier, Pilar

    2012-11-01

    The oxalate-carbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO(2). In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less

  3. A new biofilm-associated colicin with increased efficiency against biofilm bacteria

    PubMed Central

    Rendueles, Olaya; Beloin, Christophe; Latour-Lambert, Patricia; Ghigo, Jean-Marc

    2014-01-01

    Formation of bacterial biofilm communities leads to profound physiological modifications and increased physical and metabolic exchanges between bacteria. It was previously shown that bioactive molecules produced within the biofilm environment contribute to bacterial interactions. Here we describe new pore-forming colicin R, specifically produced in biofilms formed by the natural isolate Escherichia coli ROAR029 but that cannot be detected under planktonic culture conditions. We demonstrate that an increased SOS stress response within mature biofilms induces SOS-dependent colicin R expression. We provide evidence that colicin R displays increased activity against E. coli strains that have a reduced lipopolysaccharide length, such as the pathogenic enteroaggregative E. coli LF82 clinical isolate, therefore pointing to lipopolysaccharide size as an important determinant for resistance to colicins. We show that colicin R toxicity toward E. coli LF82 is increased under biofilm conditions compared with planktonic susceptibility and that release of colicin R confers a strong competitive advantage in mixed biofilms by rapidly outcompeting sensitive neighboring bacteria. This work identifies the first biofilm-associated colicin that preferentially targets biofilm bacteria. Furthermore, it indicates that the study of antagonistic molecules produced in biofilm and multispecies contexts could reveal unsuspected, ecologically relevant bacterial interactions influencing population dynamics in natural environments. PMID:24451204

  4. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    DOE PAGES

    Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce; ...

    2016-10-12

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less

  5. Steroid Receptor Coactivator 3 Contributes to Host Defense against Enteric Bacteria by Recruiting Neutrophils via Upregulation of CXCL2 Expression.

    PubMed

    Chen, Wenbo; Lu, Xuqiang; Chen, Yuan; Li, Ming; Mo, Pingli; Tong, Zhangwei; Wang, Wei; Wan, Wei; Su, Guoqiang; Xu, Jianming; Yu, Chundong

    2017-02-15

    Steroid receptor coactivator 3 (SRC-3) is a transcriptional coactivator that interacts with nuclear receptors and some other transcription factors to enhance their effects on target gene transcription. We reported previously that SRC-3-deficient (SRC-3 -/- ) mice are extremely susceptible to Escherichia coli-induced septic peritonitis as a result of uncontrolled inflammation and a defect in bacterial clearance. In this study, we observed significant upregulation of SRC-3 in colonic epithelial cells in response to Citrobacter rodentium infection. Based on these findings, we hypothesized that SRC-3 is involved in host defense against attaching and effacing bacterial infection. We compared the responses of SRC-3 -/- and wild-type mice to intestinal C. rodentium infection. We found that SRC-3 -/- mice exhibited delayed clearance of C. rodentium and more severe tissue pathology after oral infection with C. rodentium compared with wild-type mice. SRC-3 -/- mice expressed normal antimicrobial peptides in the colons but exhibited delayed recruitment of neutrophils into the colonic mucosa. Accordingly, SRC-3 -/- mice showed a delayed induction of CXCL2 and CXCL5 in colonic epithelial cells, which are responsible for neutrophil recruitment. At the molecular level, we found that SRC-3 can activate the NF-κB signaling pathway to promote CXCL2 expression at the transcriptional level. Collectively, we show that SRC-3 contributes to host defense against enteric bacteria, at least in part via upregulating CXCL2 expression to recruit neutrophils. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  7. Deployable micro-traps to sequester motile bacteria

    NASA Astrophysics Data System (ADS)

    di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  8. Deployable micro-traps to sequester motile bacteria

    PubMed Central

    Di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-01-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria. PMID:28378786

  9. Deployable micro-traps to sequester motile bacteria.

    PubMed

    Di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-05

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  10. Intraplaque hemorrhage, a potential consequence of periodontal bacteria gathering in human carotid atherothrombosis.

    PubMed

    Brun, Adrian; Rangé, Hélène; Prouvost, Bastien; Meilhac, Olivier; Mazighi, Mikael; Amarenco, Pierre; Lesèche, Guy; Bouchard, Philippe; Michel, Jean-Baptiste

    2016-06-28

    Periodontal diseases are multifactorial inflammatory diseases, caused by a bacterial biofilm involving both innate and adaptative immunity, characterized by the destruction of tooth-supporting tissues. In the context of periodontitis, the spread of weak pathogenic bacteria into the bloodstream has been described. These bacteria will preferentially localize to existing clot within the circulation. Atherothrombosis of the carotid arteries is a local pathology and a common cause of cerebral infarction. Intraplaque hemorrhages render the lesion more prone to clinical complications such as stroke. The main objective of this study is to explore the biological relationship between carotid intraplaque hemorrhage and periodontal diseases. This study included consecutive patients with symptomatic or asymptomatic carotid stenosis, admitted for endarterectomy surgical procedure (n=41). In conditioned media of the carotid samples collected, markers of neutrophil activation (myeloperoxidase or MPO, DNA-MPO complexes) and hemoglobin were quantified. To investigate the presence of DNA from periodontal bacteria in atherosclerotic plaque, PCR analysis using specific primers was performed. Our preliminary results indicate an association between neutrophil activation and intraplaque hemorrhages, reflected by the release of MPO (p<0,01) and MPO-DNA complexes (p<0,05). Presence of DNA from periodontitis-associated bacteria was found in 32/41 (78%) atheromatous plaque samples. More specifically, DNA from Pg, Tf, Pi, Aa was found in 46%, 24%, 34% and 68% of the samples, respectively. Hemoglobin levels were higher in conditioned media in carotid samples where the bacteria were found, but this was not statistically significant. Our data confirm the relationship between intraplaque hemorrhage and neutrophil activation. In addition, the presence of periodontal bacteria DNA in carotid atheromatous plaque, may contribute to this activation. Further analysis is needed to fully explore the

  11. Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis.

    PubMed

    Rizzo, Luigi

    2009-06-15

    In this study the potential application of TiO(2) photocatalysis as primary disinfection system of drinking water was investigated in terms of coliform bacteria inactivation and injury. As model water the effluent of biological denitrification unit for nitrate removal from groundwater, which is characterized by high organic matter and bacteria release, was used. The injury of photocatalysis on coliform bacteria was characterized by means of selective (mEndo) and less selective (mT7) culture media. Different catalyst loadings as well as photolysis and adsorption effects were investigated. Photocatalysis was effective in coliform bacteria inactivation (91-99% after 60 min irradiation time, depending on both catalyst loading and initial density of coliform bacteria detected by mEndo), although no total removal was observed after 60 min irradiation time. The contribution of adsorption mechanism was significant (60-98% after 60 min, depending on catalyst loading) compared to previous investigations probably due to the nature of source water rich in particulate organic matter and biofilm. Photocatalysis process did not result in any irreversible injury (98.8% being the higher injury) under investigated conditions, thus a bacteria regrowth may take place under optimum environment conditions if any final disinfection process (e.g., chlorine or chlorine dioxide) is not used.

  12. Mycorrhiza helper bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveau, Aurelie; Labbe, Jessy

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help usmore » to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.« less

  13. Periodic minimal surfaces

    NASA Astrophysics Data System (ADS)

    Mackay, Alan L.

    1985-04-01

    A minimal surface is one for which, like a soap film with the same pressure on each side, the mean curvature is zero and, thus, is one where the two principal curvatures are equal and opposite at every point. For every closed circuit in the surface, the area is a minimum. Schwarz1 and Neovius2 showed that elements of such surfaces could be put together to give surfaces periodic in three dimensions. These periodic minimal surfaces are geometrical invariants, as are the regular polyhedra, but the former are curved. Minimal surfaces are appropriate for the description of various structures where internal surfaces are prominent and seek to adopt a minimum area or a zero mean curvature subject to their topology; thus they merit more complete numerical characterization. There seem to be at least 18 such surfaces3, with various symmetries and topologies, related to the crystallographic space groups. Recently, glyceryl mono-oleate (GMO) was shown by Longley and McIntosh4 to take the shape of the F-surface. The structure postulated is shown here to be in good agreement with an analysis of the fundamental geometry of periodic minimal surfaces.

  14. In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria.

    PubMed

    de Boer, Wietse; Wagenaar, Anne-Marieke; Klein Gunnewiek, Paulien J A; van Veen, Johannes A

    2007-01-01

    We hypothesized that apparently non-antagonistic soil bacteria may contribute to suppression of fungi during competitive interactions with other bacteria. Four soil bacteria (Brevundimonas sp., Luteibacter sp., Pedobacter sp. and Pseudomonas sp.) that exhibited little or no visible antifungal activity on different agar media were prescribed. Single and mixed strains of these species were tested for antagonism on a nutrient-poor agar medium against the plant pathogenic fungi Fusarium culmorum and Rhizoctonia solani and the saprotrophic fungus Trichoderma harzianum. Single bacterial strains caused little to moderate growth reduction of fungi (quantified as ergosterol), most probably due to nutrient withdrawal from the media. Growth reduction of fungi by the bacterial mixture was much stronger than that by the single strains. This appeared to be mostly due to competitive interactions between the Pseudomonas and Pedobacter strains. We argue that cohabitation of these strains triggered antibiotic production via interspecific interactions and that the growth reduction of fungi was a side-effect caused by the sensitivity of the fungi to bacterial secondary metabolites. Induction of gliding behavior in the Pedobacter strain by other strains was also observed. Our results indicate that apparently non-antagonistic soil bacteria may be important contributors to soil suppressiveness and fungistasis when in a community context.

  15. Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria.

    PubMed

    Bandeira Junior, G; Sutili, F J; Gressler, L T; Ely, V L; Silveira, B P; Tasca, C; Reghelin, M; Matter, L B; Vargas, A P C; Baldisserotto, B

    2018-05-09

    This study investigated the antibacterial activity of five phytochemicals (carvacrol, citral, eugenol, linalool, and thymol) alone or in combination with florfenicol or oxytetracycline against bacteria isolated from silver catfish (Rhamdia quelen). We also analyzed the potential of these compounds to inhibit biofilm formation and hemolysis caused by the bacteria. Bacteria were tested with antimicrobials to calculate the multiple antibiotic resistance (MAR). The checkerboard assay was used to evaluate a putative synergy between five phytochemicals and antimicrobials against the strains isolated. The biofilm formation inhibition assay was performed with phytochemicals and antimicrobials, and the hemolysis inhibition assay was performed with the phytochemicals. Carvacrol, eugenol and thymol were the most effective phytochemicals. Three combinations (linalool with florfenicol or oxytetracycline against Aeromonas hydrophila and citral with oxytetracycline against Citrobacter freundii) demonstrated synergy in the checkerboard assay. All phytochemicals inhibited biofilm formation and hemolysis activity. The tested phytochemicals showed satisfactory activity against fish pathogenic bacteria. The phytochemicals did not present antagonistic interactions with the antimicrobials, allowing their combined use, which may contribute to a decrease in the use of conventional drugs and their residues in aquatic environment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Characterization of gut-associated bacteria in larvae and adults of the southern pine beetle, Dendroctonus frontalis Zimmermann

    Treesearch

    Archana Vasanthakumar; Italo Delalibera; Jo Handelsman; Kier D. Klepzig; Patrick D. Schloss; Kenneth F. Raffa

    2006-01-01

    We report the first study of gut-associated bacteria of bark beetles using both culture dependent and culture-independent methods. These insects are major pests of pine trees but also contribute to important ecological functions such as nutrient cycling. We found members of the

  17. Bacteria and wound healing.

    PubMed

    Edwards, Ruth; Harding, Keith G

    2004-04-01

    Wound healing is a complex process with many potential factors that can delay healing. There is increasing interest in the effects of bacteria on the processes of wound healing. All chronic wounds are colonized by bacteria, with low levels of bacteria being beneficial to the wound healing process. Wound infection is detrimental to wound healing, but the diagnosis and management of wound infection is controversial, and varies between clinicians. There is increasing recognition of the concept of critical colonization or local infection, when wound healing may be delayed in the absence of the typical clinical features of infection. The progression from wound colonization to infection depends not only on the bacterial count or the species present, but also on the host immune response, the number of different species present, the virulence of the organisms and synergistic interactions between the different species. There is increasing evidence that bacteria within chronic wounds live within biofilm communities, in which the bacteria are protected from host defences and develop resistance to antibiotic treatment. An appreciation of the factors affecting the progression from colonization to infection can help clinicians with the interpretation of clinical findings and microbiological investigations in patients with chronic wounds. An understanding of the physiology and interactions within multi-species biofilms may aid the development of more effective methods of treating infected and poorly healing wounds. The emergence of consensus guidelines has helped to optimize clinical management.

  18. Laser-Based Identification of Pathogenic Bacteria

    ERIC Educational Resources Information Center

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  19. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle

    PubMed Central

    Lea-Smith, David J.; Biller, Steven J.; Davey, Matthew P.; Cotton, Charles A. R.; Perez Sepulveda, Blanca M.; Turchyn, Alexandra V.; Scanlan, David J.; Smith, Alison G.; Chisholm, Sallie W.; Howe, Christopher J.

    2015-01-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  20. Rapid isolation of gluten-digesting bacteria from human stool and saliva by using gliadin-containing plates

    PubMed Central

    Sarantopoulos, Christos; Ongchangco, Deryn; Sry, Jeremy; Cesario, Thomas

    2014-01-01

    The number of individuals with gluten intolerance has increased dramatically over the last years. To date, the only therapy for gluten intolerance is the complete avoidance of dietary gluten. To sustain a strictly gluten-free diet, however, is very challenging. Therefore, there is need for a non-dietary therapy. Any such treatment must appreciate that the immunogenic part of gluten are gliadin peptides which are poorly degraded by the enzymes of the gastrointestinal tract. Probiotic therapy and oral enzyme therapy containing gluten-degrading bacteria (GDB) and their gliadin-digesting enzymes are possible new approaches for the treatment of gluten intolerance, however effectively isolating GDB for these treatments is problematic. The goal of this study was to develop an easy technique to isolate GDB rapidly and efficiently with the hope it might lead to newer ways of developing either probiotics or traditional medicines to treat gluten intolerance. Several researchers have already isolated successfully GDB by using gluten minimal or limited agar plates. Although these plates can be used to isolate bacteria which can tolerate gluten, further assays are needed to investigate if the same bacteria can also digest gluten. The agar plates we developed can detect bacteria which cannot only tolerate gluten but are able to digest it as well. Therefore, we were able to combine two steps into one step. Using such technologies, we were able to isolate five GDB from saliva and stool, and identified three bacterial reference strains with gluten-degrading activity. The technique we developed to isolate bacteria with gluten-degrading activity is fast, effective, and easy to use. The GDB isolated by our technology could have potential as part of a probiotic or enzymatic therapy for people with gluten intolerance. PMID:25519429

  1. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria.

    PubMed

    Kartal, Boran; Rattray, Jayne; van Niftrik, Laura A; van de Vossenberg, Jack; Schmid, Markus C; Webb, Richard I; Schouten, Stefan; Fuerst, John A; Damsté, Jaap Sinninghe; Jetten, Mike S M; Strous, Marc

    2007-01-01

    The bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium. The new anammox species was enriched in a laboratory scale bioreactor in the presence of ammonium and propionate. Interestingly, this particular anammox species could out-compete other anammox bacteria and heterotrophic denitrifiers for the oxidation of propionate in the presence of ammonium, nitrite and nitrate. We provisionally named the new species Candidatus "Anammoxoglobus propionicus".

  2. Investigation of N-acyl homoserine lactone (AHL) molecule production in Gram-negative bacteria isolated from cooling tower water and biofilm samples.

    PubMed

    Haslan, Ezgi; Kimiran-Erdem, Ayten

    2013-09-01

    In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p < 0.05). In addition, it was found that bacteria belonging to the same species isolated from cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria.

  3. Minimal Marking: A Success Story

    ERIC Educational Resources Information Center

    McNeilly, Anne

    2014-01-01

    The minimal-marking project conducted in Ryerson's School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The "minimal-marking" concept (Haswell, 1983), which requires…

  4. Extracellular deoxyribonuclease production by periodontal bacteria.

    PubMed

    Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R

    2012-08-01

    Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.

  5. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Esteban-Fernández, Adelaida; Navascués, Eva; Marquina, Domingo; Santos, Antonio; Moreno-Arribas, M Victoria

    2017-01-24

    Wine is a complex matrix that includes components with different chemical natures, the volatile compounds being responsible for wine aroma quality. The microbial ecosystem of grapes and wine, including Saccharomyces and non- Saccharomyces yeasts, as well as lactic acid bacteria, is considered by winemakers and oenologists as a decisive factor influencing wine aroma and consumer's preferences. The challenges and opportunities emanating from the contribution of wine microbiome to the production of high quality wines are astounding. This review focuses on the current knowledge about the impact of microorganisms in wine aroma and flavour, and the biochemical reactions and pathways in which they participate, therefore contributing to both the quality and acceptability of wine. In this context, an overview of genetic and transcriptional studies to explain and interpret these effects is included, and new directions are proposed. It also considers the contribution of human oral microbiota to wine aroma conversion and perception during wine consumption. The potential use of wine yeasts and lactic acid bacteria as biological tools to enhance wine quality and the advent of promising advice allowed by pioneering -omics technologies on wine research are also discussed.

  6. Antibiotic resistance patterns in fecal bacteria isolated from Christmas shearwater (Puffinus nativitatis) and masked booby (Sula dactylatra) at remote Easter Island.

    PubMed

    Ardiles-Villegas, Karen; González-Acuña, Daniel; Waldenström, Jonas; Olsen, Björn; Hernández, Jorge

    2011-09-01

    Antibiotic use and its implications have been discussed extensively in the past decades. This situation has global consequences when antibiotic resistance becomes widespread in the intestinal bacterial flora of stationary and migratory birds. This study investigated the incidence of fecal bacteria and general antibiotic resistance, with special focus on extended spectrum beta-lactamase (ESBL) isolates, in two species of seabirds at remote Easter Island. We identified 11 species of bacteria from masked booby (Sula dactylatra) and Christmas shearwater (Puffinus nativitatis); five species of gram-negative bacilli, four species of Streptococcus (Enterococcus), and 2 species of Staphylococcus. In addition, 6 types of bacteria were determined barely to the genus level. General antibiotic susceptibility was measured in the 30 isolated Enterobacteriaceae to 11 antibiotics used in human and veterinary medicine. The 10 isolates that showed a phenotypic ESBL profile were verified by clavulanic acid inhibition in double mixture discs with cefpodoxime, and two ESBL strains were found, one strain in masked booby and one strain in Christmas shearwater. The two bacteria harboring the ESBL type were identified as Serratia odorifera biotype 1, which has zoonotic importance. Despite minimal human presence in the masked booby and Christmas shearwater habitats, and the extreme geographic isolation of Easter Island, we found several multiresistant bacteria and even two isolates with ESBL phenotypes. The finding of ESBLs has animal and public health significance and is of potential concern, especially because the investigation was limited in size and indicated that antibiotic-resistant bacteria now are distributed globally.

  7. Photoinactivation of Gram positive and Gram negative bacteria with the antimicrobial peptide (KLAKLAK)(2) conjugated to the hydrophilic photosensitizer eosin Y.

    PubMed

    Johnson, Gregory A; Muthukrishnan, Nandhini; Pellois, Jean-Philippe

    2013-01-16

    We test the hypothesis that the antimicrobial peptide (KLAKLAK)(2) enhances the photodynamic activity of the photosensitizer eosin Y upon conjugation. The conjugate eosin-(KLAKLAK)(2) was obtained by solid-phase peptide synthesis. Photoinactivation assays were performed against the Gram-negative bacteria Escherichia coli , Pseudomonas aeruginosa , and multidrug resistant Acinetobacter baumannii AYE, as well as the Gram-positive bacteria Staphylococcus aureus , and Staphylococcus epidermidis . Partitioning assays were performed with E. coli and S. aureus . Photohemolysis and photokilling assays were also performed to assess the photodynamic activity of the conjugate toward mammalian cells. Eosin-(KLAKLAK)(2) photoinactivates 99.999% of 10(8) CFU/mL of most bacteria tested at a concentration of 1 μM or below. In contrast, neither eosin Y nor (KLAKLAK)(2) cause any significant photoinactivation under similar conditions. The increase in photodynamic activity of the photosensitizer conferred by the antimicrobial peptide is in part due to the fact that (KLAKLAK)(2) promotes the association of eosin Y to bacteria. Eosin-(KLAKLAK)(2) does not significantly associate with red blood cells or the cultured mammalian cell lines HaCaT, COS-7, and COLO 316. Consequently, little photodamage or photokilling is observed with these cells under conditions for which bacterial photoinactivation is achieved. The peptide (KLAKLAK)(2) therefore significantly enhances the photodynamic activity of eosin Y toward both Gram-positive and Gram-negative bacteria while interacting minimally with human cells. Overall, our results suggest that antimicrobial peptides such as (KLAKLAK)(2) might serve as attractive agents that can target photosensitizers to bacteria specifically.

  8. Carbon storage regulator A contributes to the virulence of Haemophilus ducreyi in humans by multiple mechanisms.

    PubMed

    Gangaiah, Dharanesh; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Ellinger, Sheila; Zwickl, Beth; Katz, Barry P; Spinola, Stanley M

    2013-02-01

    The carbon storage regulator A (CsrA) controls a wide variety of bacterial processes, including metabolism, adherence, stress responses, and virulence. Haemophilus ducreyi, the causative agent of chancroid, harbors a homolog of csrA. Here, we generated an unmarked, in-frame deletion mutant of csrA to assess its contribution to H. ducreyi pathogenesis. In human inoculation experiments, the csrA mutant was partially attenuated for pustule formation compared to its parent. Deletion of csrA resulted in decreased adherence of H. ducreyi to human foreskin fibroblasts (HFF); Flp1 and Flp2, the determinants of H. ducreyi adherence to HFF cells, were downregulated in the csrA mutant. Compared to its parent, the csrA mutant had a significantly reduced ability to tolerate oxidative stress and heat shock. The enhanced sensitivity of the mutant to oxidative stress was more pronounced in bacteria grown to stationary phase compared to that in bacteria grown to mid-log phase. The csrA mutant also had a significant survival defect within human macrophages when the bacteria were grown to stationary phase but not to mid-log phase. Complementation in trans partially or fully restored the mutant phenotypes. These data suggest that CsrA contributes to virulence by multiple mechanisms and that these contributions may be more profound in bacterial cell populations that are not rapidly dividing in the human host.

  9. Mineral deposition in bacteria-filled and bacteria-free calcium bodies in the crustacean Hyloniscus riparius (Isopoda: Oniscidea).

    PubMed

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species.

  10. Mineral Deposition in Bacteria-Filled and Bacteria-Free Calcium Bodies in the Crustacean Hyloniscus riparius (Isopoda: Oniscidea)

    PubMed Central

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species. PMID:23554963

  11. Cable Bacteria in Freshwater Sediments

    PubMed Central

    Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  12. BioNLP Shared Task--The Bacteria Track.

    PubMed

    Bossy, Robert; Jourde, Julien; Manine, Alain-Pierre; Veber, Philippe; Alphonse, Erick; van de Guchte, Maarten; Bessières, Philippe; Nédellec, Claire

    2012-06-26

    We present the BioNLP 2011 Shared Task Bacteria Track, the first Information Extraction challenge entirely dedicated to bacteria. It includes three tasks that cover different levels of biological knowledge. The Bacteria Gene Renaming supporting task is aimed at extracting gene renaming and gene name synonymy in PubMed abstracts. The Bacteria Gene Interaction is a gene/protein interaction extraction task from individual sentences. The interactions have been categorized into ten different sub-types, thus giving a detailed account of genetic regulations at the molecular level. Finally, the Bacteria Biotopes task focuses on the localization and environment of bacteria mentioned in textbook articles. We describe the process of creation for the three corpora, including document acquisition and manual annotation, as well as the metrics used to evaluate the participants' submissions. Three teams submitted to the Bacteria Gene Renaming task; the best team achieved an F-score of 87%. For the Bacteria Gene Interaction task, the only participant's score had reached a global F-score of 77%, although the system efficiency varies significantly from one sub-type to another. Three teams submitted to the Bacteria Biotopes task with very different approaches; the best team achieved an F-score of 45%. However, the detailed study of the participating systems efficiency reveals the strengths and weaknesses of each participating system. The three tasks of the Bacteria Track offer participants a chance to address a wide range of issues in Information Extraction, including entity recognition, semantic typing and coreference resolution. We found common trends in the most efficient systems: the systematic use of syntactic dependencies and machine learning. Nevertheless, the originality of the Bacteria Biotopes task encouraged the use of interesting novel methods and techniques, such as term compositionality, scopes wider than the sentence.

  13. Metabolism of Nitrogen Oxides in Ammonia-Oxidizing Bacteria

    NASA Astrophysics Data System (ADS)

    Kozlowski, J.; Stein, L. Y.

    2014-12-01

    Ammonia-oxidizing bacteria (AOB) are key microorganisms in the transformation of nitrogen intermediates in most all environments. Until recently there was very little work done to elucidate the physiology of ammonia-oxidizing bacteria cultivated from variable trophic state environments. With a greater variety of ammonia-oxidizers now in pure culture the importance of comparative physiological and genomic analysis is crucial. Nearly all known physiology of ammonia-oxidizing bacteria lies within the Nitrosomonas genus with Nitrosomonas europaea strain ATCC 19718 as the model. To more broadly characterize and understand the nature of obligate ammonia chemolithotrophy and the contribution of AOB to production of nitrogen oxides, Nitrosomonas spp. and Nitrosospira spp. isolated from variable trophic states and with sequenced genomes, were utilized. Instantaneous ammonia- and hydroxylamine-oxidation kinetics as a function of oxygen and substrate concentration were measured using an oxygen micro-sensor. The pathway intermediates nitric oxide and nitrous oxide were measured in real time using substrate-specific micro-sensors to elucidate whether production of these molecules is stoichiometric with rates of substrate oxidation. Genomic inventory was compared among the strains to identify specific pathways and modules to explain physiological differences in kinetic rates and production of N-oxide intermediates as a condition of their adaptation to different ammonium concentrations. This work provides knowledge of how nitrogen metabolism is differentially controlled in AOB that are adapted to different concentrations of ammonium. Overall, this work will provide further insight into the control of ammonia oxidizing chemolithotrophy across representatives of the Nitrosomonas and Nitrosospira genus, which can then be applied to examine additional genome-sequenced AOB isolates.

  14. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  15. Beyond Precision: Issues of Morality and Decision Making in Minimizing Collateral Casualties

    DTIC Science & Technology

    2003-04-28

    possible contributions from moral judgment and decision making . As Fuller himself said, laws “can create the conditions essential for a rational ...BEYOND PRECISION: Issues of Morality and Decision Making in Minimizing Collateral Casualties Program in Arms Control, Disarmament, and...28 APR 2003 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Beyond Precision: Issues of Morality and Decision Making in

  16. Immunization with intestinal microbiota-derived Staphylococcus aureus and Escherichia coli reduces bacteria-specific recolonization of the intestinal tract.

    PubMed

    Garfias-López, Julio Adrián; Castro-Escarpuli, Graciela; Cárdenas, Pedro E; Moreno-Altamirano, María Maximina Bertha; Padierna-Olivos, Juan; Sánchez-García, F Javier

    2018-04-01

    A wide array of microorganisms colonizes distinctive anatomical regions of animals, being the intestine the one that harbors the most abundant and complex microbiota. Phylogenetic analyses indicate that it is composed mainly of bacteria, and that Bacterioidetes and Firmicutes are the most represented phyla (>90% of the total eubacteria) in mice and humans. Intestinal microbiota plays an important role in host physiology, contributing to digestion, epithelial cells metabolism, stimulation of intestinal immune responses, and protection against intestinal pathogens. Changes in its composition may affect intestinal homeostasis, a condition known as dysbiosis, which may lead to non-specific inflammation and disease. The aim of this work was to analyze the effect that a bacteria-specific systemic immune response would have on the intestinal re-colonization by that particular bacterium. Bacteria were isolated and identified from the feces of Balb/c mice, bacterial cell-free extracts were used to immunize the same mice from which bacteria came from. Concurrently with immunization, mice were subjected to a previously described antibiotic-based protocol to eliminate most of their intestinal bacteria. Serum IgG and feces IgA, specific for the immunizing bacteria were determined. After antibiotic treatment was suspended, specific bacteria were orally administered, in an attempt to specifically re-colonize the intestine. Results showed that parenteral immunization with gut-derived bacteria elicited the production of both anti-bacterial IgG and IgA, and that immunization reduces bacteria specific recolonization of the gut. These findings support the idea that the systemic immune response may, at least in part, determine the bacterial composition of the gut. Copyright © 2018. Published by Elsevier B.V.

  17. Ecology of the oral microbiome: beyond bacteria

    PubMed Central

    Baker, Jonathon L.; Bor, Batbileg; Agnello, Melissa; Shi, Wenyuan; He, Xuesong

    2017-01-01

    Although great strides have been made in understanding the complex bacterial community inhabiting the human oral cavity, for a variety of (mainly technical) reasons the ecological contributions of oral fungi, viruses, phages, and the candidate phyla radiation (CPR) group of ultra-small bacteria have remained understudied. Several recent reports have illustrated the diversity and importance of these organisms in the oral cavity, while TM7x and Candida albicans have served as crucial paradigms for CPR species and oral fungi, respectively. A comprehensive understanding of the oral microbiota and its influence on host health and disease will require a holistic view that emphasizes interactions among different residents within the oral community, as well as their interaction with the host. PMID:28089325

  18. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    PubMed

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  19. BTEX biodegradation by bacteria from effluents of petroleum refinery.

    PubMed

    Mazzeo, Dânia Elisa Christofoletti; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2010-09-15

    Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and

  20. Review on SERS of Bacteria

    PubMed Central

    Mosier-Boss, Pamela A.

    2017-01-01

    Surface enhanced Raman spectroscopy (SERS) has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data. PMID:29137201

  1. A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase.

    PubMed

    Li, Z; Chang, S; Lin, L; Li, Y; An, Q

    2011-08-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase activity is an efficient marker for bacteria to promote plant growth by lowering ethylene levels in plants. We aim to develop a method for rapidly screening bacteria containing ACC deaminase, based on a colorimetric ninhydrin assay of ACC. A reliable colorimetric ninhydrin assay was developed to quantify ACC using heat-resistant polypropylene chimney-top 96-well PCR plates, having the wells evenly heated in boiling water, preventing accidental contamination from boiling water and limiting evaporation. With this method to measure bacterial consumption of ACC, 44 ACC-utilizing bacterial isolates were rapidly screened out from 311 bacterial isolates that were able to grow on minimal media containing ACC as the sole nitrogen source. The 44 ACC-utilizing bacterial isolates showed ACC deaminase activities and belonged to the genus Burkholderia, Pseudomonas or Herbaspirillum. Determination of bacterial ACC consumption by the PCR-plate ninhydrin-ACC assay is a rapid and efficient method for screening bacteria containing ACC deaminase from a large number of bacterial isolates. The PCR-plate ninhydrin-ACC assay extends the utility of the ninhydrin reaction and enables a rapid screening of bacteria containing ACC deaminase from large numbers of bacterial isolates. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Minimal but non-minimal inflation and electroweak symmetry breaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzola, Luca; Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu; Racioppi, Antonio

    2016-10-07

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the rôle of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio r≈10{sup −3}, typical of Higgs-inflation models, but in contrast yields a scalar spectral index n{sub s}≃0.97 which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  3. Transposon-mediated random gene disruption with moderate halophilic bacteria and its application for halophilic bacterial siderophore analysis.

    PubMed

    Matsui, Toru; Nishino, Tomohiko

    2016-12-01

    Analytical conditions using chromo azurol S was validated for quantification of siderophore in aqueous samples, followed by the characterization of siderophore derived from newly isolated moderately halophilic bacteria. Conditions with good linearity between the absorbance and the siderophore concentration were obtained at a siderophore concentration less than 20 µM, in the wavelength range between 630 and 660 nm with developing time for at least 2 h. Of the halophilic bacteria isolated from Tunisian soil, Halomonas sp., namely strain 21a was selected as siderophore producing halophiles. The strain produced siderophore significantly in the absence of iron in minimal medium. Siderophore-deficient mutant, namely IIa10, of the strain 21a was obtained from gene disruptant library constructed using transposon complex by electroporation. Genomic sequence analysis of the mutant IIa10 revealed that the transposon-inserted gene was TonB-dependent receptor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system.

    PubMed

    Zarkasi, K Z; Abell, G C J; Taylor, R S; Neuman, C; Hatje, E; Tamplin, M L; Katouli, M; Bowman, J P

    2014-07-01

    The relationship of Atlantic salmon gastrointestinal (GI) tract bacteria to environmental factors, in particular water temperature within a commercial mariculture system, was investigated. Salmon GI tract bacterial communities commercially farmed in south-eastern Tasmania were analysed, over a 13-month period across a standard commercial production farm cycle, using 454 16S rRNA-based pyrosequencing. Faecal bacterial communities were highly dynamic but largely similar between randomly selected fish. In postsmolt, the faecal bacteria population was dominated by Gram-positive fermentative bacteria; however, by midsummer, members of the family Vibrionaceae predominated. As fish progressed towards harvest, a range of different bacterial genera became more prominent corresponding to a decline in Vibrionaceae. The sampled fish were fed two different commercial diet series with slightly different protein, lipid and digestible energy level; however, the effect of these differences was minimal. The overall data demonstrated dynamic hind gut communities in salmon that were related to season and fish growth phases but were less influenced by differences in commercial diets used routinely within the farm system studied. This study provides understanding of farmed salmon GI bacterial communities and describes the relative impact of diet, environmental and farm factors. © 2014 The Society for Applied Microbiology.

  5. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms.

    PubMed

    Failor, K C; Schmale, D G; Vinatzer, B A; Monteil, C L

    2017-12-01

    A growing body of circumstantial evidence suggests that ice nucleation active (Ice + ) bacteria contribute to the initiation of precipitation by heterologous freezing of super-cooled water in clouds. However, little is known about the concentration of Ice + bacteria in precipitation, their genetic and phenotypic diversity, and their relationship to air mass trajectories and precipitation chemistry. In this study, 23 precipitation events were collected over 15 months in Virginia, USA. Air mass trajectories and water chemistry were determined and 33 134 isolates were screened for ice nucleation activity (INA) at -8 °C. Of 1144 isolates that tested positive during initial screening, 593 had confirmed INA at -8 °C in repeated tests. Concentrations of Ice + strains in precipitation were found to range from 0 to 13 219 colony forming units per liter, with a mean of 384±147. Most Ice + bacteria were identified as members of known and unknown Ice + species in the Pseudomonadaceae, Enterobacteriaceae and Xanthomonadaceae families, which nucleate ice employing the well-characterized membrane-bound INA protein. Two Ice + strains, however, were identified as Lysinibacillus, a Gram-positive genus not previously known to include Ice + bacteria. INA of the Lysinibacillus strains is due to a nanometer-sized molecule that is heat resistant, lysozyme and proteinase resistant, and secreted. Ice + bacteria and the INA mechanisms they employ are thus more diverse than expected. We discuss to what extent the concentration of culturable Ice + bacteria in precipitation and the identification of a new heat-resistant biological INA mechanism support a role for Ice + bacteria in the initiation of precipitation.

  6. Hybrid minimally invasive esophagectomy for cancer: impact on postoperative inflammatory and nutritional status.

    PubMed

    Scarpa, M; Cavallin, F; Saadeh, L M; Pinto, E; Alfieri, R; Cagol, M; Da Roit, A; Pizzolato, E; Noaro, G; Pozza, G; Castoro, C

    2016-11-01

    The purpose of this case-control study was to evaluate the impact of hybrid minimally invasive esophagectomy for cancer on surgical stress response and nutritional status. All 34 consecutive patients undergoing hybrid minimally invasive esophagectomy for cancer at our surgical unit between 2008 and 2013 were retrospectively compared with 34 patients undergoing esophagectomy with open gastric tubulization (open), matched for neoadjuvant therapy, pathological stage, gender and age. Demographic data, tumor features and postoperative course (including quality of life and systemic inflammatory and nutritional status) were compared. Postoperative course was similar in terms of complication rate. Length of stay in intensive care unit was shorter in patients undergoing hybrid minimally invasive esophagectomy (P = 0.002). In the first postoperative day, patients undergoing hybrid minimally invasive esophagectomy had lower C-reactive protein levels (P = 0.001) and white cell blood count (P = 0.05), and higher albumin serum level (P = 0.001). In this group, albumin remained higher also at third (P = 0.06) and seventh (P = 0.008) postoperative day, and C-reactive protein resulted lower at third post day (P = 0.04). Hybrid minimally invasive esophagectomy significantly improved the systemic inflammatory and catabolic response to surgical trauma, contributing to a shorter length of stay in intensive care unit. © 2015 International Society for Diseases of the Esophagus.

  7. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  8. Amoeba-Resisting Bacteria and Ventilator-Associated Pneumonia

    PubMed Central

    La Scola, Bernard; Boyadjiev, Ioanna; Greub, Gilbert; Khamis, Atieh; Martin, Claude

    2003-01-01

    To evaluate the role of amoeba-associated bacteria as agents of ventilator-associated pneumonia (VAP), we tested the water from an intensive care unit (ICU) every week for 6 months for such bacteria isolates; serum samples and bronchoalveolar lavage samples (BAL) were also obtained from 30 ICU patients. BAL samples were examined for amoeba-associated bacteria DNA by suicide-polymerase chain reaction, and serum samples were tested against ICU amoeba-associated bacteria. A total of 310 amoeba-associated bacteria from10 species were isolated. Twelve of 30 serum samples seroconverted to one amoeba-associated bacterium isolated in the ICU, mainly Legionella anisa and Bosea massiliensis, the most common isolates from water (p=0.021). Amoeba-associated bacteria DNA was detected in BAL samples from two patients whose samples later seroconverted. Seroconversion was significantly associated with VAP and systemic inflammatory response syndrome, especially in patients for whom no etiologic agent was found by usual microbiologic investigations. Amoeba-associated bacteria might be a cause of VAP in ICUs, especially when microbiologic investigations are negative. PMID:12890321

  9. Are Uncultivated Bacteria Really Uncultivable?

    PubMed Central

    Puspita, Indun Dewi; Kamagata, Yoichi; Tanaka, Michiko; Asano, Kozo; Nakatsu, Cindy H.

    2012-01-01

    Many strategies have been used to increase the number of bacterial cells that can be grown from environmental samples but cultivation efficiency remains a challenge for microbial ecologists. The difficulty of cultivating a fraction of bacteria in environmental samples can be classified into two non-exclusive categories. Bacterial taxa with no cultivated representatives for which appropriate laboratory conditions necessary for growth are yet to be identified. The other class is cells in a non-dividing state (also known as dormant or viable but not culturable cells) that require the removal or addition of certain factors to re-initiate growth. A number of strategies, from simple to high throughput techniques, are reviewed that have been used to increase the cultivation efficiency of environmental samples. Some of the underlying mechanisms that contribute to the success of these cultivation strategies are described. Overall this review emphasizes the need of researchers to first understand the factors that are hindering cultivation to identify the best strategies to improve cultivation efficiency. PMID:23059723

  10. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation.

    PubMed

    Delviks-Frankenberry, Krista A; Nikolaitchik, Olga A; Burdick, Ryan C; Gorelick, Robert J; Keele, Brandon F; Hu, Wei-Shau; Pathak, Vinay K

    2016-05-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  11. Inexpensive and fast pathogenic bacteria screening using field-effect transistors.

    PubMed

    Formisano, Nello; Bhalla, Nikhil; Heeran, Mel; Reyes Martinez, Juana; Sarkar, Amrita; Laabei, Maisem; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Flitsch, Sabine; Estrela, Pedro

    2016-11-15

    While pathogenic bacteria contribute to a large number of globally important diseases and infections, current clinical diagnosis is based on processes that often involve culturing which can be time-consuming. Therefore, innovative, simple, rapid and low-cost solutions to effectively reduce the burden of bacterial infections are urgently needed. Here we demonstrate a label-free sensor for fast bacterial detection based on metal-oxide-semiconductor field-effect transistors (MOSFETs). The electric charge of bacteria binding to the glycosylated gates of a MOSFET enables quantification in a straightforward manner. We show that the limit of quantitation is 1.9×10(5) CFU/mL with this simple device, which is more than 10,000-times lower than is achieved with electrochemical impedance spectroscopy (EIS) and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-ToF) on the same modified surfaces. Moreover, the measurements are extremely fast and the sensor can be mass produced at trivial cost as a tool for initial screening of pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture.

    PubMed

    Lanter, Bernard B; Sauer, Karin; Davies, David G

    2014-06-10

    Atherosclerosis, a disease condition resulting from the buildup of fatty plaque deposits within arterial walls, is the major underlying cause of ischemia (restriction of the blood), leading to obstruction of peripheral arteries, congestive heart failure, heart attack, and stroke in humans. Emerging research indicates that factors including inflammation and infection may play a key role in the progression of atherosclerosis. In the current work, atherosclerotic carotid artery explants from 15 patients were all shown to test positive for the presence of eubacterial 16S rRNA genes. Density gradient gel electrophoresis of 5 of these samples revealed that each contained 10 or more distinct 16S rRNA gene sequences. Direct microscopic observation of transverse sections from 5 diseased carotid arteries analyzed with a eubacterium-specific peptide nucleic acid probe revealed these to have formed biofilm deposits, with from 1 to 6 deposits per thin section of plaque analyzed. A majority, 93%, of deposits was located proximal to the internal elastic lamina and associated with fibrous tissue. In 6 of the 15 plaques analyzed, 16S rRNA genes from Pseudomonas spp. were detected. Pseudomonas aeruginosa biofilms have been shown in our lab to undergo a dispersion response when challenged with free iron in vitro. Iron is known to be released into the blood by transferrin following interaction with catecholamine hormones, such as norepinephrine. Experiments performed in vitro showed that addition of physiologically relevant levels of norepinephrine induced dispersion of P. aeruginosa biofilms when grown under low iron conditions in the presence but not in the absence of physiological levels of transferrin. The association of bacteria with atherosclerosis has been only superficially studied, with little attention focused on the potential of bacteria to form biofilms within arterial plaques. In the current work, we show that bacteria form biofilm deposits within carotid arterial plaques

  13. The Dominant Folding Route Minimizes Backbone Distortion in SH3

    PubMed Central

    Lammert, Heiko; Noel, Jeffrey K.; Onuchic, José N.

    2012-01-01

    Energetic frustration in protein folding is minimized by evolution to create a smooth and robust energy landscape. As a result the geometry of the native structure provides key constraints that shape protein folding mechanisms. Chain connectivity in particular has been identified as an essential component for realistic behavior of protein folding models. We study the quantitative balance of energetic and geometrical influences on the folding of SH3 in a structure-based model with minimal energetic frustration. A decomposition of the two-dimensional free energy landscape for the folding reaction into relevant energy and entropy contributions reveals that the entropy of the chain is not responsible for the folding mechanism. Instead the preferred folding route through the transition state arises from a cooperative energetic effect. Off-pathway structures are penalized by excess distortion in local backbone configurations and contact pair distances. This energy cost is a new ingredient in the malleable balance of interactions that controls the choice of routes during protein folding. PMID:23166485

  14. Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle.

    PubMed

    Chen, A P; Berounsky, V M; Chan, M K; Blackford, M G; Cady, C; Moskowitz, B M; Kraal, P; Lima, E A; Kopp, R E; Lumpkin, G R; Weiss, B P; Hesse, P; Vella, N G F

    2014-09-01

    Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle.

  15. Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle

    NASA Astrophysics Data System (ADS)

    Chen, A. P.; Berounsky, V. M.; Chan, M. K.; Blackford, M. G.; Cady, C.; Moskowitz, B. M.; Kraal, P.; Lima, E. A.; Kopp, R. E.; Lumpkin, G. R.; Weiss, B. P.; Hesse, P.; Vella, N. G. F.

    2014-09-01

    Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle.

  16. Generation of volatile fatty acids by axillary bacteria.

    PubMed

    James, A G; Hyliands, D; Johnston, H

    2004-06-01

    It is generally accepted that short-chain (C(2)-C(5)) volatile fatty acids (VFAs) are among the causal molecules of axillary malodour. It is also widely acknowledged that malodour generation is attributable to the biotransformation of odourless natural secretions, into volatile odorous products, by axillary bacteria. However, little information is available on the biochemical origins of VFAs on axillary skin. In these studies, assay systems were developed to investigate the generation of VFAs from substrates readily available to the bacteria resident on axillary skin. Propionibacteria and staphylococci were shown to ferment glycerol and lactic acid to the short-chain (C(2)-C(3)) VFAs, acetic and propionic acid. Furthermore, staphylococci are capable of converting branched aliphatic amino acids, such as leucine, to highly odorous short-chain (C(4)-C(5)) methyl-branched VFAs, such as isovaleric acid, which are traditionally associated with the acidic note of axillary malodour. However, in vitro kinetic data indicates that these pathways contribute less to axillary VFA levels, than fatty acid biotransformations by a recently defined sub-group of the Corynebacterium genus, corynebacteria (A). The results of these studies provide new understanding on the biochemical origins of VFA-based axillary malodour which, in turn, should lead to the development of novel deodorant systems.

  17. [Lactic acid bacteria proteinase and quality of fermented dairy products--A review].

    PubMed

    Zhang, Shuang; Zhang, Lanwei; Han, Xue

    2015-12-04

    Lactic acid bacteria (LAB) could synthesize cell envelope proteinase with weak activity, which primarily degrades casein. In addition to its crucial role in the rapid growth of LAB in milk, LAB proteinases are also of industrial importance due to their contribution to the formation of texture and flavor of many fermented dairy products. The proteolytic system, properties of proteinase, the degradation product of casein and its effect on the quality of fermented dairy products were reviewed in this manuscript.

  18. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    PubMed

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  19. Machine Reading for Extraction of Bacteria and Habitat Taxonomies

    PubMed Central

    Kordjamshidi, Parisa; Massa, Wouter; Provoost, Thomas; Moens, Marie-Francine

    2015-01-01

    There is a vast amount of scientific literature available from various resources such as the internet. Automating the extraction of knowledge from these resources is very helpful for biologists to easily access this information. This paper presents a system to extract the bacteria and their habitats, as well as the relations between them. We investigate to what extent current techniques are suited for this task and test a variety of models in this regard. We detect entities in a biological text and map the habitats into a given taxonomy. Our model uses a linear chain Conditional Random Field (CRF). For the prediction of relations between the entities, a model based on logistic regression is built. Designing a system upon these techniques, we explore several improvements for both the generation and selection of good candidates. One contribution to this lies in the extended exibility of our ontology mapper that uses an advanced boundary detection and assigns the taxonomy elements to the detected habitats. Furthermore, we discover value in the combination of several distinct candidate generation rules. Using these techniques, we show results that are significantly improving upon the state of art for the BioNLP Bacteria Biotopes task. PMID:27077141

  20. Using Fluorescent Viruses for Detecting Bacteria in Water

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  1. Minimally invasive surgical video analysis: a powerful tool for surgical training and navigation.

    PubMed

    Sánchez-González, P; Oropesa, I; Gómez, E J

    2013-01-01

    Analysis of minimally invasive surgical videos is a powerful tool to drive new solutions for achieving reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. This paper presents how video analysis contributes to the development of new cognitive and motor training and assessment programs as well as new paradigms for image-guided surgery.

  2. Reactivation of latent HIV-1 by a wide variety of butyric acid-producing bacteria.

    PubMed

    Imai, Kenichi; Yamada, Kiyoshi; Tamura, Muneaki; Ochiai, Kuniyasu; Okamoto, Takashi

    2012-08-01

    Latently infected cells harbor human immunodeficiency virus type 1 (HIV-1) proviral DNA copies integrated in heterochromatin, allowing persistence of transcriptionally silent proviruses. It is widely accepted that hypoacetylation of histone proteins by histone deacetylases (HDACs) is involved in maintaining the HIV-1 latency by repressing viral transcription. HIV-1 replication can be induced from latently infected cells by environmental factors, such as inflammation and co-infection with other microbes. It is known that a bacterial metabolite butyric acid inhibits catalytic action of HDAC and induces transcription of silenced genes including HIV-1 provirus. There are a number of such bacteria in gut, vaginal, and oral cavities that produce butyric acid during their anaerobic glycolysis. Since these organs are known to be the major site of HIV-1 transmission and its replication, we explored a possibility that explosive viral replication in these organs could be ascribable to butyric acid produced from anaerobic resident bacteria. In this study, we demonstrate that the culture supernatant of various bacteria producing butyric acid could greatly reactivate the latently-infected HIV-1. These bacteria include Fusobacterium nucleatum (commonly present in oral cavity, and gut), Clostridium cochlearium, Eubacterium multiforme (gut), and Anaerococcus tetradius (vagina). We also clarified that butyric acid in these culture supernatants could induce histone acetylation and HIV-1 replication by inhibiting HDAC. Our observations indicate that butyric acid-producing bacteria could be involved in AIDS progression by reactivating the latent HIV provirus and, subsequently, by eliminating such bacterial infection may contribute to the prevention of the AIDS development and transmission.

  3. Screening and biological characteristics of fufenozide degrading bacteria

    NASA Astrophysics Data System (ADS)

    Xu, Chenhao; Gong, Mingfu; Guan, Qinlan; Deng, Xia; Deng, Hongyan; Huang, Jiao

    2018-04-01

    Fufenozide was a novel pesticide for the control of Lepidoptera pests, which was highly toxic to silkworm. Fufenozide-contaminated soil samples were collected and the bacteria that degrade fufenozide were isolated and screened by selective medium. The colony characteristics, cell characteristics and degradation characteristics in different concentrations fufenozide of the fufenozide degrading bacteria were studied. The results indicated that seven strains of fufenozide degradeing bacteria, named as DDH01, DDH03, DDH04, DDH04, DDH05, DDH07 and DDH07 respectively, were isolated from soil contaminated with fufenozide. DDH01, DDH02, DDH04 and DDH05 of seven fufenozide degrading bacteria, was gram-positive bacteria, and DDH03, DDH06 and DDH07 was gram-negative bacteria. All of seven strains of fufenozide degrading bacteria were not spores, weeks flagella, rod-shaped bacteria. DDH06 and DDH07 had capsules, and the remaining five strains had not capsule. The colonies formed by seven strains of fufenozide degradation bacteria on beef extract peptone medium plate were milky white colonies with irregular edges, thinner lawn, smaller colony with smooth surface. The growth of 7 strains of fufenozide degradation bacteria was significantly affected by the concentration of fufenozide, All of 7 strains grown in the range from 0.00025 g/mL to 1 g/mL of 10% fufenozide suspension. DDH2 was the best among the 7 strains of fufenozide degrading bacteria grown in 10% fufenozide suspension medium.

  4. The minimizing style: perceptions of psychological abuse and quality of past and current relationships.

    PubMed

    Varia, R; Abidin, R R

    1999-11-01

    The goals of this current project were to expand and elaborate on the results of Varia, Abidin, and Dass' (1996) study to better understand what historical parenting factors may contribute in creating a "Minimizing" perception of childhood psychological abuse. A second objective included examining the association between perceptual styles and adult ratings of adult relationship satisfaction. Ninety individuals from a non-clinical adult sample completed self-report questionnaires regarding psychological maltreatment and adult relationship satisfaction. Three groups were created and compared using analysis of variance. The groups were (I) "Non-Abused," consistent reporters of no abuse; (II) "Acknowledgers," consistent reporters of abuse; and (III) "Minimizers," reporters of abuse, but do not label themselves as having been abused. Results indicated a continuum effect with the Non-Abused individuals reporting the highest level of maternal warmth and affection, the Acknowledgers reporting the lowest, with the Minimizers in the middle. The Non-Abused group reported the healthiest adjustment in terms of adult relationship satisfaction. While Minimizers and Acknowledgers reported similar levels of psychologically abusive experiences, Acknowledgers reported more difficulties with adult relationships. This study highlights the importance of studying Minimizers, a group which describes abusive events but minimizes the meaning and scope of these experiences. The relatively higher levels of maternal care which the Minimizers reported is hypothesized to be associated with their perceptions that they were not abused and acted as a protective factor associated with better quality adult relationships. The varying degrees of nurturance and care in the early family environment of abused individuals is speculated to be associated with distinct perceptual styles.

  5. Antimicrobial activities of novel cultivable bacteria isolated from marine sponge Tedania anhelans

    NASA Astrophysics Data System (ADS)

    Zeng, Zhen; Zhao, Jing; Ke, Caihuan; Wang, Dexiang

    2013-05-01

    Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian, southeastern China, and is a potential source of natural bioactive products. The sponge harbors a large number of bacterial groups that have been identified using various techniques, including fluorescent in situ hybridization (FISH). Fractionation of dissociated sponge allowed isolation of 25 bacterial species. Based on 16S rRNA gene sequencing, phylogenetic analysis attributed most of these eubacteria to α- Proteobacteria, γ- Proteobacteria, Cytophaga / Flavobacterium / Bacteroidetes (CFB group), and the family Bacillaceae of Gram-positive bacteria. In sequence similarity, five putatively novel species were identified with less than 98% similarity to other strains in the NCBI database. Tests for antimicrobial activities were performed against Gram-positive bacteria, Gram-negative bacteria, fungi, antitumor indicators Escherichia coli 343/591 (with DNA repair deficiency), regular E. coli 343/636 (with different DNA repair capacity), and 10 bacterial isolates exhibited inhibitory bioactivities. Among these strains, three isolates were detected involving function gene NRPS-A domains, which were most closely related to the amino acid sequences of linear gramicidin synthetase and pyoverdine synthetase. These results contribute to our knowledge of the microbes associated with marine sponges and further reveal novel bacterial resources for the screening of bioactive marine natural products.

  6. Identification and Characterization of Lactic Acid Bacteria in a Commercial Probiotic Culture

    PubMed Central

    MENCONI, Anita; KALLAPURA, Gopala; LATORRE, Juan D.; MORGAN, Marion J.; PUMFORD, Neil R.; HARGIS, Billy M.; TELLEZ, Guillermo

    2014-01-01

    The aim of the present study was to describe the identification and characterization (physiological properties) of two strains of lactic acid bacteria (LAB 18 and 48) present in a commercial probiotic culture, FloraMax®-B11. Isolates were characterized morphologically, and identified biochemically. In addition, the MIDI System ID, the Biolog ID System, and 16S rRNA sequence analyses for identification of LAB 18 and LAB 48 strains were used to compare the identification results. Tolerance and resistance to acidic pH, high osmotic concentration of NaCl, and bile salts were tested in broth medium. In vitro assessment of antimicrobial activity against enteropathogenic bacteria and susceptibility to antibiotics were also tested. The results obtained in this study showed tolerance of LAB 18 and LAB 48 to pH 3.0, 6.5% NaCl and a high bile salt concentration (0.6%). Both strains evaluated showed in vitro antibacterial activity against Salmonella enterica serovar Enteritidis, Escherichia coli (O157:H7), and Campylobacter jejuni. These are important characteristics of lactic acid bacteria that should be evaluated when selecting strains to be used as probiotics. Antimicrobial activity of these effective isolates may contribute to efficacy, possibly by direct antimicrobial activity in vivo. PMID:24936379

  7. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Biochemical Composition of Dissolved Organic Carbon Derived from Phytoplankton and Used by Heterotrophic Bacteria

    PubMed Central

    Sundh, Ingvar

    1992-01-01

    The molecular size distribution and biochemical composition of the dissolved organic carbon released from natural communities of lake phytoplankton (photosynthetically produced dissolved organic carbon [PDOC]) and subsequently used by heterotrophic bacteria were determined in three lakes differing in trophic status and concentration of humic substances. After incubation of epilimnetic lake water samples with H14CO3- over one diel cycle, the phytoplankton were removed by size-selective filtration. The filtrates, still containing most of the heterotrophic bacteria, were reincubated in darkness (heterotrophic incubation). Differences in the amount and composition of PDO14C between samples collected before the heterotrophic incubation and samples collected afterwards were considered to be a result of bacterial utilization. The PDO14C collected at the start of the heterotrophic incubations always contained both high (>10,000)- and low (<1,000)-molecular-weight (MW) components and sometimes contained intermediate-MW components as well. In general, bacterial turnover rates of the low-MW components were fairly rapid, whereas the high-MW components were utilized slowly or not at all. In the humic lake, the intermediate-MW components accounted for a large proportion of the net PDO14C and were subject to rapid bacterial utilization. This fraction probably consisted almost entirely of polysaccharides of ca. 6,000 MW. Amino acids and peptides, other organic acids, and carbohydrates could all be quantitatively important parts of the low-MW PDO14C that was utilized by the heterotrophic bacteria, but the relative contributions of these fractions differed widely. It was concluded that, generally, low-MW components of PDOC are quantitatively much more important to the bacteria than are high-MW components, that PDOC released from phytoplankton does not contain substances of quantitative importance as bacterial substrates in all situations, and that high-MW components of PDOC probably

  9. Supersymmetric contributions to weak decay correlation coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Profumo, S.; Ramsey-Musolf, M. J.; Tulin, S.

    2007-04-01

    We study supersymmetric contributions to correlation coefficients that characterize the spectral shape and angular distribution for polarized {mu}- and {beta}-decays. In the minimal supersymmetric standard model (MSSM), one-loop box graphs containing superpartners can give rise to non-(V-Ax(V-A) four-fermion operators in the presence of left-right or flavor mixing between sfermions. We analyze the present phenomenological constraints on such mixing and determine the range of allowed contributions to the weak decay correlation coefficients. We discuss the prospective implications for future {mu}- and {beta}-decay experiments, and argue that they may provide unique probes of left-right mixing in the first generation scalar fermion sector.

  10. 7 CFR Appendix B to Part 210 - Categories of Foods of Minimal Nutritional Value

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nutritional value—Foods of minimal nutritional value are: (1) Soda Water—A class of beverages made by... will be absorbed by the beverage at a pressure of one atmosphere and at a temperature of 60 °F. It... beverage, as is contributed by the flavoring ingredient used. No product shall be excluded from this...

  11. 7 CFR Appendix B to Part 210 - Categories of Foods of Minimal Nutritional Value

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nutritional value—Foods of minimal nutritional value are: (1) Soda Water—A class of beverages made by... will be absorbed by the beverage at a pressure of one atmosphere and at a temperature of 60 °F. It... beverage, as is contributed by the flavoring ingredient used. No product shall be excluded from this...

  12. 7 CFR Appendix B to Part 210 - Categories of Foods of Minimal Nutritional Value

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nutritional value—Foods of minimal nutritional value are: (1) Soda Water—A class of beverages made by... will be absorbed by the beverage at a pressure of one atmosphere and at a temperature of 60 °F. It... beverage, as is contributed by the flavoring ingredient used. No product shall be excluded from this...

  13. 7 CFR Appendix B to Part 210 - Categories of Foods of Minimal Nutritional Value

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nutritional value—Foods of minimal nutritional value are: (1) Soda Water—A class of beverages made by... will be absorbed by the beverage at a pressure of one atmosphere and at a temperature of 60 °F. It... beverage, as is contributed by the flavoring ingredient used. No product shall be excluded from this...

  14. 7 CFR Appendix B to Part 210 - Categories of Foods of Minimal Nutritional Value

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nutritional value—Foods of minimal nutritional value are: (1) Soda Water—A class of beverages made by... will be absorbed by the beverage at a pressure of one atmosphere and at a temperature of 60° F. It... beverage, as is contributed by the flavoring ingredient used. No product shall be excluded from this...

  15. Oxygen Consumption Rates of Bacteria under Nutrient-Limited Conditions

    PubMed Central

    Riedel, Timothy E.; Nealson, Kenneth H.; Finkel, Steven E.

    2013-01-01

    Many environments on Earth experience nutrient limitation and as a result have nongrowing or very slowly growing bacterial populations. To better understand bacterial respiration under environmentally relevant conditions, the effect of nutrient limitation on respiration rates of heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures of Escherichia coli K-12, Shewanella oneidensis MR-1, and Marinobacter aquaeolei VT8 were tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than 2 orders of magnitude for all three strains as they transitioned from nutrient-abundant log-phase growth to the nutrient-limited early stationary phase. The large reduction in QO2 from growth to stationary phase suggests that nutrient availability is an important factor in considering environmental respiration rates. Following the death phase, during the long-term stationary phase (LTSP), QO2 values of the surviving population increased with time and more cells were respiring than formed colonies. Within the respiring population, a subpopulation of highly respiring cells increased in abundance with time. Apparently, as cells enter LTSP, there is a viable but not culturable population whose bulk community and per cell respiration rates are dynamic. This result has a bearing on how minimal energy requirements are met, especially in nutrient-limited environments. The minimal QO2 rates support the extension of Kleiber's law to the mass of a bacterium (100-fg range). PMID:23770901

  16. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea

    NASA Astrophysics Data System (ADS)

    Veuger, B.; Pitcher, A.; Schouten, S.; Sinninghe Damsté, J. S.; Middelburg, J. J.

    2012-11-01

    Nitrification and the associated growth of autotrophic nitrifiers, as well as the contributions of bacteria and Thaumarchaeota to total autotrophic C-fixation by nitrifiers were investigated in the Dutch coastal North Sea from October 2007 to March 2008. Rates of nitrification were determined by incubation of water samples with 15N-ammonium and growth of autotrophic nitrifiers was measured by incubation with 13C-DIC in the presence and absence of nitrification inhibitors (nitrapyrin and chlorate) in combination with compound-specific stable isotope (13C) analysis of bacterial- and Thaumarchaeotal lipid biomarkers. Net nitrification during the sampling period was evident from the concentration dynamics of ammonium, nitrite and nitrate. Measured nitrification rates were high (41-221 nmol N l-1h-1). Ammonium assimilation was always substantially lower than nitrification with nitrification on average contributing 89% (range 73-97%) to total ammonium consumption. 13C-DIC fixation into bacterial and Thaumarchaeotal lipids was strongly reduced by the nitrification inhibitors (27-95%). The inhibitor-sensitive 13C-PLFA pool was dominated by the common PLFAs 16:0, 16:1ω7c and 18:1ω7c throughout the whole sampling period and occasionally also included the polyunsaturated fatty acids 18:2ω6c and 18:3ω3. Cell-specific 13C-DIC fixation activity of the nitrifying bacteria was much higher than that of the nitrifying Thaumarchaeota throughout the whole sampling period, even during the peak in Thaumarchaeotal abundance and activity. This suggests that the contribution of autotrophic Thaumarchaeota to nitrification during winter in the coastal North Sea may have been smaller than expected from their gene abundance. These results emphasize the importance of direct measurements of the actual activity of bacteria and Thaumarchaeota, rather than abundance measurements only, in order to elucidate their biogeochemical importance. The ratio between rates of nitrification versus DIC

  17. Lessons from Digestive-Tract Symbioses Between Bacteria and Invertebrates.

    PubMed

    Graf, Joerg

    2016-09-08

    In most animals, digestive tracts harbor the greatest number of bacteria in the animal that contribute to its health: by aiding in the digestion of nutrients, provisioning essential nutrients and protecting against colonization by pathogens. Invertebrates have been used to enhance our understanding of metabolic processes and microbe-host interactions owing to experimental advantages. This review describes how advances in DNA sequencing technologies have dramatically altered how researchers investigate microbe-host interactions, including 16S rRNA gene surveys, metagenome experiments, and metatranscriptome studies. Advantages and challenges of each of these approaches are described herein. Hypotheses generated through omics studies can be directly tested using site-directed mutagenesis, and findings from transposon studies and site-directed experiments are presented. Finally, unique structural aspects of invertebrate digestive tracts that contribute to symbiont specificity are presented. The combination of omics approaches with genetics and microscopy allows researchers to move beyond correlations to identify conserved mechanisms of microbe-host interactions.

  18. Bacteria-mediated bisphenol A degradation.

    PubMed

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  19. Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium.

    PubMed

    Kenters, Nikki; Henderson, Gemma; Jeyanathan, Jeyamalar; Kittelmann, Sandra; Janssen, Peter H

    2011-01-01

    A new anaerobic medium that mimics the salts composition of rumen fluid was used in conjunction with a dilution method of liquid culture to isolate fermentative bacteria from the rumen of a grass-fed sheep. The aim was to inoculate a large number of culture tubes each with a mean of <1 culturable cell, which should maximize the number of cultures that develop from a single bacterium. This minimizes the effort that has to be put into purifying the resultant cultures. Of 1000 tubes, 139 were growth positive. Of the 93 that were able to be subcultured, 54 (58%) appeared to be pure cultures. The phylogenetic placements of these 54 cultures, together with another 6 cultures obtained from a preliminary study, were determined. Using a criterion of <93% 16S rRNA gene sequence identity to a previously named bacterium as a proxy for defining a new genus, 27 (45%) of the 60 cultures belonged to 14 potentially novel genera. Many of these had 16S rRNA genes that shared >97% sequence identity to genes of uncultured bacteria detected in various gastrointestinal environments. This strategy has therefore allowed us to cultivate many novel rumen bacteria, opening the way to overcoming the lack of cultures of many of the groups detected using cultivation-independent methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices.

    PubMed

    Pearson, Brooke; Mills, Alexander; Tucker, Madeline; Gao, Siyue; McLandsborough, Lynne; He, Lili

    2018-06-01

    Bacterial foodborne illness continues to be a pressing issue in our food supply. Rapid detection methods are needed for perishable foods due to their short shelf lives and significant contribution to foodborne illness. Previously, a sensitive and reliable surface-enhanced Raman spectroscopy (SERS) sandwich assay based on 3-mercaptophenylboronic acid (3-MBPA) as a capturer and indicator molecule was developed for rapid bacteria detection. In this study, we explored the advantages and constraints of this assay over the conventional aerobic plate count (APC) method and further developed methods for detection in real environmental and food matrices. The SERS sandwich assay was able to detect environmental bacteria in pond water and on spinach leaves at higher levels than the APC method. In addition, the SERS assay appeared to have higher sensitivity to quantify bacteria in the stationary phase. On the other hand, the APC method was more sensitive to cell viability. Finally, a method to detect bacteria in a challenging high-sugar juice matrix was developed to enhance bacteria capture. This study advanced the SERS technique for real applications in environment and food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Characterization of Bacteria in Nigerian Yogurt as Promising Alternative to Antibiotics in Gastrointestinal Infections.

    PubMed

    Ayeni, Anthony Opeyemi; Ruppitsch, Werner; Ayeni, Funmilola Abidemi

    2018-03-14

    Gastrointestinal infections are endemic in Nigeria and several factors contribute to their continual survival, including bacterial resistance to commonly used antibiotics. Nigerian yogurts do not include probiotics, and limited information is available about the antimicrobial properties of the fermenters in the yogurt against gastrointestinal pathogens. Therefore, the antimicrobial potentials of bacteria in Nigeria-produced yogurts against intestinal pathogens were investigated in this study. Viable counts of lactic acid bacteria (LAB) in 15 brands of yogurt were enumerated and the bacteria identified by partial sequencing of 16S rRNA gene. Susceptibility of the gastrointestinal pathogens (Salmonella, Shigella and E. coli ) to antibiotics by disc diffusion method, to viable LAB by the agar overlay method, and to the cell-free culture supernatant (CFCS) of the LAB were investigated. Co-culture analysis of LAB and pathogens were also done. Viable counts of 1.5 × 10 11 cfu/ml were observed in some yogurt samples. Two genera were identified: Lactobacillus (70.7%) and Acetobacter (29.3%). The Lactobacillus species reduced multidrug-resistant gastrointestinal pathogens by 4 to 5 log while the zones of inhibition ranged between 11 and 23. The Lactobacillus and Acetobacter strains examined displayed good activities against the multidrug-resistant tested pathogens. This is the first report of antimicrobial activities of acetic acid bacteria isolated from yogurt in Nigeria.

  2. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell.

    PubMed

    Ding, Jing; Lu, Yong-Ze; Fu, Liang; Ding, Zhao-Wei; Mu, Yang; Cheng, Shuk H; Zeng, Raymond J

    2017-03-01

    Anaerobic oxidation of methane (AOM) contributes significantly to the global methane sink. Previously, studies of anaerobic methanotrophic (ANME) archaea have been limited as they have not been separable from their bacterial partners during the AOM process because of their dependence on the bacteria. A microbial fuel cell (MFC) is a device capable of directly transforming chemical energy to electrical energy via electrochemical reactions involving biochemical pathways. In this study, decoupling of denitrifying anaerobic methane oxidation (DAMO) archaea and DAMO bacteria was investigated in an microbial fuel cell (MFC) using methane as the fuel. The DAMO fuel cell worked successfully but demonstrated weak electrogenic capability with around 25 mV production. After 45 days' enrichment, the sequencing and fluorescence in situ hybridization results showed the DAMO archaea percentage had increased from 26.96% (inoculum) to 65.77% (electrode biofilm), while the DAMO bacteria percentage decreased from 24.39% to 2.07%. Moreover, the amount of ANME-2d had doubled in the electrode biofilm compared with the inoculum. The sequencing results also showed substantial enrichment of the Ignavibacterium and Geobacter genera. The roles of Ignavibacterium and Geobacter in the MFC system need to be further investigated. Nevertheless, these results illustrate that an MFC device may provide a possible approach to separate DAMO archaea from DAMO bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Genetic Analysis of Stress Responses in Soil Bacteria for Enhanced Bioremediation of Mixed Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Kwong-Kwok

    In order to realize the full potential of bioremediation, an understanding of microbial community and individual bacterial responses to the stresses encountered at contaminated sites is needed. Knowledge about genetic responses of soil and subsurface bacteria to environmental stresses, which include low nutrients, low oxygen, and mixed pollutants, will allow extrapolation of basic principles to field applications, either using indigenous bacteria or genetically engineered microorganisms. Defining bacterial responses to those stresses presents an opportunity for improving bioremediation strategies, both with indigenous populations and genetically-engineered microbes, and should contribute to environmental management and restoration actions that would reduce the cost andmore » time required to achieve OEM's clean up goals. Stress-inducible genes identified in this project can be used as molecular probes for monitoring performance of indigenous bacteria as well as the effectiveness of bioremediation strategies being employed. Knowledge of survival and catabolic plasmid stability of indigenous bacteria will be needed for devising the most effective bioremediation strategy. In addition, stress-inducible regulatory elements identified in this project will be useful for creating genetically-engineered microorganisms which are able to degrade hazardous wastes under stress conditions at contaminated sites. One of the model organisms, Deinococcus radiodurans, is a stress-resistant bacterium. Thus, in addition to serving as a model for gene regulation in Gram-positive organisms, it may have specific application at aerobic DOE sites where combinations of contaminants produce a particularly stressful environment. Similarly, the use of Sphingomonas F199, isolated from a depth of 407 m at the Savannah River site (Fredrickson et al., 1991), may have relevance to deep subsurface bioremediation applications, where indigenous or engineered microorganisms adapted to the that

  4. Spoilage bacteria of fresh broiler chicken carcasses.

    PubMed

    Russell, S M; Fletcher, D L; Cox, N A

    1995-12-01

    Studies were conducted to identify the bacteria responsible for spoilage of fresh broiler chicken carcasses and to characterize the off-odors these bacteria produce. Broiler carcasses were collected from processing plants in the northeast Georgia area, the southeastern U.S., Arkansas, California, and North Carolina. The carcasses were allowed to spoil under controlled conditions at 3 C and spoilage bacteria were isolated. Each spoilage bacterium was separately inoculated into a sterile chicken skin medium, incubated at 25 C for 48 h, and subjectively evaluated for odor. The bacteria isolated from spoiled carcasses that consistently produced off-odors in the chicken skin medium, regardless of the geographical location from which the chickens were obtained, were Shewanella putrefaciens A, B, and D, Pseudomonas fluorescens A, B, and D, and Pseudomonas fragi. These bacteria produced off-odors that resembled "sulfur", "dishrag", "ammonia", "wet dog", "skunk", "dirty socks", "rancid fish", "unspecified bad odor", or a sweet smell resembling "canned corn". Odors produced by the spoilage bacteria were varied; however, odors most associated with spoiled poultry, such as "dishraggy" odors, were produced by the bacteria that were most consistently isolated, such as S. putrefaciens and the pseudomonads.

  5. Carbon source-dependent expansion of the genetic code in bacteria

    PubMed Central

    Prat, Laure; Heinemann, Ilka U.; Aerni, Hans R.; Rinehart, Jesse; O’Donoghue, Patrick; Söll, Dieter

    2012-01-01

    Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNAPyl is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ∼5% of ORFs, whereas Pyl-decoding bacteria (∼20% of ORFs contain in-frame TAGs) regulate Pyl-tRNAPyl formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases. PMID:23185002

  6. Bacteria in atmospheric waters: Detection, characteristics and implications

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou

    2018-04-01

    In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.

  7. The Role of Secretory Immunoglobulin A in the Natural Sensing of Commensal Bacteria by Mouse Peyer's Patch Dendritic Cells*

    PubMed Central

    Rol, Nicolas; Favre, Laurent; Benyacoub, Jalil; Corthésy, Blaise

    2012-01-01

    The mammalian gastrointestinal (GI) tract harbors a diverse population of commensal species collectively known as the microbiota, which interact continuously with the host. From very early in life, secretory IgA (SIgA) is found in association with intestinal bacteria. It is considered that this helps to ensure self-limiting growth of the microbiota and hence participates in symbiosis. However, the importance of this association in contributing to the mechanisms ensuring natural host-microorganism communication is in need of further investigation. In the present work, we examined the possible role of SIgA in the transport of commensal bacteria across the GI epithelium. Using an intestinal loop mouse model and fluorescently labeled bacteria, we found that entry of commensal bacteria in Peyer's patches (PP) via the M cell pathway was mediated by their association with SIgA. Preassociation of bacteria with nonspecific SIgA increased their dynamics of entry and restored the reduced transport observed in germ-free mice known to have a marked reduction in intestinal SIgA production. Selective SIgA-mediated targeting of bacteria is restricted to the tolerogenic CD11c+CD11b+CD8− dendritic cell subset located in the subepithelial dome region of PPs, confirming that the host is not ignorant of its resident commensals. In conclusion, our work supports the concept that SIgA-mediated monitoring of commensal bacteria targeting dendritic cells in the subepithelial dome region of PPs represents a mechanism whereby the host mucosal immune system controls the continuous dialogue between the host and commensal bacteria. PMID:23027876

  8. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation

    PubMed Central

    Nikolaitchik, Olga A.; Burdick, Ryan C.; Gorelick, Robert J.; Keele, Brandon F.; Hu, Wei-Shau; Pathak, Vinay K.

    2016-01-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10−5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10−21 and1 × 10−11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  9. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    PubMed

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  10. Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu.

    PubMed

    Nachimuthu, Ramesh; Subramani, Ramkumar; Maray, Suresh; Gothandam, K M; Sivamangala, Karthikeyan; Manohar, Prasanth; Bozdogan, Bülent

    2016-10-01

    Carbapenem resistance is disseminating worldwide among Gram-negative bacteria. The aim of this study was to identify carbapenem-resistance level and to determine the mechanism of carbapenem resistance among clinical isolates from two centres in Tamil Nadu. In the present study, a total of 93 Gram-negative isolates, which is found to be resistant to carbapenem by disk diffusion test in two centres, were included. All isolates are identified at species level by 16S rRNA sequencing. Minimal inhibitory concentrations (MICs) of isolates for Meropenem were tested by agar dilution method. Presence of blaOXA, blaNDM, blaVIM, blaIMP and blaKPC genes was tested by PCR in all isolates. Amplicons were sequenced for confirmation of the genes. Among 93 isolates, 48 (%52) were Escherichia coli, 10 (%11) Klebsiella pneumoniae, nine (%10) Pseudomonas aeruginosa. Minimal inhibitory concentration results showed that of 93 suspected carbapenem-resistant isolates, 27 had meropenem MICs ≥ 2 μg/ml. The MIC range, MIC50 and MIC90 were < 0.06 to >128 μg/ml, 0.12 and 16 μg/ml, respectively. Fig. 1 . Among meropenem-resistant isolates, E. coli were the most common (9/48, 22%), followed by K. pneumoniae (7/9, 77%), P. aeruginosa (6/10, 60%), Acinetobacter baumannii (2/2, 100%), Enterobacter hormaechei (2/3, 67%) and one Providencia rettgeri (1/1, 100%). PCR results showed that 16 of 93 carried blaNDM, three oxa181, and one imp4. Among blaNDM carriers, nine were E. coli, four Klebsiella pneumoniae, two E. hormaechei and one P. rettgeri. Three K. pneumoniae were OXA-181 carriers. The only imp4 carrier was P. aeruginosa. A total of seven carbapenem-resistant isolates were negatives by PCR for the genes studied. All carbapenem-resistance gene-positive isolates had meropenem MICs >2 μg/ml. Our results confirm the dissemination of NDM and emergence of OXA-181 beta-lactamase among Gram-negative bacteria in South India. This study showed the emergence of NDM producer in clinical

  11. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  12. Differential Proteomic Analysis of Lactic Acid Bacteria-Escherichia coli O157:H7 Interaction and Its Contribution to Bioprotection Strategies in Meat.

    PubMed

    Orihuel, Alejandra; Terán, Lucrecia; Renaut, Jenny; Vignolo, Graciela M; De Almeida, André M; Saavedra, María L; Fadda, Silvina

    2018-01-01

    Human infection by Enterohemorrhagic Escherichia (E.) coli (EHEC) occurs through the ingestion of contaminated foods such as milk, vegetable products, water-based drinks, and particularly minced meats. Indeed EHEC is a pathogen that threatens public health and meat industry. The potential of different Lactic Acid Bacteria (LAB) strains to control EHEC in a meat-based medium was evaluated by using a simple and rapid method and by analyzing the growth kinetics of co-cultures (LAB-EHEC) in a meat-based medium. The activity of LAB toward EHEC in co-cultures showed variable inhibitory effect. Although, LAB were able to control EHEC, neither the produced acid nor bacteriocins were responsible of the inhibition. The bacteriocinogenic Enteroccus (Ent.) mundtii CRL35 presented one of the highest inhibition activities. A proteomic approach was used to evaluate bacterial interaction and antagonistic mechanisms between Ent. mundtii and EHEC. Physiological observations, such as growth kinetics, acidification ability and EHEC inhibitory potential were supported by the proteomic results, demonstrating significant differences in protein expression in LAB: (i) due to the presence of the pathogen and (ii) according to the growth phase analyzed. Most of the identified proteins belonged to carbohydrate/amino acid metabolism, energy production, transcription/translation, and cell division. These results contribute to the knowledge of competition strategies used by Ent. mundtii during its co-culture with EHEC setting new perspectives for the use of LAB to control this pathogen in meat.

  13. Protist-Bacteria Associations: Gammaproteobacteria and Alphaproteobacteria Are Prevalent as Digestion-Resistant Bacteria in Ciliated Protozoa

    PubMed Central

    Gong, Jun; Qing, Yao; Zou, Songbao; Fu, Rao; Su, Lei; Zhang, Xiaoli; Zhang, Qianqian

    2016-01-01

    Protistan bacterivory, a microbial process involving ingestion and digestion, is ecologically important in the microbial loop in aquatic and terrestrial ecosystems. While bacterial resistance to protistan ingestion has been relatively well understood, little is known about protistan digestion in which some ingested bacteria could not be digested in cells of major protistan grazers in the natural environment. Here we report the phylogenetic identities of digestion-resistant bacteria (DRB) that could survive starvation and form relatively stable associations with 11 marine and one freshwater ciliate species. Using clone library and sequencing of 16S rRNA genes, we found that the protistan predators could host a high diversity of DRB, most of which represented novel bacterial taxa that have not been cultivated. The localization inside host cells, quantity, and viability of these bacteria were checked using fluorescence in situ hybridization. The DRB were affiliated with Actinobacteria, Bacteroidetes, Firmicutes, Parcubacteria (OD1), Planctomycetes, and Proteobacteria, with Gammaproteobacteria and Alphaproteobacteria being the most frequently occurring classes. The dominance of Gamma- and Alphaproteobacteria corresponds well to a previous study of Global Ocean Sampling metagenomic data showing the widespread types of bacterial type VI and IV secretion systems (T6SS and T4SS) in these two taxa, suggesting a putatively significant role of secretion systems in promoting marine protist-bacteria associations. In the DRB assemblages, opportunistic bacteria such as Alteromonadaceae, Pseudoalteromonadaceae, and Vibrionaceae often presented with high proportions, indicating these bacteria could evade protistan grazing thus persist and accumulate in the community, which, however, contrasts with their well-known rarity in nature. This begs the question whether viral lysis is significant in killing these indigestible bacteria in microbial communities. Taken together, our study on

  14. When pathogenic bacteria meet the intestinal microbiota

    PubMed Central

    Rolhion, Nathalie

    2016-01-01

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestinal tract, containing about 100 trillion bacteria from 500–1000 distinct species that, collectively, provide multiple benefits to the host. The gut microbiota contributes to nutrient absorption and maturation of the immune system, and also plays a central role in protection of the host from enteric bacterial infection. On the other hand, many enteric pathogens have developed strategies in order to be able to outcompete the intestinal community, leading to infection and/or chronic diseases. This review will summarize findings describing the complex relationship occurring between the intestinal microbiota and enteric pathogens, as well as how future therapies can ultimately benefit from such discoveries. This article is part of the themed issue ‘The new bacteriology’. PMID:27672153

  15. [Contribution of fungi to soil nitrous oxide emission and their research methods: a review].

    PubMed

    Huang, Ying; Long, Xi-En

    2014-04-01

    Nitrous oxide is an important greenhouse gas. Soil is one major emission source of N2O, which is a by-product of microorganisms-driven nitrification and denitrification processes. Extensive research has demonstrated archaea and bacteria are the predominant contributors in nitrification and denitrification. However, fungi may play a predominant role in the N transformation in a certain soil ecosystem. The fungal contribution to N2O production has been rarely investigated. Here, we reviewed the mechanism of N2O production by soil fungi. The mechanisms of denitrification, autotrophic and heterotrophic nitrification and their key microbes and functional genes were described, respectively. We discriminated the differences in denitrification between bacteria and fungi and discussed the methods being used to determine the contribution of fungi to soil N2O emission, including selective inhibitors, 15N stable isotope probing, isolation and pure culturing and uncultured molecular detection methods. The existing problems and research prospects were also presented.

  16. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms

    NASA Technical Reports Server (NTRS)

    Nichols, P. D.; Henson, J. M.; Guckert, J. B.; Nivens, D. E.; White, D. C.

    1985-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has been used to rapidly and nondestructively analyze bacteria, bacteria-polymer mixtures, digester samples and microbial biofilms. Diffuse reflectance FT-IR (DRIFT) analysis of freeze-dried, powdered samples offered a means of obtaining structural information. The bacteria examined were divided into two groups. The first group was characterized by a dominant amide I band and the second group of organisms displayed an additional strong carbonyl stretch at approximately 1740 cm-1. The differences illustrated by the subtraction spectra obtained for microbes of the two groups suggest that FT-IR spectroscopy can be utilized to recognize differences in microbial community structure. Calculation of specific band ratios has enabled the composition of bacteria and extracellular or intracellular storage product polymer mixtures to be determined for bacteria-gum arabic (amide I/carbohydrate C-O approximately 1150 cm-1) and bacteria-poly-beta-hydroxybutyrate (amide I/carbonyl approximately 1740 cm-1). The key band ratios correlate with the compositions of the material and provide useful information for the application of FT-IR spectroscopy to environmental biofilm samples and for distinguishing bacteria grown under differing nutrient conditions. DRIFT spectra have been obtained for biofilms produced by Vibrio natriegens on stainless steel disks. Between 48 and 144 h, an increase in bands at approximately 1440 and 1090 cm-1 was seen in FT-IR spectra of the V. natriegens biofilm. DRIFT spectra of mixed culture effluents of anaerobic digesters show differences induced by shifts in input feedstocks. The use of flow-through attenuated total reflectance has permitted in situ real-time changes in biofilm formation to be monitored and provides a powerful tool for understanding the interactions within adherent microbial consortia.

  17. Laser-Based Identification of Pathogenic Bacteria

    NASA Astrophysics Data System (ADS)

    Rehse, Steven J.

    2009-03-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the last 10 years, however, several events have occurred that demand the attention of the general populace — including the ranks of physicists among them.

  18. Strange quark contribution to the nucleon

    NASA Astrophysics Data System (ADS)

    Darnell, Dean F.

    The strangeness contribution to the electric and magnetic properties of the nucleon has been under investigation experimentally for many years. Lattice Quantum Chromodynamics (LQCD) gives theoretical predictions of these measurements by implementing the continuum gauge theory on a discrete, mathematical Euclidean space-time lattice which provides a cutoff removing the ultra-violet divergences. In this dissertation we will discuss effective methods using LQCD that will lead to a better determination of the strangeness contribution to the nucleon properties. Strangeness calculations are demanding technically and computationally. Sophisticated techniques are required to carry them to completion. In this thesis, new theoretical and computational methods for this calculation such as twisted mass fermions, perturbative subtraction, and General Minimal Residual (GMRES) techniques which have proven useful in the determination of these form factors will be investigated. Numerical results of the scalar form factor using these techniques are presented. These results give validation to these methods in future calculations of the strange quark contribution to the electric and magnetic form factors.

  19. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil.

    PubMed

    Ali, Nedaa; Dashti, Narjes; Salamah, Samar; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2016-05-01

    Oil-contaminated seawater and desert soil batches were bioaugmented with suspensions of pea (Pisum sativum) rhizosphere and soil with long history of oil pollution. Oil consumption was measured by gas-liquid chromatography. Hydrocarbonoclastic bacteria in the bioremediation batches were counted using a mineral medium with oil vapor as a sole carbon source and characterized by their 16S ribosomal RNA (rRNA)-gene sequences. Most of the oil was consumed during the first 2-4 months, and the oil-removal rate decreased or ceased thereafter due to nutrient and oxygen depletion. Supplying the batches with NaNO3 (nitrogen fertilization) at a late phase of bioremediation resulted in reenhanced oil consumption and bacterial growth. In the seawater batches bioaugmented with rhizospheric suspension, the autochthonous rhizospheric bacterial species Microbacterium oxidans and Rhodococcus spp. were established and contributed to oil-removal. The rhizosphere-bioaugmented soil batches selectively favored Arthrobacter nitroguajacolicus, Caulobacter segnis, and Ensifer adherens. In seawater batches bioaugmented with long-contaminated soil, the predominant oil-removing bacterium was the marine species Marinobacter hydrocarbonoclasticus. In soil batches on the other hand, the autochthonous inhabitants of the long-contaminated soil, Pseudomonas and Massilia species were established and contributed to oil removal. It was concluded that the use of rhizospheric bacteria for inoculating seawater and desert soil and of bacteria in long-contaminated soil for inoculating desert soil follows the concept of "autochthonous bioaugmentation." Inoculating seawater with bacteria in long-contaminated soil, on the other hand, merits the designation "allochthonous bioaugmentation."

  20. [Determination of minimal concentrations of biocorrosion inhibitors by a bioluminescence method in relation to bacteria, participating in biocorrosion].

    PubMed

    Efremenko, E N; Azizov, R E; Makhlis, T A; Abbasov, V M; Varfolomeev, S D

    2005-01-01

    By using a bioluminescence ATP assay, we have determined the minimal concentrations of some biocorrosion inhibitors (Katon, Khazar, VFIKS-82, Nitro-1, Kaspii-2, and Kaspii-4) suppressing most common microbial corrosion agents: Desulfovibrio desulfuricans, Desulfovibrio vulgaris, Pseudomonas putida, Pseudomonas fluorescens, and Acidithiobacillus ferrooxidans. The cell titers determined by the bioluminescence method, including not only dividing cells but also their dormant living counterparts, are two- to sixfold greater than the values determined microbiologically. It is shown that the bioluminescence method can be applied to determination of cell titers in samples of oil-field waters in the presence of iron ions (up to 260 mM) and iron sulfide (to 186 mg/l) and in the absence or presence of biocidal corrosion inhibitors.

  1. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    PubMed

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Distribution, origin and transformation of amino sugars and bacterial contribution to estuarine particulate organic matter

    NASA Astrophysics Data System (ADS)

    Khodse, Vishwas B.; Bhosle, Narayan B.

    2013-10-01

    Amino sugars including bacterial biomarker muramic acid (Mur) were investigated in suspended particulate matter (SPM) to understand their distribution, origin, and biogeochemical cycling and the contribution of bacteria to particulate organic matter (POM) of the Mandovi estuary. SPM was collected from 9 sampling stations in the Mandovi estuary during the pre-monsoon (March) and monsoon (August). Total particulate amino sugar (TPAS) concentrations and yields varied spatially and were 2 to 5 times higher during the monsoon than the pre-monsoon. Negative correlation between salinity and TPAS-C yields [TPAS-C/particulate organic carbon (POC)×100] indicates the influence of terrestrial organic matter on the transport of TPAS-carbon. Glucosamine (GlcN), galactosamine (GalN), and mannosamine (ManN) were abundant during the monsoon. Low GlcN/GalN ratios (<3) indicate bacteria as the major source of amino sugars. Higher amino sugar yields and lower GlcN/GalN ratios during the monsoon than the pre-monsoon indicate enhanced transformation and greater bacterial contribution to POM during the former season. Degradation trends observed with TPAS were well supported by those obtained with carbohydrates and amino acids. Based on Mur concentrations, bacteria accounted for 24% to 35% of the POC and 24% to 62% of the total particulate nitrogen (TPN). Intact bacterial cells, however accounted for a small proportion of POC (2.5% to 4%) and TPN (9% to 11%). Our study suggests that POM was subjected to extensive diagenetic transformation, and its composition was influenced by bacteria, especially during the monsoon.

  3. Nucleon decay in non-minimal supersymmetric SO(10)

    NASA Astrophysics Data System (ADS)

    Macpherson, Alick L.

    1996-02-01

    Evaluation of nucleon decay modes and branching ratios in a non-minimal supersymmetric SO(10) grand unified theory is presented. The non-minimal GUT considered is the supersymmetrised version of the 'realistic' SO(10) model originally proposed by Harvey, Reiss and Ramond, which is realistic in that it gives acceptable charged fermion and neutrino masses within the context of a phenomenological fit to the low-energy standard model inputs. Despite a complicated Higgs sector, the SO(10) 10 Higgs superfield mass insertion is found to be the sole contribution to the tree-level F-term governing nucleon decay. The resulting dimension-5 operators that mediate nucleon decay give branching ratio predictions parameterised by a single parameter, the ratio of the Yukawa couplings of the 10 to the fermion generations. For parameter values corresponding to a lack of dominance of the third family self-coupling, the dominant nucleon decay modes are p → K + + overlineνμand n → K 0 + overlineνμ as expected. Further, the charged muon decay modes are enhanced by two orders of magnitude over the standard minimal SUSY SU(5) predictions, thus predicting a distinct spectrum of 'visible' modes. These charged muon decay modes, along with p → π + + overlineνμand n → π 0 + overlineνμ, which are moderately enhanced over the SUSY SU(5) prediction, suggest a distinguishing fingerprint of this particular GUT model, and if nucleon decay is observed at Super-KAMIOKANDE the predicted branching ratio spectrum can be used to determine the validity of this 'realistic' SO(10) SUSY GUT model.

  4. Communication among Oral Bacteria

    PubMed Central

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  5. Characterization of airborne bacteria at an underground subway station.

    PubMed

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per; Blatny, Janet Martha

    2012-03-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.

  6. Characterization of Airborne Bacteria at an Underground Subway Station

    PubMed Central

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per

    2012-01-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  7. Interactions between ammonia and nitrite oxidizing bacteria in co-cultures: Is there evidence for mutualism, commensalism, or competition?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayavedra-Soto, Luis; Arp, Daniel

    Nitrification is a two-step environmental microbial process in the nitrogen cycle in which ammonia is oxidized to nitrate. Ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and nitrite is oxidized to nitrate by nitrite-oxidizing bacteria. These microorganisms, which likely act in concert in a microbial community, play critical roles in the movement of inorganic N in soils, sediments and waters and are essential to the balance of the nitrogen cycle. Anthropogenic activity has altered the balance of the nitrogen cycle through agriculture practices and organic waste byproducts. Through their influence on available N for plant growth, nitrifying microorganisms influence plantmore » productivity for food and fiber production and the associated carbon sequestration. N Fertilizer production, primarily as ammonia, requires large inputs of natural gas and hydrogen. In croplands fertilized with ammonia-based fertilizers, nitrifiers contribute to the mobilization of this N by producing nitrate (NO3-), wasting the energy used in the production and application of ammonia-based fertilizer. The resulting nitrate is readily leached from these soils, oxidized to gaseous N oxides (greenhouse gases), and denitrified to N2 (which is no longer available as a plant N source). Still, ammonia oxidizers are beneficial in the treatment of wastewater and they also show potential to contribute to microbial bioremediation strategies for clean up of environments contaminated with chlorinated hydrocarbons. Mitigation of the negative effects and exploitation of the beneficial effects of nitrifiers will be facilitated by a systems-level understanding of the interactions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria with the environment and with each other.« less

  8. Potential application of synthesized ferrocenylimines compounds for the elimination of bacteria in water

    NASA Astrophysics Data System (ADS)

    Ikhile, M. I.; Barnard, T. G.; Ngila, J. C.

    2017-08-01

    This work reports a study towards a search for environmentally friendly water disinfectant. The most common method for water treatment is based on chlorine which had a wide application over the years as a water disinfectant, but suffer the disadvantage of reacting with natural organic matter to form disinfection by products. In this study, the potential application of novel ferrocenylimines compounds, namely 4-ferrocenylaniline (1), N-(3-bromo-2-hydroxylbenzylidene)-4-ferrocenylimine (2) and N-(3-bromo-5-chlorosalicyl)-4-ferrocenylimine (3) for the elimination of bacteria in water was investigated by evaluating their antibacterial properties against twelve different bacterial strains using microdilution method in sterile 96 well micro titer plates. The in vitro antibacterial activity revealed that the ferrocenylimines compound exhibit higher antibacterial activity than ferrocene, which is one of the starting materials towards the synthesis of this novel ferrocenylimines compounds. The most active ferrocenylimines compound was compound 3 with a minimal inhibitory concentration (MIC) value of 0.30 mg/ml against S. sonnei. In addition, all the ferrocenylimines compounds possessed excellent antibacterial activity against B. cereus with the same MIC value of 0.31 mg/ml. The results obtained so far show great potential in the three tested ferrocenylimines compounds for use in water treatment in killing bacteria in water.

  9. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil.

    PubMed

    Manikandan, Muthu; Kannan, Vijayaraghavan; Mendoza, Ordetta Hannah; Kanimozhi, Mahalingam; Chun, Sechul; Pašić, Lejla

    2016-01-01

    Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22-100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1-3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity.

  10. Interactions among sulfide-oxidizing bacteria

    NASA Technical Reports Server (NTRS)

    Poplawski, R.

    1985-01-01

    The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes.

  11. How Is the Oxidative Capacity of the Cloud Aqueous Phase Modified By Bacteria?

    NASA Astrophysics Data System (ADS)

    Deguillaume, L.; Mouchel-Vallon, C.; Passananti, M.; Wirgot, N.; Joly, M.; Sancelme, M.; Bianco, A.; Cartier, N.; Brigante, M.; Mailhot, G.; Delort, A. M.; Chaumerliac, N. M.

    2014-12-01

    The aqueous phase photochemical reactions of constituents present in atmospheric water like H2O2, NO3-, NO2- and Fe(III) aqua-complexes or organic complexes can form radicals such as the hydroxyl radical HO within the water drop. However, the literature lacks of data precising the rate of HO formation and the relative contribution of the photochemical sources of HO. The production of radicals in cloud aqueous phase drives the oxidative capacity of the cloud medium and the efficiency of organic matter oxidation. The oxidation of organic compounds is suspected to lead to oxygenated species that could contribute to secondary organic aerosol (SOA) mass (Ervens et al., 2011). In current cloud chemistry models, HO concentrations strongly depend on the organic and iron amount. For high concentrations of organic compounds, this radical is efficiently consumed during the day due to the oxidation process. When iron concentrations are typical from continental cloud, the photolysis of Fe(III) complexes and the Fenton reaction drive the HO concentrations in the cloud models. The concept of biocatalysed reactions contributing to atmospheric chemistry as an alternative route to photochemistry is quite new (Vaïtilingom et al., 2013); it emerged from the recent discovery of metabolically active microorganisms in clouds. Microorganisms are well-known to degrade organic matter but they could also interact with oxidant species such as H2O2 (or their precursors) thanks to their oxidative and nitrosative stress metabolism that will act directly on these species and on their interactions with iron (metalloproteins and siderophores). For the moment, biological impact on radical chemistry within cloud has not been yet considered in cloud chemistry models. Bacterial activity will be introduced as catalysts in a multiphase cloud chemistry model using degradation rates measured in the laboratory. For example, biodegradation rates of the oxidants H2O2 by model bacteria will be tested in the

  12. Abundance and Genetic Diversity of Aerobic Anoxygenic Phototrophic Bacteria of Coastal Regions of the Pacific Ocean

    PubMed Central

    Ritchie, Anna E.

    2012-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities. PMID:22307290

  13. Antibacterial activity of moxifloxacin on bacteria associated with periodontitis within a biofilm.

    PubMed

    Tsaousoglou, Phoebus; Nietzsche, Sandor; Cachovan, Georg; Sculean, Anton; Eick, Sigrun

    2014-02-01

    The activity of moxifloxacin was compared with ofloxacin and doxycycline against bacteria associated with periodontitis within a biofilm (single strain and mixed population) in vitro. MICs and minimal bactericidal concentrations (MBCs) of moxifloxacin, ofloxacin and doxycyline were determined against single strains and mixed populations in a planktonic state. Single-species biofilms of two Porphyromonas gingivalis and two Aggregatibacter actinomycetemcomitans strains and a multispecies biofilm consisting of 12 species were formed for 3 days. The minimal biofilm eradication concentrations (MBECs) were determined after exposing the biofilms to the antibacterials (0.002-512 µg ml(-1)) for 18 h, addition of nutrient broth for 3 days and subsequent subcultivation. Photographs were taken using confocal laser-scanning microscopy and scanning electron microscopy. The MICs and MBCs did not differ between ofloxacin and moxifloxacin against A. actinomycetemcomitans, whilst moxifloxacin was more active than the other tested antibacterials against anaerobes and the mixed population. The single-species biofilms were eradicated by moderate concentrations of the antibacterials, and the lowest MBECs were always found for moxifloxacin (2-8 µg ml(-1)). MBECs against the multispecies biofilms were 128, >512 and >512 µg ml(-1) for moxifloxacin, ofloxacin and doxycycline, respectively. In summary, moxifloxacin in a topical formulation may have potential as an adjunct to mechanical removal of the biofilms.

  14. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    PubMed Central

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  15. Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes.

    PubMed

    Durso, Lisa M; Miller, Daniel N; Wienhold, Brian J

    2012-01-01

    There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain.

  16. The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses.

    PubMed

    Addis, E; Fleet, G H; Cox, J M; Kolak, D; Leung, T

    2001-09-19

    The growth of yeasts and bacteria were monitored during the maturation of Camembert and blue-veined cheese produced in Australia. Yeasts were prominent throughout maturation, growing to 10(5)-10(9)/g, depending on the manufacturer. Debaryomyces hansenii predominated, but there were lesser, inconsistent contributions from Yarrowia lipolytica. Of the non-lactic acid bacteria, Acinetobacter species were significant during the maturation of Camembert but not blue-veined cheeses, and grew to 10(6)-10(8) cfu/g. Staphylococcus and Micrococcus species were consistently isolated from the cheeses with Staphylococcus xylosus growing to 10(5)-10(9) cfu/g, depending on the product. Lactic acid bacteria (10(7)-10(9) cfu/g) were present throughout maturation but were not identified. Interactions between the various yeasts and bacterial isolates were examined. Several strains of D. hansenii exhibited killer activity but not against Y. lipolytica. None of the yeasts were antagonistic towards the bacteria but some strains of D. hansenii enhanced the growth of Y. lipolytica and S. xylosus. The yeast and bacterial isolates exhibited various degrees of extracellular proteolytic and lipolytic activities.

  17. Spectroscopic diagnostics for bacteria in biologic sample

    DOEpatents

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  18. Radial Symmetry of p-Harmonic Minimizers

    NASA Astrophysics Data System (ADS)

    Koski, Aleksis; Onninen, Jani

    2018-03-01

    "It is still not known if the radial cavitating minimizers obtained by uc(Ball) (Philos Trans R Soc Lond A 306:557-611, 1982) (and subsequently by many others) are global minimizers of any physically reasonable nonlinearly elastic energy". This quotation is from uc(Sivaloganathan) and uc(Spector) (Ann Inst Henri Poincaré Anal Non Linéaire 25(1):201-213, 2008) and seems to be still accurate. The model case of the p-harmonic energy is considered here. We prove that the planar radial minimizers are indeed the global minimizers provided we prescribe the admissible deformations on the boundary. In the traction free setting, however, even the identity map need not be a global minimizer.

  19. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments.

    PubMed

    Abadias, M; Usall, J; Anguera, M; Solsona, C; Viñas, I

    2008-03-31

    A survey of fresh and minimally-processed fruit and vegetables, and sprouts was conducted in several retail establishments in the Lleida area (Catalonia, Spain) during 2005-2006 to determine whether microbial contamination, and in particular potentially pathogenic bacteria, was present under these commodities. A total of 300 samples--including 21 ready-to-eat fruits, 28 whole fresh vegetables, 15 sprout samples and 237 ready-to-eat salads containing from one to six vegetables--were purchased from 4 supermarkets. They were tested for mesophilic and psychrotrophic aerobic counts, yeasts and moulds, lactic acid bacteria, Enterobacteriaceae, presumptive E. coli and Listeria monocytogenes counts as well as for the presence of Salmonella, E. coli O157:H7, Yersinia enterocolitica and thermotolerant Campylobacter. Results for the fresh-cut vegetables that we analyzed showed that, in general, the highest microorganism counts were associated with grated carrot, arugula and spinach (7.8, 7.5 and 7.4 log cfu g(-1) of aerobic mesophilic microorganisms; 6.1, 5.8 and 5.2 log cfu g(-1) of yeast and moulds; 5.9, 4.0 and 5.1 log cfu g(-1) lactic acid bacteria and 6.2, 5.3 and 6.0 log cfu g(-1) of Enterobacteriaceae). The lowest counts were generally associated with fresh-cut endive and lettuce (6.2 and 6.3 log cfu g(-1) of aerobic mesophilic microorganisms; 4.4 and 4.6 log cfu g(-1) of yeast and moulds; 2.7 and 3.8 log cfu g(-1) lactic acid bacteria and 4.8 and 4.4 log cfu g(-1) of Enterobacteriaceae). Counts of psychrotrophic microorganisms were as high as those of mesophilic microorganisms. Microbiological counts for fresh-cut fruit were very low. Sprouts were highly contaminated with mesophilic (7.9 log cfu g(-1)), psychrotrophic microorganisms (7.3 log cfu g(-1)) and Enterobacteriaceae (7.2 log cfu g(-1)) and showed a high incidence of E. coli (40% of samples). Of the samples analyzed, four (1.3%) were Salmonella positive and two (0.7%) harboured L. monocytogenes. None of the

  20. Bactericidal efficacy of elevated pH on fish pathogenic and environmental bacteria

    USGS Publications Warehouse

    Starliper, Clifford E.; Watten, Barnaby J.

    2013-01-01

    Ship ballast water is a recognized medium for transfer and introductions of nonindigenous species. There is a need for new ballast water treatment methods that effectively and safely eliminate or greatly minimize movements of these species. The present study employed laboratory methods to evaluate the bactericidal efficacy of increased pH (pH 10.0–12.0) for exposure durations of up to 72 h to kill a variety of Gram-negative and Gram-positive bacteria including fish pathogens (Aeromonas spp., Yersinia ruckeri, Edwardsiella ictaluri, Serratia liquefaciens, Carnobacterium sp.), other common aquatic-inhabitant bacteria (Serratia marcescens, Pseudomonas fluorescens, Staphylococcus sp., Bacillus sp.) and indicators listed in International Maritime Organization D2 Standards; namely, Vibrio cholera (an environmental isolate from fish), Escherichia coli and Enterococcus faecalis. Volumes of 5 N NaOH were added to tryptic soy broth to obtain desired pH adjustments. Viable cells were determined after 0, 4, 12, 24, 48, and 72 h. Initial (0 h) cell numbers ranged from 3.40 × 104 cfu/mL for Bacillus sp. to 2.44 × 107 cfu/mL for E. faecalis. The effective endpoints of pH and treatment duration necessary to realize 100% bactericidal effect varied; however, all bacteria tested were killed within 72 h at pH 12.0 or lower. The lowest parameters examined, 4 h at pH 10.0, were bactericidal to V. cholera, E. ictaluri, three of four isolates of E. coli, and (three of four) Aeromonas salmonicida subsp. salmonicida. Bactericidal effect was attained at pH 10.0 within 12 h for the other A. salmonicida subsp. salmonicida, and within 24 h for P. fluorescens, and the remaining E. coli.

  1. Cable Pili and the Associated 22 Kda Adhesin Contribute to Burkholderia Cenocepacia Persistence In Vivo

    PubMed Central

    Goldberg, Joanna B.; Ganesan, Shyamala; Comstock, Adam T.; Zhao, Ying; Sajjan, Uma S.

    2011-01-01

    Background Infection by Burkholderia cenocepacia in cystic fibrosis (CF) patients is associated with poor clinical prognosis. Previously, we demonstrated that one of the highly transmissible strains, BC7, expresses cable pili and the associated 22 kDa adhesin, both of which contribute to BC7 binding to airway epithelial cells. However, the contribution of these factors to induce inflammation and bacterial persistence in vivo is not known. Methodology/Principal Findings Wild-type BC7 stimulated higher IL-8 responses than the BC7 cbl and BC7 adhA mutants in both CF and normal bronchial epithelial cells. To determine the role of cable pili and the associated adhesin, we characterized a mouse model of B. cenocepacia, where BC7 are suspended in Pseudomonas aeruginosa alginate. C57BL/6 mice were infected intratracheally with wild-type BC7 suspended in either alginate or PBS and were monitored for lung bacterial load and inflammation. Mice infected with BC7 suspended in PBS completely cleared the bacteria by 3 days and resolved the inflammation. In contrast, mice infected with BC7 suspended in alginate showed persistence of bacteria and moderate lung inflammation up to 5 days post-infection. Using this model, mice infected with the BC7 cbl and BC7 adhA mutants showed lower bacterial loads and mild inflammation compared to mice infected with wild-type BC7. Complementation of the BC7 cblS mutation in trans restored the capacity of this strain to persist in vivo. Immunolocalization of bacteria revealed wild-type BC7 in both airway lumen and alveoli, while the BC7 cbl and BC7 adhA mutants were found mainly in airway lumen and peribronchiolar region. Conclusions and Significance B. cenocepacia suspended in alginate can be used to determine the capacity of bacteria to persist and cause lung inflammation in normal mice. Both cable pili and adhesin contribute to BC7-stimulated IL-8 response in vitro, and BC7 persistence and resultant inflammation in vivo. PMID:21811611

  2. Renormalization of minimally doubled fermions

    NASA Astrophysics Data System (ADS)

    Capitani, Stefano; Creutz, Michael; Weber, Johannes; Wittig, Hartmut

    2010-09-01

    We investigate the renormalization properties of minimally doubled fermions, at one loop in perturbation theory. Our study is based on the two particular realizations of Boriçi-Creutz and Karsten-Wilczek. A common feature of both formulations is the breaking of hyper-cubic symmetry, which requires that the lattice actions are supplemented by suitable counterterms. We show that three counterterms are required in each case and determine their coefficients to one loop in perturbation theory. For both actions we compute the vacuum polarization of the gluon. It is shown that no power divergences appear and that all contributions which arise from the breaking of Lorentz symmetry are cancelled by the counterterms. We also derive the conserved vector and axial-vector currents for Karsten-Wilczek fermions. Like in the case of the previously studied Boriçi-Creutz action, one obtains simple expressions, involving only nearest-neighbour sites. We suggest methods how to fix the coefficients of the counterterms non-perturbatively and discuss the implications of our findings for practical simulations.

  3. Effects of combined sewer overflow and stormwater on indicator bacteria concentrations in the Tama River due to the high population density of Tokyo Metropolitan area.

    PubMed

    Ham, Young-Sik; Kobori, Hiromi; Takasago, Masahisa

    2009-05-01

    The indicator bacteria (standard plate count, total coliform, and fecal coliform bacteria) concentrations have been investigated using six ambient habitats (population density, percent sewer penetration, stream flow rate (m(3)/sec), percent residential area, percent forest area and percent agricultural area) in the Tama River basin in Tokyo, Japan during June 2003 to January 2005. The downstream and tributary Tama River showed higher concentrations of TC and FC bacteria than the upstream waters, which exceeded an environmental quality standard for rivers and a bathing water quality criterion. It was estimated that combined sewer overflow (CSO) and stormwater effluents contributed -4-23% to the indicator bacteria concentrations of the Tama River. The results of multiple regression analyses show that the indicator bacteria concentrations of Tama River basin are significantly affected by population density. It is concluded that the Tama River received a significant bacterial contamination load originating from the anthropogenic source.

  4. NAVAIR Hexavalent Chromium Minimization Status

    DTIC Science & Technology

    2010-11-01

    NAVAIR  Hexavalent  Chromium Minimization Status  SERDP/ESTCP Symposium 2010 Cr6+ Session Bill C Nickerson AIR 4.3.4 Report Documentation Page Form...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE NAVAIR Hexavalent Chromium Minimization Status 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...ANSI Std Z39-18 Minimizing Hexavalent Chromium Use in DoD Operations Technical Session No. 2B C-39 NAVAIR NON-CHROMATE MATERIALS STATUS MR

  5. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

    PubMed Central

    Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona

    2015-01-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  6. Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis

    DOE PAGES

    Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Jr., Michael S.; ...

    2016-07-15

    Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. In this paper, we present a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from themore » plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Finally, comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria.« less

  7. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    PubMed Central

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  8. Non-minimally coupled f(R) cosmology

    NASA Astrophysics Data System (ADS)

    Thakur, Shruti; Sen, Anjan A.; Seshadri, T. R.

    2011-02-01

    We investigate the consequences of non-minimal gravitational coupling to matter and study how it differs from the case of minimal coupling by choosing certain simple forms for the nature of coupling. The values of the parameters are specified at z=0 (present epoch) and the equations are evolved backwards to calculate the evolution of cosmological parameters. We find that the Hubble parameter evolves more slowly in non-minimal coupling case as compared to the minimal coupling case. In both the cases, the universe accelerates around present time, and enters the decelerating regime in the past. Using the latest Union2 dataset for supernova Type Ia observations as well as the data for baryon acoustic oscillation (BAO) from SDSS observations, we constraint the parameters of Linder exponential model in the two different approaches. We find that there is an upper bound on model parameter in minimal coupling. But for non-minimal coupling case, there is range of allowed values for the model parameter.

  9. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods.

    PubMed

    Lin, Xiao-Li; Pan, Qin-Jian; Tian, Hong-Gang; Douglas, Angela E; Liu, Tong-Xian

    2015-03-01

    Microbial abundance and diversity of different life stages (fourth instar larvae, pupae and adults) of the diamondback moth, Plutella xylostella L., collected from field and reared in laboratory, were investigated using bacteria culture-dependent method and PCR-DGGE analysis based on the sequence of bacteria 16S rRNA V3 region gene. A large quantity of bacteria was found in all life stages of P. xylostella. Field population had higher quantity of bacteria than laboratory population, and larval gut had higher quantity than pupae and adults. Culturable bacteria differed in different life stages of P. xylostella. Twenty-five different bacterial strains were identified in total, among them 20 strains were presented in larval gut, only 8 strains in pupae and 14 strains in adults were detected. Firmicutes bacteria, Bacillus sp., were the most dominant species in every life stage. 15 distinct bands were obtained from DGGE electrophoresis gel. The sequences blasted in GenBank database showed these bacteria belonged to six different genera. Phylogenetic analysis showed the sequences of the bacteria belonged to the Actinobacteri, Proteobacteria and Firmicutes. Serratia sp. in Proteobacteria was the most abundant species in larval gut. In pupae, unculturable bacteria were the most dominant species, and unculturable bacteria and Serratia sp. were the most dominant species in adults. Our study suggested that a combination of molecular and traditional culturing methods can be effectively used to analyze and to determine the diversity of gut microflora. These known bacteria may play important roles in development of P. xylostella. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  10. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Respiration and carbon dynamics of free-living and particle-attached bacteria in coastal waters of NE Pacific

    NASA Astrophysics Data System (ADS)

    Guo, C.; Ke, Y.; Liu, H.

    2016-02-01

    Bacterial respiration (BR) rates are fundamental to understand the role of bacteria in carbon flow in aquatic ecosystem, and therefore it is critical to obtain reliable measurements. Prefiltration- (mostly 1-3μm) and dark-incubation- (mostly 24 h) based direct measurements of oxygen consumption have been the most commonly used method for BR. However, the prefiltration procedure and long incubation time may cause change of the bacterial abundance and structure, leading to inaccurate measurements. In this study, by measuring bacterial abundance, production and respiration of both particle-attached (PA) and free-living (FL) bacteria at two contrasting site in coastal NE Pacific from Nov 2014 to Mar 2015, we found that the 24 h growth rate of FL bacteria in the traditional BR incubations were significantly higher for 30% and 54% than those obtained for FL and total (FL+PA) bacteria in unfiltered incubations respectively, suggesting removal of protist grazers could cause a significant biomass accumulation during 24 h incubation than the in situ condition. This biomass overestimation resulted in 40% (±12%) overestimation of measured FL BR rates compared with the corrected in situ FL BR. Nevertheless, for the corrected in situ total BR, the rates were overestimated by traditional method in three measurements over nine for 6-46%, and were underestimated in the rest six measurements for 7-67%. Interestingly, those underestimations were attributed to the ignorance of PA bacteria due to prefiltration, which had larger cell size than the FL bacteria, accounted for 19% (±16%) in total bacterial abundance, and contributed to 50% (±19%) of total bacterial production. The average bacterial growth efficiency calculated by comparable 24 h integrated bacterial production and respiration was 0.42 (±0.24). Our results confirmed two major flaws in the current BR methodology, i.e., 1) it only measures the respiration of FL bacteria, and 2) the removal of grazers causing dramatic

  12. Lactic acid bacteria of meat and meat products.

    PubMed

    Egan, A F

    1983-09-01

    When the growth of aerobic spoilage bacteria is inhibited, lactic acid bacteria may become the dominant component of the microbial flora of meats. This occurs with cured meats and with meats packaged in films of low gas permeability. The presence of a flora of psychrotrophic lactic acid bacteria on vacuum-packaged fresh chilled meats usually ensures that shelf-life is maximal. When these organisms spoil meats it is generally by causing souring, however other specific types of spoilage do occur. Some strains cause slime formation and greening of cured meats, and others may produce hydrogen sulphide during growth on vacuum-packaged beef. The safety and stability of fermented sausages depends upon fermentation caused by lactic acid bacteria. Overall the presence on meats of lactic acid bacteria is more desirable than that of the types of bacteria they have replaced.

  13. In situ identification and quantification of protein-hydrolyzing ruminal bacteria associated with the digestion of barley and corn grain.

    PubMed

    Xia, Yun; Kong, Yunhong; Huang, Heping; Yang, Hee Eun; Forster, Robert; McAllister, Tim A

    2016-12-01

    In this study, BODIPY FL DQ™ casein staining combined with fluorescence in situ hybridization (FISH) was used to detect and identify protein-hydrolyzing bacteria within biofilms that produced active cell-surface-associated serine- and metallo-proteases during the ruminal digestion of barley and corn grain in cows fed barley-based diets at 2 different levels. A doublet coccoid bacterial morphotype associated with barley and corn grain particles fluoresced after BODIPY FL DQ™ casein staining. Bacteria with this morphotype accounted for 3%-10% of the total bacteria attached to surface of cereal grain particles, possibly indicative of an important role in the hydrolysis of the protein matrix within the endosperm. However, the identity of these predominant proteolytic bacteria could not be determined using FISH. Quantitative FISH revealed that known proteolytic species, Prevotella ruminicola, Ruminobacter amylophilus, and Butyrivibrio fibrisolvens, were attached to particles of various cultivars of barley grain and corn, confirming their role in the proteolysis of cereal grains. Differences in chemical composition among different barley cultivars did not affect the composition of proteolytic bacterial populations. However, the concentrate level in the basal diet did have an impact on the relative abundance of proteolytic bacteria and thus possibly their overall contribution to the proteolysis of cereal grains.

  14. Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle

    NASA Astrophysics Data System (ADS)

    Huh, Keon; Oh, Darong; Son, Seok Young; Yoo, Hyung Jung; Song, Byeonghwa; Cho, Dong-il Dan; Seo, Jong-Mo; Kim, Sung Jae

    2016-12-01

    The concepts of microrobots has been drawn significant attentions recently since its unprecedented applicability in nanotechnology and biomedical field. Bacteria attached microparticles presented in this work are one of pioneering microrobot technology for self-propulsion or producing kinetic energy from ambient for their motions. Microfluidic device, especially utilizing laminar flow characteristics, were employed for anisotropic attachment of Salmonella typhimurium flagellated chemotactic bacteria to 30 um × 30 um and 50 um × 50 um microparticles that made of biodegradable polymer. Any toxic chemicals or harmful treatments were excluded during the attachment process and it finished within 100 s for the anisotropic attachment. The attachments were directly confirmed by fluorescent intensity changes and SEM visualization. Chemotaxis motions were tracked using aspartate and the maximum velocity of the bacteria-attached microrobot was measured to be 5 um/s which is comparable to prior state of art technologies. This reusable and scalable method could play a key role in chemotaxis delivery of functional microparticles such as drug delivery system.

  15. Tyramine and phenylethylamine biosynthesis by food bacteria.

    PubMed

    Marcobal, Angela; De las Rivas, Blanca; Landete, José María; Tabera, Laura; Muñoz, Rosario

    2012-01-01

    Tyramine poisoning is caused by the ingestion of food containing high levels of tyramine, a biogenic amine. Any foods containing free tyrosine are subject to tyramine formation if poor sanitation and low quality foods are used or if the food is subject to temperature abuse or extended storage time. Tyramine is generated by decarboxylation of the tyrosine through tyrosine decarboxylase (TDC) enzymes derived from the bacteria present in the food. Bacterial TDC have been only unequivocally identified and characterized in Gram-positive bacteria, especially in lactic acid bacteria. Pyridoxal phosphate (PLP)-dependent TDC encoding genes (tyrDC) appeared flanked by a similar genetic organization in several species of lactic acid bacteria, suggesting a common origin by a single mobile genetic element. Bacterial TDC are also able to decarboxylate phenylalanine to produce phenylethylamine (PEA), another biogenic amine. The molecular knowledge of the genes involved in tyramine production has led to the development of molecular methods for the detection of bacteria able to produce tyramine and PEA. These rapid and simple methods could be used for the analysis of the ability to form tyramine by bacteria in order to evaluate the potential risk of tyramine biosynthesis in food products.

  16. Occurrence and abundance of ammonia-oxidizing archaea and bacteria from the surface to below the water table, in deep soil, and their contributions to nitrification.

    PubMed

    Zheng, Lei; Zhao, Xue; Zhu, Guibing; Yang, Wei; Xia, Chao; Xu, Tao

    2017-08-01

    Using molecular biology methods (qualitative and quantitative PCR), we determined the occurrence and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) from a dry inland soil in Basel, Switzerland, and from the riparian zone of Baiyangdian Lake, China. We also determined the contributions of these microorganisms to ammonia oxidization at different depths based on the nitrification rate. The number of archaeal amoA genes (the key functional gene in AOA) was larger than the number of bacterial amoA genes in each sample, suggesting a dominant role for the AOA amoA gene in environments with a low ammonium concentration. In Baiyangdian Lake, the number of archaeal amoA genes was highest at 6 m and lowest at 12 m from the land-water interface in the soil (at depths from 40 to 60 cm), close to the groundwater, which suggests that AOA become more competitive in environments with a low dissolved oxygen content and are promoted by low pH. The nitrification rate was significantly negatively correlated with depth in the Baiyangdian Lake soil and significantly positively correlated with the number of AOB amoA genes at this site, 6 m from the water. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    PubMed

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  18. Small Universal Bacteria and Plasmid Computing Systems.

    PubMed

    Wang, Xun; Zheng, Pan; Ma, Tongmao; Song, Tao

    2018-05-29

    Bacterial computing is a known candidate in natural computing, the aim being to construct "bacterial computers" for solving complex problems. In this paper, a new kind of bacterial computing system, named the bacteria and plasmid computing system (BP system), is proposed. We investigate the computational power of BP systems with finite numbers of bacteria and plasmids. Specifically, it is obtained in a constructive way that a BP system with 2 bacteria and 34 plasmids is Turing universal. The results provide a theoretical cornerstone to construct powerful bacterial computers and demonstrate a concept of paradigms using a "reasonable" number of bacteria and plasmids for such devices.

  19. Survival of soil bacteria during prolonged desiccation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1973-01-01

    A determination was made of the kinds and numbers of bacteria surviving when two soils were maintained in the laboratory under dry conditions for more than half a year. Certain non-spore-forming bacteria were found to survive in the dry condition for long periods. A higher percentage of drought-tolerant than drought-sensitive bacteria was able to grow at low water activities. When they were grown in media with high salt concentrations, bacteria generally became more tolerant of prolonged drought and they persisted longer. The percent of cells in a bacterial population that remained viable when exposed to drought stress varied with the stage of growth.

  20. Identification of bacteria in drinking and purified water during the monitoring of a typical water purification system

    PubMed Central

    Penna, Vessoni Thereza Christina; Martins, Silva Alzira Maria; Mazzola, Priscila Gava

    2002-01-01

    Background A typical purification system that provides purified water which meets ionic and organic chemical standards, must be protected from microbial proliferation to minimize cross-contamination for use in cleaning and preparations in pharmaceutical industries and in health environments. Methodology Samples of water were taken directly from the public distribution water tank at twelve different stages of a typical purification system were analyzed for the identification of isolated bacteria. Two miniature kits were used: (i) identification system (api 20 NE, Bio-Mérieux) for non-enteric and non-fermenting gram-negative rods; and (ii) identification system (BBL crystal, Becton and Dickson) for enteric and non-fermenting gram-negative rods. The efficiency of the chemical sanitizers used in the stages of the system, over the isolated and identified bacteria in the sampling water, was evaluated by the minimum inhibitory concentration (MIC) method. Results The 78 isolated colonies were identified as the following bacteria genera: Pseudomonas, Flavobacterium and Acinetobacter. According to the miniature kits used in the identification, there was a prevalence of isolation of P. aeruginosa 32.05%, P. picketti (Ralstonia picketti) 23.08%, P. vesiculares 12.82%,P. diminuta 11.54%, F. aureum 6.42%, P. fluorescens 5.13%, A. lwoffi 2.56%, P. putida 2.56%, P. alcaligenes 1.28%, P. paucimobilis 1.28%, and F. multivorum 1.28%. Conclusions We found that research was required for the identification of gram-negative non-fermenting bacteria, which were isolated from drinking water and water purification systems, since Pseudomonas genera represents opportunistic pathogens which disperse and adhere easily to surfaces, forming a biofilm which interferes with the cleaning and disinfection procedures in hospital and industrial environments. PMID:12182763