Sample records for bacteria electrophoretic mobility

  1. Microflora on explanted silicone rubber voice prostheses: taxonomy, hydrophobicity and electrophoretic mobility.

    PubMed

    Neu, T R; Verkerke, G J; Herrmann, I F; Schutte, H K; Van der Mei, H C; Busscher, H J

    1994-05-01

    Silicone rubber voice prostheses are implants which are inserted in a non-sterile environment and therefore become quickly colonized by micro-organisms. The micro-organisms exist on the medical grade silicone rubber as mixed biofilms of bacteria and yeasts. A total of 79 bacterial and 39 yeast strains were isolated from these biofilms by soft ultrasonic treatment. Gram-positive/catalase-negative and Gram-positive/catalase-positive cocci represented the dominant bacterial strains. The yeasts were mainly Candida species. Further characterization of cell surface properties such as hydrophobicity by microbial adhesion to hexadecane and electrophoretic mobility showed a distinct difference when the bacterial strains were compared with the yeasts. The bacterial hydrophobicities ranged from 0 to 100% adhesion to hexadecane, whereas the yeast strains, especially the Candida albicans strains, all had markedly hydrophilic cell surfaces. A comparison of the electrophoretic mobilities showed also differences between bacteria and yeast. The values for the bacteria were found to be between -2.5 to -0.5 (10(-8) m2 V-1 s-1), whereas for the yeasts electrophoretic mobilities were more positive. Based on the adhesive properties of the isolated micro-organisms, strategies can now be developed to modify the properties of the silicone rubber to reduce biofilm formation on such prostheses.

  2. Electrophoretic mobilities of erythrocytes in various buffers

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.

  3. Controlled method of reducing electrophoretic mobility of various substances

    NASA Technical Reports Server (NTRS)

    Vanalstine, James M. (Inventor)

    1989-01-01

    A method of reducing electrophoretic mobility of macromolecules, particles, cells, and the like is provided. The method comprises interacting the particles or cells with a polymer-linked affinity compound composed of: a hydrophilic neutral polymer such as polyethylene glycol, and an affinity component consisting of a hydrophobic compound such as a fatty acid ester, an immunocompound such as an antibody or active fragment thereof or simular macromolecule, or other ligands. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and the mobility reduction obtainable is up to 100 percent for particular particles and cells. The present invention is advantageous in that analytical electrophoretic separation can not be achieved for macromolecules, particles, and cells whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions. The present method is also advantageous in that it can be used in a variety of standard laboratory electrophoresis equipment.

  4. Electrophoretic mobilities of cultured human embryonic kidney cells in various buffers

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Data on the electrophoretic mobility distributions of cells in the new D-1 buffer and the interlaboratory standardization of urokinase assay methods are presented. A table of cell strains and recent data on cell dispersal methods are also included. It was decided that glycerol in A-1 electrophoretic mobility data on cultured human embryonic kidney cells subjected to electrophoresis in this buffer. The buffer composition is presented.

  5. Physicochemical characteristics of LR3-IGF1 protein inclusion bodies: electrophoretic mobility studies.

    PubMed

    Wangsa-Wirawan, N D; O'Neill, B K; Middelberg, A P

    2001-01-01

    A knowledge of the physicochemical properties of inclusion bodies is important for the rational design of potential recovery processes such as flotation and precipitation. In this study, measurement of the size and electrophoretic mobility of protein inclusion bodies and cell debris was undertaken. SDS-PAGE analysis of protein inclusion bodies subjected to different cleaning regimes suggested that electrophoretic mobility provides a qualitative measure of protein inclusion body purity. Electrophoretic mobility as a function of electrolyte type and ionic strength was investigated. The presence of divalent ions produced a stronger effect on electrophoretic mobility compared with monovalent ions. The isoelectric point of cell debris was significantly lower than that for the inclusion bodies. Hence, the contaminating cell debris may be separated from inclusion bodies using flotation by exploiting this difference in isoelectric points. Separation by this method is simple, convenient, and a possible alternative to the conventional route of centrifugation.

  6. Controlled method of reducing electrophoretic mobility of macromolecules, particles, or cells

    NASA Technical Reports Server (NTRS)

    Vanalstine, James M. (Inventor)

    1992-01-01

    A method of reducing electrophoretic mobility of macromolecules, particles, cells, and other substances is provided which comprises interacting in a conventional electrophoretic separating procedure, the substances with a polymer-linked affinity compound comprised of a hydrophilic neutral polymer such as polyethylene glycol bound to a second component such as a hydrophobic compound, an immunocompound such as an antibody or antibody active fragment, or a ligand such as a hormone, drug, antigen, or a hapten. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and such reduction can comprise up to 100 percent for particular particles and cells. The present invention is advantageous in that electrophoretic separation can now be achieved for substances whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of the specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions.

  7. ELECTROPHORETIC MOBILITY OF MYCOBACTERIUM AVIUM COMPLEX ORGANISMS

    EPA Science Inventory

    The electrophoretic mobilities (EPMs) of thirty Mycobacterium avium Complex (MAC) organisms isolated from clinical and environmental sources were measured in 9.15 mM KH2PO4 buffered water. The EPMs of fifteen clinical isolates ranged from -1.9 to -5.0 µm cm V-1 ...

  8. ELECTROPHORETIC MOBILITY OF MYCOBACTERIUM AVIUM COMPLEX ORGANISMS

    EPA Science Inventory

    The electrophoretic mobilities (EPMs) of thirty Mycobacterium avium Complex (MAC) organisms were measured. The EPMs of fifteen clinical isolates ranged from -1.9 to -5.0 µm cm V-1s-1, and the EPMs of fifteen environmental isolates ranged from -1...

  9. Effect of AOT Microemulsion Composition on the Hydrodynamic Diameter and Electrophoretic Mobility of Titanium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shaparenko, N. O.; Beketova, D. I.; Demidova, M. G.; Bulavchenko, A. I.

    2018-05-01

    The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane-chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2-3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.

  10. A DC electrophoresis method for determining electrophoretic mobility through the pressure driven negation of electro osmosis

    NASA Astrophysics Data System (ADS)

    Karam, Pascal; Pennathur, Sumita

    2016-11-01

    Characterization of the electrophoretic mobility and zeta potential of micro and nanoparticles is important for assessing properties such as stability, charge and size. In electrophoretic techniques for such characterization, the bulk fluid motion due to the interaction between the fluid and the charged surface must be accounted for. Unlike current industrial systems which rely on DLS and oscillating potentials to mitigate electroosmotic flow (EOF), we propose a simple alternative electrophoretic method for optically determining electrophoretic mobility using a DC electric fields. Specifically, we create a system where an adverse pressure gradient counters EOF, and design the geometry of the channel so that the flow profile of the pressure driven flow matches that of the EOF in large regions of the channel (ie. where we observe particle flow). Our specific COMSOL-optimized geometry is two large cross sectional areas adjacent to a central, high aspect ratio channel. We show that this effectively removes EOF from a large region of the channel and allows for the accurate optical characterization of electrophoretic particle mobility, no matter the wall charge or particle size.

  11. Effect of passage number on electrophoretic mobility distributions of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.

    1985-01-01

    A systematic investigation was undertaken to characterize population shifts that occur in cultured human embryonic kidney cells as a function of passage number in vitro after original explantation. This approach to cell population shift analysis follows the suggestion of Mehreshi, Klein and Revesz that perturbed cell populations can be characterized by electrophoretic mobility distributions if they contain subpopulations with different electrophoretic mobilities. It was shown that this is the case with early passage cultured human embryo cells.

  12. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munjal, Sandeep, E-mail: drsandeepmunjal@gmail.com; Khare, Neeraj, E-mail: nkhare@physics.iitd.ernet.in

    We have synthesized CoFe{sub 2}O{sub 4} (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible inmore » water and form a stable aqueous solution with high electrophoretic mobility.« less

  13. A method for determining electrophoretic and electroosmotic mobilities using AC and DC electric field particle displacements.

    PubMed

    Oddy, M H; Santiago, J G

    2004-01-01

    We have developed a method for measuring the electrophoretic mobility of submicrometer, fluorescently labeled particles and the electroosmotic mobility of a microchannel. We derive explicit expressions for the unknown electrophoretic and the electroosmotic mobilities as a function of particle displacements resulting from alternating current (AC) and direct current (DC) applied electric fields. Images of particle displacements are captured using an epifluorescent microscope and a CCD camera. A custom image-processing code was developed to determine image streak lengths associated with AC measurements, and a custom particle tracking velocimetry (PTV) code was devised to determine DC particle displacements. Statistical analysis was applied to relate mobility estimates to measured particle displacement distributions.

  14. Electrophoretic mobilities of counterions and a polymer in cylindrical pores

    PubMed Central

    Singh, Sunil P.; Muthukumar, M.

    2014-01-01

    We have simulated the transport properties of a uniformly charged flexible polymer chain and its counterions confined inside cylindrical nanopores under an external electric field. The hydrodynamic interaction is treated by describing the solvent molecules explicitly with the multiparticle collision dynamics method. The chain consisting of charged monomers and the counterions interact electrostatically with themselves and with the external electric field. We find rich behavior of the counterions around the polymer under confinement in the presence of the external electric field. The mobility of the counterions is heterogeneous depending on their location relative to the polymer. The adsorption isotherm of the counterions on the polymer depends nonlinearly on the electric field. As a result, the effective charge of the polymer exhibits a sigmoidal dependence on the electric field. This in turn leads to a nascent nonlinearity in the chain stretching and electrophoretic mobility of the polymer in terms of their dependence on the electric field. The product of the electric field and the effective polymer charge is found to be the key variable to unify our simulation data for various polymer lengths. Chain extension and the electrophoretic mobility show sigmoidal dependence on the electric field, with crossovers from the linear response regime to the nonlinear regime and then to the saturation regime. The mobility of adsorbed counterions is nonmonotonic with the electric field. For weaker and moderate fields, the adsorbed counterions move with the polymer and at higher fields they move opposite to the polymer's direction. We find that the effective charge and the mobility of the polymer decrease with a decrease in the pore radius. PMID:25240366

  15. Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion

    PubMed Central

    Palanisami, Akilan; Miller, John H.

    2011-01-01

    The size and surface chemistry of micron scale particles are of fundamental importance in studies of biology and air particulate pollution. However, typical electrophoretic measurements of these and other sub-micron scale particles (300 nm – 1 μm) cannot resolve size information within heterogeneous mixtures unambiguously. Using optical microscopy, we monitor electrophoretic motion together with the Brownian velocity fluctuations—using the latter to measure size by either the Green-Kubo relation or by calibration from known size standards. Particle diameters are resolved to ±12% with 95% confidence. Strikingly, the size resolution improves as particle size decreases due to the increased Brownian motion. The sizing ability of the Brownian assessed electrophoresis method described here complements the electrophoretic mobility resolution of traditional capillary electrophoresis. PMID:20882556

  16. Electrophoretic mobility confirms reassortment bias among geographic isolates of segmented RNA phages

    PubMed Central

    2013-01-01

    Background Sex presents evolutionary costs and benefits, leading to the expectation that the amount of genetic exchange should vary in conditions with contrasting cost-benefit equations. Like eukaryotes, viruses also engage in sex, but the rate of genetic exchange is often assumed to be a relatively invariant property of a particular virus. However, the rates of genetic exchange can vary within one type of virus according to geography, as highlighted by phylogeographic studies of cystoviruses. Here we merge environmental microbiology with experimental evolution to examine sex in a diverse set of cystoviruses, consisting of the bacteriophage ϕ6 and its relatives. To quantify reassortment we manipulated – by experimental evolution – electrophoretic mobility of intact virus particles for use as a phenotypic marker to estimate genetic exchange. Results We generated descendants of ϕ6 that exhibited fast and slow mobility during gel electrophoresis. We identified mutations associated with slow and fast phenotypes using whole genome sequencing and used crosses to establish the production of hybrids of intermediate mobility. We documented natural variation in electrophoretic mobility among environmental isolates of cystoviruses and used crosses against a common fast mobility ϕ6 strain to monitor the production of hybrids with intermediate mobility, thus estimating the amount of genetic exchange. Cystoviruses from different geographic locations have very different reassortment rates when measured against ϕ6, with viruses isolated from California showing higher reassortment rates than those from the Northeastern US. Conclusions The results confirm that cystoviruses from different geographic locations have remarkably different reassortment rates –despite similar genome structure and replication mechanisms– and that these differences are in large part due to sexual reproduction. This suggests that particular viruses may indeed exhibit diverse sexual behavior, but

  17. Electrophoretic cell separation by means of immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Smolka, A. J. K.

    1980-01-01

    The electrophoretic mobility of fixed human red blood cells immunologically labeled with polymeric (4-vinyl)pyridine or polyglutaraldehyde microspheres was altered to a considerable extent. This observation was utilized in the preparative scale electrophoretic separation of human and turkey fixed red blood cells, whose mobilities under normal physiological conditions do not differ sufficiently to allow their separation by continuous flow electrophoresis. It is suggested that resolution in the electrophoretic separation of cell subpopulations, currently limited by finite and often overlapping mobility distributions, may be significantly enhanced by immuno-specific labeling of target populations using microspheres.

  18. Electrophoretic cell separation by means of microspheres

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Nerren, B. H.; Margel, S.; Rembaum, A.

    1979-01-01

    The electrophoretic mobility of fixed human erythrocytes immunologically labeled with poly(vinylpyridine) or poly(glutaraldehyde) microspheres was reduced by approximately 40%. This observation was utilized in preparative scale electrophoretic separations of fixed human and turkey erythrocytes, the mobilities of which under normal physiological conditions do not differ sufficiently to allow their separation by continuous flow electrophoresis. We suggest that resolution in the electrophoretic separation of cell subpopulations, currently limited by finite and often overlapping mobility distributions, may be significantly enhanced by immunospecific labeling of target populations using microspheres.

  19. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  20. The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle

    NASA Astrophysics Data System (ADS)

    Khair, Aditya S.; Squires, Todd M.

    2009-04-01

    Recent theoretical studies have suggested a significant enhancement in electro-osmotic flows over hydrodynamically slipping surfaces, and experiments have indeed measured O(1) enhancements. In this paper, we investigate whether an equivalent effect occurs in the electrophoretic motion of a colloidal particle whose surface exhibits hydrodynamic slip. To this end, we compute the electrophoretic mobility of a uniformly charged spherical particle with slip length λ as a function of the zeta (or surface) potential of the particle ζ and diffuse-layer thickness κ-1. In the case of a thick diffuse layer, κa ≪1 (where a is the particle size), simple arguments show that slip does lead to an O(1) enhancement in the mobility, owing to the reduced viscous drag on the particle. On the other hand, for a thin-diffuse layer κa ≫1, the situation is more complicated. A detailed asymptotic analysis, following the method of O'Brien [J. Colloid Interface Sci. 92, 204 (1983)], reveals that an O(κλ) increase in the mobility occurs at low-to-moderate zeta potentials (with ζ measured on the scale of thermal voltage kBT /e≈25 mV). However, as ζ is further increased, the mobility decreases and ultimately becomes independent of the slip length—the enhancement is lost—which is due to the importance of nonuniform surface conduction within the thin-diffuse layer, at large ζ and large, but finite, κa. Our asymptotic calculations for thick and thin-diffuse layers are corroborated and bridged by computation of the mobility from the numerical solution of the full electrokinetic equations (using the method of O'Brien and White [J. Chem. Soc., Faraday Trans. 2 74, 1607 (1978)]). In summary, then, we demonstrate that hydrodynamic slip can indeed produce an enhancement in the electrophoretic mobility; however, such enhancements will not be as dramatic as the previously studied κa →∞ limit would suggest. Importantly, this conclusion applies not only to electrophoresis but also to

  1. Characterization of the Cell Surface Properties of Drinking Water Pathogens by Microbial Adhesion to Hydrocarbon and Electrophoretic Mobility Measurements

    EPA Science Inventory

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregati...

  2. Demonstrating Interactions of Transcription Factors with DNA by Electrophoretic Mobility Shift Assay.

    PubMed

    Yousaf, Nasim; Gould, David

    2017-01-01

    Confirming the binding of a transcription factor with a particular DNA sequence may be important in characterizing interactions with a synthetic promoter. Electrophoretic mobility shift assay is a powerful approach to demonstrate the specific DNA sequence that is bound by a transcription factor and also to confirm the specific transcription factor involved in the interaction. In this chapter we describe a method we have successfully used to demonstrate interactions of endogenous transcription factors with sequences derived from endogenous and synthetic promoters.

  3. Coarse-grained model of conformation-dependent electrophoretic mobility and its influence on DNA dynamics

    NASA Astrophysics Data System (ADS)

    Pandey, Harsh; Underhill, Patrick T.

    2015-11-01

    The electrophoretic mobility of molecules such as λ -DNA depends on the conformation of the molecule. It has been shown that electrohydrodynamic interactions between parts of the molecule lead to a mobility that depends on conformation and can explain some experimental observations. We have developed a new coarse-grained model that incorporates these changes of mobility into a bead-spring chain model. Brownian dynamics simulations have been performed using this model. The model reproduces the cross-stream migration that occurs in capillary electrophoresis when pressure-driven flow is applied parallel or antiparallel to the electric field. The model also reproduces the change of mobility when the molecule is stretched significantly in an extensional field. We find that the conformation-dependent mobility can lead to a new type of unraveling of the molecule in strong fields. This occurs when different parts of the molecule have different mobilities and the electric field is large.

  4. Electrophoretic manipulation of multiple-emulsion droplets

    NASA Astrophysics Data System (ADS)

    Schoeler, Andreas M.; Josephides, Dimitris N.; Chaurasia, Ankur S.; Sajjadi, Shahriar; Mesquida, Patrick

    2014-02-01

    Electrophoretic manipulation of multiple-emulsion oil-in-water-in-oil (O/W)/O and water-in-oil-in-water-in-oil (W/O/W)/O core-shell droplets is shown. It was found that the electrophoretic mobility of the droplets is determined solely by the outer water shell, regardless of size or composition of the inner droplets. It was observed that the surface charge of the outer water shell can be changed and the polarity can be reversed through contact with a biased electrode in a similar way as with simple W/O droplets. Furthermore, addition of the anionic surfactant, sodium dodecyl sulfate to the outer water shell reverses the initial polarity and hence, electrophoretic mobility of the core-shell droplets before contact with an electrode. The results have practical implications for the manipulation of oil droplets in a continuous oil phase.

  5. Determination of the microenvironment-pH and charge and size characteristics of amino acids through their electrophoretic mobilities determined by CZE.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2007-10-01

    Effective electrophoretic mobility data of 20 amino acids reported in the literature are analyzed and interpreted through simple physicochemical models, which are able to provide estimates of coupled quantities like hydrodynamic shape factor, equivalent hydrodynamic radius (size), net charge, actual pK values of ionizing groups, partial charges of ionizing groups, hydration number, and pH near molecule (microenvironment-pH of the BGE). It is concluded that the modeling of the electrophoretic mobility of these analytes requires a careful consideration of hydrodynamic shape coupled to hydration. In the low range of pH studied here, distinctive hydrodynamic behaviors of amino acids are found. For instance, amino acids with basic polar and ionizing side chain remain with prolate shape for pH values varying from 1.99 to 3.2. It is evident that as the pH increases from low values, amino acids get higher hydrations as a consequence each analyte total charge also increases. This result is consistent with the monotonic increase of the hydrodynamic radius, which accounts for both the analyte and the quite immobilized water molecules defining the electrophoretic kinematical unit. It is also found that the actual or effective pK value of the alpha-carboxylic ionizing group of amino acids increases when the pH is changed from 1.99 to 3.2. Several limitations concerning the simple modeling of the electrophoretic mobility of amino acids are presented for further research.

  6. Electrophoretic Mobility Shift Assay (EMSA) for Detecting Protein-Nucleic Acid Interactions

    PubMed Central

    Hellman, Lance M.; Fried, Michael G.

    2009-01-01

    The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures are subjected to electrophoresis under native conditions through polyacrylamide or agarose gel. After electrophoresis, the distribution of species containing nucleic acid is determined, usually by autoradiography of 32P-labeled nucleic acid. In general, protein-nucleic acid complexes migrate more slowly than the corresponding free nucleic acid. In this article, we identify the most important factors that determine the stabilities and electrophoretic mobilities of complexes under assay conditions. A representative protocol is provided and commonly used variants are discussed. Expected outcomes are briefly described. References to extensions of the method and a troubleshooting guide are provided. PMID:17703195

  7. Electrophoretic mobility patterns of collagen following laser welding

    NASA Astrophysics Data System (ADS)

    Bass, Lawrence S.; Moazami, Nader; Pocsidio, Joanne O.; Oz, Mehmet C.; LoGerfo, Paul; Treat, Michael R.

    1991-06-01

    Clinical application of laser vascular anastomosis in inhibited by a lack of understanding of its mechanism. Whether tissue fusion results from covalent or non-covalent bonding of collagen and other structural proteins is unknown. We compared electrophoretic mobility of collagen in laser treated and untreated specimens of rat tail tendon (>90% type I collagen) and rabbit aorta. Welding was performed, using tissue shrinkage as the clinical endpoint, using the 808 nm diode laser (power density 14 watts/cm2) and topical indocyanine green dye (max absorption 805 nm). Collagen was extracted with 8 M urea (denaturing), 0.5 M acetic acid (non-denaturing) and acetic acid/pepsin (cleaves non- helical protein). Mobility patterns on gel electrophoresis (SDS-PAGE) after urea or acetic acid extraction were identical in the lasered and control tendon and vessel (confirmed by optical densitometry), revealing no evidence of formation of novel covalent bonds. Alpha and beta band intensity was diminished in pepsin incubated lasered specimens compared with controls (optical density ratio 0.00 +/- 9 tendon, 0.65 +/- 0.12 aorta), indicating the presence of denatured collagen. With the laser parameters used, collagen is denatured without formation of covalent bonds, suggesting that non-covalent interaction between denatured collagen molecules may be responsible for the weld. Based on this mechanism, welding parameters can be chosen which produce collagen denaturation without cell death.

  8. Separation of very hydrophobic analytes by micellar electrokinetic chromatography IV. Modeling of the effective electrophoretic mobility from carbon number equivalents and octanol-water partition coefficients.

    PubMed

    Huhn, Carolin; Pyell, Ute

    2008-07-11

    It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.

  9. Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent

    NASA Astrophysics Data System (ADS)

    Lee, So-Yeon; Yim, Jung-Ryoul; Lee, Se-Hee; Choi, In-Suk; Nam, Ki Tae; Joo, Young-Chang

    2018-01-01

    We studied the dependences of the concentration of additive and particle size on the electrophoretic mobility of TiO2 nanoparticles. A high concentration of TiO2 nanoparticles was dispersed in aprotic solvent, which is similar to the operating conditions of electrophoretic applications. Because spectroscopy has limits to measuring the electrophoretic mobility of concentrated suspensions in aprotic solvents, we developed a new measurement to determine the electrophoretic mobility of particles using the reflectance change according to the motion of the particles. TiO2 nanoparticles with sizes of 31 nm to 164 nm were synthesized by hydrolysis and were dispersed in cyclohexanone with a dye (Sudan Black B) for use in the new measurement method. In a concentrated suspension in aprotic solvent, the mobility of the particles was proportional to the dye concentration and was inversely proportional to the size of the particles. This infers that the particle size influences the drag force rather than the surface charge, and therefore, to increase the mobility by changing the surface charge, an additive is effective. [Figure not available: see fulltext.

  10. Effect of pH on the Electrophoretic Mobility of Spores of Bacillus anthracis and Its Surrogates in Aqueous Solutions

    EPA Science Inventory

    Electrophoretic mobility (EPM) of endospores of Bacillus anthracis and surrogates were measured in aqueous solution across a broad pH range and several ionic strengths. EPM values trended around phylogenetic clustering based on the 16S rRNA gene. Measurements reported here prov...

  11. Controlling the electrophoretic mobility of single-walled carbon nanotubes: a comparison of theory and experiment.

    PubMed

    Usrey, Monica L; Nair, Nitish; Agnew, Daniel E; Pina, Cesar F; Strano, Michael S

    2007-07-03

    The electrophoretic mobilities of single-walled carbon nanotubes (SWNTs) in agarose gels subjected to negatively charged covalent functionalization and noncovalent anionic surfactant adsorption are compared using a simplified hydrodynamic model. Net charges are calculated on the basis of estimated friction coefficients for cylindrical rodlike particles. The effects of functionalization with negatively charged 4-hydroxybenzene diazonium and anionic sodium cholate are quantified and compared with model predictions. The adsorption of Na+ counterions into the nonionic surfactant layer adsorbed on SWNTs (Triton-X-405) is shown to induce a positive charge and reverse the mobility under select conditions. This effect has not been identified or quantified for nanoparticle systems and may be important in the processing of these systems.

  12. Using Electrophoretic Mobility Shift Assays to Measure Equilibrium Dissociation Constants: GAL4-p53 Binding DNA as a Model System

    ERIC Educational Resources Information Center

    Heffler, Michael A.; Walters, Ryan D.; Kugel, Jennifer F.

    2012-01-01

    An undergraduate biochemistry laboratory experiment is described that will teach students the practical and theoretical considerations for measuring the equilibrium dissociation constant (K[subscript D]) for a protein/DNA interaction using electrophoretic mobility shift assays (EMSAs). An EMSA monitors the migration of DNA through a native gel;…

  13. Electrophoretic mobility shift scanning using an automated infrared DNA sequencer.

    PubMed

    Sano, M; Ohyama, A; Takase, K; Yamamoto, M; Machida, M

    2001-11-01

    Electrophoretic mobility shift assay (EMSA) is widely used in the study of sequence-specific DNA-binding proteins, including transcription factors and mismatch binding proteins. We have established a non-radioisotope-based protocol for EMSA that features an automated DNA sequencer with an infrared fluorescent dye (IRDye) detection unit. Our modification of the elec- trophoresis unit, which includes cooling the gel plates with a reduced well-to-read length, has made it possible to detect shifted bands within 1 h. Further, we have developed a rapid ligation-based method for generating IRDye-labeled probes with an approximately 60% cost reduction. This method has the advantages of real-time scanning, stability of labeled probes, and better safety associated with nonradioactive methods of detection. Analysis of a promoter from an industrially important filamentous fungus, Aspergillus oryzae, in a prototype experiment revealed that the method we describe has potential for use in systematic scanning and identification of the functionally important elements to which cellular factors bind in a sequence-specific manner.

  14. Electrophoretic properties of BSA-coated quantum dots.

    PubMed

    Bücking, Wendelin; Massadeh, Salam; Merkulov, Alexei; Xu, Shu; Nann, Thomas

    2010-02-01

    Low toxic InP/ZnS quantum dots (QDs), ZnS:Mn(2+)/ZnS nanocrystals and CdSe/ZnS nanoparticles were rendered water-dispersible by different ligand-exchange methods. Eventually, they were coated with bovine serum albumin (BSA) as a model protein. All particles were characterised by isotachophoresis (ITP), laser Doppler velocimetry (LDV) and agarose gel electrophoresis. It was found that the electrophoretic mobility and colloidal stability of ZnS:Mn(2+)/ZnS and CdSe/ZnS nanoparticles, which bore short-chain surface ligands, was primarily governed by charges on the nanoparticles, whereas InP/ZnS nanocrystals were not charged per se. BSA-coated nanoparticles showed lower electrophoretic mobility, which was attributed to their larger size and smaller overall charge. However, these particles were colloidally stable. This stability was probably caused by steric stabilisation of the BSA coating.

  15. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    NASA Technical Reports Server (NTRS)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  16. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins.

    PubMed

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-02-01

    In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar

    2018-02-01

    In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 < E < 0.361 v / nm) covering non-linear response regime, and ionic salt concentration (0.049 < SC < 0.69 [M]) covering weak to strong Debye screening of the colloid. The effect of different colloidal repulsions are then studied on temperature, reduced mobility and zeta potential which is computed based on charge distribution within the spherical colloidal EDL. System temperature and electrophoretic mobility both show a direct and inverse relationship respectively with electric field and colloidal repulsion. Mobility declining with colloidal repulsion reaches a plateau which is a relatively constant value at each electrolyte salinity for Aii > 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  18. Electrophoretic purification of cells in space - Evaluation of results from STS-3

    NASA Technical Reports Server (NTRS)

    Sarnoff, B. E.; Kunze, M. E.; Todd, P.

    1983-01-01

    The procedure and results of Electrophoresis Equipment Verification Test, designed to examine electrophoretic behavior of animal cells is suspension more concentrated than possible on earth and flown on the Shuttle flight STS-3, were discussed. Ground-based laboratory values of electrophoretic mobilities of a mixture of human and rabbit aldehyde-fixed red blood cells (RBC) were compared with those recorded at 11 minute intervals on the Shuttle STS-3. RBC migration and separation observed through photographic records were not as expected. However, cell mobilities and migrating band profiles were consistent with the results of laboratory simulation experiments. It was concluded that zero G electrophoresis of very high concentrations (1 x 10 to the 9th) is possible and similar to electrophoresis of normal cell concentrations on earth.

  19. Mobile bacteria and transport of polynuclear aromatic hydrocarbons in porous media.

    PubMed Central

    Jenkins, M B; Lion, L W

    1993-01-01

    Sorption of hydrophobic pollutants such as polynuclear aromatic hydrocarbons (PAHs) to soil and aquifer materials can severely retard their mobility and the time course of their removal. Because mobile colloids may enhance the mobility of hydrophobic pollutants in porous media and indigenous bacteria are generally colloidal in size, bacterial isolates from soil and subsurface environments were tested for their ability to enhance the transport of phenanthrene, a model PAH, in aquifer sand. Batch isotherm experiments were performed to measure the ability of selected bacteria, including 14 isolates from a manufactured gas plant waste site, to sorb 14C-phenanthrene and to determine whether the presence of the suspended cells would reduce the distribution coefficient (Kd) for phenanthrene with the sand. Column experiments were then used to test the mobility of isolates that reduced the Kd for phenanthrene and to test the most mobile isolate for its ability to enhance the transport of phenanthrene. All of the isolates tested passively sorbed phenanthrene, and most but not all of the isolates reduced the Kd for phenanthrene. Some, but not all, of those isolates were mobile in column experiments. The most mobile isolate significantly enhanced the transport of phenanthrene in aquifer sand, reducing its retardation coefficient by 25% at a cell concentration of approximately 5 x 10(7) ml-1. The experimental results demonstrated that mobile bacteria may enhance the transport of PAHs in the subsurface. PMID:8250555

  20. An Optimized Protocol for Electrophoretic Mobility Shift Assay Using Infrared Fluorescent Dye-labeled Oligonucleotides.

    PubMed

    Hsieh, Yi-Wen; Alqadah, Amel; Chuang, Chiou-Fen

    2016-11-29

    Electrophoretic Mobility Shift Assays (EMSA) are an instrumental tool to characterize the interactions between proteins and their target DNA sequences. Radioactivity has been the predominant method of DNA labeling in EMSAs. However, recent advances in fluorescent dyes and scanning methods have prompted the use of fluorescent tagging of DNA as an alternative to radioactivity for the advantages of easy handling, saving time, reducing cost, and improving safety. We have recently used fluorescent EMSA (fEMSA) to successfully address an important biological question. Our fEMSA analysis provides mechanistic insight into the effect of a missense mutation, G73E, in the highly conserved HMG transcription factor SOX-2 on olfactory neuron type diversification. We found that mutant SOX-2 G73E protein alters specific DNA binding activity, thereby causing olfactory neuron identity transformation. Here, we present an optimized and cost-effective step-by-step protocol for fEMSA using infrared fluorescent dye-labeled oligonucleotides containing the LIM-4/SOX-2 adjacent target sites and purified SOX-2 proteins (WT and mutant SOX-2 G73E proteins) as a biological example.

  1. Electrophoretic separation of gold nanoparticles according to bifunctional molecules-induced charge and size.

    PubMed

    Kim, Jong-Yeob; Kim, Hyung-Bae; Jang, Du-Jeon

    2013-03-01

    Gold nanospheres modified with bifunctional molecules have been separated and characterized by using agarose gel electrophoresis as well as optical spectroscopy and electron microscopy. The electrophoretic mobility of a gold nanosphere capped with 11-mercaptoundecanoic acid (MUA) has been found to depend on the number of MUA molecules per gold nanosphere, indicating that it increases with the surface charge of the nanoparticle. The extinction spectrum of gold nanospheres capped with MUA at an MUA molecules per gold nanosphere value of 1000 and connected via 1,6-hexanedithiol (HDT) decreases by 33% in magnitude and shifts to the red as largely as 22 nm with the increase of the molar ratio of HDT to MUA (R(HM)). Gold nanospheres capped with MUA and connected via HDT have been separated successfully using gel electrophoresis and characterized by measuring reflectance spectra of discrete electrophoretic bands directly in the gel and by monitoring transmission electron microscope images of gold nanoparticles collected from the discrete bands. Electrophoretic mobility has been found to decrease substantially with the increment of HDT to MUA, indicating that the size of aggregated gold nanoparticles increases with the concentration of HDT. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bacteria can mobilize nematode-trapping fungi to kill nematodes

    PubMed Central

    Wang, Xin; Li, Guo-Hong; Zou, Cheng-Gang; Ji, Xing-Lai; Liu, Tong; Zhao, Pei-Ji; Liang, Lian-Ming; Xu, Jian-Ping; An, Zhi-Qiang; Zheng, Xi; Qin, Yue-Ke; Tian, Meng-Qing; Xu, You-Yao; Ma, Yi-Cheng; Yu, Ze-Fen; Huang, Xiao-Wei; Liu, Shu-Qun; Niu, Xue-Mei; Yang, Jin-Kui; Huang, Ying; Zhang, Ke-Qin

    2014-01-01

    In their natural habitat, bacteria are consumed by bacterivorous nematodes; however, they are not simply passive preys. Here we report a defensive mechanism used by certain bacteria to mobilize nematode-trapping fungi to kill nematodes. These bacteria release urea, which triggers a lifestyle switch in the fungus Arthrobotrys oligospora from saprophytic to nematode–predatory form; this predacious form is characterized by formation of specialized cellular structures or ‘traps’. The bacteria significantly promote the elimination of nematodes by A. oligospora. Disruption of genes involved in urea transport and metabolism in A. oligospora abolishes the urea-induced trap formation. Furthermore, the urea metabolite ammonia functions as a signal molecule in the fungus to initiate the lifestyle switch to form trap structures. Our findings highlight the importance of multiple predator–prey interactions in prey defense mechanisms. PMID:25514608

  3. Electrophoretic mobility shift assay reveals a novel recognition sequence for Setaria italica NAC protein.

    PubMed

    Puranik, Swati; Kumar, Karunesh; Srivastava, Prem S; Prasad, Manoj

    2011-10-01

    The NAC (NAM/ATAF1,2/CUC2) proteins are among the largest family of plant transcription factors. Its members have been associated with diverse plant processes and intricately regulate the expression of several genes. Inspite of this immense progress, knowledge of their DNA-binding properties are still limited. In our recent publication,1 we reported isolation of a membrane-associated NAC domain protein from Setaria italica (SiNAC). Transactivation analysis revealed that it was a functionally active transcription factor as it could stimulate expression of reporter genes in vivo. Truncations of the transmembrane region of the protein lead to its nuclear localization. Here we describe expression and purification of SiNAC DNA-binding domain. We further report identification of a novel DNA-binding site, [C/G][A/T][T/A][G/C]TC[C/G][A/T][C/G][G/C] for SiNAC by electrophoretic mobility shift assay. The SiNAC-GST protein could bind to the NAC recognition sequence in vitro as well as to sequences where some bases had been reshuffled. The results presented here contribute to our understanding of the DNA-binding specificity of SiNAC protein.

  4. Electrophoretic mobility shift assay reveals a novel recognition sequence for Setaria italica NAC protein

    PubMed Central

    Puranik, Swati; Kumar, Karunesh; Srivastava, Prem S

    2011-01-01

    The NAC (NAM/ATAF1,2/CUC2) proteins are among the largest family of plant transcription factors. Its members have been associated with diverse plant processes and intricately regulate the expression of several genes. Inspite of this immense progress, knowledge of their DNA-binding properties are still limited. In our recent publication,1 we reported isolation of a membrane-associated NAC domain protein from Setaria italica (SiNAC). Transactivation analysis revealed that it was a functionally active transcription factor as it could stimulate expression of reporter genes in vivo. Truncation of the transmembrane region of the protein lead to its nuclear localization. Here we describe expression and purification of SiNAC DNA-binding domain. We further report identification of a novel DNA-binding site, [C/G][A/T] [T/A][G/C]TC[C/G][A/T][C/G][G/C] for SiNAC by electrophoretic mobility shift assay. The SiNAC-GST protein could bind to the NAC recognition sequence in vitro as well as to sequences where some bases had been reshuffled. The results presented here contribute to our understanding of the DNA-binding specificity of SiNAC protein. PMID:21918373

  5. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  6. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  7. Tridodecylamine, an efficient charge control agent in non-polar media for electrophoretic inks application

    NASA Astrophysics Data System (ADS)

    Noel, Amélie; Mirbel, Déborah; Cloutet, Eric; Fleury, Guillaume; Schatz, Christophe; Navarro, Christophe; Hadziioannou, Georges; CyrilBrochon

    2018-01-01

    In order to obtain efficient electrophoretic inks, Tridodecylamine (Dod3N), has been studied as charge control agent (CCA) in a non-polar paraffin solvent (Isopar G) for various inorganic pigments (TiO2 and Fe2O3). All hydrophobic mineral oxides, i.e. treated with octyltrimethoxysilane (C8) or dodecyltrimethoxysilane (C12), were found to be negatively charged in presence of Dod3N. The electrophoretic mobilities of inorganic pigments seemed to be strongly dependent of their isoelectric point (IEP) and also of the concentration of dod3N with an optimum range between 10 and 20 mM depending on the pigments. Finally, an electrophoretic ink constituted of hydrophobic mineral oxides in presence of Dod3N was tested in a device. Its efficiency as charge control agent to negatively charge hydrophobic particles was confirmed through good optical properties and fast response time (220 ms at 200 kV m-1).

  8. Preparation and application of microcapsule-encapsulated color electrophortic fluid in Isopar M system for electrophoretic display

    NASA Astrophysics Data System (ADS)

    Sun, Cui; Feng, Ya-Qing; Zhang, Bao; Li, Xiang-Gao; Shao, Ji-Zhou; Han, Jing-Jing; Chen, Xu

    2013-05-01

    The use of Isopar M as a liquid suspending fluid for electrophoretic display was studied. The dispersion stability and chargeability of pigments suspended in Isopar M were investigated. Polyisobutylene monosuccinimide (T-151) as the charge control additive in Isopar M electrophoretic fluid can provide a good electrophoretic mobility to the particles. The wall materials of a series of blue-white, red-white and yellow-white dual-particle microcapsules were prepared by in situ polymerization of urea and formaldehyde. The mass ratio of wall/core material was a key factor in influencing the yield of microcapsules. The concentration of resorcinol has an impact on the surface morphology and mechanical strength of microcapsule wall. Microcapsules' surface morphologies were characterized by optical microscopy and scanning electron microscopy. The performance of the microcapsules with different binder materials and adhesive layers were investigated. Contrast ratio of microcapsules display device were tested every 10 days for a period of 90 days. The compatibility of Isopar M with both the electrophoretic particles and bounding capsule was studied.

  9. Signal enhancement for peptide analysis in liquid chromatography-electrospray ionization mass spectrometry with trifluoroacetic acid containing mobile phase by postcolumn electrophoretic mobility control.

    PubMed

    Wang, Nan-Hsuan; Lee, Wan-Li; Her, Guor-Rong

    2011-08-15

    A strategy based on postcolumn electrophoretic mobility control (EMC) was developed to alleviate the adverse effect of trifluoroacetic acid (TFA) on the liquid chromatography-mass spectrometry (LC-MS) analysis of peptides. The device created to achieve this goal consisted of a poly(dimethylsiloxane) (PDMS)-based junction reservoir, a short connecting capillary, and an electrospray ionization (ESI) sprayer connected to the outlet of the high-performance liquid chromatography (HPLC) column. By apply different voltages to the junction reservoir and the ESI emitter, an electric field was created across the connecting capillary. Due to the electric field, positively charged peptides migrated toward the ESI sprayer, whereas TFA anions remained in the junction reservoir and were removed from the ionization process. Because TFA did not enter the ESI source, ion suppression from TFA was alleviated. Operation of the postcolumn device was optimized using a peptide standard mixture. Under optimized conditions, signals for the peptides were enhanced 9-35-fold without a compromise in separation efficiency. The optimized conditions were also applied to the LC-MS analysis of a tryptic digest of bovine serum albumin.

  10. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements.

    PubMed

    Popovici, Jonathan; White, Colin P; Hoelle, Jill; Kinkle, Brian K; Lytle, Darren A

    2014-06-01

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregation, adhesion to surfaces, and stability of the cells within the aqueous environments. These cell characteristics are unique to the bacterial species and are a reflection of the large diversity of surface structures, proteins, and appendages of microorganisms. CSH and EPM of bacterial cells contribute substantially to the effectiveness of drinking water treatment to remove them, and therefore an investigation of these properties will be useful in predicting their removal through drinking water treatment processes and transport through drinking water distribution systems. EPM and CSH measurements of six microbiological pathogen or surrogate species suspended in phosphate-buffered water are reported in this work. Two strains of Vibrio cholerae were hydrophobic, while three strains of Escherichia coli were hydrophilic. Bacillus cereus was categorized as moderately hydrophobic. The strains of E. coli had the highest (most negative) EPM. Based on the measurements, E. coli species is predicted to be most difficult to remove from water while V. cholerae will be the easiest to remove. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Multistage Electrophoretic Separators

    NASA Technical Reports Server (NTRS)

    Thomas, Nathan; Doyle, John F.; Kurk, Andy; Vellinger, John C.; Todd, Paul

    2006-01-01

    A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non

  12. Discrimination between closed and open forms of lipases using electrophoretic techniques.

    PubMed

    Miled, N; Riviere, M; Cavalier, J F; Buono, G; Berti, L; Verger, R

    2005-03-15

    The enhanced catalytic activity of lipases is often associated with structural changes. The three-dimensional (3D) structures showed that the covalently inhibited lipases exist under their open conformations, in contrast to their native closed forms. We studied the inhibition of various lipases--human and dog gastric lipases, human pancreatic lipase, and Humicola lanuginosa lipase--by the octyl-undecyl phosphonate inhibitor, and we measured the subsequent modifications of their respective electrophoretic mobility. Furthermore, the experimental values of the isoelectric points found for the native (closed) and inhibited (open) lipases are in agreement with theoretical calculations based on the electrostatic potential. We concluded that there is a significant difference in the isoelectric points between the closed (native) and open (inhibited) conformations of the four lipases investigated. Thus, analysis of the electrophoretic pattern is proposed as an easy experimental tool to differentiate between a closed and an open form of a given lipase.

  13. Strategies for the capillary electrophoretic separation of indole alkaloids in Psilocybe semilanceata.

    PubMed

    Pedersen-Bjergaard, S; Rasmussen, K E; Sannes, E

    1998-01-01

    While the hallucinogenic mushrooms Psilocybe semilanceata have previously been analyzed for the indole alkaloids psilocybin and baeocystin by capillary zone electrophoresis (CZE) at pH 11.5, the present work focused on the development of an alternative and complementary capillary electrophoretic method for their identification. Owing to their structural similarity and zwitterionic nature, the compounds were difficult to resolve based on different interactions with cationic or anionic micelles. However, while the attempts with micellar electrokinetic chromatography (MEKC) were unsuccessful, rapid derivatization with propyl chloroformate and reanalysis by CZE at pH 11.5 was effective to support identification of the two indole alkaloids. Psilocin was difficult to analyze by CZE at pH 11.5 owing to comigration with the electroosmotic flow. For this compound, the pH of the running buffer was reduced to 7.2 to effectively enhance the electrophoretic mobility.

  14. Properties of electrophoretic fractions of human embryonic kidney cells separated on space shuttle flight STS-8

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Lewis, M. L.; Barlow, G. H.; Todd, P. W.; Kunze, M. E.; Sarnoff, B. E.; Li, Z. K.

    1985-01-01

    Suspensions of cultured primary human embryonic kidney cells were subjected to continuous flow electrophoresis on Space Shuttle flight STS-8. The objectives of the experiments were to obtain electrophoretically separated fractions of the original cell populations and to test these fractions for the amount and kind of urokinase (a kidney plasminogen activator that is used medically for digesting blood clots), the morphologies of cells in the individual fractions, and their cellular electrophoretic mobilities after separation and subsequent proliferation. Individual fractions were successfully cultured after return from orbit, and they were found to differ substantially from one another and from the starting sample with respect to all of these properties.

  15. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil.

    PubMed

    Xu, Jinlan; Deng, Xin; Cui, Yiwei; Kong, Fanxing

    2016-12-15

    Fenton pre-oxidation provides nutrients to promote bioremediation. However, the effects of the indigenous bacteria that remain following Fenton oxidation on nutrient mobilization and subsequent bioremediation remain unclear. Experiments were performed with inoculation with native bacteria and foreign bacteria or without inoculation after four regimens of stepwise pre-oxidations. The effects of the indigenous bacteria remaining after stepwise oxidation on nutrient mobilization and subsequent bioremediation over 80 days were investigated. After stepwise Fenton pre-oxidation at a low H 2 O 2 concentration (225×4), the remaining indigenous bacterial populations reached their peak (4.8±0.17×10 6 CFU/g), the nutrients were mobilized rapidly, and the subsequent bioremediation of crude oil was improved (biodegradation efficiency of 35%). However, after stepwise Fenton pre-oxidation at a high H 2 O 2 concentration (450×4), only 3.6±0.16×10 3 CFU/g of indigenous bacteria remained, and the indigenous bacteria that degrade C 15 -C 30 alkanes were inhibited. The nutrient mobilization was then highly limited, and only 19% of total petroleum hydrocarbon was degraded. Furthermore, the recovery period after the low H 2 O 2 concentration stepwise Fenton pre-oxidation (225×4) was less than 20 days, which was 20-30 days shorter than with the other pre-oxidation treatments. Therefore, stepwise Fenton pre-oxidation at a low H 2 O 2 concentration protects indigenous bacterial populations and improves the nutrient mobilization and subsequent bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...

  17. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...

  18. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...

  19. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...

  20. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...

  1. Incorporation of spheroidene and spheroidenone into light-harvesting complexes from purple sulfur bacteria.

    PubMed

    Ashikhmin, Aleksandr; Makhneva, Zoya; Bolshakov, Maksim; Moskalenko, Andrey

    2017-05-01

    Spheroidene and spheroidenone from the non-sulfur bacterium Rhodobacter (Rba.) sphaeroides were incorporated into diphenylamine (DPA) LH1-RC and LH2 complexes from sulfur bacteria Allochromatium (Alc.) minutissimum and Ectothiorhodospira (Ect.) haloalkaliphila in which carotenoid (Car) biosynthesis was inhibited by ~95%. A series of biochemical characteristics of the modified LH2 complexes was studied (electrophoretic mobility, absorption and CD spectra, Car composition, Car-to-BChl energy transfer and thermal stability). It was found that the electrophoretic mobility of the complexes with incorporated Cars did not change compared to that of the control and DPA-complexes, indicating the absence of any significant change in the structure of LH complexes upon DPA-treatment and subsequent incorporation of Cars. The analysis of fluorescence excitation spectra of the spheroidene-incorporated LH2 complex (LH2:sph) and the spheroidenone-incorporated LH2 complex (LH2:sph-ne) showed that spheroidene and spheroidenone exhibited relatively low efficiencies of energy transfer to BChl, when incorporated into the LH2 DPA-complexes from Alc. minutissimum and Ect. haloalkaliphila, although, they showed high efficiencies, being in their natural state in the LH2 complexes from Rba. sphaeroides. A significant increase in thermostability observed for the LH2:sph and LH2:sph-ne complexes with respect to the LH2 DPA-complexes indicated that the two incorporated Cars stabilized the structure of the LH2 complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    PubMed

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  3. Exposure of magnetic bacteria to simulated mobile phone-type RF radiation has no impact on mortality.

    PubMed

    Cranfield, Charles G; Wieser, Heinz Gregor; Dobson, Jon

    2003-09-01

    The interaction of mobile phone RF emissions with biogenic magnetite in the human brain has been proposed as a potential mechanism for mobile phone bioeffects. This is of particular interest in light of the discovery of magnetite in human brain tissue. Previous experiments using magnetite-containing bacteria exposed directly to emissions from a mobile phone have indicated that these emissions might be causing greater levels of cell death in these bacterial populations when compared to sham exposures. A repeat of these experiments examining only the radio frequency (RF) global system for mobile communication (GSM) component of the mobile phone signal in a well-defined waveguide system (REFLEX), shows no significant change in cell mortality compared to sham exposures. A nonmagnetite containing bacterial cell strain (CC-26) with similar genotype and phenotype to the magnetotactic bacteria was used as a control. These also showed no significant change in cell mortality between RF and sham exposed samples. Results indicate that the RF components of mobile phone exposure do not appear to be responsible for previous findings indicating cell mortality as a result of direct mobile phone exposure. A further mobile phone emission component that should be investigated is the 2-Hz magnetic field pulse generated by battery currents during periods of discontinuous transmission.

  4. Anti-epileptic drugs and bone loss: Phenytoin reduces pro-collagen I and alters the electrophoretic mobility of osteonectin in cultured bone cells.

    PubMed

    Wilson, Emma L; Garton, Mark; Fuller, Heidi R

    2016-05-01

    Phenytoin is an antiepileptic drug used in the management of partial and tonic-clonic seizures. In previous studies we have shown that valproate, another antiepileptic drug, reduced the amount of two key bone proteins, pro-collagen I and osteonectin (SPARC, BM-40), in both skin fibroblasts and cultured osteoblast-like cells. Here we show that phenytoin also reduces pro-collagen I production in osteoblast-like cells, but does not appear to cause a decrease in osteonectin message or protein production. Instead, a 24h exposure to a clinically relevant concentration of phenytoin resulted in a dose-dependent change in electrophoretic mobility of osteonectin, which was suggestive of a change in post-translational modification status. The perturbation of these important bone proteins could be one of the mechanisms to explain the bone loss that has been reported following long-term treatment with phenytoin. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Qu, Yinying; Li, Xiaoshuang; Zhang, Sheng; Wei, Qingsong; Shi, Yusheng; Chen, Lili

    2014-06-01

    Electrophoretic deposition has been widely used for the fabrication of functional coatings onto metal implant. A characteristic feature of this process is that positively charged materials migrate toward the cathode and can deposit on it. In this study, silk fibroin was decorated with tetracycline in aqueous solution to impart positive charge, and then deposited on negatively titanium cathode under certain electric field. The characterization of the obtained coatings indicated that the intermolecular hydrogen bonds formed between the backbone of silk fibroin and tetracycline molecular. In vitro biological tests demonstrated that osteoblast-like cells achieved acceptable cell affinity on the tetracycline cross-linked silk fibroin coatings, although greater cell viability was seen on pure silk fibroin coatings. The cationic silk fibroin coatings showed remarkable antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Therefore, we concluded that electrophoretic deposition was an effective and efficient technique to prepare cationic silk fibroin coatings on the titanium surface and that cationic silk fibroin coatings with acceptable biocompatibility and antibacterial property were promising candidates for further loading of functional agents.

  6. An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution.

    PubMed

    Lee, H G; Cowman, M K

    1994-06-01

    An electrophoretic method is described for determining the molecular weight distribution of hyaluronan (HA). The method involves separation of HA by electrophoresis on a 0.5% agarose gel, followed by detection of HA using the cationic dye Stains-All (3,3'-dimethyl-9-methyl-4,5,4'5'-dibenzothiacarbocyanine). The recommended sample load is 7 micrograms. Calibration of the method with HA standards of known molecular weight has established a linear relationship between electrophoretic mobility and the logarithm of the weight-average molecular weight over the range of approximately 0.2-6 x 10(6). The separated HA pattern may also be visualized after electrotransfer of HA from the agarose gel to a nylon membrane. The membrane may be stained with the dye alcian blue. Alternatively, specific detection of HA from impure samples can be achieved by probing the nylon membrane with biotin-labeled HA-binding protein and subsequent interaction with a streptavidin-linked gold reagent and silver staining for amplification. The electrophoretic method was used to analyze HA in two different liquid connective tissues. Normal human knee joint synovial fluid showed a narrow HA molecular weight distribution, with a peak at 6-7 x 10(6). Owl monkey vitreous HA also showed a narrow molecular weight distribution, with a peak at 5-6 x 10(6). These results agree well with available published data and indicate the applicability of the method to the analysis of impure HA samples which may be available in limited amounts.

  7. Polymer encapsulated inorganic black pigment nanoparticles and their electrophoretic characteristics.

    PubMed

    Sim, H H; Kim, Y J; Choi, H J

    2012-12-01

    Black inorganic pigment modified with poly(styrene-co-acrylonitrile) was fabricated via dispersion polymerization, and then the synthesized hybrid nanoparticles were examined by SEM to confirm their morphology, while their density and size were studied using a gas pycnometer and electrophoretic light scattering apparatus, respectively. We also confirmed their chemical structure and coated state via FT-IR and TGA. Electrophoretic characteristics including the zeta potential were examined via an electrophoretic light scattering apparatus, while the movement of particles was directly observed by an optical microscopy under an electric field applied. The hybrid nanoparticles were confirmed to possess an electrophoretic property as a potential candidate for the microcapsule-type electrophoretic display.

  8. Electrophoretic separation of kidney and pituitary cells on STS-8

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Nachtwey, D. S.; Barlow, G. H.; Cleveland, C.; Lanham, J. W.; Farrington, M. A.; Hatfield, J. M.; Hymer, W. C.; Grindeland, R.; Lewis, M. L.

    1984-01-01

    Specific secretory cells were separated from suspensions of cultured primary human embryonic cells and rat pituitary cells in microgravity conditions, with an objective of isolating the subfractions of kidney cells that produce the largest amount of urakinase, and the subfractions of rat pituitary cells that secrete growth hormones (GH), prolactin (PRL), and other hormones. It is inferred from the experimental observations that the surface charge distributions of the GH-containing cells differ from those of the PRL-containing cells, which is explained by the presence of secretory products on the surface of pituitary cells. For kidney cells, the electrophoretic mobility distributions in flight experiments were spread more than the ground controls.

  9. Column-coupling strategies for multidimensional electrophoretic separation techniques.

    PubMed

    Kler, Pablo A; Sydes, Daniel; Huhn, Carolin

    2015-01-01

    Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the

  10. Global chain properties of an all l-α-eicosapeptide with a secondary α-helix and its all retro d-inverso-α-eicosapeptide estimated through the modeling of their CZE-determined electrophoretic mobilities.

    PubMed

    Deiber, Julio A; Piaggio, Maria V; Peirotti, Marta B

    2014-03-01

    Several global chain properties of relatively long peptides composed of 20 amino acid residues are estimated through the modeling of their experimental effective electrophoretic mobilities determined by CZE for 2 < pH < 6. In this regard, an all l-α-eicosapeptide, including a secondary α-helix (Peptide 1) and its all retro d-inverso-α-eicosapeptide (Peptide 2), are considered. Despite Peptides 1 and 2 are isomeric chains, they do not present similar global conformations in the whole range of pH studied. These peptides may also differ in the quality of BGE components chain interactions depending on the pH value. Three Peptide 1 fragments (Peptides 3, 4, and 5) are also analyzed in this framework with the following purposes: (i) visualization of the effects of initial and final strands at each side of the α-helix on the global chain conformations of Peptide 1 at different pHs and (ii) analysis of global chain conformations of Peptides 1 and 2, and Peptide 1 fragments in relation to their pI values. Also, the peptide maximum and minimum hydrations predicted by the model, compatible with experimental effective electrophoretic mobilities at different pHs, are quantified and discussed, and needs for further research concerning chain hydration are proposed. It is shown that CZE is a useful analytical tool for peptidomimetic designs and purposes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals.

    PubMed

    Mathew, Dennis; Bhardwaj, Garima; Wang, Qi; Sun, Linlin; Ercan, Batur; Geetha, Manisavagam; Webster, Thomas J

    2014-01-01

    Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.

  12. Electrophoretic deposition of biomaterials

    PubMed Central

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  13. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    PubMed

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  14. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, Richard D.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit.

  15. Electrophoretic separator for purifying biologicals, part 1

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.

    1978-01-01

    A program to develop an engineering model of an electrophoretic separator for purifying biologicals is summarized. An extensive mathematical modeling study and numerous ground based tests were included. Focus was placed on developing an actual electrophoretic separator of the continuous flow type, configured and suitable for flight testing as a space processing applications rocket payload.

  16. Relationship between luminous fish and symbiosis. I. Comparative studies of lipopolysaccharides isolated from symbiotic luminous bacteria of the luminous marine fish, Physiculus japonicus.

    PubMed

    Kuwae, T; Andoh, M; Fukasawa, S; Kurata, M

    1983-01-01

    In order to investigate the relationship between host and symbiosis in the luminous marine fish, Physiculus japonicus, the bacterial lipopolysaccharides (LPS) of symbiotic luminous bacteria were compared serologically and electrophoretically. Five symbiotic luminous bacteria (PJ strains) were separately isolated from five individuals of this fish species caught at three points, off the coasts of Chiba, Nakaminato, and Oharai. LPS preparations were made from these bacteria by Westphal's phenol-water method and highly purified by repeated ultracentrifugation. These LPSs contained little or no 2-keto-3-deoxyoctonate and had powerful mitogenic activity. In sodium dodecylsulfate polyacrylamide gel electrophoresis, these PJ-1 to -5 LPSs were separated by their electrophoretic patterns into three groups; the first group included PJ-1 and PJ-4, the second group PJ-2 and PJ-3, and the third group PJ-5 alone. The results agreed with those of the double immunodiffusion test; precipitin lines completely coalesced within each group but not with other groups. In immunoelectrophoresis, one precipitin line was observed between anti PJ-2 LPS serum and PJ-5 LPS but the electrophoretic mobility of PJ-5 LPS was clearly different from that of the PJ-2 LPS group. Furthermore, in a 50% inhibition test with PJ-2 LPS by the passive hemolysis system, the doses of PJ-2 LPS, PJ-3 LPS, and PJ-5 LPS required for 50% inhibition (ID50) in this system were 0.25, 0.25, and 21.6 micrograms/ml for each alkali-treated LPS, respectively, and the ID50's of both PJ-1 LPS and PJ-4 LPS were above 1,000 micrograms/ml. These results indicate that PJ-5 LPS has an antigenic determinant partially in common with LPS from the PJ-2 group but not with LPS from the PJ-1 group and that the symbiotic luminous bacterium PJ-5 is more closely related to the PJ-2 group than to the PJ-1 group. These results show that the species Physiculus japonicus is symbiotically associated with at least three immunologically different

  17. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields

    PubMed Central

    Sadek, Samir H.; Pimenta, Francisco; Pinho, Fernando T.

    2017-01-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. PMID:27990654

  18. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, R.D.; Olivares, J.A.

    1989-06-27

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit. 10 figs.

  19. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2000-01-01

    The objectives of this research were (i) to perform experiments for observing and quantifying electrophoretic aggregation, (ii) to develop a theoretical description to appropriately analyze and compare with the experimental results, (iii) to study the combined effects of electrophoretic and gravitational aggregation of large particles, and the combined effects of electrophoretic and Brownian aggregation of small particles, and (iv) to perform a preliminary design of a potential future flight experiment involving electrophoretic aggregation. Electrophoresis refers to the motion of charged particles, droplets or molecules in response to an applied electric field. Electrophoresis is commonly used for analysis and separation of biological particles or molecules. When particles have different surface charge densities or potentials, they will migrate at different velocities in an electric field. This differential migration leads to the possibility that they will collide and aggregate, thereby preventing separation.

  20. All solution processed organic thin film transistor-backplane with printing technology for electrophoretic display

    USGS Publications Warehouse

    Lee, Myung W.; Song, C.K.

    2012-01-01

    In this study, solution processes were developed for backplane using an organic thin film transistor (OTFT) as a driving device for an electrophoretic display (EPD) panel. The processes covered not only the key device of OTFTs but also interlayer and pixel electrodes. The various materials and printing processes were adopted to achieve the requirements of devices and functioning layers. The performance of OTFT of the backplane was sufficient to drive EPD sheet by producing a mobility of 0.12 cm2/v x sec and on/off current ratio of 10(5).

  1. Electrophoretic interactions and aggregation of colloidal biological particles

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.; Nichols, Scott C.; Loewenberg, Michael; Todd, Paul

    1994-01-01

    The separation of cells or particles from solution has traditionally been accomplished with centrifuges or by sedimentation; however, many particles have specific densities close to unity, making buoyancy-driven motion slow or negligible, but most cells and particles carry surface charges, making them ideal for electrophoretic separation. Both buoyancy-driven and electrophoretic separation may be influenced by hydrodynamic interactions and aggregation of neighboring particles. Aggregation by electrophoresis was analyzed for two non-Brownian particles with different zeta potentials and thin double layers migrating through a viscous fluid. The results indicate that the initial rate of electrophoretically-driven aggregation may exceed that of buoyancy-driven aggregation, even under conditions in which buoyancy-driven relative motion of noninteracting particles is dominant.

  2. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Wang, Hua; Zeng, Shulin; Loewenberg, Michael; Todd, Paul; Davis, Robert H.

    1996-01-01

    The stability and pairwise aggregation rates of small spherical particles under the collective effects of buoyancy-driven motion and electrophoretic migration are analyzed. The particles are assumed to be non-Brownian, with thin double-layers and different zeta potentials. The particle aggregation rates may be enhanced or reduced, respectively, by parallel and antiparallel alignments of the buoyancy-driven and electrophoretic velocities. For antiparallel alignments, with the buoyancy-driven relative velocity exceeding the electrophoretic relative velocity between two widely-separated particles, there is a 'collision-forbidden region' in parameter space due to hydrodynamic interactions; thus, the suspension becomes stable against aggregation.

  3. Electrophoretic fractional elution apparatus employing a rotational seal fraction collector

    NASA Technical Reports Server (NTRS)

    Bier, M. (Inventor)

    1977-01-01

    Electrophoretic fractional elution apparatus which has a column with a rotating seal joint is described. A thin jet of eluting buffer is directed across the lumen of the electrophoretic column in a direction perpendicular to that of electrophoretic migration. Either the content of the column is rotated with respect to the stationary jet, or the jet is rotated with respect to the column. The system may employ electrophoresis either in free solution or in packed columns.

  4. Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India.

    PubMed

    Paul, Dhiraj; Kazy, Sufia K; Gupta, Ashok K; Pal, Taraknath; Sar, Pinaki

    2015-01-01

    Arsenic (As) mobilization in alluvial aquifers is caused by a complex interplay of hydro-geo-microbiological activities. Nevertheless, diversity and biogeochemical significance of indigenous bacteria in Bengal Delta Plain are not well documented. We have deciphered bacterial community compositions and metabolic properties in As contaminated groundwater of West Bengal to define their role in As mobilization. Groundwater samples showed characteristic high As, low organic carbon and reducing property. Culture-independent and -dependent analyses revealed presence of diverse, yet near consistent community composition mostly represented by genera Pseudomonas, Flavobacterium, Brevundimonas, Polaromonas, Rhodococcus, Methyloversatilis and Methylotenera. Along with As-resistance and -reductase activities, abilities to metabolize a wide range carbon substrates including long chain and polyaromatic hydrocarbons and HCO3, As3+ as electron donor and As5+/Fe3+ as terminal electron acceptor during anaerobic growth were frequently observed within the cultivable bacteria. Genes encoding cytosolic As5+ reductase (arsC) and As3+ efflux/transporter [arsB and acr3(2)] were found to be more abundant than the dissimilatory As5+ reductase gene arrA. The observed metabolic characteristics showed a good agreement with the same derived from phylogenetic lineages of constituent populations. Selected bacterial strains incubated anaerobically over 300 days using natural orange sand of Pleistocene aquifer showed release of soluble As mostly as As3+ along with several other elements (Al, Fe, Mn, K, etc.). Together with the production of oxalic acid within the biotic microcosms, change in sediment composition and mineralogy indicated dissolution of orange sand coupled with As/Fe reduction. Presence of arsC gene, As5+ reductase activity and oxalic acid production by the bacteria were found to be closely related to their ability to mobilize sediment bound As. Overall observations suggest that

  5. Diversity, Metabolic Properties and Arsenic Mobilization Potential of Indigenous Bacteria in Arsenic Contaminated Groundwater of West Bengal, India

    PubMed Central

    Paul, Dhiraj; Kazy, Sufia K.; Gupta, Ashok K.; Pal, Taraknath; Sar, Pinaki

    2015-01-01

    Arsenic (As) mobilization in alluvial aquifers is caused by a complex interplay of hydro-geo-microbiological activities. Nevertheless, diversity and biogeochemical significance of indigenous bacteria in Bengal Delta Plain are not well documented. We have deciphered bacterial community compositions and metabolic properties in As contaminated groundwater of West Bengal to define their role in As mobilization. Groundwater samples showed characteristic high As, low organic carbon and reducing property. Culture-independent and -dependent analyses revealed presence of diverse, yet near consistent community composition mostly represented by genera Pseudomonas, Flavobacterium, Brevundimonas, Polaromonas, Rhodococcus, Methyloversatilis and Methylotenera. Along with As-resistance and -reductase activities, abilities to metabolize a wide range carbon substrates including long chain and polyaromatic hydrocarbons and HCO3, As3+ as electron donor and As5+/Fe3+ as terminal electron acceptor during anaerobic growth were frequently observed within the cultivable bacteria. Genes encoding cytosolic As5+ reductase (arsC) and As3+ efflux/transporter [arsB and acr3(2)] were found to be more abundant than the dissimilatory As5+ reductase gene arrA. The observed metabolic characteristics showed a good agreement with the same derived from phylogenetic lineages of constituent populations. Selected bacterial strains incubated anaerobically over 300 days using natural orange sand of Pleistocene aquifer showed release of soluble As mostly as As3+ along with several other elements (Al, Fe, Mn, K, etc.). Together with the production of oxalic acid within the biotic microcosms, change in sediment composition and mineralogy indicated dissolution of orange sand coupled with As/Fe reduction. Presence of arsC gene, As5+ reductase activity and oxalic acid production by the bacteria were found to be closely related to their ability to mobilize sediment bound As. Overall observations suggest that

  6. Preparation of guinea pig macrophage for electrophoretic experiments in space

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Methods of storage and cultivation of macrophage cells in preparation for space experiments were investigated. Results show that freezing and thawing immediately after extraction did not cause any change in viability or electrophoretic mobility of the cells. A prolonged storage at -80 C did cause cell damage as indicated by a 95% reduction in variable cells. Cell damage was decreased when Glycerol or Dimethyl Sulfoxide (DMSO) was added as a cryogenic protective agent. A 100% viability was observed in cultivation experiments after two weeks due to the additional serum. Results from gamma-glutamyl transpeptidase study showed a zero activity rate. It is suggested that a flat stationary field be used for the collection and use of macrophage. It was found that a 24-hour delay in obtaining macrophage cells helps to maintain a pure culture.

  7. Size and DNA distributions of electrophoretically separated cultured human kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Todd, P. W.

    1985-01-01

    Electrophoretic purification of purifying cultured cells according to function presumes that the size of cycle phase of a cell is not an overriding determinant of its electrophoretic velocity in an electrophoretic separator. The size distributions and DNA distributions of fractions of cells purified by density gradient electrophoresis were determined. No systematic dependence of electrophoretic migration upward in a density gradient column upon either size or DNA content were found. It was found that human leukemia cell populations, which are more uniform function and found in all phases of the cell cycle during exponential growth, separated on a vertical sensity gradient electrophoresis column according to their size, which is shown to be strictly cell cycle dependent.

  8. Investigation of the free flow electrophoretic process. Volume 2: Technical analysis

    NASA Technical Reports Server (NTRS)

    Weiss, R. A.; Lanham, J. W.; Richman, D. W.; Walker, C. D.

    1979-01-01

    The effect of gravity on the free flow electrophoretic process was investigated. The demonstrated effects were then compared with predictions made by mathematical models. Results show that the carrier buffer flow was affected by gravity induced thermal convection and that the movement of the separating particle streams was affected by gravity induced buoyant forces. It was determined that if gravity induced buoyant forces were included in the mathematical models, then effective predictions of electrophoresis chamber separation performance were possible. The results of tests performed using various methods of electrophoresis using supportive media show that the mobility and the ability to separate were essentially independent of concentration, providing promise of being able to perform electrophoresis with higher inlet concentrations in space.

  9. Understanding the poor iontophoretic transport of lysozyme across the skin: when high charge and high electrophoretic mobility are not enough.

    PubMed

    Dubey, S; Kalia, Y N

    2014-06-10

    The original aim of the study was to investigate the transdermal iontophoretic delivery of lysozyme and to gain further insight into the factors controlling protein electrotransport. Initial experiments were done using porcine skin. Lysozyme transport was quantified by using an activity assay based on the lysis of Micrococcus lysodeikticus and was corrected for the release of endogenous enzyme from the skin during current application. Cumulative iontophoretic permeation of lysozyme during 8h at 0.5mA/cm(2) (0.7mM; pH6) was surprisingly low (5.37±3.46μg/cm(2) in 8h) as compared to electrotransport of cytochrome c (Cyt c) and ribonuclease A (RNase A) under similar conditions (923.0±496.1 and 170.71±92.13μg/cm(2), respectively) - despite its having a higher electrophoretic mobility. The focus of the study then became to understand and explain the causes of its poor iontophoretic transport. Lowering formulation pH to 5 increased histidine protonation in the protein and decreased the ionisation of fixed negative charges in the skin (pI ~4.5) and resulted in a small but statistically significant increase in permeation. Co-iontophoresis of acetaminophen revealed a significant inhibition of electroosmosis; inhibition factors of 12-16 were indicative of strong lysozyme binding to skin. Intriguingly, lidocaine electrotransport, which is due almost exclusively to electromigration, was also decreased (approximately 2.7-fold) following skin pre-treatment by lysozyme iontophoresis (cf. iontophoresis of buffer solution) - suggesting that lysozyme was also able to influence subsequent cation electromigration. In order to elucidate the site of skin binding, different porcine skin models were tested (dermatomed skin with thicknesses of 250 and 750μm, tape-stripped skin and heat-separated dermis). Although no difference was seen between permeation across 250 and 750μm dermatomed skin (13.57±12.20 and 5.37±3.46μg/cm(2), respectively), there was a statistically significant

  10. The role of cell size in density gradient electrophoretic separation of mouse leukemia cells according to position in the cell cycle

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Cultured mouse leukemia cells line L5178Y were subjected to upward electrophoresis in a density gradient and the slower migrating cell populations were enriched in G2 cells. It is indicated that this cell line does not change electrophoretic mobility through the cell cycle. The possibility that increased sedimentation downward on the part of the larger G2 cells caused this separation was explored. Two different cell populations were investigated. The log phase population was found to migrate upward faster than the G2 population, and a similar difference between their velocities and calculated on the basis of a 1 um diameter difference between the two cell populations. The G2 and G1 enriched populations were isolated by Ficoll density gradient sedimentation. The bottom fraction was enriched in G2 cells and the top fraction was enriched with G1 cells, especially when compared with starting materials. The electrophoretic mobilities of these two cell populations did not differ significantly from one another. Cell diameter dependent migration curves were calculated and were found to be different. Families of migration curves that differ when cell size is considered as a parameter are predicted.

  11. Fast electrophoretic analysis of individual mitochondria using microchip capillary electrophoresis with laser induced fluorescence detection.

    PubMed

    Duffy, Ciarán F; MacCraith, Brian; Diamond, Dermot; O'Kennedy, Richard; Arriaga, Edgar A

    2006-08-01

    The analysis of mitochondria by capillary electrophoresis usually takes longer than 20 min per replicate which may compromise the quality of the mitochondria due to degradation. In addition, low sample consumption may be beneficial in the analysis of rare or difficult samples. In this report, we demonstrate the ability to analyze individual mitochondrial events in picoliter-volume samples (approximately 80 pL) taken from a bovine liver preparation using microchip capillary electrophoresis with laser-induced fluorescence detection (micro-chip CE-LIF). Using a commercial "double-T" glass microchip, the sample was electrokinetically loaded in the "double-T" intersection and then subjected to electrophoretic separation along the main separation channel. In order to decrease interactions of mitochondria with channel walls during the analysis, poly(vinyl alcohol) was used as a dynamic coating. This procedure eliminates the need for complicated covalent surface modifications within the channels that were previously used in capillary electrophoresis methods. For analysis, mitochondria, isolated from bovine liver tissue, were selectively labelled using 10-nonyl acridine orange (NAO). The results consist of electropherograms where each mitochondrial event is a narrow spike (240 +/- 44 ms). While the spike intensity is representative of its NAO content, its migration time is used to calculate and describe its electrophoretic mobility, which is a property still largely unexplored for intracellular organelles. The five-fold decrease in separation time (4 min for microchip versus 20 min for capillary electrophoresis) makes microchip electrophoretic separations of organelles a faster, sensitive, low-sample volume alternative for the characterization of individual organelle properties and for investigations of subcellular heterogeneity.

  12. Characterization of complexes between phenethylamine enantiomers and β-cyclodextrin derivatives by capillary electrophoresis-Determination of binding constants and complex mobilities.

    PubMed

    Wahl, Joachim; Furuishi, Takayuki; Yonemochi, Etsuo; Meinel, Lorenz; Holzgrabe, Ulrike

    2017-04-01

    To optimize chiral separation conditions and to improve the knowledge of enantioseparation, it is important to know the binding constants K between analytes and cyclodextrins and the electrophoretic mobilities of the temporarily formed analyte-cyclodextrin-complexes. K values for complexes between eight phenethylamine enantiomers, namely ephedrine, pseudoephedrine, methylephedrine and norephedrine, and four different β-cyclodextrin derivatives were determined by affinity capillary electrophoresis. The binding constants were calculated from the electrophoretic mobility values of the phenethylamine enantiomers at increasing concentrations of cyclodextrins in running buffer. Three different linear plotting methods (x-reciprocal, y-reciprocal, double reciprocal) and nonlinear regression were used for the determination of binding constants with β-cyclodextrin, (2-hydroxypropyl)-β-cyclodextrin, methyl-β-cyclodextrin and 6-O-α-maltosyl-β-cyclodextrin. The cyclodextrin concentration in a 50 mM phosphate buffer pH 3.0 was varied from 0 to 12 mM. To investigate the influence of the binding constant values on the enantioseparation the observed electrophoretic selectivities were compared with the obtained K values and the calculated enantiomer-cyclodextrin-complex mobilities. The different electrophoretic mobilities of the temporarily formed complexes were crucial factors for the migration order and enantioseparation of ephedrine derivatives. To verify the apparent binding constants determined by capillary electrophoresis, a titration process using ephedrine enantiomers and β-cyclodextrin was carried out. Furthermore, the isothermal titration calorimetry measurements gave information about the thermal properties of the complexes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program.

    PubMed

    Silva, Marcilene Rezende; Sendin, Shimene Mascarenhas; Araujo, Isabela Couto de Oliveira; Pimentel, Fernanda Silva; Viana, Marcos Borato

    2013-01-01

    To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. β(S) allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI) were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. THE FOLLOWING ALPHA CHAIN VARIANTS WERE FOUND: seven children with hemoglobin Hasharon [alpha2 47(CE5) Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13) Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2) Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5) Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.

  14. Optimal MEMS device for mobility and zeta potential measurements using DC electrophoresis.

    PubMed

    Karam, Pascal R; Dukhin, Andrei; Pennathur, Sumita

    2017-05-01

    We have developed a novel microchannel geometry that allows us to perform simple DC electrophoresis to measure the electrophoretic mobility and zeta potential of analytes and particles. In standard capillary geometries, mobility measurements using DC fields are difficult to perform. Specifically, measurements in open capillaries require knowledge of the hard to measure and often dynamic wall surface potential. Although measurements in closed capillaries eliminate this requirement, the measurements must be performed at infinitesimally small regions of zero flow where the pressure driven-flow completely cancels the electroosmotic flow (Komagata Planes). Furthermore, applied DC fields lead to electrode polarization, further questioning the reliability and accuracy of the measurement. In contrast, our geometry expands and moves the Komagata planes to where velocity gradients are at a minimum, and thus knowledge of the precise location of a Komagata plane is not necessary. Additionally, our microfluidic device prevents electrode polarization because of fluid recirculation around the electrodes. We fabricated our device using standard MEMS fabrication techniques and performed electrophoretic mobility measurements on 500 nm fluorescently tagged polystyrene particles at various buffer concentrations. Results are comparable to two different commercial dynamic light scattering based particle sizing instruments. We conclude with guidelines to further develop this robust electrophoretic tool that allows for facile and efficient particle characterization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. CAPILLARY ELECTROPHORETIC BEHAVIOR OF SEVEN SULFONYLUREAS

    EPA Science Inventory

    The electrophoretic behavior of bensulfuron Me, sulfometuron Me, nicosulfuron (Accent), chlorimuron Et, thifensulfuron Me (Harmony), metsulfuron Me, and chlorsulfuron was studied under capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) conditio...

  16. Electrophoretic Separation of Single Particles Using Nanoscale Thermoplastic Columns.

    PubMed

    Weerakoon-Ratnayake, Kumuditha M; Uba, Franklin I; Oliver-Calixte, Nyoté J; Soper, Steven A

    2016-04-05

    Phenomena associated with microscale electrophoresis separations cannot, in many cases, be applied to the nanoscale. Thus, understanding the electrophoretic characteristics associated with the nanoscale will help formulate relevant strategies that can optimize the performance of separations carried out on columns with at least one dimension below 150 nm. Electric double layer (EDL) overlap, diffusion, and adsorption/desorption properties and/or dielectrophoretic effects giving rise to stick/slip motion are some of the processes that can play a role in determining the efficiency of nanoscale electrophoretic separations. We investigated the performance characteristics of electrophoretic separations carried out in nanoslits fabricated in poly(methyl methacrylate), PMMA, devices. Silver nanoparticles (AgNPs) were used as the model system with tracking of their transport via dark field microscopy and localized surface plasmon resonance. AgNPs capped with citrate groups and the negatively charged PMMA walls (induced by O2 plasma modification of the nanoslit walls) enabled separations that were not apparent when these particles were electrophoresed in microscale columns. The separation of AgNPs based on their size without the need for buffer additives using PMMA nanoslit devices is demonstrated herein. Operational parameters such as the electric field strength, nanoslit dimensions, and buffer composition were evaluated as to their effects on the electrophoretic performance, both in terms of efficiency (plate numbers) and resolution. Electrophoretic separations performed at high electric field strengths (>200 V/cm) resulted in higher plate numbers compared to lower fields due to the absence of stick/slip motion at the higher electric field strengths. Indeed, 60 nm AgNPs could be separated from 100 nm particles in free solution using nanoscale electrophoresis with 100 μm long columns.

  17. Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon

    PubMed Central

    Rodionov, Dmitry A.; Li, Xiaoqing; Rodionova, Irina A.; Yang, Chen; Sorci, Leonardo; Dervyn, Etienne; Martynowski, Dariusz; Zhang, Hong; Gelfand, Mikhail S.; Osterman, Andrei L.

    2008-01-01

    A comparative genomic approach was used to reconstruct transcriptional regulation of NAD biosynthesis in bacteria containing orthologs of Bacillus subtilis gene yrxA, a previously identified niacin-responsive repressor of NAD de novo synthesis. Members of YrxA family (re-named here NiaR) are broadly conserved in the Bacillus/Clostridium group and in the deeply branching Fusobacteria and Thermotogales lineages. We analyzed upstream regions of genes associated with NAD biosynthesis to identify candidate NiaR-binding DNA motifs and assess the NiaR regulon content in these species. Representatives of the two distinct types of candidate NiaR-binding sites, characteristic of the Firmicutes and Thermotogales, were verified by an electrophoretic mobility shift assay. In addition to transcriptional control of the nadABC genes, the NiaR regulon in some species extends to niacin salvage (the pncAB genes) and includes uncharacterized membrane proteins possibly involved in niacin transport. The involvement in niacin uptake proposed for one of these proteins (re-named NiaP), encoded by the B. subtilis gene yceI, was experimentally verified. In addition to bacteria, members of the NiaP family are conserved in multicellular eukaryotes, including human, pointing to possible NaiP involvement in niacin utilization in these organisms. Overall, the analysis of the NiaR and NrtR regulons (described in the accompanying paper) revealed mechanisms of transcriptional regulation of NAD metabolism in nearly a hundred diverse bacteria. PMID:18276644

  18. Nanolaminate microfluidic device for mobility selection of particles

    DOEpatents

    Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA

    2006-10-10

    A microfluidic device made from nanolaminate materials that are capable of electrophoretic selection of particles on the basis of their mobility. Nanolaminate materials are generally alternating layers of two materials (one conducting, one insulating) that are made by sputter coating a flat substrate with a large number of layers. Specific subsets of the conducting layers are coupled together to form a single, extended electrode, interleaved with other similar electrodes. Thereby, the subsets of conducting layers may be dynamically charged to create time-dependent potential fields that can trap or transport charge colloidal particles. The addition of time-dependence is applicable to all geometries of nanolaminate electrophoretic and electrochemical designs from sinusoidal to nearly step-like.

  19. Electrophoretically mediated microanalysis of leucine aminopeptidase using two-photon excited fluorescence detection on a microchip.

    PubMed

    Zugel, S A; Burke, B J; Regnier, F E; Lytle, F E

    2000-11-15

    Two-photon excited fluorescence detection was performed on a microfabricated electrophoresis chip. A calibration curve of the fluorescent tag beta-naphthylamine was performed, resulting in a sensitivity of 2.5 x 10(9) counts M(-1) corresponding to a detection limit of 60 nM. Additionally, leucine aminopeptidase was assayed on the chip using electrophoretically mediated microanalysis. The differential electroosmotic mobilities of the enzyme and substrate, L-leucine beta-naphthylamide, allowed for efficient mixing in an open channel, resulting in the detection of a 30 nM enzyme solution under constant potential. A zero potential incubation for 1 min yielded a calculated detection limit of 4 nM enzyme.

  20. Electrokinetic transport phenomena: Mobility measurement and electrokinetic instability

    NASA Astrophysics Data System (ADS)

    Oddy, Michael Huson

    Miniaturization and integration of traditional bioassay procedures into microfabricated on-chip assay systems, commonly referred to as "Micro Total Analysis" (muTAS) systems, may have a significant impact on the fields of genomics, proteomics, and clinical analysis. These bioanalytical microsystems leverage electroosmosis and electrophoresis for sample transport, mixing, manipulation, and separation. This dissertation addresses the following three topics relevant to such systems: a new diagnostic for measuring the electrophoretic mobility of sub-micron, fluorescently-labeled particles and the electroosmotic mobility of a microchannel; a novel method and device for rapidly stirring micro- and nanoliter volume solutions for microfluidic bioanalytical applications; and a multiple-species electrokinetic instability model. Accurate measurement of the electrophoretic particle mobility and the electroosmotic mobility of microchannel surfaces is crucial to understanding the stability of colloidal suspensions, obtaining particle tracking-based velocimetry measurements of electroosmotic flow fields, and the quantification of electrokinetic bioanalytical device performance. A method for determining these mobilities from alternating and direct current electrokinetic particle tracking measurements is presented. The ability to rapidly mix fluids at low Reynolds numbers is important to the functionality of many bioanalytical, microfluidic devices. We present an electrokinetic process for rapidly stirring microflow streams by initiating an electrokinetic flow instability. The design, fabrication and performance analysis of two micromixing devices capable of rapidly stirring two low Reynolds number fluid streams are presented. Electroosmotic and electrophoretic transport in the presence of conductivity mismatches between reagent streams and the background electrolytes, can lead to an unstable flow field generating significant sample dispersion. In the multiple

  1. Computer simulation of two electrophoretic columns coupled for isoelectric focusing in simple buffers

    NASA Technical Reports Server (NTRS)

    Tsai, Amos; Mosher, Richard A.; Bier, Milan

    1986-01-01

    Computer simulation is used to analyze a system of two electrophoretic columns coupled by mixing the anolyte of one with the catholyte of the other. A mathematical model is presented which is used to predict the pH gradients formed by monovalent buffers in this system, when the currents in the columns are unequal. In the column with the higher current a pH gradient is created which increases from anode to cathode and is potentially useful for isoelectric focusing. The breadth of this gradient is dependent upon the ratio of the currents. The function of the second column is the compensation of buffer migration which occurs in the first column, thereby maintaining constant electrolyte composition. The effects of buffer pKs and mobilities are evaluated.

  2. Electrophoretic Process For Purifying Wastewater

    NASA Technical Reports Server (NTRS)

    Sammons, David W.; Twitty, Garland E.; Sharnez, Rizwan; Egen, Ned B.

    1992-01-01

    Microbes, poisonous substances, and colloidal particles removed by combination of electric fields. Electrophoretic process removes pathogenicorganisms, toxins, toxic metals, and cooloidal soil particles from wastewater. Used to render domestic, industrial, and agricultural wastewater streams potable. Process also useful in bioregenerative and other closed systems like in space stations and submarines, where water must be recycled.

  3. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates

    DTIC Science & Technology

    1990-08-30

    hydrodynamic drag force exerted on the particle due to the electroosmotic flow of the solvent inside the pore, the electrophoretic force exerted on the...8217 - electrophoretic velocity UN - electroosmotic velocity b - pore mean radius D - diffusion coefficient k - local deposition rate Large Peclet numbers and small...experimentally as the charge is acquired spontaneously on mixing the particles with the solvent and it may be reversed upon addition ot ionic compounds. The

  4. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates

    DTIC Science & Technology

    1992-09-30

    particle penetration is facilitated by the electrophoretic force exerted on it and the electroosmotic flow of the fluid into the pores. 1 2 The...skeleton showed that the whole cross--section of the graphite was impregnated. - The existence of an electroosmotic effect was demonstrated by the...Pe) and the Damkohler number (A): Pe ((U" + Us)b -kb where U" - electrophoretic velocity Um - electroosmotic velocity b - pore mean radius D

  5. A Semianalytical Analysis of Compressible Electrophoretic Cake Formation

    NASA Astrophysics Data System (ADS)

    Kambham, Kiran K. R.; Tuncay, Kagan; Corapcioglu, M. Yavuz

    1995-05-01

    Leaks in geomembrane liners of waste landfills and liquid impoundments cause chemical contaminants to leak into the subsurface environment. A mathematical model is presented to simulate electrophoretic sealing of impoundment leaks. The model describes the formation of a compressible clay cake because of electrical and gravitational forces. The model includes mass balance equations for the solid particles and liquid phase, modified Darcy's law in an electrical field, and Terzaghi's definition of effective stress. The formulation is presented in the Eulerian coordinates. The resulting second-order, nonlinear partial differential equation and the lower boundary condition are linearized to obtain an analytical solution for time-dependent settlement. After discretizing in time the analytical solution is applied to simulate compression of an accreting sediment. In the simulation of an accreting sediment, solid fluxes on either side of suspension/sediment interface are coupled using a no-jump condition. The velocity of a discrete particle in the suspension zone is assumed to be equal to the algebraic sum of electrophoretic and Stoke's settling velocities. An empirical relationship available in the literature is used to account for the effect of concentration on the velocity of solid particles in the suspension zone. The validity of the semianalytical approach is partially verified using an exact steady state solution for self-weight consolidation. The simulation results obtained for a set of material parameters are presented graphically. It is noted that the electrokinetic consolidation of sediment continues even after the completion of electrophoretic settling of all clay particles. An analysis reveals that the electrophoretic cake formation process is quite sensitive to voltage gradient and the coefficient of compressibility.

  6. Three-dimensional fluorescence analysis of chernozem humic acids and their electrophoretic fractions

    NASA Astrophysics Data System (ADS)

    Trubetskoi, O. A.; Trubetskaya, O. E.

    2017-09-01

    Polyacrylamide gel electrophoresis in combination with size-exclusion chromatography (SEC-PAGE) has been used to obtain stable electrophoretic fractions of different molecular size (MS) from chernozem humic acids (HAs). Three-dimensional fluorescence charts of chernozem HAs and their fractions have been obtained for the first time, and all fluorescence excitation-emission maxima have been identified in the excitation wavelength range of 250-500 nm. It has been found that fractionation by the SEC-PAGE method results in a nonuniform distribution of protein- and humin-like fluorescence of the original HA preparation among the electrophoretic fractions. The electrophoretic fractions of the highest and medium MSs have only the main protein-like fluorescence maximum and traces of humin-like fluorescence. In the electrophoretic fraction of the lowest MS, the intensity of protein-like fluorescence is low, but the major part of humin-like fluorescence is localized there. Relationships between the intensity of protein-like fluorescence and the weight distribution of amino acids have been revealed, as well as between the degree of aromaticity and the intensity of humin-like fluorescence in electrophoretic fractions of different MSs. The obtained relationships can be useful in the interpretation of the spatial structural organization and ecological functions of soil HAs.

  7. A Protein Nanopore-Based Approach for Bacteria Sensing

    NASA Astrophysics Data System (ADS)

    Apetrei, Aurelia; Ciuca, Andrei; Lee, Jong-kook; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor

    2016-11-01

    We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria ( Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.

  8. Electrophoretic separations on paper: Past, present, and future-A review.

    PubMed

    Nanthasurasak, Pavisara; Cabot, Joan Marc; See, Hong Heng; Guijt, Rosanne M; Breadmore, Michael C

    2017-09-08

    Point-of-collection (POC) devices aim for a fast, on-site detection for medical and environmental purposes. In this area, microfluidic Paper-based Analytical Devices (μPADs) have recently gained popularity because these are potentially cheap and environmentally friendly to produce, and easy to use. From an analytical perspective, paper is well known for its use as a substrate for chromatography, but less known for its use in electrophoretic separations. With the recent interest in μPADs, most applications are based on rather simple assays with relatively few applications incorporating an analytical separation. The focus of this review is on paper-based electrophoresis, originating with the key developments in the 1940s and 1950s as well as the recent developments of electrophoretic μPADs, and concluding with a critical discussion of the opportunities and challenges for electrophoretic μPADS in the future. Copyright © 2017. Published by Elsevier B.V.

  9. Ensemble of electrophoretically captured gold nanoparticles as a fingerprint of Boltzmann velocity distribution

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Kang, M. G.; Lim, J. H.; Hwang, S. W.

    2008-07-01

    An ensemble of electrophoretically captured gold nanoparticles is exploited to fingerprint their velocity distribution in solution. The electrophoretic capture is performed using a dc biased nanogap electrode, and panoramic scanning electron microscopic images are inspected to obtain the regional density of the captured gold nanoparticles. The regional density profile along the surface of the electrode is in a quantitative agreement with the calculated density of the captured nanoparticles. The calculated density is obtained by counting, in the Boltzmann distribution, the number of nanoparticles whose thermal velocity is smaller than the electrophoretic velocity.

  10. Design Modification of Electrophoretic Equipment

    NASA Technical Reports Server (NTRS)

    Reddick, J. M.; Hirsch, I.

    1973-01-01

    The improved design of a zone electrophoretic sampler is reported that can be used in mass screening for hemoglobin S, the cause of sickle cell anemia. Considered is a high voltage multicell cellulose acetate device that requires 5 to 6 minutes electrophoresis periods; cells may be activitated individually or simultaneously. A multisample hemoglobin applicator standardizes the amount of sample applied and transfers the homolysate to the electrical wires.

  11. Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings

    PubMed Central

    Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo R.

    2014-01-01

    Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulated body fluid (SBF) for up to 21 days. Fourier transform infrared (FTIR) spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings. PMID:25007822

  12. FAST TRACK COMMUNICATION: High material efficiency found in electrophoretic deposition of conjugated polymer

    NASA Astrophysics Data System (ADS)

    Tada, Kazuya; Onoda, Mitsuyoshi

    2009-09-01

    The material efficiency of electrophoretic deposition of a fluorene-based conjugated polymer, poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (PDOF-MEHPV), from suspensions with a mixture of acetonitrile and toluene as dispersant is studied. It has been found that the recovery rate of the electrophoretic deposition from a suspension containing 90% of the poor solvent acetonitrile reaches 98%. Although the recovery rate decreases with decreasing acetonitrile content, almost 70% of the polymer can be deposited on the substrates from the suspension containing equivalent volumes of the good and poor solvents by electrophoretic deposition, from which smooth and transparent films suitable for electronic devices are obtained.

  13. Continuous-flow electrophoretic separator for biologicals

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.; Griffin, R. N.; Locker, R. J.

    1976-01-01

    In the near absence of gravity, a continuous-flow type of electrophoretic separator can be operated with a much thicker separation chamber than is possible under 1 g conditions. This should permit either better resolution or shorter separation time per unit of sample. An apparatus to perform experiments on sounding rockets is under development and will be described. The electrophoresis cell is 5 mm thick by 5 cm wide with 10 cm long electrodes. It is supplied with buffer, sample, and coolant at about 4 C through the use of a passive refrigerant system. UV sample detection and provision for recovery and cold storage of up to 50 sample fractions are now being added to the basic unit. A wide range of operating conditions are electronically programmable into the unit, even up to a short time before flight, and a further range of some parameters can be achieved by exchanging power supplies and by changing gears in the motor drive units of the pump. The preliminary results of some separation studies on various biological products using a commercially available electrophoretic separator are also presented.

  14. Atomic-force-controlled capillary electrophoretic nanoprinting of proteins.

    PubMed

    Lovsky, Yulia; Lewis, Aaron; Sukenik, Chaim; Grushka, Eli

    2010-01-01

    The general nanoprinting and nanoinjection of proteins on non-conducting or conducting substrates with a high degree of control both in terms of positional and timing accuracy is an important goal that could impact diverse fields from biotechnology (protein chips) to molecular electronics and from fundamental studies in cell biology to nanophotonics. In this paper, we combine capillary electrophoresis (CE), a separation method with considerable control of protein movement, with the unparalleled positional accuracy of an atomic force microscope (AFM). This combination provides the ability to electrophoretically or electroosmotically correlate the timing of protein migration with AFM control of the protein deposition at a high concentration in defined locations and highly confined volumes estimated to be 2 al. Electrical control of bovine serum albumin printing on standard protein-spotting glass substrates is demonstrated. For this advance, fountain pen nanolithography (FPN) that uses cantilevered glass-tapered capillaries is amended with the placement of electrodes on the nanopipette itself. This results in imposed voltages that are three orders of magnitude less than what is normally used in capillary electrophoresis. The development of atomic-force-controlled capillary electrophoretic printing (ACCEP) has the potential for electrophoretic separation, with high resolution, both in time and in space. The large voltage drop at the tip of the tapered nanopipettes allows for significant increases in concentration of protein in the small printed volumes. All of these attributes combine to suggest that this methodology should have a significant impact in science and technology.

  15. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles

    PubMed Central

    Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2017-01-01

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. PMID:27639623

  16. Fabrication and kinetics study of nano-Al/NiO thermite film by electrophoretic deposition.

    PubMed

    Zhang, Daixiong; Li, Xueming

    2015-05-21

    Nano-Al/NiO thermites were successfully prepared as film by electrophoretic deposition (EPD). For the key issue of this EPD, a mixture solvent of ethanol-acetylacetone (1:1 in volume) containing 0.00025 M nitric acid was proved to be a suitable dispersion system for EPD. The kinetics of electrophoretic deposition for both nano-Al and nano-NiO were investigated; the linear relation between deposition weight and deposition time in short time and parabolic relation in prolonged time were observed in both EPDs. The critical transition time between linear deposition kinetics and parabolic deposition kinetics for nano-Al and nano-NiO were 20 and 10 min, respectively. The theoretical calculation of the kinetics of electrophoretic deposition revealed that the equivalence ratio of nano-Al/NiO thermites film would be affected by the behavior of electrophoretic deposition for nano-Al and nano-NiO. The equivalence ratio remained steady when the linear deposition kinetics dominated for both nano-Al and nano-NiO. The equivalence ratio would change with deposition time when deposition kinetics for nano-NiO changed into parabolic kinetics dominated after 10 min. Therefore, the rule was suggested to be suitable for other EPD of bicomposites. We also studied thermodynamic properties of electrophoretic nano-Al/NiO thermites film as well as combustion performance.

  17. Chiral ionic liquids in chromatographic and electrophoretic separations.

    PubMed

    Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

    2014-10-10

    This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Electrophoretic study of the genome of human rotavirus from Maceió, Brazil.

    PubMed

    Houly, C A; Uchoa, M M; Zaidan, A M; Gomes-Neto, A; de-Oliveira, F M; Athayde, M A; Almeida, M F; Pereira, H G

    1986-01-01

    Rotaviruses were detected by enzyme immunoassay (EIA) in 53 (13.3%) of 397 fecal samples from children with acute gastroenteritis in the city of Maceió, Alagoas, Brazil. Polyacrylamide gel electrophoretic (PAGE) patterns characteristic of rotavirus double-stranded RNA were detected in 51 (96.2%) of the 53 EIA-positive samples. Of the RNA-positive samples, 1 (2%) was classified as subgroup 1 (short profile), 49 (96%) as subgroup 2 (long profile) and 1 (2%) could not be classified because of the absence of bands 10 and 11. The strains of subgroup 2 showed a great degree of electrophoretic heterogeneity and could be divided into several subcategories. Two samples showed splitting of one of the genome segments. PAGE, a very sensitive method capable of identifying rotavirus RNA genomes, has demonstrated that human rotaviruses detected in Maceió present many differences in RNA electrophoretic patterns.

  19. Predicting tensorial electrophoretic effects in asymmetric colloids

    NASA Astrophysics Data System (ADS)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  20. Demonstrating Electrophoretic Separation in a Straight Paper Channel Delimited by a Hydrophobic Wax Barrier

    ERIC Educational Resources Information Center

    Xu, Chunxiu; Lin, Wanqi; Cai, Longfei

    2016-01-01

    A demonstration is described of electrophoretic separation of carmine and sunset yellow with a paper-based device. The channel in the paper device was fabricated by hand with a wax pen. Electrophoretic separation of carmine and sunset yellow was achieved within a few minutes by applying potential on the channel using a simple and inexpensive power…

  1. Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds.

    PubMed

    Hoppe, Thomas; Kutschera, Ulrich

    2015-01-01

    On decaying wood or litter in forests, plasmodial slime molds (myxomycetes) represent a large fraction of eukaryotic protists that feed on bacteria. In his seminal book Experimental Physiology of Plants (1865), Julius Sachs referred to the multinucleate plasmodium of myxomycetes, which were considered at that time as primitive plants (or fungi). Today it is well established that myxomycetes are members of the Amoebozoa (Protista). In this study we compare the mobility of myxamoebae of 3 European species, Lycogala epidendrum (order Liceales), Tubulifera arachnoidea, and Trichia decipiens (order Trichiales). Using agar plates, on which 3 separate bacterial species were cultivated as prey organisms (Methylobacterium mesophilicum, Escherichia coli, Agrobacterium tumefaciens), we document large differences in cell motility between the myxomycetes investigated. In addition, we show that the 3 species of myxamoebae can be distinguished based on their average cell size. These data shed light on the mode of co-occurrence via differential substrate utilization in these members of the Amoebozoa.

  2. Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds

    PubMed Central

    Hoppe, Thomas; Kutschera, Ulrich

    2015-01-01

    On decaying wood or litter in forests, plasmodial slime molds (myxomycetes) represent a large fraction of eukaryotic protists that feed on bacteria. In his seminal book Experimental Physiology of Plants (1865), Julius Sachs referred to the multinucleate plasmodium of myxomycetes, which were considered at that time as primitive plants (or fungi). Today it is well established that myxomycetes are members of the Amoebozoa (Protista). In this study we compare the mobility of myxamoebae of 3 European species, Lycogala epidendrum (order Liceales), Tubulifera arachnoidea, and Trichia decipiens (order Trichiales). Using agar plates, on which 3 separate bacterial species were cultivated as prey organisms (Methylobacterium mesophilicum, Escherichia coli, Agrobacterium tumefaciens), we document large differences in cell motility between the myxomycetes investigated. In addition, we show that the 3 species of myxamoebae can be distinguished based on their average cell size. These data shed light on the mode of co-occurrence via differential substrate utilization in these members of the Amoebozoa. PMID:26357877

  3. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    PubMed

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Electrophoretic separation of human kidney cells at zero gravity

    NASA Technical Reports Server (NTRS)

    Barlow, G. H.; Lazer, S. L.; Rueter, A.; Allen, R. E.

    1977-01-01

    Electrophoretic isolation of cells results in a loss of resolution power caused by the sedimentation of the cells in the media. The results of an experiment to extract urokinase from human embryos during the Apollo Soyuz mission are presented and discussed.

  5. Analysis of the interplay among charge, hydration and shape of proteins through the modeling of their CZE mobility data.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2009-07-01

    Electrophoretic mobility data of four proteins are analyzed and interpreted through a physicochemical CZE model, which provides estimates of quantities like equivalent hydrodynamic radius (size), effective charge number, shape orientation factor, hydration, actual pK values of ionizing groups, and pH near molecule, among others. Protein friction coefficients are simulated through the creeping flow theory of prolate spheroidal particles. The modeling of the effective electrophoretic mobility of proteins requires consideration of hydrodynamic size and shape coupled to hydration and effective charge. The model proposed predicts native protein hydration within the range of values obtained experimentally from other techniques. Therefore, this model provides consistently other physicochemical properties such as average friction and diffusion coefficients and packing fractal dimension. As the pH varies from native conditions to those that are denaturing the protein, hydration and packing fractal dimension change substantially. Needs for further research are also discussed and proposed.

  6. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles.

    PubMed

    Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2016-11-20

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Enhanced specific capacitance of an electrophoretic deposited MnO2-carbon nanotube supercapacitor

    NASA Astrophysics Data System (ADS)

    Tagsin, Patin; Klangtakai, Pawinee; Harnchana, Viyada; Amornkitbamrung, Vittaya; Pimanpang, Samuk; Kumnorkaew, Pisist

    2017-12-01

    MnO2 and MnO2-carbon nanotubes (CNT) composite films were grown directly on stainless- steel substrates using an electrophoretic process employing supercapacitor electrodes. An electrophoretic MnO2 film with a nanoplate-like structure was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Supercapacitor performance was studied using cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The specific capacitance (SC) of the electrophoretic MnO2 film was 60 F/g at 1 A/g, with a 38.33% retention of the initial SC values after 1000 cycles. The low SC value of the MnO2 films was attributed to the high series and charge-transfer resistances of 1.70 Ω and 3.20, respectively. The MnO2-CNT composites with the addition of 0.04, 0.06 and 0.08 g CNT to the electrophoretic MnO2 film were found to greatly increase the SC to 300, 206 and 169 F/g at 1 A/g, respectively. The series and charge-transferred resistances of MnO2-CNT composite films decreased to 1.38 - 1.52 Ω and 2.62 - 2.86 Ω, respectively. The SC improvement of the composite electrodes was attributed to presence of two active storage materials (MnO2 and CNT), a high film specific surface area and electrical conductivity.

  8. Influence of boundary on the effect of double-layer polarization and the electrophoretic behavior of soft biocolloids.

    PubMed

    Yeh, Li-Hsien; Fang, Kuo-Ying; Hsu, Jyh-Ping; Tseng, Shiojenn

    2011-12-01

    The electrophoresis of a soft particle comprising a rigid core and a charged porous membrane layer in a narrow space is modeled. This simulates, for example, the capillary electrophoresis of biocolloids such as cells and microorganisms, and biosensor types of device. We show that, in addition to the boundary effect, the effects of double-layer polarization (DLP) and the electroosmotic retardation flow can be significant, yielding interesting electrophoretic behaviors. For example, if the friction coefficient of the membrane layer and/or the boundary is large, then the DLP effect can be offset by the electroosmotic retardation flow, making the particle mobility to decrease with increasing double layer thickness, which is qualitatively consistent with many experimental observations in the literature, but has not been explained clearly in previous analyses. In addition, depending upon the thickness of double layer, the friction of the membrane layer of a particle can either retard or accelerate its movement, an interesting result which has not been reported previously. This work is the first attempt to show solid evidence for the influence of a boundary on the effect of DLP and the electrophoretic behavior of soft particles. The model proposed is verified by the experimental data in the literature. The results of numerical simulation provide valuable information for the design of bio-analytical apparatus such as nanopore-based sensing applications and for the interpretation of relevant experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Survival rate of eukaryotic cells following electrophoretic nanoinjection.

    PubMed

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-25

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.

  10. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    PubMed Central

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells. PMID:28120926

  11. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.

    PubMed

    Korehi, H; Blöthe, M; Sitnikova, M A; Dold, B; Schippers, A

    2013-03-05

    The marine shore sulfidic mine tailings dump at the Chañaral Bay in the Atacama Desert, northern Chile, is characterized by extreme acidity, high salinity, and high heavy metals concentrations. Due to pyrite oxidation, metals (especially copper) are mobilized under acidic conditions and transported toward the tailings surface and precipitate as secondary minerals (Dold, Environ. Sci. Technol. 2006, 40, 752-758.). Depth profiles of total cell counts in this almost organic-carbon free multiple extreme environment showed variable numbers with up to 10(8) cells g(-1) dry weight for 50 samples at four sites. Real-time PCR quantification and bacterial 16S rRNA gene diversity analysis via clone libraries revealed a dominance of Bacteria over Archaea and the frequent occurrence of the acidophilic iron(II)- and sulfur-oxidizing and iron(III)-reducing genera Acidithiobacillus, Alicyclobacillus, and Sulfobacillus. Acidophilic chemolithoautotrophic iron(II)-oxidizing bacteria were also frequently found via most-probable-number (MPN) cultivation. Halotolerant iron(II)-oxidizers in enrichment cultures were active at NaCl concentrations up to 1 M. Maximal microcalorimetrically determined pyrite oxidation rates coincided with maxima of the pyrite content, total cell counts, and MPN of iron(II)-oxidizers. These findings indicate that microbial pyrite oxidation and metal mobilization preferentially occur in distinct tailings layers at high salinity. Microorganisms for biomining with seawater salt concentrations obviously exist in nature.

  12. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry.

    PubMed

    Holtkamp, Hannah; Grabmann, Gerlinde; Hartinger, Christian G

    2016-04-01

    Electrophoretic methods have been widely applied in research on the roles of metal complexes in biological systems. In particular, CE, often hyphenated to a sensitive MS detector, has provided valuable information on the modes of action of metal-based pharmaceuticals, and more recently new methods have been added to the electrophoretic toolbox. The range of applications continues to expand as a result of enhanced CE-to-MS interfacing, with sensitivity often at picomolar level, and evolved separation modes allowing for innovative sample analysis. This article is a followup to previous reviews about CE methods in metallodrug research (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis, 2007, 28, 3436-3446; Electrophoresis, 2012, 33, 622-634), also providing a comprehensive overview of metal species studied by electrophoretic methods hyphenated to MS. It highlights the latest CE developments, takes a sneak peek into gel electrophoresis, traces biomolecule labeling, and focuses on the importance of early-stage drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Association of electrophoretic karyotype of Candida stellatoidea with virulence for mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon-Chung, K.J.; Wickes, B.L.; Merz, W.G.

    1988-07-01

    Seven isolates of Candida stellatoidea were studied for their electrophoretic karyotype, virulence for mice, sensitivity to UV radiation, growth rate in vitro, reaction on cycloheximide-indicator medium, and proteinase activity. The isolates exhibited one of two distinct electrophoretic karyotypes as determined by orthogonal field alternating gel electrophoresis (OFAGE). Four isolates, including the type culture of C. stellatoidea, belonged to electrophoretic karyotype type I by OFAGE, showing eight to nine bands of which at least two bands were less than 1,000 kilobases in size as estimated by comparison with the DNA bands of Saccharomyces cerevisiae. These isolates failed to produce fatal infectionmore » in mice within 20 days when 5 X 10(5) cells were injected intravenously. The yeasts were cleared from the kidneys of two of three mice tested by day 30. Type I showed proteinase activity on bovine serum albumin agar at pH 3.8 and produced a negative reaction on cycloheximide-bromcresol green medium within 48 h. The three grouped in type II by OFAGE showed banding patterns similar to those of a well-characterized isolate of Candida albicans. The isolates of type II had an electrophoretic karyotype of six to seven bands approximately 1,200 kilobases or greater in size. All three type II isolates were highly virulent for mice, producing fatality curves similar to those of a previously studied C. albicans isolate. From 80 to 90% of the mice injected with 5 X 10(5) cells intravenously died within 20 days. The type II isolates produced a positive reaction on cycloheximide-bromcresol green agar and showed no proteinase activity on bovine serum albumin agar at the low pH. In addition, the type II isolates grew faster and were significantly more resistant to UV irradiation than the type I isolates.« less

  14. Stabilization of green bodies via sacrificial gelling agent during electrophoretic deposition

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua D.; Rose, Klint A.

    2016-03-22

    In one embodiment, a method for electrophoretic deposition of a three-dimensionally patterned green body includes suspending a first material in a gelling agent above a patterned electrode of an electrophoretic deposition (EPD) chamber, and gelling the suspension while applying a first electric field to the suspension to cause desired patterning of the first material in a resulting gelation. In another embodiment, a ceramic, metal, or cermet includes a plurality of layers, wherein each layer includes a gradient in composition, microstructure, and/or density in an x-y plane oriented parallel to a plane of deposition of the plurality of layers along a predetermined distance in a z-direction perpendicular to the plane of deposition.

  15. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    PubMed

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dynamic electrophoretic fingerprinting of the HIV-1 envelope glycoprotein

    PubMed Central

    2013-01-01

    Background Interactions between the HIV-1 envelope glycoprotein (Env) and its primary receptor CD4 are influenced by the physiological setting in which these events take place. In this study, we explored the surface chemistry of HIV-1 Env constructs at a range of pH and salinities relevant to mucosal and systemic compartments through electrophoretic mobility (EM) measurements. Sexual transmission events provide a more acidic environment for HIV-1 compared to dissemination and spread of infection occurring in blood or lymph node. We hypothesize functional, trimeric Env behaves differently than monomeric forms. Results The dynamic electrophoretic fingerprint of trimeric gp140 revealed a change in EM from strongly negative to strongly positive as pH increased from that of the lower female genital tract (pHx) to that of the blood (pHy). Similar findings were observed using a trimeric influenza Haemagglutinin (HA) glycoprotein, indicating that this may be a general attribute of trimeric viral envelope glycoproteins. These findings were supported by computationally modeling the surface charge of various gp120 and HA crystal structures. To identify the behavior of the infectious agent and its target cells, EM measurements were made on purified whole HIV-1 virions and primary T-lymphocytes. Viral particles had a largely negative surface charge, and lacked the regions of positivity near neutral pH that were observed with trimeric Env. T cells changed their surface chemistry as a function of activation state, becoming more negative over a wider range of pH after activation. Soluble recombinant CD4 (sCD4) was found to be positively charged under a wide range of conditions. Binding studies between sCD4 and gp140 show that the affinity of CD4-gp140 interactions depends on pH. Conclusions Taken together, these findings allow a more complete model of the electrochemical forces involved in HIV-1 Env functionality. These results indicate that the influence of the localized

  17. Chemical composition of lipopolysaccharides isolated from various endophytic nitrogen-fixing bacteria of the genus Herbaspirillum.

    PubMed

    Serrato, R V; Sassaki, G L; Cruz, L M; Carlson, R W; Muszyński, A; Monteiro, R A; Pedrosa, F O; Souza, E M; Iacomini, M

    2010-04-01

    Bacteria from the genus Herbaspirillum are endophytes responsible for nitrogen fixation in gramineous plants of economic importance such as maize, sugarcane, sorghum, rice, and wheat. Some species are known to produce plant growth substances. In contrast, Herbaspirillum rubrisubalbicans strains are known to be mild plant pathogens. The molecular communication between the plant and the microbes might involve lipopolysaccharides present in the outer membrane of these gram-negative bacteria. Phenol-water extraction was used to obtain lipopolysaccharides from 7 strains of Herbaspirillum seropedicae (SmR1, Z67, Z78, ZA95, and M2) and H. rubrisubalbicans (M1 and M4). The electrophoretic profiles and chemical composition of the lipopolysaccharides obtained in the phenol and aqueous extracts were shown herein.

  18. The electrophoretic deposition of ZnO on highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Jahangiri, Mojtaba; Yousefiazari, Ehsan

    2017-12-01

    Intensive research has been conducted on ZnO thin and thick films in recent years. Such layers, used in different electronic devices, are deposited utilizing various methods, but electrophoretic deposition (EPD) has been chosen because of the advantages like low energy consumption, economical superiority, ecofriendliness, controllability, and high deposition rate. Here, we report electrophoretically depositing ZnO layers onto highly oriented pyrolytic graphite. Well-dispersed and stable ZnO suspensions are used for the deposition of continuous and even layers of ZnO on the substrate. ZnO powder is dispersed in acetone. The electric field applied is in the 250 V/cm to 2000 V/cm range. The morphology of the deposits are studied by SEM at the different stages of the deposition process.

  19. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule.

    PubMed Central

    Barrett, A J; Brown, M A; Sayers, C A

    1979-01-01

    alpha 2-Macroglobulin (alpha 2M) was isolated from human plasma by a four-step procedure: poly(ethylene glyco) fractionation, gel chromatography, euglobulin precipitation and immunoadsorption. No contaminants were detected in the final preparations by electrophoresis or immunoprecipitation. The protein ran as a single slow band in gel electrophoresis, and was designated 'S-alpha 2M'. S-alpha 2M bound about 2 mol of trypsin/mol. Treatment of S-alpha 2M with a proteinase or ammonium salts produced a form of the molecule more mobile in electrophoresis, and lacking proteinase-binding activity (F-alpha 2M). The electrophoretic mobility of the F-alpha 2M resulting from reaction with NH4+ salts was identical with that of proteinase complexes. We attribute the change in electrophoretic mobility of the alpha 2M to a conformation change, but there was no evidence of a change in pI or Strokes radius. Electrophoresis of S-alpha 2M in the presence of sodium dodecylsulphate gave results consistent with the view that the alpha 2M molecule is a tetramer of identical subunits, assembled as a non-covalent pair of disulphide-linked dimers. Some of the subunits seemed to be 'nicked' into two-thires-length and one-third-length chains, however. This was not apparent with F-alpha 2M produced by ammonium salts. F-alpha 2M produced by trypsin showed two new bands attributable to cleavage of the subunit polypeptide chain near the middle. Immunoassays of F-alpha 2M gave 'rockets' 12-29% lower than those with S-alpha 2M. The nature of the interactions between subunits in S-alpha 2M and F-alpha 2M was investigated by treating each form with glutaraldehyde before electrophoresis in the presence of sodium dodecyl sulphate. A much greater degree of cross-linking was observed with the F-alpha 2M, indicating that the subunits interact most closely in this form of the molecule. Exposure of S-alpha 2M to 3 M-urea or pH3 resulted in dissociation to the disulphide-bonded half-molecules; these did not

  20. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients

    PubMed Central

    Vinod Kumar, B.; Hobani, Yahya Hasan; Abdulhaq, Ahmed; Jerah, Ahmed Ali; Hakami, Othman M.; Eltigani, Magdeldin; Bidwai, Anil K.

    2014-01-01

    Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9%) out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0%) coagulase-negative Staphylococcus, 12 (11.3%) Staphylococcus aureus, 7 (6.6%) Enterobacter cloacae, 3 (2.83%) Pseudomonas stutzeri, 3 (2.83%) Sphingomonas paucimobilis, 2 (1.8%) Enterococcus faecalis and 10 (9.4%) aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised. PMID:25292217

  1. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients.

    PubMed

    Kumar, B Vinod; Hobani, Yahya Hasan; Abdulhaq, Ahmed; Jerah, Ahmed Ali; Hakami, Othman M; Eltigani, Magdeldin; Bidwai, Anil K

    2014-01-01

    Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9%) out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0%) coagulase-negative Staphylococcus, 12 (11.3%) Staphylococcus aureus, 7 (6.6%) Enterobacter cloacae, 3 (2.83%) Pseudomonas stutzeri, 3 (2.83%) Sphingomonas paucimobilis, 2 (1.8%) Enterococcus faecalis and 10 (9.4%) aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised.

  2. Datasets depicting mobility retardation of NCS proteins observed upon incubation with calcium, but not with magnesium, barium or strontium.

    PubMed

    Viviano, Jeffrey; Krishnan, Anuradha; Scully, Jenna; Wu, Hao; Venkataraman, Venkat

    2016-06-01

    In this data article we show the specificity of the Ca(2+)-induced mobility shift in three proteins that belong to the neuronal calcium sensor (NCS) protein family: Hippocalcin, GCAP1 and GCAP2. These proteins did not display a shift in mobility in native gels when incubated with divalent cations other than Ca(2+) - such as Mg(2+), Ba(2+), and Sr(2+), even at 10× concentrations. The data is similar to that obtained with another NCS protein, neurocalcin delta (Viviano et al., 2016, "Electrophoretic Mobility Shift in Native Gels Indicates Calcium-dependent Structural Changes of Neuronal Calcium Sensor Proteins", [1]).

  3. Scanning and storage of electrophoretic records

    DOEpatents

    McKean, Ronald A.; Stiegman, Jeff

    1990-01-01

    An electrophoretic record that includes at least one gel separation is mounted for motion laterally of the separation record. A light source is positioned to illuminate at least a portion of the record, and a linear array camera is positioned to have a field of view of the illuminated portion of the record and orthogonal to the direction of record motion. The elements of the linear array are scanned at increments of motion of the record across the field of view to develop a series of signals corresponding to intensity of light at each element at each scan increment.

  4. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  5. Protein Separation by Electrophoretic-Electroosmotic Focusing on Supported Lipid Bilayers

    PubMed Central

    Liu, Chunming; Monson, Christopher F.; Yang, Tinglu; Pace, Hudson; Cremer, Paul S.

    2011-01-01

    An electrophoretic-electroosmotic focusing (EEF) method was developed and used to separate membrane-bound proteins and charged lipids based on their charge-to-size ratio from an initially homogeneous mixture. EEF uses opposing electrophoretic and electroosmotic forces to focus and separate proteins and lipids into narrow bands on supported lipid bilayers (SLBs). Membrane-associated species were focused into specific positions within the SLB in a highly repeatable fashion. The steady-state focusing positions of the proteins could be predicted and controlled by tuning experimental conditions, such as buffer pH, ionic strength, electric field and temperature. Careful tuning of the variables should enable one to separate mixtures of membrane proteins with only subtle differences. The EEF technique was found to be an effective way to separate protein mixtures with low initial concentrations, and it overcame diffusive peak broadening to allow four bands to be separated simultaneously within a 380 μm wide isolated supported membrane patch. PMID:21958061

  6. Sample injection and electrophoretic separation on a simple laminated paper based analytical device.

    PubMed

    Xu, Chunxiu; Zhong, Minghua; Cai, Longfei; Zheng, Qingyu; Zhang, Xiaojun

    2016-02-01

    We described a strategy to perform multistep operations on a simple laminated paper-based separation device by using electrokinetic flow to manipulate the fluids. A laminated crossed-channel paper-based separation device was fabricated by cutting a filter paper sheet followed by lamination. Multiple function units including sample loading, sample injection, and electrophoretic separation were integrated on a single paper based analytical device for the first time, by applying potential at different reservoirs for sample, sample waste, buffer, and buffer waste. As a proof-of-concept demonstration, mixed sample solution containing carmine and sunset yellow were loaded in the sampling channel, and then injected into separation channel followed by electrophoretic separation, by adjusting the potentials applied at the four terminals of sampling and separation channel. The effects of buffer pH, buffer concentration, channel width, and separation time on resolution of electrophoretic separation were studied. This strategy may be used to perform multistep operations such as reagent dilution, sample injection, mixing, reaction, and separation on a single microfluidic paper based analytical device, which is very attractive for building micro total analysis systems on microfluidic paper based analytical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Improved design of electrophoretic equipment for rapid sickle-cell-anemia screening

    NASA Technical Reports Server (NTRS)

    Reddick, J. M.; Hirsch, I.

    1974-01-01

    Effective mass screening may be accomplished by modifying existing electrophoretic equipment in conjunction with multisample applicator used with cellulose-acetate-matrix test paper. Using this method, approximately 20 to 25 samples can undergo electrophoresis in 5 to 6 minutes.

  8. Electrophoretic characterisation of the outer membrane proteins of Yersinia pestis isolated in north-east Brazil.

    PubMed Central

    Abath, F. G.; Almeida, A. M.; Ferreira, L. C.

    1989-01-01

    The outer membrane proteins of 38 Yersinia pestis isolates from all known plague foci of north-east Brazil were analysed by SDS-PAGE. Approximately 20 bands were consistently found in all strains analysed and 11 were selected for comparative studies. Although qualitative differences among the electrophoretic profiles of outer membrane proteins of wild Y. pestis isolates were not observed, quantitative alterations were clearly noted for most of these proteins. No particular quantitative alteration of the electrophoretic profile of outer membrane proteins could be associated with the period of isolation and geographic origin of the isolates. The 64 kDa outer membrane protein was significantly expressed in higher amounts among Y. pestis strains isolated from a recent plague outbreak. The possible use of electrophoretic profiles of outer membrane proteins of wild Y. pestis isolates as a tool for epidemiological studies and for the analysis of virulence determinants is discussed. Images Fig. 2 PMID:2606164

  9. Microfluidic concentration of bacteria by on-chip electrophoresis

    PubMed Central

    Puchberger-Enengl, Dietmar; Podszun, Susann; Heinz, Helene; Hermann, Carsten; Vulto, Paul; Urban, Gerald A.

    2011-01-01

    In this contribution, we present a system for efficient preconcentration of pathogens without affecting their viability. Development of miniaturized molecular diagnostic kits requires concentration of the sample, molecule extraction, amplification, and detection. In consequence of low analyte concentrations in real-world samples, preconcentration is a critical step within this workflow. Bacteria and viruses exhibit a negative surface charge and thus can be electrophoretically captured from a continuous flow. The concept of phaseguides was applied to define gel membranes, which enable effective and reversible collection of the target species. E. coli of the strains XL1-blue and K12 were used to evaluate the performance of the device. By suppression of the electroosmotic flow both strains were captured with efficiencies of up to 99%. At a continuous flow of 15 μl/min concentration factors of 50.17 ± 2.23 and 47.36 ± 1.72 were achieved in less than 27 min for XL1-blue and K12, respectively. These results indicate that free flow electrophoresis enables efficient concentration of bacteria and the presented device can contribute to rapid analyses of swab-derived samples. PMID:22207893

  10. The role of bacteria and mycorrhiza in plant sulfur supply

    PubMed Central

    Gahan, Jacinta; Schmalenberger, Achim

    2014-01-01

    Plant growth is highly dependent on bacteria, saprophytic, and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S) in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax, and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted. PMID:25566295

  11. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  12. Protist-facilitated transport of soil bacteria in an artificial soil micromodel

    NASA Astrophysics Data System (ADS)

    Rubinstein, R. L.; Cousens, V.; Gage, D. J.; Shor, L. M.

    2013-12-01

    Soil bacteria within the rhizosphere benefit plants by protecting roots from pathogens, producing growth factors, and improving nutrient availability. These effects can greatly improve overall plant health and increase crop yield, but as roots grow out from the tips they quickly outpace their bacterial partners. Some soil bacteria are motile and can chemotact towards root tips, but bacterial mobility in unsaturated soils is limited to interconnected hydrated pores. Mobility is further reduced by the tendency of soil bacteria to form biofilms. The introduction of protists to the rhizosphere has been shown to benefit plants, purportedly by selective grazing on harmful bacteria or release of nutrients otherwise sequestered in bacteria. We propose that an additional benefit to the presence of protists is the facilitated transport of beneficial bacteria along root systems. Using microfluidic devices designed to imitate narrow, fluid-filled channels in soil, we have shown that the distribution of bacteria through micro-channels is accelerated in the presence of protists. Furthermore, we have observed that even with predation effects, the bacteria remain viable and continue to reproduce for the duration of our experiments. These results expand upon our understanding of complex bio-physical interactions in the rhizosphere system, and may have important implications for agricultural practices.

  13. Detection of Macromolecular Fractions in HCN Polymers Using Electrophoretic and Ultrafiltration Techniques.

    PubMed

    Marín-Yaseli, Margarita R; Cid, Cristina; Yagüe, Ana I; Ruiz-Bermejo, Marta

    2017-02-01

    Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one-dimensional electrophoresis) but also their different isoelectric points (two-dimensional electrophoresis, 2-DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine-SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2-DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  14. Roll-to-roll light directed electrophoretic deposition system and method

    DOEpatents

    Pascall, Andrew J.; Kuntz, Joshua

    2017-06-06

    A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.

  15. Electrophoretic deposited TiO 2 pigment-based back reflectors for thin film solar cells

    DOE PAGES

    Bills, Braden; Morris, Nathan; Dubey, Mukul; ...

    2015-01-16

    Highly reflective coatings with strong light scattering effect have many applications in optical components and optoelectronic devices. This paper reports titanium dioxide (TiO 2) pigment-based reflectors that have 2.5 times higher broadband diffuse reflection than commercially produced aluminum or silver based reflectors and result in efficiency enhancements of a single-junction amorphous Si solar cell. Electrophoretic deposition is used to produce pigment-based back reflectors with high pigment density, controllable film thickness and site-specific deposition. Electrical conductivity of the pigment-based back reflectors is improved by creating electrical vias throughout the pigment-based back reflector by making holes using an electrical discharge / dielectricmore » breakdown approach followed by a second electrophoretic deposition of conductive nanoparticles into the holes. While previous studies have demonstrated the use of pigment-based back reflectors, for example white paint, on glass superstrate configured thin film Si solar cells, this work presents a scheme for producing pigment-based reflectors on complex shape and flexible substrates. Finally, mechanical durability and scalability are demonstrated on a continuous electrophoretic deposition roll-to-roll system which has flexible metal substrate capability of 4 inch wide and 300 feet long.« less

  16. Horizontal gene transfer between bacteria.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  17. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition

    PubMed Central

    Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C. P.; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana

    2014-01-01

    Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC). PMID:25019343

  18. Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic deposition.

    PubMed

    Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C P; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana

    2014-07-11

    Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC).

  19. Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils.

    PubMed

    Nejidat, Ali

    2005-03-01

    Ammonia oxidation potential, major ammonia oxidizers and occurrence of salt-tolerant nitrifying bacteria were studied in soil samples collected from diverse ecosystems along the northern Negev desert. Great diversity in ammonia oxidation potential was observed among the soil samples, and ammonia oxidizers were the rate-limiting step of nitrification. Denaturing gradient gel electrophoresis and partial 16S rRNA gene sequences indicate that members of the genus Nitrosospira are the major ammonia oxidizers in the natural desert soil samples. Upon enrichment with different salt concentrations, salt-tolerant nitrifying enrichments were established from several soil samples. In two enrichments, nitrification was not inhibited by 400 mM NaCl. Electrophoretic analysis and partial 16S rRNA gene sequences indicate that Nitrosomonas species were dominant in the 400 mM salt enrichment. The results point towards the potential of the desert ecosystem as a source of stress-tolerant nitrifying bacteria or other microorganisms with important properties.

  20. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2004-11-16

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  1. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA

    2006-06-27

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  2. Fibre reinforced ceramic matrix composite fabrication by electrophoretic infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooner, S.; Campaniello, J.J.; Pickering, S.

    Electrophoretic infiltration is a novel technique for the fabrication of fibre reinforced composites. The fibres are arranged as one of the electrodes such that deposition of the colloidal ceramic occurs in the fibre preform. This method has been investigated for the composite system of carbon fibre reinforced Si{sub 3}N{sub 4} and has produced green composite microstructures with good infiltration uniformity and fibre distribution and few macro defects.

  3. Comparing nanostructured hydroxyapatite coating on AZ91 alloy samples via sol-gel and electrophoretic deposition for biomedical applications.

    PubMed

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2014-12-01

    Magnesium is one of the most critical elements in hard tissues regeneration and therefore causes speeding up the restoration of harmed bones, while high deterioration rate of magnesium in body fluid restricts it to be used as biodegradable implants. Alloying magnesium with some relatively nobler metals such as aluminium, zinc, rare earth elements, magnesium-bioceramics composites, and surface modification techniques are some of the routes to control magnesium corrosion rate. In this study AZ91 magnesium alloy had been coated by nanostructured hydroxyapatite via sol-gel dip coating and electrophoretical methods to survey the final barricade properties of the obtained coatings. In order to perform electrophoretic coating, powders were prepared by sol-gel method, and then the powders deposited on substrates utilizing direct current electricity. Zeta potentials of the electrophoresis suspensions were measured to determine a best mode for good quality coatings. Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) were used to confirm nanoscale dimension, and the uniformity of the nanostructured hydroxyapatite coating, respectively. Fourier Transform-Infrared and X-ray diffraction analysis were utilized for functional group and phase structure evaluation of the prepared coatings, correspondingly. Electrochemical corrosion tests were performed in SBF at 37±1 (°)C which revealed considerable increase in corrosion protection resistivity and corrosion current density for electrophoretic coated specimens versus sol-gel coated specimens. Results showed that both sol-gel and electrophoretical techniques seem to be suitable to coat magnesium alloys for biomedical applications but electrophoretic coating technique is a better choice due to the more homogeneity and more crystalline structure of the coating.

  4. Lipopolysaccharides from Commensal and Opportunistic Bacteria: Characterization and Response of the Immune System of the Host Sponge Suberites domuncula

    PubMed Central

    Gardères, Johan; Bedoux, Gilles; Koutsouveli, Vasiliki; Crequer, Sterenn; Desriac, Florie; Le Pennec, Gaël

    2015-01-01

    Marine sponges harbor a rich bacterioflora with which they maintain close relationships. However, the way these animals make the distinction between bacteria which are consumed to meet their metabolic needs and opportunistic and commensal bacteria which are hosted is not elucidated. Among the elements participating in this discrimination, bacterial cell wall components such as lipopolysaccharides (LPS) could play a role. In the present study, we investigated the LPS chemical structure of two bacteria associated with the sponge Suberites domuncula: a commensal Endozoicomonas sp. and an opportunistic Pseudoalteromonas sp. Electrophoretic patterns indicated different LPS structures for these bacteria. The immunomodulatory lipid A was isolated after mild acetic acid hydrolysis. The electrospray ionization ion-trap mass spectra revealed monophosphorylated molecules corresponding to tetra- and pentaacylated structures with common structural features between the two strains. Despite peculiar structural characteristics, none of these two LPS influenced the expression of the macrophage-expressed gene S. domuncula unlike the Escherichia coli ones. Further research will have to include a larger number of genes to understand how this animal can distinguish between LPS with resembling structures and discriminate between bacteria associated with it. PMID:26262625

  5. High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation.

    PubMed

    Verrier, C S; Roodi, N; Yee, C J; Bailey, L R; Jensen, R A; Bustin, M; Parl, F F

    1997-07-01

    The estrogen receptor (ER) belongs to a family of ligand-inducible nuclear receptors that exert their effects by binding to cis-acting DNA elements in the regulatory region of target genes. The detailed mechanisms by which ER interacts with the estrogen response element (ERE) and affects transcription still remain to be elucidated. To study the ER-ERE interaction and transcription initiation, we employed purified recombinant ER expressed in both the baculovirus-Sf9 and his-tagged bacterial systems. The effect of high-mobility group (HMG) protein HMG-1 and purified recombinant TATA-binding protein-associated factor TAF(II)30 on ER-ERE binding and transcription initiation were assessed by electrophoretic mobility shift assay and in vitro transcription from an ERE-containing template (pERE2LovTATA), respectively. We find that purified, recombinant ER fails to bind to ERE in spite of high ligand-binding activity and electrophoretic and immunological properties identical to ER in MCF-7 breast cancer cells. HMG-1 interacts with ER and promotes ER-ERE binding in a concentration- and time-dependent manner. The effectiveness of HMG-1 to stimulate ER-ERE binding in the electrophoretic mobility shift assay depends on the sequence flanking the ERE consensus as well as the position of the latter in the oligonucleotide. We find that TAF(II)30 has no effect on ER-ERE binding either alone or in combination with ER and HMG-1. Although HMG-1 promotes ER-ERE binding, it fails to stimulate transcription initiation either in the presence or absence of hormone. In contrast, TAF(II)30, while not affecting ER-ERE binding, stimulates transcription initiation 20-fold in the presence of HMG-1. These results indicate that HMG-1 and TAF(II)30 act in sequence, the former acting to promote ER-ERE binding followed by the latter to stimulate transcription initiation.

  6. Chip-based in situ hybridization for identification of bacteria from the human microbiome.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, Yooli Kim; Meagher, Robert J.; Singh, Anup K.

    2010-11-01

    The emerging field of metagenomics seeks to assess the genetic diversity of complex mixed populations of bacteria, such as those found at different sites within the human body. A single person's mouth typically harbors up to 100 bacterial species, while surveys of many people have found more than 700 different species, of which {approx}50% have never been cultivated. In typical metagenomics studies, the cells themselves are destroyed in the process of gathering sequence information, and thus the connection between genotype and phenotype is lost. A great deal of sequence information may be generated, but it is impossible to assign anymore » given sequence to a specific cell. We seek non-destructive, culture-independent means of gathering sequence information from selected individual cells from mixed populations. As a first step, we have developed a microfluidic device for concentrating and specifically labeling bacteria from a mixed population. Bacteria are electrophoretically concentrated against a photopolymerized membrane element, and then incubated with a specific fluorescent label, which can include antibodies as well as specific or non-specific nucleic acid stains. Unbound stain is washed away, and the labeled bacteria are released from the membrane. The stained cells can then be observed via epifluorescence microscopy, or counted via flow cytometry. We have tested our device with three representative bacteria from the human microbiome: E. coli (gut, Gram-negative), Lactobacillus acidophilus (mouth, Gram-positive), and Streptococcus mutans (mouth, Gram-positive), with results comparable to off-chip labeling techniques.« less

  7. Hydrodynamic sample injection into short electrophoretic capillary in systems with a flow-gating interface.

    PubMed

    Opekar, František; Tůma, Petr

    2017-01-13

    An electrophoretic apparatus with a flow-gating interface has been developed, enabling hydrodynamic sequence injection of the sample into the separation capillary from the liquid flow by underpressure generated in the outlet electrophoretic vessel. The properties of the apparatus were tested on an artificial sample of an equimolar mixture of 100μM potassium and sodium ions and arginine. The repeatability of the injection of the tested ions expressed as RSD (in%) for the peak area, peak height and migration time was in the range 0.76-2.08, 0.18-0.68 and 0.28-0.48, respectively. Under optimum conditions, the apparatus was used for sequence monitoring of the reaction between the antidiabetic drug phenyl biguanide and the glycation agent methyl glyoxal. The reaction solution was continuously sampled by a microdialysis probe from a thermostated external vessel using a syringe pump at a flow rate of 3μLmin -1 and was injected into a separation capillary at certain time intervals. The electrophoretic separation progressed in a capillary with an internal diameter of 50μm with a length of 11.5cm and was monitored using a contactless conductivity detector. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Investigation of electrophoretic exclusion method for the concentration and differentiation of proteins.

    PubMed

    Meighan, Michelle M; Vasquez, Jared; Dziubcynski, Luke; Hews, Sarah; Hayes, Mark A

    2011-01-01

    This work presents a technique termed as "electrophoretic exclusion" that is capable of differentiation and concentration of proteins in bulk solution. In this method, a hydrodynamic flow is countered by the electrophoretic velocity to prevent a species from entering into a channel. The separation can be controlled by changing the flow rate or applied electric potential in order to exclude a certain species selectively while allowing others to pass through the capillary. The exclusion of various proteins is investigated using a flow-injection regime of the method. Concentration of myoglobin of up to 1200 times the background concentration in 60 s was demonstrated. Additionally, negatively charged myoglobin was separated from a solution containing negatively charged allophycocyanin. Cationic cytochrome c was also differentiated from a solution with allophycocyanin. The ability to differentially transport species in bulk solution enables parallel and serial separation modes not available with other separations schemes.

  9. Solvent-mediated nonelectrostatic ion-ion interactions predicting anomalies in electrophoresis.

    PubMed

    Goswami, Prakash; Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman

    2017-03-01

    We study the effects of solvent-mediated nonelectrostatic ion-ion interactions on electrophoretic mobility of a charged spherical particle. To this end, we consider the case of low surface electrostatic potential resulting in the linearization of the governing equations, which enables us to deduce a closed-form analytical solution to the electrophoretic mobility. We subsequently compare our results to the standard model using Henry's approach and report the changes brought about by the nonelectrostatic potential. The classical approach to determine the electrophoretic mobility underpredicts the particle velocity when compared with experiments. We show that this issue can be resolved by taking into account nonelectrostatic interactions. Our analysis further reveals the phenomenon of electrophoretic mobility reversal that has been experimentally observed in numerous previous studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Numerical simulation of stress-strain state of electrophoretic shell molds

    NASA Astrophysics Data System (ADS)

    Sviridov, A. V.; Odinokov, V. I.; Dmitriev, E. A.; Evstigneev, A. I.; Bashkov, O. V.

    2017-10-01

    In the foundry engineering, castings obtained in one-piece non-gas-generating high-refractory electrophoretic shell molds (ShM) by investment patterns (IP) have an increased rejects percentage associated with low deformation resistance and crack resistance of the SM at different stages of their formation and manufacturing. Crack resistance of the ShM based on IP depends mainly on their stress-strain state (SSS) at various stages of mold forming. SSS decrease significantly improves their crack resistance and decreases their rejects percentage of castings occurring due to clogging and surface defects. In addition, the known methods of decreasing the SSS are still poorly understood. Thus, current research trends are to determine SSS at each stage of ShM forming and develop the ways to decrease it. Theoretical predicting of crack formation in multiple-layer axisymmetric shell molds is given in the work [1], and SSS of multiple-layer axisymmetric shell molds is given in the work [2]. Monolayer electrophoretic ShM had a lack of concern in this field, thus it became an argument for the present workMathematical Model of ShM SSS

  11. Relationship between rabbit transferrin electrophoretic patterns and plasma iron concentrations.

    PubMed

    Zaragoza, P; Arana, A; Amorena, B

    1987-01-01

    Rabbit transferrin (Tf) was studied electrophoretically using 1141 blood samples from individuals belonging to seven populations (Spanish Common, Spanish Giant, Butterfly, Lyoné de Bourgogne, New Zealand White, Californian and New Zealand White X Californian hybrids). No Tf polymorphism was found by starch gel electrophoresis, but six patterns, differing in the presence and/or intensity of three bands ('a', anodic; 'b', intermediate; and 'c', cathodic) were observed by polyacrylamide gel electrophoresis. No genetic model could explain these patterns, since they reflect differences in plasma Tf iron content. The electrophoretic test allowed a direct observation of the relative in vivo levels of the different Tf molecular species; saturated (band 'a', Fe2Tf); semi-saturated (band 'b', Fe1Tf); and without iron (band 'c' Fe0Tf, apotransferrin). The degree of iron saturation of Tf varied among individuals and throughout the individual's life. Specifically, in pregnant females, Fe2Tf and Fe1Tf are generally observed, except in late pregnancy (from day 25 to parturition), when mainly apotransferrin is observed. Significantly, within 24 h post-partum, high levels of Fe2Tf are reached in the female's serum.

  12. Kidney cell electrophoresis, continuing task

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated to provide ground support in the form of analytical cell electrophoresis and flow cytometry. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. Cells were prepared in suspension prior to flight in electrophoresis buffer and 10% calf serum. Electrophoretic separation proceeded in electrophoresis buffer without serum in the Continuous Flow Electrophoretic Separator, and fractions were collected into sample bags containing culture medium and concentrated serum. Fractions that yielded enough progeny cells were analyzed for morphology and electrophoretic mobility distributions. It is noted that the lowest mobility fraction studied produced higher mobility progeny while the other fractions produced progeny cells with mobilities related to the fractions from which they were collected.

  13. The influence of addition of ion-pairing acid and organic modifier of the mobile phase on retention and migration of peptides in pressurized planar electrochromatography system with octadecyl silica-based adsorbent.

    PubMed

    Gwarda, Radosław Ł; Dzido, Tadeusz H

    2018-07-13

    In our previous papers we have investigated the influence of the mobile phase composition on mechanism of retention, selectivity and efficiency of peptide separation in various high-performance thin-layer chromatography (HPTLC) systems with commercially available silica-based adsorbents. We have also investigated the influence of pH of the mobile phase buffer on migration and separation of peptides in pressurized planar electrochromatography (PPEC). Here we investigate the influence of concentration of ion-pairing additive, and concentration and type of organic modifier of the mobile phase on migration of peptides in PPEC system with octadecyl silica-based adsorbent, and with the same set of the solutes as before. We compare our current results with the results obtained before for similar HPTLC and PPEC systems, and discuss the influence of particular variables on retention, electrophoretic mobility of solutes and electroosmotic flow of the mobile phase. We show, that the final selectivity of peptide separation results from co-influence of all the three factors mentioned. Concentration of organic modifier of the mobile phase, as well as concentration of ion-pairing additive, affect the retention, the electrophoretic mobility, and the electroosmotic flow simultaneously. This makes independent optimization of these factors rather difficult. Anyway PPEC offers much faster separation of peptides with quite different selectivity, in comparison to HPTLC, with similar adsorbents and similar mobile phase composition. However, we also present and discuss the issue of extensive tailing of peptide zones in the PPEC in comparison to similar HPTLC systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A mobile element in mutS drives hypermutation in a marine Vibrio

    DOE PAGES

    Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; ...

    2017-02-07

    Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome,more » the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Finally, our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria.« less

  15. A Mobile Element in mutS Drives Hypermutation in a Marine Vibrio

    PubMed Central

    Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; Polz, Martin F.; Grossman, Alan D.

    2017-01-01

    ABSTRACT Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. PMID:28174306

  16. A mobile element in mutS drives hypermutation in a marine Vibrio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia

    Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome,more » the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Finally, our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria.« less

  17. Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2010-08-01

    Peptide electrophoretic mobility data are interpreted through a physicochemical CZE model, providing estimates of the equivalent hydrodynamic radius, hydration, effective and total charge numbers, actual ionizing pK, pH-near molecule and electrical permittivity of peptide domain, among other basic properties. In this study, they are used to estimate some peptide global structural properties proposed, providing thus a distinction among different peptides. Therefore, the solvent drag on the peptide is obtained through a characteristic friction power coefficient of the number of amino acid residues, defined from the global chain conformation in solution. As modeling of the effective electrophoretic mobility of peptides is carried out in terms of particle hydrodynamic size and shape coupled to hydration and effective charge, a packing dimension related to chain conformation within the peptide domain may be defined. In addition, the effective and total charge number fractions of peptides provide some clues on the interpretation of chain conformations within the framework of scaling laws. Furthermore, the model estimates transport properties, such as sedimentation, friction and diffusion coefficients. As the relative numbers of ionizing, polar and non-polar amino acid residues vary in peptides, their global structural properties defined here change appreciably. Needs for further research are also discussed.

  18. The chromosomal organization of horizontal gene transfer in bacteria.

    PubMed

    Oliveira, Pedro H; Touchon, Marie; Cury, Jean; Rocha, Eduardo P C

    2017-10-10

    Bacterial adaptation is accelerated by the acquisition of novel traits through horizontal gene transfer, but the integration of these genes affects genome organization. We found that transferred genes are concentrated in only ~1% of the chromosomal regions (hotspots) in 80 bacterial species. This concentration increases with genome size and with the rate of transfer. Hotspots diversify by rapid gene turnover; their chromosomal distribution depends on local contexts (neighboring core genes), and content in mobile genetic elements. Hotspots concentrate most changes in gene repertoires, reduce the trade-off between genome diversification and organization, and should be treasure troves of strain-specific adaptive genes. Most mobile genetic elements and antibiotic resistance genes are in hotspots, but many hotspots lack recognizable mobile genetic elements and exhibit frequent homologous recombination at flanking core genes. Overrepresentation of hotspots with fewer mobile genetic elements in naturally transformable bacteria suggests that homologous recombination and horizontal gene transfer are tightly linked in genome evolution.Horizontal gene transfer (HGT) is an important mechanism for genome evolution and adaptation in bacteria. Here, Oliveira and colleagues find HGT hotspots comprising  ~ 1% of the chromosomal regions in 80 bacterial species.

  19. Capillary electrophoretic analysis reveals subcellular binding between individual mitochondria and cytoskeleton

    PubMed Central

    Kostal, Vratislav; Arriaga, Edgar A.

    2011-01-01

    Interactions between the cytoskeleton and mitochondria are essential for normal cellular function. An assessment of such interactions is commonly based on bulk analysis of mitochondrial and cytoskeletal markers present in a given sample, which assumes complete binding between these two organelle types. Such measurements are biased because they rarely account for non-bound ‘free’ subcellular species. Here we report on the use of capillary electrophoresis with dual laser induced fluorescence detection (CE-LIF) to identify, classify, count and quantify properties of individual binding events of mitochondria and cytoskeleton. Mitochondria were fluorescently labeled with DsRed2 while F-actin, a major cytoskeletal component, was fluorescently labeled with Alexa488-phalloidin. In a typical subcellular fraction of L6 myoblasts, 79% of mitochondrial events did not have detectable levels of F-actin, while the rest had on average ~2 zeptomole F-actin, which theoretically represents a ~ 2.5-μm long network of actin filaments per event. Trypsin treatment of L6 subcellular fractions prior to analysis decreased the fraction of mitochondrial events with detectable levels of F-actin, which is expected from digestion of cytoskeletal proteins on the surface of mitochondria. The electrophoretic mobility distributions of the individual events were also used to further distinguish between cytoskeleton-bound from cytoskeleton-free mitochondrial events. The CE-LIF approach described here could be further developed to explore cytoskeleton interactions with other subcellular structures, the effects of cytoskeleton destabilizing drugs, and the progression of viral infections. PMID:21309532

  20. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria.

    PubMed

    Yang, Yunpeng; Zhang, Lu; Huang, He; Yang, Chen; Yang, Sheng; Gu, Yang; Jiang, Weihong

    2017-01-24

    Catabolite control protein A (CcpA) is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR) and carbon catabolite activation (CCA), two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt) consensus site that is called a catabolite response element (cre) within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named cre var , has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA). It was found that the length of the intervening spacer of cre var can affect CcpA binding affinity, and moreover, the core palindromic sequence of cre var is the key structure for regulation. Such a variable architecture of cre var shows potential importance for CcpA's diverse and fine regulation. A total of 103 potential cre var sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs), and 30 sites were confirmed to be bound by CcpA. These 30 cre var sites are associated with 27 genes involved in many important pathways. Also of significance, the cre var sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria. In Gram-positive bacteria, the global regulator CcpA controls a large number of important physiological and metabolic processes. Although a typical consensus CcpA-binding site, cre, has been identified, it remains

  1. Gc protein-derived macrophage activating factor (GcMAF): isoelectric focusing pattern and tumoricidal activity.

    PubMed

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Nakagawa, Yoshinori; Kawashima, Ken; Hori, Hitoshi

    2003-01-01

    Gc protein is the precursor for Gc protein-derived macrophage activating factor (GcMAF), with three phenotypes: Gc1f, Gc1s and Gc2, based on its electrophoretic mobility. The difference in electrophoretic mobility is because of the difference in its posttranslational sugar moiety composition. We compared the difference between Gc protein and GcMAF electrophoretic mobility using the isoelectric focusing (IEF) method. The tumoricidal activity of GcMAF-treated macrophage was evaluated after coculture with L-929 cell. The tumoricidal mechanism was investigated using TNF bioassay and nitric oxide (NO) release. The difference in Gc protein and GcMAF electrophoretic mobility was detected. The tumoricidal activity of GcMAF-treated macrophage was detected, but no release of TNF and NO was detected. The difference of isoelectric focusing mobility in Gc protein and GcMAF would be useful to develop a GcMAF detection method. GcMAF increased macrophage tumoricidal activity but TNF and NO release were not involved in the mechanism.

  2. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes.

    PubMed

    Hu, Yongfei; Yang, Xi; Li, Jing; Lv, Na; Liu, Fei; Wu, Jun; Lin, Ivan Y C; Wu, Na; Weimer, Bart C; Gao, George F; Liu, Yulan; Zhu, Baoli

    2016-11-15

    Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological constraints. We also found

  3. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes

    PubMed Central

    Hu, Yongfei; Yang, Xi; Li, Jing; Lv, Na; Liu, Fei; Wu, Jun; Lin, Ivan Y. C.; Wu, Na; Gao, George F.

    2016-01-01

    ABSTRACT Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria. The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. IMPORTANCE The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological

  4. Enhanced antibacterial activity and biocompatibility of zinc-incorporated organic-inorganic nanocomposite coatings via electrophoretic deposition.

    PubMed

    Huang, Pin; Ma, Kena; Cai, Xinjie; Huang, Dan; Yang, Xu; Ran, Jiabing; Wang, Fushi; Jiang, Tao

    2017-12-01

    Increased use of reconstruction procedures in orthopedics has improved the life of patients undergoing surgery. However, surgical site infection remains a major challenge. Efforts were made to fabricate antibacterial surfaces with good biocompatibility. This present study aimed to fabricate zinc-incorporated chitosan/gelatin (CS/G) nanocomposite coatings on the titanium substrates via electrophoretic deposition (EPD). Physicochemical characterization confirmed that zinc was successfully deposited in a metallic oxide/salt complex status. Transmission electron microscopic (TEM) results observed formation of core-shell nanosized particles released from the coatings. The selected-area electron diffraction (SAED) pattern of the particles presented faces of ZnO with organic background. Mechanical tests showed improved tensile and shear bond strength between substrates and zinc-incorporated coating surfaces. Zinc-incorporated CS/G coatings presented antibacterial abilities against both Gram-negative E. coli and Gram-positive S. aureus in a concentration-dependent manner. The generation of ZnO/Zn 2+ complex in the coatings may contribute to bacteria inhibition. In vitro study demonstrated that appropriate concentration of zinc could promote proliferative and osteogenic activities of rat bone marrow stromal cells. The present study suggested that zinc-incorporated CS/G coating was a promising candidate for surface modification of biomedical materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Engineering solutions to improve the removal of fecal indicator bacteria by bioinfiltration systems during intermittent flow of stormwater.

    PubMed

    Mohanty, Sanjay K; Torkelson, Andrew A; Dodd, Hanna; Nelson, Kara L; Boehm, Alexandria B

    2013-10-01

    Bioinfiltration systems facilitate the infiltration of urban stormwater into soil and reduce high flow events and flooding. Stormwater carries a myriad of pollutants including fecal indicator bacteria (FIB). Significant knowledge gaps exist about the ability of bioinfiltration systems to remove and retain FIB. The present study investigates the ability of model, simplified bioinfiltration systems containing quartz sand and iron oxide-coated quartz sand (IOCS) to remove two FIB (Enterococcus faecalis and Escherichia coli) suspended in synthetic stormwater with and without natural organic matter (NOM) as well as the potential for accumulated FIB to be remobilized during intermittent flow. The experiments were conducted in two phases: (1) the saturated columns packed with either sand or IOCS were contaminated by injecting stormwater with bacteria followed by injection of sterile stormwater and (2) the contaminated columns were subjected to intermittent infiltration of sterile stormwater preceded by a pause during which columns were either kept saturated or drained by gravity. During intermittent flow, fewer bacteria were released from the saturated column compared to the column drained by gravity: 12% of attached E. coli and 3% of attached Ent. faecalis were mobilized from the drained sand column compared to 3% of attached E. coli and 2% attached Ent. faecalis mobilized from the saturated sand column. Dry and wet cycles introduce moving air-water interfaces that can scour bacteria from grain surfaces. During intermittent flows, less than 0.2% of attached bacteria were mobilized from IOCS, which bound both bacteria irreversibly in the absence of NOM. Addition of NOM, however, increased bacterial mobilization from IOCS: 50% of attached E. coli and 8% of attached Ent. faecalis were released from IOCS columns during draining and rewetting. Results indicate that using geomedia such as IOCS that promote irreversible attachment of bacteria, and maintaining saturated

  6. Insight into nanoparticle charging mechanism in nonpolar solvents to control the formation of Pt nanoparticle monolayers by electrophoretic deposition

    DOE PAGES

    Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman; ...

    2016-08-13

    We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.

  7. Insight into nanoparticle charging mechanism in nonpolar solvents to control the formation of Pt nanoparticle monolayers by electrophoretic deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman

    We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.

  8. Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection.

    PubMed

    Das, Maumita; Dhand, Chetna; Sumana, Gajjala; Srivastava, A K; Nagarajan, R; Nain, Lata; Iwamoto, M; Manaka, Takaaki; Malhotra, B D

    2011-03-14

    The present work describes electrophoretic fabrication of nanostructured chitosan-zirconium-oxide composite (CHIT-NanoZrO(2)) film (180 nm) onto indium-tin-oxide (ITO)-coated glass plate. This nanobiocomposite film has been explored as immobilization platform for probe DNA specific to M. Tuberculosis as model biomolecule to investigate its sensing characteristics. It is revealed that pH-responsive behavior of CHIT and its cationic skeleton is responsible for the movement of CHIT-NanoZrO(2) colloids toward cathode during electrophoretic deposition. The FT-IR, SEM, TEM, and EDX techniques have been employed for the structural, morphological, and composition analysis of the fabricated electrodes. The morphological studies clearly reveal uniform inter-linking and dispersion of hexagonal nanograins of ZrO(2) (30-50 nm) into the chitosan matrix, resulting in homogeneous nanobiocomposite formation. Electrochemical response measurements of DNA/CHIT-NanoZrO(2)/ITO bioelectrode, carried out using cyclic voltammetry and differential pulse voltammetry, reveal that this bioelectrode can specifically detect complementary target DNA up to 0.00078 μM with sensitivity of 6.38 × 10(-6) AμM(-1).

  9. Tyramine and phenylethylamine biosynthesis by food bacteria.

    PubMed

    Marcobal, Angela; De las Rivas, Blanca; Landete, José María; Tabera, Laura; Muñoz, Rosario

    2012-01-01

    Tyramine poisoning is caused by the ingestion of food containing high levels of tyramine, a biogenic amine. Any foods containing free tyrosine are subject to tyramine formation if poor sanitation and low quality foods are used or if the food is subject to temperature abuse or extended storage time. Tyramine is generated by decarboxylation of the tyrosine through tyrosine decarboxylase (TDC) enzymes derived from the bacteria present in the food. Bacterial TDC have been only unequivocally identified and characterized in Gram-positive bacteria, especially in lactic acid bacteria. Pyridoxal phosphate (PLP)-dependent TDC encoding genes (tyrDC) appeared flanked by a similar genetic organization in several species of lactic acid bacteria, suggesting a common origin by a single mobile genetic element. Bacterial TDC are also able to decarboxylate phenylalanine to produce phenylethylamine (PEA), another biogenic amine. The molecular knowledge of the genes involved in tyramine production has led to the development of molecular methods for the detection of bacteria able to produce tyramine and PEA. These rapid and simple methods could be used for the analysis of the ability to form tyramine by bacteria in order to evaluate the potential risk of tyramine biosynthesis in food products.

  10. Fabrication of nanoelectrodes for neurophysiology: cathodic electrophoretic paint insulation and focused ion beam milling

    PubMed Central

    Qiao, Yi; Chen, Jie; Guo, Xiaoli; Cantrell, Donald; Ruoff, Rodney; Troy, John

    2005-01-01

    The fabrication and characterization of tungsten nanoelectrodes insulated with cathodic electrophoretic paint is described together with their application within the field of neurophysiology. The tip of a 127 μm diameter tungsten wire was etched down to less than 100 nm and then insulated with cathodic electrophoretic paint. Focused ion beam (FIB) polishing was employed to remove the insulation at the electrode’s apex, leaving a nanoscale sized conductive tip of 100–1000 nm. The nanoelectrodes were examined by scanning electron microscopy (SEM) and their electrochemical properties characterized by steady state linear sweep voltammetry. Electrode impedance at 1 kHz was measured too. The ability of a 700 nm tipped electrode to record well-isolated action potentials extracellularly from single visual neurons in vivo was demonstrated. Such electrodes have the potential to open new populations of neurons to study. PMID:16467926

  11. Chromatographic and electrophoretic approaches in ink analysis.

    PubMed

    Zlotnick, J A; Smith, F P

    1999-10-15

    Inks are manufactured from a wide variety of substances that exhibit very different chemical behaviors. Inks designed for use in different writing instruments or printing methods have quite dissimilar components. Since the 1950s chromatographic and electrophoretic methods have played important roles in the analysis of inks, where compositional information may have bearing on the investigation of counterfeiting, fraud, forgery, and other crimes. Techniques such as paper chromatography and electrophoresis, thin-layer chromatography, high-performance liquid chromatography, gas chromatography, gel electrophoresis, and the relatively new technique of capillary electrophoresis have all been explored as possible avenues for the separation of components of inks. This paper reviews the components of different types of inks and applications of the above separation methods are reviewed.

  12. Electrophoretic display technologies for e-book readers: system integration aspects

    NASA Astrophysics Data System (ADS)

    Gentric, Philippe

    2011-03-01

    Emerging screen technologies, such as Electrophoretic Displays (EPD) used in E-book Readers, are changing product power requirements due to their advantageous properties such as bi-stability (effective "zero power" static display) and reflective mode of operation (no backlight). We will first review the emerging screen technologies under the angle of system and IC design impact. We will explain power management consequences for IC design, with a focus on Application Engine SOCs for the wireless/portable markets.

  13. Improved Bacterial and Viral Recoveries from 'Complex' Samples using Electrophoretically Assisted Acoustic Focusing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, K; Rose, K; Jung, B

    2008-03-27

    .Coli ({approx}1 {micro}m) and yeast ({approx}4-5 {micro}m) flowing in a microchannel (200 {micro}m deep, 500 {micro}m wide) at a flow rate of 10 {micro}L/min. The E.Coli does not focus in the acoustic field while the yeast focuses at the channel centerline. This result suggests the acoustic size-cutoff for biological particles in our device lies between 2 and 3 {micro}m. Transverse electrophoresis has been explored extensively in electric field flow fractionation [6] and isoelectric focusing devices [7]. We demonstrated transverse electrophoretic transport of a wide variety of negatively-charged species, including fluorophores, beads, viruses, E.Coli, and yeast. Figure 2 shows the electromigration of a fluorescently labeled RNA virus (MS2) from the lower half of the channel to the upper half region with continuous flow. We demonstrated the effectiveness of our electrophoretically assisted acoustic focusing device by separating virus-like particles (40 nm fluorescent beads, selected to aid in visualization) from a high background concentration of yeast contaminants (see Figure 3). Our device allows for the efficient recovery of virus into a pre-selected purified buffer while background contaminants are acoustically captured and removed. We also tested the device using clinical nasopharyngeal samples, both washes and lavages, and demonstrated removal of unknown particulates (>2 ?m size) from the sample. Our future research direction includes spiking known amounts of bacteria and viruses into clinical samples and performing quantitative off-chip analysis (real-time PCR and flow cytometry).« less

  14. Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance.

    PubMed

    Sun, Jiadi; Zhu, Ye; Meng, Long; Chen, Peng; Shi, Tiantian; Liu, Xiaoya; Zheng, Yufeng

    2016-11-01

    Magnesium (Mg) has recently received increasing attention due to its unique biological performance, including cytocompatibility, antibacterial and biodegradable properties. However, rapid corrosion in physiological environment and potential toxicity limits its clinical applications. To improve the corrosion resistance meanwhile not compromise other excellent performance, self-assembled colloidal particles were deposited onto magnesium surfaces in ethanol by a simple and effective electrophoretic deposition (EPD) method. The fabricated functional nanostructured coatings were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM). The electrochemical test, pH value, and Mg ion concentration data show that the corrosion resistance of Mg samples is enhanced appreciably after surface treatment. In vitro cellular response and antibacterial capability of the modified Mg substrates are performed. Significantly increased cell adhesion and viability are observed from the coated Mg samples, and the amounts of adherent bacteria on the treated Mg surfaces diminish remarkably compared to the bare Mg. Furthermore, the bare and coated Mg samples were implanted in New Zealand white rabbits for 12 weeks to examine the in vivo long-term corrosion performance and in situ inflammation behavior. The experiment results confirmed that compared with bare Mg substrate the corrosion and foreign-body reactions of the coated Mg samples were suppressed. The above results suggested that our coatings, which effectively enhance the biocompatibility, antimicrobial properties, and corrosion resistance of Mg substrate, provide a simple and practical strategy to expedite clinical acceptance of biodegradableMg and its alloys. Biomedical Mg metals have been considered as promising biodegradable implants because of their intended functions, such as cytocompatibility, antibacterial, and biodegradable properties. However

  15. Application of partition technology to particle electrophoresis

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Harris, J. Milton; Karr, Laurel J.; Bamberger, Stephan; Matsos, Helen C.; Snyder, Robert S.

    1989-01-01

    The effects of polymer-ligand concentration on particle electrophoretic mobility and partition in aqueous polymer two-phase systems are investigated. Polymer coating chemistry and affinity ligand synthesis, purification, and analysis are conducted. It is observed that poly (ethylene glycol)-ligands are effective for controlling particle electrophoretic mobility.

  16. SPAR electrophoretic separation experiments, part 2

    NASA Technical Reports Server (NTRS)

    Cosmi, F. M.

    1978-01-01

    The opportunity to use a sounding rocket for separation experiments is a logical continuation of earlier electrophoresis demonstrations and experiments. A free-flow electrophoresis system, developed under the Advanced Applications Flight Experiment (AAFE) Program, was designed so that it would fit into a rocket payload. The SPAR program provides a unique opportunity to complete the intial stages of microgravity testing prior to any Shuttle applications. The objective of the work described in this report was to ensure proper operating parameters for the defined experimental samples to be used in the SPAR Electrophoretic Separation Experiment. Ground based experiments were undertaken not only to define flight parameters but also to serve as a point of comparison for flight results. Possible flight experiment problem areas were also studied such as sample interaction due to sedimentation, concentration effects and storage effects. Late in the program anomalies of field strengths and buffer conductivities were also investigated.

  17. [Electrophoretic patterns of cell wall protein as a criterion for the identification and classification of Corynebacteria].

    PubMed

    Mykhal's'kyĭ, L O; Furtat, I M; Dem'ianenko, F P; Kostiuchyk, A A

    2001-01-01

    Electrophoretic patterns of cell wall protein of three industrial strains, that were used for production of lysin, and eight collection strains from the genus Corynevacterium were studied to analyze their similarity as well as to estimate an opportunity of using this parameter as an additional criterion for identification and classification of corynebacteria. Similarity coefficient of cell wall overall and main protein electrophoretic patterns were determined by a specially created computer program. Electrophoretic analysis showed that every specie had an individual protein profile. There were determined biopolymers common for the specie, genus and individual among the overall majors and minors. The obtained results showed, that the patterns of main proteins were more conservative and informative in comparison with those ones of overall proteins. The definition of similarity coefficient by the main protein patterns has correlated with the protein profile characteristics of every analyzed strain, and it managed to distribute them into the separate groups. The similarity coefficient of preparations by the main protein patterns allows to separate one specie or a strain from another, and that gives us a chance to claim that this parameter could be used as an additional criterion for differentiation and referring the corynebacteria to a certain taxonomic group.

  18. Summary electrophoretic data base on human embryonic kidney cell strain 8514

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Arquiza, M. V.; Morrison, D. R.; Todd, P. W.

    1985-01-01

    To properly plan the electrophoresis equipment verification test (EEVT) and continuous flow electrophoresis system (CFES) experiments with human embryonic kidney cells, first a candidate cell lot had to be chosen on the basis of electrophoretic heterogeneity, growth potential, cytogenetics, and urokinase production. Cell lot 8514 from MA Bioproducts, Inc. was chosen for this purpose, and several essential analytical electrophoresis experiments were performed to test its final suitability for these experiments.

  19. Study of bacterial flora associated with mobile phones of healthcare workers and non-healthcare workers.

    PubMed

    Morubagal, Raghavendra Rao; Shivappa, Sowmya Govindanahalli; Mahale, Rashmi Padmanabha; Neelambike, Sumana Mhadevaiah

    2017-06-01

    Despite improvements in modern diagnosis and therapies, hospital acquired infections remain a leading problem of global health systems. Healthcare workers mobile phones is a reservoir for potential pathogens. Despite the high possibility of being contaminated, mobile phones are rarely clean and are often touched during or after examination of patients and handling of specimens without proper hand washing. The main objective of the present study was to isolate, identify different types of bacteria and their antibiotic sensitivity from mobile phones of healthcare workers and non-health-care workers. Samples were collected aseptically by rolling over the exposed surfaces of the mobile phones inoculated on the agar plates and incubated aerobically. After incubation, plates were examined for growth. Bacteria were identified and antibiotic sensitivity was tested as per standard microbiological procedures. In this study a total of 175 samples were examined, out of which 125 samples were from healthcare workers (HCWs), 50 samples were from non-healthcare workers (non-HCWs). Among the mobile phones of HCW's from ICUs, Acinetobacter baumannii (36.84%) was the predominant organism isolated followed by methicillin resistant Staphylococcus aureus (MRSA) (21.05%). Predominant organism isolated from HCW's in operation theater theater was MRSA (46.66%). Out of 50 worker's non-HCWs mobile phones samples cultured, 23 (46.00%) samples yielded growth of six different types of bacteria. Our study reveals that there is definite colonization of bacteria on mobile phones of the HCWs. It is not only capable of transferring message but also disease-producing microbes. In order to reduce incidence of nosocomial infections, there should be implementation of hand washing practices and regulations around the use of mobile telephones in hospital settings.

  20. Electrophoretic Deposition on Porous Non-Conductors

    NASA Technical Reports Server (NTRS)

    Compson, Charles; Besra, Laxmidhar; Liu, Meilin

    2007-01-01

    A method of electrophoretic deposition (EPD) on substrates that are porous and electrically non-conductive has been invented. Heretofore, in order to perform an EPD, it has been necessary to either (1) use a substrate material that is inherently electrically conductive or (2) subject a non-conductive substrate to a thermal and/or chemical treatment to render it conductive. In the present method, instead of relying on the electrical conductivity of the substrate, one ensures that the substrate is porous enough that when it is immersed in an EPD bath, the solvent penetrates throughout the thickness, thereby forming quasi-conductive paths through the substrate. By making it unnecessary to use a conductive substrate, this method simplifies the overall EPD process and makes new applications possible. The method is expected to be especially beneficial in enabling deposition of layers of ceramic and/or metal for chemical and electrochemical devices, notably including solid oxide fuel cells.

  1. Multiphase Modelling of Bacteria Removal in a CSO Stream

    EPA Science Inventory

    Indicator bacteria are an important determinant of water quality in many water resources management situations. They are also one of the more complex phenomena to model and predict. Sources abound, the populations are dynamic and influenced by many factors, and mobility through...

  2. Measuring Protein Concentration on Nitrocellulose and After the Electrophoretic Transfer of Protein to Nitrocellulose.

    PubMed

    Goldring, J P Dean

    2015-01-01

    Proteins bind to nitrocellulose membranes when applied directly or after electrophoretic transfer from polyacrylamide electrophoresis gels. Proteins can be stained for visualization with organic dyes Ponceau S, amido black, Coomassie Blue, and colloidal silver/gold and the intensity of the stain is directly proportional to the amount of protein present. Chemicals that interfere with dye/protein interactions in solution can be removed by washing the nitrocellulose after protein application. A method is described whereby protein-dye complexes attached to the nitrocellulose can be solubilized, dissolving the nitrocellulose and releasing dye into solution for detection by a spectrophotometer. The concentration of the dyes Ponceau S, amido black, and colloidal silver is proportional to the concentration of protein. Proteins transferred electrophoretically from SDS-PAGE, isoelectric focusing, or 2D gels to nitrocellulose can be stained with amido black, protein bands excised, and the bound dye detected in a spectrophotometer to quantify proteins in the individual protein bands.

  3. Mobility-based correction for accurate determination of binding constants by capillary electrophoresis-frontal analysis.

    PubMed

    Qian, Cheng; Kovalchik, Kevin A; MacLennan, Matthew S; Huang, Xiaohua; Chen, David D Y

    2017-06-01

    Capillary electrophoresis frontal analysis (CE-FA) can be used to determine binding affinity of molecular interactions. However, its current data processing method mandate specific requirement on the mobilities of the binding pair in order to obtain accurate binding constants. This work shows that significant errors are resulted when the mobilities of the interacting species do not meet these requirements. Therefore, the applicability of CE-FA in many real word applications becomes questionable. An electrophoretic mobility-based correction method is developed in this work based on the flux of each species. A simulation program and a pair of model compounds are used to verify the new equations and evaluate the effectiveness of this method. Ibuprofen and hydroxypropyl-β-cyclodextrinare used to demonstrate the differences in the obtained binding constant by CE-FA when different calculation methods are used, and the results are compared with those obtained by affinity capillary electrophoresis (ACE). The results suggest that CE-FA, with the mobility-based correction method, can be a generally applicable method for a much wider range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study of bacterial flora associated with mobile phones of healthcare workers and non-healthcare workers

    PubMed Central

    Morubagal, Raghavendra Rao; Shivappa, Sowmya Govindanahalli; Mahale, Rashmi Padmanabha; Neelambike, Sumana Mhadevaiah

    2017-01-01

    Background and Objectives: Despite improvements in modern diagnosis and therapies, hospital acquired infections remain a leading problem of global health systems. Healthcare workers mobile phones is a reservoir for potential pathogens. Despite the high possibility of being contaminated, mobile phones are rarely clean and are often touched during or after examination of patients and handling of specimens without proper hand washing. The main objective of the present study was to isolate, identify different types of bacteria and their antibiotic sensitivity from mobile phones of healthcare workers and non-health-care workers. Materials and Methods: Samples were collected aseptically by rolling over the exposed surfaces of the mobile phones inoculated on the agar plates and incubated aerobically. After incubation, plates were examined for growth. Bacteria were identified and antibiotic sensitivity was tested as per standard microbiological procedures. Results: In this study a total of 175 samples were examined, out of which 125 samples were from healthcare workers (HCWs), 50 samples were from non-healthcare workers (non-HCWs). Among the mobile phones of HCW’s from ICUs, Acinetobacter baumannii (36.84%) was the predominant organism isolated followed by methicillin resistant Staphylococcus aureus (MRSA) (21.05%). Predominant organism isolated from HCW’s in operation theater theater was MRSA (46.66%). Out of 50 worker’s non-HCWs mobile phones samples cultured, 23 (46.00%) samples yielded growth of six different types of bacteria. Conclusion: Our study reveals that there is definite colonization of bacteria on mobile phones of the HCWs. It is not only capable of transferring message but also disease-producing microbes. In order to reduce incidence of nosocomial infections, there should be implementation of hand washing practices and regulations around the use of mobile telephones in hospital settings. PMID:29225753

  5. Differential electrophoretic separation of cells and its effect on cell viability

    NASA Technical Reports Server (NTRS)

    Leise, E. M.; Lesane, F.

    1974-01-01

    An electrophoretic separation method was applied to the separation of cells. To determine the efficiency of the separation, it was necessary to apply existing methodology and develop new methods to assess the characteristics and functions of the separated subpopulations. Through appropriate application of the widely used isoelectric focusing procedure, a reproducible separation method was developed. Cells accumulated at defined pH and 70-80% remained viable. The cells were suitable for further biologic, biochemical and immunologic studies.

  6. CRISPR-Cas Technologies and Applications in Food Bacteria.

    PubMed

    Stout, Emily; Klaenhammer, Todd; Barrangou, Rodolphe

    2017-02-28

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form adaptive immune systems that occur in many bacteria and most archaea. In addition to protecting bacteria from phages and other invasive mobile genetic elements, CRISPR-Cas molecular machines can be repurposed as tool kits for applications relevant to the food industry. A primary concern of the food industry has long been the proper management of food-related bacteria, with a focus on both enhancing the outcomes of beneficial microorganisms such as starter cultures and probiotics and limiting the presence of detrimental organisms such as pathogens and spoilage microorganisms. This review introduces CRISPR-Cas as a novel set of technologies to manage food bacteria and offers insights into CRISPR-Cas biology. It primarily focuses on the applications of CRISPR-Cas systems and tools in starter cultures and probiotics, encompassing strain-typing, phage resistance, plasmid vaccination, genome editing, and antimicrobial activity.

  7. New methodology for capillary electrophoresis with ESI-MS detection: Electrophoretic focusing on inverse electromigration dispersion gradient. High-sensitivity analysis of sulfonamides in waters.

    PubMed

    Malá, Zdena; Gebauer, Petr; Boček, Petr

    2016-09-07

    This article describes for the first time the combination of electrophoretic focusing on inverse electromigration dispersion (EMD) gradient, a new separation principle described in 2010, with electrospray-ionization (ESI) mass spectrometric detection. The separation of analytes along the electromigrating EMD profile proceeds so that each analyte is focused and concentrated within the profile at a particular position given by its pKa and ionic mobility. The proposed methodology combines this principle with the transport of the focused zones to the capillary end by superimposed electromigration, electroosmotic flow and ESI suction, and their detection by the MS detector. The designed electrolyte system based on maleic acid and 2,6-lutidine is suitable to create an inverse EMD gradient of required properties and its components are volatile enough to be compatible with the ESI interface. The characteristic properties of the proposed electrolyte system and of the formed inverse gradient are discussed in detail using calculated diagrams and computer simulations. It is shown that the system is surprisingly robust and allows sensitive analyses of trace amounts of weak acids in the pKa range between approx. 6 and 9. As a first practical application of electrophoretic focusing on inverse EMD gradient, the analysis of several sulfonamides in waters is reported. It demonstrates the potential of the developed methodology for fast and high-sensitivity analyses of ionic trace analytes, with reached LODs around 3 × 10(-9) M (0.8 ng mL(-1)) of sulfonamides in spiked drinking water without any sample pretreatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Chian Kwok, Yien; Nguyen, Nam-Trung

    2006-08-01

    A new method for thermally bonding poly(methyl methacrylate) (PMMA) substrates has been demonstrated. PMMA substrates are first engraved by CO2-laser micromachining to form microchannels. Both channel width and depth can be adjusted by varying the laser power and scanning speed. Channel depths from 50 µm to 1500 µm and widths from 150 µm to 400 µm are attained. CO2 laser is also used for drilling and dicing of the PMMA parts. Considering the thermal properties of PMMA, a novel thermal bonding process with high temperature and low bonding pressure has been developed for assembling PMMA sheets. A high bonding strength of 2.15 MPa is achieved. Subsequent inspection of the cross sections of several microdevices reveals that the dimensions of the channels are well preserved during the bonding process. Electroosmotic mobility of the ablated channel is measured to be 2.47 × 10-4 cm2 V-1 s-1. The functionality of these thermally bonded microfluidic substrates is demonstrated by performing rapid and high-resolution electrophoretic separations of mixture of fluorescein and carboxyfluorescein as well as double-stranded DNA ladders (ΦX174-Hae III dsDNA digest). The performance of the CO2 laser ablated and thermally bonded PMMA devices compares favorably with those fabricated by other professional means.

  9. Electrophoretic separation and analysis of living cells from solid tissues by several methods - Human embryonic kidney cell cultures as a model

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.

    1986-01-01

    The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.

  10. [Bacterial contamination of mobile phones shared in hospital wards and the consciousness and behavior of nurses about biological cleanliness].

    PubMed

    Morioka, Ikuharu; Tabuchi, Yuna; Takahashi, Yuko; Oda, Yuriko; Nakai, Masami; Yanase, Aki; Watazu, Chiyoko

    2011-01-01

    The purpose of this study was to clarify the contamination of mobile phones shared in hospital wards and its relationship with the consciousness and behavior of nurses about biological cleanliness. Samples from mobile phones were cultured to detect viable bacteria (n=110) and Staphylococcus aureus (n=54). A questionnaire survey was conducted on 110 nurses carrying mobile phones on the day of sampling. Viable bacteria were detected on 79.1% of the mobile phones, whereas S. aureus was detected on 68.6%. All the nurses were aware of hand washing with water or alcohol after regular work, but 33.6% of the nurses were not conscious of hand washing with water or alcohol after using a mobile phone. There was a significant positive relationship between the frequency of using mobile phones and the number of hand washings with water or alcohol. A significant negative relationship was found between the detection of viable bacteria and the number of hand washings with alcohol. The results of logistic regression analysis showed that the detection of viable bacteria was related significantly with the number of hand washings with alcohol (Odds ratio, 0.350; 95%CI, 0.143-0.857) and that the detection of S. aureus was related significantly with the frequency of using mobile phones (Odds ratio, 0.183; 95%CI, 0.036-0.933). It is important to be conscious of the fact that mobile phones shared in hospital wards are easily contaminated. Because hand washing with water or alcohol prevents the contamination of the mobile phones, nurses should take standard precautions after using mobile phones.

  11. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  12. Molecular-sieve chromatography and electrophoresis in polyacrylamide gels

    PubMed Central

    Morris, C. J. O. R.; Morris, Peggy

    1971-01-01

    1. The absolute electrophoretic mobilities of eight proteins have been measured at pH8.76, I 0.05, in polyacrylamide gels of 20 different compositions at 10°C. 2. The partition coefficients of these proteins have been determined chromatographically under the same conditions by using columns of granulated polyacrylamide gel prepared simultaneously. 3. The electrophoretic mobilities are an exponential function of the gel concentrations when the latter are corrected for water uptake. The constants of this function have been determined by curvefitting methods. They have been shown to be related to the free solution mobility and to the mean molecular radius respectively. 4. The reduced mobilities have been shown to be a linear function of the partition coefficients by statistical analyses. 5. The physical significance of the relation between electrophoretic mobility and chromatographic phase distribution in gel media is discussed in the context of these results. PMID:5135238

  13. Pre-flight report on cultured human embryonic kidney cell handling and cell electrophoresis. Prepared prior to continuous-flow electrophoretic separation experiments aboard space shuttle flight STS-8

    NASA Technical Reports Server (NTRS)

    Todd, P. W.; Sarnoff, B. E.; Li, Z. K.

    1985-01-01

    Studies of the physical properties of continuous-flow zero-G electrophoretic separator (CFES) buffer, the electrokinetic properties of human erythrocytes in the CFES buffer, the electrokinetic properties of human embryonic kidney cells in the CFES buffer, and the viability and yield of human embryonc kidney cells subjected to flight handling procedures are discussed. In general, the procedure for cell handling and electrophoresis of HEK-8514 cells in 1st or 2nd passage on STS-8 is acceptable if executed properly. The CFES buffer has ionic strength that is barely compatible with cell viability and membrane stability, as seen in experiments with human erythrocytes and trypan-blue staining of human kidney cells. Cells suspended in 10% dialysed horse serum for 3 days in the cold appear to be more stable than freshly trypsinized cells. 10% horse serum appears to be superior to 5% horse serum for this purpose. The mean absolute raw mobility of HEK-8514 cells in CFES buffer at 6 degrees, conductivity 0.055 mmho/cm, is 1.1 to 1.4 um-cm/V-sec, with a range of nearly a whole mobility unit.

  14. High-resolution slab gel isoelectric focusing: methods for quantitative electrophoretic transfer and immunodetection of proteins as applied to the study of the multiple isoelectric forms of ornithine decarboxylase.

    PubMed

    Reddy, S G; Cochran, B J; Worth, L L; Knutson, V P; Haddox, M K

    1994-04-01

    A high-resolution isoelectric focusing vertical slab gel method which can resolve proteins which differ by a single charge was developed and this method was applied to the study of the multiple isoelectric forms of ornithine decarboxylase. Separation of proteins at this high level of resolution was achieved by increasing the ampholyte concentration in the gels to 6%. Various lots of ampholytes, from the same or different commercial sources, differed significantly in their protein binding capacity. Ampholytes bound to proteins interfered both with the electrophoretic transfer of proteins from the gel to immunoblotting membranes and with the ability of antibodies to interact with proteins on the immunoblotting membranes. Increasing the amount of protein loaded into a gel lane also decreased the efficiency of the electrophoretic transfer and immunodetection. To overcome these problems, both gel washing and gel electrophoretic transfer protocols for disrupting the ampholyte-protein binding and enabling a quantitative electrophoretic transfer of proteins were developed. Two gel washing procedures, with either thiocyanate or borate buffers, and a two-step electrophoretic transfer method are described. The choice of which method to use to optimally disrupt the ampholyte-protein binding was found to vary with each lot of ampholytes employed.

  15. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media.

    PubMed

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina

    2017-02-01

    Experimental and modeling studies were performed to investigate bacteria deposition behavior in unsaturated porous media. The coupled effect of different forces, acting on bacteria at solid-air-water interfaces and their relative importance on bacteria deposition mechanisms was explored by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as hydrophobic, capillary and hydrodynamic forces. Negatively charged non-motile bacteria and quartz sands were used in packed column experiments. The breakthrough curves and retention profiles of bacteria were simulated using the modified Mobile-IMmobile (MIM) model, to identify physico-chemical attachment or physical straining mechanisms involved in bacteria retention. These results indicated that both mechanisms might occur in both sand. However, the attachment was found to be a reversible process, because attachment coefficients were similar to those of detachment. DLVO calculations supported these results: the primary minimum did not exist, suggesting no permanent retention of bacteria to solid-water and air-water interfaces. Calculated hydrodynamic and resisting torques predicted that bacteria detachment in the secondary minimum might occur. The capillary potential energy was greater than DLVO, hydrophobic and hydrodynamic potential energies, suggesting that film straining by capillary forces might largely govern bacteria deposition under unsaturated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Use of mycelia as paths for the isolation of contaminant‐degrading bacteria from soil

    PubMed Central

    Furuno, Shoko; Remer, Rita; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties. PMID:22014110

  17. Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue.

    PubMed

    Arora, Dhara; Singh, Neha; Bhatla, Satish C

    2018-01-01

    Tyrosine nitrated proteins can be detected in plant cells electrophoretically and their distribution can be monitored by confocal laser scanning microscopy (CLSM) imaging. One-dimensional polyacrylamide gel electrophoresis (1D PAGE) followed by Western blotting using polyclonal antibody against 3-nitrotyrosine residues enables detection of tyrosine nitrated proteins in plant cells. Here we describe detection of tyrosine nitrated proteins in the homogenates derived from sunflower (Helianthus annuus L.) seedling cotyledons. Total soluble proteins obtained from tissue homogenates are resolved using vertical gel electrophoresis followed by their electrophoretic transfer on to a microporous membrane support for immunodetection. Spatial distribution of tyrosine nitrated proteins can be visualized using an antibody against 3-nitrotyrosine residues. Immunofluorescent localization is performed by cutting 7 μm thick wax sections of tissue followed by incubation in primary anti-nitrotyrosine antibody (dilution 1:200) and secondary Cy-3 labeled anti-rabbit IgG antibody (dilution 1:1500). Confocal laser scanning microscopy analysis is undertaken using argon lasers (ex: 530-550 nm and em: 570 nm) at pinhole 1. Modulation in the abundance and spatial localization of tyrosine nitrated proteins in plant tissues can be monitored using these techniques.

  18. Coating and Impregnation of Carbon-Carbon Composites with Ceramics by Electrophoretic Deposition

    DTIC Science & Technology

    1989-04-01

    electroosmotic effect 33 4.1.4 Electrophoretic impregnation of a porous substrate with ceramic particles 53 4.1.5 Morphology of induced Si02 60 4.1.6...particles acquire the charge spontaneously when mixed with the solvent. Further, this charge may be reversed upon addition of ionic compounds. According...spontaneously when mixed with the solvent. Further this charge may be reversed upon addition of ions. 2.2 ELECTHOPHORESIS IN POROUS STRUCTURES i In

  19. Features of electrophoretic deposition process of nanostructured electrode materials for planar Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Melkozyorova, N. A.; Zinkevich, K. G.; Lebedev, E. A.; Alekseyev, A. V.; Gromov, D. G.; Kitsyuk, E. P.; Ryazanov, R. M.; Sysa, A. V.

    2017-11-01

    The features of electrophoretic deposition process of composite LiCoO2-based cathode and Si-based anode materials were researched. The influence of the deposition process parameters on the structure and composition of the deposit was revealed. The possibility of a local deposition of composites on a planar lithium-ion battery structure was demonstrated.

  20. Cellular distribution, purification and electrophoretic properties of malate dehydrogenase in Trichuris ovis and inhibition by benzimidazoles and pyrimidine derivatives.

    PubMed

    Sanchez-Moreno, M; Ortega, J E; Valero, A

    1989-12-01

    High levels of malate dehydrogenase were found in Trichuris ovis. Two molecular forms of the enzyme, of different cellular location and electrophoretic pattern, were isolated and purified. The activity of soluble malate dehydrogenase was greater than that of mitochondrial malate dehydrogenase. Both forms also displayed different electrophoretic profiles in comparison with purified extracts from goat (Capra hircus) liver. Substrate concentration directly affected enzyme activity. Host and parasite malate dehydrogenase activity were both inhibited by a series of benzimidazoles and pyrimidine-derived compounds, some of which markedly reduced parasite enzyme activity, but not host enzyme activity. Percentage inhibition by some pyrimidine derivatives was greater than that produced by benzimidazoles.

  1. Automated Parallel Capillary Electrophoretic System

    DOEpatents

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  2. ATMOSPHERIC NITROGEN FIXATION BY METHANE-OXIDIZING BACTERIA

    PubMed Central

    Davis, J. B.; Coty, V. F.; Stanley, J. P.

    1964-01-01

    Davis, J. B. (Socony Mobil Oil Co., Inc., Dallas, Tex.), V. F. Coty, and J. P. Stanley. Atmospheric nitrogen fixation by methane-oxidizing bacteria. J. Bacteriol. 88:468–472. 1964.—Methane-oxidizing bacteria capable of fixing atmospheric nitrogen were isolated from garden soil, pond mud, oil field soil, and soil exposed to natural gas, indicating a rather wide prevalence in nature. This may explain the high concentration of organic nitrogen commonly found in soils exposed to gas leakage from pipelines or natural-gas seeps. Added molybdenum was a requirement for growth in a nitrogen-free mineral salts medium. All nitrogen-fixing, methane-oxidizing bacteria isolated were gram-negative, nonsporeforming, usually motile rods. Colonies were light yellow, yellow, or white. The most common isolate, which formed light-yellow colonies, is referred to as Pseudomonas methanitrificans sp. n., and is distinguished from Pseudomonas (Methanomonas) methanica by nitrogen-fixing ability and a preponderance of poly-β-hydroxybutyrate in the cellular lipid fraction. Images PMID:14203365

  3. Electrophoretic study of enzymes from cereal aphid populations : 4. Detection of hidden genetic variation within populations of the grain aphid Sitobion avenae (F.) (Hemiptera: Aphididae).

    PubMed

    Loxdale, H D; Rhodes, J A; Fox, J S

    1985-07-01

    A study of variation in three peptidases (PEP-3 to -5) in a parthenogenetic S. avenae field population at Rothamsted using serial one-dimensional polyacrylamide gel electrophoresis (involving changes of gel concentration and electrophoretic run-time) increased the overall number of "allozymes" (mobility variants) detected from 10 under standard conditions (6% gels, 2 h run-time) to 22, as well as revealing putative heterozygous banding patterns under some test conditions. However, an examination of another enzyme, 6-phosphogluconate dehydrogenase (6-PGD) in a sample collected at Rothamsted the following year failed, using a combination of serial methods (changes of gel concentration) and isoelectric focusing, to increase the total number of 6-PGD bands separated (seven, none of which appeared to be allelic in origin). Nevertheless, some major bands were split into several bands, whilst other infrequent bands were either gained or lost. The findings are briefly discussed.

  4. NHS connecting for health: healthcare professionals, mobile technology, and infection control.

    PubMed

    Brady, Richard R W; Chitnis, Shruti; Stewart, Ross W; Graham, Catriona; Yalamarthi, Satheesh; Morris, Keith

    2012-05-01

    Mobile phones improve the efficiency of clinical communication and are increasingly involved in all areas of healthcare delivery. Despite this, healthcare workers' mobile phones provide a known reservoir of pathogenic bacteria, with the potential to undermine infection control efforts aimed at the reducing bacterial cross-contamination in hospitals. This potential could be amplified further when employers require doctors to carry additional electronic devices for communication, without concurrently providing appropriate guidance on decontamination or use. Eighty-seven on-call doctors' mobile phones were sampled for bacterial growth prior to, and 12 h after, a cleaning intervention involving 70% isopropyl alcohol. Seventy-eight percent of doctors were aware that mobile phones could carry pathogenic bacteria, but only 8% cleaned their phones regularly. The cleaning intervention reduced the number of phones that grew bacteria by 79% (55% [48 of 87] before versus 16% [14 of 87] after cleaning). Eight percent of the phones grew Staphyloccus aureus, and 44.8% of phones grew Gram-positive cocci. All S. aureus isolates were methicillin-sensitive. Bacterial contamination was not associated with gender, specialty, or seniority of the phone user (p>0.05). Simple cleaning interventions can reduce the surface bioburden of hospital-provided doctors' mobile phones and therefore the potential for cross-contamination. This cleaning intervention is inexpensive, easily instituted, and effective. Healthcare workers should carry the minimum number of electronic devices on their person, maintain good hand hygiene, and clean their device appropriately in order to minimize the potential for cross-contamination in the work place.

  5. Nosocomial pathogens associated with the mobile phones of healthcare workers in a hospital in Anyigba, Kogi state, Nigeria.

    PubMed

    Nwankwo, E O; Ekwunife, N; Mofolorunsho, K C

    2014-06-01

    Mobile phones of healthcare workers (HCWs) could be colonized by potential bacteria pathogens. The aim of this research is to evaluate the bacterial contamination and antibiotic sensitivity pattern of isolates from mobile phones of HCWs in Grimad hospital. A total of 112 swab samples were collected from the mobile phones of HCWs and students in June 2012 in Anyigba. While 56 samples were from HCWs in Grimad hospital, 56 samples were obtained from non-healthcare workers (NHCWs) who served as the control. The samples were all screened for bacterial pathogens by standard bacteriological procedures. Antibiotic susceptibility testing was done by the disc diffusion technique. The rate of bacterial contamination of mobile phones of HCWs was 94.6%. Bacteria isolated from mobile phones of HCWs were more resistant to antibiotics than NHCWs phones. Staphylococcus Epidermidis (42.9%) was the most frequently isolated bacteria followed by Bacillus spp. (32.1%), Staphylococcus Aureus (25%), Pseudomonas Aeruginosa (19.6%), Escherichia Coli (14.3%), Streptococcus spp. (14.3%), Proteus spp. (12.5%), Klebsiella spp. (7.1%), and Acinetobacter spp. (5.3%). Cotrimoxazole, ampicillin and tetracycline showed high levels of resistance while gentamicin, ciprofloxacin and ceftriaxone exhibited encouraging results. The presence of bacteria pathogens associated with nosocomial infection was identified. Transmission of pathogens can be reduced by hand hygiene and regular cleaning of mobile phones. Copyright © 2013 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  6. Recent patents on electrophoretic displays and materials.

    PubMed

    Christophersen, Marc; Phlips, Bernard F

    2010-11-01

    Electrophoretic displays (EPDs) have made their way into consumer products. EPDs enable displays that offer the look and form of a printed page, often called "electronic paper". We will review recent apparatus and method patents for EPD devices and their fabrication. A brief introduction into the basic display operation and history of EPDs is given, while pointing out the technological challenges and difficulties for inventors. Recently, the majority of scientific publications and patenting activity has been directed to micro-segmented EPDs. These devices exhibit high optical reflectance and contrast, wide viewing angle, and high image resolution. Micro-segmented EPDs can also be integrated with flexible transistors technologies into flexible displays. Typical particles size ranges from 200 nm to 2 micrometer. Currently one very active area of patenting is the development of full-color EPDs. We summarize the recent patenting activity for EPDs and provide comments on perceiving factors driving intellectual property protection for EPD technologies.

  7. Mesoscale Particle-Based Model of Electrophoretic Deposition

    DOE PAGES

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...

    2016-12-20

    In this paper, we present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increasesmore » and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. Finally, we find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.« less

  8. Electrophoretically deposited graphene oxide and carbon nanotube composite for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso A.; Guitierrez, Daniel H.; Peaslee, David; Cheng, Arthur; Gao, Theodore; Wong, Chee Wei; Chen, Bin

    2015-10-01

    We report a scalable one-step electrode fabrication approach for synthesizing composite carbon-based supercapacitors with synergistic outcomes. Multi-walled carbon nanotubes (MWCNTs) were successfully integrated into our modified electrophoretic deposition process to directly form composite MWCNT-GO electrochemical capacitor electrodes (where GO is graphene oxide) with superior performance to solely GO electrodes. The measured capacitance improved threefold, reaching a maximum specific capacitance of 231 F g-1. Upon thermal reduction, MWCNT-GO electrode sheet resistance decreased by a factor of 8, significantly greater than the 2× decrease of those without MWCNTs.

  9. Hydrogen sensors based on electrophoretically deposited Pd nanoparticles onto InP

    PubMed Central

    2011-01-01

    Electrophoretic deposition of palladium nanoparticles prepared by the reverse micelle technique onto InP substrates is addressed. We demonstrate that the substrate pre-deposition treatment and the deposition conditions can extensively influence the morphology of the deposited palladium nanoparticle films. Schottky diodes based on these films show notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi level pinning. Moreover, electrical characteristics of these diodes are exceptionally sensitive to the exposure to gas mixtures with small hydrogen content. PMID:21711912

  10. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    PubMed Central

    Hancu, Gabriel; Simon, Brigitta; Rusu, Aura; Mircia, Eleonora; Gyéresi, Árpád

    2013-01-01

    Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis. PMID:24312804

  11. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.

    1989-01-01

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  12. Electrophoretic build-up of multi nanoparticle array for a highly sensitive immunoassay

    PubMed Central

    Han, Jin-Hee; Kim, Hee-Joo; Sudheendra, L.; Hass, Elizabeth A.; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2012-01-01

    One of the challenges in shrinking immunoassays to smaller sizes is to immobilize the biological molecules to nanometer-scaled spots. To overcome this complication, we have employed a particle-based immunoassay to create a nanostructured platform with a regular array of sensing elements. The technique makes use of an electrophoretic particle entrapment system (EPES) to immobilize nanoparticles that are coated with biological reagents into wells using a very small trapping potential. To provide useful information for controlling the trapping force and optimal design of the nanoarray, electrophoretic trapping of a nanoparticle was modeled numerically. The trapping efficiency, defined as the fraction of wells occupied by a single particle, was 91%. The performance of the array was demonstrated with a competitive immunoassay for a small molecule analyte, 3-phenoxybenzoic acid (214.2 g mole−1). The limit of detection determined with a basic fluorescence microscope was 0.006 μg l−1 (30 pM); this represented a sixteen-fold improvement in sensitivity compared to a standard 96-well plate-based ELISA; the improvement was attributed to the small size of the sample volume and the presence of light diffraction among factors unique to this structure. The EPES/nanoarray system promises to offer a new standard in applications that require portable, point-of-care and real-time monitoring with high sensitivity. PMID:23021853

  13. Evolutionary Genomics of Defense Systems in Archaea and Bacteria*

    PubMed Central

    Koonin, Eugene V.; Makarova, Kira S.; Wolf, Yuri I.

    2018-01-01

    Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death. PMID:28657885

  14. Variations in Paper Electrophoretic Serum Lipoprotein Patterns in Healthy Subjects

    PubMed Central

    Buckley, G. C.; Little, J. A.; Csima, A.

    1970-01-01

    The normal variations in the paper electrophoretic lipoprotein patterns in 240 healthy Canadian males and females, aged 10 to 59 years, have been described and compared with serum cholesterol and triglyceride levels. The incidence of abnormal chylomicra, beta and pre-beta lipoproteins was similar in both sexes and increased with age in both sexes. Chylomicron bands and/or pre-beta trails from the origin occurred in 4% of subjects, pre-beta bands in 27% and “abnormally” dense beta bands in 28%. Five per cent of subjects were considered to have definite hyperlipoproteinemia, another 19% had slight and 21% had questionable hyperlipoproteinemia. Fifty-five per cent were normal. PMID:5538493

  15. Electrophoretic formation of semiconductor layers with adjustable band gap

    NASA Astrophysics Data System (ADS)

    Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander

    2017-11-01

    The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.

  16. Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects

    PubMed Central

    2014-01-01

    Microbial metal reduction can be a strategy for remediation of metal contaminations and wastes. Bacteria are capable of mobilization and immobilization of metals and in some cases, the bacteria which can reduce metal ions show the ability to precipitate metals at nanometer scale. Biosynthesis of nanoparticles (NPs) using bacteria has emerged as rapidly developing research area in green nanotechnology across the globe with various biological entities being employed in synthesis of NPs constantly forming an impute alternative for conventional chemical and physical methods. Optimization of the processes can result in synthesis of NPs with desired morphologies and controlled sizes, fast and clean. The aim of this review is, therefore, to make a reflection on the current state and future prospects and especially the possibilities and limitations of the above mentioned bio-based technique for industries. PMID:27355054

  17. A lateral electrophoretic flow diagnostic assay

    PubMed Central

    Lin, Robert; Skandarajah, Arunan; Gerver, Rachel E.; Neira, Hector D.; Fletcher, Daniel A.

    2015-01-01

    Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a “lateral e-flow assay” and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings. PMID:25608872

  18. Detection of Sulphate-Reducing Bacteria and Others Cultivable Facultative Bacteria in Dental Tissues

    PubMed Central

    Gonçalves, Lúcio de Souza; Dias, Eliane Pedra; Heggendorn, Christiane; Lutterbach, Márcia T. S.

    2014-01-01

    Aim To detect for the presence of sulphate-reducing bacteria (SRB) and evaluate the possible association between SRB and cultivable facultative bacterial of oral sites with different periodontal conditions. Methods The study was carried out on 9 samples from different oral sites in 8 patients (two samples were collected from the same patient). Material was collected using modified Postgate E culture medium, indicated for the growth and isolation of SRB. In addition, a reducing solution for anaerobic bacteria was used as a transport solution for facultative bacteria and identified by polymerase chain reaction amplification (PCR) and sequencing of the 16S rRNA gene. Results SRB was found in 3 patient samples: the first in a root fragment, the second in a root fragment and a healthy tooth with vertical bone loss and a mobility degree of 3; and the third in a healthy tooth extracted for orthodontic treatment. In the final patient, the cultivable facultative species Lactobacillus casei was identified. Other facultative bacterial species were identified in patient 5 (Kurthia Gibsonii) and patient 7 (Pseudomonas aeruginosa). Conclusions The detection of SRB in different dental tissues with distinct periodontal features demonstrated that new studies need to be developed in order to determine the true role of SRB in the oral microbiota. In addition, it was possible to verify the presence of Lactobacillus casei together with SRB in one sample. PMID:27688355

  19. A strategy to modulate the electrophoretic behavior in plastic microchips using sodium polystyrene sulfonate.

    PubMed

    Guo, Jinxiu; Chen, Yu; Zhao, Lizhi; Sun, Ping; Li, Hongli; Zhou, Lei; Wang, Xiayan; Pu, Qiaosheng

    2016-12-16

    Plastic microchips have been broadly used as disposable microfluidic devices, but the poorly defined surface properties limit their application. Herein, we proved that an anionic polymer could be used as the background electrolyte (BGE) to provide a strong and stable cathodic electroosmotic flow (EOF) and modulate the electrophoretic behavior for efficient separation in relative thicker microchannels (∼75μm id). A cathodic EOF of ∼3.3×10 -4 cm 2 V -1 s -1 was maintained using sodium polystyrene sulfonate (PSSNa) with a molecular weight of 5×10 5 as the BGE, which ensured fluorescein isothiocyanate labeled biogenic amines (BAs) appeared ahead of other components in the electropherograms obtained with microchips of cyclic olefin copolymer. Four selected BAs appeared within 50s and theoretical plate numbers of 8.0×10 5 /m were achieved. The role of PSSNa was evaluated with streaming potential, dynamic light scattering, contact angle and atomic force microscopy. Its functionalities as surface modifier, viscosity regulator and pseudostationary phase were also confirmed. The proposed electrophoretic method was applied in the fast determination of BAs in fish meat samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Electrophoretic Deposition for Cholesteric Liquid-Crystalline Devices with Memory and Modulation of Reflection Colors.

    PubMed

    Tokunaga, Shoichi; Itoh, Yoshimitsu; Yaguchi, Yuya; Tanaka, Hiroyuki; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo

    2016-06-01

    The first design strategy that allows both memorization and modulation of the liquid-crystalline reflection color is reported. Electrophoretic deposition of a tailored ionic chiral dopant is key to realizing this unprecedented function, which may pave the way for the development of full-color e-paper that can operate without the need of color filters. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrophoretic-deposited CNT/MnO2 composites for high-power electrochemical energy storage/conversion applications

    NASA Astrophysics Data System (ADS)

    Xiao, Wei; Xia, Hui; Fuh, Jerry Y. H.; Lu, Li

    2010-05-01

    CNT/MnO2 (birnessite-type) composite films have been successfully deposited on Ni-foil substrate via electrophoretic deposition (EPD). The unique EPD CNT/MnO2 composite film electrode shows enhanced electrical conductivity, good contact between composite films and the substrate and open porous structure, which makes the EPD composite films a promising electrode for high-power supercapacitors and lithium ion batteries.

  2. Evidences of Changes in Surface Electrostatic Charge Distribution during Stabilization of HPV16 Virus-Like Particles

    PubMed Central

    Vega, Juan F.; Vicente-Alique, Ernesto; Núñez-Ramírez, Rafael; Wang, Yang; Martínez-Salazar, Javier

    2016-01-01

    The stabilization of human papillomavirus type 16 virus-like particles has been examined by means of different techniques including dynamic and static light scattering, transmission electron microscopy and electrophoretic mobility. All these techniques provide different and often complementary perspectives about the aggregation process and generation of stabilized virus-like particles after a period of time of 48 hours at a temperature of 298 K. Interestingly, static light scattering results point towards a clear colloidal instability in the initial systems, as suggested by a negative value of the second virial coefficient. This is likely related to small repulsive electrostatic interactions among the particles, and in agreement with relatively small absolute values of the electrophoretic mobility and, hence, of the net surface charges. At this initial stage the small repulsive interactions are not able to compensate binding interactions, which tend to aggregate the particles. As time proceeds, an increase of the size of the particles is accompanied by strong increases, in absolute values, of the electrophoretic mobility and net surface charge, suggesting enhanced repulsive electrostatic interactions and, consequently, a stabilized colloidal system. These results show that electrophoretic mobility is a useful methodology that can be applied to screen the stabilization factors for virus-like particles during vaccine development. PMID:26885635

  3. Influence of Analyte Concentration on Stability Constant Values Determined by Capillary Electrophoresis.

    PubMed

    Sursyakova, Viktoria V; Burmakina, Galina V; Rubaylo, Anatoly I

    2016-08-01

    The influence of analyte concentration when compared with the concentration of a charged ligand in background electrolyte (BGE) on the measured values of electrophoretic mobilities and stability constants (association, binding or formation constants) is studied using capillary electrophoresis (CE) and a dynamic mathematical simulator of CE. The study is performed using labile complexes (with fast kinetics) of iron (III) and 5-sulfosalicylate ions (ISC) as an example. It is shown that because the ligand concentration in the analyte zone is not equal to that in BGE, considerable changes in the migration times and electrophoretic mobilities are observed, resulting in systematic errors in the stability constant values. Of crucial significance is the slope of the dependence of the electrophoretic mobility decrease on the ligand equilibrium concentration. Without prior information on this dependence to accurately evaluate the stability constants for similar systems, the total ligand concentration must be at least >50-100 times higher than the total concentration of analyte. Experimental ISC peak fronting and the difference between the direction of the experimental pH dependence of the electrophoretic mobility decrease and the mathematical simulation allow assuming the presence of capillary wall interaction. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The importance of mobile phones in the possible transmission of bacterial infections in the community.

    PubMed

    Bhoonderowa, A; Gookool, S; Biranjia-Hurdoyal, S D

    2014-10-01

    Mobile phones have become indispensable accessories in today's life. However, they might act as fomites as they have travelled with their owner to places such as toilets, hospitals and kitchens which are loaded with microorganisms. A cross-sectional study was carried out to isolate and identify bacteria from mobile phones of volunteers in the community. A total of 192 mobile phones from 102 males and 90 females were swabbed and cultured. The bacteria were identified by gram staining and conventional biochemical tests. A total of 176 mobile phones (91.7 %) showed bacterial contamination. Coagulase negative Staphylococcus was the most prevalent (69.3 %) followed by Micrococci (51.8 %), Klebsiella (1.5 %) and Pseudomonas (1 %). The mean colony forming units was higher among females than males (p < 0.05; 95 % CI 0.021-0.365) and higher on mobile phones which were kept in bags than in pockets (p < 0.05; 95 % CI 0.019-0.369). Furthermore, the use of phone cover was found to reduce microbial growth (OR 4.2; 95 % CI 1.423-12.39; p < 0.05). Significant associations were also found between bacterial growth and female participants, agricultural workers, mobile phones older than 6 months and sharing of mobile phones (p < 0.05). Mobile phones from the community carry potential pathogens. Cleaning of mobile phones should be encouraged and should be preferably stored in pockets or carry cases.

  5. Growth of ZnO films in sol-gel electrophoretic deposition by different solvents

    NASA Astrophysics Data System (ADS)

    Hallajzadeh, Amir Mohammad; Abdizadeh, Hossein; Taheri, Mahtab; Golobostanfard, Mohammad Reza

    2018-01-01

    This article introduces a process to fabricate zinc oxide (ZnO) films through combining sol preparation and electrophoretic deposition (EPD). The experimental results have proved that the EPD process is a powerful route to fabricate ZnO films with desire thickness from stable colloidal suspension under a direct current (DC) electric field. In this method, ZnO sol is prepared by dissolving zinc acetate dehydrate (ZAD) as the main precursor and diethanolamine (DEA) as the additive in various solvents such as methanol (MeOH), ethanol (EtOH), and 2-proponal (2-PrOH). The deposition was performed under a constant voltage of 30 V for 2 min. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS) were used to characterize ZnO films. XRD pattern of the ZnO film prepared by MeOH shows the highest degree of preferential orientation and this is mainly attributed to the higher dielectric constant of the MeOH which results in higher current density in electrophoretic deposit ion. The SEM cross section images also show that the thickness of the ZnO film enhances by decreasing the solvent chain length. According to SEM results, as the viscosity of the medium increased, more compact layers are formed, which can be attributed to the lower deposition rates in heavier alcohols.

  6. Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications.

    PubMed

    Zhang, Bokai; Kwok, Chi Tat

    2011-10-01

    In order to eliminate micro-cracks in the monolithic hydroxyapatite (HA) and composite hydroxyapatite/carbon nanotube (HA/CNT) coatings, novel HA/TiO(2)/CNT nanocomposite coatings on Ti6Al4V were attempted to fabricate by a single-step electrophoretic codeposition process for biomedical applications. The electrophoretically deposited layers with difference contents of HA, TiO(2) (anatase) and CNT nanoparticles were sintered at 800°C for densification with thickness of about 7-10 μm. A dense and crack-free coating was achieved with constituents of 85 wt% HA, 10 wt% TiO(2) and 5 wt% CNT. Open-circuit potential measurements and cyclic potentiodynamic polarization tests were used to investigate the electrochemical corrosion behavior of the coatings in vitro conditions (Hanks' solution at 37°C). The HA/TiO(2)/CNT coatings possess higher corrosion resistance than that of the Ti6Al4V substrate as reflected by nobler open circuit potential and lower corrosion current density. In addition, the surface hardness and adhesion strength of the HA/TiO(2)/CNT coatings are higher than that of the monolithic HA and HA/CNT coatings without compromising their apatite forming ability. The enhanced properties were attributed to the nanostructure of the coatings with the appropriate TiO(2) and CNT contents for eliminating micro-cracks and micro-pores.

  7. Synthesis and application of ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) films using electrophoretic deposition

    DOE PAGES

    Ryu, Jeongjae; No, Kwangsoo; Kim, Yeontae; ...

    2016-11-02

    In this paper, we investigated the deposition kinetics of polyvinylidene fluoride copolymerized with trifluoroethylene (P(VDF-TrFE)) particles on stainless steel substrates during the electrophoretic deposition (EPD) process. The effect of applied voltage and deposition time on the structure and ferroelectric property of the P(VDF-TrFE) films was studied in detail. A method of repeated EPD and heat treatment above melting point were employed to fabricate crack-free P(VDF-TrFE) thick films. This method enabled us to fabricate P(VDF-TrFE) films with variable thicknesses. The morphology of the obtained films was investigated by scanning electron microscopy (SEM), and the formation of β-phase was confirmed by X-raymore » diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. P(VDF-TrFE) films prepared with various thicknesses showed remnant polarization (P r) of around 4 μC/cm 2. To demonstrate the applicability of our processing recipe to complex structures, we fabricated a spring-type energy harvester by depositing P(VDF-TrFE) films on stainless steel springs using EPD process. Our preliminary results show that an electrophoretic deposition can be applied to produce high-quality P(VDF-TrFE) films on planar as well as three-dimensional (3-D) substrates.« less

  8. Synthesis and Application of Ferroelectric Poly(Vinylidene Fluoride-co-Trifluoroethylene) Films using Electrophoretic Deposition

    PubMed Central

    Ryu, Jeongjae; No, Kwangsoo; Kim, Yeontae; Park, Eugene; Hong, Seungbum

    2016-01-01

    In this study, we investigated the deposition kinetics of polyvinylidene fluoride copolymerized with trifluoroethylene (P(VDF-TrFE)) particles on stainless steel substrates during the electrophoretic deposition (EPD) process. The effect of applied voltage and deposition time on the structure and ferroelectric property of the P(VDF-TrFE) films was studied in detail. A method of repeated EPD and heat treatment above melting point were employed to fabricate crack-free P(VDF-TrFE) thick films. This method enabled us to fabricate P(VDF-TrFE) films with variable thicknesses. The morphology of the obtained films was investigated by scanning electron microscopy (SEM), and the formation of β-phase was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. P(VDF-TrFE) films prepared with various thicknesses showed remnant polarization (Pr) of around 4 μC/cm2. To demonstrate the applicability of our processing recipe to complex structures, we fabricated a spring-type energy harvester by depositing P(VDF-TrFE) films on stainless steel springs using EPD process. Our preliminary results show that an electrophoretic deposition can be applied to produce high-quality P(VDF-TrFE) films on planar as well as three-dimensional (3-D) substrates. PMID:27805008

  9. [Electrophoretic forms of glucose-6-phosphate dehydrogenase, acid phosphatase and esterase in Amoeba species amoebas].

    PubMed

    Sopina, V A

    2000-01-01

    Glucose-6-phosphate dehydrogenase (G6PD), acid phosphatase and esterases in free-living amoebae of 7 Amoeba species were investigated with the use of disc-electrophoresis in polyacrylamide gel. The evidence provided is suggestive that the electrophoretic isoenzyme patterns of acid phosphatase and esterases (and G6PD in some cases), in addition to a few morphological characters, can serve as a taxonomic criterion for species identification within this genus, as well as for revealing erroneously classified species and strains. It is suggested that A. indica is an independent species whose preliminary diagnosis has been given in this paper. It is concluded that A. discoides and A. lescherae are strains of A. proteus, rather than two independent species. A and As-102 amoebian strains, kept in the collection of protozoan strains and species of the Institute of Cytology RAS and referred to as strains of A. proteus, belong in reality to another Amoeba species and even to another genus within the family Amoebidae. This conclusion has been documented by results of our analysis of electrophoretic patterns of acid phosphatase and esterases in these strains.

  10. Mobile phone technology and hospitalized patients: a cross-sectional surveillance study of bacterial colonization, and patient opinions and behaviours.

    PubMed

    Brady, R R; Hunt, A C; Visvanathan, A; Rodrigues, M A; Graham, C; Rae, C; Kalima, P; Paterson, H M; Gibb, A P

    2011-06-01

    Healthcare workers' mobile phones provide a reservoir of bacteria known to cause nosocomial infections. UK National Health Service restrictions on the utilization of mobile phones within hospitals have been relaxed; however, utilization of these devices by inpatients and the risk of cross-contamination are currently unknown. Here, we examine demographics and characteristics of mobile phone utilization by inpatients and phone surface microbial contamination. One hundred and two out of 145 (70.3%) inpatients who completed a questionnaire detailing their opinions and utilization of mobile phones, also provided their mobile phones for bacteriological analysis and comparative bacteriological swabs from their nasal cavities; 92.4% of patients support utilization of mobile phones by inpatients; indeed, 24.5% of patients stated that mobile phones were vital to their inpatient stay. Patients in younger age categories were more likely to possess a mobile phone both inside and outside hospital (p <0.01) but there was no gender association. Eighty-six out of 102 (84.3%) patients' mobile phone swabs were positive for microbial contamination. Twelve (11.8%) phones grew bacteria known to cause nosocomial infection. Seven (6.9%) phones and 32 (31.4%) nasal swabs demonstrated Staphylococcus aureus contamination. MSSA/MRSA contamination of phones was associated with concomitant nasal colonization. Patient utilization of mobile phones in the clinical setting is popular and common; however, we recommend that patients are educated by clear guidelines and advice on inpatient mobile phone etiquette, power charging safety, regular cleaning of phones and hand hygiene, and advised not to share phones or related equipment with other inpatients in order to prevent transmission of bacteria. 2011 The Authors. Clinical Microbiology and Infection; 2011 European Society of Clinical Microbiology and Infectious Diseases.

  11. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds

    PubMed Central

    Freire, Carmen S. R.; Coutinho, João A. P.; Silvestre, Armando J. D.; Freire, Mara G.

    2016-01-01

    Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction–separation processes using IL aqueous solutions are suggested within a green chemistry perspective. PMID:27667965

  12. Chemometric studies for the characterization and differentiation of microorganisms using in situ derivatization and thermal desorption ion mobility spectrometry.

    PubMed

    Ochoa, Mariela L; Harrington, Peter B

    2005-02-01

    Whole-cell bacteria were characterized and differentiated by thermal desorption ion mobility spectrometry and chemometric modeling. Principal component analysis was used to evaluate the differences in the ion mobility spectra of whole-cell bacteria and the fatty acid methyl esters (FAMEs) generated in situ after derivatization of the bacterial lipids. Alternating least squares served to extract bacterial peaks from the complex ion mobility spectra of intact microorganisms and, therefore, facilitated the characterization of bacterial strains, species, and Gram type. In situ thermal hydrolysis/methylation with tetramethylammonium hydroxide was necessary for the differentiation of Escherichia coli strains, which otherwise could not be distinguished by spectra acquired with the ITEMISER ion mobility spectrometer. The addition of the methylating agent had no effect on Gram-positive bacteria, and therefore, they could not be differentiated by genera. The classification of E. coli strains was possible by analysis of the IMS spectra from the FAMEs generated in situ. By using the fuzzy multivariate rule-building expert system and cross-validation, a correct classification rate of 96% (22 out of 23 spectra) was obtained. Chemometric modeling on bacterial ion mobility spectra coupled to thermal hydrolysis/methylation proved a simple, rapid (2 min/sample), inexpensive, and sensitive technique to characterize and differentiate intact microorganisms. The ITEMISER ion mobility spectrometer could detect as few as 4 x 10(6) cells/sample.

  13. Arsenic release by indigenous bacteria Bacillus cereus from aquifer sediments at Datong Basin, northern China

    NASA Astrophysics Data System (ADS)

    Xie, Zuoming; Wang, Yanxin; Duan, Mengyu; Xie, Xianjun; Su, Chunli

    2011-03-01

    Endemic arsenic poisoning due to long-term drinking of high arsenic groundwater has been reported in Datong Basin, northern China. To investigate the effects of microbial activities on arsenic mobilization in contaminated aquifers, Bacillus cereus ( B. cereus) isolated from high arsenic aquifer sediments of the basin was used in our microcosm experiments. The arsenic concentration in the treatment with both bacteria and sodium citrate or glucose had a rapid increase in the first 18 d, and then, it declined. Supplemented with bacteria only, the concentration could increase on the second day. By contrast, the arsenic concentration in the treatment supplemented with sodium citrate or glucose was kept very low. These results indicate that bacterial activities promoted the release of arsenic in the sediments. Bacterial activities also influenced other geochemical parameters of the aqueous phase, such as pH, Eh, and the concentrations of dissolved Fe, Mn, and Al that are important controls on arsenic release. The removal of Fe, Mn, and Al from sediment samples was observed with the presence of B. cereus. The effects of microbial activities on Fe, Mn, and Al release were nearly the same as those on As mobilization. The pH values of the treatments inoculated with bacteria were lower than those without bacteria, still at alkaline levels. With the decrease of Eh values in treatments inoculated with bacteria, the microcosms became more reducing and are thus favorable for arsenic release.

  14. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE PAGES

    Giera, Brian; Bukosky, Scott; Lee, Elaine; ...

    2018-01-23

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  15. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Bukosky, Scott; Lee, Elaine

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  16. Bio-Reduction of Graphene Oxide Using Sulfate-Reducing Bacteria and Its Implication on Anti-Biocorrosion.

    PubMed

    Song, Tian-Shun; Tan, Wei-Min; Xie, Jingjing

    2018-08-01

    In this paper, we developed an environmental friendly, cost effective, simple and green approach to reduce graphene oxide (GO) by a sulfate-reducing bacterium Desulfovibrio desulfuricans. The D. desulfuricans reduces exfoliated GO to reduced graphene oxide (rGO) at 25 °C in an aqueous solution without any toxic and environmentally harmful reducing agents. The rGO was characterized with X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscope, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. The analysis results showed that rGO had excellent properties and multi-layer graphene sheets structure. Furthermore, we demonstrated that D. desulfuricans, one of the primary bacteria responsible for the biocorrosion of various metals, might reduce GO to rGO on the surface of copper and prevented the corrosion of copper, which confirmed that electrophoretic deposition of GO on the surface of metals had great potential on the anti-biocorrosion applications.

  17. Vanadium removal from LD converter slag using bacteria and fungi.

    PubMed

    Mirazimi, S M J; Abbasalipour, Z; Rashchi, F

    2015-04-15

    Removal of vanadium from Linz-Donawits (LD) converter slag was investigated by means of three different species of microbial systems: Acidithiobacillus thiooxidans (autotrophic bacteria), Pseudomonas putida (heterotrophic bacteria) and Aspergillus niger (fungi). The bioleaching process was carried out in both one-step and two-step process and the leaching efficiencies in both cases were compared. Formation of inorganic and organic acids during the leaching process caused mobilization of vanadium. In order to reduce toxic effects of the metal species on the above mentioned microorganisms, a prolonged adaptation process was performed. Both bacteria, A. thiooxidans and P. putida were able to remove more than 90% of vanadium at slag concentrations of 1-5 g L(-1) after 15 days. Also, the maximum achievable vanadium removal in the fungal system was approximately 92% at a slag concentration of 1 g L(-1) after 22 days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ellipsometric Measurement of Bacterial Films at Metal-Electrolyte Interfaces

    PubMed Central

    Busalmen, J. P.; de Sánchez, S. R.; Schiffrin, D. J.

    1998-01-01

    Ellipsometric measurements were used to monitor the formation of a bacterial cell film on polarized metal surfaces (Al-brass and Ti). Under cathodic polarization bacterial attachment was measured from changes in the ellipsometric angles. These were fitted to an effective medium model for a nonabsorbing bacterial film with an effective refractive index (nf) of 1.38 and a thickness (df) of 160 ± 10 nm. From the optical measurements a surface coverage of 17% was estimated, in agreement with direct microscopic observations. The influence of bacteria on the formation of oxide films was monitored by ellipsometry following the film growth in situ. A strong inhibition of metal oxide film formation was observed, which was assigned to the decrease in oxygen concentration due to the presence of bacteria. It is shown that the irreversible adhesion of bacteria to the surface can be monitored ellipsometrically. Electrophoretic mobility is proposed as one of the factors determining bacterial attachment. The high sensitivity of ellipsometry and its usefulness for the determination of growth of interfacial bacterial films is demonstrated. PMID:9758786

  19. Electrophoretic deposition of ultrasonicated and functionalized nanomaterials for multifunctional composites

    NASA Astrophysics Data System (ADS)

    An, Qi

    Recent advances in the synthesis and characterization of nanostructured composite materials have enabled a broad range of opportunities for engineering the properties of polymer-matrix materials. Carbon nanotubes (CNTs) are known to have exceptional mechanical, electrical and thermal properties. Because of their small size, CNTs can occupy regions between traditional micro-scale reinforcements and create a hierarchical micro/nano structure spanning several orders of magnitude. Since CNTs possess critical reinforcement dimensions below 100 nm, new opportunities exist for tailoring the fiber/matrix interphase regions and ultimately the mechanical and electrical performance of advanced fiber-composites with minimal impact on the fiber-dominated properties. This growing interest in nanoscale hybridization with conventional fiber reinforcement has highlighted the need to develop new processing techniques for successful CNT integration. In this work, a novel and industrially scalable approach for producing multi-scale hybrid carbon nanotube/fiber composites using an electrophoretic deposition (EPD) technique has been studied as an alternative to in situ chemical vapor deposition growth (CVD). EPD is a widely used industrial coating process employed in areas ranging from automotive to electronics production. The method has a number of benefits which include low energy use and the ability to homogenously coat complex shapes with well adhered films of controlled thickness and density. A stable aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) was produced using a novel ozonolysis and ultrasonication (USO) technique that results in dispersion and functionalization in a single step. Networks of CNTs span between adjacent fibers and the resulting composites exhibit significant increases in electrical conductivity and considerable improvements in the interlaminar shear strength and fracture toughness. In order to better understand the underlying mechanisms behind the

  20. Interfacial development of electrophoretically deposited graphene oxide films on Al alloys

    DOE PAGES

    Jin, Sumin; Dickerson, James H.; Pham, Viet Hung; ...

    2015-07-28

    Adhesion between film and substrate is critical for electronic device and coating applications. Interfacial development between electrophoretically deposited graphene oxide films on Al 1100 and Al 5052 alloys were investigated using FT-IR and XPS depth profiling techniques. Obtained results suggest metal ion permeation from the substrates into deposited graphene oxide films. The interface between the films and the substrates were primarily composed of Al-O-C bonds from oxygenated defects on graphene oxide plane rather than expected Al-C formation. Films heat treated at 150 °C had change in microstructure and peak shifts in XPS spectra suggesting change in chemical structure of bondsmore » between the films and the substrates.« less

  1. Modeling the electrophoretic separation of short biological molecules in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Fayad, Ghassan; Hadjiconstantinou, Nicolas

    2010-11-01

    Via comparisons with Brownian Dynamics simulations of the worm-like-chain and rigid-rod models, and the experimental results of Fu et al. [Phys. Rev. Lett., 97, 018103 (2006)], we demonstrate that, for the purposes of low-to-medium field electrophoretic separation in periodic nanofilter arrays, sufficiently short biomolecules can be modeled as point particles, with their orientational degrees of freedom accounted for using partition coefficients. This observation is used in the present work to build a particularly simple and efficient Brownian Dynamics simulation method. Particular attention is paid to the model's ability to quantitatively capture experimental results using realistic values of all physical parameters. A variance-reduction method is developed for efficiently simulating arbitrarily small forcing electric fields.

  2. Unesterified plant sterols and stanols do not affect LDL electrophoretic characteristics in hypercholesterolemic subjects.

    PubMed

    Charest, Amélie; Desroches, Sophie; Vanstone, Catherine A; Jones, Peter J H; Lamarche, Benoît

    2004-03-01

    The extent to which sterols and stanols modulate LDL particle size is unknown. We examined the effects of supplementation with unesterified plant sterols and stanols on several LDL electrophoretic characteristics. Healthy hypercholesterolemic subjects (n = 14) consumed each of four experimental diets contained plant sterols (S), plant stanols (SN), a 50:50 mixture of sterols and stanols (SSN), or cornstarch (control) in a randomized crossover design. The butter component of the diet was blended with unesterified sterols and stanols at a dose of 1.8 g/d. The LDL particles were characterized by polyacrylamide gradient gel electrophoresis of whole plasma. LDL cholesterol (LDL-C) concentrations decreased by 8.8, 13.6, and 13.1% in the S, SN, and SSN groups, respectively (P < 0.01) with a significant increase of 4.3% in the control group. None of the treatments with sterols and stanols induced significant changes in LDL peak particle diameter or in the cholesterol levels of the small LDL subfraction (<25.5 nm). The reduction in plasma LDL-C levels with SN consumption was due mainly to a decrease (P < 0.05) in the concentration of cholesterol in the large subfraction (>26.0 nm). The significant reduction in plasma LDL-C concentrations by sterol and stanol consumption in subjects was not paralleled by any beneficial changes in LDL electrophoretic characteristics.

  3. Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Debasish; Basu, Rajendra N., E-mail: rnbasu@cgcri.res.in

    2013-09-01

    Graphical abstract: - Highlights: • Stable suspension of yttria stabilized zirconia (YSZ) obtained in isopropanol medium. • Suspension chemistry and process parameters for electrophoretic deposition optimized. • Deposited film quality changed with iodine and water (dispersants) concentration. • Dense YSZ film (∼5 μm) fabricated onto non-conducting porous NiO-YSZ anode substrate. - Abstract: Suspensions of 8 mol% yttria stabilized zirconia (YSZ) particulates in isopropanol medium are prepared using acetylacetone, iodine and water as dispersants. The effect of dispersants concentration on suspension stability, particle size distribution, electrical conductivity and pH of the suspensions are studied in detail to optimize the suspension chemistry.more » Electrophoretic deposition (EPD) has been conducted to produce thin and dense YSZ electrolyte films. Deposition kinetics have been studied in depth and good quality films on conducting substrate are obtained at an applied voltage of 15 V for 3 min. YSZ films are also fabricated on non-conducting NiO-YSZ anode substrate using a steel plate on the reverse side of the substrate. Upon co-firing at 1400 °C for 6 h a dense YSZ film of thickness ∼5 μm is obtained. Such a half cell (anode + electrolyte) can be used to fabricate a solid oxide fuel cell on applying a suitable cathode layer.« less

  4. Local electrophoretic deposition using a nanopipette for micropillar fabrication

    NASA Astrophysics Data System (ADS)

    Iwata, Futoshi; Metoki, Junya

    2017-12-01

    A novel and simple technique was developed for the fabrication of micropillars using a nanopipette that is a tapered glass capillary with a micrometer-sized aperture at the tip. The nanopipette was filled with a colloidal solution that included metal nanoparticles. Its tip was put in contact with a substrate, and the substrate was moved downward for continuous deposition of the metal colloidal solution to form micropillars. To improve fabrication reproducibility, the amount of Au colloidal solution deposited was controlled by a feedback loop that maintained a predefined constant current during electrophoretic deposition. The stiffness of the fabricated micropillars was evaluated by applying a loading force using a microcantilever under scanning electron microscopy. The Young’s modulus of the fabricated pillars was measured to be in the range of 7.7-14.8 GPa, depending on the fabrication parameters of the predefined current and fabrication speed.

  5. Distribution and mobility of exogenous copper as influenced by aging and components interactions in three Chinese soils.

    PubMed

    Shi, Hanzhi; Li, Qi; Chen, Wenli; Cai, Peng; Huang, Qiaoyun

    2018-04-01

    Copper contamination of soils is a global environmental problem. Soil components (organic matter, clay minerals, and microorganisms) and retention time can govern the adsorption, fixation, and distribution of copper. This study evaluated the interaction effects of soil components and aging on the distribution of exogenous copper. Three typical Chinese soils (Ultisol, Alfisol, and Histosol) were collected from Hunan, Henan, and Heilongjiang Provinces. Soils were incubated with rice straw (RS) and engineered bacteria (Pseudomonas putida X4/pIME) in the presence of exogenous copper for 12 months. Sequential extraction was employed to obtain the distribution of Cu species in soils, and the mobility factors of Cu were calculated. The relationships between soil properties and Cu fractions were analyzed with stepwise multiple linear regression. The results show that organic carbon plays a more important role in shaping the distribution of relatively mobile Cu, and iron oxides can be more critical in stabilizing Cu species in soils. Our results suggest that organic matter is the most important factor influencing copper partitioning in Ultisols, while iron oxides are more significant in Alfisols. The mobility of exogenous Cu in soils depends largely on organic carbon, amorphous Fe, and aging. The introduction of both rice straw and rice straw + engineered bacteria enhanced the stabilization of Cu in all the three soils during aging process. The introduction of bacteria could reduce copper mobility, which was indicated by the lowest mobility factors of Cu for the treatment with bacteria in Black, Red, and Cinnamon soils at the first 4, 8, and 8 months, respectively. Different measures should be taken into account regarding the content of organic matter and iron oxides depending on soil types for the risk assessment and remediation of Cu-contaminated soils.

  6. THE EMERGENCE OF ANTIBODIES WITH EITHER IDENTICAL OR UNRELATED INDIVIDUAL ANTIGENIC SPECIFICITY DURING REPEATED IMMUNIZATIONS WITH STREPTOCOCCAL VACCINES

    PubMed Central

    Eichmann, Klaus; Braun, Dietmar G.; Feizi, Ten; Krause, Richard M.

    1970-01-01

    Electrophoretically monodisperse antibody components in rabbit antisera to the carbohydrates of the Groups A and C streptococci have been examined for their individual antigenic specificity. In these antibody components which were isolated by preparative electrophoresis, individual antigenic specificity was confined to the specific antibody and was absent in the nonantibody γ-globulin. Radioprecipitation experiments and the use of immune absorbent columns constructed from goat anti-antisera, which had been absorbed with fraction II, revealed that all the specific antibody in an electrophoretically monodisperse component was reactive with the homologous anti-antibody. Antibodies with either identical or distinct individual antigenic specificities may occur in the same rabbit with repeated immunizations. Antibodies with identical antigenic specificity had identical electrophoretic mobility, whereas antibodies with unrelated antigenic specificities had distinct electrophoretic mobilities. In the interval between immunizations, if antibody to the carbohydrate antigen was absent, there was no detectable antibody with individual antigenic specificity. PMID:4192569

  7. DNA electrophoresis in agarose gels: effects of field and gel concentration on the exponential dependence of reciprocal mobility on DNA length.

    PubMed

    Rill, Randolph L; Beheshti, Afshin; Van Winkle, David H

    2002-08-01

    Electrophoretic mobilities of DNA molecules ranging in length from 200 to 48 502 base pairs (bp) were measured in agarose gels with concentrations T = 0.5% to 1.3% at electric fields from E = 0.71 to 5.0 V/cm. This broad data set determines a range of conditions over which the new interpolation equation nu(L) = (beta+alpha(1+exp(-L/gamma))(-1) can be used to relate mobility to length with high accuracy. Mobility data were fit with chi(2) > 0.999 for all gel concentrations and fields ranging from 2.5 to 5 V/cm, and for lower fields at low gel concentrations. Analyses using so-called reptation plots (Rousseau, J., Drouin, G., Slater, G. W., Phys. Rev. Lett. 1997, 79, 1945-1948) indicate that this simple exponential relation is obeyed well when there is a smooth transition from the Ogston sieving regime to the reptation regime with increasing DNA length. Deviations from this equation occur when DNA migration is hindered, apparently by entropic-trapping, which is favored at low fields and high gel concentrations in the ranges examined.

  8. Methods for separating particles and/or nucleic acids using isotachophoresis

    DOEpatents

    Jung, Byoungsok; Ness, Kevin; Rose, Klint A.

    2016-03-15

    According to one embodiment, a method includes co-feeding fluids comprising a leading electrolyte, a trailing electrolyte, and at least one of DNA and RNA to a channel, and applying an electric field to the fluids in a direction perpendicular to an axis of the channel for inducing transverse isotachophoresis. In another embodiment, a method includes co-feeding fluids to a channel. The fluids include a leading electrolyte, a trailing electrolyte, biological objects, at least one of DNA and RNA, and a spacer electrolyte having an electrophoretic mobility that is between an electrophoretic mobility of at least some of the biological objects and an electrophoretic mobility of the at least one of the DNA and the RNA. The method also includes applying an electric field to the fluids in a direction perpendicular to an axis of the channel for inducing transverse isotachophoresis. Other methods of isotachophoresis are disclosed in addition to these.

  9. Kidney cell electrophoresis in space flight: Rationale, methods, results and flow cytometry applications

    NASA Technical Reports Server (NTRS)

    Todd, P.; Morrison, Dennis R.; Barlow, Grant H.; Lewis, Marian L.; Lanham, J. W.; Cleveland, C.; Williams, K.; Kunze, M. E.; Goolsby, C. L.

    1988-01-01

    Cultures of human embryonic kidney cells consistently contain an electrophoretically separable subpopulation of cells that produce high levels of urokinase and have an electrophoretic mobility about 85 percent as high as that of the most mobile human embryonic kidney cells. This subpopulation is rich in large epithelioid cells that have relatively little internal structure. When resolution and throughput are adequate, free fluid electrophoresis can be used to isolate a broad band of low mobility cells which also produces high levels of plasminogen activators (PAs). In the course of performing this, it was discovered that all electrophoretic subpopulations of cultured human embryonic kidney cells produce some PAs and that separate subpopulations produce high quantities of different types of PA's. This information and the development of sensitive assays for this project have provided new insights into cell secretion mechanisms related to fibrinolysis. These advances would probably not have been made without the NASA program to explore fundamental questions of free fluid electrophoresis in space.

  10. Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals.

    PubMed Central

    Collins, Y E; Stotzky, G

    1992-01-01

    The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength (mu) of 3 x 10(-4); montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 (the pH at which charge reversal occurred differed with the metal) and then, at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a mu of greater than 3 x 10(-4), whereas there was no reversal in solutions with a mu of less than 3 x 10(-4). The clays became net positively charged when the mu of Cu was greater than 3 x 10(-4) and that of Ni was greater than 1.5 x 10(-4). The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (mu = 3 x 10(-4)). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measure the electrophoretic mobility did not affect their viability. The specific adsorption on the cells and clays of the hydrolyzed species of some of the heavy metals that formed at higher p

  11. Electrophoretic analysis of cyanide depletion by Pseudomonas alcaligenes.

    PubMed

    Zaugg, S E; Davidson, R A; Walker, J C; Walker, E B

    1997-02-01

    Bacterial-facilitated depletion of cyanide is under development for remediation of heap leach operations in the gold mining industry. Capillary electrophoresis was found to be a powerful tool for quantifying cyanide depletion. Changes in cyanide concentration in aqueous suspensions of Pseudomonas alcaligenes bacteria and cyanide at elevated pH were easily monitored by capillary electrophoresis. The resulting data can be used to study rates of cyanide depletion by this strain of bacteria. Concentrations of these bacteria at 10(5) cells/mL were found to reduce cyanide from 100 ppm to less than 8 ppm in four days. In addition, other ions of interest in cyanide metabolism, such as formate, can be simultaneously analyzed. Direct UV detection of cyanide at 192 nm further simplifies the analytical method for these ions.

  12. Continuous electrophoretic purification of individual analytes from multicomponent mixtures.

    PubMed

    McLaren, David G; Chen, David D Y

    2004-04-15

    Individual analytes can be isolated from multicomponent mixtures and collected in the outlet vial by carrying out electrophoretic purification through a capillary column. Desired analytes are allowed to migrate continuously through the column under the electric field while undesired analytes are confined to the inlet vial by application of a hydrodynamic counter pressure. Using pressure ramping and buffer replenishment techniques, 18% of the total amount present in a bulk sample can be purified when the resolution to the adjacent peak is approximately 3. With a higher resolution, the yield could be further improved. Additionally, by periodically introducing fresh buffer into the sample, changes in pH and conductivity can be mediated, allowing higher purity (>or=99.5%) to be preserved in the collected fractions. With an additional reversed cycle of flow counterbalanced capillary electrophoresis, any individual component in a sample mixture can be purified providing it can be separated in an electrophoresis system.

  13. Formation of diamond nanoparticle thin films by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Goto, Yosuke; Ohishi, Fujio; Tanaka, Kuniaki; Usui, Hiroaki

    2016-03-01

    Thin films of diamond nanoparticles were prepared by electrophoretic deposition (EPD) using 0.5 wt % dispersions in water, ethanol, and 2-propanol. The film growth rate increased with increasing voltage applied to the electrodes. However, an excessive increase in voltage caused the degradation of film morphology. The optimum voltage was 4 V with an electrode separation of 5 mm. The film growth rate was higher in organic solvents than in water. The deposited film had a smooth surface with an average surface roughness comparable to the size of primary particles of the source material. It is notable that the EPD films had a considerably higher physical stability than spin-coated and cast films. The stability was further improved by thermally annealing the films. IR analysis revealed that the diamond nanoparticles have carboxy and amino groups on their surfaces. It is considered that the stability of the EPD films originate from a chemical reaction between these functional groups.

  14. Method for in-situ calibration of electrophoretic analysis systems

    DOEpatents

    Liu, Changsheng; Zhao, Hequan

    2005-05-08

    An electrophoretic system having a plurality of separation lanes is provided with an automatic calibration feature in which each lane is separately calibrated. For each lane, the calibration coefficients map a spectrum of received channel intensities onto values reflective of the relative likelihood of each of a plurality of dyes being present. Individual peaks, reflective of the influence of a single dye, are isolated from among the various sets of detected light intensity spectra, and these can be used to both detect the number of dye components present, and also to establish exemplary vectors for the calibration coefficients which may then be clustered and further processed to arrive at a calibration matrix for the system. The system of the present invention thus permits one to use different dye sets to tag DNA nucleotides in samples which migrate in separate lanes, and also allows for in-situ calibration with new, previously unused dye sets.

  15. Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, P.; Nicholson, P.S.

    1996-08-01

    The mechanisms of electrophoretic deposition (EPD) are discussed and their shortcomings identified. The kinetics of the processes involved are analyzed for constant-current and constant-voltage conditions. A method of determining the Hamaker constant of suspended particles is developed by modeling the relationship between the particle interaction energy and the suspension stability. A three-probe dc technique is used to map the voltage profile around the depositing electrode, and the results are used to explain discrepancies between the calculated and experimentally observed voltage drops during deposition. A mechanism of deposition is proposed based on DLVO theory and particle double-layer distortion/thinning on application ofmore » a dc field to the suspension. Kinetic equations are developed for constant-current and constant-voltage EPD using mass balance conditions; these are verified by experiments. After the phenomenon is introduced and discussed, a critique of the application of EPD to the synthesis of ceramic shapes and coatings is given.« less

  16. Characterization of Integrons and Sulfonamide Resistance Genes among Bacteria from Drinking Water Distribution Systems in Southwestern Nigeria.

    PubMed

    Adesoji, Ayodele T; Ogunjobi, Adeniyi A; Olatoye, Isaac O

    2017-01-01

    The emergence of antibiotic resistance among pathogenic bacteria in clinical and environmental settings is a global problem. Many antibiotic resistance genes are located on mobile genetic elements such as plasmids and integrons, enabling their transfer among a variety of bacterial species. Water distribution systems may be reservoirs for the spread of antibiotic resistance. Bacteria isolated from raw, treated, and municipal tap water samples from selected water distribution systems in south-western Nigeria were investigated using the point inoculation method with seeded antibiotics, PCR amplification, and sequencing for the determination of bacterial resistance profiles and class 1/2 integrase genes and gene cassettes, respectively. sul1,sul2, and sul3 were detected in 21.6, 27.8, and 0% of the isolates, respectively (n = 162). Class 1 and class 2 integrons were detected in 21.42 and 3.6% of the isolates, respectively (n = 168). Genes encoding resistance to aminoglycosides (aadA2, aadA1, and aadB), trimethoprim (dfrA15, dfr7, and dfrA1), and sulfonamide (sul1) were detected among bacteria with class 1 integrons, while genes that encodes resistance to strepthothricin (sat2) and trimethoprim (dfrA15) were detected among bacteria with class 2 integrons. Bacteria from these water samples are a potential reservoir of multidrug-resistant traits including sul genes and mobile resistance elements, i.e. the integrase gene. © 2016 S. Karger AG, Basel.

  17. Differentiation among isolates of prunus necrotic ringspot virus by transcript conformation polymorphism.

    PubMed

    Rosner, A; Maslenin, L; Spiegel, S

    1998-09-01

    A method based on differences in electrophoretic mobility of RNA transcripts made from polymerase chain reaction (PCR) products was used for differentiation among virus isolates. A T7 RNA polymerase promoter was attached to amplified prunus necrotic ringspot virus (PNRSV) sequences by PCR. The PCR products then served as a template for transcription. Single-stranded transcripts originated from different PNRSV isolates varied in electrophoretic mobility in polyacrylamide gels, presumably because of transcript conformation polymorphism (TCP). This procedure was applied for the differentiation of PNRSV isolates.

  18. Fluid Delivery System For Capillary Electrophoretic Applications.

    DOEpatents

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  19. Diverse manganese(II)-oxidizing bacteria are prevalent in drinking water systems.

    PubMed

    Marcus, Daniel N; Pinto, Ameet; Anantharaman, Karthik; Ruberg, Steven A; Kramer, Eva L; Raskin, Lutgarde; Dick, Gregory J

    2017-04-01

    Manganese (Mn) oxides are highly reactive minerals that influence the speciation, mobility, bioavailability and toxicity of a wide variety of organic and inorganic compounds. Although Mn(II)-oxidizing bacteria are known to catalyze the formation of Mn oxides, little is known about the organisms responsible for Mn oxidation in situ, especially in engineered environments. Mn(II)-oxidizing bacteria are important in drinking water systems, including in biofiltration and water distribution systems. Here, we used cultivation dependent and independent approaches to investigate Mn(II)-oxidizing bacteria in drinking water sources, a treatment plant and associated distribution system. We isolated 29 strains of Mn(II)-oxidizing bacteria and found that highly similar 16S rRNA gene sequences were present in all culture-independent datasets and dominant in the studied drinking water treatment plant. These results highlight a potentially important role for Mn(II)-oxidizing bacteria in drinking water systems, where biogenic Mn oxides may affect water quality in terms of aesthetic appearance, speciation of metals and oxidation of organic and inorganic compounds. Deciphering the ecology of these organisms and the factors that regulate their Mn(II)-oxidizing activity could yield important insights into how microbial communities influence the quality of drinking water. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Time-dependent electrophoresis of a dielectric spherical particle embedded in Brinkman medium

    NASA Astrophysics Data System (ADS)

    Saad, E. I.; Faltas, M. S.

    2018-04-01

    An expression for electrophoretic apparent velocity slip in the time-dependent flow of an electrolyte solution saturated in a charged porous medium within an electric double layer adjacent to a dielectric plate under the influence of a tangential uniform electric field is derived. The velocity slip is used as a boundary condition to solve the electrophoretic motion of an impermeable dielectric spherical particle embedded in an electrolyte solution saturated in porous medium under the unsteady Darcy-Brinkman model. Throughout the system, a uniform electric field is applied and maintains with constant strength. Two cases are considered, when the electric double layer enclosing the particle is thin, but finite and when of a particle with a thick double layer. Expressions for the electrophoretic mobility of the particle as functions of the relevant parameters are found. Our results indicate that the time scale for the growth of mobility is significant and small for high permeability. Generally, the effect of the relaxation time for starting electrophoresis is negligible, irrespective of the thickness of the double layer and permeability of the medium. The effects of the elapsed time, permeability, mass density and Debye length parameters on the fluid velocity, the electrophoretic mobility and the acceleration are shown graphically.

  1. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.

    PubMed

    Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong

    2017-01-01

    Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.

    PubMed

    Foley, Joe P; Blackney, Donna M; Ennis, Erin J

    2017-11-10

    The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum

  3. Fabrication of (K0.5Na0.5)(Nb0.7Ta0.3)O3 thick films by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Vineetha, P.; Saravanan, K. Venkata

    2018-05-01

    (K0.5Na0.5)(Nb0.7Ta0.3)O3 (KNNT) thick films were prepared by electrophoretic deposition method on copper plates (substrates). Prior to the deposition, stable suspensions of KNNT powder were prepared in isopropyl alcohol medium with and without adding triethanolamine (TEA) as dispersant. The optical transmittance spectra with time for both the suspensions were recorded and compared. Suspensions with dispersant has shown low transmittance, which indicate that the particles were dispersed very well in isopropyl alcohol. Fourier Transform Infrared (FTIR) spectroscopy was used to analyze the adsorption of TEA on KNNT particles. Suspension with dispersant was used for electrophoretic deposition. The depositions were carried out at various d.c voltages, keeping the deposition duration and inter electrode distance constant. X-Ray diffraction was used for the phase analysis of the films.

  4. An RNA electrophoretic mobility shift and mutational analysis of rnp-4f 5′-UTR intron splicing regulatory proteins in Drosophila reveals a novel new role for a dADAR protein isoform

    PubMed Central

    Lakshmi, G. Girija; Ghosh, Sushmita; Jones, Gabriel P.; Parikh, Roshni; Rawlins, Bridgette A.; Vaughn, Jack C.

    2014-01-01

    Alternative splicing greatly enhances the diversity of proteins encoded by eukaryotic genomes, and is also important in gene expression control. In contrast to the great depth of knowledge as to molecular mechanisms in the splicing pathway itself, relatively little is known about the regulatory events behind this process. The 5′-UTR and 3′-UTR in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation, and nearly 4,000 of the roughly 14,000 protein coding genes in Drosophila contain introns of unknown functional significance in their 5′-UTR. Here we report the results of an RNA electrophoretic mobility shift analysis of Drosophila rnp-4f 5′-UTR intron 0 splicing regulatory proteins. The pre-mRNA potential regulatory element consists of an evolutionarily-conserved 177-nt stem-loop arising from pairing of intron 0 with part of adjacent exon 2. Incubation of in vitro transcribed probe with embryo protein extract is shown to result in two shifted RNA-protein bands, and protein extract from a dADAR null mutant fly line results in only one shifted band. A mutated stem-loop in which the conserved exon 2 primary sequence is changed but secondary structure maintained by introducing compensatory base changes results in diminished band shifts. To test the hypothesis that dADAR plays a role in intron splicing regulation in vivo, levels of unspliced rnp-4f mRNA in dADAR mutant were compared to wild-type via real-time qRT-PCR. The results show that during embryogenesis unspliced rnp-4f mRNA levels fall by up to 85% in the mutant, in support of the hypothesis. Taken together, these results demonstrate a novel role for dADAR protein in rnp-4f 5′-UTR alternative intron splicing regulation which is consistent with a previously proposed model. PMID:23026215

  5. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution.

    PubMed

    Drewniak, Lukasz; Styczek, Aleksandra; Majder-Lopatka, Malgorzata; Sklodowska, Aleksandra

    2008-12-01

    The aim of the present study was to find out if bacteria present in ancient gold mine could transform immobilized arsenic into its mobile form and increase its dissemination in the environment. Twenty-two arsenic-hypertolerant cultivable bacterial strains were isolated. No chemolithoautotrophs, which could use arsenite as an electron donor as well as arsenate as an electron acceptor, were identified. Five isolates exhibited hypertolerance to arsenic: up to 500mM of arsenate. A correlation between the presence of siderophores and high resistance to arsenic was found. The results of this study show that detoxification processes based on arsenate reductase activity might be significant in dissemination of arsenic pollution. It was concluded that the activity of the described heterotrophic bacteria contributes to the mobilization of arsenic in the more toxic As(III) form and a new mechanism of arsenic mobilization from a scorodite was proposed.

  6. Methods of electrophoretic deposition for functionally graded porous nanostructures and systems thereof

    DOEpatents

    Worsley, Marcus A; Baumann, Theodore F; Satcher, Joe H; Olson, Tammy Y; Kuntz, Joshua D; Rose, Klint A

    2015-03-03

    In one embodiment, an aerogel includes a layer of shaped particles having a particle packing density gradient in a thickness direction of the layer, wherein the shaped particles are characterized by being formed in an electrophoretic deposition (EPD) process using an impurity. In another embodiment, a method for forming a functionally graded porous nanostructure includes adding particles of an impurity and a solution to an EPD chamber, applying a voltage difference across the two electrodes of the EPD chamber to create an electric field in the EPD chamber, and depositing the material onto surfaces of the particles of the impurity to form shaped particles of the material. Other functionally graded materials and methods are described according to more embodiments.

  7. Electrophoretic-like gating used to control metal-insulator transitions in electronically phase separated manganite wires.

    PubMed

    Guo, Hangwen; Noh, Joo H; Dong, Shuai; Rack, Philip D; Gai, Zheng; Xu, Xiaoshan; Dagotto, Elbio; Shen, Jian; Ward, T Zac

    2013-08-14

    Electronically phase separated manganite wires are found to exhibit controllable metal-insulator transitions under local electric fields. The switching characteristics are shown to be fully reversible, polarity independent, and highly resistant to thermal breakdown caused by repeated cycling. It is further demonstrated that multiple discrete resistive states can be accessed in a single wire. The results conform to a phenomenological model in which the inherent nanoscale insulating and metallic domains are rearranged through electrophoretic-like processes to open and close percolation channels.

  8. Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Orlye, Fanny; Reiller, Pascal E.

    2014-02-15

    The physicochemical properties of three different humic substances (HS) are probed using capillary zone electrophoresis in alkaline carbonate buffers, pH 10. Special attention is drawn to the impact of the electrolyte ionic strength and counter-ion nature, chosen within the alkali-metal series, on HS electrophoretic mobility. Taylor-Aris dispersion analysis provides insights into the hydrodynamic radius (R-H) distributions of HS. The smallest characterized entities are of nano-metric dimensions, showing neither ionic strength- nor alkali-metal-induced aggregation. These results are compared with the entities evidenced in dynamic light scattering measurements, the size of which is two order of magnitude higher, ca. 100 nm. Themore » extended Onsager model provides a reasonable description of measured electrophoretic mobilities in the ionic strength range 1-50 mM, thus allowing the estimation of limiting mobilities and ionic charge numbers for the different HS samples. An unexpected HS electrophoretic mobility increase (in absolute value) is observed in the order Li{sup +} ≤ Na{sup +} ≤ K{sup +} ≤ Cs{sup +} and discussed either in terms of retarding forces or in terms of ion-ion interactions. (authors)« less

  9. Electrophoretically deposited reduced graphene oxide platform for food toxin detection

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Kumar, Vinod; Ali, Md Azahar; Solanki, Pratima R.; Srivastava, Anchal; Sumana, Gajjala; Saxena, Preeti Suman; Joshi, Amish G.; Malhotra, B. D.

    2013-03-01

    Reduced graphene oxide (RGO) due to its excellent electrochemical properties and large surface area, has recently aroused much interest for electrochemical biosensing application. Here, the chemically active RGO has been synthesized and deposited onto an indium tin oxide (ITO) coated glass substrate by the electrophoretic deposition technique. This novel platform has been utilized for covalent attachment of the monoclonal antibodies of aflatoxin B1 (anti-AFB1) for food toxin (AFB1) detection. The electron microscopy, X-ray diffraction, and UV-visible studies reveal successful synthesis of reduced graphene oxide while the XPS and FTIR studies suggest its carboxylic functionalized nature. The electrochemical sensing results of the anti-AFB1/RGO/ITO based immunoelectrode obtained as a function of aflatoxin concentration show high sensitivity (68 μA ng-1 mL cm-2) and improved detection limit (0.12 ng mL-1). The association constant (ka) for antigen-antibody interaction obtained as 5 × 10-4 ng mL-1 indicates high affinity of antibodies toward the antigen (AFB1).Reduced graphene oxide (RGO) due to its excellent electrochemical properties and large surface area, has recently aroused much interest for electrochemical biosensing application. Here, the chemically active RGO has been synthesized and deposited onto an indium tin oxide (ITO) coated glass substrate by the electrophoretic deposition technique. This novel platform has been utilized for covalent attachment of the monoclonal antibodies of aflatoxin B1 (anti-AFB1) for food toxin (AFB1) detection. The electron microscopy, X-ray diffraction, and UV-visible studies reveal successful synthesis of reduced graphene oxide while the XPS and FTIR studies suggest its carboxylic functionalized nature. The electrochemical sensing results of the anti-AFB1/RGO/ITO based immunoelectrode obtained as a function of aflatoxin concentration show high sensitivity (68 μA ng-1 mL cm-2) and improved detection limit (0.12 ng mL-1). The

  10. Isoenzymes of superoxide dismutase in nodules of Phaseolus vulgaris L. , Pisum sativum L. , and Vigna unguiculata (L. ) Walp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becana, M.; Paris, F.J.; Sandalio, L.M.

    1989-08-01

    The activity and isozymic composition of superoxide dismutase were determined in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.) Walp. A Mn-SOD was present in Rhizobium and two in Bradyrhizobium and bacteroids. Nodule mitochondria from all three legume species had a single Mn-SOD with similar relative mobility, whereas the cytosol contained several CuZn-SODs: two in Phaseolus and Pisum, and four in Vigna. In the cytoplasm of V. unguiculata nodules, a Fe-containing SOD was also present, with an electrophoretic mobility between those of CuZn- and Mn-SODs, and an estimated molecular weight of 57,000. Total SOD activity ofmore » the soluble fraction of host cells, expressed on a nodule fresh weight basis, exceeded markedly that of bacteroids. Likewise, specific SOD activities of free-living bacteria were superior or equal to those of their symbiotic forms. Soluble extracts of bacteria and bacteroids did not show peroxidase activity, but the nodule cell cytoplasm contained diverse peroxidase isozymes which were readily distinguishable from leghemoglobin components by electrophoresis. Data indicated that peroxidases and leghemoglobins did not significantly interfere with SOD localization on gels. Treatment with chloroform-ethanol scarcely affected the isozymic pattern of SODs and peroxidases, and had limited success in the removal of leghemoglobin.« less

  11. Electrophoretic studies of polygalacturonate oligomers and their interactions with metal ions.

    PubMed

    Wiedmer, S K; Cassely, A; Hong, M; Novotny, M V; Riekkola, M L

    2000-09-01

    Polygalacturonic acid, a linear homopolysaccharide, was investigated by capillary electrophoresis (CE) using linear polyacrylamide-coated capillaries and laser-induced fluorescence (LIF) detection. A successful separation of its fluorescently labeled oligomers was achieved through sieving in polyacrylamide entangled matrices. The reaction conditions for the derivatization of polygalacturonic acid were optimized. In studying the interactions between polygalacturonic acid and various metal ions, the end-label, free-solution electrophoretic (ELFSE) technique, developed earlier in our laboratory (Sudor, J., Novotny, M. V., Anal. Chem. 1995, 67, 4205-4209) was found preferable to the sieving method. ELFSE is fast and convenient in that no polymer solutions are needed for the separation. The investigation showed that for the moderately large oligomers, the strongest binding occurred with calcium and cadmium ions, while the smallest interaction was observed with magnesium ions.

  12. Importance of pH-regulated charge density on the electrophoresis of soft particles

    NASA Astrophysics Data System (ADS)

    Gopmandal, Partha P.; Ohshima, H.

    2017-02-01

    The present study deals with the electrophoresis of spherical soft particles consisting of an ion and liquid-penetrable but liquid-flow-impenetrable inner core surrounded by an ion and fluid-penetrable polyelectrolyte layer. The inner core is considered to be dielectric and bearing basic functional group coated with polyelectrolyte layer containing acidic functional group. An approximate expression for the electrophoretic mobility of such a particle is obtained under a low potential limit. The electrophoretic behaviour of the undertaken particle is investigated for a wide range of bulk pH values and electrolyte concentrations. Our study also indicates some remarkable features of the electrophoresis e.g., occurrence of zero mobility, mobility reversal etc.

  13. Apparent electric charge of protein molecules. Human thyroxine - binding proteins.

    PubMed

    Hocman, G; Sadlon, J

    1977-01-01

    1. By comparison of electrophoretic mobilities of two different charged particles under the same conditions the net elementary electrostatic charge of one particle could be calculated when the charge of the other is known. 2. The electrophoretic mobility of human thyroxine - binding globulin does not depend upon the concentration of Tris - HCl buffer in the range 0.05 to 0.20 molar. The value of this mobility is 0.078 and 0.083 cm2 vol(-1) hour(-1) at pH 7.0 and 8.6, respectively. 3. The net elementary electrostatic charge of the human thyroxine - binding globulin appears to be approximately 22 negative elementary electrostatic units in mild alkaline solutions.

  14. Selective staining of proteins with hydrophobic surface sites on a native electrophoretic gel.

    PubMed

    Bertsch, Martina; Kassner, Richard J

    2003-01-01

    Chemical proteomics aims to characterize all of the proteins in the proteome with respect to their function, which is associated with their interaction with other molecules. We propose the identification of a subproteomic library of expressed proteins whose native structures are typified by the presence of hydrophobic surface sites, which are often involved in interactions with small molecules, membrane lipids, and other proteins, pertaining to their functions. We demonstrate that soluble globular proteins with hydrophobic surface sites can be detected selectively by staining on an electrophoretic gel run under nondenaturing conditions. The application of these staining techniques may help elucidate new catalytic, transport, and regulatory functionalities in complex proteomic screenings.

  15. Thermally Dried Ink-Jet Process for 6,13-Bis(triisopropylsilylethynyl)-Pentacene for High Mobility and High Uniformity on a Large Area Substrate

    NASA Astrophysics Data System (ADS)

    Ryu, Gi Seong; Lee, Myung Won; Jeong, Seung Hyeon; Song, Chung Kun

    2012-05-01

    In this study we developed a simple ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene), which is known as a high-mobility soluble organic semiconductor, to achieve relatively high-mobility and high-uniformity performance for large-area applications. We analyzed the behavior of fluorescent particles in droplets and applied the results to determining a method of controlling the behavior of TIPS-pentacene molecules. The grain morphology of TIPS-pentacene varied depending on the temperature applied to the droplets during drying. We were able to obtain large and uniform grains at 46 °C without any “coffee stain”. The process was applied to a large-size organic thin-film transistor (OTFT) backplane for an electrophoretic display panel containing 192×150 pixels on a 6-in.-sized substrate. The average of mobilities of 36 OTFTs, which were taken from different locations of the backplane, was 0.44±0.08 cm2·V-1·s-1, with a small deviation of 20%, over a 6-in.-size area comprising 28,800 OTFTs. This process providing high mobility and high uniformity can be achieved by simply maintaining the whole area of the substrate at a specific temperature (46 °C in this case) during drying of the droplets.

  16. Thermally dried ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene for high mobility and high uniformity on a large area substrate

    USGS Publications Warehouse

    Ryu, Gi Seong; Lee, Myung Won; Jeong, Seung Hyeon; Song, Chung Kun

    2012-01-01

    In this study we developed a simple ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene), which is known as a high-mobility soluble organic semiconductor, to achieve relatively high-mobility and high-uniformity performance for large-area applications. We analyzed the behavior of fluorescent particles in droplets and applied the results to determining a method of controlling the behavior of TIPS-pentacene molecules. The grain morphology of TIPS-pentacene varied depending on the temperature applied to the droplets during drying. We were able to obtain large and uniform grains at 46 degrees C without any "coffee stain". The process was applied to a large-size organic thin-film transistor (OTFT) backplane for an electrophoretic display panel containing 192 x 150 pixels on a 6-in.-sized substrate. The average of mobilities of 36 OTFTs, which were taken from different locations of the backplane, was 0.44 +/- 0.08 cm2.V-1.s-1, with a small deviation of 20%, over a 6-in.-size area comprising 28,800 OTFTs. This process providing high mobility and high uniformity can be achieved by simply maintaining the whole area of the substrate at a specific temperature (46 degrees C in this case) during drying of the droplets.

  17. Glycosaminoglycan blotting on nitrocellulose membranes treated with cetylpyridinium chloride after agarose-gel electrophoretic separation.

    PubMed

    Maccari, Francesca; Volpi, Nicola

    2002-09-01

    We describe a method for blotting and immobilizing several nonsulfated and sulfated complex polysaccharides on membranes made hydrophilic and positively charged by a cationic detergent after their separation by conventional agarose gel electrophoresis. Nitrocellulose membranes were derivatized with the cationic detergent cetylpyridinium chloride (CPC) and mixtures of glycosaminoglycans (GAGs) were capillary-blotted after their separation in agarose gel electrophoresis in barium acetate/1,2-diaminopropane. Single purified species of variously sulfated polysaccharides were transferred onto the derivatized membranes after electrophoresis with an efficiency of 100% and stained with alcian blue (irreversible staining) and toluidine blue (reversible staining) permitting about 0.1 nug threshold of detection. Nonsulfated polyanions, hyaluronic acid, a fructose-containing polysaccharide with a chondroitin backbone purified from Escherichia coli U1-41, and its defructosylated product, were also electrophoretically separated and transferred onto membranes. The limit of detection for desulfated GAGs was about 0.1-0.5 nug after irreversible or reversible staining. GAG extracts from bovine, lung and aorta, and human aorta and urine were separated by agarose gel electrophoresis and blotted on CPC-treated nitrocellulose membranes. The polysaccharide composition of these extracts was determined. The membrane stained with toluidine blue (reversible staining) was destained and the same lanes used for immunological detection or other applications. Reversible staining was also applied to recover single species of polysaccharides after electrophoretic separation of mixtures of GAGs and their transfer onto membranes. Single bands were released from the membrane with an efficiency of 70-100% for further biochemical characterization.

  18. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  19. Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components.

    PubMed

    Huie, Carmen W; Di, Xin

    2004-12-05

    Lingzhi is the Chinese name given to the Ganoderma family of mushrooms, which was considered the most valuable medicine in ancient China and was believed to bring longevity, due to its mysterious power of healing the body and calming the mind. Today, Lingzhi is still widely revered as a valuable health supplement and herbal medicine worldwide, as studies (mostly conducted in China, Korea, Japan and the United States) into the medicinal and nutritional values of Lingzhi revealed that it does indeed contain certain bioactive ingredients (such as triterpenes and polysaccharides) that might be beneficial for the prevention and treatment of a variety of ailments, including important diseases such as hypertension, diabetes, hepatitis, cancers, and AIDS. As research into the biological activities of Lingzhi, as well as the quality assurance and quality control of Lingzhi products, require the isolation/purification of active ingredients from Lingzhi, followed by subsequent analytical and/or preparative separations, the present review summarizes the various chromatographic and electrophoretic methods (as well as sample pretreatment methods) typically employed to achieve such extraction/separation procedures.

  20. An improved driving waveform reference grayscale of electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yi, Zichuan; Peng, Bao; Zhou, Guofu

    2015-10-01

    Driving waveform is an important component for gray scale display on the electrophoretic display (EPD). In the traditional driving waveform, a white reference gray scale is formed before writing a new image. However, the reflectance value can not reach agreement in each gray scale transformation. In this paper, a new driving waveform, which has a short waiting time after the formation of reference gray scale, is proposed to improve the consistency of reference gray scale. Firstly, the property of the particles in the microcapsule is analyzed and the change of the EPD reflectance after the white reference gray scale formation is studied. Secondly, the reflectance change curve is fitted by using polynomial and the duration of the waiting time is determined. Thirdly, a set of the new driving waveform is designed by using the rule of DC balance and some real E-ink commercial EPDs are used to test the performance. Experimental results show that the effect of the new driving waveform has a better performance than traditional waveforms.

  1. Fabrication of Electrophoretic Display Driven by Membrane Switch Array

    NASA Astrophysics Data System (ADS)

    Senda, Kazuo; Usui, Hiroaki

    2010-04-01

    Electrophoretic devices (EPDs) and organic light-emitting diodes (OLEDs) have potential application in a large-area flexible displays, such as digital signage. For this purpose, a new backplane is capable of driving a large unit is required instead of thin-film transistors. In this paper we describe the fabrication of a membrane switch array suitable for driving large-scale flat-panel displays. An array of membrane switches was prepared using flexible printed circuit (FPC) technology of polyimide films, by combining low-temperature processes of lamination and copper electroplating methods. An array of 256 matrix switches with a pixel size of 7 mm2 was prepared to drive the EPD front panel. The switches were driven at a voltage of about 40 V and a frequency of 10 Hz. The operation characteristics agreed well with the result of the theoretical calculation. The calculation also suggested that driving voltage can be lowered by increasing pixel size. The contact resistance of the membrane switch was as low as 0.2 Ω, which implies the wide applicability of this device for driving a variety of elements.

  2. Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil

    Treesearch

    J.S. Norman; J.E. Barrett

    2014-01-01

    Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic...

  3. Capillary electrophoretic determination of main components of natural dyes with MS detection.

    PubMed

    Surowiec, Izabella; Pawelec, Katarzyna; Rezeli, Melinda; Kilar, Ferenc; Trojanowicz, Marek

    2008-07-01

    CE with UV-Vis and MS detections was investigated as a technique for detection of main components of selected natural dyes of plant and insect origin. The BGE giving the best separation of the investigated flavonoids and anthraquinoids, suitable for MS detection consisted of 40 mM ammonium acetate solution of pH 9.5 with 40% ACN. LODs obtained with MS detection were even one order of magnitude lower than the ones obtained with UV-Vis detection. Application of MS detection enabled determination of eleven dye compounds from three different chemical groups in 15 min. and proved to be more satisfactory than diode-array detection in the electrophoretic analysis of main classes of natural dyes both in terms of selectivity and sensitivity of analysis.

  4. Characterization of CNT-MnO{sub 2} nanocomposite by electrophoretic deposition as potential electrode for supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darari, Alfin, E-mail: alfindarari@st.fisika.undip.ac.id; Rismaningsih, Nurmanita; Ardiansah, Hafidh Rahman

    Energy crisis that occured in Indonesia suggests that energy supply could not offset the high rate request and needs an electric energy saving device which can save high voltage, safety, and unlimited lifetime. The weakness of batteries is durable but has a low power density while the capacitor has a high power density but it doesn’t durable. The renewal of this study is CNT-MnO{sub 2} thin film fabrication method using electrophoretic deposition. Electrophoretic deposition is a newest method to deposited CNT using power supply with cheap, and make a good result. The result of FTIR analysis showed that the bestmore » CNT-MnO{sub 2} composition is 75:25 and C-C bond is detected in fingerprint area. The result is electrode thin film homogen and characterized by X-ray diffraction (XRD) peaks 2θ=26,63° is characterization of graphite, and 2θ=43,97° is characterization of diamond Carbon type and measured by Scherrer formula results 52,3 nm material average size .EIS test results its capacitance about 7,86 F. from the data it can be concluded that CNT-MnO{sub 2} potential electrode very promising for further study and has a potential to be a high capacitance, and fast charge supercapacitor which can be applied for electronic devices, energy converter, even electric car.« less

  5. Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS₂ Nanoparticles.

    PubMed

    Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev; Tenne, Reshef

    2018-02-26

    Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS₂ (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end.

  6. Genetic information transfer promotes cooperation in bacteria

    PubMed Central

    Dimitriu, Tatiana; Lotton, Chantal; Bénard-Capelle, Julien; Misevic, Dusan; Brown, Sam P.; Lindner, Ariel B.; Taddei, François

    2014-01-01

    Many bacterial species are social, producing costly secreted “public good” molecules that enhance the growth of neighboring cells. The genes coding for these cooperative traits are often propagated via mobile genetic elements and can be virulence factors from a biomedical perspective. Here, we present an experimental framework that links genetic information exchange and the selection of cooperative traits. Using simulations and experiments based on a synthetic bacterial system to control public good secretion and plasmid conjugation, we demonstrate that horizontal gene transfer can favor cooperation. In a well-mixed environment, horizontal transfer brings a direct infectious advantage to any gene, regardless of its cooperation properties. However, in a structured population transfer selects specifically for cooperation by increasing the assortment among cooperative alleles. Conjugation allows cooperative alleles to overcome rarity thresholds and invade bacterial populations structured purely by stochastic dilution effects. Our results provide an explanation for the prevalence of cooperative genes on mobile elements, and suggest a previously unidentified benefit of horizontal gene transfer for bacteria. PMID:25024219

  7. Electrophoretic variation in low molecular weight lens crystallins from inbred strains of rats.

    PubMed

    Donner, M E; Skow, L C; Kunz, H W; Gill, T J

    1985-10-01

    Analysis of rat lens soluble proteins by analytical isoelectric focusing detected two inherited electrophoretic differences in low molecular weight (LM) crystallins from inbred strains of rats (Rattus norvegicus). The polymorphic lens crystallins were shown to be similar to a genetically variant LM crystallin, LEN-1, previously described in mice (Mus musculus) and encoded on chromosome 1, at a locus linked to Pep-3 (dipeptidase). Linkage analysis demonstrated that the rat crystallin locus was loosely linked to Pep-3 at a recombination distance of 38 +/- 4.5 U. These data suggest the conservation of a large chromosomal region during the evolution of Rodentia and support the hypothesis that the gamma-crystallins are evolving more rapidly than alpha- or beta-crystallins.

  8. Growth and dielectric properties of ZnO nanoparticles deposited by using electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Chung, Yoonsung; Park, Hyejin; Kim, Dong-Joo; Cho, Sung Baek; Yoon, Young Soo

    2015-05-01

    The deposition behavior of ZnO nanoparticles on metal plates and conductive fabrics was investigated using electrophoretic deposition (EPD). The deposition kinetics on both metal plates and fabrics were examined using the Hamaker equation. Fabric substrates give more deposited weight than flat substrates due to their rougher shape and higher surface area. The morphologies and the structures of the deposited ZnO layers showed uniform deposition without any preferred orientation on both substrates. The dielectric properties of the ZnO layers formed by using EPD showed values that were reduced, but comparable to those of bulk ZnO. This result suggests that EPD is a convenient method to deposit functional oxides on flexible substrates.

  9. Assessment of Carbon- and Metal-Based Nanoparticle DNA Damage with Microfluidic Electrophoretic Separation Technology.

    PubMed

    Schrand, Amanda M; Powell, Thomas; Robertson, Tiffany; Hussain, Saber M

    2015-02-01

    In this study, we examined the feasibility of extracting DNA from whole cell lysates exposed to nanoparticles using two different methodologies for evaluation of fragmentation with microfluidic electrophoretic separation. Human lung macrophages were exposed to five different carbon- and metal-based nanoparticles at two different time points (2 h, 24 h) and two different doses (5 µg/ml, 100 µg/ml). The primary difference in the banding patterns after 2 h of nanoparticle exposure is more DNA fragmentation at the higher NP concentration when examining cells exposed to nanoparticles of the same composition. However, higher doses of carbon and silver nanoparticles at both short and long dosing periods can contribute to erroneous or incomplete data with this technique. Also comparing DNA isolation methodologies, we recommend the centrifugation extraction technique, which provides more consistent banding patterns in the control samples compared to the spooling technique. Here we demonstrate that multi-walled carbon nanotubes, 15 nm silver nanoparticles and the positive control cadmium oxide cause similar DNA fragmentation at the short time point of 2 h with the centrifugation extraction technique. Therefore, the results of these studies contribute to elucidating the relationship between nanoparticle physicochemical properties and DNA fragmentation results while providing the pros and cons of altering the DNA isolation methodology. Overall, this technique provides a high throughput way to analyze subcellular alterations in DNA profiles of cells exposed to nanomaterials to aid in understanding the consequences of exposure and mechanistic effects. Future studies in microfluidic electrophoretic separation technologies should be investigated to determine the utility of protein or other assays applicable to cellular systems exposed to nanoparticles.

  10. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    PubMed

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use. Copyright © 2015. Published by Elsevier Ltd.

  11. A method for UV-bonding in the fabrication of glass electrophoretic microchips.

    PubMed

    Huang, Z; Sanders, J C; Dunsmor, C; Ahmadzadeh, H; Landers, J P

    2001-10-01

    This paper presents an approach for the development of methodologies amenable to simple and inexpensive microchip fabrication, potentially applicable to dissimilar materials bonding and chip integration. The method involves a UV-curable glue that can be used for glass microchip fabrication bonding at room temperature. This involves nothing more than fabrication of glue "guide channels" into the microchip architecture that upon exposure to the appropriate UV light source, bonds the etched plate and cover plate together. The microchip performance was verified by capillary zone electrophoresis (CZE) of small fluorescent molecules with no microchannel surface modification carried out, as well as with a DNA fragment separation following surface modification. The performance of these UV-bonded electrophoretic microchips indicates that this method may provide an alternative to high temperature bonding.

  12. Electrophoretically deposited multiwalled carbon nanotube based amperometric genosensor for E.coli detection

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Hema; Solanki, Shipra; Sumana, Gajjala

    2016-04-01

    This work reports on a sensitive and selective genosensor fabrication method for Escherichia coli (E.coli) detection. The functionalized multiwalled carbon nanotubes (MWCNT) synthesized via chemical vapour deposition have been deposited electrophoretically onto indium tin oxide coated glass surface and have been utilized as matrices for the covalent immobilization of E.coli specific probe oligonucleotide that was identified from the 16s rRNA coding region of the E.coli genome. This fabricated functionalized MWCNT based platform sought to provide improved fundamental characteristics to electrode interface in terms of electro-active surface area and diffusion coefficient. Electrochemical cyclic voltammetry revealed that this genosensor exhibits a linear response to complementary DNA in the concentration range of 10-7 to 10-12 M with a detection limit of 1×10-12 M.

  13. Assessment of the capillary zone electrophoretic behavior of proteins in the presence of electroosmotic modifiers: protein-polyamine interaction studied using a polyacrylamide-coated capillary.

    PubMed

    Kubo, K; Hattori, A

    2001-10-01

    The use of polyamines as electroosmotic modifiers has been shown to be effective in enhancing resolution of protein glycoforms in capillary zone electrophoresis (CZE) using a bare capillary tube. In this study, effectiveness was evaluated by using a polyacrylamide-coated capillary tube instead of a bare capillary tube. Electropherograms obtained in the presence of polyamines were inferior to those obtained in their absence with respect to resolution. Electrophoretic mobility of the proteins decreased and their peaks were broadened by polyamines bound to them. This unfavorable effect was dependent on both the species of polyamines and the pH values of the electrolyte buffer. The reduction of resolution caused by polyamines was in the following order: spermidine (SPD) approximately spermidine-tri-hydrochloride (SPD-HCI) > putrescine (PUT) > hexamethonium chloride (HMC). The observed effect can be ascribed to the formation of complexes between the proteins and the polyamines. In addition, for the bare capillary tube the complexes showed interaction with the inner surface, resulting in local suppression of electroosmosis and poor resolution. The high resolution obtained in the coated capillary tube was reduced in the presence of the polyamines. Thus, the use of the polyamines has a negative effect on the analysis of protein microheterogeneity as a result of protein-polyamine interaction.

  14. Monolithic integration of fine cylindrical glass microcapillaries on silicon for electrophoretic separation of biomolecules

    PubMed Central

    Cao, Zhen; Ren, Kangning; Wu, Hongkai; Yobas, Levent

    2012-01-01

    We demonstrate monolithic integration of fine cylindrical glass microcapillaries (diameter ∼1 μm) on silicon and evaluate their performance for electrophoretic separation of biomolecules. Such microcapillaries are achieved through thermal reflow of a glass layer on microstructured silicon whereby slender voids are moulded into cylindrical tubes. The process allows self-enclosed microcapillaries with a uniform profile. A simplified method is also described to integrate the microcapillaries with a sample-injection cross without the requirement of glass etching. The 10-mm-long microcapillaries sustain field intensities up to 90 kV/m and limit the temperature excursions due to Joule heating to a few degrees Celsius only. PMID:23874369

  15. Problems with multiple use of transfer buffer in protein electrophoretic transfer.

    PubMed

    Dorri, Yaser; Kurien, Biji T; Scofield, R Hal

    2010-04-01

    Two-dimensional gel electrophoresis (2DE) and SDS-PAGE are the two most useful methods in protein separation. Proteins separated by 2DE or SDS-PAGE are usually transferred to membranes using a variety of methods, such as electrophoretic transfer, heat-mediated transfer, or nonelectrophoretic transfer, for specific protein detection and/or analysis. In a recent study, Pettegrew et al. claim to reuse transfer buffer containing methanol for at least five times for transferring proteins from SDS-PAGE to polyvinylidene difluoride. They add 150-200 ml fresh transfer solution each time for extended use as a result of loss of transfer buffer. Finally, they test efficiency of each protein transfer by chemiluminescence detection. Here, we comment on this report, as we believe this method is not accurate and useful for protein analysis, and it can cause background binding as well as inaccurate protein analysis.

  16. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells.

    PubMed

    Song, Tian-Shun; Peng-Xiao; Wu, Xia-Yuan; Zhou, Charles C

    2013-07-01

    Sediment microbial fuel cells (SMFCs) could be used as power sources and one type of new technology for the removal of organic matters in sediments. In order to improve electrode materials and enhance their effect on the performance, we deposited multi-walled carbon nanotube (MWNT) on stainless steel net (SSN). Electrophoretic deposition technique as a method with low cost, process simplicity, and thickness control was used for this electrode modification and produced this novel SSN-MWNT electrode. The performances of SMFCs with SSN-MWNT as electrode were investigated. The results showed that the maximum power density of SMFC with SSN-MWNT cathode was 31.6 mW m(-2), which was 3.2 times that of SMFC with an uncoated stainless steel cathode. However, no significant increase in the maximum power density of SMFC with SSN-MWNT anode was detected. Further electrochemical analysis showed that when SSN-MWNT was used as the cathode, the cathodic electrochemical activity and oxygen reduction rate were significantly improved. This study demonstrates that the electrophoretic deposition of carbon nanotubes on conductive substrate can be applied for improving the performance of SMFC.

  17. A study of cell electrophoresis as a means of purifying growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Plank, Lindsay D.; Hymer, W. C.; Kunze, M. Elaine; Marks, Gary M.; Lanham, J. Wayne

    1983-01-01

    Growth hormone secreting cells of the rat anterior pituitary are heavily laden with granules of growth hormone and can be partialy purified on the basis of their resulting high density. Two methods of preparative cell electrophoresis were investigated as methods of enhancing the purification of growth hormone producing cells: density gradient electrophoresis and continuous flow electrophoresis. Both methods provided a two- to four-fold enrichment in growth hormone production per cell relative to that achieved by previous methods. Measurements of electrophoretic mobilities by two analytical methods, microscopic electrophoresis and laser-tracking electrophoresis, revealed very little distinction between unpurified anterior pituitary cell suspensions and somatotroph-enriched cell suspensions. Predictions calculated on the basis of analytical electrophoretic data are consistent with the hypothesis that sedimentation plays a significant role in both types of preparative electrophoresis and the electrophoretic mobility of the growth hormone secreting subpopulation of cells remains unknown.

  18. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    PubMed

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  19. Mechanism and kinetics of electrophoretic deposition of Al{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, P.; Nicholson, P.S.

    1996-06-01

    The four main electrophoretic deposition (EPD) mechanisms are discussed and their shortcomings pointed out. The Hamaker constant for Al{sub 2}O{sub 3} in ethanol suspension is determined by modelling the relationship between particle interaction energy and suspension stability. The Derjagun-Landau-Verwey-Overbeek (DLVO) interaction energy curve for Al{sub 2}O{sub 3} particles in ethanol suspension is calculated and the minimum deposition voltage determined. Three probe dc measurements were conducted to explain discrepancies between the calculated and experimentally-observed voltage. A mechanism proposed is based on the DLVO theory and particle-lyosphere destortion/thinning. Kinetic equations for EPD are developed for constant current and constant voltage deposition usingmore » mass balance conditions and verified by experimental data.« less

  20. Microbiological contamination of mobile phones of clinicians in intensive care units and neonatal care units in public hospitals in Kuwait.

    PubMed

    Heyba, Mohammed; Ismaiel, Mohammad; Alotaibi, Abdulrahman; Mahmoud, Mohamed; Baqer, Hussain; Safar, Ali; Al-Sweih, Noura; Al-Taiar, Abdullah

    2015-10-15

    The objective of this study was to explore the prevalence of microbiological contamination of mobile phones that belong to clinicians in intensive care units (ICUs), pediatric intensive care units (PICUs), and neonatal care units (NCUs) in all public secondary care hospitals in Kuwait. The study also aimed to describe mobile phones disinfection practices as well as factors associated with mobile phone contamination. This is a cross-sectional study that included all clinicians with mobile phones in ICUs, PICUs, and NCUs in all secondary care hospitals in Kuwait. Samples for culture were collected from mobile phones and transported for microbiological identification using standard laboratory methods. Self-administered questionnaire was used to gather data on mobile phones disinfection practices. Out of 213 mobile phones, 157 (73.7 %, 95 % CI [67.2-79.5 %]) were colonized. Coagulase-negative staphylococci followed by Micrococcus were predominantly isolated from the mobile phones; 62.9 % and 28.6 % of all mobile phones, respectively. Methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative bacteria were identified in 1.4 % and 7.0 % of the mobile phones, respectively. Sixty-eight clinicians (33.5 %) reported that they disinfected their mobile phones, with the majority disinfecting their mobile phones only when they get dirty. The only factor that was significantly associated with mobile phone contamination was whether a clinician has ever disinfected his/her mobile phone; adjusted odds ratio 2.42 (95 % CI [1.08-5.41], p-value = 0.031). The prevalence of mobile phone contamination is high in ICUs, PICUs, and NCUs in public secondary care hospitals in Kuwait. Although some of the isolated organisms can be considered non-pathogenic, various reports described their potential harm particularly among patients in ICU and NCU settings. Isolation of MRSA and Gram-negative bacteria from mobile phones of clinicians treating patients in high-risk healthcare

  1. Free-zone electrophoresis of animal cells. 1: Experiments on cell-cell interactions

    NASA Technical Reports Server (NTRS)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    The electrophoretically migrating zones wasa monitored. The absence of fluid flows in the direction of migration permits direct measurement of electrophoretic velocities of any material. Sedimentation is orthogonal to electrokinetic motion and the effects of particle-particle interaction on electrophoretic mobility is studied by free zone electrophoresis. Fixed erythrocytes at high concentrations, mixtures of fixed erythrocytes from different animal species, and mixtures of cultured human cells were studied in low ionic strength buffers. The electrophoretic velocity of fixed erythrocytes was not altered by increasing cell concentration or by the mixing of erythrocytes from different species. When zones containing cultured human glial cells and neuroblastoma cells are permitted to interact during electrophoresis, altered migration patterns occur. It is found that cell-cell interactions depends upon cell type.

  2. Potential of capillary zone electrophoresis for estimation of humate acid-base properties.

    PubMed

    Vanifatova, Natalia G; Zavarzina, Anna G; Spivakov, Boris Ya

    2008-03-07

    Capillary zone electrophoresis (CZE) has been applied for fractionation and characterization of soil-derived humic acids (HAs). Humic acids from soddy-podzolic (HA(s)) and chernozem (HA(ch)) soils were studied as well as hydrophobic high-molecular-weight (HMW) and hydrophilic low-molecular-weight (LMW) HA(s) fractions obtained by salting-out with ammonium sulfate at a saturation of 0-40% and >70%, respectively. The possibility of CZE partial fractionation of HAs has been demonstrated. The shape of "humic hump" was shown to depend on the pH of running electrolyte. Almost the whole peak overlapping occurred if alkaline solutions were used for fractionation, but the peak resolution was improved at pH 5-7. Under appropriate fractionation conditions (pH 7), at least three humic acid subfractions with different electrophoretic mobilities were distinguished in the electropherograms of initial HA and HA(s) fractions. Such a high peak resolution has never been achieved for humic acids before. The presence of three subfractions in the HA is in agreement with gel-filtration analysis and was confirmed by comparison of the electrophoretic behavior of HA(s) with those of its HMW (hydrophobic) and the LMW (hydrophilic) fractions. The potentiometric titration of HA and its fractions was performed and the pK(a) of the functional groups were calculated. An attempt was made for the first time to relate the variation of electrophoretic mobility values with acid-base properties of humic acids. It was shown that changes in the humate charge resulting from the variation of the ionization degree of its functional groups as a function of pH can be estimated on the basis of electrophoretic mobility values. Potential of CZE in estimation of HA isoelectric point was demonstrated. The pH value corresponding to the lowest absolute electrophoretic mobility value of about 20 x 10(-5) cm(2) V(-1) s(-1) can be used for approximate estimation of HA isoelectric point. The data were discussed and

  3. Electrophoretic coating of amphiphilic chitosan colloids on regulating cellular behaviour

    PubMed Central

    Wang, Yen-Jen; Lo, Teng-Yuan; Wu, Chieh-Hsi; Liu, Dean-Mo

    2013-01-01

    In this communication, we report a facile nanotopographical control over a stainless steel surface via an electrophoretic deposition of colloidal amphiphilic chitosan for preferential growth, proliferation or migration of vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs). Atomic force microscopy revealed that the colloidal surface exhibited a deposition time-dependent nanotopographical evolution, wherein two different nanotopographic textures indexed by ‘kurtosis’ (Rkur) value were easily designed, which were termed as ‘sharp’ (i.e. high peak-to-valley texture) surface and ‘flat’ (i.e. low peak-to-valley texture) surface. Cellular behaviour of VSMCs and HUVECs on both surfaces demonstrated topographically dependent morphogenesis, adherent responses and biochemical properties in comparison with bare stainless steel. The formation of a biofunctionalized surface upon a facile colloidal chitosan deposition envisions the potential application towards numerous biomedical devices, and this is especially promising for cardiovascular stents wherein a new surface with optimized texture can be designed and is expected to create an advantageous environment to stimulate HUVEC growth for improved healing performance. PMID:23804439

  4. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  5. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  6. Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS2 Nanoparticles

    PubMed Central

    Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev

    2018-01-01

    Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS2 (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end. PMID:29495394

  7. Polyacrylamide medium for the electrophoretic separation of biomolecules

    DOEpatents

    Madabhushi, Ramakrishna S.; Gammon, Stuart A.

    2003-11-11

    A polyacryalmide medium for the electrophoretic separation of biomolecules. The polyacryalmide medium comprises high molecular weight polyacrylamides (PAAm) having a viscosity average molecular weight (M.sub.v) of about 675-725 kDa were synthesized by conventional red-ox polymerization technique. Using this separation medium, capillary electrophoresis of BigDye DNA sequencing standard was performed. A single base resolution of .about.725 bases was achieved in .about.60 minute in a non-covalently coated capillary of 50 .mu.m i.d., 40 cm effective length, and a filed of 160 V/cm at 40.degree. C. The resolution achieved with this formulation to separate DNA under identical conditions is much superior (725 bases vs. 625 bases) and faster (60 min. vs. 75 min.) to the commercially available PAAm, such as supplied by Amersham. The formulation method employed here to synthesize PAAm is straight-forward, simple and does not require cumbersome methods such as emulsion polymerizaiton in order to achieve very high molecular weights. Also, the formulation here does not require separation of PAAm from the reaction mixture prior to reconstituting the polymer to a final concentration. Furthermore, the formulation here is prepared from a single average mol. wt. PAAm as opposed to the mixture of two different average mo. wt. PAAm previously required to achieve high resolution.

  8. Microchannel gel electrophoretic separation systems and methods for preparing and using

    DOEpatents

    Herr, Amy E; Singh, Anup K; Throckmorton, Daniel J

    2015-02-24

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  9. Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications.

    PubMed

    Baştan, Fatih E; Atiq Ur Rehman, Muhammad; Avcu, Yasemin Yıldıran; Avcu, Egemen; Üstel, Fatih; Boccaccini, Aldo R

    2018-05-03

    This study focuses on the optimization of electrophoretic deposition (EPD) and suspension parameters for producing PEEK-hydroxyapatite (HA) coatings with feasible microstructure, adhesion strength, and in-vitro bioactivity. Nanostructured hydroxyapatite (HA) micro-granules were incorporated with PEEK to form PEEK-hydroxyapatite composite coatings via EPD. After EPD, a heat-treatment at 375 °C was applied for densification of the coatings and for enhancing the adhesion between the coatings and the substrates. It was found that both adhesion strength and in-vitro bioactivity of the coatings were dependent on the PEEK and HA relative contents. Thus, increasing the amount of HA improved the bioactivity while decreased the adhesion strength of the coatings. Apatite-like layer formation was observed on coatings with high HA content after incubation for three days in simulated body fluid (SBF). Finally, a deposition mechanism was proposed for the EPD of the PEEK-hydroxyapatite composite system. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Chitosan reinforced apatite-wollastonite coating by electrophoretic deposition on titanium implants.

    PubMed

    Sharma, Smriti; Soni, Vivek P; Bellare, Jayesh R

    2009-07-01

    A novel bioactive porous apatite-wollastonite/chitosan composite coating was prepared by electrophoretic deposition. The influence of synthesis parameters like pH of suspension and current density was studied and optimized. X-ray diffraction confirmed crystalline phase of apatite-wollastonite in powder as well as composite coating with coat crystallinity of 65%. Scanning electron microscope showed that the porosity had interconnections with good homogeneity between the phases. The addition of chitosan increased the adhesive strength of the composite coating. Young's modulus of the coating was found to be 9.23 GPa. One of our key findings was sheet-like apatite growth unlike ball-like growth found in bioceramics. Role of chitosan was studied in apatite growth mechanism in simulated body fluid. In presence of chitosan, dense negatively charged surface with homogenous nucleation was the primary factor for sheet-like evolution of apatite layer. The results suggest that incorporation of chitosan with apatite-wollastonite in composite coating could provide excellent in vitro bioactivity with enhanced mechanical properties.

  11. Microchannel gel electrophoretic separation systems and methods for preparing and using

    DOEpatents

    Herr, Amy; Singh, Anup K; Throckmorton, Daniel J

    2013-09-03

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  12. [Stimuli sensitive changes in electrical surface properties of soft membranes: from a synthesized polymer to a biological system].

    PubMed

    Makino, K

    1997-01-01

    The electrical surface properties of biological cells have been studied, which provided us with the fundamental knowledge about the cell surface. The change in shape or biological functions of cells may affect the surface properties and can be detected by electrokinetic measurements. Biological cell surfaces are covered with polysaccharide chains, some are charged and some are not. Some polysaccharides produce a hydrogel matrixes under a proper condition. We thus consider it reasonable that cell surface is approximated by a hydrogel surface. Electrophoretic mobility measurements are useful for studying the surface properties of biological cells suspended as colloidal particles in an electrolyte solution. The electro-osmotic velocity measurements on the other hand are advantageous to the study of the surface properties of slab-shaped biological systems such as membranes. This work was started with a hydrogel, as a model material. As a hydrogel, poly(N-isopropylacrylamide) poly(NIPAAm), abbreviated as hereafter, was chosen, because this hydrogel changes its volume depending on temperature. The dependence of the electrophoretic mobility of latex particles covered with poly(NIPAAm) hydrogel layer or of the electro-osmotic mobility on poly(NIPAAm) plate upon temperature and ionic strength of the dispersing medium was well explained with an electrophoretic mobility formula for "soft particles" developed by Ohshima. The electrokinetic measurements and the explanation of data with an electrophoretic mobility formula for "soft particles" give us information about the surface charge density and the "softness" of soft surfaces. On the basis of the findings with hydrogels, we have discussed the relationship between the changes in shape or function of the biological cells and the change in physicochemical surface properties using these measurements. To study the change in physicochemical properties of the cell surface caused by apoptosis, we have measured the electrophoretic

  13. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting

    PubMed Central

    Piazza, Carol Lyn; Smith, Dorie

    2018-01-01

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis, inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. PMID:29905149

  14. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting.

    PubMed

    Qu, Guosheng; Piazza, Carol Lyn; Smith, Dorie; Belfort, Marlene

    2018-06-15

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis , inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. © 2018, Qu et al.

  15. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils

    PubMed Central

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W.; Fallmann, Katharina; Puschenreiter, Markus

    2013-01-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element – tolerating or – accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant–bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils. PMID:23645938

  16. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.

    PubMed

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W; Fallmann, Katharina; Puschenreiter, Markus

    2013-05-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.

  17. Activation energy associated with the electromigration of oligosaccharides through viscosity modifier and polymeric additive containing background electrolytes.

    PubMed

    Kerékgyártó, Márta; Járvás, Gábor; Novák, Levente; Guttman, András

    2016-02-01

    The activation energy related to the electromigration of oligosaccharides can be determined from their measured electrophoretic mobilities at different temperatures. The effects of a viscosity modifier (ethylene glycol) and a polymeric additive (linear polyacrylamide) on the electrophoretic mobility of linear sugar oligomers with α1-4 linked glucose units (maltooligosaccharides) were studied in CE using the activation energy concept. The electrophoretic separations of 8-aminopyrene-1,3,6-trisulfonate-labeled maltooligosaccharides were monitored by LIF detection in the temperature range of 20-50°C, using either 0-60% ethylene glycol (viscosity modifier) or 0-3% linear polyacrylamide (polymeric additive) containing BGEs. Activation energy curves were constructed based on the slopes of the Arrhenius plots. With the use of linear polyacrylamide additive, solute size-dependent activation energy variations were found for the maltooligosaccharides with polymerization degrees below and above maltoheptaose (DP 7), probably due to molecular conformation changes and possible matrix interaction effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of extremely low frequency electromagnetic fields on bacterial membrane.

    PubMed

    Oncul, Sule; Cuce, Esra M; Aksu, Burak; Inhan Garip, Ayse

    2016-01-01

    The effect of extremely low frequency electromagnetic fields (ELF-EMF) on bacteria has attracted attention due to its potential for beneficial uses. This research aimed to determine the effect of ELF-EMF on bacterial membrane namely the membrane potential, surface potential, hydrophobicity, respiratory activity and growth. Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli were subjected to ELF-EMF, 50 Hz, 1 mT for 2 h. Membrane potential was determined by fluorescence spectroscopy with or without EDTA (Ethylenediaminetetraacetic acid) with DisC3(5) (3,3-dipropylthiacarbocyanine iodide), zeta potential measurements were performed by electrophoretic mobility, hydrophobicity of the membrane was measured with MATH (Microbial Adhesion to Hydrocarbons) test, respiratory activity was determined with CTC (5-Cyano-2,3-ditolyl tetrazolium chloride), colony forming unit (CFU) and DAPI (4',6-diamidino-2-phenylindole, dihydrochloride) was used for growth determinations. ELF-EMF caused changes in physicochemical properties of both Gram-positive and Gram-negative bacteria. Hyperpolarization was seen in S. aureus and EDTA-treated E. coli. Surface potential showed a positive shift in S. aureus contrariwise to the negative shift seen in EDTA-untreated E. coli. Respiratory activity increased in both bacteria. A slight decrease in growth was observed. These results show that ELF-EMF affects the crucial physicochemical processes in both Gram-positive and Gram-negative bacteria which need further research.

  19. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate.

    PubMed

    Molaei, A; Amadeh, A; Yari, M; Reza Afshar, M

    2016-02-01

    In this study chitosan/halloysite nanotube composite (CS/HNT) coatings were deposited by electrophoretic deposition (EPD) on titanium substrate. Using HNT particles were investigated as new substituents for carbon nanotubes (CNTs) in chitosan matrix coatings. The ability of chitosan as a stabilizing, charging, and blending agent for HNT particles was exploited. Furthermore, the effects of pH, electrophoretic bath, and sonicating duration were studied on the deposition of suspensions containing HNT particles. Microstructure properties of coatings showed uniform distribution of HNT particles in chitosan matrix to form smooth nanocomposite coatings. The zeta potential results revealed that at pH around 3 there is an isoelectric point for HNT and it would have cathodic and anionic states at pH values less and more than 3, respectively. Therefore, CS/HNT composite deposits were produced in the pH range of 2.5 to 3. The apatite inducing ability of chitosan-HNT composite coating assigned that HNT particles were biocompatible because they formed carbonated hydroxyapatite particles on CS/HNT coating in corrected simulated body fluid (C-SBF). Finally, electrochemical corrosion characterizations determined that corrosion resistance in CS/HNT coating has been improved compared to bare titanium substrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Analytical study of electrophoretic characterization of kidney cells. [conducted during the Apollo Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Knox, R. J.

    1978-01-01

    Embryonic kidney cells were studied as a follow-up to the MA-011 Electrophoresis Technology Experiment which was conducted during the Apollo Soyuz Test Project (ASTP). The postflight analysis of the performance of the ASTP zone electrophoresis experiment involving embryonic kidney cells is reported. The feasibility of producing standard particles for electrophoresis was also studied. This work was undertaken in response to a need for standardization of methods for producing, calibrating, and storing electrophoretic particle standards which could be employed in performance tests of various types of electrophoresis equipment. Promising procedures were tested for their suitability in the production of standard test particles from red blood cells.

  1. The antibiotic resistome of free-living and particle-attached bacteria under a reservoir cyanobacterial bloom.

    PubMed

    Guo, Yunyan; Liu, Min; Liu, Lemian; Liu, Xuan; Chen, Huihuang; Yang, Jun

    2018-05-04

    In freshwater systems, both antibiotic resistance genes (ARGs) and cyanobacterial blooms attract global public health concern. Cyanobacterial blooms can greatly impact bacterial taxonomic communities, but very little is known about the influence of the blooms on antibiotic resistance functional community. In this study, the ARGs in both free-living (FL) and particle-attached (PA) bacteria under bloom and non-bloom conditions were simultaneously investigated in a subtropical reservoir using high-throughput approaches. In total, 145 ARGs and 9 mobile genetic elements (MGEs) were detected. The most diverse and dominant of which (68.93%) were multidrug resistance genes and efflux pump mechanism. The richness of ARGs in both FL and PA bacteria was significantly lower during the bloom period compared with non-bloom period. The abundance of ARGs in FL bacteria was significantly lower under bloom condition than in the non-bloom period, but the abundance of ARGs in PA bacteria stayed constant. More importantly, the resistant functional community in PA bacteria was more strongly influenced by the cyanobacterial bloom than in the FL bacteria, although >96% ARGs were shared in both FL and PA bacteria or both bloom and non-bloom periods. We also compared the community compositions between taxonomy and function, and found antibiotic resistant communities were highly variable and exhibited lower similarity between bloom and non-bloom periods than seen in the taxonomic composition, with an exception of FL bacteria. Altogether, cyanobacterial blooms appear to have stronger inhibitory effect on ARG abundance in FL bacteria, and stronger influence on antibiotic resistant community composition in PA bacteria. Our results further suggested that both neutral and selective processes interactively affected the ARG composition dynamics of the FL and PA bacteria. However, the antibiotic resistant community of FL bacteria exhibited a higher level of temporal stochasticity following the bloom

  2. Characterization of mobile genetic elements in antibiotic resistant Salmonella enterica isolates from food animals

    USDA-ARS?s Scientific Manuscript database

    Antibiotic resistance (AR) is a major concern for the agricultural industry in the U.S. and globally. The problem of AR is further complicated by AR genes often being located on mobile genetic elements (MGEs) resulting in their spread among bacteria. In order to investigate the relationship between ...

  3. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  4. Comparing highly ordered monolayers of nanoparticles fabricated using electrophoretic deposition: Cobalt ferrite nanoparticles versus iron oxide nanoparticles

    DOE PAGES

    Dickerson, James H.; Krejci, Alex J.; Garcia, Adriana -Mendoza; ...

    2015-08-01

    Ordered assemblies of nanoparticles remain challenging to fabricate, yet could open the door to many potential applications of nanomaterials. Here, we demonstrate that locally ordered arrays of nanoparticles, using electrophoretic deposition, can be extended to produce long-range order among the constituents. Voronoi tessellations along with multiple statistical analyses show dramatic increases in order compared with previously reported assemblies formed through electric field-assisted assembly. As a result, based on subsequent physical measurements of the nanoparticles and the deposition system, the underlying mechanisms that generate increased order are inferred.

  5. High mobility group box (HMGB) proteins of Plasmodium falciparum: DNA binding proteins with pro-inflammatory activity.

    PubMed

    Kumar, Krishan; Singal, Ankita; Rizvi, M Moshahid A; Chauhan, Virander S

    2008-06-01

    High mobility group box chromosomal protein 1 (HMGB1), known as an abundant, non-histone architectural chromosomal protein, is highly conserved across different species. Homologues of HMGB1 were identified and cloned from malaria parasite, Plasmodium falciparum. Sequence analyses showed that the P. falciparum HMGB1 (PfHMGB1) exhibits 45, 23 and 18%, while PfHMGB2 shares 42, 21 and 17% homology with Saccharomyces cerevisiae, human and mouse HMG box proteins respectively. Parasite PfHMGB1and PfHMGB2 proteins contain one HMG Box domain similar to B-Box of mammalian HMGB1. Electrophoretic Mobility Shift Assay (EMSA) showed that recombinant PfHMGB1 and PfHMGB2 bind to DNA. Immunofluorescence Assay using specific antibodies revealed that these proteins are expressed abundantly in the ring stage nuclei. Significant levels of PfHMGB1 and PfHMGB2 were also present in the parasite cytosol at trophozoite and schizont stages. Both, PfHMGB1 and PfHMGB2 were found to be potent inducers of pro-inflammatory cytokines such as TNFalpha from mouse peritoneal macrophages as analyzed by both reverse transcription PCR and by ELISA. These results suggest that secreted PfHMGB1 and PfHMGB2 may be responsible for eliciting/ triggering host inflammatory immune responses associated with malaria infection.

  6. Cobalt-supported alumina as catalytic film prepared by electrophoretic deposition for hydrogen release applications

    NASA Astrophysics Data System (ADS)

    Chamoun, R.; Demirci, U. B.; Cornu, D.; Zaatar, Y.; Khoury, A.; Khoury, R.; Miele, P.

    2010-10-01

    Shaped catalysts are crucial for technological applications. In this context, we have developed Co-αAl 2O 3 catalyst films deposited over Cu plates to be used in hydrogen generation by hydrolysis of sodium borohydride NaBH 4 in alkaline solution. The Co-αAl 2O 3 films were prepared by electrophoretic deposition according to six different routes. While five of them failed in fabricating adhering films, the sixth route, consisting of electrodepositing Co-impregnated αAl 2O 3, showed promising results. The as-obtained shaped catalysts were stable when hydrogen vigorously bubbled and catalyzed the NaBH 4 hydrolysis with attractive hydrogen generation rates. These results open an alternative route for preparing shaped catalysts in this reaction.

  7. Electrophoretic nanotechnology of composite electrodes for electrochemical supercapacitors.

    PubMed

    Su, Y; Zhitomirsky, I

    2013-02-14

    The electrophoretic deposition (EPD) method has been developed for the fabrication of MnO(2)-multiwalled carbon nanotube (MWCNT) films for application in electrochemical supercapacitors (ESs). For MWCNT applications, which depend on electrical conductivity, it is challenging to achieve dispersion and EPD of pristine MWCNT and avoid defects due to chemical treatment or functionalization. An important finding was the possibility of efficient dispersion and controlled EPD of MWCNT using calconcarboxylic acid (CCA). Moreover, the use of CCA allowed efficient dispersion of MnO(2) in concentrated suspensions and EPD of MnO(2) films. The comparison of the experimental data for chromotrope FB (CFB) and CCA and chemical structures of the molecules provided insight into the mechanism of CCA adsorption on MnO(2). The fabrication of stable suspensions of MnO(2) nanoparticles containing MWCNT, and controlled codeposition of both materials is a crucial aspect in the EPD of composites. The new approach was based on the use of CCA as a charging and dispersing agent for EPD of MnO(2) nanoparticles and MWCNT. The deposition yield measurements at various experimental conditions and Fourier transform infrared spectroscopy data, coupled with results of electron microscopy, thermogravimetric, and differential thermal analysis provided evidence of the formation of MnO(2)-MWCNT composites. The electrochemical testing results and impedance spectroscopy data showed good capacitive behavior of the composite films and the beneficial effect of MWCNTs.

  8. [The role of mobile communication devices in the spread of infections].

    PubMed

    Morvai, Júlia; Szabó, Rita

    2015-05-17

    Mobile communication devices have an invaluable feature of communication within hospital, and they may support certain aspects of clinical diagnosis and education. However, there may be a risk for contamination of these devices with various pathogens. The aim of the authors was to perform a systematic review on the potential role of mobile communication devices in the dissemination of pathogens and to identify effective prevention measures. A detailed literature search was conducted using PubMed and ScienceDirect databases for papers published in English between January, 2004 and August, 2014. With the use of specific search term combinations 30 of the 216 articles met the inclusion criteria. It was found that only 8% of healthcare workers routinely cleaned their mobile communication devices resulting in a high rate of contamination (40-100%). Coagulase-negative Staphylococci and Staphylococcus aureus were the most commonly identified bacteria and most of them were methicillin resistant (10-95.3%). This systematic review identified effective interventions to reduce bacterial contamination risks including staff education, hand hygiene and regular decontamination of mobile communication devices.

  9. Siderosomal ferritin. The missing link between ferritin and haemosiderin?

    PubMed Central

    Andrews, S C; Treffry, A; Harrison, P M

    1987-01-01

    A minor electrophoretically fast component was found in ferritin from iron-loaded rat liver in addition to a major electrophoretically slow ferritin similar to that observed in control rats. The electrophoretically fast ferritin showed immunological identity with the slow component, but on electrophoresis in SDS it gave a peptide of 17.3 kDa, in contrast with the electrophoretically slow ferritin, which gave a major band corresponding to the L-subunit (20.7 kDa). Thus the electrophoretically fast ferritin resembles that reported by Massover [(1985) Biochim. Biophys. Acta 829, 377-386] in livers of mice with short-term parenteral iron overload. The electrophoretically fast ferritin had a lower iron content (2000 Fe atoms/molecule) than the electrophoretically slow ferritin (3000 Fe atoms/molecule). Removal and re-incorporation of iron was possible without effect on the electrophoretic mobility of either ferritin species. On subcellular fractionation the electrophoretically fast ferritin was enriched in pellet fractions and was the sole soluble ferritin isolated from iron-laden secondary lysosomes (siderosomes). The amount and relative proportion of the electrophoretically fast species increased with iron loading. Haemosiderin isolated from siderosomes was found to contain a peptide reactive to anti-ferritin serum and corresponding to the 17.3 kDa peptide of the electrophoretically fast ferritin species. Unlike the electrophoretically slow ferritin, the electrophoretically fast ferritin did not become significantly radioactive in a 1 h biosynthetic labelling experiment. We conclude that the minor ferritin is not, as has been suggested for mouse liver ferritin, 'a completely new species of smaller holoferritin that represents a shift in the ferritin phenotype' in response to siderosis, but a precursor of haemosiderin, in agreement with the proposal by Richter [(1984) Lab. Invest. 50, 26-35] concerning siderosomal ferritin. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID

  10. Bacteroides fragilis mobilizable transposon Tn5520 requires a 71 base pair origin of transfer sequence and a single mobilization protein for relaxosome formation during conjugation.

    PubMed

    Vedantam, Gayatri; Knopf, Sarah; Hecht, David W

    2006-01-01

    Tn5520 is the smallest known bacterial mobilizable transposon and was isolated from an antibiotic resistant Bacteroides fragilis clinical isolate. When a conjugation apparatus is provided in trans, Tn5520 is mobilized (transferred) efficiently within, and from, both Bacteroides spp. and Escherichia coli. Only two genes are present on Tn5520; one encodes an integrase, and the other a multifunctional mobilization (Mob) protein BmpH. BmpH is essential for Tn5520 mobility. The focus of this study was to identify the Tn5520 origin of conjugative transfer (oriT) and to study BmpH-oriT binding. We delimited the functional Tn5520 oriT to a 71 bp sequence upstream of the bmpH gene. A plasmid vector harbouring this minimal 71 bp oriT was mobilized at the same frequency as that of intact Tn5520. The minimal oriT contains one 17 bp inverted repeat (IR) sequence. We constructed and tested multiple IR mutants and showed that the IR was essential in its entirety for mobilization. A nick site sequence (5'-GCTAC-3') was also identified within the minimal oriT; this sequence resembled nick sites found in plasmids of Gram positive origin. We further showed that mutation of a highly conserved GC dinucleotide in the nick site sequence completely abolished mobilization. We also purified BmpH and showed that it specifically bound a Tn5520 oriT fragment in electrophoretic mobility shift assays. We also identified non-nick site sequences within the minimal oriT that were essential for mobilization. We hypothesize that transposon-based single Mob protein systems may contribute to efficient gene dissemination from Bacteroides spp., because fewer DNA processing proteins are required for relaxosome formation.

  11. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.

    1999-07-20

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.

  12. Electrophoretic and field-effect graphene for all-electrical DNA array technology.

    PubMed

    Xu, Guangyu; Abbott, Jeffrey; Qin, Ling; Yeung, Kitty Y M; Song, Yi; Yoon, Hosang; Kong, Jing; Ham, Donhee

    2014-09-05

    Field-effect transistor biomolecular sensors based on low-dimensional nanomaterials boast sensitivity, label-free operation and chip-scale construction. Chemical vapour deposition graphene is especially well suited for multiplexed electronic DNA array applications, since its large two-dimensional morphology readily lends itself to top-down fabrication of transistor arrays. Nonetheless, graphene field-effect transistor DNA sensors have been studied mainly at single-device level. Here we create, from chemical vapour deposition graphene, field-effect transistor arrays with two features representing steps towards multiplexed DNA arrays. First, a robust array yield--seven out of eight transistors--is achieved with a 100-fM sensitivity, on par with optical DNA microarrays and at least 10 times higher than prior chemical vapour deposition graphene transistor DNA sensors. Second, each graphene acts as an electrophoretic electrode for site-specific probe DNA immobilization, and performs subsequent site-specific detection of target DNA as a field-effect transistor. The use of graphene as both electrode and transistor suggests a path towards all-electrical multiplexed graphene DNA arrays.

  13. Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level

    PubMed Central

    Jans, Christoph; Sarno, Eleonora; Collineau, Lucie; Meile, Leo; Stärk, Katharina D. C.; Stephan, Roger

    2018-01-01

    Background: Antimicrobial resistance (AMR) in bacteria is an increasing health concern. The spread of AMR bacteria (AMRB) between animals and humans via the food chain and the exchange of AMR genes requires holistic approaches for risk mitigation. The AMRB exposure of humans via food is currently only poorly understood leaving an important gap for intervention design. Method: This study aimed to assess AMRB prevalence in retail food and subsequent exposure of Swiss consumers in a systematic literature review of data published between 1996 and 2016 covering the Swiss agriculture sector and relevant imported food. Results: Data from 313 out of 9,473 collected studies were extracted yielding 122,438 food samples and 38,362 bacteria isolates of which 30,092 samples and 8,799 isolates were AMR positive. A median AMRB prevalence of >50% was observed for meat and seafood harboring Campylobacter, Enterococcus, Salmonella, Escherichia coli, Listeria, and Vibrio spp. and to a lesser prevalence for milk products harboring starter culture bacteria. Gram-negative AMRB featured predominantly AMR against aminoglycosides, cephalosporins, fluoroquinolones, penicillins, sulfonamides, and tetracyclines observed at AMR exposures scores of levels 1 (medium) and 2 (high) for Campylobacter, Salmonella, E. coli in meat as well as Vibrio and E. coli in seafood. Gram-positive AMRB featured AMR against glycoproteins, lincosamides, macrolides and nitrofurans for Staphylococcus and Enterococcus in meat sources, Staphylococcus in seafood as well as Enterococcus and technologically important bacteria (incl. starters) in fermented or processed dairy products. Knowledge gaps were identified for AMR prevalence in dairy, plant, fermented meat and novel food products and for the role of specific indicator bacteria (Staphylococcus, Enterococcus), starter culture bacteria and their mobile genetic elements in AMR gene transfer. Conclusion: Raw meat, milk, seafood, and certain fermented dairy products

  14. Architecture of Class 1, 2, and 3 Integrons from Gram Negative Bacteria Recovered among Fruits and Vegetables

    PubMed Central

    Jones-Dias, Daniela; Manageiro, Vera; Ferreira, Eugénia; Barreiro, Paula; Vieira, Luís; Moura, Inês B.; Caniça, Manuela

    2016-01-01

    The spread of antibiotic resistant bacteria throughout the food chain constitutes a public health concern. To understand the contribution of fresh produce in shaping antibiotic resistance bacteria and integron prevalence in the food chain, 333 antibiotic resistance Gram negative isolates were collected from organic and conventionally produced fruits (pears, apples, and strawberries) and vegetables (lettuces, tomatoes, and carrots). Although low levels of resistance have been detected, the bacterial genera identified in the assessed fresh produce are often described not only as environmental, but mostly as commensals and opportunistic pathogens. The genomic characterization of integron-harboring isolates revealed a high number of mobile genetic elements and clinically relevant antibiotic resistance genes, of which we highlight the presence of as mcr-1, qnrA1, blaGES−11, mphA, and oqxAB. The study of class 1 (n = 8), class 2 (n = 3) and class 3 (n = 1) integrons, harbored by species such as Morganella morganii, Escherichia coli, Klebsiella pneumoniae, led to the identification of different integron promoters (PcW, PcH1, PcS, and PcWTNG−10) and cassette arrays (containing drfA, aadA, cmlA, estX, sat, and blaGES). In fact, the diverse integron backbones were associated with transposable elements (e.g., Tn402, Tn7, ISCR1, Tn2*, IS26, IS1326, and IS3) that conferred greater mobility. This is also the first appearance of In1258, In1259, and In3-13, which should be monitored to prevent their establishment as successfully dispersed mobile resistance integrons. These results underscore the growing concern about the dissemination of acquired resistance genes by mobile elements in the food chain. PMID:27679611

  15. Electrophoresis of fd-virus particles: experiments and an analysis of the effect of finite rod lengths.

    PubMed

    Buitenhuis, Johan

    2012-09-18

    The electrophoretic mobility of rodlike fd viruses is measured and compared to theory, with the theoretical calculations performed according to Stigter (Stigter, D. Charged Colloidal Cylinder with a Gouy Double-Layer. J. Colloid Interface Sci. 1975, 53, 296-306. Stigter, D. Electrophoresis of Highly Charged Colloidal Cylinders in Univalent Salt- Solutions. 1. Mobility in Transverse Field. J. Phys. Chem. 1978, 82, 1417-1423. Stigter, D. Electrophoresis of Highly Charged Colloidal Cylinders in Univalent Salt Solutions. 2. Random Orientation in External Field and Application to Polyelectrolytes. J. Phys. Chem. 1978, 82, 1424-1429. Stigter, D. Theory of Conductance of Colloidal Electrolytes in Univalent Salt Solutions. J. Phys. Chem. 1979, 83, 1663-1670), who describes the electrophoretic mobility of infinite cylinders including relaxation effects. Using the dissociation constants of the ionizable groups on the surfaces of the fd viruses, we can calculate the mobility without any adjustable parameter (apart from the possible Stern layer thickness). In addition, the approximation in the theoretical description of Stigter (and others) of using a model of infinitely long cylinders, which consequently is independent of the aspect ratio, is examined by performing more elaborate numerical calculations for finite cylinders. It is shown that, although the electrophoretic mobility of cylindrical particles in the limit of low ionic strength depends on the aspect ratio much more than "end effects", at moderate and high ionic strengths the finite and infinite cylinder models differ only to a degree that can be attributed to end effects. Furthermore, the range of validity of the Stokes regime is systematically calculated.

  16. High-concentration zeta potential measurements using light-scattering techniques

    PubMed Central

    Kaszuba, Michael; Corbett, Jason; Watson, Fraser Mcneil; Jones, Andrew

    2010-01-01

    Zeta potential is the key parameter that controls electrostatic interactions in particle dispersions. Laser Doppler electrophoresis is an accepted method for the measurement of particle electrophoretic mobility and hence zeta potential of dispersions of colloidal size materials. Traditionally, samples measured by this technique have to be optically transparent. Therefore, depending upon the size and optical properties of the particles, many samples will be too concentrated and will require dilution. The ability to measure samples at or close to their neat concentration would be desirable as it would minimize any changes in the zeta potential of the sample owing to dilution. However, the ability to measure turbid samples using light-scattering techniques presents a number of challenges. This paper discusses electrophoretic mobility measurements made on turbid samples at high concentration using a novel cell with reduced path length. Results are presented on two different sample types, titanium dioxide and a polyurethane dispersion, as a function of sample concentration. For both of the sample types studied, the electrophoretic mobility results show a gradual decrease as the sample concentration increases and the possible reasons for these observations are discussed. Further, a comparison of the data against theoretical models is presented and discussed. Conclusions and recommendations are made from the zeta potential values obtained at high concentrations. PMID:20732896

  17. Dissipative particle dynamics: Effects of thermostating schemes on nano-colloid electrophoresis

    NASA Astrophysics Data System (ADS)

    Hassanzadeh Afrouzi, Hamid; Moshfegh, Abouzar; Farhadi, Mousa; Sedighi, Kurosh

    2018-05-01

    A novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced in the present study to model the electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Performance of various thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field (0 . 072 < E < 0 . 361 v/nm) covering linear to non-linear response regime, and ionic salt concentration (0.049 < SC < 0 . 69 [M]) covering weak to strong Debye screening of the colloid. System temperature and electrophoretic mobility both show a direct and inverse relationships respectively with electric field and colloidal repulsion; although they each respectively behave direct and inverse trends with salt concentration under various thermostats. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0 . 145[v/nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the system radial distribution function with available EW3D modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  18. Probing size-dependent electrokinetics of hematite aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedra-Królik, Karolina; Rosso, Kevin M.; Zarzycki, Piotr

    Aqueous particle suspensions of many kinds are stabilized by the electrostatic potential developed at their surfaces from reaction with water and ions. An important and less well understood aspect of this stabilization is the dependence of the electrostatic surface potential on particle size. Surface electrostatics are typically probed by measuring particle electrophoretic mobilities and quantified in the electrokinetic potential (f), using commercially available Zeta Potential Analyzers (ZPA). Even though ZPAs provide frequency-spectra (histograms) of electrophoretic mobility and hydrodynamic diameter, typically only the maximal-intensity values are reported, despite the information in the remainder of the spectra. Here we propose a mappingmore » procedure that inter-correlates these histograms to extract additional insight, in this case to probe particle size-dependent electrokinetics. Our method is illustrated for a suspension of prototypical iron (III) oxide (hematite, a-Fe2O3). We found that the electrophoretic mobility and f-potential are a linear function of the aggregate size. By analyzing the distribution of surface site types as a function of aggregate size we show that site coordination increases with increasing aggregate diameter. This observation explains why the acidity of the iron oxide particles decreases with increasing particle size.« less

  19. Characterizing the interaction between enantiomers of eight psychoactive drugs and highly sulfated-β-cyclodextrin by counter-current capillary electrophoresis.

    PubMed

    Asensi-Bernardi, Lucía; Escuder-Gilabert, Laura; Martín-Biosca, Yolanda; Sagrado, Salvador; Medina-Hernández, María José

    2014-01-01

    The estimation of apparent binding constants and limit mobilities of the complexes of the enantiomers that characterize the interaction of enantiomers with chiral selectors, in this case highly sulfated β-cyclodextrin, was approached using a simple and economic electrophoretic modality, the complete filling technique (CFT) in counter-current mode. The enantiomers of eight psychoactive drugs, four antihistamines (dimethindene, promethazine, orphenadrine and terfenadine) and four antidepressants (bupropion, fluoxetine, nomifensine and viloxazine) were separated for the first time for this cyclodextrin (CD). Estimations of thermodynamic and electrophoretic enantioselectivies were also performed. Results indicate that, in general, thermodynamic enantioselectivity is the main component explaining the high resolution found, but also one case suggests that electrophoretic enantioselectivity itself is enough to obtain a satisfactory resolution. CFT results advantageous compared with conventional capillary electrophoresis (CE) and partial filling technique (PFT) for the study of the interaction between drugs and chiral selectors. It combines the use of a simple fitting model (as in CE), when the enantiomers do not exit the chiral selector plug during the separation (i.e. mobility of electroosmotic flow larger than mobility of CD), and drastic reduction of the consumption (and cost; ~99.7%) of the CD reagent (as in PFT) compared with the conventional CE. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Dephosphorylation of microtubule-binding sites at the neurofilament-H tail domain by alkaline, acid, and protein phosphatases.

    PubMed

    Hisanaga, S; Yasugawa, S; Yamakawa, T; Miyamoto, E; Ikebe, M; Uchiyama, M; Kishimoto, T

    1993-06-01

    The dephosphorylation-induced interaction of neurofilaments (NFs) with microtubules (MTs) was investigated by using several phosphatases. Escherichia coli alkaline and wheat germ acid phosphatases increased the electrophoretic mobility of NF-H and NF-M by dephosphorylation, and induced the binding of NF-H to MTs. The binding of NFs to MTs was observed only after the electrophoretic mobility of NF-H approached the exhaustively dephosphorylated level when alkaline phosphatase was used. The number of phosphate remaining when NF-H began to bind to MTs was estimated by measuring phosphate bound to NF-H. NF-H did not bind to MTs even when about 40 phosphates from the total of 51 had been removed by alkaline phosphatase. The removal of 6 further phosphates finally resulted in the association of NF-H with MTs. A similar finding, that the restricted phosphorylation sites in the NF-H tail domain, but not the total amount of phosphates, were important for binding to MTs, was also obtained with acid phosphatases. In contrast to alkaline and acid phosphatases, four classes of protein phosphatases (protein phosphatases 1, 2A, 2B, and 2C) were ineffective for shifting the electrophoretic mobility of NF proteins and for inducing the association of NFs to MTs.

  1. Electrophoretic separation of alginic sodium diester and sodium hexametaphosphate in chondroitin sulfate that interfere with the cetylpyridinium chloride titration assay.

    PubMed

    Weiguo, Zhang; Giancaspro, Gabriel; Adams, Kristie M; Neal-Kababick, James; Hildreth, Jana; Li, Aishan; Roman, Mark C; Betz, Joseph M

    2014-01-01

    The most commonly used chondroitin sulfate (CS) assay method is cetylpyridinium chloride (CPC) titration. Cellulose acetate membrane electrophoresis (CAME) is the technique used for detection of impurities in the U.S. Pharmacopeia's CS monograph. Because CPC titration is a relatively nonspecific quantitative technique, the apparent amount of CS as determined by CPC titration alone may not reflect the true amount of CS due to possible interference with the CPC assay by impurities that contain CPC titratable functional groups. When CAME is used in conjunction with CPC titration, certain non-CS and adulterants can be visualized and estimated, and a true value for CS can be assigned once the presence of these non-CS impurities has been ruled out. This study examines conjunct application of CPC and CAME in ascertaining CS assay and purity in the presence of certain adulterants. These include propylene glycol alginate sulfate sodium, known in commerce as alginic sodium diester (ASD), and Zero One (Z1), a water-soluble agent newly reported in the CS marketplace and subsequently identified as sodium hexametaphosphate. ASD, Z1, and CS are similar in physical appearance and solubility in water and ethanol. They are also titratable anions and form ionic pairs with CPC, therefore interfering with the CPC titration assay for CS CAME separates these adulterants from each other and from CS by differences in their electrophoretic mobility. CAME is able to detect these impurities in CS at levels as low as 0.66% by weight. Although it is recommended that a method for detecting impurities (e.g., CAME) be used in cormbination with relatively nonspecific assay methods such as CPC titration, this is seldom done in practice. Assay results for CS derived fromn CPC titration may, therefore, be misleading, leaving the CS supply chain vulnerable to adulteration. In this study, the authors investigated ASD and Z1 adulteration of CS and developed an electrophoretic separation of these

  2. Transformation of Sordaria macrospora to hygromycin B resistance: characterization of transformants by electrophoretic karyotyping and tetrad analysis.

    PubMed

    Walz, M; Kück, U

    1995-12-01

    The ascomycete Sordaria macrospora was transformed using different plasmid molecules containing the bacterial hygromycin B resistance gene (hph) under the control of different expression signals. The highest transformation frequency was obtained with vector pMW1. On this plasmid molecule, expression of the hph gene is directed by the upstream region of the isopenicillin N synthetase gene (pcbC) from the deuteromycete Acremonium chrysogenum. Southern analysis suggests that the vector copies are integrated as tandem repeats into the S. macrospora chromosomes and that duplicated sequences are most probably not inactivated by methylation during meiosis. Furthermore, the hygromycin B resistance (hygR) is not correlated with the number of integrated vector molecules. Electrophoretic karyotyping was used to further characterize S. macrospora transformants. Five chromosomal bands were separated by pulsed-field gel electrophoresis (PFGE) representing seven chromosomes with a total genome size of 39.5Mb. Hybridization analysis revealed ectopic integration of vector DNA into different chromosomes. In a few transformants, major rearrangements were detected. Transformants were sexually propagated to analyze the fate of the heterologous vector DNA. Although the hygR phenotype is stably maintained during mitosis, about a third of all lines tested showed loss of the resistance marker gene after meiosis. However, as was concluded from electrophoretic karyotyping, the resistant spores showed a Mendelian segregation of the integrated vector molecules in at least three consecutive generations. Our data indicate that heterologous marker genes can be used for transformation tagging, or the molecular mapping of chromosomal loci in S. macrospora.

  3. E622, a miniature, virulence-associated mobile element.

    PubMed

    Stavrinides, John; Kirzinger, Morgan W B; Beasley, Federico C; Guttman, David S

    2012-01-01

    Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders. Its predicted parent element, designated TnE622, has a typical transposon structure with a three-gene operon, consisting of resolvase, integrase, and exeA-like genes, which is bounded by the same terminal inverted repeats as E622. A broader genome level survey of the E622/TnE622 inverted repeats identified homologs in Pseudomonas, Salmonella, Shewanella, Erwinia, Pantoea, and the cyanobacteria Nostoc and Cyanothece, many of which appear to encompass known virulence genes, including genes encoding toxins, enzymes, and type III secreted effectors. Its association with niche-specific genetic determinants, along with its persistence and evolutionary diversification, indicates that this mobile element family has played a prominent role in the evolution of many agriculturally and clinically relevant pathogenic bacteria.

  4. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  5. Putting life on ice: bacteria that bind to frozen water

    PubMed Central

    Bernheim, Reut; Guo, Shuaiqi; Davies, Peter L.; Braslavsky, Ido

    2016-01-01

    Ice-binding proteins (IBPs) are typically small, soluble proteins produced by cold-adapted organisms to help them avoid ice damage by either resisting or tolerating freezing. By contrast, the IBP of the Antarctic bacterium Marinomonas primoryensis is an extremely long, 1.5 MDa protein consisting of five different regions. The fourth region, a 34 kDa domain, is the only part that confers ice binding. Bioinformatic studies suggest that this IBP serves as an adhesin that attaches the bacteria to ice to keep it near the top of the water column, where oxygen and nutrients are available. Using temperature-controlled cells and a microfluidic apparatus, we show that M. primoryensis adheres to ice and is only released when melting occurs. Binding is dependent on the mobility of the bacterium and the functionality of the IBP domain. A polyclonal antibody raised against the IBP region blocks bacterial ice adhesion. This concept may be the basis for blocking biofilm formation in other bacteria, including pathogens. Currently, this IBP is the only known example of an adhesin that has evolved to bind ice. PMID:27534698

  6. Review of mobile communication devices as potential reservoirs of nosocomial pathogens.

    PubMed

    Brady, R R W; Verran, J; Damani, N N; Gibb, A P

    2009-04-01

    Innovation in mobile communication technology has provided novel approaches to the delivery of healthcare and improvements in the speed and quality of routine medical communication. Bacterial contamination of mobile communication devices (MCDs) could be an important issue affecting the implementation of effective infection control measures and might have an impact on efforts to reduce cross-contamination. This review examines recent studies reporting bacterial contamination of MCDs, most demonstrating that 9-25% of MCDs are contaminated with pathogenic bacteria. We examine previously investigated risk factors for MCD contamination in addition to work on surface decontamination of the device. Recommendations to reduce contamination risks include staff education, strict hand hygiene measures, guidelines on device cleaning and consideration of the restrictions regarding use of mobile phone technology in certain high risk areas, for example, operating theatres, intensive care units and burns units. Further work is required to evaluate the benefit of such interventions on MCD contamination and to determine whether a link exists between contamination and subsequent patient infection.

  7. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  8. Plants as sources of airborne bacteria, including ice nucleation-active bacteria.

    PubMed

    Lindemann, J; Constantinidou, H A; Barchet, W R; Upper, C D

    1982-11-01

    Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colony-forming units per m over young corn and wet soil to 663 colony-forming units per m over dry soil and 6,500 colony-forming units per m over a closed wheat canopy. In simultaneous samples, concentrations of viable bacteria in the air 10 m inside an alfalfa field were fourfold higher than those over a field with dry, bare soil immediately upwind. The upward flux of viable bacteria over alfalfa was three- to fourfold greater than over dry soil. Concentrations of ice nucleation-active bacteria were higher over plants than over soil. Thus, plant canopies may constitute a major source of bacteria, including ice nucleation-active bacteria, in the air.

  9. Drug Resistance and Gene Transfer Mechanisms in Respiratory/Oral Bacteria.

    PubMed

    Jiang, S; Zeng, J; Zhou, X; Li, Y

    2018-06-01

    Growing evidence suggests the existence of new antibiotic resistance mechanisms. Recent studies have revealed that quorum-quenching enzymes, such as MacQ, are involved in both antibiotic resistance and cell-cell communication. Furthermore, some small bacterial regulatory RNAs, classified into RNA attenuators and small RNAs, modulate the expression of resistance genes. For example, small RNA sprX, can shape bacterial resistance to glycopeptide antibiotics via specific downregulation of protein SpoVG. Moreover, some bacterial lipocalins capture antibiotics in the extracellular space, contributing to severe multidrug resistance. But this defense mechanism may be influenced by Agr-regulated toxins and liposoluble vitamins. Outer membrane porin proteins and efflux pumps can influence intracellular concentrations of antibiotics. Alterations in target enzymes or antibiotics prevent binding to targets, which act to confer high levels of resistance in respiratory/oral bacteria. As described recently, horizontal gene transfer, including conjugation, transduction and transformation, is common in respiratory/oral microflora. Many conjugative transposons and plasmids discovered to date encode antibiotic resistance proteins and can be transferred from donor bacteria to transient recipient bacteria. New classes of mobile genetic elements are also being identified. For example, nucleic acids that circulate in the bloodstream (circulating nucleic acids) can integrate into the host cell genome by up-regulation of DNA damage and repair pathways. With multidrug resistant bacteria on the rise, new drugs have been developed to combate bacterial antibiotic resistance, such as innate defense regulators, reactive oxygen species and microbial volatile compounds. This review summaries various aspects and mechanisms of antibiotic resistance in the respiratory/oral microbiota. A better understanding of these mechanisms will facilitate minimization of the emergence of antibiotic resistance.

  10. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh

    PubMed Central

    Salman, Verena; Yang, Tingting; Berben, Tom; Klein, Frieder; Angert, Esther; Teske, Andreas

    2015-01-01

    Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium. PMID:25909974

  11. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh.

    PubMed

    Salman, Verena; Yang, Tingting; Berben, Tom; Klein, Frieder; Angert, Esther; Teske, Andreas

    2015-11-01

    Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium.

  12. A SEROLOGICAL AND ELECTROPHORETIC STUDY OF DIPHTHERIA ANTISERA IRRADIATED WITH STERILIZING DOSES OF $gamma$-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaulen, D.R.; Chakhava, O.V.

    1958-01-01

    The effects of irradiation on the antitoxic, anaphylactic, and electrophoretic properties of diphtheria antisera were studied at the various doses used for sterilization. Both crude and purified diphtheria antitoxic antisera were used. Irradiations were carried out with a cobalt-60 source with a total power of 5 kc. The dosage rate was 600 r/min. Data are tabulated. The results demonstrate considerable changes in the properties of antisera taking place as a result of exposure to large doses of gamma radiation. In all experiments a regular fall in the antitoxin titre was demonstrated. A greater destruction of antitoxin was observed in themore » crude antiserum than in the purified. Possible reaction mechanisms involved are discussed. (C.H.)« less

  13. Rapid and Simple Detection of Hot Spot Point Mutations of Epidermal Growth Factor Receptor, BRAF, and NRAS in Cancers Using the Loop-Hybrid Mobility Shift Assay

    PubMed Central

    Matsukuma, Shoichi; Yoshihara, Mitsuyo; Kasai, Fumio; Kato, Akinori; Yoshida, Akira; Akaike, Makoto; Kobayashi, Osamu; Nakayama, Haruhiko; Sakuma, Yuji; Yoshida, Tsutomu; Kameda, Yoichi; Tsuchiya, Eiju; Miyagi, Yohei

    2006-01-01

    A simple and rapid method to detect the epidermal growth factor receptor hot spot mutation L858R in lung adenocarcinoma was developed based on principles similar to the universal heteroduplex generator technology. A single-stranded oligonucleotide with an internal deletion was used to generate heteroduplexes (loop-hybrids) bearing a loop in the complementary strand derived from the polymerase chain reaction product of the normal or mutant allele. By placing deletion in the oligonucleotide adjacent to the mutational site, difference in electrophoretic mobility between loop-hybrids with normal and mutated DNA was distinguishable in a native polyacrylamide gel. The method was also modified to detect in-frame deletion mutations of epidermal growth factor receptor in lung adenocarcinomas. In addition, the method was adapted to detect hot spot mutations in the B-type Raf kinase (BRAF) at V600 and in a Ras-oncogene (NRAS) at Q61, the mutations commonly found in thyroid carcinomas. Our mutation detection system, designated the loop-hybrid mobility shift assay was sensitive enough to detect mutant DNA comprising 7.5% of the total DNA. As a simple and straightforward mutation detection technique, loop-hybrid mobility shift assay may be useful for the molecular diagnosis of certain types of clinical cancers. Other applications are also discussed. PMID:16931592

  14. Mobile Learning Using Mobile Phones

    ERIC Educational Resources Information Center

    Vicente, Paula

    2013-01-01

    The participation in mobile learning programs is conditioned by having/using mobile communication technology. Those who do not have or use such technology cannot participate in mobile learning programs. This study evaluates who are the most likely participants of mobile learning programs by examining the demographic profile and mobile phone usage…

  15. Multi-Length Scale Tribology of Electrophoretically Deposited Nickel-Diamond Coatings

    NASA Astrophysics Data System (ADS)

    Awasthi, Shikha; Goel, Sneha; Pandey, Chandra Prabha; Balani, Kantesh

    2017-02-01

    Electrophoretically deposited (EPD) nickel and its composite coatings are widely used to enhance the life span of continuous ingot casting molds in the steel, aerospace and automotive industries. This article reports the effect of different concentrations of diamond particles (2.5-10 g/L) on the wear mechanism of EPD Ni. The distribution of diamond particles in the Ni matrix was observed using Voronoi tessellation. Variation in COF was observed by a fretting wear test to be 0.51 ± 0.07 for Ni, which decreases to 0.35 ± 0.03 for the Ni-diamond coatings. The wear volume of the coatings with 7.5 g/L concentration of diamond was observed to be a minimum (0.051 ± 0.02 × 10-3 mm3) compared with other composite coatings. Further, the micro-scratch testing of the coatings also exhibited a reduced COF (0.03-0.12) for 7.5 g/L diamond concentration compared with Ni (0.08-0.13). Higher wear resistance of the diamond-added coatings (optimum 7.5 g/L concentration) is due to the balance between the dispersion strengthening mechanism and the enhancement of the load-bearing capacity due to the incorporation of diamond particles. Thus, these composites can be used for applications in automotive and aerospace industries.

  16. A capillary electrophoretic method for fingerprinting low molecular weight heparins.

    PubMed

    King, J Timothy; Desai, Umesh R

    2008-09-15

    Clinically used low molecular weight heparins (LMWH) are anticoagulants of choice and are phenomenally complex mixtures of millions of distinct natural and unnatural polymeric sequences. The FDA recommends that each LMWH be considered as an independent drug with its own activity profile, placing significant importance on the biophysical characterization of each intact LMWH. We report a robust protocol for fingerprinting these pharmaceutical agents. Capillary electrophoresis of three LMWHs, enoxaparin, tinzaparin, and a Sigma preparation, under reverse polarity conditions in the presence of selected linear alkyl polyamines gives an electrophoretic pattern that is characteristic of the nature of the starting material. The buffers that best provided optimal resolution without compromising sensitivity and speed of analysis were 50 mM sodium phosphate, pH 2.3, and 100 mM ammonium formate, pH 3.5. Resolution was strongly dependent on the structure of polyamine with pentaethylenehexamine being most effective for enoxaparin and Sigma LMWH. In contrast, tinzaparin could be best resolved with tetraethylenepentamine. Cyclic polyamines were ineffective. Resolution was also dependent on the concentration of resolving agents and displayed a narrow window that provides optimal resolution. These features suggest a strong structural origin of the fingerprint pattern. Overall, the simple protocol will find special use in assessing LMWH quality and batch-to-batch variability.

  17. The Culturable Soil Antibiotic Resistome: A Community of Multi-Drug Resistant Bacteria

    PubMed Central

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16–23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family. PMID:23776501

  18. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    PubMed

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  19. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO₂ Composite Coatings on Stainless Steel (316L) Substrates.

    PubMed

    Raddaha, Namir S; Cordero-Arias, Luis; Cabanas-Polo, Sandra; Virtanen, Sannakaisa; Roether, Judith A; Boccaccini, Aldo R

    2014-03-04

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO₂) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO₂ in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO₂ particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO₂ and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO₂ and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  20. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  1. The dynamics of heat shock system activation in Monomac-6 cells upon Helicobacter pylori infection.

    PubMed

    Pierzchalski, P; Jastrzebska, M; Link-Lenczowski, P; Leja-Szpak, A; Bonior, J; Jaworek, J; Okon, K; Wojcik, P

    2014-12-01

    Immune system cells, particularly phagocytes, are exposed to direct contact with pathogens. Because of its nature - elimination of pathogenes - their cytoprotective systems supposed to be quick and forceful. Physiological consequence of phagocytosis for the phagocyte is the apoptotic death to prevent the eventual survival of bacteria as intracellular parasites. However, in some cases, defense systems used by the bacteria force the immune cells to prolong the contact with the pathogen for its effective elimination. Experiments were performed on Monomac-6 cells exposed to live CagA, VacA expressing Helicobacter pylori (H. pylori) over different period of time. Total cellular RNA, cytoplasmic and nuclear proteins were isolated for polymerase chain reaction, Western-blot and electrophoretic mobility shift assay, respectively. We found that Monomac-6 cells infection with H. pylori resulted in the translocation of the entire cellular content of the heat shock protein 70 (HSP70) into the cytoplasm, where its presence could protect cell against toxic products of engulfed bacteria and premature apoptosis. At the same time the nuclear translocation of heat shock factor 1 (HSF-1) and activation of HSP70 gene transcription was noticed. Action of HSP70 might to postpone monocyte apoptosis through protecting cytoplasmic and nuclear proteins from damaging effect of bacterial products, what could be the defending mechanism against the toxic stress caused by engulfed bacteria and provide the immune cell with the sufficient amount of time required for neutralization of the bacteria from phagosomes, even at the expense of temporary lack of the protection of nuclear proteins.

  2. Startup of electrophoresis in a suspension of colloidal spheres.

    PubMed

    Chiang, Chia C; Keh, Huan J

    2015-12-01

    The transient electrophoretic response of a homogeneous suspension of spherical particles to the step application of an electric field is analyzed. The electric double layer encompassing each particle is assumed to be thin but finite, and the effect of dynamic electroosmosis within it is incorporated. The momentum equation for the fluid outside the double layers is solved through the use of a unit cell model. Closed-form formulas for the time-evolving electrophoretic and settling velocities of the particles in the Laplace transform are obtained in terms of the electrokinetic radius, relative mass density, and volume fraction of the particles. The time scale for the development of electrophoresis and sedimentation is significantly smaller for a suspension with a higher particle volume fraction or a smaller particle-to-fluid density ratio, and the electrophoretic mobility at any instant increases with an increase in the electrokinetic particle radius. The transient electrophoretic mobility is a decreasing function of the particle volume fraction if the particle-to-fluid density ratio is relatively small, but it may increase with an increase in the particle volume fraction if this density ratio is relatively large. The particle interaction effect in a suspension on the transient electrophoresis is much weaker than that on the transient sedimentation of the particles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition.

    PubMed

    Zhang, Jie; Wen, Zhaohui; Zhao, Meng; Li, Guozhong; Dai, Changsong

    2016-01-01

    CaP/chitosan/carbon nanotubes (CNTs) coating on AZ91D magnesium alloy was prepared via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The bonding between the layer and the substrate was studied by an automatic scratch instrument. The phase compositions and microstructures of the composite coatings were determined by using X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM). The element concentration and gentamicin concentration were respectively determined by inductively coupled plasma optical emission spectrometer (ICP-OES) test and ultraviolet spectrophotometer (UV). The cell counting kit (CCK) assay was used to evaluate the cytotoxicity of samples to SaOS-2 cells. The results showed that a few CNTs with their original tubular morphology could be found in the CaP/chitosan coating and they were beneficial for the crystal growth of phosphate and improvement of the coating bonding when the addition amount of CNTs in 500 ml of electrophoretic solution was from 0.05 g to 0.125 g. The loading amount of gentamicin increased and the releasing speed of gentamicin decreased after CNTs was added into the CaP/chitosan coating for immersion loading and EPD loading. The cell viability of Mg based CaP/chitosan/CNTs was higher than that of Mg based CaP/chitosan from 16 days to 90 days. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  5. A microfluidics-based mobility shift assay to identify new inhibitors of β-secretase for Alzheimer's disease.

    PubMed

    Liu, Rongfeng; Liu, Yu-Chih; Meng, Junwei; Zhu, Haiyan; Zhang, Xuehong

    2017-11-01

    The β-secretase (BACE1) initiates the generation of toxic amyloid-β peptide (Aβ) from amyloid-β precursor protein (APP), which was widely considered to play a key role in the pathogenesis of Alzheimer's disease (AD). Here, a novel microfluidics-based mobility shift assay (MMSA) was developed, validated, and applied for the screening of BACE1 inhibitors for AD. First, the BACE1 activity assay was established with a new fluorescent peptide substrate (FAM-EVNLDAEF) derived from the Swedish mutant APP, and high-quality ratiometric data were generated in both endpoint and kinetic modes by electrophoretic separation of peptide substrate from the BACE1 cleaved product (FAM-EVNL) before fluorescence quantification. To validate the assay, the inhibition and kinetic parameter values of two known inhibitors (AZD3839 and AZD3293) were evaluated, and the results were in good agreement with those reported by other methods. Finally, the assay was applied to screen for new inhibitors from a 900-compound library in a 384-well format, and one novel hit (IC 50 = 26.5 ± 1.5 μM) was identified. Compared with the common fluorescence-based assays, the primary advantage of the direct MMSA was to discover novel BACE1 inhibitors with lower auto-fluorescence interference, and its superb capability for kinetic study. Graphical abstract Microfluidics-based mobility shift assay for BACE1.

  6. Optical tweezing electrophoresis of single biotinylated colloidal particles for avidin concentration measurement

    NASA Astrophysics Data System (ADS)

    Brans, Toon; Strubbe, Filip; Schreuer, Caspar; Neyts, Kristiaan; Beunis, Filip

    2015-06-01

    We present a novel approach for label-free concentration measurement of a specific protein in a solution. The technique combines optical tweezers and microelectrophoresis to establish the electrophoretic mobility of a single microparticle suspended in the solution. From this mobility measurement, the amount of adsorbed protein on the particle is derived. Using this method, we determine the concentration of avidin in a buffer solution. After calibration of the setup, which accounts for electro-osmotic flow in the measurement device, the mobilities of both bare and biotinylated microspheres are measured as a function of the avidin concentration in the mixture. Two types of surface adsorption are identified: the biotinylated particles show specific adsorption, resulting from the binding of avidin molecules with biotin, at low avidin concentrations (below 0.04 μg/ml) while at concentrations of several μg/ml non-specific on both types of particles is observed. These two adsorption mechanisms are incorporated in a theoretical model describing the relation between the measured mobility and the avidin concentration in the mixture. This model describes the electrophoretic mobility of these particles accurately over four orders of magnitude of the avidin concentration.

  7. Molecular characterization of erythrocyte glucose-6-phosphate dehydrogenase deficiency in Al-Ain District, United Arab Emirates.

    PubMed

    Bayoumi, R A; Nur-E-Kamal, M S; Tadayyon, M; Mohamed, K K; Mahboob, B H; Qureshi, M M; Lakhani, M S; Awaad, M O; Kaeda, J; Vulliamy, T J; Luzzatto, L

    1996-01-01

    In a cross-sectional study, the activity, electrophoretic mobility and genotypes of glucose-6-phosphate dehydrogenase (G6PD) were determined among healthy, UAE national school boys from Al-Ain District in the United Arab Emirates, The prevalence of G6PD deficiency in this population sample was 11%. The majority of G6PD-deficient subjects were descendants of Omani, Baluchi or Yemeni migrants. Of 18 deficient subjects, 16 had an enzyme activity of < 10% of normal while 2 had an activity of just above 10%. Electrophoresis was performed on 166 samples and showed that, apart from deficient samples, all had the normal mobility of G6PD type B. Of the 18 deficient subjects, 14 had the B type mobility of G6PD Mediterranean and 4 had the A type mobility of G6PD A-. Genotyping demonstrated that 10 had the Mediterranean mutation while 3 had the A- mutation, consistent with their electrophoretic mobility. Another 3 had the G6PD Aures mutation, recently described as polymorphic in Algeria and Spain. The mutations in the remaining 2 subjects have not yet been identified.

  8. Cd Mobility in Anoxic Fe-Mineral-Rich Environments - Potential Use of Fe(III)-Reducing Bacteria in Soil Remediation

    NASA Astrophysics Data System (ADS)

    Muehe, E. M.; Adaktylou, I. J.; Obst, M.; Schröder, C.; Behrens, S.; Hitchcock, A. P.; Tylsizczak, T.; Michel, F. M.; Krämer, U.; Kappler, A.

    2014-12-01

    Agricultural soils are increasingly burdened with heavy metals such as Cd from industrial sources and impure fertilizers. Metal contaminants enter the food chain via plant uptake from soil and negatively affect human and environmental health. New remediation approaches are needed to lower soil metal contents. To apply these remediation techniques successfully, it is necessary to understand how soil microbes and minerals interact with toxic metals. Here we show that microbial Fe(III) reduction initially mobilizes Cd before its immobilization under anoxic conditions. To study how microbial Fe(III) reduction influences Cd mobility, we isolated a new Cd-tolerant, Fe(III)-reducing Geobacter sp. from a heavily Cd-contaminated soil. In lab experiments, this Geobacter strain first mobilized Cd from Cd-loaded Fe(III) hydroxides followed by precipitation of Cd-bearing mineral phases. Using Mössbauer spectroscopy and scanning electron microscopy, the original and newly formed Cd-containing Fe(II) and Fe(III) mineral phases, including Cd-Fe-carbonates, Fe-phosphates and Fe-(oxyhydr)oxides, were identified and characterized. Using energy-dispersive X-ray spectroscopy and synchrotron-based scanning transmission X-ray microscopy, Cd was mapped in the Fe(II) mineral aggregates formed during microbial Fe(III) reduction. Microbial Fe(III) reduction mobilizes Cd prior to its precipitation in Cd-bearing mineral phases. The mobilized Cd could be taken up by phytoremediating plants, resulting in a net removal of Cd from contaminated sites. Alternatively, Cd precipitation could reduce Cd bioavailability in the environment, causing less toxic effects to crops and soil microbiota. However, the stability and thus bioavailability of these newly formed Fe-Cd mineral phases needs to be assessed thoroughly. Whether phytoremediation or immobilization of Cd in a mineral with reduced Cd bioavailability are feasible mechanisms to reduce toxic effects of Cd in the environment remains to be

  9. Biologically driven neural platform invoking parallel electrophoretic separation and urinary metabolite screening.

    PubMed

    Page, Tessa; Nguyen, Huong Thi Huynh; Hilts, Lindsey; Ramos, Lorena; Hanrahan, Grady

    2012-06-01

    This work reveals a computational framework for parallel electrophoretic separation of complex biological macromolecules and model urinary metabolites. More specifically, the implementation of a particle swarm optimization (PSO) algorithm on a neural network platform for multiparameter optimization of multiplexed 24-capillary electrophoresis technology with UV detection is highlighted. Two experimental systems were examined: (1) separation of purified rabbit metallothioneins and (2) separation of model toluene urinary metabolites and selected organic acids. Results proved superior to the use of neural networks employing standard back propagation when examining training error, fitting response, and predictive abilities. Simulation runs were obtained as a result of metaheuristic examination of the global search space with experimental responses in good agreement with predicted values. Full separation of selected analytes was realized after employing optimal model conditions. This framework provides guidance for the application of metaheuristic computational tools to aid in future studies involving parallel chemical separation and screening. Adaptable pseudo-code is provided to enable users of varied software packages and modeling framework to implement the PSO algorithm for their desired use.

  10. Preparation and encapsulation of white/yellow dual colored suspensions for electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Han, Jingjing; Li, Xiaoxu; Feng, Yaqing; Zhang, Bao

    2014-11-01

    C.I. Pigment Yellow 181 (PY181) composite particles encapsulated by polyethylene (PE) were prepared by dispersion polymerization method, and C.I. Pigment Yellow 110 (PY110) composite particles encapsulated by polystyrene (PS) with mini-emulsion polymerization method were achieved, respectively. The modified pigments were characterized by fourier transform infrared spectroscopy, scanning electron microscope and transmission electron microscope. Compared with the PE-coated PY 181 pigments, the PS-coated PY-110 particles had a narrow particle size distribution, regular spherical and average particle size of 450 nm. Suspension 1 and suspension 3 were prepared by the two composite particles dispersed in isopar M. A chromatic electrophoretic display cell consisting of yellow particles was successfully fabricated using dispersions of yellow ink particles in a mixed dielectric solvent with white particles as contrast. The response behavior and the contrast ratio to the electric voltage were also examined. The contrast ratio of pigments modified by polystyrene was 1.48, as well as the response time was 2 s, which were better than those of pigments modified by polyethylene.

  11. Genetic and developmental variation of hemoglobin in the deermouse, Peromyscus maniculatus.

    PubMed

    Maybank, K M; Dawson, W D

    1976-04-01

    A genetic investigation of electrophoretic hemoglobin variants of the deermouse, Peromyscus maniculatus, shows three alleles, Hblf, Hblr, and Hblo, at a duplicated site controlling the six adult phenotypes. The Hblf allele has not been described previously. The hemoglobin locus is not closely linked to the albino locus. Fetal hemoglobin is distinct from any of the adult components and has a slower electrophoretic mobility. The fetal phenotype changes to the adult type between the days 15 and 18 of prenatal life.

  12. A review of light-scattering techniques for the study of colloids in natural waters

    USGS Publications Warehouse

    Rees, T.F.

    1987-01-01

    In order to understand the movement of colloidal materials in natural waters, we first need to have a means of quantifying their physical characteristics. This paper reviews three techniques which utilize light-scattering phenomena to measure the translational diffusion coefficient, the rotational diffusion coefficient, and the electrophoretic mobility of colloids suspended in water. Primary emphasis is to provide sufficient theoretical detail so that hydrologists can evaluate the utility of photon correlation spectrometry, electrophoretic light scattering, and electric birefringence analysis. ?? 1987.

  13. EMSA Analysis of DNA Binding By Rgg Proteins.

    PubMed

    LaSarre, Breah; Federle, Michael J

    2013-08-20

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function ( e.g. interruption of DNA-binding in some cases).

  14. Characterization of gold nanoparticles with different hydrophilic coatings via capillary electrophoresis and Taylor dispersion analysis. Part I: determination of the zeta potential employing a modified analytic approximation.

    PubMed

    Pyell, Ute; Jalil, Alaa H; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J

    2015-07-15

    Taking gold nanoparticles with different hydrophilic coatings as an example, it is investigated whether capillary electrophoresis in combination with Taylor dispersion analysis allows for the precise determination of mean electrophoretic mobilities, electrophoretic mobility distributions, and zeta potentials in a matrix of exactly known composition and the calibration-free determination of number-weighted mean hydrodynamic radii. Our experimental data confirm that the calculation of the zeta potential for colloidal nanoparticles with ζ>25 mV requires to take the relaxation effect into account. Because of the requirement to avoid particle-wall interactions, a solution of disodiumtetraborate decahydrate (borax) in deionized water had been selected as suitable electrolyte. Measurements of the electrophoretic mobility at different ionic strength and application of the analytic approximation developed by Ohshima show that in the present case of a buffered solution with a weak electrolyte co-ion and a strong electrolyte counterion, the effective ionic drag coefficient should be approximated with the ionic drag coefficient of the counterion. The obtained results are in good agreement with theoretical expectations regarding the dependence of the zeta potential and the electrokinetic surface charge density on the ionic strength. We also show that Taylor dispersion analysis (besides estimation of the number-weighted mean hydrodynamic radius) provides additional information on the type and width of the number-weighted particle distribution. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria.

    PubMed

    Jimenez-Salgado, T; Fuentes-Ramirez, L E; Tapia-Hernandez, A; Mascarua-Esparza, M A; Martinez-Romero, E; Caballero-Mellado, J

    1997-09-01

    Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N2-fixing isolates had some features in common with the genus Acetobacter but should not be assigned to the species Acetobacter diazotrophicus because they differed from A. diazotrophicus in morphological and biochemical traits and were largely divergent in electrophoretic mobility patterns of metabolic enzymes at coefficients of genetic distance as high as 0.950. In addition, these N2-fixing acetobacteria differed in the small-subunit rRNA restriction fragment length polymorphism patterns obtained with EcoRI, and they exhibited very low DNA-DNA homology levels, ranging from 11 to 15% with the A. diazotrophicus reference strain PAI 5T. Thus, some of the diazotrophic acetobacteria recovered from the rhizosphere of coffee plants may be regarded as N2-fixing species of the genus Acetobacter other than A. diazotrophicus. Endophytic diazotrophic bacteria may be more prevalent than previously thought, and perhaps there are many more potentially beneficial N2-fixing bacteria which can be isolated from other agronomically important crops.

  16. Method for Single-Cell Mass and Electrophoretic Mobility Measurement

    DTIC Science & Technology

    2010-02-01

    Staphylococcus Aureus . The species of the contaminant was determined by catalase test and visual comparison with cultured S. Epidermidis. In this experiment...mnicron’crtrVs)) Corrected EPM Hatogam for teratior 2 d) p 0.3 10 I EPM ((rii n*cmy(V**)) CO, ?rz A ) WO Buoyart Mass vs. EPM forSuspected S. Aureus . 583 V...2 -1 E PM ((n cror*crnYC*) Cxnected EPM His-ograrr for Suspected S. Aureus at - - 332 V/cm EPM ((rnicron*cmY(V’s)) Figure 5-3: Integrated measurements

  17. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed

    EPA Science Inventory

    Bed sediments of streams and rivers may store high concentrations of fecal indicator bacteria (FIB) and pathogens. Due to resuspension events, these contaminants can be mobilized into the water column and affect overall water quality. Other bacterial indicators such as microbial ...

  18. A Review of Bacteria-Animal Lateral Gene Transfer May Inform Our Understanding of Diseases like Cancer

    PubMed Central

    Robinson, Kelly M.; Sieber, Karsten B.; Dunning Hotopp, Julie C.

    2013-01-01

    Lateral gene transfer (LGT) from bacteria to animals occurs more frequently than was appreciated prior to the advent of genome sequencing. In 2007, LGT from bacterial Wolbachia endosymbionts was detected in ∼33% of the sequenced arthropod genomes using a bioinformatic approach. Today, Wolbachia/host LGT is thought to be widespread and many other cases of bacteria-animal LGT have been described. In insects, LGT may be more frequently associated with endosymbionts that colonize germ cells and germ stem cells, like Wolbachia endosymbionts. We speculate that LGT may occur from bacteria to a wide variety of eukaryotes, but only becomes vertically inherited when it occurs in germ cells. As such, LGT may happen routinely in somatic cells but never become inherited or fixed in the population. Lack of inheritance of such mutations greatly decreases our ability to detect them. In this review, we propose that such noninherited bacterial DNA integration into chromosomes in human somatic cells could induce mutations leading to cancer or autoimmune diseases in a manner analogous to mobile elements and viral integrations. PMID:24146634

  19. Diverse metal reduction and nano- mineral formation by metal-reducing bacteria enriched from inter-tidal flat sediments

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Park, B.; Seo, H.; Roh, Y.

    2009-12-01

    Dissimilatory metal-reducing bacteria utilize diverse metal oxides as electron acceptors and couple this microbial metal reduciton to growth. However, the microbe-metal interactions playing important roles in the metal geochemistry and organic matter degradation in the tidal flat sediments have not been uncovered enough to employ in various environmental and industrial applications. The objective of this study was to examine biomineralization and bioremediation by the facultative metal-reducing bacteria isolated from the inter-tidal flat sediments in southwestern of Korea. 16S-rRNA analysis showed bacterial consortium mainly consists of genus of Clostridium sp. The enriched bacteria were capable of reducing diverse metals such as iron oxide, maganese oxide, Cr(VI) and Se(VI) during glucose fermentation process at room temperature. The bacteria reduced highly toxic and reactive elements such as Cr(VI) and Se(VI) to Cr(III) and Se(0). The results showed that microbial processes induced transformation from toxic states of heavy metals to less toxic and mobile states in natural environments. Andthe bacteria also reduced iron oxyhydroxide such as ferrihydrite and akaganeite (β-FeOOH) and formed nanometer-sized magnetite (Fe3O4). This study indicates microbial processes not only can be used for bioremediation of inorganic contaminants existing in the marine environments, but also form the magnetite nanoparticles which are exhibit superparamagnetic properties that can be useful for relevant medical and industrial applications.

  20. Putting life on ice: bacteria that bind to frozen water.

    PubMed

    Bar Dolev, Maya; Bernheim, Reut; Guo, Shuaiqi; Davies, Peter L; Braslavsky, Ido

    2016-08-01

    Ice-binding proteins (IBPs) are typically small, soluble proteins produced by cold-adapted organisms to help them avoid ice damage by either resisting or tolerating freezing. By contrast, the IBP of the Antarctic bacterium Marinomonas primoryensis is an extremely long, 1.5 MDa protein consisting of five different regions. The fourth region, a 34 kDa domain, is the only part that confers ice binding. Bioinformatic studies suggest that this IBP serves as an adhesin that attaches the bacteria to ice to keep it near the top of the water column, where oxygen and nutrients are available. Using temperature-controlled cells and a microfluidic apparatus, we show that M. primoryensis adheres to ice and is only released when melting occurs. Binding is dependent on the mobility of the bacterium and the functionality of the IBP domain. A polyclonal antibody raised against the IBP region blocks bacterial ice adhesion. This concept may be the basis for blocking biofilm formation in other bacteria, including pathogens. Currently, this IBP is the only known example of an adhesin that has evolved to bind ice. © 2016 The Authors.

  1. Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors.

    PubMed

    Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen

    2012-10-22

    Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L) Substrates

    PubMed Central

    Raddaha, Namir S.; Cordero-Arias, Luis; Cabanas-Polo, Sandra; Virtanen, Sannakaisa; Roether, Judith A.; Boccaccini, Aldo R.

    2014-01-01

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO2) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings. PMID:28788541

  3. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution.

    PubMed

    Toro, Nicolás; Martínez-Abarca, Francisco; Molina-Sánchez, María D; García-Rodríguez, Fernando M; Nisa-Martínez, Rafael

    2018-01-01

    Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti , the nitrogen-fixing endosymbiont of legumes of genus Medicago , harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation.

  4. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution

    PubMed Central

    Toro, Nicolás; Martínez-Abarca, Francisco; Molina-Sánchez, María D.; García-Rodríguez, Fernando M.; Nisa-Martínez, Rafael

    2018-01-01

    Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti, the nitrogen-fixing endosymbiont of legumes of genus Medicago, harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation. PMID:29670598

  5. Methods for functionalization of microsized polystyrene beads with titania nanoparticles for cathodic electrophoretic deposition.

    PubMed

    Radice, S; Kern, P; Dietsch, H; Mischler, S; Michler, J

    2008-02-15

    Functionalization of colloidal particles based on the use of polyelectrolytes and heterocoagulation was combined with electrophoretic deposition (EPD), with the aim of depositing titania-polystyrene (TiO(2)-PS) composite particles on Ti6Al4V substrates. The composite particles were obtained by heterocoagulation of TiO(2) nanoparticles on the surface of monosized polystyrene beads of 4.6 microm in diameter. Two alternative methods were developed for the preparation of the TiO(2)-PS suspensions in organic fluids for cathodic electrodeposition. The first method was carried out in alkaline aqueous medium with the use of polyelectrolytes and intermediate control measurements of zeta potential, conductivity, and pH; the second one was carried out directly in the organic solvent used for EPD, typically isopropanol. Examples of deposits obtained by EPD in both suspensions and a comparative analysis between the two methods are presented.

  6. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  7. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.

    1987-09-04

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.

  8. Bacterial cell surface properties: role of loosely bound extracellular polymeric substances (LB-EPS).

    PubMed

    Zhao, Wenqiang; Yang, Shanshan; Huang, Qiaoyun; Cai, Peng

    2015-04-01

    This study investigated the effect of loosely bound extracellular polymeric substances (LB-EPS) on the comprehensive surface properties of four bacteria (Bacillus subtilis, Streptococcus suis, Escherichia coli and Pseudomonas putida). The removal of LB-EPS from bacterial surfaces by high-speed centrifugation (12,000×g) was confirmed by SEM images. Viability tests showed that the percentages of viable cells ranged from 95.9% to 98.0%, and no significant difference was found after treatment (P>0.05). FTIR spectra revealed the presence of phosphodiester, carboxylic, phosphate, and amino functional groups on bacteria surfaces, and the removal of LB-EPS did not alter the types of cell surface functional groups. Potentiometric titration results suggested the total site concentrations on the intact bacteria were higher than those on LB-EPS free bacteria. Most of the acidity constants (pKa) were almost identical, except the increased pKa values of phosphodiester groups on LB-EPS free S. suis and E. coli surfaces. The electrophoretic mobilities and hydrodynamic diameters of the intact and LB-EPS free bacteria were statistically unchanged (P>0.05), indicating LB-EPS had no influence on the net surface charges and size distribution of bacteria. However, LB-ESP could enhance cell aggregation processes. The four LB-EPS free bacteria all exhibited fewer hydrophobicity values (26.1-65.0%) as compared to the intact cells (47.4-69.3%), suggesting the removal of uncharged nonpolar compounds (e.g., carbohydrates) in LB-EPS. These findings improve our understanding of the changes in cell surface characterizations induced by LB-EPS, and have important implications for assessing the role of LB-EPS in bacterial adhesion and transport behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Mobility of long-chain DNA in two-dimensional artificial gels

    NASA Astrophysics Data System (ADS)

    Turner, Stephen W. P.; Han, Jongyoon; Craighead, Harold G.

    2000-03-01

    In this study, a two-dimensional array of nanofabricated obstacles is used as an artificial gel to study the electrophoretic mobility dependence of DNA as a function of pore size, molecule length and electric field. Limitations in feature size have prevented previous studies from testing the crossover from the separating to the non-separating regime predicted by the biased reptation model of Lumpkin, Dejardin and Zimm[1] and the modified model of Duke, Semenov and Viovy.[2] That limitation is overcome in this work with the use of electron beam lithography to define features as small as 30 nm. Attainment of these feature sizes was made possible by the use of a sacrificial-layer-based technique for fluidics fabrication.[3] A novel band-launching strategy is used to provide band separation data for the first time in this system. Molecule lengths between 5 and 150 kilobases are studied for electric field strengths from 0.1 to 20 Volts per meter. [1] O. Lumpkin, P. Dejardin and B. Zimm, Biopolymers, Vol. 24, 1573-1593 (1985) [2] T. Duke, A. Semenov and J. Viovy, Phys. Rev. Lett. Vol. 69, No. 22, 3260-3263 (1992) [3] S. Turner, A. Perez, A. Lopez, and H. Craighead, J. Vac. Sci. Technol. B 16(6) 3835-3840 (1998)

  10. Effects of motor patterns on water-soluble and membrane proteins and cholinesterase activity in subcellular fractions of rat brain tissue

    NASA Technical Reports Server (NTRS)

    Pevzner, L. Z.; Venkov, L.; Cheresharov, L.

    1980-01-01

    Albino rats were kept for a year under conditions of daily motor load or constant hypokinesia. An increase in motor activity results in a rise in the acetylcholinesterase activity determined in the synaptosomal and purified mitochondrial fractions while hypokinesia induces a pronounced decrease in this enzyme activity. The butyrylcholinesterase activity somewhat decreases in the synaptosomal fraction after hypokinesia but does not change under the motor load pattern. Motor load causes an increase in the amount of synaptosomal water-soluble proteins possessing an intermediate electrophoretic mobility and seem to correspond to the brain-specific protein 14-3-2. In the synaptosomal fraction the amount of membrane proteins with a low electrophoretic mobility and with the cholinesterase activity rises. Hypokinesia, on the contrary, decreases the amount of these membrane proteins.

  11. Silica-coated titania and zirconia colloids for subsurface transport field experiments

    USGS Publications Warehouse

    Ryan, Joseph N.; Elimelech, Menachem; Baeseman, Jenny L.; Magelky, Robin D.

    2000-01-01

    Silica-coated titania (TiO2) and zirconia (ZrO2) colloids were synthesized in two sizes to provide easily traced mineral colloids for subsurface transport experiments. Electrophoretic mobility measurements showed that coating with silica imparted surface properties similar to pure silica to the titania and zirconia colloids. Measurements of steady electrophoretic mobility and size (by dynamic light scattering) over a 90-day period showed that the silica-coated colloids were stable to aggregation and loss of coating. A natural gradient field experiment conducted in an iron oxide-coated sand and gravel aquifer also showed that the surface properties of the silica-coated colloids were similar. Colloid transport was traced at μg L-1 concentrations by inductively coupled plasma-atomic emission spectroscopy measurement of Ti and Zr in acidified samples.

  12. Separability of electrostatic and hydrodynamic forces in particle electrophoresis

    NASA Astrophysics Data System (ADS)

    Todd, Brian A.; Cohen, Joel A.

    2011-09-01

    By use of optical tweezers we explicitly measure the electrostatic and hydrodynamic forces that determine the electrophoretic mobility of a charged colloidal particle. We test the ansatz of O'Brien and White [J. Chem. Soc. Faraday IIJCFTBS0300-923810.1039/f29787401607 74, 1607 (1978)] that the electrostatically and hydrodynamically coupled electrophoresis problem is separable into two simpler problems: (1) a particle held fixed in an applied electric field with no flow field and (2) a particle held fixed in a flow field with no applied electric field. For a system in the Helmholtz-Smoluchowski and Debye-Hückel regimes, we find that the electrostatic and hydrodynamic forces measured independently accurately predict the electrophoretic mobility within our measurement precision of 7%; the O'Brien and White ansatz holds under the conditions of our experiment.

  13. Electrokinetic properties of polymer colloids

    NASA Technical Reports Server (NTRS)

    Micale, F. J.; Fuenmayor, D. Y.

    1986-01-01

    The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.

  14. DNA mobility modifier

    DOEpatents

    Barron, Annelise

    2002-01-01

    Polyamides comprising at least one hydrophilic C.sub.1 -C.sub.10 hydrocarbyl substituent on an amide nitrogen atom, and methods for producing and using the same is provided. In particular, polyamides of the formula: ##STR1## and methods for using the same for altering the ratio of charge/translational frictional drag of binding polymers to allow electrophoretic separation of polynucleotides or analogs thereof in a non-sieving liquid medium is provided, where a, q, L.sup.1, P.sup.1, Q.sup.1, R, R.sup.1, R.sup.10 and R.sup.11 are those described herein.

  15. DNA mobility modifier

    DOEpatents

    Barron, Annelise E.

    2004-04-20

    Polyamides comprising at least one hydrophilic C.sub.1 -C.sub.10 hydrocarbyl substituent on an amide nitrogen atom, and methods for producing and using the same is provided. In particular, polyamides of the formula: ##STR1## and methods for using the same for altering the ratio of charge/translational frictional drag of binding polymers to allow electrophoretic separation of polynucleotides or analogs thereof in a non-sieving liquid medium is provided, where a, q, L.sup.1, P.sup.1, Q.sup.1, R, R.sup.1, R.sup.10 and R.sup.11 are those described herein.

  16. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  17. [Immobilization of introduced bacteria and degradation of pyrene and benzo(alpha) pyrene in soil by immobilized bacteria].

    PubMed

    Wang, Xin; Li, Peijun; Song, Shouzhi; Zhong, Yong; Zhang, Hui; Verkhozina, E V

    2006-11-01

    In this study, introduced bacteria were applied in the bioremediation of pyrene and benzo (alpha) pyrene in organic pollutants-contaminated soils, aimed to test whether it was feasible to introduce bacteria to environmental engineering. Three introduced bacteria were immobilized separately or together to degrade the pyrene and benzo (alpha) pyrene in soil, taking dissociated bacteria as the control, and comparing with three indigenous bacteria. The results showed that immobilized introduced bacteria, either single or mixed, had higher degradation efficiency than dissociated bacteria. Compared with indigenous bacteria, some introduced bacteria had predominance to some degree. The introduced bacteria-mixture had better degradation efficiency after being immobilized. The degradation rate of pyrene and benzo(alpha) pyrene after treated with immobilized bacteria-( B61-B67)-mixture for 96 hours was 43.49% and 38.55%, respectively.

  18. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  19. Mobile Phones as a Potential Vehicle of Infection in a Hospital Setting.

    PubMed

    Chao Foong, Yi; Green, Mark; Zargari, Ahmad; Siddique, Romana; Tan, Vanessa; Brain, Terry; Ogden, Kathryn

    2015-01-01

    The objective of this article is to investigate the potential role of mobile phones as a reservoir for bacterial colonization and the risk factors for bacterial colonization in a hospital setting. We screened 226 staff members at a regional Australian hospital (146 doctors and 80 medical students) between January 2013 and March 2014. The main outcomes of interest were the types of microorganisms and the amount of contamination of the mobile phones. This study found a high level of bacterial contamination (n = 168/226, 74%) on the mobile phones of staff members in a tertiary hospital, with similar organisms isolated from the staff member's dominant hand and mobile phones. While most of the isolated organisms were normal skin flora, a small percentage were potentially pathogenic (n = 12/226, 5%). Being a junior medical staff was found to be a risk factor for heavy microbial growth (OR 4.00, 95% CI 1.54, 10.37). Only 31% (70/226) of our participants reported cleaning their phones routinely, and only 21% (47/226) reported using alcohol containing wipes on their phones. This study demonstrates that mobile phones are potentially vehicles for pathogenic bacteria in a hospital setting. Only a minority of our participants reported cleaning their phones routinely. Disinfection guidelines utilizing alcohol wipes should be developed and implemented.

  20. Prey Range and Genome Evolution of Halobacteriovorax marinus Predatory Bacteria from an Estuary

    PubMed Central

    Enos, Brett G.; Anthony, Molly K.; DeGiorgis, Joseph A.

    2018-01-01

    ABSTRACT Halobacteriovorax strains are saltwater-adapted predatory bacteria that attack Gram-negative bacteria and may play an important role in shaping microbial communities. To understand how Halobacteriovorax strains impact ecosystems and develop them as biocontrol agents, it is important to characterize variation in predation phenotypes and investigate Halobacteriovorax genome evolution. We isolated Halobacteriovorax marinus BE01 from an estuary in Rhode Island using Vibrio from the same site as prey. Small, fast-moving, attack-phase BE01 cells attach to and invade prey cells, consistent with the intraperiplasmic predation strategy of the H. marinus type strain, SJ. BE01 is a prey generalist, forming plaques on Vibrio strains from the estuary, Pseudomonas from soil, and Escherichia coli. Genome analysis revealed extremely high conservation of gene order and amino acid sequences between BE01 and SJ, suggesting strong selective pressure to maintain the genome in this H. marinus lineage. Despite this, we identified two regions of gene content difference that likely resulted from horizontal gene transfer. Analysis of modal codon usage frequencies supports the hypothesis that these regions were acquired from bacteria with different codon usage biases than H. marinus. In one of these regions, BE01 and SJ carry different genes associated with mobile genetic elements. Acquired functions in BE01 include the dnd operon, which encodes a pathway for DNA modification, and a suite of genes involved in membrane synthesis and regulation of gene expression that was likely acquired from another Halobacteriovorax lineage. This analysis provides further evidence that horizontal gene transfer plays an important role in genome evolution in predatory bacteria. IMPORTANCE Predatory bacteria attack and digest other bacteria and therefore may play a role in shaping microbial communities. To investigate phenotypic and genotypic variation in saltwater-adapted predatory bacteria, we

  1. Endospore surface properties of commonly used Bacillus anthracis surrogates vary in aqueous solution

    EPA Science Inventory

    The hydrophobic character and electrophoretic mobility of microorganisms are vital aspects of understanding their interactions with the environment. These properties are fundamental in fate-and-transport, physiological, and virulence studies, and thus integral in surrogate select...

  2. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed

    USDA-ARS?s Scientific Manuscript database

    Bed sediments of streams and rivers may store high concentrations of fecal indicator bacteria (FIB) and pathogens. These contaminants can be mobilized into the water column due to resuspension events, thus affecting overall water quality. Along with the contaminants, other markers such as microbia...

  3. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  4. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    PubMed Central

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  5. Electrophoretic deposition of bi-layered LSM/LSM-YSZ cathodes for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Itagaki, Yoshiteru; Watanabe, Shinji; Yamaji, Tsuyoshi; Asamoto, Makiko; Yahiro, Hidenori; Sadaoka, Yoshihiko

    2012-09-01

    Bi-layered cathodes with the LSM/LSM-YSZ structure for solid oxide fuel cells were successfully formed on the carbon-sputtered surface of a YSZ sheet by electrophoretic deposition (EPD). The thicknesses of the first layer of LSM-YSZ (LY) and the second layer of La0.8Sr0.2MnO3 (LSM) could be controlled by adjusting the deposition time in the EPD process. The cathodic properties of the bi-layered structures were superior to those of the mono-layered structures, and were dependent on the thickness of each layer. Decreasing the thickness of the first layer and increasing that of the second layer tended to reduce both polarization and ohmic resistances. The optimal thickness of the first layer at the operating temperature of 600 °C was 4 μm, suggesting that an effective three-phase boundary was extended from the interface between the electrolyte and cathode film to around 4 μm thickness.

  6. Electrophoretic deposition of double-layer HA/Al composite coating on NiTi.

    PubMed

    Karimi, Esmaeil; Khalil-Allafi, Jafar; Khalili, Vida

    2016-01-01

    In order to improve the bioactivity of NiTi alloys, which are being known as the suitable materials for biomedical applications, numerous NiTi disks were electrophoretically coated by hetero-coagulated hydroxyapatite/aluminum composite coatings in three main voltages from suspensions with different Al concentrations. In this paper, the amount of Ni ions release and bioactivity of prepared samples as well as bonding strength of the coating to substrate were investigated. The surface characterization of the coating by XRD, EDX, SEM, and FTIR showed that HA particles bonded by Al particles. It caused the formation of a free crack coating on NiTi disks. Moreover, the bonding strength of HA/Al coatings to NiTi substrate were improved by two times as compared to that of the pure HA coatings. Immersing of coated samples in SBF for 1 week showed that apatite formation ability was improved on HA/Al composite coating and Ni ions release from the surface of composite coating decreased. These results induce the appropriate bioactivity and biocompatibility of the deposited HA/Al composite coatings on NiTi disks. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Two-dimensional electrophoretic analysis of nuclear matrix proteins in human colon adenocarcinoma.

    PubMed

    Toumpanaki, A; Baltatzis, G E; Gaitanarou, E; Seretis, E; Toumpanakis, C; Aroni, K; Kittas, Christos; Voloudakis-Baltatzis, I E

    2009-01-01

    The aim of the present study was to observe possible qualitative and quantitative expression differences between nuclear matrix proteins (NMPs) of human colon adenocarcinoma and their mirror biopsies, using the technique of two-dimensional gel electrophoresis, in order to identify the existence of specific NMP fingerprints for colon cancer. Colon tissues were examined ultrastructurally and NMPs were isolated biochemically, by serial extraction of lipids, soluble proteins, DNA, RNA, and intermediate filaments and were separated according to their isoelectric point (pI) and their molecular weight (MW) by high-resolution two-dimensional electrophoresis (2D). By comparing the 2D electropherograms of colon cancer tissues and mirror biopsy tissues we observed qualitative and quantitative expression differences between their NMPs but also a differentiation of NMP composition between the stages of malignancy. Moreover, despite the similarities between mirror biopsy samples, a highlight percentage of exception was observed. Electrophoretic results provided in this study demonstrated that the examined NMPs could be further investigated as potential markers for detection of colorectal cancer in an early stage, for the assessment of the disease progression, as well as useful tools for individual therapy and for preventing a possible recurrence of cancer and metastasis.

  8. Structure, diversity, and mobility of the Salmonella pathogenicity island 7 family of integrative and conjugative elements within Enterobacteriaceae.

    PubMed

    Seth-Smith, Helena M B; Fookes, Maria C; Okoro, Chinyere K; Baker, Stephen; Harris, Simon R; Scott, Paul; Pickard, Derek; Quail, Michael A; Churcher, Carol; Sanders, Mandy; Harmse, Johan; Dougan, Gordon; Parkhill, Julian; Thomson, Nicholas R

    2012-03-01

    Integrative and conjugative elements (ICEs) are self-mobile genetic elements found in the genomes of some bacteria. These elements may confer a fitness advantage upon their host bacteria through the cargo genes that they carry. Salmonella pathogenicity island 7 (SPI-7), found within some pathogenic strains of Salmonella enterica, possesses features indicative of an ICE and carries genes implicated in virulence. We aimed to identify and fully analyze ICEs related to SPI-7 within the genus Salmonella and other Enterobacteriaceae. We report the sequence of two novel SPI-7-like elements, found within strains of Salmonella bongori, which share 97% nucleotide identity over conserved regions with SPI-7 and with each other. Although SPI-7 within Salmonella enterica serovar Typhi appears to be fixed within the chromosome, we present evidence that these novel elements are capable of excision and self-mobility. Phylogenetic analyses show that these Salmonella mobile elements share an ancestor which existed approximately 3.6 to 15.8 million years ago. Additionally, we identified more distantly related ICEs, with distinct cargo regions, within other strains of Salmonella as well as within Citrobacter, Erwinia, Escherichia, Photorhabdus, and Yersinia species. In total, we report on a collection of 17 SPI-7 related ICEs within enterobacterial species, of which six are novel. Using comparative and mutational studies, we have defined a core of 27 genes essential for conjugation. We present a growing family of SPI-7-related ICEs whose mobility, abundance, and cargo variability indicate that these elements may have had a large impact on the evolution of the Enterobacteriaceae.

  9. Horizontal transfer of potential mobile units in phytoplasmas

    PubMed Central

    Ku, Chuan; Lo, Wen-Sui; Kuo, Chih-Horng

    2013-01-01

    Phytoplasmas are uncultivated phytopathogenic bacteria that cause diseases in a wide range of economically important plants. Through secretion of effector proteins, they are able to manipulate their plant hosts to facilitate their multiplication and dispersal by insect vectors. The genome sequences of several phytoplasmas have been characterized to date and a group of putative composite transposons called potential mobile units (PMUs) are found in these highly reduced genomes. Recently, our team reported the genome sequence and comparative analysis of a peanut witches’ broom (PnWB) phytoplasma, the first representative of the phytoplasma 16SrII group. Comparisons between the species phylogeny and the phylogenies of the PMU genes revealed that the PnWB PMU is likely to have been transferred from the 16SrI group. This indicates that PMUs are not only the DNA unit for transposition within a genome, but also for horizontal transfer among divergent phytoplasma lineages. Given the association of PMUs with effector genes, the mobility of PMUs across genomes has important implications for phytoplasma ecology and evolution. PMID:24251068

  10. Horizontal transfer of potential mobile units in phytoplasmas.

    PubMed

    Ku, Chuan; Lo, Wen-Sui; Kuo, Chih-Horng

    2013-09-01

    Phytoplasmas are uncultivated phytopathogenic bacteria that cause diseases in a wide range of economically important plants. Through secretion of effector proteins, they are able to manipulate their plant hosts to facilitate their multiplication and dispersal by insect vectors. The genome sequences of several phytoplasmas have been characterized to date and a group of putative composite transposons called potential mobile units (PMUs) are found in these highly reduced genomes. Recently, our team reported the genome sequence and comparative analysis of a peanut witches' broom (PnWB) phytoplasma, the first representative of the phytoplasma 16SrII group. Comparisons between the species phylogeny and the phylogenies of the PMU genes revealed that the PnWB PMU is likely to have been transferred from the 16SrI group. This indicates that PMUs are not only the DNA unit for transposition within a genome, but also for horizontal transfer among divergent phytoplasma lineages. Given the association of PMUs with effector genes, the mobility of PMUs across genomes has important implications for phytoplasma ecology and evolution.

  11. [Darwin and bacteria].

    PubMed

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  12. Mobile phones and computer keyboards: unlikely reservoirs of multidrug-resistant organisms in the tertiary intensive care unit.

    PubMed

    Smibert, O C; Aung, A K; Woolnough, E; Carter, G P; Schultz, M B; Howden, B P; Seemann, T; Spelman, D; McGloughlin, S; Peleg, A Y

    2018-03-02

    Few studies have used molecular epidemiological methods to study transmission links to clinical isolates in intensive care units. Ninety-four multidrug-resistant organisms (MDROs) cultured from routine specimens from intensive care unit (ICU) patients over 13 weeks were stored (11 meticillin-resistant Staphylococcus aureus (MRSA), two vancomycin-resistant enterococci and 81 Gram-negative bacteria). Medical staff personal mobile phones, departmental phones, and ICU keyboards were swabbed and cultured for MDROs; MRSA was isolated from two phones. Environmental and patient isolates of the same genus were selected for whole genome sequencing. On whole genome sequencing, the mobile phone isolates had a pairwise single nucleotide polymorphism (SNP) distance of 183. However, >15,000 core genome SNPs separated the mobile phone and clinical isolates. In a low-endemic setting, mobile phones and keyboards appear unlikely to contribute to hospital-acquired MDROs. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  14. Mobilization of the relaxable Staphylococcus aureus plasmid pC221 by the conjugative plasmid pGO1 involves three pC221 loci.

    PubMed Central

    Projan, S J; Archer, G L

    1989-01-01

    The Staphylococcus aureus plasmid pC221, a 4.6-kilobase multicopy chloramphenicol resistance plasmid that forms plasmid-protein relaxation complexes, was mobilized for transfer by the conjugative plasmid pGO1. Two open reading frames on the pC221 genome, now designated mobA and mobB, as well as a cis-acting locus, the putative oriT, were shown to be in involved in pC221 mobilization. The mobA (but not mobB) and oriT loci were required for pC221 relaxation, and relaxation was necessary but not sufficient for pC221 mobilization by pGO1. oriT was cloned onto a pE194 derivative and complemented in trans for both relaxation and mobilization. Mobilization of relaxable plasmids in S. aureus appears to be analogous to mobilization by donation observed in gram-negative bacteria. Images PMID:2703461

  15. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.

    PubMed

    Hellal, Jennifer; Guédron, Stéphane; Huguet, Lucie; Schäfer, Jörg; Laperche, Valérie; Joulian, Catherine; Lanceleur, Laurent; Burnol, André; Ghestem, Jean-Philippe; Garrido, Francis; Battaglia-Brunet, Fabienne

    2015-09-01

    Mercury (Hg) mobility and speciation in subsurface aquifers is directly linked to its surrounding geochemical and microbial environment. The role of bacteria on Hg speciation (i.e., methylation, demethylation and reduction) is well documented, however little data is available on their impact on Hg mobility. The aim of this study was to test if (i) Hg mobility is due to either direct iron oxide reduction by iron reducing bacteria (IRB) or indirect iron reduction by sulfide produced by sulfate reducing bacteria (SRB), and (ii) to investigate its subsequent fate and speciation. Experiments were carried out in an original column setup combining geochemical and microbiological approaches that mimic an aquifer including an interface of iron-rich and iron depleted zones. Two identical glass columns containing iron oxides spiked with Hg(II) were submitted to (i) direct iron reduction by IRB and (ii) to indirect iron reduction by sulfides produced by SRB. Results show that in both columns Hg was leached and methylated during the height of bacterial activity. In the column where IRB are dominant, Hg methylation and leaching from the column was directly correlated to bacterial iron reduction (i.e., Fe(II) release). In opposition, when SRB are dominant, produced sulfide induced indirect iron oxide reduction and rapid adsorption of leached Hg (or produced methylmercury) on neoformed iron sulfides (e.g., Mackinawite) or its precipitation as HgS. At the end of the SRB column experiment, when iron-oxide reduction was complete, filtered Hg and Fe concentrations increased at the outlet suggesting a leaching of Hg bound to FeS colloids that may be a dominant mechanism of Hg transport in aquifer environments. These experimental results highlight different biogeochemical mechanisms that can occur in stratified sub-surface aquifers where bacterial activities play a major role on Hg mobility and changes in speciation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ion size effects on the electrokinetics of spherical particles in salt-free concentrated suspensions

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Carrique, Felix; Ruiz-Reina, Emilio

    2012-02-01

    In this work we study the influence of the counterion size on the electrophoretic mobility and on the dynamic mobility of a suspended spherical particle in a salt-free concentrated colloidal suspension. Salt-free suspensions contain charged particles and the added counterions that counterbalance their surface charge. A spherical cell model approach is used to take into account particle-particle electro-hydrodynamic interactions in concentrated suspensions. The finite size of the counterions is considered including an entropic contribution, related with the excluded volume of the ions, in the free energy of the suspension, giving rise to a modified counterion concentration profile. We are interested in studying the linear response of the system to an electric field, thus we solve the different electrokinetic equations by using a linear perturbation scheme. We find that the ionic size effect is quite important for moderate to high particles charges at a given particle volume fraction. In addition for such particle surface charges, both the electrophoretic mobility and the dynamic mobility suffer more important changes the larger the particle volume fraction for each ion size. The latter effects are more relevant the larger the ionic size.

  17. Electrophoretic characterization of the Mammalian nuclear matrix proteome, nuclear envelope, nucleoli and covalently bound ADP-ribose polymers: potential applications to cancer.

    PubMed

    Aranda, Xavier G; Racho, Ronald G; Pacheco-Rodríguez, Gustavo; Alvarez-González, Rafael

    2014-01-01

    Nucleic acid metabolism is biochemically compartmentalized to the nucleus. Thus, it is necessary to define the proteome of the various macromolecular structures within this organelle. We isolated the nuclear matrix (NM) fraction from rat liver by sequential centrifugation steps at 13,000 rpm, staggered between endogenous nuclease treatment for 2 h at 37°C, followed by high-salt (H.S.; 2.0 M NaCl) and non-ionic detergent extractions (0.1%- or 1.0% Triton X-100) to eliminate the bulk of chromosomal DNA/RNA, histone proteins and the nuclear envelope (NE). Integrity of the NM and NE structures was confirmed by electron microscopy. Next, we analyzed the NM proteome on a 20% polyacrylamide gel using the PhastSystem. We observed the absence of histone proteins and the characteristic presence of the lamins by Coomassie blue staining. By contrast, upon silver staining, following electrophoretic separation with a Tris-Borate-EDTA buffer, we observed the NM-associated nucleic RNA and protein-free ADP-ribose polymers. While polymers are found in much lower concentration than RNA in NM, they were purified by affinity chromatography on boronate resin prior to electrophoresis. We observed the electrophoretic resolution of free ADP-ribose chains (5-25 units) by silver staining. The significance of our observations to cancer studies and carcinogenesis is discussed. Copyright© 2014, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  18. Mobil`s Energy Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeneborn, F.C.

    1997-06-01

    Mobil`s Facilities Management Network sponsored a cross-divisional team to reduce energy costs. This team developed an Energy Management Plan to reduce energy costs by $25 million annually throughout all Mobil divisions over the next five years (total of $125 million committed savings). The core of this plan is the belief that energy costs are controllable and should be managed with the expertise that Mobil manages other parts of the business. Areas of focus are economic procurement, efficient consumption, and expertise sharing.

  19. Electrophoretic assembly of organic molecules and composites for electrochemical supercapacitors.

    PubMed

    Su, Y; Zhitomirsky, I

    2013-02-15

    Electrophoretic deposition (EPD) method has been developed for the fabrication of 1-pyrenebutyric acid (PBH) films from aqueous solutions. The films can be deposited at constant voltage or potentiodynamic conditions. The method allowed the formation of 0.1-2 μm thick films, containing needle-shape PBH particles. The deposition mechanism involved the electrophoresis, pH decrease at the anode surface, charge neutralization and formation of insoluble PBH films. The film morphology and shape of the PBH particles are controlled by the π-π stacking mechanism of the polyaromatic PBH molecules. The important finding was the possibility of controlled EPD of multiwalled carbon nanotubes (MWCNTs) using PBH as a charging, dispersing and film forming agent. It was found that at low voltages or low PBH concentrations the deposits contained mainly MWCNT. The increase in the deposition voltage or/and PBH concentration resulted in co-deposition of MWCNT and needle-shape PBH particles. The new approach to the deposition of MWCNT was used for the fabrication of composite MnO(2)-MWCNT films for electrodes of electrochemical supercapacitors, which showed a specific capacitance of 250 F g(-1). The EPD method developed in this investigation paves the way for the deposition of other small organic molecules and composites and their applications in new materials and devices, utilizing functional properties of the organic molecules, CNT, and other advanced materials. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. EMSA Analysis of DNA Binding By Rgg Proteins

    PubMed Central

    LaSarre, Breah; Federle, Michael J.

    2016-01-01

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases). PMID:27430004

  1. Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165

    PubMed Central

    Saroj, Sunil D.; Holmer, Linda; Berengueras, Júlia M.; Jonsson, Ann-Beth

    2017-01-01

    Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence. PMID:28303956

  2. Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165.

    PubMed

    Saroj, Sunil D; Holmer, Linda; Berengueras, Júlia M; Jonsson, Ann-Beth

    2017-03-17

    Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence.

  3. Microbial cell surface characteristics: Elucidating attachment/detachment using hydrophobicity and electrokinetic measurements

    EPA Science Inventory

    The surface properties of microorganisms play an important role in their behavior within the environment. Electrophoretic mobility and cell surface hydrophobicity of bacterial cells influence their initial interaction with surfaces and mediate their stability within an aqueous su...

  4. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  5. Bare laser-synthesized Au-based nanoparticles as nondisturbing surface-enhanced Raman scattering probes for bacteria identification.

    PubMed

    Kögler, Martin; Ryabchikov, Yury V; Uusitalo, Sanna; Popov, Alexey; Popov, Anton; Tselikov, Gleb; Välimaa, Anna-Liisa; Al-Kattan, Ahmed; Hiltunen, Jussi; Laitinen, Riitta; Neubauer, Peter; Meglinski, Igor; Kabashin, Andrei V

    2018-02-01

    The ability of noble metal-based nanoparticles (NPs) (Au, Ag) to drastically enhance Raman scattering from molecules placed near metal surface, termed as surface-enhanced Raman scattering (SERS), is widely used for identification of trace amounts of biological materials in biomedical, food safety and security applications. However, conventional NPs synthesized by colloidal chemistry are typically contaminated by nonbiocompatible by-products (surfactants, anions), which can have negative impacts on many live objects under examination (cells, bacteria) and thus decrease the precision of bioidentification. In this article, we explore novel ultrapure laser-synthesized Au-based nanomaterials, including Au NPs and AuSi hybrid nanostructures, as mobile SERS probes in tasks of bacteria detection. We show that these Au-based nanomaterials can efficiently enhance Raman signals from model R6G molecules, while the enhancement factor depends on the content of Au in NP composition. Profiting from the observed enhancement and purity of laser-synthesized nanomaterials, we demonstrate successful identification of 2 types of bacteria (Listeria innocua and Escherichia coli). The obtained results promise less disturbing studies of biological systems based on good biocompatibility of contamination-free laser-synthesized nanomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Morphology of human embryonic kidney cells in culture after space flight

    NASA Technical Reports Server (NTRS)

    Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.

    1985-01-01

    The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.

  7. Biochemical characteristics of glucose-6-phosphate dehydrogenase variants among the Malays of Singapore with report of a new non-deficient (GdSingapore) and three deficient variants.

    PubMed

    Saha, N; Hong, S H; Wong, H A; Jeyaseelan, K; Tay, J S

    1991-12-01

    Biochemical characteristics of one non-deficient fast G6PD variant (GdSingapore) and six different deficient variants (three new, two Mahidol, one each of Indonesian and Mediterranean) were studied among the Malays of Singapore. The GdSingapore variant had normal enzyme activity (82%) and fast electrophoretic mobilities (140% in TEB buffer, 160% in phosphate and 140% in Tris-HCl buffer systems respectively). This variant is further characterized by normal Km for G6P; utilization of analogues (Gal6P, 2dG6P; dAmNADP), heat stability and pH optimum. The other six deficient G6PD variants had normal electrophoretic mobility in TEB buffer with enzyme activities ranging from 1 to 12% of GdB+. The biochemical characteristics identity them to be 2 Mahidol, 1 Indonesian and 1 Mediterranean variants and three new deficient variants.

  8. Lipopolysaccharides in diazotrophic bacteria.

    PubMed

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  9. Lipopolysaccharides in diazotrophic bacteria

    PubMed Central

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure. PMID:25232535

  10. United States Air Force Summer Faculty Research Program. Management Report. Volume 4

    DTIC Science & Technology

    1988-12-01

    Anderson, N.L. et al (1986). Effects of Aroclor 1254 on proteins of mouse liver: Aplication of two-dimensional electrophoretic protein mapping...transferability of job skill, has surfaced in the context of civilian occupational mobility (Byrne, 1975; Fine, 1957a, 1957b) transitions from military to...considerations from concept through deployment. Defense Management Journal, 16(2), 12-19. Byrne, J. J. (1975). Occupational mobility of workers. Monthly

  11. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1980-01-01

    The following aspects of kidney cell electrophoresis are discussed: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characterization of kidney cells.

  12. Surface Characteristics and Adhesion Behavior of Escherichia coli O157:H7: Role of Extracellular Macromolecules

    USDA-ARS?s Scientific Manuscript database

    Surface macromolecule cleavage experiments were conducted on enterohaemorrhagic Escherichia coli O157:H7 cells to investigate the influence of these macromolecules on cell surface properties. Electrophoretic mobility, hydrophobicity, and titration experiments were carried out on proteinase K treate...

  13. 33 CFR 165.835 - Security Zone; Port of Mobile, Mobile Ship Channel, Mobile, AL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Mobile Ship Channel, Mobile, AL. 165.835 Section 165.835 Navigation and Navigable Waters COAST GUARD... § 165.835 Security Zone; Port of Mobile, Mobile Ship Channel, Mobile, AL. (a) Definition. As used in this section— Cruise ship means a passenger vessel over 100 gross tons, carrying more than 12...

  14. 33 CFR 165.835 - Security Zone; Port of Mobile, Mobile Ship Channel, Mobile, AL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Mobile Ship Channel, Mobile, AL. 165.835 Section 165.835 Navigation and Navigable Waters COAST GUARD... § 165.835 Security Zone; Port of Mobile, Mobile Ship Channel, Mobile, AL. (a) Definition. As used in this section— Cruise ship means a passenger vessel over 100 gross tons, carrying more than 12...

  15. 33 CFR 165.835 - Security Zone; Port of Mobile, Mobile Ship Channel, Mobile, AL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Mobile Ship Channel, Mobile, AL. 165.835 Section 165.835 Navigation and Navigable Waters COAST GUARD... § 165.835 Security Zone; Port of Mobile, Mobile Ship Channel, Mobile, AL. (a) Definition. As used in this section— Cruise ship means a passenger vessel over 100 gross tons, carrying more than 12...

  16. 33 CFR 165.835 - Security Zone; Port of Mobile, Mobile Ship Channel, Mobile, AL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Mobile Ship Channel, Mobile, AL. 165.835 Section 165.835 Navigation and Navigable Waters COAST GUARD... § 165.835 Security Zone; Port of Mobile, Mobile Ship Channel, Mobile, AL. (a) Definition. As used in this section— Cruise ship means a passenger vessel over 100 gross tons, carrying more than 12...

  17. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1979-01-01

    A kidney cell electrophoresis technique is described in four parts: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characteristics of kidney cells.

  18. Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India.

    PubMed

    Sarkar, Angana; Kazy, Sufia K; Sar, Pinaki

    2013-03-01

    Sixty-four arsenic (As) resistant bacteria isolated from an arsenic rich groundwater sample of West Bengal were characterized to investigate their potential role in subsurface arsenic mobilization. Among the isolated strains predominance of genera Agrobacterium/Rhizobium, Ochrobactrum and Achromobacter which could grow chemolitrophically and utilize arsenic as electron donor were detected. Higher tolerance to As(3+) [maximum tolerable concentration (MTC): ≥10 mM], As(5+) (MTC: ≥100 mM) and other heavy metals like Cu(2+), Cr(2+), Ni(2+) etc. (MTC: ≥10 mM), presence of arsenate reductase and siderophore was frequently observed among the isolates. Ability to produce arsenite oxidase and phosphatase enzyme was detected in 50 and 34 % of the isolates, respectively. Although no direct correlation among taxonomic identity of bacterial strains and their metabolic abilities as mentioned above was apparent, several isolates affiliated to genera Ochrobactrum, Achromobacter and unclassified Rhizobiaceae members were found to be highly resistant to As(3+) and As(5+) and positive for all the test properties. Arsenate reductase activity was found to be conferred by arsC gene, which in many strains was coupled with arsenite efflux gene arsB as well. Phylogenetic incongruence between the 16S rRNA and ars genes lineages indicated possible incidence of horizontal gene transfer for ars genes. Based on the results we propose that under the prevailing low nutrient condition inhabitant bacteria capable of using inorganic electron donors play a synergistic role wherein siderophores and phosphatase activities facilitate the release of sediment bound As(5+), which is subsequently reduced by arsenate reductase resulting into the mobilization of As(3+) in groundwater.

  19. Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite

    USGS Publications Warehouse

    Zhu, W.; Young, L.Y.; Yee, N.; Serfes, M.; Rhine, E.D.; Reinfelder, J.R.

    2008-01-01

    We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black

  20. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria.

    PubMed Central

    Jimenez-Salgado, T; Fuentes-Ramirez, L E; Tapia-Hernandez, A; Mascarua-Esparza, M A; Martinez-Romero, E; Caballero-Mellado, J

    1997-01-01

    Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N2-fixing isolates had some features in common with the genus Acetobacter but should not be assigned to the species Acetobacter diazotrophicus because they differed from A. diazotrophicus in morphological and biochemical traits and were largely divergent in electrophoretic mobility patterns of metabolic enzymes at coefficients of genetic distance as high as 0.950. In addition, these N2-fixing acetobacteria differed in the small-subunit rRNA restriction fragment length polymorphism patterns obtained with EcoRI, and they exhibited very low DNA-DNA homology levels, ranging from 11 to 15% with the A. diazotrophicus reference strain PAI 5T. Thus, some of the diazotrophic acetobacteria recovered from the rhizosphere of coffee plants may be regarded as N2-fixing species of the genus Acetobacter other than A. diazotrophicus. Endophytic diazotrophic bacteria may be more prevalent than previously thought, and perhaps there are many more potentially beneficial N2-fixing bacteria which can be isolated from other agronomically important crops. PMID:9293018

  1. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks.

    PubMed

    Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein

    2015-12-01

    This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.

  2. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks

    PubMed Central

    AMANIDAZ, Nazak; ZAFARZADEH, Ali; MAHVI, Amir Hossein

    2015-01-01

    Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. Results: In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Conclusion: Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms. PMID:26811820

  3. A thin porous substrate using bonded particles for reverse-emulsion electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Ahumada, M.; Bryning, M.; Cromer, R.; Hartono, M.; Lee, S. J.

    2012-03-01

    A thin porous layer of bonded ceramic microparticles has been developed to provide structural integrity and a stationary matrix for use in reflective-mode reverse-emulsion electrophoretic displays (REED), based on self-assembled nanodroplets dispersed in a non-polar liquid. REED ink uses low-cost materials and manufacturing processes, yet is capable of video speed and low voltage operation below 10 V. Porous layers of titanium dioxide (TiO2) are prepared as thin as 10 microns by fluidizing the particles in a water-based slurry with polymeric adhesive. The slurry is distributed between glass shear plates, one of which serves as the substrate for the working device. Particle morphology is examined using scanning electron microscopy and layer uniformity is characterized by opacity measurements using a throughbeam fiber optic sensor. Performance of the bonded matrix with REED ink is compared to baseline performance of a paste mixture, comprised of the same ink and unbonded TiO2 particles. Results show that at 25% volume fraction, the bonded substrate improves image bistability and is better able to maintain both light and dark intensity after extensive switching. The same bonded substrate also improves image bistability when power is disconnected, even compared to a paste with 40% volume fraction of TiO2.

  4. Ultrarapid electrophoretic transfer of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    An ultrarapid method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 degrees C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7% (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5% gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5% gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  5. Electrophoretic deposition of silicon substituted hydroxyapatite coatings from n-butanol-chloroform mixture.

    PubMed

    Xiao, Xiu Feng; Liu, Rong Fang; Tang, Xiao Lian

    2008-01-01

    Silicon Substituted Hydroxyapatite (Si-HA) coatings were prepared on titanium substrates by electrophoretic deposition (EPD). The stability of Si-HA suspension in n-butanol and chloroform mixture has been studied by electricity conductivity and sedimentation test. The microstructure, shear strength and bioactivity in vitro has been tested. The stability of Si-HA suspension containing n-butanol and chloroform mixture as medium is better than that of pure n-butanol as medium. The good adhesion of the particles with the substrate and good cohesion between the particles were obtained in n-butanol and chloroform mixture. Adding triethanolamine (TEA) as additive into the suspension is in favor of the formation of uniform and compact Si-HA coatings on the titanium substrates by EPD. The shear strength of the coatings can reach 20.43 MPa after sintering at 700 degrees C for 2 h, when the volume ratio of n-butanol: chloroform is 2:1 and the concentration of TEA is 15 ml/L. Titanium substrates etched in H(2)O(2)/NH(3) solution help to improve the shear strength of the coatings. After immersion in simulated body fluid for 7 days, Si-HA coatings have the ability to induce the bone-like apatite formation.

  6. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    formed extensive biofilms or flocs that contained U and V in the exopolymer, but excluded these metals from the bacteria. This suggests a specific mechanism to inhibit metal sorption to cell wall components. The example illustrates the interplay between bacteria and minerals under conditions that model oligotrophic survival, and provides insight on U mobilization from common uranium ore minerals.

  7. Electrophoretic analysis of quinone anion radicals in acetonitrile solutions using an on-line radical generator.

    PubMed

    Esaka, Yukihiro; Okumura, Noriko; Uno, Bunji; Goto, Masashi

    2003-05-01

    We have investigated analysis of anion radicals of phenanthrenequinone (PhQ) and anthraquinone (AQ) using acetonitrile-capillary electrophoresis (CE) under anaerobic conditions. PhQ and AQ have relatively high negative reduction potentials meaning that their anion radicals are re-oxidized quite readily by the surrounding O(2) to disappear during analysis and we failed to detect them with our previous system. In this work, we have developed an on-line system combining a unique electrolysis cell for generation of the radicals and a CE unit to keep the analysis system free from external O(2) molecules and to reduce analysis time remarkably. As a result, electrophoretic detection of the anion radicals of PhQ and AQ has been achieved. Furthermore, we have observed hydrogen-bonding interaction between the anion radicals and dimethylurea (DMU) using the present system and have indicated a characteristic interaction of the anion radical of PhQ as an ortho-quinone with DMU.

  8. Bacteria-surface interactions.

    PubMed

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  9. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  10. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO 2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO 2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H 2 and other valuable compounds.

  11. Isolation, Characterization, and Transfer of Cryptic Gene-Mobilizing Plasmids in the Wheat Rhizosphere

    PubMed Central

    van Elsas, Jan Dirk; McSpadden Gardener, Brian B.; Wolters, Anneke C.; Smit, Eric

    1998-01-01

    A set of self-transmissible plasmids with IncQ plasmid-mobilizing capacity was isolated by triparental exogenous isolation from the wheat rhizosphere with an Escherichia coli IncQ plasmid host and a Ralstonia eutropha recipient. Three plasmids of 38 to 45 kb, denoted pIPO1, pIPO2, and pIPO3, were selected for further study. No selectable traits (antibiotic or heavy-metal resistance) were identified in these plasmids. The plasmids were characterized by replicon typing via PCR and hybridization with replicon-specific probes and other hybridizations. pIPO1 and pIPO3 were similar to each other, whereas pIPO2 was different. None of these plasmids belonged to any known incompatibility group. pIPO2 was selected for further work, and a mini-Tn5-tet transposon was inserted to confer selectability. Plasmid pIPO2 had a broad IncQ plasmid mobilization and self-transfer range among the alpha, beta, and gamma subclasses of the Proteobacteria but did not show productive transfer to gram-positive bacteria. Plasmid pIPO2 mobilized IncQ plasmid pIE723 from Pseudomonas fluorescens to diverse indigenous proteobacteria in the rhizosphere of field-grown wheat. Transfer of pIE723 to indigenous bacteria was not observed in the absence of added pIPO2. A specific PCR primer system and a probe were developed for the detection of pIPO2-type plasmids in soil and rhizosphere. Analysis of soil DNA provided evidence for the presence of pIPO2 in inoculated wheat rhizosphere soil in the field study, as well as in the rhizosphere of uninoculated wheat plants growing in soil microcosms. The system failed to identify major reservoirs of pIPO2 in a variety of other soils. PMID:9501428

  12. CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes

    PubMed Central

    2013-01-01

    Background Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets. Results We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage- or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs. Conclusions We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders. PMID:23628424

  13. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J.

    2015-04-01

    Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.

  14. Biostabilization of cadmium contaminated sediments using indigenous sulfate reducing bacteria: Efficiency and process.

    PubMed

    Peng, Weihua; Li, Xiaomin; Liu, Tong; Liu, Yingying; Ren, Jinqian; Liang, Dawei; Fan, Wenhong

    2018-06-01

    Sulfate reducing bacteria (SRB) was used to stabilize cadmium (Cd) in sediments spiked with Cd. The study found that the Cd in sediments (≤600 mg kg -1 ) was successfully stabilized after 166 d SRB bio-treatment. This was verified by directly and indirectly examining Cd speciation in sediments, mobilization index, and Cd content in interstitial water. After 166 d bio-treatment, compared with control groups, Cd concentrations in interstitial water of Cd-spiked sediments were reduced by 77.6-96.4%. The bioavailable fractions of Cd (e.g., exchangeable and carbonate bound phases) were reduced, while more stable fractions of Cd (e.g., Fe-Mn oxide, organic bound, and residual phases) were increased. However, Cd mobilization in sediment was observed during the first part of bio-treatment (32 d), leading to an increase of Cd concentrations in the overlying water. Bacterial community composition (e.g., richness, diversity, and typical SRB) played an important role in Cd mobilization, dissolution, and stabilization. Bacterial community richness and diversity, including the typical SRB (e.g., Desulfobacteraceae and Desulfobulbaceae), were enhanced. However, bacterial communities were also influenced by Cd content and its speciations (especially the exchangeable and carbonate bound phases) in sediments, as well as total organic carbon in overlying water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria

    PubMed Central

    Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596

  16. Serum protein electrophoretic pattern in one-humped camels (Camelus dromedarius) in Tripoli, Libya.

    PubMed

    Abdoslam, Omran; Bayt-Almal, Mahmoud; Almghrbe, Abdullah; Algriany, Omran

    2018-01-01

    The aim of this study was to characterize serum protein capillary electrophoretic pattern in apparently healthy adult male (age: 3-7 years) dromedary camels and also evaluate total protein and albumin levels using automated analyzer. Blood samples were taken from 20 camels. 5ml of blood was collected from the jugular vein and serum was separated from samples by centrifugation. Capillary electrophoresis of serum proteins identified six protein fractions in adult camels, including albumin, alpha1, alpha2, beta1, beta2 and gamma globulins, serum levels of these parameters were 3.9±0.04 g/dl, 0.16±0.01 g/dl, 0.39±0.03 g/dl, 0.515±0.03 g/dl, 0.205±0.01 g/dl and 0.61±0.04 g/dl, and 65.42±0.62 g/l, respectively. The total protein concentration was 65.42±0.62 g/L, while, the albumin/globulin (A/G) ratio was 2.4±0.14. The present study indicates six peaks with minicapillary electrophoresis and the results obtained were compared and interpreted in the light of finding reported by other investigators in camels.

  17. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants.

    PubMed

    Pishbin, Fatemehsadat; Mouriño, Viviana; Flor, Sabrina; Kreppel, Stefan; Salih, Vehid; Ryan, Mary P; Boccaccini, Aldo R

    2014-06-11

    Despite their widespread application, metallic orthopaedic prosthesis failure still occurs because of lack of adequate bone-bonding and the incidence of post-surgery infections. The goal of this research was to develop multifunctional composite chitosan/Bioglass coatings loaded with gentamicin antibiotic as a suitable strategy to improve the surface properties of metallic implants. Electrophoretic deposition (EPD) was applied as a single-step technology to simultaneously deposit the biopolymer, bioactive glass particles, and the antibiotic on stainless steel substrate. The microstructure and composition of the coatings were characterized using SEM/EDX, XRD, FTIR, and TGA/DSC, respectively. The in vitro bioactivity of the coatings was demonstrated by formation of hydroxyapatite after immersion in simulated body fluid (SBF) in a short period of 2 days. High-performance liquid chromatography (HPLC) measurements indicated the release of 40% of the loaded gentamicin in phosphate buffered saline (PBS) within the first 5 days. The developed composite coating supported attachment and proliferation of MG-63 cells up to 10 days. Moreover, disc diffusion test showed improved bactericidal effect of gentamicin-loaded composite coatings against S. aureus compared to control non-gentamicin-loaded coatings.

  18. Preparation of well-adhered γ-Al 2O 3 washcoat on metallic wire mesh monoliths by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Quan, Xie; Chen, Shuo; Zhao, Huimin; Zhao, Yazhi

    2007-01-01

    Washcoat deposited on metallic wire mesh monoliths was prepared using γ-alumina powders by electrophoretic deposition under a relatively low electric voltage. The microstructure, phase structure and adhesion of washcoat were investigated by SEM, XRD, ultrasonic vibration and thermal shock. The results showed that the loading and adhesion of washcoat were affected obviously by the properties of suspension, such as the zeta potential and the amount of adding binders. A small quantity of aluminum isopropoxide could promote the cohesive affinity of washcoat in thermal shock. The adhesion of washcoat in ultrasonic vibration could be reinforced by increasing calcined temperature and adding a certain aluminum particles. It was also found that the washcoat immersed metal nitrate has excellent vibration-resistant ability.

  19. Electrophoretically mediated microanalysis of a nicotinamide adenine dinucleotide-dependent enzyme and its facile multiplexing using an active pixel sensor UV detector.

    PubMed

    Urban, Pawel L; Goodall, David M; Bergström, Edmund T; Bruce, Neil C

    2007-08-31

    An electrophoretically mediated microanalysis (EMMA) method has been developed for yeast alcohol dehydrogenase and quantification of reactant and product cofactors, NAD and NADH. The enzyme substrate ethanol (1% (v/v)) was added to the buffer (50 mM borate, pH 8.8). Results are presented for parallel capillary electrophoresis with a novel miniature UV area detector, with an active pixel sensor imaging an array of two or six parallel capillaries connected via a manifold to a single output capillary in a commercial CE instrument, allowing conversions with five different yeast alcohol dehydrogenase concentrations to be quantified in a single experiment.

  20. CONDUCTOMETRIC CHARACTERIZATION OF DISSOLVED HUMIC MATERIALS. (R828158)

    EPA Science Inventory

    Conductometric replacement titrations of humic and fulvic acids dissolved in a slight excess of hydroxide were carried out with standard acid. The slope of the titration curve corresponding to the protonation of humate/fulvate was related to the electrophoretic mobility of the...

  1. Facile synthesis of silver nanoparticles and its antibacterial activity against Escherichia coli and unknown bacteria on mobile phone touch surfaces/computer keyboards

    NASA Astrophysics Data System (ADS)

    Reddy, T. Ranjeth Kumar; Kim, Hyun-Joong

    2016-07-01

    In recent years, there has been significant interest in the development of novel metallic nanoparticles using various top-down and bottom-up synthesis techniques. Kenaf is a huge biomass product and a potential component for industrial applications. In this work, we investigated the green synthesis of silver nanoparticles (AgNPs) by using kenaf ( Hibiscus cannabinus) cellulose extract and sucrose, which act as stabilizing and reducing agents in solution. With this method, by changing the pH of the solution as a function of time, we studied the optical, morphological and antibacterial properties of the synthesized AgNPs. In addition, these nanoparticles were characterized by Ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), field-emission scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy and energy-dispersive X-ray spectroscopy (EDX). As the pH of the solution varies, the surface plasmon resonance peak also varies. A fast rate of reaction at pH 10 compared with that at pH 5 was identified. TEM micrographs confirm that the shapes of the particles are spherical and polygonal. Furthermore, the average size of the nanoparticles synthesized at pH 5, pH 8 and pH 10 is 40.26, 28.57 and 24.57 nm, respectively. The structure of the synthesized AgNPs was identified as face-centered cubic (fcc) by XRD. The compositional analysis was determined by EDX. FTIR confirms that the kenaf cellulose extract and sucrose act as stabilizing and reducing agents for the silver nanoparticles. Meanwhile, these AgNPs exhibited size-dependent antibacterial activity against Escherichia coli ( E. coli) and two other unknown bacteria from mobile phone screens and computer keyboard surfaces.

  2. Unleashing the Full Sustainable Potential of Thick Films of Lead-Free Potassium Sodium Niobate (K0.5Na0.5NbO3) by Aqueous Electrophoretic Deposition.

    PubMed

    Mahajan, Amit; Pinho, Rui; Dolhen, Morgane; Costa, M Elisabete; Vilarinho, Paula M

    2016-05-31

    A current challenge for the fabrication of functional oxide-based devices is related with the need of environmental and sustainable materials and processes. By considering both lead-free ferroelectrics of potassium sodium niobate (K0.5Na0.5NbO3, KNN) and aqueous-based electrophoretic deposition here we demonstrate that an eco-friendly aqueous solution-based process can be used to produce KNN thick coatings with improved electromechanical performance. KNN thick films on platinum substrates with thickness varying between 10 and 15 μm have a dielectric permittivity of 495, dielectric losses of 0.08 at 1 MHz, and a piezoelectric coefficient d33 of ∼70 pC/N. At TC these films display a relative permittivity of 2166 and loss tangent of 0.11 at 1 MHz. A comparison of the physical properties between these films and their bulk ceramics counterparts demonstrates the impact of the aqueous-based electrophoretic deposition (EPD) technique for the preparation of lead-free ferroelectric thick films. This opens the door to the possible development of high-performance, lead-free piezoelectric thick films by a sustainable low-cost process, expanding the applicability of lead-free piezoelectrics.

  3. Mobile Multicast in Hierarchical Proxy Mobile IPV6

    NASA Astrophysics Data System (ADS)

    Hafizah Mohd Aman, Azana; Hashim, Aisha Hassan A.; Mustafa, Amin; Abdullah, Khaizuran

    2013-12-01

    Mobile Internet Protocol Version 6 (MIPv6) environments have been developing very rapidly. Many challenges arise with the fast progress of MIPv6 technologies and its environment. Therefore the importance of improving the existing architecture and operations increases. One of the many challenges which need to be addressed is the need for performance improvement to support mobile multicast. Numerous approaches have been proposed to improve mobile multicast performance. This includes Context Transfer Protocol (CXTP), Hierarchical Mobile IPv6 (HMIPv6), Fast Mobile IPv6 (FMIPv6) and Proxy Mobile IPv6 (PMIPv6). This document describes multicast context transfer in hierarchical proxy mobile IPv6 (H-PMIPv6) to provide better multicasting performance in PMIPv6 domain.

  4. Interactions between Diatoms and Bacteria

    PubMed Central

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  5. Influence of tra genes of IncP and F plasmids on the mobilization of small Kanamycin resistance ColE1-Like plasmids in bacterial biofilms

    USDA-ARS?s Scientific Manuscript database

    Background: Horizontal gene transfer is a mechanism for movement of antibiotic resistance genes among bacteria. Some small kanamycin resistance (KanR) ColE1-like plasmids isolated from different serotypes of Salmonella enterica were shown to carry mobilization genes; although not self-transmissibl...

  6. Mobile Schools for a Mobile World

    ERIC Educational Resources Information Center

    Booth, Susan

    2013-01-01

    Overwhelmingly, independent schools are embracing mobile devices--laptops, iPads or other tablets, and smartphones--to enhance teaching and learning. This article describes the results of the "NAIS 2012 Mobile Learning Survey." Among its findings were that 75 percent of NAIS-member schools currently use mobile learning devices in at…

  7. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    DOE PAGES

    Lin, Hui; Lu, Xia; Liang, Liyuan; ...

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. Inmore » comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.« less

  8. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  9. Electrophoretic co-deposition of cellulose nanocrystals-45S5 bioactive glass nanocomposite coatings on stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Yang, Yuyun; Pérez de Larraya, Uxua; Garmendia, Nere; Virtanen, Sannakaisa; Boccaccini, Aldo R.

    2016-01-01

    An organic-inorganic nanocomposite coating consisting of fibrous cellulose nanocrystals and 45S5 bioactive glass, intended as a bioactive surface for bone implants, was developed by a one-step electrophoretic deposition. The composition, surface roughness and wettability of the deposited coatings, influenced by the concentration of each component in the suspension, were controllable as a result of the simplicity of the coating technique. Bioactive glass particles were individually wrapped with porous cellulose layers, forming a porous coating with uniform thickness. Bioactivity test in simulated body fluid revealed a rapid hydroxyapatite formation on the deposited nanocomposite coating. Furthermore, electrochemical test was carried out to understand the corrosion behavior of the deposited coatings during incubation in simulated body fluid. According to the results of this study, the obtained cellulose-bioactive glass coatings with tunable properties represent a promising approach for biofunctionalization of metallic orthopedic implants.

  10. An improved electrophoretic method for the determination of serum milk protein variants in Gyr-Holstein cows.

    PubMed

    Ramos, P R; Urtado, S L; Almeida, M R; Bortolozzi, J; Silva, E T

    1992-01-01

    Milk serum proteins such as alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) present biochemical polymorphism which is under the control of codominant autosomal alleles. In the present report, we propose modifications of traditional electrophoretic techniques such as increasing the running gel concentration from 5 to 10% and the addition of 5 M urea to the stacking gel, which permitted the detection of two variants (A and B) at the ALA and BLG loci. About 8 microliters of milk serum (6 mg/ml protein) and 10 microliters of total fresh milk were applied. Bovine serum albumin (BSA) and immunolactoglobulins (ILG) could also be discriminated. Total fresh milk was as useful as the purified serum milk proteins for the discrimination of ALA and BLG serum milk protein polymorphism by alkaline vertical slab polyacrylamide gel electrophoresis. However, BSA and ILG ran with caseins, which prevented their characterization in this system.

  11. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  12. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    NASA Astrophysics Data System (ADS)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  13. Microbial contamination of mobile phones in a health care setting in Alexandria, Egypt.

    PubMed

    Selim, Heba Sayed; Abaza, Amani Farouk

    2015-01-01

    This study aimed at investigating the microbial contamination of mobile phones in a hospital setting. Swab samples were collected from 40 mobile phones of patients and health care workers at the Alexandria University Students' Hospital. They were tested for their bacterial contamination at the microbiology laboratory of the High Institute of Public Health. Quantification of bacteria was performed using both surface spread and pour plate methods. Isolated bacterial agents were identified using standard microbiological methods. Methicillin-resistant Staphylococcus aureus was identified by disk diffusion method described by Bauer and Kirby. Isolated Gram-negative bacilli were tested for being extended spectrum beta lactamase producers using the double disk diffusion method according to the Clinical and Laboratory Standards Institute recommendations. All of the tested mobile phones (100%) were contaminated with either single or mixed bacterial agents. The most prevalent bacterial contaminants were methicillin-resistant S. aureus and coagulase-negative staphylococci representing 53% and 50%, respectively. The mean bacterial count was 357 CFU/ml, while the median was 13 CFU/ml using the pour plate method. The corresponding figures were 2,192 and 1,720 organisms/phone using the surface spread method. Mobile phones usage in hospital settings poses a risk of transmission of a variety of bacterial agents including multidrug-resistant pathogens as methicillin-resistant S. aureus. The surface spread method is an easy and useful tool for detection and estimation of bacterial contamination of mobile phones.

  14. Microbial contamination of mobile phones in a health care setting in Alexandria, Egypt

    PubMed Central

    Selim, Heba Sayed; Abaza, Amani Farouk

    2015-01-01

    Aim: This study aimed at investigating the microbial contamination of mobile phones in a hospital setting. Methods: Swab samples were collected from 40 mobile phones of patients and health care workers at the Alexandria University Students’ Hospital. They were tested for their bacterial contamination at the microbiology laboratory of the High Institute of Public Health. Quantification of bacteria was performed using both surface spread and pour plate methods. Isolated bacterial agents were identified using standard microbiological methods. Methicillin-resistant Staphylococcus aureus was identified by disk diffusion method described by Bauer and Kirby. Isolated Gram-negative bacilli were tested for being extended spectrum beta lactamase producers using the double disk diffusion method according to the Clinical and Laboratory Standards Institute recommendations. Results: All of the tested mobile phones (100%) were contaminated with either single or mixed bacterial agents. The most prevalent bacterial contaminants were methicillin-resistant S. aureus and coagulase-negative staphylococci representing 53% and 50%, respectively. The mean bacterial count was 357 CFU/ml, while the median was 13 CFU/ml using the pour plate method. The corresponding figures were 2,192 and 1,720 organisms/phone using the surface spread method. Conclusions: Mobile phones usage in hospital settings poses a risk of transmission of a variety of bacterial agents including multidrug-resistant pathogens as methicillin-resistant S. aureus. The surface spread method is an easy and useful tool for detection and estimation of bacterial contamination of mobile phones. PMID:25699226

  15. Failure to Confirm the Macrophage Electrophoretic Mobility Test in Cancer

    PubMed Central

    Forrester, J. A.; Dando, P. M.; Smith, W. J.; Turberville, C.

    1977-01-01

    A series of patients with a variety of histopathologically confirmed cancers have been examined using the MOD-MEM test as described by Pritchard et al. (1973). Despite the closest possible adherence to the experimental protocols recommended by these authors, no positive reactions to the test were observed in this series: neither were we able to demonstrate the release of a “macrophage-slowing factor” by a panel of normal donors when challenged with tubercle PPD. We conclude that the test has no present application to the diagnosis of cancer.

  16. Growth phase-dependent induction of stationary-phase promoters of Escherichia coli in different gram-negative bacteria.

    PubMed Central

    Miksch, G; Dobrowolski, P

    1995-01-01

    RSF1010-derived plasmids carrying a fusion of a promoterless lacZ gene with the sigma s-dependent growth phase-regulated promoters of Escherichia coli, bolAp1 and fic, were constructed. The plasmids were mobilized into the gram-negative bacterial species Acetobacter methanolicus, Xanthomonas campestris, Pseudomonas putida, and Rhizobium meliloti. The beta-galactosidase activities of bacterial cultures were determined during exponential and stationary growth phases. Transcriptional activation of the fic promoter in the different bacteria was growth phase dependent as in E. coli and was initiated generally during the transition to stationary phase. The induction of the bolA promoter was also growth phase dependent in the bacteria tested. While the expression in E. coli and R. meliloti was initiated during the transition from exponential to stationary phase, the induction in A. methanolicus, P. putida, and X. campestris started some hours after stationary growth phase was reached. In all the species tested, DNA fragments hybridizing with the rpoS gene of E. coli were detected. The results show that in different gram-negative bacteria, stationary-phase-specific sigma factors which are structurally and functionally homologous to sigma s and are able to recognize the promoter sequences of both bolA and fic exist. PMID:7665531

  17. Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites

    NASA Astrophysics Data System (ADS)

    Sullivan, K. T.; Kuntz, J. D.; Gash, A. E.

    2012-07-01

    Electrophoretic deposition was used to deposit thin films (˜10-200 μm) of nano-aluminum/copper oxide thermites, with a density of 29% the theoretical maximum. The reaction propagation velocity was examined using fine-patterned electrodes (0.25 × 20 mm), and the optimum velocity was found to correspond to a fuel-rich equivalence ratio of 1.7. This value did not correlate with the calculated maximum in gas production or temperature, and it is suggested that it is a result of enhanced condensed-phase transport, which is speculated to increase for fuel-rich conditions. A ˜25% drop in propagation velocity occurred above an equivalence ratio of 2.0, where Al2O3 is predicted to undergo a phase change from liquid to solid. This is expected to hinder the kinetics by decreasing the mobility of condensed-phase reacting species. The effect of film thickness on propagation velocity was investigated, using the optimum equivalence ratio. The velocity was seen to exhibit a two-plateau behavior, with one plateau between 13 and 50 μm film thickness, and the other above ˜120 μm. The latter had nearly an order of magnitude faster velocity than the former, 36 m/s vs. 4 m/s, respectively. For film thicknesses in the 50-120 μm range, a linear transitional regime was observed. Images from the combustion studies showed an increase in forward-transported particles as the film thickness increased, along with more turbulent behavior of the flame. It was suggested that the two-plateau behavior indicated a shift in the energy transport mechanism. While nanocomposite thermites have been traditionally thought to exhibit convective energy transport, we find in this work that particle advection may also be important. The velocity of particles ejected through a thin slit mounted above a thermite strip was measured, and was found to be even faster (˜2-3×) than the flame propagation velocity. The morphology of captured particles was examined with an electron microscope, and indicated that

  18. Analysis of NCAM helps identify unusual phenotypes of hereditary inclusion-body myopathy.

    PubMed

    Broccolini, A; Gidaro, T; Tasca, G; Morosetti, R; Rodolico, C; Ricci, E; Mirabella, M

    2010-07-20

    Hereditary inclusion-body myopathy or distal myopathy with rimmed vacuoles (h-IBM/DMRV) is due to mutations of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which codes for an enzyme of the sialic acid biosynthetic pathway. By Western blot (WB) analysis, we have previously shown that in h-IBM/DMRV muscle, the neural cell adhesion molecule (NCAM) has increased electrophoretic mobility that reflects reduced sialylation of the protein. To identify patients with h-IBM/DMRV with atypical clinical or pathologic phenotype using NCAM analysis and the possible cellular mechanism associated with the overall abnormal sialylation of NCAM observed in this disorder. WB analysis of NCAM was performed on muscle biopsies of 84 patients with an uncharacterized muscle disorder who were divided in the following 2 groups: 1) 46 patients with a proximal muscle weakness in whom the main limb-girdle muscular dystrophy syndromes had been ruled out; and 2) 38 patients with a distal distribution of weakness in whom a neurogenic affection had been excluded. Patients in whom a reduced sialylation of NCAM was suspected were studied for the presence of GNE mutations. In 3 patients, we found that NCAM had increased electrophoretic mobility, thus suggesting an abnormal sialylation of the protein. The genetic study demonstrated that they all carried pathogenic GNE mutations. Further studies demonstrated that hyposialylated NCAM, showing increased electrophoretic mobility on WB, is expressed by nonregenerating fibers in h-IBM/DMRV muscle. WB analysis of NCAM may be instrumental in the identification of h-IBM/DMRV with atypical clinical or pathologic features.

  19. Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6

    PubMed Central

    Jebaseeli Samuelraj, Ananthi; Jayapal, Sundararajan

    2015-01-01

    Proxy Mobile IPV6 (PMIPV6) is a network based mobility management protocol which supports node's mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO) in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node's mobility should be modified to support group nodes' mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point. PMID:26366431

  20. Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6.

    PubMed

    Samuelraj, Ananthi Jebaseeli; Jayapal, Sundararajan

    2015-01-01

    Proxy Mobile IPV6 (PMIPV6) is a network based mobility management protocol which supports node's mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO) in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node's mobility should be modified to support group nodes' mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point.