Science.gov

Sample records for bacteria gram-positive bacteria

  1. Transformation of gram positive bacteria by sonoporation

    DOEpatents

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  2. Antimicrobial Peptides Targeting Gram-Positive Bacteria

    PubMed Central

    Malanovic, Nermina; Lohner, Karl

    2016-01-01

    Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. PMID:27657092

  3. Bacteriocins of gram-positive bacteria.

    PubMed Central

    Jack, R W; Tagg, J R; Ray, B

    1995-01-01

    In recent years, a group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram-positive pathogenic bacteria. They are ribosomally synthesized peptides of 30 to less than 60 amino acids, with a narrow to wide antibacterial spectrum against gram-positive bacteria; the antibacterial property is heat stable, and a producer strain displays a degree of specific self-protection against its own antibacterial peptide. In many respects, these proteins are quite different from the colicins and other bacteriocins produced by gram-negative bacteria, yet customarily they also are grouped as bacteriocins. Although a large number of these bacteriocins (or bacteriocin-like inhibitory substances) have been reported, only a few have been studied in detail for their mode of action, amino acid sequence, genetic characteristics, and biosynthesis mechanisms. Nevertheless, in general, they appear to be translated as inactive prepeptides containing an N-terminal leader sequence and a C-terminal propeptide component. During posttranslational modifications, the leader peptide is removed. In addition, depending on the particular type, some amino acids in the propeptide components may undergo either dehydration and thioether ring formation to produce lanthionine and beta-methyl lanthionine (as in lantibiotics) or thio ester ring formation to form cystine (as in thiolbiotics). Some of these steps, as well as the translocation of the molecules through the cytoplasmic membrane and producer self-protection against the homologous bacteriocin, are mediated through specific proteins (enzymes). Limited genetic studies have shown that the structural gene for such a bacteriocin and the genes encoding proteins associated with immunity, translocation, and processing are present in a cluster in either a plasmid, the chromosome, or a transposon. Following

  4. Conjugation in Gram-Positive Bacteria.

    PubMed

    Goessweiner-Mohr, Nikolaus; Arends, Karsten; Keller, Walter; Grohmann, Elisabeth

    2014-08-01

    Conjugative transfer is the most important means of spreading antibiotic resistance and virulence factors among bacteria. The key vehicles of this horizontal gene transfer are a group of mobile genetic elements, termed conjugative plasmids. Conjugative plasmids contain as minimum instrumentation an origin of transfer (oriT), DNA-processing factors (a relaxase and accessory proteins), as well as proteins that constitute the trans-envelope transport channel, the so-called mating pair formation (Mpf) proteins. All these protein factors are encoded by one or more transfer (tra) operons that together form the DNA transport machinery, the Gram-positive type IV secretion system. However, multicellular Gram-positive bacteria belonging to the streptomycetes appear to have evolved another mechanism for conjugative plasmid spread reminiscent of the machinery involved in bacterial cell division and sporulation, which transports double-stranded DNA from donor to recipient cells. Here, we focus on the protein key players involved in the plasmid spread through the two different modes and present a new secondary structure homology-based classification system for type IV secretion protein families. Moreover, we discuss the relevance of conjugative plasmid transfer in the environment and summarize novel techniques to visualize and quantify conjugative transfer in situ.

  5. Classification of Bacteriocins from Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Rea, Mary C.; Ross, R. Paul; Cotter, Paul D.; Hill, Colin

    Bacteriocins are ribosomally synthesised antimicrobial peptides produced by bacteria, including many Gram-positive species. The classification of bacteriocins from Gram-positive bacteria is complicated by their heterogeneity and thus, as the number of Gram-positive bacteriocins identified has continued to increase, classification schemes have had to continuously evolve. Here, we review the various classification approaches, both historical and current, their underlying scientific basis and their relative merit, and suggest a rational scheme given the state of the art.

  6. Methods for targetted mutagenesis in gram-positive bacteria

    DOEpatents

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  7. Conjugative Plasmid Transfer in Gram-Positive Bacteria

    PubMed Central

    Grohmann, Elisabeth; Muth, Günther; Espinosa, Manuel

    2003-01-01

    Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer. PMID:12794193

  8. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria.

    PubMed

    Nawrocki, Kathryn L; Crispell, Emily K; McBride, Shonna M

    2014-10-13

    Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis.

  9. Cyclic diguanylate signaling in Gram-positive bacteria.

    PubMed

    Purcell, Erin B; Tamayo, Rita

    2016-09-01

    The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria.

  10. Protein secretion and surface display in Gram-positive bacteria

    PubMed Central

    Schneewind, Olaf; Missiakas, Dominique M.

    2012-01-01

    The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions. PMID:22411983

  11. Pilins in gram-positive bacteria: A structural perspective.

    PubMed

    Krishnan, Vengadesan

    2015-07-01

    Pilins or fimbrilins are a class of proteins found in bacterial surface pilus, a hair-like surface appendage. Both the Gram-negative and -positive bacteria produce pilins to assemble pili on their cell-surface for different purposes including adherence, twitching motility, conjugation, immunomodulation, biofilm formation, and electron transfer. Immunogenic properties of the pilins make them attractive vaccine candidates. The polymerized pilins play a key role in the initiation of host adhesion, which is a critical step for bacterial colonization and infection. Because of their key role in adhesion and exposure on the cell surface, targeting the pilins-mediated adhesion (anti-adhesion therapy) is also seen as a promising alternative approach for preventing and treating bacterial infections, one that may overcome their ever-increasing repertoires of resistance mechanisms. Individual pilins interact with each other non-covalently to assemble the pilus fiber with the help of associated proteins like chaperones and Usher in Gram-negative bacteria. In contrast, the pilins in Gram-positive bacteria often connect with each other covalently, with the help of sortases. Certain unique structural features present on the pilins distinguish them from one another across different bacterial strains, and these dictate their cellular targets and functions. While the structure of pilins has been extensively studied in Gram-negative pathogenic bacteria, the pilins in Gram-positive pathogenic bacteria have been in only during the last decade. Recently, the discovery of pilins in non-pathogenic bacteria, such as Lactobacillus rhamnosus GG, has received great attention, though traditionally the attention was on pathogenic bacteria. This review summarizes and discusses the current structural knowledge of pilins in Gram-positive bacteria with emphasis on those pilins which are sortase substrates.

  12. Conjugative type IV secretion systems in Gram-positive bacteria.

    PubMed

    Goessweiner-Mohr, Nikolaus; Arends, Karsten; Keller, Walter; Grohmann, Elisabeth

    2013-11-01

    Bacterial conjugation presents the most important means to spread antibiotic resistance and virulence factors among closely and distantly related bacteria. Conjugative plasmids are the mobile genetic elements mainly responsible for this task. All the genetic information required for the horizontal transmission is encoded on the conjugative plasmids themselves. Two distinct concepts for horizontal plasmid transfer in Gram-positive bacteria exist, the most prominent one transports single stranded plasmid DNA via a multi-protein complex, termed type IV secretion system, across the Gram-positive cell envelope. Type IV secretion systems have been found in virtually all unicellular Gram-positive bacteria, whereas multicellular Streptomycetes seem to have developed a specialized system more closely related to the machinery involved in bacterial cell division and sporulation, which transports double stranded DNA from donor to recipient cells. This review intends to summarize the state of the art of prototype systems belonging to the two distinct concepts; it focuses on protein key players identified so far and gives future directions for research in this emerging field of promiscuous interbacterial transport.

  13. [Update on antibiotic resistance in Gram-positive bacteria].

    PubMed

    Lozano, Carmen; Torres, Carmen

    2017-01-01

    Antimicrobial resistance among Gram-positive bacteria, especially in Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Streptococcus pneumoniae, is a serious threat to public health. These microorganisms have multiple resistance mechanisms to agents currently used in clinical practice. Many of these resistance mechanisms are common to all 4 of these bacterial species, but other mechanisms seem to be more specific. The prevalence and dissemination of these mechanisms varies considerably, depending on the microorganism. This review discusses the resistance mechanisms to the most clinically relevant antibiotics, with particular emphasis on the new mechanisms described for widely used antibiotics and for newer agents such as lipopeptides, lipoglycopeptides, glycylcyclines and oxazolidinones.

  14. Current and novel antibiotics against resistant Gram-positive bacteria

    PubMed Central

    Perez, Federico; Salata, Robert A; Bonomo, Robert A

    2008-01-01

    The challenge posed by resistance among Gram-positive bacteria, epitomized by methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and vancomycin-intermediate and -resistant S. aureus (VISA and VRSA) is being met by a new generation of antimicrobials. This review focuses on the new β-lactams with activity against MRSA (ceftobiprole and ceftaroline) and on the new glycopeptides (oritavancin, dalbavancin, and telavancin). It will also consider the role of vancomycin in an era of existing alternatives such as linezolid, daptomycin and tigecycline. Finally, compounds in early development are described, such as iclaprim, friulimicin, and retapamulin, among others. PMID:21694878

  15. Regulation of Apoptosis by Gram-Positive Bacteria

    PubMed Central

    Ulett, Glen C.; Adderson, Elisabeth E.

    2008-01-01

    Apoptosis, or programmed cell death (PCD), is an important physiological mechanism, through which the human immune system regulates homeostasis and responds to diverse forms of cellular damage. PCD may also be involved in immune counteraction to microbial infection. Over the past decade, the amount of research on bacteria-induced PCD has grown tremendously, and the implications of this mechanism on immunity are being elucidated. Some pathogenic bacteria actively trigger the suicide response in critical lineages of leukocytes that orchestrate both the innate and adaptive immune responses; other bacteria proactively prevent PCD to benefit their own survival and persistence. Currently, the microbial virulence factors, which represent the keys to unlocking the suicide response in host cells, are a primary focus of this field. In this review, we discuss these bacterial “apoptosis regulatory molecules” and the apoptotic events they either trigger or prevent, the host target cells of this regulatory activity, and the possible ramifications for immunity to infection. Gram-positive pathogens including Staphylococcus, Streptococcus, Bacillus, Listeria, and Clostridia species are discussed as important agents of human infection that modulate PCD pathways in eukaryotic cells. PMID:19081777

  16. Tandem affinity purification vectors for use in gram positive bacteria.

    PubMed

    Yang, Xiao; Doherty, Geoff P; Lewis, Peter J

    2008-01-01

    Tandem affinity purification has become a valuable tool for the isolation of protein complexes. Here we describe the construction and use of a series of plasmid vectors for Gram positive bacteria. The vectors utilize the SPA tag as well as variants containing a 3C rather than the TEV protease site as 3C protease has been shown to work efficiently at the low temperatures (4 degrees C) used to isolate protein complexes. In addition, a further vector incorporates a GST moiety in place of the 3xFLAG of the SPA tag which provides an additional tagging option for situations where SPA binding may be inefficient. The vectors are all compatible with previously constructed fluorescent protein fusion vectors enabling construction of a suite of affinity and fluorescently tagged genes using a single PCR product.

  17. Response of gram-positive bacteria to copper stress.

    PubMed

    Solioz, Marc; Abicht, Helge K; Mermod, Mélanie; Mancini, Stefano

    2010-01-01

    The Gram-positive bacteria Enterococcus hirae, Lactococcus lactis, and Bacillus subtilis have received wide attention in the study of copper homeostasis. Consequently, copper extrusion by ATPases, gene regulation by copper, and intracellular copper chaperoning are understood in some detail. This has provided profound insight into basic principles of how organisms handle copper. It also emerged that many bacterial species may not require copper for life, making copper homeostatic systems pure defense mechanisms. Structural work on copper homeostatic proteins has given insight into copper coordination and bonding and has started to give molecular insight into copper handling in biological systems. Finally, recent biochemical work has shed new light on the mechanism of copper toxicity, which may not primarily be mediated by reactive oxygen radicals.

  18. Photodynamic inactivation of Gram-positive bacteria employing natural resources.

    PubMed

    Mamone, L; Di Venosa, G; Gándara, L; Sáenz, D; Vallecorsa, P; Schickinger, S; Rossetti, M V; Batlle, A; Buzzola, F; Casas, A

    2014-04-05

    The aim of this paper was to investigate a collection of plant extracts from Argentina as a source of new natural photosensitizers (PS) to be used in Photodynamic Inactivation (PDI) of bacteria. A collection of plants were screened for phototoxicity upon the Gram-positive species Staphylococcus epidermidis. Three extracts turned out to be photoactive: Solanum verbascifolium flower, Tecoma stans flower and Cissus verticillata root. Upon exposure to a light dose of 55J/cm(2), they induced 4, 2 and 3logs decrease in bacterial survival, respectively. Photochemical characterisation of S. verbascifolium extract was carried out. PDI reaction was dependent mainly on singlet oxygen and to a lesser extent, on hydroxyl radicals, through type II and I reactions. Photodegradation experiments revealed that the active principle of the extract was not particularly photolabile. It is noticeable that S. verbascifolium -PDI was more efficient under sunlight as compared to artificial light (total eradication vs. 4 logs decrease upon 120min of sunlight). The balance between oxidant and antioxidant compounds is likely to be masking or unmasking potential PS of plant extracts, but employing the crude extract, the level of photoactivity of S. verbascifolium is similar to some artificial PS upon exposure to sunlight, demonstrating that natural resources can be employed in PDI of bacteria.

  19. Resistance to bacteriocins produced by Gram-positive bacteria.

    PubMed

    Bastos, Maria do Carmo de Freire; Coelho, Marcus Lívio Varella; Santos, Olinda Cabral da Silva

    2015-04-01

    Bacteriocins are prokaryotic proteins or peptides with antimicrobial activity. Most of them exhibit a broad spectrum of activity, inhibiting micro-organisms belonging to different genera and species, including many bacterial pathogens which cause human, animal or plant infections. Therefore, these substances have potential biotechnological applications in either food preservation or prevention and control of bacterial infectious diseases. However, there is concern that continuous exposure of bacteria to bacteriocins may select cells resistant to them, as observed for conventional antimicrobials. Based on the models already investigated, bacteriocin resistance may be either innate or acquired and seems to be a complex phenomenon, arising at different frequencies (generally from 10(-9) to 10(-2)) and by different mechanisms, even amongst strains of the same bacterial species. In the present review, we discuss the prevalence, development and molecular mechanisms involved in resistance to bacteriocins produced by Gram-positive bacteria. These mechanisms generally involve changes in the bacterial cell envelope, which result in (i) reduction or loss of bacteriocin binding or insertion, (ii) bacteriocin sequestering, (iii) bacteriocin efflux pumping (export) and (iv) bacteriocin degradation, amongst others. Strategies that can be used to overcome this resistance are also addressed.

  20. Isolating "Unknown" Bacteria in the Introductory Microbiology Laboratory: A New Selective Medium for Gram-Positives.

    ERIC Educational Resources Information Center

    McKillip, John L.; Drake, MaryAnne

    1999-01-01

    Describes the development, preparation, and use of a medium that can select against a wide variety of Gram-negative bacteria while still allowing growth and differentiation of a wide range of Gram-positives. (WRM)

  1. σECF factors of gram-positive bacteria

    PubMed Central

    Souza, Bianca Mendes; Castro, Thiago Luiz de Paula; Carvalho, Rodrigo Dias de Oliveira; Seyffert, Nubia; Silva, Artur; Miyoshi, Anderson; Azevedo, Vasco

    2014-01-01

    The survival of bacteria to different environmental conditions depends on the activation of adaptive mechanisms, which are intricately driven through gene regulation. Because transcriptional initiation is considered to be the major step in the control of bacterial genes, we discuss the characteristics and roles of the sigma factors, addressing (1) their structural, functional and phylogenetic classification; (2) how their activity is regulated; and (3) the promoters recognized by these factors. Finally, we focus on a specific group of alternative sigma factors, the so-called σECF factors, in Bacillus subtilis and some of the main species that comprise the CMNR group, providing information on the roles they play in the microorganisms’ physiology and indicating some of the genes whose transcription they regulate. PMID:24921931

  2. The thuggacins, novel antibacterial macrolides from Sorangium cellulosum acting against selected Gram-positive bacteria.

    PubMed

    Irschik, Herbert; Reichenbach, Hans; Höfle, Gerhard; Jansen, Rolf

    2007-12-01

    In our screening program we found an activity against some Gram-positive bacteria, including mycobacteria in the culture supernatant of Sorangium cellulosum strain So ce895. The antibiotic responsible for this activity was isolated and named thuggacin. Initial studies towards the mechanism of action showed that thuggacin A inhibits a late step of the respiratory chain of some bacteria.

  3. Bactericidal Activity and Mechanism of Photoirradiated Polyphenols against Gram-Positive and -Negative Bacteria.

    PubMed

    Nakamura, Keisuke; Ishiyama, Kirika; Sheng, Hong; Ikai, Hiroyo; Kanno, Taro; Niwano, Yoshimi

    2015-09-09

    The bactericidal effect of various types of photoirradiated polyphenols against Gram-positive and -negative bacteria was evaluated in relation to the mode of action. Gram-positive bacteria (Enterococcus faecalis, Staphylococcus aureus, and Streptococcus mutans) and Gram-negative bacteria (Aggregatibacter actinomycetemcomitans, Escherichia coli, and Pseudomonas aeruginosa) suspended in a 1 mg/mL polyphenol aqueous solution (caffeic acid, gallic acid, chlorogenic acid, epigallocatechin, epigallocatechin gallate, and proanthocyanidin) were exposed to LED light (wavelength, 400 nm; irradiance, 260 mW/cm(2)) for 5 or 10 min. Caffeic acid and chlorogenic acid exerted the highest bactericidal activity followed by gallic acid and proanthocyanidin against both Gram-positive and -negative bacteria. It was also demonstrated that the disinfection treatment induced oxidative damage of bacterial DNA, which suggests that polyphenols are incorporated into bacterial cells. The present study suggests that blue light irradiation of polyphenols could be a novel disinfection treatment.

  4. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  5. Interaction of cationic peptides with lipoteichoic acid and gram-positive bacteria.

    PubMed

    Scott, M G; Gold, M R; Hancock, R E

    1999-12-01

    Compounds with antiendotoxin properties have been extensively studied for their potential as therapeutic agents for sepsis attributable to gram-negative bacteria. However, with the increasing incidence of gram-positive sepsis, there is interest in identifying compounds with a broad spectrum of action against both gram-positive and gram-negative bacteria. A series of synthetic alpha-helical cationic peptides related to bee melittin and silk moth cecropin have previously been shown to bind lipopolysaccharide (LPS) with high affinity, inhibit LPS-induced tumor necrosis factor alpha (TNF-alpha) production in vitro and in vivo, and kill gram-negative bacteria. In this study, we analyzed whether these peptides were active against gram-positive bacteria; whether they could bind to lipoteichoic acid (LTA), the major proinflammatory structure on gram-positive bacteria; and whether they could block the ability of LTA to promote the release of cytokines by the RAW 264.7 murine macrophage cell line. We found that the cationic peptides demonstrated moderate growth-inhibitory activity toward gram-positive bacteria. In addition, the peptides bound LTA with high affinity. This correlated with the ability of the peptides to block LTA-induced production of TNF and interleukin-6 by RAW 264.7 cells but did not correlate with their ability to kill the bacteria. The peptides also effectively inhibited LTA-induced TNF production in a whole human blood assay. The peptides were also able to partly block the ability of heat-killed Staphylococcus aureus, as well as soluble products of live S. aureus, to stimulate cytokine production by macrophages. Our results indicate that these cationic peptides may be useful to prevent sepsis and inflammation caused by both gram-negative and gram-positive bacteria.

  6. Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria.

    PubMed

    Stancu, Mihaela Marilena; Grifoll, Magdalena

    2011-01-01

    New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria.

  7. Nucleotide sequence alignment of hdcA from Gram-positive bacteria

    PubMed Central

    Diaz, Maria; Ladero, Victor; Redruello, Begoña; Sanchez-Llana, Esther; del Rio, Beatriz; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A.

    2016-01-01

    The decarboxylation of histidine -carried out mainly by some gram-positive bacteria- yields the toxic dietary biogenic amine histamine (Ladero et al. 2010 〈10.2174/157340110791233256〉 [1], Linares et al. 2016 〈http://dx.doi.org/10.1016/j.foodchem.2015.11.013〉〉 [2]). The reaction is catalyzed by a pyruvoyl-dependent histidine decarboxylase (Linares et al. 2011 〈10.1080/10408398.2011.582813〉 [3]), which is encoded by the gene hdcA. In order to locate conserved regions in the hdcA gene of Gram-positive bacteria, this article provides a nucleotide sequence alignment of all the hdcA sequences from Gram-positive bacteria present in databases. For further utility and discussion, see 〈http://dx.doi.org/ 10.1016/j.foodcont.2015.11.035〉〉 [4]. PMID:26958625

  8. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Guo, Yanyan; Rogelj, Snezna; Zhang, Peng

    2010-02-01

    A new type of photosensitizer, made from Rose Bengal (RB)-decorated silica (SiO2-NH2-RB) nanoparticles, was developed to inactivate gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA), with high efficiency through photodynamic action. The nanoparticles were characterized microscopically and spectroscopically to confirm their structures. The characterization of singlet oxygen generated by RB, both free and immobilized on a nanoparticle surface, was performed in the presence of anthracene-9,10-dipropionic acid. The capability of SiO2-NH2-RB nanoparticles to inactivate bacteria was tested in vitro on both gram-positive and gram-negative bacteria. The results showed that RB-decorated silica nanoparticles can inactivate MRSA and Staphylococcus epidermidis (both gram-positive) very effectively (up to eight-orders-of-magnitude reduction). Photosensitizers of such design should have good potential as antibacterial agents through a photodynamic mechanism.

  9. The use of lysozyme modified with fluorescein for the detection of Gram-positive bacteria.

    PubMed

    Arabski, Michał; Konieczna, Iwona; Tusińska, Ewa; Wąsik, Sławomir; Relich, Inga; Zając, Krzysztof; Kamiński, Zbigniew J; Kaca, Wiesław

    2015-01-01

    Lysozyme (1,4-β-N-acetylmuramidase) is commonly applied in the food, medical, and pharmaceutical industries. In this study, we tested a novel application of fluorescein-modified lysozyme (using carboxyfluorescein with a triazine-based coupling reagent) as a new tool for the detection of Gram-positive soil bacteria. The results, obtained by cultivation methods, fluorescence analysis, and laser interferometry, showed that, after optimization, fluorescein-modified lysozyme could be used to evaluate the prevalence of Gram-positive bacteria essential in bioremediation of soils with low pH, such as those degraded by sulfur.

  10. Multiplex PCR for colony direct detection of Gram-positive histamine- and tyramine-producing bacteria.

    PubMed

    Coton, Emmanuel; Coton, Monika

    2005-12-01

    Formation of biogenic amines (BA) may occur in fermented foods and beverages due to the amino acid decarboxylase activities of Gram-positive bacteria. These compounds may cause food poisoning and therefore could imply food exportation problems. A set of consensual primers based on histidine decarboxylase gene (hdc) sequences of different bacteria was designed for the detection of histamine-producing Gram-positive bacteria. A multiplex PCR based on these hdc primers and recently designed primers targeting the tyrosine decarboxylase (tyrdc) gene was created. A third set of primers targeting the 16S rRNA gene of eubacteria was also used as an internal control. This multiplex PCR was performed on extracted DNA as well as directly on cell colonies. The results obtained show that this new molecular tool allowed for the detection of Gram-positive histamine- and/or tyramine-producing bacteria. The use of this molecular tool for early and rapid detection of Gram-positive BA-producing bacteria is of interest in evaluating the potential of cultured indigenous strains to produce biogenic amines in a fermented food product as well as to validate the innocuity of potential starter strains in the food industry.

  11. Inactivation of Gram-Positive Bacteria by Novel Phenolic Branched-Chain Fatty Acids.

    PubMed

    Fan, Xuetong; Wagner, Karen; Sokorai, Kimberly J B; Ngo, Helen

    2017-01-01

    Novel phenolic branched-chain fatty acids (PBC-FAs) were evaluated for their antimicrobial properties against both gram-positive ( Listeria innocua , Bacillus subtilis , Enterococcus faecium ) and gram-negative ( Escherichia coli , Salmonella Typhimurium, and Pseudomonas tolaasii ) bacteria. In addition, PBC-FA derivatives, such as PBC-FA methyl ester mixture, methyl-branched fatty acid mixtures, and trimethylsilyl-PBC-FA methyl esters, were synthesized to study the structure activity relationship. Results showed that PBC-FAs were a potent antimicrobial against gram-positive bacteria with MICs of 1.8 to 3.6 μg/ml. The compounds were less effective against gram-negative bacteria. Derivatives of PBC-FAs and an equimolar mixture of oleic acid and phenol all had MICs above 233 μg/ml against both gram-positive and gram-negative bacteria. Comparison of antimicrobial activities of the PBC-FAs with those of the derivatives suggests that the carboxylic group in the fatty acid moiety and the hydroxyl group on the phenol moiety were responsible for the antimicrobial efficacy. Growth curves of L. innocua revealed that PBC-FAs prevented bacterial growth, while MBC-FAs only delayed the onset of rapid growth of L. innocua . Our results demonstrated that the novel PBC-FAs have potential for use as antimicrobials against gram-positive bacteria.

  12. Phylogenetic Diversity of Gram-Positive Bacteria Cultured from Marine Sediments▿ †

    PubMed Central

    Gontang, Erin A.; Fenical, William; Jensen, Paul R.

    2007-01-01

    Major advances in our understanding of marine bacterial diversity have been gained through studies of bacterioplankton, the vast majority of which appear to be gram negative. Less effort has been devoted to studies of bacteria inhabiting marine sediments, yet there is evidence to suggest that gram-positive bacteria comprise a relatively large proportion of these communities. To further expand our understanding of the aerobic gram-positive bacteria present in tropical marine sediments, a culture-dependent approach was applied to sediments collected in the Republic of Palau from the intertidal zone to depths of 500 m. This investigation resulted in the isolation of 1,624 diverse gram-positive bacteria spanning 22 families, including many that appear to represent new taxa. Phylogenetic analysis of 189 representative isolates, based on 16S rRNA gene sequence data, indicated that 124 (65.6%) belonged to the class Actinobacteria while the remaining 65 (34.4%) were members of the class Bacilli. Using a sequence identity value of ≥98%, the 189 isolates grouped into 78 operational taxonomic units, of which 29 (37.2%) are likely to represent new taxa. The high degree of phylogenetic novelty observed during this study highlights the fact that a great deal remains to be learned about the diversity of gram-positive bacteria in marine sediments. PMID:17400789

  13. Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology.

    PubMed

    Anné, Jozef; Economou, Anastassios; Bernaerts, Kristel

    2016-11-25

    A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.

  14. Ubiquitous detection of gram-positive bacteria with bioorthogonal magnetofluorescent nanoparticles.

    PubMed

    Chung, Hyun Jung; Reiner, Thomas; Budin, Ghyslain; Min, Changwook; Liong, Monty; Issadore, David; Lee, Hakho; Weissleder, Ralph

    2011-11-22

    The ability to rapidly diagnose gram-positive pathogenic bacteria would have far reaching biomedical and technological applications. Here we describe the bioorthogonal modification of small molecule antibiotics (vancomycin and daptomycin), which bind to the cell wall of gram-positive bacteria. The bound antibiotics conjugates can be reacted orthogonally with tetrazine-modified nanoparticles, via an almost instantaneous cycloaddition, which subsequently renders the bacteria detectable by optical or magnetic sensing. We show that this approach is specific, selective, fast and biocompatible. Furthermore, it can be adapted to the detection of intracellular pathogens. Importantly, this strategy enables detection of entire classes of bacteria, a feat that is difficult to achieve using current antibody approaches. Compared to covalent nanoparticle conjugates, our bioorthogonal method demonstrated 1-2 orders of magnitude greater sensitivity. This bioorthogonal labeling method could ultimately be applied to a variety of other small molecules with specificity for infectious pathogens, enabling their detection and diagnosis.

  15. Class D β-lactamases do exist in Gram-positive bacteria

    SciTech Connect

    Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K.; Frase, Hilary; Bhattacharya, Monolekha; Smith, Clyde A.; Vakulenko, Sergei B.

    2015-11-09

    Production of β-lactamases of one of four molecular classes (A, B, C and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics, which have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, none have been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate-binding mode that is quite different from that of all currently known class A, C and D β-lactamases. In conclusion, these enzymes thus constitute a previously unknown reservoir of novel antibiotic-resistance enzymes.

  16. Class D β-lactamases do exist in Gram-positive bacteria

    PubMed Central

    Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K.; Frase, Hilary; Bhattacharya, Monolekha; Smith, Clyde; Vakulenko, Sergei

    2015-01-01

    Production of β-lactamases of the four molecular classes (A, B, C, and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics that have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, they have not been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate binding mode quite different from that of all currently known class A, C, and D β-lactamases. They constitute a novel reservoir of antibiotic resistance enzymes. PMID:26551395

  17. Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica.

    PubMed

    Leiva, Sergio; Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio

    2015-12-01

    Little is known about the diversity and roles of Gram-positive and pigmented bacteria in Antarctic environments, especially those associated with marine macroorganisms. This work is the first study about the diversity and antimicrobial activity of culturable pigmented Gram-positive bacteria associated with marine Antarctic macroalgae. A total of 31 pigmented Gram-positive strains were isolated from the surface of six species of macroalgae collected in the King George Island, South Shetland Islands. On the basis of 16S rRNA gene sequence similarities ≥99%, 18 phylotypes were defined, which were clustered into 11 genera of Actinobacteria (Agrococcus, Arthrobacter, Brachybacterium, Citricoccus, Kocuria, Labedella, Microbacterium, Micrococcus, Rhodococcus, Salinibacterium and Sanguibacter) and one genus of the Firmicutes (Staphylococcus). It was found that five isolates displayed antimicrobial activity against a set of macroalgae-associated bacteria. The active isolates were phylogenetically related to Agrococcus baldri, Brachybacterium rhamnosum, Citricoccus zhacaiensis and Kocuria palustris. The results indicate that a diverse community of pigmented Gram-positive bacteria is associated with Antartic macroalgae and suggest its potential as a promising source of antimicrobial and pigmented natural compounds.

  18. Predictive Factors of Spontaneous Bacterial Peritonitis Caused by Gram-Positive Bacteria in Patients With Cirrhosis.

    PubMed

    Kim, Jung Ho; Jeon, Yong Duk; Jung, In Young; Ahn, Mi Young; Ahn, Hea Won; Ahn, Jin Young; Ku, Nam Su; Han, Sang Hoon; Choi, Jun Yong; Ahn, Sang Hoon; Song, Young Goo; Han, Kwang Hyub; Kim, June Myung

    2016-04-01

    Spontaneous bacterial peritonitis (SBP) in patients with cirrhosis is typically caused by gram-negative bacteria. However, the number of SBP cases due to gram-positive bacteria is steadily increasing. To date, little is known about the predictive factors involved in SBP infections.We performed a retrospective cohort study of patients (>18 years) with SBP due to gram-positive and -negative bacteria who were enrolled from January 2006 to December 2013 at Severance Hospital in Seoul, Korea where the incidences of hepatitis B virus associated chronic liver disease, cirrhosis, and hepatocellular carcinoma are high. Only the 1st SBP episode for each patient within the study period was included in our analysis.We identified 77 patients with cirrhosis and SBP. Of these, 27 patients (35%) had gram-positive bacterial infections and 50 patients (65%) had gram-negative bacterial infections. Our univariate analysis revealed that an early stage of cirrhosis (P = 0.004), lower creatinine level (P = 0.011), lower Sequential Organ Failure Assessment (SOFA) score (P = 0.001), lower Model for End-Stage Liver Disease score (P = 0.005), and use of systemic antibiotics within 30 days before SBP diagnosis (P = 0.03) were significantly associated with gram-positive bacterial infections. Our multivariate analysis indicated that the use of systemic antibiotics within 30 days before SBP diagnosis (odds ratio, 3.94; 95% CI, 1.11-13.96; P = 0.033) and a lower SOFA score (odds ratio, 0.56; 95% CI, 0.37-0.86; P = 0.007) were independent predictive factors of SBP caused by gram-positive bacterial infections in patients with cirrhosis. However, we did not observe a statistically significant difference in the 28-day mortality between the gram-positive and -negative bacterial infection groups (40.7% vs 46.0%, respectively; P = 0.407).In this study, the incidence rate of SBP caused by gram-positive bacteria in patients with cirrhosis was similar to the rates reported

  19. Multiple Responses of Gram-Positive and Gram-Negative Bacteria to Mixture of Hydrocarbons

    PubMed Central

    Marilena Lăzăroaie, Mihaela

    2010-01-01

    Most of our knowledge about pollutants and the way they are biodegraded in the environment has previously been shaped by laboratory studies using hydrocarbon-degrading bacterial strains isolated from polluted sites. In present study Gram-positive (Mycobacterium sp. IBBPo1, Oerskovia sp. IBBPo2, Corynebacterium sp. IBBPo3) and Gram-negative (Chryseomonas sp. IBBPo7, Pseudomonas sp. IBBPo10, Burkholderia sp. IBBPo12) bacteria, isolated from oily sludge, were found to be able to tolerate pure and mixture of saturated hydrocarbons, as well as pure and mixture of monoaromatic and polyaromatic hydrocarbons. Isolated Gram-negative bacteria were more tolerant to mixture of saturated (n-hexane, n-hexadecane, cyclohexane), monoaromatic (benzene, toluene, ethylbenzene) and polyaromatic (naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons than Gram-positive bacteria. There were observed cellular and molecular modifications induced by mixture of saturated, monoaromatic and polyaromatic hydrocarbons to Gram-positive and Gram-negative bacteria. These modifications differ from one strain to another and even for the same bacterial strain, according to the nature of hydrophobic substrate. PMID:24031541

  20. Mid-infrared spectroscopic assessment of nanotoxicity in gram-negative vs. gram-positive bacteria.

    PubMed

    Heys, Kelly A; Riding, Matthew J; Strong, Rebecca J; Shore, Richard F; Pereira, M Glória; Jones, Kevin C; Semple, Kirk T; Martin, Francis L

    2014-03-07

    Nanoparticles appear to induce toxic effects through a variety of mechanisms including generation of reactive oxygen species (ROS), physical contact with the cell membrane and indirect catalysis due to remnants from manufacture. The development and subsequent increasing usage of nanomaterials has highlighted a growing need to characterize and assess the toxicity of nanoparticles, particularly those that may have detrimental health effects such as carbon-based nanomaterials (CBNs). Due to interactions of nanoparticles with some reagents, many traditional toxicity tests are unsuitable for use with CBNs. Infrared (IR) spectroscopy is a non-destructive, high throughput technique, which is unhindered by such problems. We explored the application of IR spectroscopy to investigate the effects of CBNs on Gram-negative (Pseudomonas fluorescens) and Gram-positive (Mycobacterium vanbaalenii PYR-1) bacteria. Two types of IR spectroscopy were compared: attenuated total reflection Fourier-transform infrared (ATR-FTIR) and synchrotron radiation-based FTIR (SR-FTIR) spectroscopy. This showed that Gram-positive and Gram-negative bacteria exhibit differing alterations when exposed to CBNs. Gram-positive bacteria appear more resistant to these agents and this may be due to the protection afforded by their more sturdy cell wall. Markers of exposure also vary according to Gram status; Amide II was consistently altered in Gram-negative bacteria and carbohydrate altered in Gram-positive bacteria. ATR-FTIR and SR-FTIR spectroscopy could both be applied to extract biochemical alterations induced by each CBN that were consistent across the two bacterial species; these may represent potential biomarkers of nanoparticle-induced alterations. Vibrational spectroscopy approaches may provide a novel means of fingerprinting the effects of CBNs in target cells.

  1. Oligopolyphenylenevinylene-Conjugated Oligoelectrolyte Membrane Insertion Molecules Selectively Disrupt Cell Envelopes of Gram-Positive Bacteria

    PubMed Central

    Poh, Wee Han; Chu, Justin Jang Hann; Loo, Joachim Say Chye; Bazan, Guillermo C.; Hancock, Lynn E.

    2015-01-01

    The modification of microbial membranes to achieve biotechnological strain improvement with exogenous small molecules, such as oligopolyphenylenevinylene-conjugated oligoelectrolyte (OPV-COE) membrane insertion molecules (MIMs), is an emerging biotechnological field. Little is known about the interactions of OPV-COEs with their target, the bacterial envelope. We studied the toxicity of three previously reported OPV-COEs with a selection of Gram-negative and Gram-positive organisms and demonstrated that Gram-positive bacteria are more sensitive to OPV-COEs than Gram-negative bacteria. Transmission electron microscopy demonstrated that these MIMs disrupt microbial membranes and that this occurred to a much greater degree in Gram-positive organisms. We used a number of mutants to probe the nature of MIM interactions with the microbial envelope but were unable to align the membrane perturbation effects of these compounds to previously reported membrane disruption mechanisms of, for example, cationic antimicrobial peptides. Instead, the data support the notion that OPV-COEs disrupt microbial membranes through a suspected interaction with diphosphatidylglycerol (DPG), a major component of Gram-positive membranes. The integrity of model membranes containing elevated amounts of DPG was disrupted to a greater extent by MIMs than those prepared from Escherichia coli total lipid extracts alone. PMID:25576607

  2. Oligopolyphenylenevinylene-conjugated oligoelectrolyte membrane insertion molecules selectively disrupt cell envelopes of Gram-positive bacteria.

    PubMed

    Hinks, Jamie; Poh, Wee Han; Chu, Justin Jang Hann; Loo, Joachim Say Chye; Bazan, Guillermo C; Hancock, Lynn E; Wuertz, Stefan

    2015-03-01

    The modification of microbial membranes to achieve biotechnological strain improvement with exogenous small molecules, such as oligopolyphenylenevinylene-conjugated oligoelectrolyte (OPV-COE) membrane insertion molecules (MIMs), is an emerging biotechnological field. Little is known about the interactions of OPV-COEs with their target, the bacterial envelope. We studied the toxicity of three previously reported OPV-COEs with a selection of Gram-negative and Gram-positive organisms and demonstrated that Gram-positive bacteria are more sensitive to OPV-COEs than Gram-negative bacteria. Transmission electron microscopy demonstrated that these MIMs disrupt microbial membranes and that this occurred to a much greater degree in Gram-positive organisms. We used a number of mutants to probe the nature of MIM interactions with the microbial envelope but were unable to align the membrane perturbation effects of these compounds to previously reported membrane disruption mechanisms of, for example, cationic antimicrobial peptides. Instead, the data support the notion that OPV-COEs disrupt microbial membranes through a suspected interaction with diphosphatidylglycerol (DPG), a major component of Gram-positive membranes. The integrity of model membranes containing elevated amounts of DPG was disrupted to a greater extent by MIMs than those prepared from Escherichia coli total lipid extracts alone.

  3. Small regulatory RNAs from low-GC Gram-positive bacteria

    PubMed Central

    Brantl, Sabine; Brückner, Reinhold

    2014-01-01

    Small regulatory RNAs (sRNAs) that act by base-pairing were first discovered in so-called accessory DNA elements—plasmids, phages, and transposons—where they control replication, maintenance, and transposition. Since 2001, a huge body of work has been performed to predict and identify sRNAs in a multitude of bacterial genomes. The majority of chromosome-encoded sRNAs have been investigated in E. coli and other Gram-negative bacteria. However, during the past five years an increasing number of sRNAs were found in Gram-positive bacteria. Here, we outline our current knowledge on chromosome-encoded sRNAs from low-GC Gram-positive species that act by base-pairing, i.e., an antisense mechanism. We will focus on sRNAs with known targets and defined regulatory mechanisms with special emphasis on Bacillus subtilis. PMID:24576839

  4. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials.

    PubMed

    Torres, Sebastian; Pandey, Ashok; Castro, Guillermo R

    2011-01-01

    Organic-solvent-tolerant bacteria are considered extremophiles with different tolerance levels that change among species and strains, but also depend on the inherent toxicity of the solvent. Extensive studies to understand the mechanisms of organic solvent tolerance have been done in Gram-negative bacteria. On the contrary, the information on the solvent tolerance mechanisms in Gram-positive bacteria remains scarce. Possible shared mechanisms among Gram-(-) and Gram-(+) microorganisms include: energy-dependent active efflux pumps that export toxic organic solvents to the external medium; cis-to-trans isomerization of unsaturated membrane fatty acids and modifications in the membrane phospholipid headgroups; formation of vesicles loaded with toxic compounds; and changes in the biosynthesis rate of phospholipids to accelerate repair processes. However, additional physiological responses of Gram-(+) bacteria to organic solvents seem to be specific. The aim of the present work is to review the state of the art of responsible mechanisms for organic solvent tolerance in Gram-positive bacteria, and their industrial and environmental biotechnology potential.

  5. Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria

    PubMed Central

    RICHARDSON, ANTHONY R.; SOMERVILLE, GREG A.; SONENSHEIN, ABRAHAM L.

    2015-01-01

    Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction. PMID:26185086

  6. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    NASA Astrophysics Data System (ADS)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  7. Class D β-lactamases do exist in Gram-positive bacteria

    DOE PAGES

    Toth, Marta; Antunes, Nuno Tiago; Stewart, Nichole K.; ...

    2015-11-09

    Production of β-lactamases of one of four molecular classes (A, B, C and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics, which have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, none have been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinctmore » structural architecture and employ a unique substrate-binding mode that is quite different from that of all currently known class A, C and D β-lactamases. In conclusion, these enzymes thus constitute a previously unknown reservoir of novel antibiotic-resistance enzymes.« less

  8. Critical cell wall hole size for lysis in Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Mitchell, Gabriel; Wiesenfeld, Kurt; Nelson, Daniel; Weitz, Joshua

    2013-03-01

    Gram-positive bacteria transport molecules necessary for their survival through holes in their cell wall. The holes in cell walls need to be large enough to let critical nutrients pass through. However, the cell wall must also function to prevent the bacteria's membrane from protruding through a large hole into the environment and lysing the cell. As such, we hypothesize that there exists a range of cell wall hole sizes that allow for molecule transport but prevent membrane protrusion. Here we develop and analyze a biophysical theory of the response of a Gram-positive cell's membrane to the formation of a hole in the cell wall. We predict a critical hole size in the range 15-24nm beyond which lysis occurs. To test our theory, we measured hole sizes in Streptococcus pyogenes cells undergoing enzymatic lysis via transmission electron microscopy. The measured hole sizes are in strong agreement with our theoretical prediction. Together, the theory and experiments provide a means to quantify the mechanisms of death of Gram-positive cells via enzymatically mediated lysis and provides insight into the range of cell wall hole sizes compatible with bacterial homeostasis.

  9. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    PubMed Central

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-01-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role. PMID:27934958

  10. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma.

    PubMed

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B

    2016-12-09

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  11. Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses.

    PubMed

    Lorca, Graciela L; Barabote, Ravi D; Zlotopolski, Vladimir; Tran, Can; Winnen, Brit; Hvorup, Rikki N; Stonestrom, Aaron J; Nguyen, Elizabeth; Huang, Li-Wen; Kim, David S; Saier, Milton H

    2007-06-01

    The genomes of eleven Gram-positive bacteria that are important for human health and the food industry, nine low G+C lactic acid bacteria and two high G+C Gram-positive organisms, were analyzed for their complement of genes encoding transport proteins. Thirteen to 18% of their genes encode transport proteins, larger percentages than observed for most other bacteria. All of these bacteria possess channel proteins, some of which probably function to relieve osmotic stress. Amino acid uptake systems predominate over sugar and peptide cation symporters, and of the sugar uptake porters, those specific for oligosaccharides and glycosides often outnumber those for free sugars. About 10% of the total transport proteins are constituents of putative multidrug efflux pumps with Major Facilitator Superfamily (MFS)-type pumps (55%) being more prevalent than ATP-binding cassette (ABC)-type pumps (33%), which, however, usually greatly outnumber all other types. An exception to this generalization is Streptococcus thermophilus with 54% of its drug efflux pumps belonging to the ABC superfamily and 23% belonging each to the Multidrug/Oligosaccharide/Polysaccharide (MOP) superfamily and the MFS. These bacteria also display peptide efflux pumps that may function in intercellular signalling, and macromolecular efflux pumps, many of predictable specificities. Most of the bacteria analyzed have no pmf-coupled or transmembrane flow electron carriers. The one exception is Brevibacterium linens, which in addition to these carriers, also has transporters of several families not represented in the other ten bacteria examined. Comparisons with the genomes of organisms from other bacterial kingdoms revealed that lactic acid bacteria possess distinctive proportions of recognized transporter types (e.g., more porters specific for glycosides than reducing sugars). Some homologues of transporters identified had previously been identified only in Gram-negative bacteria or in eukaryotes. Our studies

  12. Transport Capabilities of Eleven Gram-positive Bacteria: Comparative Genomic Analyses

    PubMed Central

    Lorca, Graciela L.; Barabote, Ravi D.; Zlotopolski, Vladimir; Tran, Can; Winnen, Brit; Hvorup, Rikki N.; Stonestrom, Aaron J.; Nguyen, Elizabeth; Huang, Li-Wen; Kim, David S.; Saier, Milton H.

    2007-01-01

    The genomes of eleven Gram-positive bacteria that are important for human health and the food industry, nine low G+C lactic acid bacteria and two high G+C Gram-positive organisms, were analyzed for their complement of genes encoding transport proteins. Thirteen to eighteen percent of their genes encode transport proteins, larger percentages than observed for most other bacteria. All of these bacteria possess channel proteins, some of which probably function to relieve osmotic stress. Amino acid uptake systems predominate over sugar and peptide cation symporters, and of the sugar uptake porters, those specific for oligosaccharides and glycosides often outnumber those for free sugars. About 10% of the total transport proteins are constituents of putative multidrug efflux pumps with Major Facilitator Superfamily (MFS)-type pumps (55%) being more prevalent than ATP-binding cassette (ABC)-type pumps (33%), which, however, usually greatly outnumber all other types. An exception to this generalization is Streptococcus thermophilus with 54% of its drug efflux pumps belonging to the ABC superfamily and 23% belonging each to the Multidrug/Oligosaccharide/Polysaccharide (MOP) superfamily and the MFS. These bacteria also display peptide efflux pumps that may function in intercellular signalling, and macromolecular efflux pumps, many of predictable specificities. Most of the bacteria analyzed have no pmf-coupled or transmembrane flow electron carriers. The one exception is Brevibacterium linens, which in addition to these carriers, also has transporters of several families not represented in the other ten bacteria examined. Comparisons with the genomes of organisms from other bacterial kingdoms revealed that lactic acid bacteria possess distinctive proportions of recognized transporter types (e.g., more porters specific for glycosides than reducing sugars). Some homologues of transporters identified had previously been identified only in Gram-negative bacteria or in eukaryotes

  13. Predominant Gram-Positive Bacteria in Human Feces: Numbers, Variety, and Persistence

    PubMed Central

    Gossling, Jennifer; Slack, John M.

    1974-01-01

    The predominant gram-positive bacteria in 47 fecal specimens from 10 healthy men were studied by microscopic and cultural counts, by the characterization and tentative identification of isolates, and by the use of fluorescein isothiocyanate (FITC)-conjugated globulins prepared using some of the isolates. Gram-positive bacteria averaged 1010.5±0.4(sd/g (wet weight) of feces with significant variation from host to host. Characterization of 865 isolates, all strict anaerobes and carbohydrate fermenters, showed 12 to 39 distinguishable strains from each host and indicated that some strains were present the full period of about 18 months. Sixty percent of the isolates belonged to one of five types, tentatively identified with five species—Bifidobacterium adolescentis, Eubacterium aerofaciens, E. rectale, Peptostreptococcus productus, and Ruminococcus bromii. There was distinct host idiosyncrasy in the pattern of estimated counts of these five types. Certain strains resembling B. adolescentis, E. aerofaciens, and P. productus, distinguished with FITC conjugates, were resident in their hosts for many months. In direct smears each strain constituted about 1% of the total bacteria. PMID:4595760

  14. Fluorescence studies of gram-positive and gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Blust, Brittni

    2012-02-01

    Autofluorescence is a relatively unexplored technique for identification. It is nondestructive, noncontact, fast, and has the potential to be integrated in small handheld devices. On the other hand, the autofluorescent signal is sometimes very week, or it can be overwhelmed by the emission of a surrounding medium. We are exploring the possibility to develop an optical method for identification of the Gram-type of bacterial cultures based on the autofluorescence. We have enhanced the detectivity of a standard fluorimeter using combination of bandpass and long pass filters. In this particular study, we are investigating if the previously observed difference in the autofluorescent spectra of Gram-positive and Gram-negative bacteria is dependent on the age of the culture. We have selected two types of bacteria, Kocuria rhizophila and Alcagenes faecalis, and we have monitored in equal time intervals of their development the autofluorescence spectra. The stages of development were monitored separately by measuring the turbidity and creating a growth curve. The goal of this study is to find out if the previously observed difference in the autofluorescence spectra of Gram-positive and Gram-negative bacteria is dependent on the stage of the development of the bacterial culture.

  15. Microarray-Based Detection of 90 Antibiotic Resistance Genes of Gram-Positive Bacteria

    PubMed Central

    Perreten, Vincent; Vorlet-Fawer, Lorianne; Slickers, Peter; Ehricht, Ralf; Kuhnert, Peter; Frey, Joachim

    2005-01-01

    A disposable microarray was developed for detection of up to 90 antibiotic resistance genes in gram-positive bacteria by hybridization. Each antibiotic resistance gene is represented by two specific oligonucleotides chosen from consensus sequences of gene families, except for nine genes for which only one specific oligonucleotide could be developed. A total of 137 oligonucleotides (26 to 33 nucleotides in length with similar physicochemical parameters) were spotted onto the microarray. The microarrays (ArrayTubes) were hybridized with 36 strains carrying specific antibiotic resistance genes that allowed testing of the sensitivity and specificity of 125 oligonucleotides. Among these were well-characterized multidrug-resistant strains of Enterococcus faecalis, Enterococcus faecium, and Lactococcus lactis and an avirulent strain of Bacillus anthracis harboring the broad-host-range resistance plasmid pRE25. Analysis of two multidrug-resistant field strains allowed the detection of 12 different antibiotic resistance genes in a Staphylococcus haemolyticus strain isolated from mastitis milk and 6 resistance genes in a Clostridium perfringens strain isolated from a calf. In both cases, the microarray genotyping corresponded to the phenotype of the strains. The ArrayTube platform presents the advantage of rapidly screening bacteria for the presence of antibiotic resistance genes known in gram-positive bacteria. This technology has a large potential for applications in basic research, food safety, and surveillance programs for antimicrobial resistance. PMID:15872258

  16. Effect of disinfection on number and stainability of gram-positive bacteria.

    PubMed

    van Mullem, P J; Wijnbergen, M

    1989-11-01

    Evidence provided by the Brown and Brenn stain for the presence of bacteria in fixed tissue sections depends on the ability to demonstrate them by staining. Previously, in a model experiment, it has been shown that demineralizing agents reduce the number of blue-staining Gram-positive bacteria (Wijnbergen & Van Mullem 1987). In the present study the influence of a structure-destroying disinfectant, a structure-preserving disinfectant or heat disinfection on number and stainability was investigated using S. faecalis suspensions. Numbers were determined using a haemocytometer, and percentages of blue-staining organisms were ascertained from smears. Immediately after disinfection the relative number of Gram-positive staining bacteria was reduced by a factor of three for chlorhexidine, almost two for alcoformol, and was slightly reduced by heat. After 4 days of storage the reduction factors were 90, 4, and 2, respectively. After 14 days of storage the reduction factors were infinite, 30 and 5, respectively. These results were explained on the basis of the rate of cell wall destruction evoked by the respective agents.

  17. Gram-positive bacteria of marine origin: a numerical taxonomic study on Mediterranean isolates.

    PubMed

    Ortigosa, M; Garay, E; Pujalte, M J

    1997-12-01

    A numerical taxonomic study was performed on 65 Gram-positive wild strains of heterotrophic, aerobic, marine bacteria, and 9 reference strains. The isolates were obtained from oysters and seawater sampled monthly over one year, by direct plating on Marine Agar. The strains were characterized by 96 morphological, biochemical, physiological and nutritional tests. Clustering yielded 13 phena at 0.62 similarity level (Sl coefficient). Only one of the seven phena containing wild isolates could be identified (Bacillus marinus). A pronounced salt requirement was found in most isolates.

  18. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria.

    PubMed

    Kjos, Morten; Borrero, Juan; Opsata, Mona; Birri, Dagim J; Holo, Helge; Cintas, Luis M; Snipen, Lars; Hernández, Pablo E; Nes, Ingolf F; Diep, Dzung B

    2011-12-01

    Due to their very potent antimicrobial activity against diverse food-spoiling bacteria and pathogens and their favourable biochemical properties, peptide bacteriocins from Gram-positive bacteria have long been considered promising for applications in food preservation or medical treatment. To take advantage of bacteriocins in different applications, it is crucial to have detailed knowledge on the molecular mechanisms by which these peptides recognize and kill target cells, how producer cells protect themselves from their own bacteriocin (self-immunity) and how target cells may develop resistance. In this review we discuss some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins. We also discuss some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriocins.

  19. Peptidoglycan Recycling in Gram-Positive Bacteria Is Crucial for Survival in Stationary Phase

    PubMed Central

    Borisova, Marina; Gaupp, Rosmarie; Duckworth, Amanda; Schneider, Alexander; Dalügge, Désirée; Mühleck, Maraike; Deubel, Denise; Unsleber, Sandra; Yu, Wenqi; Muth, Günther; Bischoff, Markus; Götz, Friedrich

    2016-01-01

    ABSTRACT Peptidoglycan recycling is a metabolic process by which Gram-negative bacteria reutilize up to half of their cell wall within one generation during vegetative growth. Whether peptidoglycan recycling also occurs in Gram-positive bacteria has so far remained unclear. We show here that three Gram-positive model organisms, Staphylococcus aureus, Bacillus subtilis, and Streptomyces coelicolor, all recycle the sugar N-acetylmuramic acid (MurNAc) of their peptidoglycan during growth in rich medium. They possess MurNAc-6-phosphate (MurNAc-6P) etherase (MurQ in E. coli) enzymes, which are responsible for the intracellular conversion of MurNAc-6P to N-acetylglucosamine-6-phosphate and d-lactate. By applying mass spectrometry, we observed accumulation of MurNAc-6P in MurNAc-6P etherase deletion mutants but not in either the isogenic parental strains or complemented strains, suggesting that MurQ orthologs are required for the recycling of cell wall-derived MurNAc in these bacteria. Quantification of MurNAc-6P in ΔmurQ cells of S. aureus and B. subtilis revealed small amounts during exponential growth phase (0.19 nmol and 0.03 nmol, respectively, per ml of cells at an optical density at 600 nm [OD600] of 1) but large amounts during transition (0.56 nmol and 0.52 nmol) and stationary (0.53 nmol and 1.36 nmol) phases. The addition of MurNAc to ΔmurQ cultures greatly increased the levels of intracellular MurNAc-6P in all growth phases. The ΔmurQ mutants of S. aureus and B. subtilis showed no growth deficiency in rich medium compared to the growth of the respective parental strains, but intriguingly, they had a severe survival disadvantage in late stationary phase. Thus, although peptidoglycan recycling is apparently not essential for the growth of Gram-positive bacteria, it provides a benefit for long-term survival. PMID:27729505

  20. Structural diversity and biological significance of lipoteichoic acid in Gram-positive bacteria: focusing on beneficial probiotic lactic acid bacteria.

    PubMed

    Shiraishi, Tsukasa; Yokota, Shinichi; Fukiya, Satoru; Yokota, Atsushi

    2016-01-01

    Bacterial cell surface molecules are at the forefront of host-bacterium interactions. Teichoic acids are observed only in Gram-positive bacteria, and they are one of the main cell surface components. Teichoic acids play important physiological roles and contribute to the bacterial interaction with their host. In particular, lipoteichoic acid (LTA) anchored to the cell membrane has attracted attention as a host immunomodulator. Chemical and biological characteristics of LTA from various bacteria have been described. However, most of the information concerns pathogenic bacteria, and information on beneficial bacteria, including probiotic lactic acid bacteria, is insufficient. LTA is structurally diverse. Strain-level structural diversity of LTA is suggested to underpin its immunomodulatory activities. Thus, the structural information on LTA in probiotics, in particular strain-associated diversity, is important for understanding its beneficial roles associated with the modulation of immune response. Continued accumulation of structural information is necessary to elucidate the detailed physiological roles and significance of LTA. In this review article, we summarize the current state of knowledge on LTA structure, in particular the structure of LTA from lactic acid bacteria. We also describe the significance of structural diversity and biological roles of LTA.

  1. Structural diversity and biological significance of lipoteichoic acid in Gram-positive bacteria: focusing on beneficial probiotic lactic acid bacteria

    PubMed Central

    SHIRAISHI, Tsukasa; YOKOTA, Shinichi; FUKIYA, Satoru; YOKOTA, Atsushi

    2016-01-01

    Bacterial cell surface molecules are at the forefront of host-bacterium interactions. Teichoic acids are observed only in Gram-positive bacteria, and they are one of the main cell surface components. Teichoic acids play important physiological roles and contribute to the bacterial interaction with their host. In particular, lipoteichoic acid (LTA) anchored to the cell membrane has attracted attention as a host immunomodulator. Chemical and biological characteristics of LTA from various bacteria have been described. However, most of the information concerns pathogenic bacteria, and information on beneficial bacteria, including probiotic lactic acid bacteria, is insufficient. LTA is structurally diverse. Strain-level structural diversity of LTA is suggested to underpin its immunomodulatory activities. Thus, the structural information on LTA in probiotics, in particular strain-associated diversity, is important for understanding its beneficial roles associated with the modulation of immune response. Continued accumulation of structural information is necessary to elucidate the detailed physiological roles and significance of LTA. In this review article, we summarize the current state of knowledge on LTA structure, in particular the structure of LTA from lactic acid bacteria. We also describe the significance of structural diversity and biological roles of LTA. PMID:27867802

  2. Rapid analysis of Gram-positive bacteria in water via membrane filtration coupled with nanoprobe-based MALDI-MS.

    PubMed

    Li, Shuping; Guo, Zhongxian; Wu, Hui-Fen; Liu, Ying; Yang, Zhaoguang; Woo, Chee Hoe

    2010-07-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is challenging when it is directly applied to identify bacteria in water. This study demonstrates a rapid, sensitive, and selective technique for detection of Gram-positive bacteria in water. It involves a combination of membrane filtration (MF) and vancomycin-conjugated magnetite nanoparticles (VNPs) to selectively separate and concentrate Gram-positive bacteria in tap water and reservoir water, followed by rapid analysis of the isolates using whole-cell MALDI-MS. VNPs specifically recognize cells of Gram-positive bacteria, which serves as a basis for affinity capture of target Gram-positive bacteria. A two-step procedure of surface modification of bare magnetite nanoparticles was applied to synthesize VNPs. MF prior to VNP-based magnetic separation can effectively increase the enrichment factor and detection sensitivity and reduce time-consuming culture steps and the matrix effect for analysis of bacteria in MALDI-MS. The enrichment factor for the MF-VNP technique is about 6 x 10(4). A variety of bacteria, including Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, and Enterococcus faecium, were successfully analyzed from aqueous solutions and their mixtures with Gram-negative bacteria. The optimal conditions of the VNP/MALDI-MS technique, including selection of the MALDI matrix, the choice of cell-washing solution, and the VNP concentration, were also investigated. The capture efficiencies of Gram-positive bacteria with VNPs were 26.7-33.3%. The mass variations of characteristic peaks of the captured bacteria were within +/-5 Da, which indicated good reproducibility of the proposed technique. The technique was applied to detect Gram-positive bacteria in tap water and reservoir water with an analysis time of around 2 h. The detection limit for Bacillus cereus, Enterococcus faecium, and Staphylococcus aureus was 5 x 10(2) cfu/ml for 2.0-l water samples.

  3. Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria.

    SciTech Connect

    Dumas, E.; Gao, C.; Suffern, D.; Bradforth, S. E.; Dimitrejevic, N. M.; Nadeau, J. L.; McGill Univ.; Univ. of Southern California

    2010-01-01

    Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C{sub 60} nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots, adapting our tools to make use of the particles fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects - nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd{sup 2+} release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.

  4. Cyclodepsipeptides produced by actinomycetes inhibit cyclic-peptide-mediated quorum sensing in Gram-positive bacteria.

    PubMed

    Desouky, Said E; Shojima, Akane; Singh, Ravindra Pal; Matsufuji, Takahisa; Igarashi, Yasuhiro; Suzuki, Takashi; Yamagaki, Tohru; Okubo, Ken-Ichi; Ohtani, Kaori; Sonomoto, Kenji; Nakayama, Jiro

    2015-07-01

    Cyclic peptides are commonly used as quorum-sensing autoinducers in Gram-positive Firmicutes bacteria. Well-studied examples of such molecules are thiolactone and lactone, used to regulate the expression of a series of virulence genes in the agr system of Staphylococcus aureus and the fsr system of Enterococcus faecalis, respectively. Three cyclodepsipeptides WS9326A, WS9326B and cochinmicin II/III were identified as a result of screening actinomycetes culture extracts for activity against the agr/fsr system. These molecules are already known as receptor antagonists, the first two for tachykinin and the last one for endothelin. WS9326A also inhibited the transcription of pfoA regulated by the VirSR two-component system in Clostridium perfringens. Receptor-binding assays using a fluorescence-labeled autoinducer (FITC-GBAP) showed that WS9326A and WS9326B act as receptor antagonists in this system. In addition, an ex vivo assay showed that WS9326B substantially attenuated the toxicity of S. aureus for human corneal epithelial cells. These results suggest that these three natural cyclodepsipeptides have therapeutic potential for targeting the cyclic peptide-mediated quorum sensing of Gram-positive pathogens.

  5. Tribolium castaneum defensins are primarily active against Gram-positive bacteria.

    PubMed

    Tonk, Miray; Knorr, Eileen; Cabezas-Cruz, Alejandro; Valdés, James J; Kollewe, Christian; Vilcinskas, Andreas

    2015-11-01

    The red flour beetle Tribolium castaneum is a destructive insect pest of stored food and feed products, and a model organism for development, evolutionary biology and immunity. The insect innate immune system includes antimicrobial peptides (AMPs) with a wide spectrum of targets including viruses, bacteria, fungi and parasites. Defensins are an evolutionarily-conserved class of AMPs and a potential new source of antimicrobial agents. In this context, we report the antimicrobial activity, phylogenetic and structural properties of three T. castaneum defensins (Def1, Def2 and Def3) and their relevance in the immunity of T. castaneum against bacterial pathogens. All three recombinant defensins showed bactericidal activity against Micrococcus luteus and Bacillus thuringiensis serovar tolworthi, but only Def1 and Def2 showed a bacteriostatic effect against Staphylococcus epidermidis. None of the defensins showed activity against the Gram-negative bacteria Escherichia coli and Pseudomonas entomophila or against the yeast Saccharomyces cerevisiae. All three defensins were transcriptionally upregulated following a bacterial challenge, suggesting a key role in the immunity of T. castaneum against bacterial pathogens. Phylogenetic analysis showed that defensins from T. castaneum, mealworms, Udo longhorn beetle and houseflies cluster within a well-defined clade of insect defensins. We conclude that T. castaneum defensins are primarily active against Gram-positive bacteria and that other AMPs may play a more prominent role against Gram-negative species.

  6. A Carbocyclic Curcumin Inhibits Proliferation of Gram-Positive Bacteria by Targeting FtsZ.

    PubMed

    Groundwater, Paul W; Narlawar, Rajeshwar; Liao, Vivian Wan Yu; Bhattacharya, Anusri; Srivastava, Shalini; Kunal, Kishore; Doddareddy, Munikumar; Oza, Pratik M; Mamidi, Ramesh; Marrs, Emma C L; Perry, John D; Hibbs, David E; Panda, Dulal

    2017-01-24

    Inhibition of FtsZ assembly has been found to stall bacterial cell division. Here, we report the identification of a potent carbocyclic curcumin analogue (2d) that inhibits Bacillus subtilis 168 cell proliferation by targeting the assembly of FtsZ. 2d also showed potent inhibitory activity (minimum inhibitory concentrations of 2-4 mg/L) against several clinically important species of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. In addition, 2d displayed a significantly reduced inhibitory effect on human cervical cancer cells in comparison to its effect on bacterial cells. Using live cell imaging of GFP-FtsZ by confocal microscopy, 2d was found to rapidly perturb the cytokinetic FtsZ rings in Bacillus subtilis cells. The immunofluorescence imaging of FtsZ also showed that 2d destroyed the Z-ring in bacteria within 5 min. Prolonged treatment with 2d produced filamentous bacteria, but 2d had no detectable effect either on the nucleoids or on the membrane potential of bacteria. 2d inhibited FtsZ assembly in vitro, whereas it had minimal effects on tubulin assembly. Interestingly, 2d strongly enhanced the GTPase activity of FtsZ and reduced the GTPase activity of tubulin. Furthermore, 2d bound to purified FtsZ with a dissociation constant of 4.0 ± 1.1 μM, and the binding of 2d altered the secondary structures of FtsZ. The results together suggested that the non-natural curcumin analogue 2d possesses powerful antibacterial activity against important pathogenic bacteria, and the evidence indicates that 2d inhibits bacterial proliferation by targeting FtsZ.

  7. The immune response after stimulation with wall components of gram-positive bacteria and fungi.

    PubMed

    Tsigou, Evdoxia; Aloizos, Stavros; Stavros, Aloizos; Myrianthefs, Pavlos; Pavlos, Myrianthefs; Gourgiotis, Stavros; Stavros, Gourgiotis; Tsakris, Athanassios; Athanassios, Tsakris; Baltopoulos, George; George, Baltopoulos

    2014-01-01

    Although several components of the microbial wall of gram-positive bacteria and fungi possess immunostimulatory properties, their pathogenetic role remains incompletely evaluated. The purpose of this study was to assess the basic immune status of patients susceptible to infections and their capability for cytokine production after stimulation with wall components of gram-positive bacteria and fungi. We measured serum cytokine levels as well as cytokine production after ex vivo lipoteichoic acid (LTA) and mannan stimulation of whole blood. The blood was taken from 10 healthy volunteers, 10 patients with end-stage renal disease (ESRD), 10 patients with diabetes mellitus (DM), and 10 patients on their 2nd day of stay in the Intensive Care Unit (ICU), who suffered from non septic systemic inflammatory response syndrome (SIRS) and had an APACHE II score ≥25. We used 1 μg/ml LTA and 100 μg/ml mannan for an incubation period of 8 h to stimulate 100 μl aliquots of whole blood. All patient groups had higher baseline values of TNF-α, IL-6, IL-1β, and IL-10 compared to the control group, but only for ICU patients the difference was statistically significant. The ratio IL-10/IL-6 was found 0.33, 0.22, and 0.96 in healthy persons, ESRD, and DM patients respectively, and 1.32 in ICU patients. In all examined groups, the levels of cytokines significantly increased after stimulation by LTA and mannan, although in severely ill patients this change was considerably smaller, possibly reflecting a state of monocytes' depression and relative hyporesponsiveness. No significant differences between the LTA and the mannan stimulation were observed.

  8. Biochemical characterization of Gram-positive and Gram-negative plant-associated bacteria with micro-Raman spectroscopy.

    PubMed

    Paret, Mathews L; Sharma, Shiv K; Green, Lisa M; Alvarez, Anne M

    2010-04-01

    Raman spectra of Gram-positive and Gram-negative plant bacteria have been measured with micro-Raman spectrometers equipped with 785 and 514.5 nm lasers. The Gram-positive bacteria Microbacterium testaceum, Paenibacillus validus, and Clavibacter michiganensis subsp. michiganensis have strong carotenoid bands in the regions 1155-1157 cm(-1) and 1516-1522 cm(-1) that differentiate them from other tested Gram-negative bacteria. In the Raman spectrum of Gram-positive bacteria Bacillus megaterium excited with 785 nm laser, the Raman bands at 1157 and 1521 cm(-1) are weak in intensity compared to other Gram-positive bacteria, and these bands did not show significant resonance Raman enhancement in the spectrum recorded with 514.5 nm laser excitation. The Gram-positive bacteria could be separated from each other based on the bands associated with the in-phase C=C (v(1)) vibrations of the polyene chain of carotenoids. None of the Gram-negative bacteria tested had carotenoid bands. The bacteria in the genus Xanthomonas have a carotenoid-like pigment, xanthomonadin, identified in Xanthomonas axonopodis pv. dieffenbachiae, and it is a unique Raman marker for the bacteria. The representative bands for xanthomonadin were the C-C stretching (v(2)) vibrations of the polyene chain at 1135-1136 cm(-1) and the in-phase C=C (v(1)) vibrations of the polyene chain at 1529-1531 cm(-1), which were distinct from the carotenoid bands of other tested bacteria. The tyrosine peak in the region 1170-1175 cm(-1) was the only other marker present in Gram-negative bacteria that was absent in all tested Gram-positives. A strong-intensity exopolysaccharide-associated marker at 1551 cm(-1) is a distinguishable feature of Enterobacter cloacae. The Gram-negative Agrobacterium rhizogenes and Ralstonia solanacearum were differentiated from each other and other tested bacteria on the basis of presence or absence and relative intensities of peaks. The principal components analysis (PCA) of the spectra

  9. The Influence of Soft Layer Electrokinetics on Electroporation of Gram-positive Bacteria

    NASA Astrophysics Data System (ADS)

    Dingari, Naga Neehar; Moran, Jeffrey L.; Garcia, Paulo A.; Buie, Cullen R.

    2016-11-01

    Bacterial electroporation involves subjecting cells to intense ( 10 kV/cm) electric pulses, to open pores on the cell membrane for intracellular delivery of exogenous molecules. Its high efficiency in genetic transformation makes it an attractive tool for synthetic biology. While mammalian cell electroporation has received extensive theoretical and experimental investigation, bacterial electroporation has received markedly less attention. In this work, we develop a theoretical model of electroporation for gram-positive bacteria, taking into account the effect of the bacterial cell envelope on the cell's response to an electroporation pulse. We model the influence of the cell wall charge on the electrokinetic transport (and hence the pore properties) around the bacterial cell envelope using the Poisson-Nernst-Planck equations. Further, we account for the influence of the cell wall's mechanical elasticity on the pore radius evolution during electroporation, which is typically neglected in mammalian cell electroporation. This yields valuable information about favorable conditions for pore formation and will enable designing optimal platforms for bacteria electroporation.

  10. Isolation of highly active monoclonal antibodies against multiresistant gram-positive bacteria.

    PubMed

    Rossmann, Friederike S; Laverde, Diana; Kropec, Andrea; Romero-Saavedra, Felipe; Meyer-Buehn, Melanie; Huebner, Johannes

    2015-01-01

    Multiresistant nosocomial pathogens often cause life-threatening infections that are sometimes untreatable with currently available antibiotics. Staphylococci and enterococci are the predominant Gram-positive species associated with hospital-acquired infections. These infections often lead to extended hospital stay and excess mortality. In this study, a panel of fully human monoclonal antibodies was isolated from a healthy individual by selection of B-cells producing antibodies with high opsonic killing against E. faecalis 12030. Variable domains (VH and VL) of these immunoglobulin genes were amplified by PCR and cloned into an eukaryotic expression vector containing the constant domains of a human IgG1 molecule and the human lambda constant domain. These constructs were transfected into CHO cells and culture supernatants were collected and tested by opsonophagocytic assay against E. faecalis and S. aureus strains (including MRSA). At concentrations of 600 pg/ml, opsonic killing was between 40% and 70% against all strains tested. Monoclonal antibodies were also evaluated in a mouse sepsis model (using S. aureus LAC and E. faecium), a mouse peritonitis model (using S. aureus Newman and LAC) and a rat endocarditis model (using E. faecalis 12030) and were shown to provide protection in all models at a concentration of 4 μg/kg per animal. Here we present a method to produce fully human IgG1 monoclonal antibodies that are opsonic in vitro and protective in vivo against several multiresistant Gram-positive bacteria. The monoclonal antibodies presented in this study are significantly more effective compared to another monoclonal antibody currently in clinical trials.

  11. Isolation of Highly Active Monoclonal Antibodies against Multiresistant Gram-Positive Bacteria

    PubMed Central

    Rossmann, Friederike S.; Laverde, Diana; Kropec, Andrea; Romero-Saavedra, Felipe; Meyer-Buehn, Melanie; Huebner, Johannes

    2015-01-01

    Multiresistant nosocomial pathogens often cause life-threatening infections that are sometimes untreatable with currently available antibiotics. Staphylococci and enterococci are the predominant Gram-positive species associated with hospital-acquired infections. These infections often lead to extended hospital stay and excess mortality. In this study, a panel of fully human monoclonal antibodies was isolated from a healthy individual by selection of B-cells producing antibodies with high opsonic killing against E. faecalis 12030. Variable domains (VH and VL) of these immunoglobulin genes were amplified by PCR and cloned into an eukaryotic expression vector containing the constant domains of a human IgG1 molecule and the human lambda constant domain. These constructs were transfected into CHO cells and culture supernatants were collected and tested by opsonophagocytic assay against E. faecalis and S. aureus strains (including MRSA). At concentrations of 600 pg/ml, opsonic killing was between 40% and 70% against all strains tested. Monoclonal antibodies were also evaluated in a mouse sepsis model (using S. aureus LAC and E. faecium), a mouse peritonitis model (using S. aureus Newman and LAC) and a rat endocarditis model (using E. faecalis 12030) and were shown to provide protection in all models at a concentration of 4 μg/kg per animal. Here we present a method to produce fully human IgG1 monoclonal antibodies that are opsonic in vitro and protective in vivo against several multiresistant Gram-positive bacteria. The monoclonal antibodies presented in this study are significantly more effective compared to another monoclonal antibody currently in clinical trials. PMID:25706415

  12. Linear alkanesulfonates as carbon and energy sources for gram-positive and gram-negative bacteria.

    PubMed

    Reichenbecher, W; Murrell, J C

    1999-01-01

    Several bacteria from soil and rainwater samples were enriched and isolated with propanesulfonate or butanesulfonate as sole carbon and energy source. Most of the strains isolated utilized nonsubstituted alkanesulfonates with a chain length of C3-C6 and the substituted sulfonates taurine and isethionate as carbon and energy source. A gram-positive isolate, P40, and a gram-negative isolate, P53, were characterized in more detail. Phylogenetic analysis grouped strain P40 within group IV of the genus Rhodococcus and showed a close relationship with Rhodococcus opacus. After phylogenetic and physiological analyses, strain P53 was identified as Comamonas acidovorans. Both bacteria also utilized a wide range of sulfonates as sulfur source. Strain P40, but not strain P53, released sulfite into the medium during dissimilation of sulfonated compounds. Cell-free extracts of strain P53 exhibited high sulfite oxidase activity [2.34 U (mg protein)-1] when assayed with ferricyanide, but not with cytochrome c. Experiments with whole-cell suspensions of both strains showed that the ability to dissimilate 1-propanesulfonate was specifically induced during growth on this substrate and was not present in cells grown on propanol, isethionate or taurine. Whole-cell suspensions of both strains accumulated acetone when oxidizing the non-growth substrate 2-propanesulfonate. Strain P40 cells also accumulated sulfite under these conditions. Stoichiometric measurements with 2-propanesulfonate as substrate in oxygen electrode experiments indicate that the nonsubstituted alkanesulfonates were degraded by a monooxygenase. When strain P53 grew with nonsubstituted alkanesulfonates as carbon and energy source, cells expressed high amounts of yellow pigments, supporting the proposition that an oxygenase containing iron sulfur centres or flavins was involved in their degradation.

  13. Isolation and Characterization of Gram-Positive Piezophilic Bacteria from Deep Marine Subsurface Sediment

    NASA Astrophysics Data System (ADS)

    Runko, G. M.; Fang, J.; Kato, C.

    2014-12-01

    The marine deep biosphere remains as the least studied of all of Earth's habitats and is inadequately understood, but is extremely important to understand the impacts that microbes have on global biogeochemical cycles. Sediment samples were obtained during IODP Expedition 337 in the western Pacific Ocean, from 1,498 meters below the seafloor (mbsf; samples 6R3), 1,951-1,999 mbsf (19R1), and 2,406 mbsf (29R7). These samples were initially mixed with marine broth and cultivated under anaerobic conditions at pressure of 35 MPa (megapascal) and temperatures of 35° C, 45° C, and 55° C for 3 months on board the Chikyu. Single colonies were isolated via plating on marine broth. Then, six strains of bacteria were identified, 6R3-1, 6R3-15, 19R1-5, 29R7-12B, 29R7-12M, and 29R7-12S. The six strains were then examined for optimal growth temperature and pressure. These organisms are Gram-positive, spore-forming, facultative anaerobic piezophilic bacteria. Major fatty acids are anteiso-15:0, anteiso-17:0 and iso-15:0. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates are closely related to Virgibacillus pantothenticus, Robinsoniella peoriensis, and Bacillus subtilis. Because of their abundance in the deep marine subsurface, these microorganisms likely play an important role in sustaining the deep microbial ecosystem and influencing biogeochemical cycles in the deep biosphere.

  14. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria.

    PubMed

    Tamboli, Dhawal P; Lee, Dae Sung

    2013-09-15

    The development of eco-friendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology. In this study, an extracellular enzyme system of a newly isolated microorganism, Exiguobacterium sp. KNU1, was used for the reduction of AgNO₃ solutions to silver nanoparticles (AgNPs). The extracellularly biosynthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infra-red spectroscopy and transmission electron microscopy. The AgNPs were approximately 30 nm (range 5-50 nm) in size, well-dispersed and spherical. The AgNPs were evaluated for their antimicrobial effects on different gram negative and gram positive bacteria using the minimum inhibitory concentration method. Reasonable antimicrobial activity against Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was observed. The morphological changes occurred in all the microorganisms tested. In particular, E. coli exhibited DNA fragmentation after being treated with the AgNPs. Finally, the mechanism for their bactericidal activity was proposed according to the results of scanning electron microscopy and single cell gel electrophoresis.

  15. Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria.

    PubMed

    Reichmann, Nathalie T; Cassona, Carolina Picarra; Gründling, Angelika

    2013-09-01

    Teichoic acids (TAs) are important for growth, biofilm formation, adhesion and virulence of Gram-positive bacterial pathogens. The chemical structures of the TAs vary between bacteria, though they typically consist of zwitterionic polymers that are anchored to either the peptidoglycan layer as in the case of wall teichoic acid (WTA) or the cell membrane and named lipoteichoic acid (LTA). The polymers are modified with D-alanines and a lack of this decoration leads to increased susceptibility to cationic antimicrobial peptides. Four proteins, DltA-D, are essential for the incorporation of d-alanines into cell wall polymers and it has been established that DltA transfers D-alanines in the cytoplasm of the cell onto the carrier protein DltC. However, two conflicting models have been proposed for the remainder of the mechanism. Using a cellular protein localization and membrane topology analysis, we show here that DltC does not traverse the membrane and that DltD is anchored to the outside of the cell. These data are in agreement with the originally proposed model for D-alanine incorporation through a process that has been proposed to proceed via a D-alanine undecaprenyl phosphate membrane intermediate. Furthermore, we found that WTA isolated from a Staphylococcus aureus strain lacking LTA contains only a small amount of D-alanine, indicating that LTA has a role, either direct or indirect, in the efficient D-alanine incorporation into WTA in living cells.

  16. Gram-positive pathogenic bacteria induce a common early response in human monocytes

    PubMed Central

    2010-01-01

    Background We infected freshly isolated human peripheral monocytes with live bacteria of three clinically important gram-positive bacterial species, Staphylococcus aureus, Streptococcus pneumoniae and Listeria monocytogenes and studied the ensuing early transcriptional response using expression microarrays. Thus the observed response was unbiased by signals originating from other helper and effector cells of the host and was not limited to induction by solitary bacterial constituents. Results Activation of monocytes was demonstrated by the upregulation of chemokine rather than interleukin genes except for the prominent expression of interleukin 23, marking it as the early lead cytokine. This activation was accompanied by cytoskeleton rearrangement signals and a general anti-oxidative stress and anti-apoptotic reaction. Remarkably, the expression profiles also provide evidence that monocytes participate in the regulation of angiogenesis and endothelial function in response to these pathogens. Conclusion Regardless of the invasion properties and survival mechanisms of the pathogens used, we found that the early response comprised of a consistent and common response. The common response was hallmarked by the upregulation of interleukin 23, a rather unexpected finding regarding Listeria infection, as this cytokine has been linked primarily to the control of extracellular bacterial dissemination. PMID:21044323

  17. Linezolid in late-chronic prosthetic joint infection caused by gram-positive bacteria.

    PubMed

    Cobo, Javier; Lora-Tamayo, Jaime; Euba, Gorane; Jover-Sáenz, Alfredo; Palomino, Julián; del Toro, Ma Dolores; Rodríguez-Pardo, Dolors; Riera, Melchor; Ariza, Javier

    2013-05-01

    Linezolid may be an interesting alternative for prosthetic joint infection (PJI) due to its bioavailability and its antimicrobial spectrum. However, experience in this setting is scarce. The aim of the study was to assess linezolid's clinical and microbiological efficacy, and also its tolerance. This was a prospective, multicenter, open-label, non-comparative study of 25 patients with late-chronic PJI caused by Gram-positive bacteria managed with a two-step exchange procedure plus 6 weeks of linezolid. Twenty-two (88%) patients tolerated linezolid without major adverse effects, although a global decrease in the platelet count was observed. Three patients were withdrawn because of major toxicity, which reversed after linezolid stoppage. Among patients who completed treatment, 19 (86%) demonstrated clinical and microbiological cure. Two patients presented with clinical and microbiological failure, and one showed clinical cure and microbiological failure. In conclusion, linezolid showed good results in chronic PJI managed with a two-step exchange procedure. Tolerance seems acceptable, though close surveillance is required.

  18. Combination of Pantothenamides with Vanin Inhibitors as a Novel Antibiotic Strategy against Gram-Positive Bacteria

    PubMed Central

    Jansen, Patrick A. M.; Hermkens, Pedro H. H.; Zeeuwen, Patrick L. J. M.; Botman, Peter N. M.; Blaauw, Richard H.; Burghout, Peter; van Galen, Peter M.; Mouton, Johan W.; Rutjes, Floris P. J. T.

    2013-01-01

    The emergence of resistance against current antibiotics calls for the development of new compounds to treat infectious diseases. Synthetic pantothenamides are pantothenate analogs that possess broad-spectrum antibacterial activity in vitro in minimal media. Pantothenamides were shown to be substrates of the bacterial coenzyme A (CoA) biosynthetic pathway, causing cellular CoA depletion and interference with fatty acid synthesis. In spite of their potential use and selectivity for bacterial metabolic routes, these compounds have never made it to the clinic. In the present study, we show that pantothenamides are not active as antibiotics in the presence of serum, and we found that they were hydrolyzed by ubiquitous pantetheinases of the vanin family. To address this further, we synthesized a series of pantetheinase inhibitors based on a pantothenate scaffold that inhibited serum pantetheinase activity in the nanomolar range. Mass spectrometric analysis showed that addition of these pantetheinase inhibitors prevented hydrolysis of pantothenamides by serum. We found that combinations of these novel pantetheinase inhibitors and prototypic pantothenamides like N5-Pan and N7-Pan exerted antimicrobial activity in vitro, particularly against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Streptococcus pyogenes) even in the presence of serum. These results indicate that pantothenamides, when protected against degradation by host pantetheinases, are potentially useful antimicrobial agents. PMID:23877685

  19. Effect of betamethasone in combination with antibiotics on gram positive and gram negative bacteria.

    PubMed

    Artini, M; Papa, R; Cellini, A; Tilotta, M; Barbato, G; Koverech, A; Selan, L

    2014-01-01

    Betamethasone is an anti-inflammatory steroid drug used in cases of anaphylactic and allergic reactions, of Alzheimer and Addison diseases and in soft tissue injuries. It modulates gene expression for anti-inflammatory activity suppressing the immune system response. This latter effect might decrease the effectiveness of immune system response against microbial infections. Corticosteroids, in fact, mask some symptoms of infection and during their use superimposed infections may occur. Thus, the use of glucocorticoids in patients with sepsis remains extremely controversial. In this study we analyzed the in vitro effect of a commercial formulation of betamethasone (Bentelan) on several Gram positive and Gram negative bacteria of clinical relevance. It was found to be an inhibitor of the growth of most of the strains examined. Also the effect of betamethasone in combination with some classes of antibiotics was evaluated. Antibiotic-steroid combination therapy is, in such cases, superior to antibiotic-alone treatment to impair bacterial growths. Such effect was essentially not at all observable on Staphylococcus aureus or Coagulase Negative Staphylococci (CoNS).

  20. Dustborne and Airborne Gram-Positive and Gram-Negative Bacteria in High versus Low ERMI Homes

    PubMed Central

    Adhikari, Atin; Kettleson, Eric M.; Vesper, Stephen; Kumar, Sudhir; Popham, David L.; Schaffer, Christopher; Indugula, Reshmi; Chatterjee, Kanistha; Allam, Karteek K.; Grinshpun, Sergey A.; Reponen, Tiina

    2014-01-01

    The study aimed at investigating Gram-positive and Gram-negative bacteria in moldy and non-moldy homes, as defined by the home’s Environmental Relative Moldiness Index (ERMI) value. The ERMI values were determined from floor dust samples in 2010 and 2011 and homes were classified into low (<5) and high (>5) ERMI groups based on the average ERMI values as well as 2011 ERMI values. Dust and air samples were collected from the homes in 2011 and all samples were analyzed for Gram-positive and Gram-negative bacteria using QPCR assays, endotoxin by the LAL assay, and N-acetyl-muramic acid using HPLC. In addition, air samples were analyzed for culturable bacteria. When average ERMI values were considered, the concentration and load of Gram-positive bacteria determined with QPCR in house dust, but not air, were significantly greater in high ERMI homes than in low ERMI homes. Furthermore, the concentration of endotoxin, but not muramic acid, in the dust was significantly greater in high ERMI than in low ERMI homes. In contrast, when ERMI values of 2011 were considered, Gram-negative bacteria determined with QPCR in air, endotoxin in air, and muramic acid in dust were significantly greater in high ERMI homes. The results suggest that both short-term and long-term mold contamination in homes could be linked with the bacterial concentrations in house dust, however, only the current mold status was associated with bacterial concentrations in air. Although correlations were found between endotoxin and Gram-negative bacteria as well as between muramic acid and Gram-positive bacteria in the entire data set, diverging associations were observed between the different measures of bacteria and the home moldiness. It is likely that concentrations of cells obtained by QPCR and concentrations of cell wall components are not equivalent and represent too broad categories to understand the bacterial composition and sources of the home microbiota. PMID:24642096

  1. Dustborne and airborne Gram-positive and Gram-negative bacteria in high versus low ERMI homes.

    PubMed

    Adhikari, Atin; Kettleson, Eric M; Vesper, Stephen; Kumar, Sudhir; Popham, David L; Schaffer, Christopher; Indugula, Reshmi; Chatterjee, Kanistha; Allam, Karteek K; Grinshpun, Sergey A; Reponen, Tiina

    2014-06-01

    The study aimed at investigating Gram-positive and Gram-negative bacteria in moldy and non-moldy homes, as defined by the home's Environmental Relative Moldiness Index (ERMI) value. The ERMI values were determined from floor dust samples in 2010 and 2011 and homes were classified into low (<5) and high (>5) ERMI groups based on the average ERMI values as well as 2011 ERMI values. Dust and air samples were collected from the homes in 2011 and all samples were analyzed for Gram-positive and Gram-negative bacteria using QPCR assays, endotoxin by the LAL assay, and N-acetyl-muramic acid using HPLC. In addition, air samples were analyzed for culturable bacteria. When average ERMI values were considered, the concentration and load of Gram-positive bacteria determined with QPCR in house dust, but not air, were significantly greater in high ERMI homes than in low ERMI homes. Furthermore, the concentration of endotoxin, but not muramic acid, in the dust was significantly greater in high ERMI than in low ERMI homes. In contrast, when ERMI values of 2011 were considered, Gram-negative bacteria determined with QPCR in air, endotoxin in air, and muramic acid in dust were significantly greater in high ERMI homes. The results suggest that both short-term and long-term mold contamination in homes could be linked with the bacterial concentrations in house dust, however, only the current mold status was associated with bacterial concentrations in air. Although correlations were found between endotoxin and Gram-negative bacteria as well as between muramic acid and Gram-positive bacteria in the entire data set, diverging associations were observed between the different measures of bacteria and the home moldiness. It is likely that concentrations of cells obtained by QPCR and concentrations of cell wall components are not equivalent and represent too broad categories to understand the bacterial composition and sources of the home microbiota.

  2. Dustborne and airborne gram-positive and gram-negative bacteria in high versus low ERMI homes

    EPA Science Inventory

    The study aimed at investigating Gram-positive and Gram-negative bacteria in moldy and non-moldy homes, as defined by the home's Environmental Relative Moldiness Index (ERMI) value. The ERMI values were determined from floor dust samples in 2010 and 2011 and homes were classified...

  3. Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle

    PubMed Central

    Dubuffet, Aurore; Zanchi, Caroline; Boutet, Gwendoline; Moreau, Jérôme; Teixeira, Maria; Moret, Yannick

    2015-01-01

    In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called “Trans-generational immune priming” (TGIP) are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations. PMID:26430786

  4. Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle.

    PubMed

    Dubuffet, Aurore; Zanchi, Caroline; Boutet, Gwendoline; Moreau, Jérôme; Teixeira, Maria; Moret, Yannick

    2015-10-01

    In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called "Trans-generational immune priming" (TGIP) are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations.

  5. Pili in Gram-negative and Gram-positive bacteria - structure, assembly and their role in disease.

    PubMed

    Proft, T; Baker, E N

    2009-02-01

    Many bacterial species possess long filamentous structures known as pili or fimbriae extending from their surfaces. Despite the diversity in pilus structure and biogenesis, pili in Gram-negative bacteria are typically formed by non-covalent homopolymerization of major pilus subunit proteins (pilins), which generates the pilus shaft. Additional pilins may be added to the fiber and often function as host cell adhesins. Some pili are also involved in biofilm formation, phage transduction, DNA uptake and a special form of bacterial cell movement, known as 'twitching motility'. In contrast, the more recently discovered pili in Gram-positive bacteria are formed by covalent polymerization of pilin subunits in a process that requires a dedicated sortase enzyme. Minor pilins are added to the fiber and play a major role in host cell colonization.This review gives an overview of the structure, assembly and function of the best-characterized pili of both Gram-negative and Gram-positive bacteria.

  6. Predominance of Gram-positive bacteria in house dust in the low-allergy risk Russian Karelia.

    PubMed

    Pakarinen, Jaakko; Hyvärinen, Anne; Salkinoja-Salonen, Mirja; Laitinen, Sirpa; Nevalainen, Aino; Mäkelä, Mika J; Haahtela, Tari; von Hertzen, Leena

    2008-12-01

    Simple living conditions and farming environment have been associated with reduced risk for allergic diseases such as atopy and asthma but the factors responsible for this effect remain unresolved. We examined the bacterial composition of house dusts obtained from Finnish and Russian Karelia, two adjacent areas with high and low occurrence of atopic diseases respectively. Two dust mixes, both composed of 10 randomly selected dust samples from 349 Finnish and 417 Russian Karelian households were studied for bacterial biomarkers (DNA, Limulus-active endotoxin, 3-OH fatty acids, muramic acid) and for 16S rRNA gene sequences. Overall, the DNA cloning revealed more taxons (94 different genera) of dustborne bacteria than seen in any previous study on residential environments. Majority (67%) of the bacterial DNA clones in house dust from the low-allergy Russian Kareliarepresented Gram-positive bacteria (Firmicutes and Actinobacteria), predominantly Staphylococcaceae and Corynebacteriaceae. Russian Karelian dust showed up to 20-fold higher contents of muramic acid (marker of Gram-positive bacteria) and a sevenfold higher number of clones of animal-associated species, whereas in Finnish Karelian dust Gram-negatives (mainly Proteobacteria) predominated. Clones of plant-associated bacterial species and of chloroplast, indicating plant biomass, were more numerous in Finnish than in Russian Karelian dust. In conclusion, this study revealed major disparities between Finnish and Russian house dusts. The higher bacterial content and the predominance of Gram-positive bacteria in Russian dust may have implications for occurrence of atopy.

  7. Sample preparation of Gram-positive bacteria for identification by matrix assisted laser desorption/ionization time-of-flight.

    PubMed

    Smole, Sandra C; King, Lisa A; Leopold, Peter E; Arbeit, Robert D

    2002-02-01

    A new sample preparation method was developed for fresh, whole-cell Gram-positive bacteria to be analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI ToF MS). With fresh, whole-cell Gram-negative bacteria of the Enterobacteriaceae family, we had previously achieved spectra consisting of >50 peaks and mass ranges of 2-25 kDa. Because similar spectral quantity could not be achieved for Gram-positive bacteria, using this same protocol, we investigated an alternative approach that focuses on the thick peptidoglycan layer of the cell wall. Gram-positive bacteria were incubated with 0.05-0.5 mg/ml lysozyme for 30 min prior to being analyzed by MALDI ToF MS. Lysozyme is an enzymatically stable, 14-kDa protein that specifically cleaves between peptidoglycan disaccharide subunits. A significant increase in overall number of peaks (>50) in the 2-14 kDa range was observed without interference from the presence of lysozyme. We show that for four different species (Staphylococcus aureus, S. haemolyticus, Streptococcus pyogenes, and S. agalactiae) reproducible subset of peaks were found within spectra from a reference strain and two unrelated clinical isolates. The data suggests that this sample preparation may be useful for increasing the overall number of peaks within spectra for subsequent development of bacterial identification strategies.

  8. Relevance of GC content to the conservation of DNA polymerase III/mismatch repair system in Gram-positive bacteria

    PubMed Central

    Akashi, Motohiro; Yoshikawa, Hirofumi

    2013-01-01

    The mechanism of DNA replication is one of the driving forces of genome evolution. Bacterial DNA polymerase III, the primary complex of DNA replication, consists of PolC and DnaE. PolC is conserved in Gram-positive bacteria, especially in the Firmicutes with low GC content, whereas DnaE is widely conserved in most Gram-negative and Gram-positive bacteria. PolC contains two domains, the 3′-5′exonuclease domain and the polymerase domain, while DnaE only possesses the polymerase domain. Accordingly, DnaE does not have the proofreading function; in Escherichia coli, another enzyme DnaQ performs this function. In most bacteria, the fidelity of DNA replication is maintained by 3′-5′ exonuclease and a mismatch repair (MMR) system. However, we found that most Actinobacteria (a group of Gram-positive bacteria with high GC content) appear to have lost the MMR system and chromosomes may be replicated by DnaE-type DNA polymerase III with DnaQ-like 3′-5′ exonuclease. We tested the mutation bias of Bacillus subtilis, which belongs to the Firmicutes and found that the wild type strain is AT-biased while the mutS-deletant strain is remarkably GC-biased. If we presume that DnaE tends to make mistakes that increase GC content, these results can be explained by the mutS deletion (i.e., deletion of the MMR system). Thus, we propose that GC content is regulated by DNA polymerase and MMR system, and the absence of polC genes, which participate in the MMR system, may be the reason for the increase of GC content in Gram-positive bacteria such as Actinobacteria. PMID:24062730

  9. Genetic determinants of antimicrobial resistance in Gram positive bacteria from organic foods.

    PubMed

    Fernández-Fuentes, Miguel Angel; Abriouel, Hikmate; Ortega Morente, Elena; Pérez Pulido, Rubén; Gálvez, Antonio

    2014-02-17

    Bacterial biocide resistance is becoming a matter of concern. In the present study, a collection of biocide-resistant, Gram-positive bacteria from organic foods (including 11 isolates from genus Bacillus, 25 from Enterococcus and 10 from Staphylococcus) were analyzed for genes associated to biocide resistance efflux pumps and antibiotic resistance. The only qac-genes detected were qacA/B (one Bacillus cereus isolate) and smr (one B. cereus and two Staphylococcus saprophyticus isolates). Efflux pump genes efrA and efrB genes were detected in Staphylococcus (60% of isolates), Bacillus (54.54%) and Enterococcus (24%); sugE was detected in Enterococcus (20%) and in one Bacillus licheniformis; mepA was detected in Staphylococcus (60%) and in one Enterococcus isolate (which also carried mdeA), and norE gene was detected only in one Enterococcus faecium and one S. saprophyticus isolate. An amplicon for acrB efflux pump was detected in all but one isolate. When minimal inhibitory concentrations (MICs) were determined, it was found that the addition of reserpine reduced the MICs by eight fold for most of the biocides and isolates, corroborating the role of efflux pumps in biocide resistance. Erythromycin resistance gene ermB was detected in 90% of Bacillus isolates, and in one Staphylococcus, while ereA was detected only in one Bacillus and one Staphyloccus, and ereB only in one Staphylococcus. The ATP-dependent msrA gene (which confers resistance to macrolides, lincosamides and type B streptogramins) was detected in 60% of Bacillus isolates and in all staphylococci, which in addition carried msrB. The lincosamide and streptogramin A resistance gene lsa was detected in Staphylococcus (40%), Bacillus (27.27%) and Enterococcus (8%) isolates. The aminoglycoside resistance determinant aph (3_)-IIIa was detected in Staphylococcus (40%) and Bacillus (one isolate), aph(2_)-1d in Bacillus (27.27%) and Enterococcus (8%), aph(2_)-Ib in Bacillus (one isolate), and the bifunctional aac

  10. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  11. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Daniels, Dwayne; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50  μ L leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  12. In vitro activity of Ozenoxacin against quinolone-susceptible and quinolone-resistant gram-positive bacteria.

    PubMed

    López, Y; Tato, M; Espinal, P; Garcia-Alonso, F; Gargallo-Viola, D; Cantón, R; Vila, J

    2013-12-01

    In vitro activity of ozenoxacin, a novel nonfluorinated topical (L. D. Saravolatz and J. Leggett, Clin. Infect. Dis. 37:1210-1215, 2003) quinolone, was compared with the activities of other quinolones against well-characterized quinolone-susceptible and quinolone-resistant Gram-positive bacteria. Ozenoxacin was 3-fold to 321-fold more active than other quinolones. Ozenoxacin could represent a first-in-class nonfluorinated quinolone for the topical treatment of a broad range of dermatological infections.

  13. A novel beta-defensin structure: a potential strategy of big defensin for overcoming resistance by Gram-positive bacteria.

    PubMed

    Kouno, Takahide; Fujitani, Naoki; Mizuguchi, Mineyuki; Osaki, Tsukasa; Nishimura, Shin-ichiro; Kawabata, Shun-ichiro; Aizawa, Tomoyasu; Demura, Makoto; Nitta, Katsutoshi; Kawano, Keiichi

    2008-10-07

    Big defensin is a 79-residue peptide derived from hemocytes of the Japanese horseshoe crab. It has antimicrobial activities against Gram-positive and -negative bacteria. The amino acid sequence of big defensin can be divided into an N-terminal hydrophobic half and a C-terminal cationic half. Interestingly, the trypsin cleaves big defensin into two fragments, the N-terminal and C-terminal fragments, which are responsible for antimicrobial activity against Gram-positive and -negative bacteria, respectively. To explore the antimicrobial mechanism of big defensin, we determined the solution structure of mature big defensin and performed a titration experiment with DPC micelles. Big defensin has a novel defensin structure; the C-terminal domain adopts a beta-defensin structure, and the N-terminal domain forms a unique globular conformation. It is noteworthy that the hydrophobic N-terminal domain undergoes a conformational change in micelle solution, while the C-terminal domain remains unchanged. Here, we propose that the N-terminal domain achieves its antimicrobial activity in a novel fashion and explain that big defensin has developed a strategy different from those of other beta-defensins to suppress the growth of Gram-positive bacteria.

  14. [Survival of Gram-positive spore-forming bacteria including Bacillus cereus after hand washing using alcohol-based handrub].

    PubMed

    Ogawa, Midori; Takada, Shinichiro; Takahashi, Masao; Yasuda, Etsuko; Watase, Mariko; Taniguchi, Hatsumi

    2006-12-01

    Hand washing is the most fundamental method for preventing infection. Currently, hand washing with an alcohol-based handrub is the international gold standard method. However, in our study we found many samples of ineffective hand washing using an alcohol-based handrub. The rates of ineffective samples were 10.4% (5/48) in 2004 and 34.3% (12/35) in 2005. We examined the morphology by Gram staining and biochemical properties of the bacteria which remained after hand washing in 2005. Their colonies were divided into 3 groups (round colonies, irregular-shaped and diffusive colonies). The round colonies were considered Staphylococcus spp., and the irregular-shaped colonies or diffusive colonies were considered Gram-positive spore-forming bacteria. In the 12 ineffective hand washing samples (more than the same number of bacteria colonies as before hand washing, or > or = 300), there were 3 samples considered to be the result of the survival of Staphylococcus spp., and 9 samples considered to be the result of the survival of Gram-positive spore-forming bacteria including Bacillus cereus. Based on these results, we should take careful measures, such as wearing sterile gloves if necessary. We should never be overconfident regarding the effect of hand washing.

  15. Functionalized magnetic iron oxide (Fe3O4) nanoparticles for capturing gram-positive and gram-negative bacteria.

    PubMed

    Reddy, P Muralidhar; Chang, Kai-Chih; Liu, Zhen-Jun; Chen, Cheng-Tung; Ho, Yen-Peng

    2014-08-01

    The development of nanotechnology in biology and medicine has raised the need for conjugation of nanoparticles (NPs) to biomolecules. In this study, magnetic and functionalized magnetic iron oxide nanoparticles were synthesized and used as affinity probes to capture Gram-positive/negative bacteria. The morphology and properties of the magnetic NPs were examined by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. Furthermore, this study investigated the interaction between functionalized magnetic nanoparticles and Gram positive/negative bacteria. The positively and negatively charged magnetic nanoparticles include functionalities of Fe3O4, SiO2, TiO2, ZrO2, poly ethyleneimine (PEI) and poly acrylic acid. Their capture efficiencies for bacteria were investigated based on factors such as zeta potential, concentration and pH value. PEI particles carry a positive charge over a range of pH values from 3 to 10, and the particles were found to be an excellent candidate for capturing bacteria over such pH range. Since the binding force is mainly electrostatic, the architecture and orientation of the functional groups on the NP surface are not critical. Finally the captured bacteria were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. The minimum detection limit was 10(4) CFU/mL and the analysis time was reduced to be less than 1 hour. In addition, the detection limit could be reduced to an extremely low concentration of 50 CFU/mL when captured bacteria were cultivated.

  16. Pharmacodynamic studies of trovafloxacin and grepafloxacin in vitro against Gram-positive and Gram-negative bacteria.

    PubMed

    Odenholt, I; Cars, T; Lowdin, E

    2000-07-01

    Grepafloxacin and trovafloxacin are two novel fluoroquinolones with extended Gram-positive bacterial spectra compared with older quinolones. The aim of the present study was to investigate the different pharmacodynamic parameters of grepafloxacin in comparison with those of trovafloxacin. The following studies were performed against various Gram-positive and Gram-negative bacteria: (i) determination of the rate and extent of killing at a concentration corresponding to the 1 h non-protein-bound human serum level following an oral dose of 800 mg grepafloxacin and 300 mg trovafloxacin; (ii) determination of the rate and extent of killing of the two quinolones at different concentrations; (iii) determination of the post-antibiotic effects (PAEs); (iv) determination of the post-antibiotic sub-MIC effects (PA SMEs); (iv) determination of the rate and extent of killing in an in vitro kinetic model. It was shown that both grepafloxacin and trovafloxacin exhibited concentration-dependent killing against both Gram-positive and Gram-negative bacteria. Grepafloxacin exhibited a slower bactericidal effect against all the Gram-positive strains investigated in comparison with trovafloxacin in spite of a similar C(max)/MIC in the static experiments and a similar AUC/MIC ratio in the kinetic experiments. No major differences in the extent and rate of killing were noted against the Gram-negative strains, which were killed almost completely after 3 h except for Pseudomonas aeruginosa. A PAE of both quinolones was noted for all strains investigated. Trovafloxacin induced longer PAEs against the Gram-positive strains but shorter PAEs in comparison with those of grepafloxacin against the Gram-negative strains. A prolonging of the PAEs was noted for all bacteria when exposed to sub-MICs in the post-antibiotic phase. With a similar AUC/MIC of 310 for the penicillin-sensitive strain of Streptococcus pneumoniae and 143 for the penicillin-resistant strain, the time for 99.9% eradication for

  17. Hyperspectral microscope imaging methods to classify gram-positive and gram-negative foodborne pathogenic bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An acousto-optic tunable filter-based hyperspectral microscope imaging method has potential for identification of foodborne pathogenic bacteria from microcolony rapidly with a single cell level. We have successfully developed the method to acquire quality hyperspectral microscopic images from variou...

  18. Classification of gram-positive and gram-negative foodborne pathogenic bacteria with hyperspectral microscope imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical method with hyperspectral microscope imaging (HMI) has potential for identification of foodborne pathogenic bacteria from microcolonies rapidly with a cell level. A HMI system that provides both spatial and spectral information could be an effective tool for analyzing spectral characteristic...

  19. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria

    PubMed Central

    Yang, Yunpeng; Zhang, Lu; Huang, He; Yang, Chen; Yang, Sheng

    2017-01-01

    ABSTRACT Catabolite control protein A (CcpA) is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR) and carbon catabolite activation (CCA), two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt) consensus site that is called a catabolite response element (cre) within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named crevar, has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA). It was found that the length of the intervening spacer of crevar can affect CcpA binding affinity, and moreover, the core palindromic sequence of crevar is the key structure for regulation. Such a variable architecture of crevar shows potential importance for CcpA’s diverse and fine regulation. A total of 103 potential crevar sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs), and 30 sites were confirmed to be bound by CcpA. These 30 crevar sites are associated with 27 genes involved in many important pathways. Also of significance, the crevar sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria. PMID:28119470

  20. The resemblance of clinical attributes between mastitic cows with no growth on bacterial milk cultures and those with gram-positive bacteria cultured.

    PubMed Central

    White, M E; Montgomery, M E

    1987-01-01

    The clinical attributes of 40 dairy cows which had mastitis but no growth of bacteria from the milk were analyzed and compared to the attributes in 102 cows with only gram-positive and 61 cows with only gram-negative bacteria cultured from the milk. Cows with no bacteria cultured from the milk did not differ significantly from cows with gram-positive bacteria cultured, but 9 of 12 attributes were significantly different between cows with no bacteria cultured and cows with gram-negative bacteria cultured. Discriminant analysis was used to classify cows as members of the gram-positive or gram-negative culture groups. The discriminant equation was then applied to the cows with no bacteria cultured, and 78% of cows with no bacteria cultured were classified as members of the gram-positive group. Most mastitis in cows with no bacteria grown from the milk was probably due to gram-positive bacteria. If antibiotic therapy is used in cows with persistent mastitis and a negative culture in the belief that the culture is a false negative, treatment with antibiotics effective only against gram-negative organisms would not be appropriate. PMID:3300920

  1. Modeling of rare earth element sorption to the Gram positive Bacillus subtilis bacteria surface.

    PubMed

    Martinez, Raul E; Pourret, Olivier; Takahashi, Yoshio

    2014-01-01

    In this study, rare earth element (REE) binding constants and site concentration on the Gram+ bacteria surfaces were quantified using a multi-site Langmuir isotherm model, along with a linear programming regression method (LPM), applied to fit experimental REE sorption data. This approach found one discrete REE binding site on the Gram+ Bacillus subtilis surface for the pH range of 2.5-4.5. Average log10 REE binding constants for a site j on these bacteria ranged from 1.08±0.04 to 1.40±0.04 for the light REE (LREE: La to Eu), and from 1.36±0.03 to 2.18±0.14 for the heavy REE (HREE: Gd to Lu) at the highest biomass concentration of 1.3 g/L of B. subtilis bacteria. Similar values were obtained for bacteria concentrations of 0.39 and 0.67 g/L indicating the independence of REE sorption constants on biomass concentration. Within the experimental pH range in this study, B. subtilis was shown to have a lower affinity for LREE (e.g. La, Ce, Pr, Nd) and a higher affinity for HREE (e.g. Tm, Yb, Lu) suggesting an enrichment of HREE on the surface of Gram+ bacteria. Total surface binding site concentrations of 6.73±0.06 to 5.67±0.06 and 5.53±0.07 to 4.54±0.03 mol/g of bacteria were observed for LREE and HREE respectively, with the exception of Y, which showed a total site concentration of 9.53±0.03, and a log K(REE,j) of 1.46±0.02 for a biomass content of 1.3 g/L. The difference in these values (e.g. a lower affinity and increased binding site concentration for LREE, and the contrary for the HREE) suggests a distinction between the LREE and HREE binding modes to the Gram+ bacteria reactive surface at low pH. This further implies that HREE may bind more than one monoprotic reactive group on the cell surface. A multisite Langmuir isotherm approach along with the LPM regression method, not requiring prior knowledge of the number or concentration of cell surface REE complexation sites, were able to distinguish between the sorption constant and binding site concentration

  2. Competitive adsorption of metal cations onto two gram positive bacteria: testing the chemical equilibrium model

    NASA Astrophysics Data System (ADS)

    Fowle, David A.; Fein, Jeremy B.

    1999-10-01

    In order to test the ability of a surface complexation approach to account for metal-bacteria interactions in near surface fluid-rock systems, we have conducted experiments that measure the extent of adsorption in mixed metal, mixed bacteria systems. This study tests the surface complexation approach by comparing estimated extents of adsorption based on surface complexation modeling to those we observed in the experimental systems. The batch adsorption experiments involved Ca, Cd, Cu, and Pb adsorption onto the surfaces of 2 g positive bacteria: Bacillus subtilis and Bacillus licheniformis. Three types of experiments were performed: 1. Single metal (Ca, Cu, Pb) adsorption onto a mixture of B. licheniformis and B. subtilis; 2. mixed metal (Cd, Cu, and Pb; Ca and Cd) adsorption onto either B. subtilis or B. licheniformis; and 3. mixed or single metal adsorption onto B. subtilis and B. licheniformis. %Independent of the experimental results, and based on the site specific stability constants for Ca, Cd, Cu, and Pb interactions with the carboxyl and phosphate sites on B. licheniformis and B. subtilis determined by Fein et al. (1997), by Daughney et al. (1998) and in this study, we estimate the extent of adsorption that is expected in the above experimental systems. Competitive cation adsorption experiments in both single and double bacteria systems exhibit little adsorption at pH values less than 4. With increasing pH above 4.0, the extent of Ca, Cu, Pb and Cd adsorption also increases due to the increased deprotonation of bacterial surface functional groups. In all cases studied, the estimated adsorption behavior is in excellent agreement with the observations, with only slight differences that were within the uncertainties of the estimation and experimental procedures. Therefore, the results indicate that the use of chemical equilibrium modeling of aqueous metal adsorption onto bacterial surfaces yields accurate predictions of the distribution of metals in complex

  3. Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram-Positive Bacteria S. aureus

    PubMed Central

    Handzlik, Jadwiga; Matys, Anna; Kieć-Kononowicz, Katarzyna

    2013-01-01

    The paper focuses on recent achievements in the search for new chemical compounds able to inhibit multidrug resistance (MDR) mechanisms in Gram-positive pathogens. An analysis of the results of the search for new efflux pump inhibitors (EPIs) for Gram-positive bacteria, which have been performed over the last decade, indicates that almost all efforts are focused on the NorA (MFS) efflux pump in S. aureus. Considering the chemical structures of the NorA EPIs that have been identified, it can be observed that the most active agents belong to the families of compounds possessing conjugated double bonds, e.g., chalcones, piperine-like compounds, N-cinnamoylphenalkylamides or citral amide derivatives. Indole-, dihydronaphthyl-, 2-chloro-5-bromo-phenyl- or piperidine moieties seem to be profitable for the EPI properties, as well. These results, together with an increasing knowledge about a variety of efflux pumps that are involved in MDR of Gram-positive pathogens underline that further search for new EPIs should pay more attention to develop MDR efflux protein targets, including SMR, MATE, ABC or other members of the MFS family. PMID:27029290

  4. Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram-Positive Bacteria S. aureus.

    PubMed

    Handzlik, Jadwiga; Matys, Anna; Kieć-Kononowicz, Katarzyna

    2013-02-05

    The paper focuses on recent achievements in the search for new chemical compounds able to inhibit multidrug resistance (MDR) mechanisms in Gram-positive pathogens. An analysis of the results of the search for new efflux pump inhibitors (EPIs) for Gram-positive bacteria, which have been performed over the last decade, indicates that almost all efforts are focused on the NorA (MFS) efflux pump in S. aureus. Considering the chemical structures of the NorA EPIs that have been identified, it can be observed that the most active agents belong to the families of compounds possessing conjugated double bonds, e.g., chalcones, piperine-like compounds, N-cinnamoylphenalkylamides or citral amide derivatives. Indole-, dihydronaphthyl-, 2-chloro-5-bromo-phenyl- or piperidine moieties seem to be profitable for the EPI properties, as well. These results, together with an increasing knowledge about a variety of efflux pumps that are involved in MDR of Gram-positive pathogens underline that further search for new EPIs should pay more attention to develop MDR efflux protein targets, including SMR, MATE, ABC or other members of the MFS family.

  5. A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with gram-positive bacteria.

    PubMed

    Georgel, Philippe; Crozat, Karine; Lauth, Xavier; Makrantonaki, Evgenia; Seltmann, Holger; Sovath, Sosathya; Hoebe, Kasper; Du, Xin; Rutschmann, Sophie; Jiang, Zhengfan; Bigby, Timothy; Nizet, Victor; Zouboulis, Christos C; Beutler, Bruce

    2005-08-01

    flake (flk), an N-ethyl-N-nitrosourea-induced recessive germ line mutation of C57BL/6 mice, impairs the clearance of skin infections by Streptococcus pyogenes and Staphylococcus aureus, gram-positive pathogens that elicit innate immune responses by activating Toll-like receptor 2 (TLR2). Positional cloning and sequencing revealed that flk is a novel allele of the stearoyl coenzyme A desaturase 1 gene (Scd1). flake homozygotes show reduced sebum production and are unable to synthesize the monounsaturated fatty acids (MUFA) palmitoleate (C(16:1)) and oleate (C(18:1)), both of which are bactericidal against gram-positive (but not gram-negative) organisms in vitro. However, intradermal MUFA administration to S. aureus-infected mice partially rescues the flake phenotype, which indicates that an additional component of the sebum may be required to improve bacterial clearance. In normal mice, transcription of Scd1-a gene with numerous NF-kappaB elements in its promoter--is strongly and specifically induced by TLR2 signaling. Similarly, the SCD1 gene is induced by TLR2 signaling in a human sebocyte cell line. These observations reveal the existence of a regulated, lipid-based antimicrobial effector pathway in mammals and suggest new approaches to the treatment or prevention of infections with gram-positive bacteria.

  6. A Toll-Like Receptor 2-Responsive Lipid Effector Pathway Protects Mammals against Skin Infections with Gram-Positive Bacteria

    PubMed Central

    Georgel, Philippe; Crozat, Karine; Lauth, Xavier; Makrantonaki, Evgenia; Seltmann, Holger; Sovath, Sosathya; Hoebe, Kasper; Du, Xin; Rutschmann, Sophie; Jiang, Zhengfan; Bigby, Timothy; Nizet, Victor; Zouboulis, Christos C.; Beutler, Bruce

    2005-01-01

    flake (flk), an N-ethyl-N-nitrosourea-induced recessive germ line mutation of C57BL/6 mice, impairs the clearance of skin infections by Streptococcus pyogenes and Staphylococcus aureus, gram-positive pathogens that elicit innate immune responses by activating Toll-like receptor 2 (TLR2) (K. Takeda and S. Akira, Cell. Microbiol. 5:143-153, 2003). Positional cloning and sequencing revealed that flk is a novel allele of the stearoyl coenzyme A desaturase 1 gene (Scd1). flake homozygotes show reduced sebum production and are unable to synthesize the monounsaturated fatty acids (MUFA) palmitoleate (C16:1) and oleate (C18:1), both of which are bactericidal against gram-positive (but not gram-negative) organisms in vitro. However, intradermal MUFA administration to S. aureus-infected mice partially rescues the flake phenotype, which indicates that an additional component of the sebum may be required to improve bacterial clearance. In normal mice, transcription of Scd1—a gene with numerous NF-κB elements in its promoter—is strongly and specifically induced by TLR2 signaling. Similarly, the SCD1 gene is induced by TLR2 signaling in a human sebocyte cell line. These observations reveal the existence of a regulated, lipid-based antimicrobial effector pathway in mammals and suggest new approaches to the treatment or prevention of infections with gram-positive bacteria. PMID:16040962

  7. Production of a bacteriocin by a poultry derived Campylobacter jejuni isolate with antimicrobial activity against Clostridium perfringens and other Gram positive bacteria.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have purified a bacteriocin peptide (termed CUV-3), produced by a poultry cecal isolate of Campylobacter jejuni (strain CUV-3) with inhibitory activity against Gram positive bacteria including Clostridium perfringens (38 strains), Staphylococcus aureus, Staphylococcus epidermidis and Listeria mon...

  8. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels.

    PubMed

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.

  9. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter

    PubMed Central

    Nandi, Sobhan; Maurer, John J.; Hofacre, Charles; Summers, Anne O.

    2004-01-01

    Reversing the spread of antibiotic multiresistant bacteria is hampered by ignorance of the natural history of resistance genes, the mobile elements carrying them, and the bacterial hosts harboring them. Using traditional cultivation and cultivation-independent molecular techniques, we quantified antibiotic resistance genes and mobile elements called integrons in poultry house litter from commercial poultry farms. Unexpectedly, the major reservoir for Class 1 integrons in poultry litter is not their previously identified hosts, Gram-negative Enterobacteriaceae such as Escherichia coli. Rather, integrons and associated resistance genes abound in several genera of Gram-positive bacteria that constitute >85% of the litter community compared with Enterobacteriaceae that comprise <2% of this ecosystem. This finding warrants reexamination of our assumptions about the persistence and spread of antibiotic resistance genes. PMID:15107498

  10. Plants used in Guatemala for the treatment of respiratory diseases. 1. Screening of 68 plants against gram-positive bacteria.

    PubMed

    Caceres, A; Alvarez, A V; Ovando, A E; Samayoa, B E

    1991-02-01

    Respiratory ailments are important causes of morbidity and mortality in developing countries. Ethnobotanical surveys and literature reviews conducted in Guatemala during 1986-88 showed that 234 plants from 75 families, most of them of American origin, have been used for the treatment of respiratory ailments. Three Gram-positive bacteria causing respiratory infections (Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes) were used to screen 68 of the most commonly used plants for activity. Twenty-eight of these (41.2%) inhibited the growth of one or more of the bacteria tested. Staphylococcus aureus was inhibited by 18 of the plant extracts, while 7 extracts were effective against Streptococcus pyogenes. Plants of American origin which exhibited antibacterial activity were: Gnaphalium viscosum, Lippia alba, Lippia dulcis, Physalis philadelphica, Satureja brownei, Solanum nigrescens and Tagetes lucida. These preliminary in vitro results provide scientific basis for the use of these plants against bacterial respiratory infections.

  11. Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria.

    PubMed

    Preedy, Emily; Perni, Stefano; Nipiĉ, Damijan; Bohinc, Klemen; Prokopovich, Polina

    2014-08-12

    It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.

  12. Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against gram-positive bacteria.

    PubMed

    Shen, Lirong; Liu, Dandan; Li, Meilu; Jin, Feng; Din, Meihui; Parnell, Laurence D; Lai, Chao-Qiang

    2012-01-01

    The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees, has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Asian honeybee Apis cerana cerana, was expressed by fusing with glutathione S-transferase (GST) in Escherichia coli BL21, isolated and purified. The agar dilution assays with inhibition zone showed that RAcc-royalisin, similar to nisin, inhibits the growth of Gram-positive bacteria. The antibacterial activity of RAcc-royalisin was associated with its concentration, and was weakened by heat treatment ranging from 55°C to 85°C for 15 min. Both RAcc-royalisin and nisin exhibited the minimum inhibitory concentrations (MIC) of 62.5 µg/ml, 125 µg/ml, and 250 µg/ml against Gram-positive bacterial strains, Bacillus subtilis and Micrococcus flavus and Staphyloccocus aureus in the microplate assay, respectively. However, RAcc-royalisin did not show antimicrobial activity against tested Gram-negative bacterial and fungal strains. The antibacterial activity of RAcc-royalisin agrees well with the decrease in bacterial cell hydrophobicity, the leakage of 260-nm absorbing materials, and the observation by transmission electron microscopy, all indicating that RAcc-royalisin induced the disruption and dysfunction of cell walls and membranes. This is the first report detailing the antibacterial mechanism of royalisin against Gram-positive bacteria, and provides insight into the application of recombinant royalisin in food and pharmaceutical industries as an antimicrobial agent.

  13. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope

    PubMed Central

    Navarre, William Wiley; Schneewind, Olaf

    1999-01-01

    The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836

  14. Mechanism of Action of Recombinant Acc-Royalisin from Royal Jelly of Asian Honeybee against Gram-Positive Bacteria

    PubMed Central

    Shen, Lirong; Liu, Dandan; Li, Meilu; Jin, Feng; Din, Meihui; Parnell, Laurence D.; Lai, Chao-Qiang

    2012-01-01

    The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees, has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Asian honeybee Apis cerana cerana, was expressed by fusing with glutathione S-transferase (GST) in Escherichia coli BL21, isolated and purified. The agar dilution assays with inhibition zone showed that RAcc-royalisin, similar to nisin, inhibits the growth of Gram-positive bacteria. The antibacterial activity of RAcc-royalisin was associated with its concentration, and was weakened by heat treatment ranging from 55°C to 85°C for 15 min. Both RAcc-royalisin and nisin exhibited the minimum inhibitory concentrations (MIC) of 62.5 µg/ml, 125 µg/ml, and 250 µg/ml against Gram-positive bacterial strains, Bacillus subtilis and Micrococcus flavus and Staphyloccocus aureus in the microplate assay, respectively. However, RAcc-royalisin did not show antimicrobial activity against tested Gram-negative bacterial and fungal strains. The antibacterial activity of RAcc-royalisin agrees well with the decrease in bacterial cell hydrophobicity, the leakage of 260-nm absorbing materials, and the observation by transmission electron microscopy, all indicating that RAcc-royalisin induced the disruption and dysfunction of cell walls and membranes. This is the first report detailing the antibacterial mechanism of royalisin against Gram-positive bacteria, and provides insight into the application of recombinant royalisin in food and pharmaceutical industries as an antimicrobial agent. PMID:23056609

  15. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria.

    PubMed

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Iñigo; Novick, Richard P; Christie, Gail E; Penadés, José R

    2013-08-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria.

  16. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    PubMed Central

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  17. Distinction of Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts with a selection medium.

    PubMed

    Tsukatani, Tadayuki; Suenaga, Hikaru; Higuchi, Tomoko; Shiga, Masanobu; Noguchi, Katsuya; Matsumoto, Kiyoshi

    2011-01-01

    Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5µg/ml crystal violet, 5.0 µg/ml daptomycin, and 5.0µg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.

  18. Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments

    PubMed Central

    Aüllo, Thomas; Ranchou-Peyruse, Anthony; Ollivier, Bernard; Magot, Michel

    2013-01-01

    Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well-adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2) and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review. PMID:24348471

  19. Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria

    PubMed Central

    Fiamegos, Yiannis C.; Kastritis, Panagiotis L.; Exarchou, Vassiliki; Han, Haley; Bonvin, Alexandre M. J. J.; Vervoort, Jacques; Lewis, Kim; Hamblin, Michael R.; Tegos, George P.

    2011-01-01

    Background Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria. Methodology/Principal Findings In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology. Conclusions/Significance These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the

  20. Recently approved and investigational antibiotics for treatment of severe infections caused by Gram-positive bacteria.

    PubMed

    Appelbaum, Peter C; Jacobs, Michael R

    2005-10-01

    The development of resistance in the major pathogenic Gram-positive genera Staphylococcus and Streptococccus has led to the need for new agents that are able to overcome existing resistance mechanisms or that have novel mechanisms of action. There is currently a dearth of new agents that are active against resistant bacterial species. Agents that have recently been approved for clinical use include linezolid, the first oxazolidinone in clinical use, daptomycin, the first lipopeptide in clinical use, and telithromycin, a ketolide that is derived from clarithromycin. Agents currently in clinical development include tigecycline, a broad-spectrum intravenous tetracycline, ceftobiprole, a broad-spectrum cephalosporin that has activity against methicillin-resistant staphylococci, DX-619 and WCK-771, which are potent quinolones that have activity against quinolone-resistant staphylococci, oritavancin and dalbavancin, both of which are new glycopeptides, and iclaprim, which is a diaminopyrimidine. Additional agents that are in preclinical development against Gram-positive pathogens include quinoline-naphthyridine agents, which target novel DNA gyrase sites, other novel quinolones that have high potency, peptide deformylase inhibitors, and new lincosamide, oxazolidinone, lipopeptide and cephalosporin derivatives. Misuse of potent new agents will, however, result in the inevitable development of resistance to these agents; responsible use of potent new agents is required to prevent continuation of this vicious cycle.

  1. Stronger T cell immunogenicity of ovalbumin expressed intracellularly in Gram-negative than in Gram-positive bacteria.

    PubMed

    Martner, Anna; Ostman, Sofia; Lundin, Samuel; Rask, Carola; Björnsson, Viktor; Telemo, Esbjörn; Collins, L Vincent; Axelsson, Lars; Wold, Agnes E

    2013-01-01

    This study aimed to clarify whether Gram-positive (G+) and Gram-negative (G-) bacteria affect antigen-presenting cells differently and thereby influence the immunogenicity of proteins they express. Lactobacilli, lactococci and Escherichia coli strains were transformed with plasmids conferring intracellular ovalbumin (OVA) production. Murine splenic antigen presenting cells (APCs) were pulsed with washed and UV-inactivated OVA-producing bacteria, control bacteria, or soluble OVA. The ability of the APCs to activate OVA-specific DO11.10 CD4(+) T cells was assessed by measurments of T cell proliferation and cytokine (IFN-γ, IL-13, IL-17, IL-10) production. OVA expressed within E. coli was strongly immunogenic, since 500 times higher concentrations of soluble OVA were needed to achieve a similar level of OVA-specific T cell proliferation. Furthermore, T cells responding to soluble OVA produced mainly IL-13, while T cells responding to E. coli-expressed OVA produced high levels of both IFN-γ and IL-13. Compared to E. coli, G+ lactobacilli and lactococci were poor inducers of OVA-specific T cell proliferation and cytokine production, despite efficient intracellular expression and production of OVA and despite being efficiently phagocytosed. These results demonstrate a pronounced difference in immunogenicity of intracellular antigens in G+ and G- bacteria and may be relevant for the use of bacterial carriers in vaccine development.

  2. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria.

    PubMed

    Carlson, Hans K; Iavarone, Anthony T; Gorur, Amita; Yeo, Boon Siang; Tran, Rosalie; Melnyk, Ryan A; Mathies, Richard A; Auer, Manfred; Coates, John D

    2012-01-31

    Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they may be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or anthraquinone-2,6-disulfonate (AQDS), an analog of the redox active components of humic substances. The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin-shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS, and that several MHCs are localized to the cell wall or cell surface. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants, suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results provide unique direct evidence for cell wall-associated cytochromes and support MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.

  3. Surface multiheme c-type cytochromes from Thermincola potens: Implications for dissimilatory metal reduction by Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Carlson, H. K.; Iavarone, A. T.; Gorur, A.; Yeo, B. S.; Tran, R.; Melnyk, R. A.; Mathies, R. A.; Auer, M.; Coates, J. D.

    2011-12-01

    Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they have been shown to be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or the humic substances analog, anthraquinone-2,6-disulfonate (AQDS). The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS and that several MHCs are localized to the cell wall or cell surface of T. potens. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results are the first direct evidence for cell-wall associated cytochromes and MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.

  4. Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water.

    PubMed

    Biswa, Pramal; Doble, Mukesh

    2013-06-01

    Acylated homoserine lactone (AHL)-based quorum sensing (QS) has been reported to be present only in Gram-negative microorganisms. Isolation of a novel Gram-positive microorganism from sea water, capable of producing AHL, is reported here. The isolate (GenBank: JF915892, designated as MPO) belonging to the Exiguobacterium genera is capable of inducing the AHL bioreporters, namely Chromobacterium violaceum CV026, Agrobacterium tumefaceins A136, and E. coli JM 109(psb1075). This inducer is characterized as C3-oxo-octanoyl homoserine lactone (OOHL), and its production reaches a maximum of 15.6 μg L(-1), during the stationary growth phase of the organism. MPO extract when exogenously added inhibits the formation of biofilm for the same organism and lowers the extracellular polymeric substances, indicating an AHL-associated phenotypic trait. The isolated sequence of a probable LuxR homolog from MPO (designated as ExgR) shows similar functional domains and contains conserved residues in LuxR from other known bacterial QS LuxR regulators. Also present immediately downstream to ExgR was found a sequence showing homology to known LuxI synthase of Pseudomonas putida. qPCR analysis suggests an increment in exgR mRNA on addition of AHL, further proving the role of ExgR as a QS regulator.

  5. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria

    PubMed Central

    Mistou, Michel-Yves; Sutcliffe, Iain C.; van Sorge, Nina M.

    2016-01-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. PMID:26975195

  6. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.

    PubMed

    Díaz De Rienzo, Mayri A; Stevenson, Paul; Marchant, Roger; Banat, Ibrahim M

    2016-01-01

    The antibacterial properties and ability to disrupt biofilms of biosurfactants (rhamnolipids, sophorolipids) and sodium dodecyl sulphate (SDS) in the presence and absence of selected organic acids were investigated. Pseudomonas aeruginosa PAO1 was inhibited by sophorolipids and SDS at concentrations >5% v/v, and the growth of Escherichia coli NCTC 10418 was also inhibited by sophorolipids and SDS at concentrations >5% and 0.1% v/v, respectively. Bacillus subtilis NCTC 10400 was inhibited by rhamnolipids, sophorolipids and SDS at concentrations >0.5% v/v of all three; the same effect was observed with Staphylococcus aureus ATCC 9144. The ability to attach to surfaces and biofilm formation of P. aeruginosa PAO1, E. coli NCTC 10418 and B. subtilis NCTC 10400 was inhibited by sophorolipids (1% v/v) in the presence of caprylic acid (0.8% v/v). In the case of S. aureus ATCC 9144, the best results were obtained using caprylic acid on its own. It was concluded that sophorolipids are promising compounds for the inhibition/disruption of biofilms formed by Gram-positive and Gram-negative microorganisms and this activity can be enhanced by the presence of booster compounds such as caprylic acid.

  7. Antibacterial activity of oregano (Origanum vulgare Linn.) against gram positive bacteria.

    PubMed

    Saeed, Sabahat; Tariq, Perween

    2009-10-01

    The present investigation is focused on antibacterial potential of infusion, decoction and essential oil of oregano (Origanum vulgare) against 111 Gram-positive bacterial isolates belonging to 23 different species related to 3 genera. Infusion and essential oil exhibited antibacterial activity against Staphylococcus saprophyticus, S. aureus, Micrococcus roseus, M. kristinae, M. nishinomiyaensis, M. lylae, M. luteus, M. sedentarius, M. varians, Bacillus megaterium, B. thuringiensis, B. alvei, B. circulans, B. brevis, B. coagulans, B. pumilus, B. laterosporus, B. polymyxa, B. macerans, B. subtilis, B. firmus, B. cereus and B. lichiniformis. The infusion exhibited maximum activity against B. laterosporus (17.5 mm mean zone of inhibition+/-1.5 Standard deviation) followed by B. polymyxa (17.0 mm+/-2.0 SD) and essential oil of oregano exhibited maximum activity against S. saprophyticus (16.8 mm+/-1.8 SD) followed by B. circulans (14.5 mm+/-0.5 SD). While all these tested isolates were found resistant to decoction of oregano.

  8. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    NASA Astrophysics Data System (ADS)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-02-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  9. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    PubMed

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  10. Antimicrobial Growth Promoters Used in Animal Feed: Effects of Less Well Known Antibiotics on Gram-Positive Bacteria

    PubMed Central

    Butaye, Patrick; Devriese, Luc A.; Haesebrouck, Freddy

    2003-01-01

    There are not many data available on antibiotics used solely in animals and almost exclusively for growth promotion. These products include bambermycin, avilamycin, efrotomycin, and the ionophore antibiotics (monensin, salinomycin, narasin, and lasalocid). Information is also scarce for bacitracin used only marginally in human and veterinary medicine and for streptogramin antibiotics. The mechanisms of action of and resistance mechanisms against these antibiotics are described. Special emphasis is given to the prevalence of resistance among gram-positive bacteria isolated from animals and humans. Since no susceptibility breakpoints are available for most of the antibiotics discussed, an alternative approach to the interpretation of MICs is presented. Also, some pharmacokinetic data and information on the influence of these products on the intestinal flora are presented. PMID:12692092

  11. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria.

    PubMed

    Butaye, Patrick; Devriese, Luc A; Haesebrouck, Freddy

    2003-04-01

    There are not many data available on antibiotics used solely in animals and almost exclusively for growth promotion. These products include bambermycin, avilamycin, efrotomycin, and the ionophore antibiotics (monensin, salinomycin, narasin, and lasalocid). Information is also scarce for bacitracin used only marginally in human and veterinary medicine and for streptogramin antibiotics. The mechanisms of action of and resistance mechanisms against these antibiotics are described. Special emphasis is given to the prevalence of resistance among gram-positive bacteria isolated from animals and humans. Since no susceptibility breakpoints are available for most of the antibiotics discussed, an alternative approach to the interpretation of MICs is presented. Also, some pharmacokinetic data and information on the influence of these products on the intestinal flora are presented.

  12. Amplifiable DNA from Gram-negative and Gram-positive bacteria by a low strength pulsed electric field method

    PubMed Central

    Vitzthum, Frank; Geiger, Georg; Bisswanger, Hans; Elkine, Bentsian; Brunner, Herwig; Bernhagen, Jürgen

    2000-01-01

    An efficient electric field-based procedure for cell disruption and DNA isolation is described. Isoosmotic suspensions of Gram-negative and Gram-positive bacteria were treated with pulsed electric fields of <60 V/cm. Pulses had an exponential decay waveform with a time constant of 3.4 µs. DNA yield was linearly dependent on time or pulse number, with several thousand pulses needed. Electrochemical side-effects and electrophoresis were minimal. The lysates contained non-fragmented DNA which was readily amplifiable by PCR. As the method was not limited to samples of high specific resistance, it should be applicable to physiological fluids and be useful for genomic and DNA diagnostic applications. PMID:10734214

  13. Highly active modulators of indole signaling alter pathogenic behaviors in Gram-negative and Gram-positive bacteria.

    PubMed

    Minvielle, Marine J; Eguren, Kristen; Melander, Christian

    2013-12-16

    Indole is a universal signal that regulates various bacterial behaviors, such as biofilm formation and antibiotic resistance. To generate mechanistic probes of indole signaling and control indole-mediated pathogenic phenotypes in both Gram-positive and Gram-negative bacteria, we have investigated the use of desformylflustrabromine (dFBr) derivatives to generate highly active indole mimetics. We have developed non-microbicidal dFBr derivatives that are 27-2000 times more active than indole in modulating biofilm formation, motility, acid resistance, and antibiotic resistance. The activity of these analogues parallels indole, because they are dependent on temperature, the enzyme tryptophanase TnaA, and the transcriptional regulator SdiA. This investigation demonstrates that molecules based on the dFBr scaffold can alter pathogenic behaviors by mimicking indole-signaling pathways.

  14. Novel Group of Leaderless Multipeptide Bacteriocins from Gram-Positive Bacteria

    PubMed Central

    Chi, Hai; Mehmeti, Ibrahim; Holo, Helge; Nes, Ingolf F.

    2016-01-01

    antibiotic-resistant bacteria, but the number of bacteriocins with very broad antimicrobial spectra is very small. In this study, we have found and purified a novel three-peptide bacteriocin, garvicin KS. By homology search, we were able to find one known and three novel sequence-related bacteriocins consisting of 3 or 4 peptides. None of the peptides has modified amino acids in its sequence. Thus, the activity of all bacteriocins was confirmed with chemically synthesized peptides. All of them, especially garvicin KS, have very broad antibacterial spectra, thus representing a great potential in antimicrobial applications in the food industry and medicine. PMID:27316965

  15. Nanoemulsion Therapy for Burn Wounds is Effective as a Topical Antimicrobial Against Gram Negative and Gram Positive Bacteria

    PubMed Central

    Dolgachev, Vladislav A.; Ciotti, Susan M.; Eisma, Rone; Gracon, Stephen; Wilkinson, J. Erby; Baker, James R.; Hemmila, Mark R.

    2014-01-01

    Objective The aim of this study is to investigate the antimicrobial efficacy of two different nanoemulsion formulations against Gram positive and Gram negative bacteria in an in vivo rodent scald burn model. Methods Male Sprague-Dawley rats were anesthetized and received a partial-thickness scald burn. Eight hours following burn injury the wound was inoculated with 1x108 colony forming units of Pseudomonas aeruginosa or Staphylococcus aureus. Treatment groups consisted of two different nanoemulsion formulations (NB-201, NB-402), nanoemulsion vehicle (NE vehicle), or saline. Topical application of the treatment was performed at 16 and 24 hours after burn injury. Animals were euthanized 32 hours after burn injury and skin samples obtained for quantitative wound culture and determination of dermal inflammation markers. In a separate set of experiments, burn wound progression was measured histologically after 72 hours of treatment. Results Both nanoemulsion formulations (NB-201, NB 402) significantly reduced burn wound infections with either Pseudomonas aeruginosa or Staphylococcus aureus, and decreased median bacterial counts at least 3 logs as compared to animals with saline applications (p<0.0001). NB-201 and NB-402 also decreased dermal neutrophil recruitment and sequestration into the wound as measured by myeloperoxidase assay and histopathology (p<0.05). In addition, there was a reduction in the pro-inflammatory dermal cytokines (IL-1β, IL-6 and TNF-α) and the neutrophil chemoattractants CXCL1 and CXCL2. By histology examination, both NB-201 and NB-402 appeared to suppress burn wound progression 72 hours after injury. Conclusions Topically applied NB-201 and NB-402 are effective in decreasing Gram positive and negative bacteria growth in burn wounds, reducing inflammation and abrogating burn wound progression. PMID:26182074

  16. Nanoemulsion Therapy for Burn Wounds Is Effective as a Topical Antimicrobial Against Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Dolgachev, Vladislav A; Ciotti, Susan M; Eisma, Rone; Gracon, Stephen; Wilkinson, J Erby; Baker, James R; Hemmila, Mark R

    2016-01-01

    The aim of this study is to investigate the antimicrobial efficacy of two different nanoemulsion (NE) formulations against Gram-positive and Gram-negative bacteria in an in vivo rodent scald burn model. Male Sprague-Dawley rats were anesthetized and received a partial-thickness scald burn. Eight hours after burn injury, the wound was inoculated with 1 × 10(8) colony-forming units of Pseudomonas aeruginosa or Staphylococcus aureus. Treatment groups consisted of two different NE formulations (NB-201 and NB-402), NE vehicle, or saline. Topical application of the treatment was performed at 16 and 24 hours after burn injury. Animals were killed 32 hours after burn injury, and skin samples were obtained for quantitative wound culture and determination of dermal inflammation markers. In a separate set of experiments, burn wound progression was measured histologically after 72 hours of treatment. Both NE formulations (NB-201 and NB-402) significantly reduced burn wound infections with either P. aeruginosa or S. aureus and decreased median bacterial counts at least three logs when compared with animals with saline applications (p < .0001). NB-201 and NB-402 also decreased dermal neutrophil recruitment and sequestration into the wound as measured by myeloperoxidase (MPO) assay and histopathology (p < .05). In addition, there was a decrease in the proinflammatory dermal cytokines (interleukin 1-beta [IL-1β], IL-6, and tumor necrosis factor alpha [TNF-α]) and the neutrophil chemoattractants CXCL1 and CXCL2. Using histologic examination, it was found that both NB-201 and NB-402 appeared to suppress burn wound progression 72 hours after injury. Topically applied NB-201 and NB-402 are effective in decreasing Gram-positive and Gram-negative bacteria growth in burn wounds, reducing inflammation, and abrogating burn wound progression.

  17. Genome-wide gene order distances support clustering the gram-positive bacteria

    PubMed Central

    House, Christopher H.; Pellegrini, Matteo; Fitz-Gibbon, Sorel T.

    2015-01-01

    Initially using 143 genomes, we developed a method for calculating the pair-wise distance between prokaryotic genomes using a Monte Carlo method to estimate the conservation of gene order. The method was based on repeatedly selecting five or six non-adjacent random orthologs from each of two genomes and determining if the chosen orthologs were in the same order. The raw distances were then corrected for gene order convergence using an adaptation of the Jukes-Cantor model, as well as using the common distance correction D′ = −ln(1-D). First, we compared the distances found via the order of six orthologs to distances found based on ortholog gene content and small subunit rRNA sequences. The Jukes-Cantor gene order distances are reasonably well correlated with the divergence of rRNA (R2 = 0.24), especially at rRNA Jukes-Cantor distances of less than 0.2 (R2 = 0.52). Gene content is only weakly correlated with rRNA divergence (R2 = 0.04) over all distances, however, it is especially strongly correlated at rRNA Jukes-Cantor distances of less than 0.1 (R2 = 0.67). This initial work suggests that gene order may be useful in conjunction with other methods to help understand the relatedness of genomes. Using the gene order distances in 143 genomes, the relations of prokaryotes were studied using neighbor joining and agreement subtrees. We then repeated our study of the relations of prokaryotes using gene order in 172 complete genomes better representing a wider-diversity of prokaryotes. Consistently, our trees show the Actinobacteria as a sister group to the bulk of the Firmicutes. In fact, the robustness of gene order support was found to be considerably greater for uniting these two phyla than for uniting any of the proteobacterial classes together. The results are supportive of the idea that Actinobacteria and Firmicutes are closely related, which in turn implies a single origin for the gram-positive cell. PMID:25653643

  18. A novel combination approach of human polyclonal IVIG and antibiotics against multidrug-resistant Gram-positive bacteria

    PubMed Central

    Sallam, Mariam Madkour; Abou-Aisha, Khaled; El-Azizi, Mohamed

    2016-01-01

    Background Gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and enterococci, have shown a remarkable ability to develop resistance to antimicrobial agents. Objective We aimed to assess possible enhancement of the antimicrobial activity of vancomycin, amoxicillin, clarithromycin, and azithromycin by human polyclonal intravenous immunoglobulin G (IVIG) against 34 multidrug-resistant (MDR) bacterial isolates, including MRSA, Enterococcus faecium, and Enterococcus faecalis. Materials and methods Double combinations of the antibiotics with the IVIG were assessed by checkerboard assay, where the interaction was evaluated with respect to the minimum inhibitory concentration (MIC) of the antibiotics. The results of the checkerboard assay were verified in vitro using time-kill assay and in vivo using an invasive sepsis murine model. Results The checkerboard assay showed that IVIG enhanced the antimicrobial activity of amoxicillin and clarithromycin against isolates from the three groups of bacteria, which were resistant to the same antibiotics when tested in the absence of IVIG. The efficacy of vancomycin against 15% of the tested isolates was enhanced when it was combined with the antibodies. Antagonism was demonstrated in 47% of the E. faecalis isolates when clarithromycin was combined with the IVIG. Synergism was proved in the time-kill assay when amoxicillin was combined with the antibodies; meanwhile, antagonism was not demonstrated in all tested combinations, even in combinations that showed such response in checkerboard assay. Conclusion The suggested approach is promising and could be helpful to enhance the antimicrobial activity of not only effective antibiotics but also antibiotics that have been proven to be ineffective against MDR bacteria. To our knowledge, this combinatorial approach against MDR bacteria, such as MRSA and enterococci, has not been investigated before. PMID:27994476

  19. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    PubMed Central

    2014-01-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results

  20. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kwon, Deug-Nam; Kim, Jin-Hoi

    2014-07-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results

  1. Mobilizable Rolling-Circle Replicating Plasmids from Gram-Positive Bacteria: A Low-Cost Conjugative Transfer.

    PubMed

    Fernández-López, Cris; Bravo, Alicia; Ruiz-Cruz, Sofía; Solano-Collado, Virtu; Garsin, Danielle A; Lorenzo-Díaz, Fabián; Espinosa, Manuel

    2014-10-01

    Conjugation is a key mechanism for horizontal gene transfer in bacteria. Some plasmids are not self-transmissible but can be mobilized by functions encoded in trans provided by other auxiliary conjugative elements. Although the transfer efficiency of mobilizable plasmids is usually lower than that of conjugative elements, mobilizable plasmids are more frequently found in nature. In this sense, replication and mobilization can be considered important mechanisms influencing plasmid promiscuity. Here we review the currently available information on two families of small mobilizable plasmids from Gram-positive bacteria that replicate via the rolling-circle mechanism. One of these families, represented by the streptococcal plasmid pMV158, is an interesting model since it contains a specific mobilization module (MOBV) that is widely distributed among mobilizable plasmids. We discuss a mechanism in which the promiscuity of the pMV158 replicon is based on the presence of two origins of lagging strand synthesis. The current strategies to assess plasmid transfer efficiency as well as to inhibit conjugative plasmid transfer are presented. Some applications of these plasmids as biotechnological tools are also reviewed.

  2. Mobilizable Rolling-Circle Replicating Plasmids from Gram-Positive Bacteria: A Low-Cost Conjugative Transfer

    PubMed Central

    Fernández-López, Cris; Bravo, Alicia; Ruiz-Cruz, Sofía; Solano-Collado, Virtu; Garsin, Danielle A.; Lorenzo-Díaz, Fabián; Espinosa, Manuel

    2014-01-01

    Chapter summary Conjugation is a key mechanism for horizontal gene transfer in bacteria. Some plasmids are not self-transmissible but can be mobilized by functions encoded in trans provided by other auxiliary conjugative elements. Although the transfer efficiency of mobilizable plasmids is usually lower than that of conjugative elements, mobilizable plasmidsare more frequently found in nature. In this sense, replication and mobilization can be considered as important mechanisms influencing plasmid promiscuity. Here we review the present available information on two families of small mobilizable plasmids from Gram-positive bacteria that replicate via the rolling-circle mechanism. One of these families, represented by the streptococcal plasmid pMV158, is an interesting model since it contains a specific mobilization module (MOBV) that is widely distributed among mobilizable plasmids. We discuss a mechanism in which the promiscuity of the pMV158 replicon is based on the presence of two origins of lagging strand synthesis. The current strategies to assess plasmid transfer efficiency as well as to inhibit conjugative plasmid transfer are presented. Some applications of these plasmids as biotechnological tools are also reviewed. PMID:25606350

  3. Antimicrobial photodynamic efficiency of novel cationic porphyrins towards periodontal Gram-positive and Gram-negative pathogenic bacteria.

    PubMed

    Prasanth, Chandra Sekhar; Karunakaran, Suneesh C; Paul, Albish K; Kussovski, Vesselin; Mantareva, Vanya; Ramaiah, Danaboyina; Selvaraj, Leslie; Angelov, Ivan; Avramov, Latchezar; Nandakumar, Krishnankutty; Subhash, Narayanan

    2014-01-01

    The Gram-negative Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum are major causative agents of aggressive periodontal disease. Due to increase in the number of antibiotic-resistant bacteria, antimicrobial Photodynamic therapy (aPDT) seems to be a plausible alternative. In this work, photosensitization was performed on Gram-positive and Gram-negative bacteria in pure culture using new-age cationic porphyrins, namely mesoimidazolium-substituted porphyrin derivative (ImP) and pyridinium-substituted porphyrin derivative (PyP). The photophysical properties of both the sensitizers including absorption, fluorescence emission, quantum yields of the triplet excited states and singlet oxygen generation efficiencies were evaluated in the context of aPDT application. The studied porphyrins exhibited high ability to accumulate into bacterial cells with complete penetration into early stage biofilms. As compared with ImP, PyP was found to be more effective for photoinactivation of bacterial strains associated with periodontitis, without any signs of dark toxicity, owing to its high photocytotoxicity.

  4. ZL-2, a cathelicidin-derived antimicrobial peptide, has a broad antimicrobial activity against gram-positive bacteria and gram-negative bacteria in vitro and in vivo.

    PubMed

    Tu, Jiancheng; Wu, Geping; Zuo, Yun; Zhao, Lei; Wang, Shusheng

    2015-10-01

    Alloferons are a group of naturally occurring peptides primarily isolated from insects that are capable of stimulating mouse and human NK cell cytotoxicity toward cancer cells. In this study, we found that a modified antibacterial peptide had a broad range of action against both gram-positive and gram-negative bacteria. A time-course experiment showed that CFU counts rapidly decreased after ZL-2 treatment, with the bacteria nearly eliminated within 4 h. We also examined the synergy between the peptide and antibiotics. The peptide ZL-2 resulted in a significant synergistic improvement in the potencies of ampicillin, erythromycin and ceftazidime against methicillin-resistant bacteria. In addition, ZL-2 had no detectable cytotoxicity in mouse spleen cells or a mouse animal model. In the mouse model by i.p. inoculation with Escherichia coli, timely treatment of i.p. injection with ZL-2 resulted in 100-fold reduction in bacteria load in blood as well as 80% protection from death in the inoculated animals. In conclusion, we successfully identified a modified peptide with maximal bactericidal activity. This study also provides a potential therapeutic for the treatment of E. coli septicemia by increasing the activity of antimicrobials.

  5. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria

    PubMed Central

    Fröhling, Antje; Schlüter, Oliver

    2015-01-01

    Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfill the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results. The aim of this study was to compare the inactivation effects of peracetic acid (PAA), ozonated water (O3), and cold atmospheric pressure plasma (CAPP) on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s) with 0.25% PAA at 10°C, and after treatment (10 s) with 3.8 mg l−1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l−1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process parameters. PMID

  6. Metabolome analysis of gram-positive bacteria such as Staphylococcus aureus by GC-MS and LC-MS.

    PubMed

    Liebeke, Manuel; Dörries, Kirsten; Meyer, Hanna; Lalk, Michael

    2012-01-01

    The field of metabolomics has become increasingly important in the context of functional genomics. Together with other "omics" data, the investigation of the metabolome is an essential part of systems biology. Beside the analysis of human and animal biofluids, the investigation of the microbial physiology by methods of metabolomics has gained increased attention. For example, the analysis of metabolic processes during growth or virulence factor expression is crucially important to understand pathogenesis of bacteria. Common bioanalytical techniques for metabolome analysis include liquid and gas chromatographic methods coupled to mass spectrometry (LC-MS and GC-MS) and spectroscopic approaches such as NMR. In order to achieve metabolome data representing the physiological status of a microorganism, well-verified protocols for sampling and analysis are necessary. This chapter presents a detailed protocol for metabolome analysis of the Gram-positive bacterium Staphylococcus aureus. A detailed manual for cell sampling and metabolite extraction is given, followed by the description of the analytical procedures GC-MS and LC-MS. The advantages and limitations of each experimental setup are discussed. Here, a guideline specified for S. aureus metabolomics and information for important protocol steps are presented, to avoid common pitfalls in microbial metabolome analysis.

  7. Rapid method for detection of gram-positive and -negative bacteria in milk from cows with moderate or severe clinical mastitis.

    PubMed

    Yazdankhah, S P; Sørum, H; Larsen, H J; Gogstad, G

    2001-09-01

    A rapid method for demonstration of gram-positive and gram-negative bacteria in milk is described. The technique is based on dilution of the sample in a medium, followed by filtration through a porous polysulfone membrane with a pore size retaining and concentrating bacteria from the sample. The bacteria concentrated on the surface of the membrane are stained with a cationic dye (toluidine blue) that can be visualized by the naked eye. After staining, the membrane is treated with ethanol-acetic acid (pH 2.8 to 3.0), which causes decolorization of gram-negative bacteria, whereas gram-positive bacteria retain the stain. The method does not require heat fixation, electrical power, microscopic examination, or specially trained personnel. The time needed to perform the test is approximately 5 min. The technique was applied to artificially infected milk and milk from cows with moderate or severe clinical mastitis for detection and differentiation of bacteria. The sensitivity of the filtration method was 92 and 100% for gram-positive and gram-negative bacteria, respectively, compared with traditional bacteriological culture of milk samples. The detection limit was 5 x 10(6) CFU/ml for Staphylococcus aureus and 1 x 10(6) CFU/ml for Escherichia coli in spiked milk samples. The overall specificity of the method was 86%. This diagnostic method can provide on-site guidance to the veterinarian to optimize use of antibiotics in mastitis therapy.

  8. Saponin promotes rapid identification and antimicrobial susceptibility profiling of Gram-positive and Gram-negative bacteria in blood cultures with the Vitek 2 system.

    PubMed

    Lupetti, A; Barnini, S; Morici, P; Ghelardi, E; Nibbering, P H; Campa, M

    2013-04-01

    The rapid identification and antimicrobial susceptibility testing (AST) of bacteria in clinical blood cultures is crucial to optimise antimicrobial therapy. A previous study involving small sample numbers revealed that the addition of saponin to blood cultures, further referred to as the new method, shortened considerably the turn-around time for the identification and AST of Gram-positive cocci as compared to the current method involving an overnight subculture. Here, we extend previous results and compare the identification and AST of blood cultures containing Gram-negative bacilli by the new and current methods. The identification and AST of 121 Gram-positive and 109 Gram-negative bacteria in clinical monomicrobial blood cultures by the new and current methods and, in the case of Gram-negative bacilli, by direct (no additions) inoculation into an automated system (rapid method) was assessed using the Vitek 2 system. Discrepancies between the results obtained with the different methods were solved by manual methods. The new method correctly identified 88 % of Gram-positive and 98 % of Gram-negative bacteria, and the rapid method correctly identified 94 % of Gram-negative bacteria. The AST for all antimicrobials by the new method were concordant with the current method for 55 % and correct for an additional 9 % of Gram-positive bacteria, and concordant with the current method for 62 % and correct for an additional 21 % of Gram-negative bacilli. The AST by the rapid method was concordant with the current method for 62 % and correct for an additional 12 % of Gram-negative bacilli. Together, saponin-treated monomicrobial blood cultures allow rapid and reliable identification and AST of Gram-positive and Gram-negative bacteria.

  9. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria.

    PubMed

    Torcato, Inês M; Huang, Yen-Hua; Franquelim, Henri G; Gaspar, Diana; Craik, David J; Castanho, Miguel A R B; Troeira Henriques, Sónia

    2013-03-01

    BP100 is a short cationic antimicrobial peptide with a mechanism of action dependent on peptide-lipid interactions and microbial surface charge neutralization. Although active against Gram-negative bacteria, BP100 is inactive against Gram-positive bacteria. In this study we report two newly designed BP100 analogues, RW-BP100 and R-BP100 that have the Tyr residue replaced with a Trp and/or the Lys residues replaced with an Arg. The new analogues in addition to being active against Gram-negative bacteria, possess activity against all tested Gram-positive bacteria. Mechanistic studies using atomic force microscopy, surface plasmon resonance and fluorescence methodologies reveal that the antibacterial efficiency follows the affinity for bacterial membrane. The studies suggest that the activity of BP100 and its analogues against Gram-negative bacteria is mainly driven by electrostatic interactions with the lipopolysaccharide layer and is followed by binding to and disruption of the inner membrane, whereas activity against Gram-positive bacteria, in addition to electrostatic attraction to the exposed lipoteichoic acids, requires an ability to more deeply insert in the membrane environment, which is favoured with Arg residues and is facilitated in the presence of a Trp residue. Knowledge on the mechanism of action of these antimicrobial peptides provides information that assists in the design of antimicrobials with higher efficacy and broader spectra of action, but also on the design of peptides with higher specificity if required.

  10. Unexpected Roles for Toll-Like Receptor 4 and TRIF in Intraocular Infection with Gram-Positive Bacteria

    PubMed Central

    Parkunan, Salai Madhumathi; Randall, C. Blake; Coburn, Phillip S.; Astley, Roger A.; Staats, Rachel L.

    2015-01-01

    Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2−/− mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88- and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88−/− and TRIF−/− mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4−/− eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease. PMID:26195555

  11. Distinctive Binding of Avibactam to Penicillin-Binding Proteins of Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Asli, Abdelhamid; Brouillette, Eric; Krause, Kevin M; Nichols, Wright W; Malouin, François

    2016-02-01

    Avibactam is a novel non-β-lactam β-lactamase inhibitor that covalently acylates a variety of β-lactamases, causing inhibition. Although avibactam presents limited antibacterial activity, its acylation ability toward bacterial penicillin-binding proteins (PBPs) was investigated. Staphylococcus aureus was of particular interest due to the reported β-lactamase activity of PBP4. The binding of avibactam to PBPs was measured by adding increasing concentrations to membrane preparations of a variety of Gram-positive and Gram-negative bacteria prior to addition of the fluorescent reagent Bocillin FL. Relative binding (measured here as the 50% inhibitory concentration [IC50]) to PBPs was estimated by quantification of fluorescence after gel electrophoresis. Avibactam was found to selectively bind to some PBPs. In Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, and S. aureus, avibactam primarily bound to PBP2, with IC50s of 0.92, 1.1, 3.0, and 51 μg/ml, respectively, whereas binding to PBP3 was observed in Streptococcus pneumoniae (IC50, 8.1 μg/ml). Interestingly, avibactam was able to significantly enhance labeling of S. aureus PBP4 by Bocillin FL. In PBP competition assays with S. aureus, where avibactam was used at a fixed concentration in combination with varied amounts of ceftazidime, the apparent IC50 of ceftazidime was found to be very similar to that determined for ceftazidime when used alone. In conclusion, avibactam is able to covalently bind to some bacterial PBPs. Identification of those PBP targets may allow the development of new diazabicyclooctane derivatives with improved affinity for PBPs or new combination therapies that act on multiple PBP targets.

  12. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria

    PubMed Central

    Gey van Pittius, Nico C; Gamieldien, Junaid; Hide, Winston; Brown, Gordon D; Siezen, Roland J; Beyers, Albert D

    2001-01-01

    Background The genome of Mycobacterium tuberculosis H37Rv has five copies of a cluster of genes known as the ESAT-6 loci. These clusters contain members of the CFP-10 (lhp) and ESAT-6 (esat-6) gene families (encoding secreted T-cell antigens that lack detectable secretion signals) as well as genes encoding secreted, cell-wall-associated subtilisin-like serine proteases, putative ABC transporters, ATP-binding proteins and other membrane-associated proteins. These membrane-associated and energy-providing proteins may function to secrete members of the ESAT-6 and CFP-10 protein families, and the proteases may be involved in processing the secreted peptide. Results Finished and unfinished genome sequencing data of 98 publicly available microbial genomes has been analyzed for the presence of orthologs of the ESAT-6 loci. The multiple duplicates of the ESAT-6 gene cluster found in the genome of M. tuberculosis H37Rv are also conserved in the genomes of other mycobacteria, for example M. tuberculosis CDC1551, M. tuberculosis 210, M. bovis, M. leprae, M. avium, and the avirulent strain M. smegmatis. Phylogenetic analyses of the resulting sequences have established the duplication order of the gene clusters and demonstrated that the gene cluster known as region 4 (Rv3444c-3450c) is ancestral. Region 4 is also the only region for which an ortholog could be found in the genomes of Corynebacterium diphtheriae and Streptomyces coelicolor. Conclusions Comparative genomic analysis revealed that the presence of the ESAT-6 gene cluster is a feature of some high-G+C Gram-positive bacteria. Multiple duplications of this cluster have occurred and are maintained only within the genomes of members of the genus Mycobacterium. PMID:11597336

  13. Comparison of antimicrobial pharmacokinetic/pharmacodynamic breakpoints with EUCAST and CLSI clinical breakpoints for Gram-positive bacteria.

    PubMed

    Asín, Eduardo; Isla, Arantxazu; Canut, Andrés; Rodríguez Gascón, Alicia

    2012-10-01

    This study compared the susceptibility breakpoints based on pharmacokinetic/pharmacodynamic (PK/PD) models and Monte Carlo simulation with those defined by the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) for antibiotics used for the treatment of infections caused by Gram-positive bacteria. A secondary objective was to evaluate the probability of achieving the PK/PD target associated with the success of antimicrobial therapy. A 10,000-subject Monte Carlo simulation was executed to evaluate 13 antimicrobials (47 intravenous dosing regimens). Susceptibility data were extracted from the British Society for Antimicrobial Chemotherapy database for bacteraemia isolates. The probability of target attainment and the cumulative fraction of response (CFR) were calculated. No antibiotic was predicted to be effective (CFR≥90%) against all microorganisms. The PK/PD susceptibility breakpoints were also estimated and were compared with CLSI and EUCAST breakpoints. The percentages of strains affected by breakpoint discrepancies were calculated. In the case of β-lactams, breakpoint discrepancies affected <15% of strains. However, higher differences were detected for low doses of vancomycin, daptomycin and linezolid, with PK/PD breakpoints being lower than those defined by the CLSI and EUCAST. If this occurs, an isolate will be considered susceptible based on CLSI and EUCAST breakpoints although the PK/PD analysis predicts failure, which may explain treatment failures reported in the literature. This study reinforces the idea of considering not only the antimicrobial activity but also the dosing regimen to increase the probability of clinical success of an antimicrobial treatment.

  14. Gram-positive bacteria are held at a distance in the colon mucus by the lectin-like protein ZG16

    PubMed Central

    Bergström, Joakim H.; Katona, Gergely; Schütte, André; Ermund, Anna; Hansson, Gunnar C.

    2016-01-01

    The distal colon functions as a bioreactor and harbors an enormous amount of bacteria in a mutualistic relationship with the host. The microbiota have to be kept at a safe distance to prevent inflammation, something that is achieved by a dense inner mucus layer that lines the epithelial cells. The large polymeric nets made up by the heavily O-glycosylated MUC2 mucin forms this physical barrier. Proteomic analyses of mucus have identified the lectin-like protein ZG16 (zymogen granulae protein 16) as an abundant mucus component. To elucidate the function of ZG16, we generated recombinant ZG16 and studied Zg16−/− mice. ZG16 bound to and aggregated Gram-positive bacteria via binding to the bacterial cell wall peptidoglycan. Zg16−/− mice have a distal colon mucus layer with normal thickness, but with bacteria closer to the epithelium. Using distal colon explants mounted in a horizontal perfusion chamber we demonstrated that treatment of bacteria with recombinant ZG16 hindered bacterial penetration into the mucus. The inner colon mucus of Zg16−/− animals had a higher load of Gram-positive bacteria and showed bacteria with higher motility in the mucus close to the host epithelium compared with cohoused littermate Zg16+/+. The more penetrable Zg16−/− mucus allowed Gram-positive bacteria to translocate to systemic tissues. Viable bacteria were found in spleen and were associated with increased abdominal fat pad mass in Zg16−/− animals. The function of ZG16 reveals a mechanism for keeping bacteria further away from the host colon epithelium. PMID:27849619

  15. Differences in Toll-like receptor expression and cytokine production after stimulation with heat-killed Gram-positive and Gram-negative bacteria.

    PubMed

    Beran, O; Potměšil, R; Holub, M

    2011-05-01

    Innate immune surveillance in the blood is executed mostly by circulating monocytes, which recognise conserved bacterial molecules such as peptidoglycan and lipopolysaccharide. Toll-like receptors (TLR) play a central role in microbe-associated molecular pattern detection. Here, we compared the differences in TLR expression and cytokine production after stimulation of peripheral blood cells with heat-killed Gram-negative and Gram-positive human pathogens Neisseria meningitidis, Escherichia coli, Staphylococcus aureus and Streptococcus pneumoniae. We found that TLR2 expression is up-regulated on monocytes after stimulation with S. aureus, S. pneumoniae, E. coli and N. meningitidis. Moreover, TLR2 up-regulation was positively associated with increasing concentrations of Gram-positive bacteria, whereas higher concentrations of Gram-negative bacteria, especially E. coli, caused a milder TLR2 expression increase compared with low doses. Cytokines were produced in similar dose-dependent profiles regardless of the stimulatory pathogen; however, Gram-negative pathogens induced higher cytokine levels than Gram-positive ones at same concentrations. These results indicate that Gram-positive and Gram-negative bacteria differ in their dose-dependent patterns of induction of TLR2 and TLR4, but not in cytokine expression.

  16. Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression To Support Homeostasis in Gram-Positive Bacteria.

    PubMed

    Guldimann, Claudia; Boor, Kathryn J; Wiedmann, Martin; Guariglia-Oropeza, Veronica

    2016-08-01

    Gram-positive bacteria are ubiquitous and diverse microorganisms that can survive and sometimes even thrive in continuously changing environments. The key to such resilience is the ability of members of a population to respond and adjust to dynamic conditions in the environment. In bacteria, such responses and adjustments are mediated, at least in part, through appropriate changes in the bacterial transcriptome in response to the conditions encountered. Resilience is important for bacterial survival in diverse, complex, and rapidly changing environments and requires coordinated networks that integrate individual, mechanistic responses to environmental cues to enable overall metabolic homeostasis. In many Gram-positive bacteria, a key transcriptional regulator of the response to changing environmental conditions is the alternative sigma factor σ(B) σ(B) has been characterized in a subset of Gram-positive bacteria, including the genera Bacillus, Listeria, and Staphylococcus Recent insight from next-generation-sequencing results indicates that σ(B)-dependent regulation of gene expression contributes to resilience, i.e., the coordination of complex networks responsive to environmental changes. This review explores contributions of σ(B) to resilience in Bacillus, Listeria, and Staphylococcus and illustrates recently described regulatory functions of σ(B).

  17. Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression To Support Homeostasis in Gram-Positive Bacteria

    PubMed Central

    Guldimann, Claudia; Boor, Kathryn J.; Wiedmann, Martin

    2016-01-01

    Gram-positive bacteria are ubiquitous and diverse microorganisms that can survive and sometimes even thrive in continuously changing environments. The key to such resilience is the ability of members of a population to respond and adjust to dynamic conditions in the environment. In bacteria, such responses and adjustments are mediated, at least in part, through appropriate changes in the bacterial transcriptome in response to the conditions encountered. Resilience is important for bacterial survival in diverse, complex, and rapidly changing environments and requires coordinated networks that integrate individual, mechanistic responses to environmental cues to enable overall metabolic homeostasis. In many Gram-positive bacteria, a key transcriptional regulator of the response to changing environmental conditions is the alternative sigma factor σB. σB has been characterized in a subset of Gram-positive bacteria, including the genera Bacillus, Listeria, and Staphylococcus. Recent insight from next-generation-sequencing results indicates that σB-dependent regulation of gene expression contributes to resilience, i.e., the coordination of complex networks responsive to environmental changes. This review explores contributions of σB to resilience in Bacillus, Listeria, and Staphylococcus and illustrates recently described regulatory functions of σB. PMID:27208112

  18. In Vitro and In Vivo Activities of a Bi-Aryl Oxazolidinone, RBx 11760, against Gram-Positive Bacteria.

    PubMed

    Barman, Tarani Kanta; Kumar, Manoj; Mathur, Tarun; Chaira, Tridib; Ramkumar, G; Kalia, Vandana; Rao, Madhvi; Pandya, Manisha; Yadav, Ajay Singh; Das, Biswajit; Upadhyay, Dilip J; Hamidullah; Konwar, Rituraj; Raj, V Samuel; Singh, Harpal

    2016-12-01

    RBx 11760, a bi-aryl oxazolidinone, was investigated for antibacterial activity against Gram-positive bacteria. The MIC90s of RBx 11760 and linezolid against Staphylococcus aureus were 2 and 4 mg/liter, against Staphylococcus epidermidis were 0.5 and 2 mg/liter, and against Enterococcus were 1 and 4 mg/liter, respectively. Similarly, against Streptococcus pneumoniae the MIC90s of RBx 11760 and linezolid were 0.5 and 2 mg/liter, respectively. In time-kill studies, RBx 11760, tedizolid, and linezolid exhibited bacteriostatic effect against all tested strains except S. pneumoniae RBx 11760 showed 2-log10 kill at 4× MIC while tedizolid and linezolid showed 2-log10 and 1.4-log10 kill at 16× MIC, respectively, against methicillin-resistant S. aureus (MRSA) H-29. Against S. pneumoniae 5051, RBx 11760 showed bactericidal activity, with 4.6-log10 kill at 4× MIC compared to 2.42-log10 and 1.95-log10 kill for tedizolid and linezolid, respectively, at 16× MIC. RBx 11760 showed postantibiotic effects (PAE) at 3 h at 4 mg/liter against MRSA H-29, and linezolid showed the same effect at 16 mg/liter. RBx 11760 inhibited biofilm production against methicillin-resistant S. epidermidis (MRSE) ATCC 35984 in a concentration-dependent manner. In a foreign-body model, linezolid and rifampin resulted in no advantage over stasis, while the same dose of RBx 11760 demonstrated a significant killing compared to the initial control against S. aureus (P < 0.05) and MRSE (P < 0.01). The difference in killing was statistically significant for the lower dose of RBx 11760 (P < 0.05) versus the higher dose of linezolid (P > 0.05 [not significant]) in a groin abscess model. In neutropenic mouse thigh infection, RBx 11760 showed stasis at 20 mg/kg of body weight, whereas tedizolid showed the same effect at 40 mg/kg. These data support RBx 11760 as a promising investigational candidate.

  19. Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns

    PubMed Central

    Spencer, J.; Schwarzacher, W.

    2016-01-01

    ABSTRACT In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli. Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. IMPORTANCE Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved

  20. TLR4-mediated podosome loss discriminates gram-negative from gram-positive bacteria in their capacity to induce dendritic cell migration and maturation.

    PubMed

    van Helden, Suzanne F G; van den Dries, Koen; Oud, Machteld M; Raymakers, Reinier A P; Netea, Mihai G; van Leeuwen, Frank N; Figdor, Carl G

    2010-02-01

    Chronic infections are caused by microorganisms that display effective immune evasion mechanisms. Dendritic cell (DC)-dependent T cell-mediated adaptive immunity is one of the mechanisms that have evolved to prevent the occurrence of chronic bacterial infections. In turn, bacterial pathogens have developed strategies to evade immune recognition. In this study, we show that gram-negative and gram-positive bacteria differ in their ability to activate DCs and that gram-negative bacteria are far more effective inducers of DC maturation. Moreover, we observed that only gram-negative bacteria can induce loss of adhesive podosome structures in DCs, a response necessary for the induction of effective DC migration. We demonstrate that the ability of gram-negative bacteria to trigger podosome turnover and induce DC migration reflects their capacity to selectively activate TLR4. Examining mice defective in TLR4 signaling, we show that this DC maturation and migration are mainly Toll/IL-1 receptor domain-containing adaptor-inducing IFNbeta-dependent. Furthermore, we show that these processes depend on the production of PGs by these DCs, suggesting a direct link between TLR4-mediated signaling and arachidonic metabolism. These findings demonstrate that gram-positive and gram-negative bacteria profoundly differ in their capacity to activate DCs. We propose that this inability of gram-positive bacteria to induce DC maturation and migration is part of the armamentarium necessary for avoiding the induction of an effective cellular immune response and may explain the frequent involvement of these pathogens in chronic infections.

  1. A new hybrid bacteriocin, Ent35–MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria

    PubMed Central

    Acuña, Leonardo; Picariello, Gianluca; Sesma, Fernando; Morero, Roberto D.; Bellomio, Augusto

    2012-01-01

    Bacteriocins and microcins are ribosomally synthesized antimicrobial peptides that are usually active against phylogenetically related bacteria. Thus, bacteriocins are active against Gram-positive while microcins are active against Gram-negative bacteria. The narrow spectrum of action generally displayed by bacteriocins from lactic acid bacteria represents an important limitation for the application of these peptides as clinical drugs or as food biopreservatives. The present study describes the design and expression of a novel recombinant hybrid peptide combining enterocin CRL35 and microcin V named Ent35–MccV. The chimerical bacteriocin displayed antimicrobial activity against enterohemorrhagic Escherichia coli and Listeria monocytogenes clinical isolates, among other pathogenic bacteria. Therefore, Ent35–MccV may find important applications in food or pharmaceutical industries. PMID:23650575

  2. Oxidative stress-mediated selective antimicrobial ability of nano-VO2 against Gram-positive bacteria for environmental and biomedical applications.

    PubMed

    Li, Jinhua; Zhou, Huaijuan; Wang, Jiaxing; Wang, Donghui; Shen, Ruxiang; Zhang, Xianlong; Jin, Ping; Liu, Xuanyong

    2016-06-09

    Vanadium dioxide (VO2) is a unique thermochromic material as a result of its semiconductor-metal transition, holding great promise for energy-saving intelligent windows. Herein, pure nano-VO2 from discrete nanoparticles to continuous films were successfully deposited on quartz glass by controlling the sputtering parameters. It was demonstrated that, for Gram-positive S. aureus and S. epidermidis, the nano-VO2 could effectively disrupt bacteria morphology and membrane integrity, and eventually cause death. By contrast, the nano-VO2 did not exhibit significant toxicity towards Gram-negative E. coli and P. aeruginosa. To our knowledge, this is the first report on a selective antimicrobial effect of nano-VO2 materials on Gram-positive bacteria. Based on the experimental results, a plausible mechanism was proposed for the antimicrobial selectivity, which might originate from the different sensitivity of Gram-positive and Gram-negative bacteria to intracellular reactive oxygen species (ROS) level. Elevated intracellular ROS levels exceed the threshold that bacteria can self-regulate to maintain cellular redox homeostasis and thus cause oxidative stress, which can be alleviated by the intervention of glutathione (GSH) antioxidant. In addition, nano-VO2 did not produce significant cytotoxicity (hemolysis) against human erythrocytes within 12 h. Meanwhile, potential cytotoxicity against HIBEpiC revealed a time- and dose-dependent behavior that might be controlled and balanced by careful design. The findings in the present work may contribute to understanding the antimicrobial behavior of nano-VO2, and to expanding the new applications of VO2-based nanomaterials in environmental and biomedical fields.

  3. Oxidative stress-mediated selective antimicrobial ability of nano-VO2 against Gram-positive bacteria for environmental and biomedical applications

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Zhou, Huaijuan; Wang, Jiaxing; Wang, Donghui; Shen, Ruxiang; Zhang, Xianlong; Jin, Ping; Liu, Xuanyong

    2016-06-01

    Vanadium dioxide (VO2) is a unique thermochromic material as a result of its semiconductor-metal transition, holding great promise for energy-saving intelligent windows. Herein, pure nano-VO2 from discrete nanoparticles to continuous films were successfully deposited on quartz glass by controlling the sputtering parameters. It was demonstrated that, for Gram-positive S. aureus and S. epidermidis, the nano-VO2 could effectively disrupt bacteria morphology and membrane integrity, and eventually cause death. By contrast, the nano-VO2 did not exhibit significant toxicity towards Gram-negative E. coli and P. aeruginosa. To our knowledge, this is the first report on a selective antimicrobial effect of nano-VO2 materials on Gram-positive bacteria. Based on the experimental results, a plausible mechanism was proposed for the antimicrobial selectivity, which might originate from the different sensitivity of Gram-positive and Gram-negative bacteria to intracellular reactive oxygen species (ROS) level. Elevated intracellular ROS levels exceed the threshold that bacteria can self-regulate to maintain cellular redox homeostasis and thus cause oxidative stress, which can be alleviated by the intervention of glutathione (GSH) antioxidant. In addition, nano-VO2 did not produce significant cytotoxicity (hemolysis) against human erythrocytes within 12 h. Meanwhile, potential cytotoxicity against HIBEpiC revealed a time- and dose-dependent behavior that might be controlled and balanced by careful design. The findings in the present work may contribute to understanding the antimicrobial behavior of nano-VO2, and to expanding the new applications of VO2-based nanomaterials in environmental and biomedical fields.

  4. Evaluation of the in vitro growth of urinary tract infection-causing gram-negative and gram-positive bacteria in a proposed synthetic human urine (SHU) medium.

    PubMed

    Ipe, Deepak S; Ulett, Glen C

    2016-08-01

    Bacteriuria is a hallmark of urinary tract infection (UTI) and asymptomatic bacteriuria (ABU), which are among the most frequent infections in humans. A variety of gram-negative and gram-positive bacteria are associated with these infections but Escherichia coli contributes up to 80% of cases. Multiple bacterial species including E. coli can grow in human urine as a means to maintain colonization during infections. In vitro bacteriuria studies aimed at modeling microbial growth in urine have utilized various compositions of synthetic human urine (SHU) and a Composite SHU formulation was recently proposed. In this study, we sought to validate the recently proposed Composite SHU as a medium that supports the growth of several bacterial species that are known to grow in normal human urine and/or artificial urine. Comparative growth assays of gram-negative and gram-positive bacteria E. coli, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus agalactiae, Staphylococcus saprophyticus and Enterococcus faecalis were undertaken using viable bacterial count and optical density measurements over a 48h culture period. Three different SHU formulations were tested in various culture vessels, shaking conditions and volumes and showed that Composite SHU can support the robust growth of gram-negative bacteria but requires supplementation with 0.2% yeast extract to support the growth of gram-positive bacteria. Experiments are also presented that show an unexpected but major influence of P. mirabilis towards the ability to measure bacterial growth in generally accepted multiwell assays using absorbance readings, predicted to have a basis in the release of volatile organic compound(s) from P. mirabilis during growth in Composite SHU medium. This study represents an essential methodological validation of a more chemically defined type of synthetic urine that can be applied to study mechanisms of bacteriuria and we conclude will offer a useful in vitro model to investigate the

  5. Collagen-binding Microbial Surface Components Recognizing Adhesive Matrix Molecule (MSCRAMM) of Gram-positive Bacteria Inhibit Complement Activation via the Classical Pathway*

    PubMed Central

    Kang, Mingsong; Ko, Ya-Ping; Liang, Xiaowen; Ross, Caná L.; Liu, Qing; Murray, Barbara E.; Höök, Magnus

    2013-01-01

    Members of a family of collagen-binding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) from Gram-positive bacteria are established virulence factors in several infectious diseases models. Here, we report that these adhesins also can bind C1q and act as inhibitors of the classical complement pathway. Molecular analyses of Cna from Staphylococcus aureus suggested that this prototype MSCRAMM bound to the collagenous domain of C1q and interfered with the interactions of C1r with C1q. As a result, C1r2C1s2 was displaced from C1q, and the C1 complex was deactivated. This novel function of the Cna-like MSCRAMMs represents a potential immune evasion strategy that could be used by numerous Gram-positive pathogens. PMID:23720782

  6. Production of two bacteriocins in various growth conditions produced by gram-positive bacteria isolated from chicken cecum.

    PubMed

    Wang, Qiuju; Cui, Yizhe; Wang, Wenmei; Xu, Jili; Xu, Li

    2012-01-01

    Lactobacillus plantarum CLP29 and Enterococcus faecium CLE34 isolated from the cecal contents of young broiler chicks were identified based on physiological and biochemical characteristics, and identification was confirmed by 16S rRNA sequencing. Both bacteria showed a broad range of inhibitory action against bacteria such as Salmonella and Escherichia coli and produced two peptides, plantaricin CLP29 and enterocin CLE34. Treatment with proteinase K, trypase, or benase resulted in the loss of activity of the two peptides, confirming their proteinaceous nature. The highest activity levels for both bacteria were recorded in de Man - Rogosa - Sharpe agar at pH 5.0, 6.0, and 7.0, at 37 °C. Carbon and nitrogen sources affected the antibacterial activities of the two bacteriocins in different combinations, which suggested that the antibacterial abilities of different bacteriocins produced in nutrient sources were various.

  7. The ability of electrochemical oxidation with a BDD anode to inactivate Gram-negative and Gram-positive bacteria in low conductivity sulfate medium.

    PubMed

    Bruguera-Casamada, Carmina; Sirés, Ignasi; Prieto, María J; Brillas, Enric; Araujo, Rosa M

    2016-11-01

    The disinfection of 100 mL of synthetic water containing 7 mM Na2SO4 with 10(6) CFU mL(-1) of either Gram-negative or Gram-positive bacteria has been studied by electrochemical oxidation. The electrolytic cell was a stirred tank reactor equipped with a boron-doped diamond (BDD) anode and a stainless steel cathode and the trials were performed at acidic and neutral pH, at 33.3 mA cm(-2) and 25 °C. Reactive oxygen species, pre-eminently hydroxyl radicals, were efficiently produced in both media from water oxidation at the BDD anode and the bacteria concentration was reduced by ≥ 5 log units after 60 min of electrolysis, thus constituting a good chlorine-free disinfection treatment. All the inactivation kinetics were described by a logistic model, with no significant statistical differences between acidic and neutral suspensions. The electrochemical disinfection with BDD was very effective for Gram-negative bacilli like Escherichia coli and Pseudomonas aeruginosa and Gram-positive ones like Bacillus atrophaeus, whereas the Gram-positive cocci Staphylococcus aureus and Enterococcus hirae were more resistant. Thus, the latter organisms are a better choice than E. coli as process indicators. Scanning electron microscopy highlighted a transition from initial cells with standard morphology supported on clean filters to inactivated cells with a highly altered morphology lying on dirty filters with plenty of cellular debris. Larger damage was observed for Gram-negative cells compared to Gram-positive ones. The inactivation effect could then be related to the chemical composition of the outer layers of the cell structure along with the modification of the transmembrane potentials upon current passage.

  8. Photoinactivation of Gram positive and Gram negative bacteria with the antimicrobial peptide (KLAKLAK)(2) conjugated to the hydrophilic photosensitizer eosin Y.

    PubMed

    Johnson, Gregory A; Muthukrishnan, Nandhini; Pellois, Jean-Philippe

    2013-01-16

    We test the hypothesis that the antimicrobial peptide (KLAKLAK)(2) enhances the photodynamic activity of the photosensitizer eosin Y upon conjugation. The conjugate eosin-(KLAKLAK)(2) was obtained by solid-phase peptide synthesis. Photoinactivation assays were performed against the Gram-negative bacteria Escherichia coli , Pseudomonas aeruginosa , and multidrug resistant Acinetobacter baumannii AYE, as well as the Gram-positive bacteria Staphylococcus aureus , and Staphylococcus epidermidis . Partitioning assays were performed with E. coli and S. aureus . Photohemolysis and photokilling assays were also performed to assess the photodynamic activity of the conjugate toward mammalian cells. Eosin-(KLAKLAK)(2) photoinactivates 99.999% of 10(8) CFU/mL of most bacteria tested at a concentration of 1 μM or below. In contrast, neither eosin Y nor (KLAKLAK)(2) cause any significant photoinactivation under similar conditions. The increase in photodynamic activity of the photosensitizer conferred by the antimicrobial peptide is in part due to the fact that (KLAKLAK)(2) promotes the association of eosin Y to bacteria. Eosin-(KLAKLAK)(2) does not significantly associate with red blood cells or the cultured mammalian cell lines HaCaT, COS-7, and COLO 316. Consequently, little photodamage or photokilling is observed with these cells under conditions for which bacterial photoinactivation is achieved. The peptide (KLAKLAK)(2) therefore significantly enhances the photodynamic activity of eosin Y toward both Gram-positive and Gram-negative bacteria while interacting minimally with human cells. Overall, our results suggest that antimicrobial peptides such as (KLAKLAK)(2) might serve as attractive agents that can target photosensitizers to bacteria specifically.

  9. Novel ferulate esterase from Gram-positive lactic acid bacteria and analyses of the recombinant enzyme produced in E. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a plate containing ethyl ferulate as sole carbon source, various bacteria cultures were screened for ferulate esterase (FAE). Among a dozen of species showing positive FAE, one Lactobacillus fermentum strain NRRL 1932 demonstrated the strongest activity. Using a published sequence of ferulate ...

  10. Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of gram-positive bacteria.

    PubMed

    Maldonado, Antonio; Ruiz-Barba, José Luis; Jiménez-Díaz, Rufino

    2004-01-01

    Lactobacillus plantarum NC8 was shown to produce plantaricin NC8 (PLNC8), a recently purified and genetically characterized inducible class IIb bacteriocin, only when it was co-cultured with other gram-positive bacteria. Among 82 strains belonging to the genera Bacillus, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Staphylococcus, and Streptococcus, 41 were shown to induce PLNC8 production in L. plantarum NC8. There was apparently no relationship between the sensitivity of the strains and their ability to induce the bacteriocin, indicating that the inducer and sensitive phenotypes may not be linked. In some instances, induction was promoted by both living and heat-killed cells of the inducing bacteria. However, no PLNC8-inducing activity was found in the respective cell-free, pure culture supernatants. Inducer strains also promoted the production of a PLNC8-autoinducing activity by L. plantarum NC8, which was found only in the cell-free co-culture supernatants showing inhibitory activity. This PLNC8-autoinducing activity was diffusible, heat resistant, and of a proteinaceous nature, and was different from the bacteriocin itself. Taken together, the results suggest that the presence of specific gram-positive bacteria acts as an environmental stimulus activating both PLNC8 production by L. plantarum NC8 and a PLNC8-autoinducing activity, which in turn triggers or maintains bacteriocin production in the absence of inducing cells.

  11. Facile synthesis of gold nanoparticles on propylamine functionalized SBA-15 and effect of surface functionality of its enhanced bactericidal activity against gram positive bacteria

    NASA Astrophysics Data System (ADS)

    Bhuyan, Diganta; Gogoi, Animesh; Saikia, Mrinal; Saikia, Ratul; Saikia, Lakshi

    2015-07-01

    The facile synthesis of an SBA-15-pr-+NH3.Au0 nano-hybrid material by spontaneous autoreduction of aqueous chloroaurate anions on propylamine functionalized SBA-15 was successfully demonstrated. The as-synthesized SBA-15-pr-+NH3.Au0 nano-hybrid material was well characterized using low and wide angle x-ray diffraction (XRD), N2 adsorption-desorption isotherms, Fourier transform infrared (FTIR), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX), x-ray photoelectron spectroscopy (XPS), UV-Visible spectroscopy and atomic absorption spectroscopy (AAS). The activity of the nano-hybrid material as a potent bactericidal agent was successfully tested against Gram positive/negative bacteria viz. Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The colony killing percentage of Gram positive bacteria was found to be higher than Gram negative bacteria due to the stronger electrostatic interaction between the positively-charged amine functionality of SBA-15 and the negatively charged functionality of the bacterial cell wall.

  12. Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo.

    PubMed

    Feng, Q; Huang, Y; Chen, M; Li, G; Chen, Y

    2015-01-01

    In this study, the antimicrobial activities based on the synergistic effects of traditional antibiotics (imipenem, cefepime, levofloxacin hydrochloride and vancomycin) and antimicrobial peptides (AMPs; PL-5, PL-31, PL-32, PL-18, PL-29 and PL-26), alone or in combination, against three Gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae and Staphylococcus epidermidis) and three Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae) were investigated. In addition, the antimicrobial activity that was based on the synergistic effects of levofloxacin hydrochloride and PL-5 against Staphylococcus aureus in vivo was explored in a mouse infection model. Traditional antibiotics and AMPs showed significant synergistic effects on the antibacterial activities against the different Gram-positive and Gram-negative bacteria in vitro. A strong synergistic effect in the PL-5 and levofloxacin hydrochloride combination against Staphylococcus aureus was observed in the mouse infection model in vivo. The mechanism of synergistic action was due to the different targets of AMPs and traditional antibiotics. The combination of AMPs and traditional antibiotics can dramatically enhance antimicrobial activity and may help prevent or delay the emergence of antibiotic resistance. Thus, this combination therapy could be a promising approach to treat bacterial infections, particularly mixed infections and multi-antibiotic-resistant infections, in the clinics.

  13. Alternating electric fields combined with activated carbon for disinfection of Gram negative and Gram positive bacteria in fluidized bed electrode system.

    PubMed

    Racyte, Justina; Bernard, Séverine; Paulitsch-Fuchs, Astrid H; Yntema, Doekle R; Bruning, Harry; Rijnaarts, Huub H M

    2013-10-15

    Strong electric fields for disinfection of wastewaters have been employed already for several decades. An innovative approach combining low strength (7 V/cm) alternating electric fields with a granular activated carbon fluidized bed electrode (FBE) for disinfection was presented recently. For disinfection performance of FBE several pure microbial cultures were tested: Bacillus subtilis, Bacillus subtilis subsp. subtilis, Enterococcus faecalis as representatives from Gram positive bacteria and Erwinia carotovora, Pseudomonas luteola, Pseudomonas fluorescens and Escherichia coli YMc10 as representatives from Gram negative bacteria. The alternating electric field amplitude and shape were kept constant. Only the effect of alternating electric field frequency on disinfection performance was investigated. From the bacteria tested, the Gram negative strains were more susceptible and the Gram positive microorganisms were more resistant to FBE disinfection. The collected data indicate that the efficiency of disinfection is frequency and strain dependent. During 6 h of disinfection, the decrease above 2 Log units was achieved with P. luteola and E. coli at 10 kHz and at dual frequency shift keying (FSK) modulated signal with frequencies of 10 kHz and 140 kHz. FBE technology appears to offer a new way for selective bacterial disinfection, however further optimizations are needed on treatment duration, and energy input, to improve effectiveness.

  14. Potentiation of photoinactivation of Gram-positive and Gram-negative bacteria mediated by six phenothiazinium dyes by addition of azide ion.

    PubMed

    Kasimova, Kamola R; Sadasivam, Magesh; Landi, Giacomo; Sarna, Tadeusz; Hamblin, Michael R

    2014-11-01

    Antimicrobial photodynamic inactivation (APDI) using phenothiazinium dyes is mediated by reactive oxygen species consisting of a combination of singlet oxygen (quenched by azide), hydroxyl radicals and other reactive oxygen species. We recently showed that addition of sodium azide paradoxically potentiated APDI of Gram-positive and Gram-negative bacteria using methylene blue as the photosensitizer, and this was due to electron transfer to the dye triplet state from azide anion, producing azidyl radical. Here we compare this effect using six different homologous phenothiazinium dyes: methylene blue, toluidine blue O, new methylene blue, dimethylmethylene blue, azure A, and azure B. We found both significant potentiation (up to 2 logs) and also significant inhibition (>3 logs) of killing by adding 10 mM azide depending on Gram classification, washing the dye from the cells, and dye structure. Killing of E. coli was potentiated with all 6 dyes after a wash, while S. aureus killing was only potentiated by MB and TBO with a wash and DMMB with no wash. More lipophilic dyes (higher log P value, such as DMMB) were more likely to show potentiation. We conclude that the Type I photochemical mechanism (potentiation with azide) likely depends on the microenvironment, i.e. higher binding of dye to bacteria. Bacterial dye-binding is thought to be higher with Gram-negative compared to Gram-positive bacteria, when unbound dye has been washed away, and with more lipophilic dyes.

  15. Systematic Review of Membrane Components of Gram-Positive Bacteria Responsible as Pyrogens for Inducing Human Monocyte/Macrophage Cytokine Release

    PubMed Central

    Rockel, Christoph; Hartung, Thomas

    2012-01-01

    Fifty years after the elucidation of lipopolysaccharides (LPS, endotoxin) as the principal structure of Gram-negative bacteria activating the human immune system, its Gram-positive counterpart is still under debate. Pyrogen tests based on the human monocyte activation have been validated for LPS detection as an alternative to the rabbit test and, increasingly, the limulus amebocyte lysate test. For full replacement, international validations with non-endotoxin pyrogens are in preparation. Following evidence-based medicine approaches, a systematic review of existing evidence as to the structural nature of the Gram-positive pyrogen was undertaken. For the three major constituents suggested, i.e., peptidoglycan, lipoteichoic acids (LTA), and bacterial lipoproteins (LP), the questions to be answered and a search strategy for relevant literature was developed, starting in MedLine. The evaluation was based on the Koch–Dale criteria for a mediator of an effect. A total of 380 articles for peptidoglycan, 391 for LP, and 285 for LTA were retrieved of which 12, 8, and 24, respectively, fulfilled inclusion criteria. The compiled data suggest that for peptidoglycan two Koch–Dale criteria are fulfilled, four for LTA, and two for bacterial LP. In conclusion, based on the best currently available evidence, LTA is the only substance that fulfills all criteria. LTA has been isolated from a large number of bacteria, results in cytokine release patterns inducible also with synthetic LTA. Reduction in bacterial cytokine induction with an inhibitor for LTA was shown. However, this systematic review cannot exclude the possibility that other stimulatory compounds complement or substitute for LTA in being the counterpart to LPS in some Gram-positive bacteria. PMID:22529809

  16. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor); Farris, III, Alex F. (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  17. Alternative fluorescent labeling strategies for characterizing gram-positive pathogenic bacteria: Flow cytometry supported counting, sorting, and proteome analysis of Staphylococcus aureus retrieved from infected host cells.

    PubMed

    Hildebrandt, Petra; Surmann, Kristin; Salazar, Manuela Gesell; Normann, Nicole; Völker, Uwe; Schmidt, Frank

    2016-10-01

    Staphylococcus aureus is a Gram-positive opportunistic pathogen that is able to cause a broad range of infectious diseases in humans. Furthermore, S. aureus is able to survive inside nonprofessional phagocytic host cell which serve as a niche for the pathogen to hide from the immune system and antibiotics therapies. Modern OMICs technologies provide valuable tools to investigate host-pathogen interactions upon internalization. However, these experiments are often hampered by limited capabilities to retrieve bacteria from such an experimental setting. Thus, the aim of this study was to develop a labeling strategy allowing fast detection and quantitation of S. aureus in cell lysates or infected cell lines by flow cytometry for subsequent proteome analyses. Therefore, S. aureus cells were labeled with the DNA stain SYTO(®) 9, or Vancomycin BODIPY(®) FL (VMB), a glycopeptide antibiotic binding to most Gram-positive bacteria which was conjugated to a fluorescent dye. Staining of S. aureus HG001 with SYTO 9 allowed counting of bacteria from pure cultures but not in cell lysates from infection experiments. In contrast, with VMB it was feasible to stain bacteria from pure cultures as well as from samples of infection experiments. VMB can also be applied for histocytochemistry analysis of formaldehyde fixed cell layers grown on coverslips. Proteome analyses of S. aureus labeled with VMB revealed that the labeling procedure provoked only minor changes on proteome level and allowed cell sorting and analysis of S. aureus from infection settings with sensitivity similar to continuous gfp expression. Furthermore, VMB labeling allowed precise counting of internalized bacteria and can be employed for downstream analyses, e.g., proteomics, of strains not easily amendable to genetic manipulation such as clinical isolates. © 2016 International Society for Advancement of Cytometry.

  18. Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in gram-positive and gram-negative bacteria.

    PubMed

    Hankins, Jessica V; Madsen, James A; Giles, David K; Brodbelt, Jennifer S; Trent, M Stephen

    2012-05-29

    Historically, the O1 El Tor and classical biotypes of Vibrio cholerae have been differentiated by their resistance to the antimicrobial peptide polymyxin B. However, the molecular mechanisms associated with this phenotypic distinction have remained a mystery for 50 y. Both gram-negative and gram-positive bacteria modify their cell wall components with amine-containing substituents to reduce the net negative charge of the bacterial surface, thereby promoting cationic antimicrobial peptide resistance. In the present study, we demonstrate that V. cholerae modify the lipid A anchor of LPS with glycine and diglycine residues. This previously uncharacterized lipid A modification confers polymyxin resistance in V. cholerae El Tor, requiring three V. cholerae proteins: Vc1577 (AlmG), Vc1578 (AlmF), and Vc1579 (AlmE). Interestingly, the protein machinery required for glycine addition is reminiscent of the gram-positive system responsible for D-alanylation of teichoic acids. Such machinery was not thought to be used by gram-negative organisms. V. cholerae O1 El Tor mutants lacking genes involved in transferring glycine to LPS showed a 100-fold increase in sensitivity to polymyxin B. This work reveals a unique lipid A modification and demonstrates a charge-based remodeling strategy shared between gram-positive and gram-negative organisms.

  19. In vitro activity of paldimycin (U-70138F) against gram-positive bacteria isolated from patients with cancer.

    PubMed Central

    Rolston, K V; LeBlanc, B; Ho, D H; Bodey, G P

    1987-01-01

    The in vitro activity of paldimycin, a novel antimicrobial agent, was compared with that of vancomycin against 306 gram-positive isolates (representing 12 bacterial species) obtained from patients with cancer. Paldimycin had lower MICs for 90% of isolates than vancomycin did against most isolates tested. Its activity, however, was medium and pH dependent, being greatest in Nutrient broth at a pH of 6.8. PMID:3606069

  20. Occurrence of ferredoxin:NAD+ oxidoreductase activity and its ion specificity in several Gram-positive and Gram-negative bacteria

    PubMed Central

    Hess, Verena; Gallegos, Rene; Jones, J Andrew; Barquera, Blanca; Malamy, Michael H

    2016-01-01

    A ferredoxin:NAD+ oxidoreductase was recently discovered as a redox-driven ion pump in the anaerobic, acetogenic bacterium Acetobacterium woodii. The enzyme is assumed to be encoded by the rnf genes. Since these genes are present in the genomes of many bacteria, we tested for ferredoxin:NAD+ oxidoreductase activity in cytoplasmic membranes from several different Gram-positive and Gram-negative bacteria that have annotated rnf genes. We found this activity in Clostridium tetanomorphum, Clostridium ljungdahlii, Bacteroides fragilis, and Vibrio cholerae but not in Escherichia coli and Rhodobacter capsulatus. As in A. woodii, the activity was Na+-dependent in C. tetanomorphum and B. fragilis but Na+-independent in C. ljungdahlii and V. cholerae. We deleted the rnf genes from B. fragilis and demonstrated that the mutant has greatly reduced ferredoxin:NAD+ oxidoreductase activity. This is the first genetic proof that the rnf genes indeed encode the reduced ferredoxin:NAD+ oxidoreductase activity. PMID:26793417

  1. The role of sigmaB in the stress response of Gram-positive bacteria -- targets for food preservation and safety.

    PubMed

    van Schaik, Willem; Abee, Tjakko

    2005-04-01

    The alternative sigma factor sigmaB modulates the stress response of several Gram-positive bacteria, including Bacillus subtilis and the food-borne human pathogens Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus. In all these bacteria, sigmaB is responsible for the transcription of genes that can confer stress resistance to the vegetative cell. Recent findings indicate that sigmaB also plays an important role in antibiotic resistance, pathogenesis and cellular differentiation processes such as biofilm formation and sporulation. Although there are important differences in the regulation of sigmaB and in the set of genes regulated by sigmaB in B. subtilis, B. cereus, L. monocytogenes and S. aureus, there are also some conserved themes. A mechanistic understanding of the sigmaB activation processes and assessment of its regulon could provide tools for pathogen control and inactivation both in the food industry and clinical settings.

  2. The Effect of Bicarbonate on the Microbial Dissolution of Autunite Mineral in the Presence of Gram-Positive Bacteria

    SciTech Connect

    Sepulveda-Medina, Paola; Katsenovich, Yelena; Wellman, Dawn M.; Lagos, Leonel

    2015-06-01

    Bacteria are key players in the processes that govern fate and transport of contaminants. The uranium release from Na and Ca-autunite by Arthrobacter oxydans strain G968 was evaluated in the presence of bicarbonate ions. This bacterium was previously isolated from Hanford Site soil and in earlier prescreening tests demonstrated low tolerance to U(VI) toxicity compared to other A.oxydans isolates. Experiments were conducted using glass serum bottles as mixed bioreactors and sterile 6-well cell culture plates with inserts separating bacteria cells from mineral solids. Reactors containing phosphorus-limiting media were amended with bicarbonate ranging between 0-10 mM and metaautunite solids to provide a U(VI) concentration of 4.4 mmol/L. Results showed that in the presence of bicarbonate, A.oxydans G968 was able to enhance the release of U(VI) from Na and Ca autunite at the same capacity as other A.oxydans isolates with relatively high tolerance to U(VI). The effect of bacterial strains on autunite dissolution decreases as the concentration of bicarbonate increases. The results illustrate that direct interaction between the bacteria and the mineral is not necessary to result in U (VI) biorelease from autunite. The formation of secondary calcium-phosphate mineral phases on the surface of the mineral during the dissolution can ultimately reduce the natural autunite mineral contact area, which bacterial cells can access. This thereby reduces the concentration of uranium released into the solution. This study provides a better understanding of the interactions between meta-autunite and microbes in conditions mimicking arid and semiarid subsurface environments of western U.S.

  3. The effect of bicarbonate on the microbial dissolution of autunite mineral in the presence of gram-positive bacteria.

    PubMed

    Sepulveda-Medina, Paola M; Katsenovich, Yelena P; Wellman, Dawn M; Lagos, Leonel E

    2015-06-01

    Bacteria are key players in the processes that govern fate and transport of contaminants. The uranium release from Na and Ca-autunite by Arthrobacter oxydans strain G968 was evaluated in the presence of bicarbonate ions. This bacterium was previously isolated from Hanford Site soil and in earlier prescreening tests demonstrated low tolerance to U(VI) toxicity compared to other A. oxydans isolates. Experiments were conducted using glass serum bottles as mixed bioreactors and sterile 6-well cell culture plates with inserts separating bacteria cells from mineral solids. Reactors containing phosphorus-limiting media were amended with bicarbonate ranging between 0 and 10 mM and meta-autunite solids to provide a U(VI) concentration of 4.4 mmol/L. Results showed that in the presence of bicarbonate, A. oxydans G968 was able to enhance the release of U(VI) from Na and Ca autunite at the same capacity as other A. oxydans isolates with relatively high tolerance to U(VI). The effect of bacterial strains on autunite dissolution decreases as the concentration of bicarbonate increases. The results illustrate that direct interaction between the bacteria and the mineral is not necessary to result in U(VI) biorelease from autunite. The formation of secondary calcium-phosphate mineral phases on the surface of the mineral during the dissolution can ultimately reduce the natural autunite mineral contact area, which bacterial cells can access. This thereby reduces the concentration of uranium released into the solution. This study provides a better understanding of the interactions between meta-autunite and microbes in conditions mimicking arid and semiarid subsurface environments of western U.S.

  4. Antimicrobial resistance pattern of Gram-positive bacteria during three consecutive years at the nephrology ward of a tertiary referral hospital in Shiraz, Southwest Iran

    PubMed Central

    Karimzadeh, Iman; Mirzaee, Mona; Sadeghimanesh, Niloofar; Sagheb, Mohammad Mahdi

    2016-01-01

    Objective: The aim of the present study was to determine the pattern of antimicrobial resistance of Gram-positive bacteria during three consecutive years at the nephrology ward of Namazi Hospital in Shiraz, Southwest of Iran. Methods: During a 3-year period from 2013 to 2015, data of all biological samples of hospitalized patients at the adult nephrology ward of Namazi Hospital were sent to the central laboratory for identification of Gram-positive microorganisms and subsequently, their antimicrobial susceptibility testing by Kirby–Bauer disc diffusion method were analyzed in a retrospective manner. Findings: Coagulase-negative Staphylococci (CONS) (38.5%), Staphylococcus aureus (25.4%), and Enterococcus spp. (23.8%) were the most common isolated Gram-positive bacteria from all biological samples. All Enterococcus spp. isolates within the 3 years were resistant to oxacillin. The rate of vancomycin-resistant enterococci (VRE) increased from 40.63% in 2013 to 72.73% in 2015. Enterococcus spp. resistance rates to aminoglycosides during 3 years were above 85%. The frequencies of oxacillin-resistant S. aureus (ORSA) in 2013, 2014, and 2015 were 95.24%, 80.95%, and 36.36%, respectively. Two out of 11 (6.67%) S. aureus isolates were resistant to vancomycin. More than 90% of CONS were sensitive to vancomycin within the study period. The frequency of gentamicin-resistant CONS ranged from 40% to 57.14%. Conclusion: The rates of ORSA, VRE, and aminoglycoside-resistant CONS as well as Enterococcus spp. in our clinical setting were considerably high and concerning. These may be due to the failure or lack of infection control activities and antimicrobial selection pressure. PMID:27843959

  5. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids.

    PubMed

    Weaver, Keith E; Kwong, Stephen M; Firth, Neville; Francia, Maria Victoria

    2009-03-01

    The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multiresistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families.

  6. Identification of an amphioxus intelectin homolog that preferably agglutinates gram-positive over gram-negative bacteria likely due to different binding capacity to LPS and PGN.

    PubMed

    Yan, Jie; Wang, Jianfeng; Zhao, Yaqi; Zhang, Jingye; Bai, Changcun; Zhang, Changqing; Zhang, Chao; Li, Kailin; Zhang, Haiqing; Du, Xiumin; Feng, Lijun

    2012-07-01

    Intelectin is a recently described galactofuranose-binding lectin that plays a role in innate immunity in vertebrates. Little is known about intelectin in invertebrates, including amphioxus, the transitional form between vertebrates and invertebrates. We cloned an amphioxus intelectin homolog, AmphiITLN-like, coding 302 amino acids with a conserved fibrinogen-related domain (FReD) in the N-terminus and an Intelectin domain in the C-terminus. In situ hybridization in adult amphioxus showed that AmphiITLN-like transcripts were highly expressed in the digestive tract and the skin. Quantitative real-time PCR revealed that AmphiITLN-like is significantly up-regulated in response to Staphylococcus aureus challenge, but only modestly to Escherichia coli. In addition, recombinant AmphiITLN-like expressed in E. coli agglutinates Gram-negative and Gram-positive bacteria to different degrees in a calcium dependent manner. Recombinant AmphiITLN-like could bind lipopolysaccharide (LPS) and peptidoglycan (PGN), the major cell wall components of Gram-negative and Gram-positive bacteria, respectively, with a higher affinity to PGN. Our work identified and characterized for the first time an amphioxus intelectin homolog, and provided insight into the evolution and function of the intelectin family.

  7. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. [Salmonella typhimurium; Escherichia coli; Sarcina lutea; Staphylococcus aureus; Streptococcus lactis; Streptococcus faecalis

    SciTech Connect

    Dahl, T.A.; Midden, W.R. ); Hartman, P.E. )

    1989-04-01

    Gram-negative and gram-positive bacteria were found to display different sensitivities to pure singlet oxygen generated outside of cells. Killing curves for Salmonella typhimurium and Escherichia coli strains were indicative of multihit killing, whereas curves for Sarcina lutea, Staphylococcus aureus, Streptococcus lactis, and Streptococcus faecalis exhibited single-hit kinetics. The S. typhimurium deep rough strain TA1975, which lacks nearly all of the cell wall lipopolysaccharide coat and manifests concomitant enhancement of penetration by some exogenous substances, responded to singlet oxygen with initially faster inactivation than did the S. typhimurium wild-type strain, although the maximum rates of killing appeared to be quite similar. The structure of the cell wall thus plays an important role in susceptibility to singlet oxygen. The outer membrane-lipopolysaccharide portion of the gram-negative cell wall initially protects the bacteria from extracellular singlet oxygen, although it may also serve as a source for secondary reaction products which accentuate the rates of cell killing. S. typhimurium and E. coli strains lacking the cellular antioxidant, glutathione, showed no difference from strains containing glutathione in response to the toxic effects of singlet oxygen. Strains of Sarcina lutea and Staphylococcus aureus that contained carotenoids, however, were far more resistant to singlet oxygen lethality than were both carotenoidless mutants of the same species and other gram-positive species lacking high levels of protective carotenoids.

  8. Design of a Nanostructured Active Surface against Gram-Positive and Gram-Negative Bacteria through Plasma Activation and in Situ Silver Reduction.

    PubMed

    Gilabert-Porres, Joan; Martí, Sara; Calatayud, Laura; Ramos, Victor; Rosell, Antoni; Borrós, Salvador

    2016-01-13

    Nowadays there is an increasing focus for avoiding bacterial colonization in a medical device after implantation. Bacterial infection associated with prosthesis implantation, or even along the lifetime of the implanted prosthesis, entails a serious problem, emphasized with immunocompromised patients. This work shows a new methodology to create highly hydrophobic micro-/nanostructured silver antibacterial surfaces against Gram-positive and Gram-negative bacteria, using low-pressure plasma. PDMS (polydimethylsiloxane) samples, typically used in tracheal prosthesis, are coated with PFM (pentafluorophenyl methacrylate) through PECVD (plasma enhance chemical vapor deposition) technique. PFM thin films offer highly reactive ester groups that allow them to react preferably with amine bearing molecules, such as amine sugar, to create controlled reductive surfaces capable of reducing silver salts to a nanostructured metallic silver. This micro-/nanostructured silver coating shows interesting antibacterial properties combined with an antifouling behavior causing a reduction of Gram-positive and Gram-negative bacteria viability. In addition, these types of silver-coated samples show no apparent cytotoxicity against COS-7 cells.

  9. pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth

    PubMed Central

    Alpaslan, Ece; Geilich, Benjamin M.; Yazici, Hilal; Webster, Thomas J.

    2017-01-01

    Here, the antibacterial activity of dextran-coated nanoceria was examined against Pseudomonas aeruginosa and Staphylococcus epidermidis by varying the dose, the time of treatment, and the pH of the solution. Findings suggested that dextran-coated nanoceria particles were much more effective at killing P. aeruginosa and S. epidermidis at basic pH values (pH = 9) compared to acidic pH values (pH = 6) due to a smaller size and positive surface charge at pH 9. At pH 9, different particle concentrations did cause a delay in the growth of P. aeruginosa, whereas impressively S. epidermidis did not grow at all when treated with a 500 μg/mL nanoceria concentration for 24 hours. For both bacteria, a 2 log reduction and elevated amounts of reactive oxygen species (ROS) generation per colony were observed after 6 hours of treatment with nanoceria at pH 9 compared to untreated controls. After 6 hours of incubation with nanoceria at pH 9, P. aeruginosa showed drastic morphological changes as a result of cellular stress. In summary, this study provides significant evidence for the use of nanoceria (+4) for a wide range of anti-infection applications without resorting to the use of antibiotics, for which bacteria are developing a resistance towards anyway. PMID:28387344

  10. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria.

    PubMed

    Nakonieczna, A; Cooper, C J; Gryko, R

    2015-09-01

    Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors.

  11. Unravelling a vicious circle: animal feed marketed in Costa Rica contains irregular concentrations of tetracyclines and abundant oxytetracycline-resistant Gram-positive bacteria.

    PubMed

    Granados-Chinchilla, Fabio; Alfaro, Margarita; Chavarría, Guadalupe; Rodríguez, César

    2014-01-01

    Diverse tetracyclines are used to prevent and control bacterial infections in livestock and farmed fish. These drugs are administered through the diet, but farmers seldom check whether feed contains antibiotic-resistant bacteria that may colonise their crops or transfer their resistance traits to species of veterinary relevance. To examine whether antibiotic dosage defines the abundance of antibiotic-resistant bacteria in animal feed, we determined the concentration of parental compounds and epimers of oxytetracycline (OTC), doxycycline, tetracycline and chlortetracycline, as well as the abundance and resistance level of OTC-resistant bacteria in samples of fish (n = 21), poultry (n = 21), swine (n = 21), and shrimp feed (n = 21) marketed in Costa Rica. Fish feed contained the highest amounts of tetracyclines (119-8365 mg kg(-1)) and the largest proportion of bacteria resistant to 10 μg ml(-1) (1.8-92.4%) or 100 μg ml(-1) of OTC (12.5-63.8%). Poultry (78-438 mg kg(-1)) and swine (41-1076 mg kg(-1)) feed had intermediate concentrations of tetracyclines and OTC-resistant bacteria (0.2-66% and 0.3-49%, respectively), whereas shrimp feed showed the lowest amounts of tetracyclines (21.5-50.3 mg kg(-1)), no OTC and no culturable OTC-resistant bacteria. In line with these results, the MIC50 of OTC for 150 isolates from fish and poultry feed was > 256 µg ml(-1), while that of 150 bacteria isolated from swine feed was 192 µg ml(-1). Phenotypic tests, fatty acid profiles and proteotypic analyses by matrix-assisted laser desorption/ionisation-time of flight mass-spectroscopy revealed that most OTC-resistant isolates were Gram-positive bacteria of low G+C% content from the genera Staphylococcus and Bacillus. Clear correlations between OTC dosage and feed colonisation with OTC-resistant bacteria were seen in medicated feed for fish (r = 0.179-0.651). Nonetheless, some unmedicated feed for fish, swine and poultry contained large populations of OTC-resistant bacteria

  12. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins

    PubMed Central

    2009-01-01

    Background In recent times photodynamic antimicrobial therapy has been used to efficiently destroy Gram (+) and Gram (-) bacteria using cationic porphyrins as photosensitizers. There is an increasing interest in this approach, namely in the search of photosensitizers with adequate structural features for an efficient photoinactivation process. In this study we propose to compare the efficiency of seven cationic porphyrins differing in meso-substituent groups, charge number and charge distribution, on the photodynamic inactivation of a Gram (+) bacterium (Enterococcus faecalis) and of a Gram (-) bacterium (Escherichia coli). The present study complements our previous work on the search for photosensitizers that might be considered good candidates for the photoinactivation of a large spectrum of environmental microorganisms. Results Bacterial suspension (107 CFU mL-1) treated with different photosensitizers concentrations (0.5, 1.0 and 5.0 μM) were exposed to white light (40 W m-2) for a total light dose of 64.8 J cm-2. The most effective photosensitizers against both bacterial strains were the Tri-Py+-Me-PF and Tri-Py+-Me-CO2Me at 5.0 μM with a light fluence of 64.8 J cm-2, leading to > 7.0 log (> 99,999%) of photoinactivation. The tetracationic porphyrin also proved to be a good photosensitizer against both bacterial strains. Both di-cationic and the monocationic porphyrins were the least effective ones. Conclusion The number of positive charges, the charge distribution in the porphyrins' structure and the meso-substituent groups seem to have different effects on the photoinactivation of both bacteria. As the Tri-Py+-Me-PF porphyrin provides the highest log reduction using lower light doses, this photosensitizer can efficiently photoinactivate a large spectrum of environmental bacteria. The complete inactivation of both bacterial strains with low light fluence (40 W m-2) means that the photodynamic approach can be applied to wastewater treatment under natural

  13. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review

    PubMed Central

    Lee, Chang-Ro; Lee, Jung Hun; Park, Kwang Seung; Jeong, Byeong Chul; Lee, Sang Hee

    2015-01-01

    The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance. PMID:26322035

  14. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria

    PubMed Central

    Azhdarzadeh, Morteza; Lotfipour, Farzaneh; Zakeri-Milani, Parvin; Mohammadi, Ghobad; Valizadeh, Hadi

    2012-01-01

    Purpose: Azithromycin (AZI) is a new macrolide antibiotic with a better activity against intracellular gram negative bacteria in comparison with Erythromycin. The purpose of this research was to prepare AZI nanoparticles (NPs) using PLGA polymer and to compare the effectiveness of prepared nanoparticles with untreated AZI solution. Methods: AZI NPs were prepared by Modified Quasi-Emulsion Solvent Diffusion method. The antibacterial activities of prepared NPs in comparison with AZI solution were assayed against indicator bacteria of Escherichia coli (PTCC 1330), Haemophilus influenzae (PTCC 1623) and Streptococcus pneumoniae (PTCC 1240) using agar well diffusion. Inhibition zone diameters (IZD) of nano-formulation were compared to the corresponding untreated AZI. Mean Inhibitory Concentration (MIC) values of AZI were also determined using serial dilution method in nutrient broth medium. Results: Mean IZD of nano-formulations for all indicator bacteria were significantly higher than that of untreated AZI (P<0.01). The enhanced antibacterial efficacy was more dominant in the gram positive species. The MIC values of NPs against the tested bacteria were reduced 8 times in comparison to those of untreated AZI. Conclusion: These results indicated an improved potency of AZI NPs which could be attributed to the modified surface characteristics as well as increased drug adsorption and uptake. PMID:24312766

  15. First study on antimicriobial activity and synergy between isothiocyanates and antibiotics against selected Gram-negative and Gram-positive pathogenic bacteria from clinical and animal source.

    PubMed

    Dias, Carla; Aires, Alfredo; Bennett, Richard N; Rosa, Eduardo A S; Saavedra, Maria J

    2012-05-01

    The emergence of new diseases and the resurgence of several infections that were controlled in the past, associated with recent increase of bacterial resistance have created the necessity for more studies towards to the development of new antimicrobials and new treatment strategies. The aim of the present study was to evaluate the in vitro synergy between different classes of important glucosinolates hydrolysis products-isothiocyanates with antibiotics (gentamycin and vancomycin), against important pathogenic bacteria: Escherichia coli, Enterococcus faecalis, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus. A disc diffusion method was used to evaluate the antibacterial activity. The antimicrobial activity of phytochemicals and combinations between gentamycin, vancomycin and phytochemicals were quantitatively assessed by measuring the inhibitory halos. The results showed a selective antimicrobial effect of isothiocyanates, and this effect was strictly related with their chemical structure. In general the benzylisothiocyanate was the most effective compound against both Gram-positive and Gram-negative bacteria. The Listeria monocytogenes and Staphylococcus aureus were the bacteria most affected either by the phytochemicals alone or by the combination phytochemical-antibiotic. The bacteria Pseudomonas aeruginosa was the less affected pathogen. The most important synergism detected occurred between the commercial antibiotics with benzylisothiocyanate and 2-phenylethylisothiocyanate. In conclusion, some isothiocyanates are effective inhibitors of in vitro bacterial growth, and they can act synergistically with antibiotics.

  16. σ(ECF) factors of gram-positive bacteria: a focus on Bacillus subtilis and the CMNR group.

    PubMed

    Souza, Bianca Mendes; Castro, Thiago Luiz de Paula; Carvalho, Rodrigo Dias de Oliveira; Seyffert, Nubia; Silva, Artur; Miyoshi, Anderson; Azevedo, Vasco

    2014-07-01

    The survival of bacteria to different environmental conditions depends on the activation of adaptive mechanisms, which are intricately driven through gene regulation. Because transcriptional initiation is considered to be the major step in the control of bacterial genes, we discuss the characteristics and roles of the sigma factors, addressing (1) their structural, functional and phylogenetic classification; (2) how their activity is regulated; and (3) the promoters recognized by these factors. Finally, we focus on a specific group of alternative sigma factors, the so-called σ(ECF) factors, in Bacillus subtilis and some of the main species that comprise the CMNR group, providing information on the roles they play in the microorganisms' physiology and indicating some of the genes whose transcription they regulate.

  17. Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria.

    PubMed

    Baker, Edward N; Squire, Christopher J; Young, Paul G

    2015-10-01

    The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength.

  18. A peptidoglycan recognition protein from Sciaenops ocellatus is a zinc amidase and a bactericide with a substrate range limited to Gram-positive bacteria.

    PubMed

    Li, Mo-Fei; Zhang, Min; Wang, Chun-Lin; Sun, Li

    2012-02-01

    Peptidoglycan recognition proteins (PGRPs) are a family of innate immune molecules that recognize bacterial peptidoglycan. PGRPs are highly conserved in invertebrates and vertebrates including fish. However, the biological function of teleost PGRP remains largely uninvestigated. In this study, we identified a PGRP homologue, SoPGLYRP-2, from red drum (Sciaenops ocellatus) and analyzed its activity and potential function. The deduced amino acid sequence of SoPGLYRP-2 is composed of 482 residues and shares 46-94% overall identities with known fish PGRPs. SoPGLYRP-2 contains at the C-terminus a single zinc amidase domain with conserved residues that form the catalytic site. Quantitative RT-PCR analysis detected SoPGLYRP-2 expression in multiple tissues, with the highest expression occurring in liver and the lowest expression occurring in brain. Experimental bacterial infection upregulated SoPGLYRP-2 expression in kidney, spleen, and liver in time-dependent manners. To examine the biological activity of SoPGLYRP-2, purified recombinant proteins representing the intact SoPGLYRP-2 (rSoPGLYRP-2) and the amidase domain (rSoPGLYRP-AD) were prepared from Escherichia coli. Subsequent analysis showed that rSoPGLYRP-2 and rSoPGLYRP-AD (i) exhibited comparable Zn(2+)-dependent peptidoglycan-lytic activity and were able to recognize and bind to live bacterial cells, (ii) possessed bactericidal effect against Gram-positive bacteria and slight bacteriostatic effect against Gram-negative bacteria, (iii) were able to block bacterial infection into host cells. These results indicate that SoPGLYRP-2 is a zinc-dependent amidase and a bactericide that targets preferentially at Gram-positive bacteria, and that SoPGLYRP-2 is likely to play a role in host innate immune defense during bacterial infection.

  19. Reactive changes of interstitial glia and pinealocytes in the rat pineal gland challenged with cell wall components from gram-positive and -negative bacteria.

    PubMed

    Jiang-Shieh, Ya Fen; Wu, Ching Hsiang; Chien, Hsiung Fei; Wei, I Hua; Chang, Min Lin; Shieh, Jeng Yung; Wen, Chen Yuan

    2005-01-01

    Lipopolysaccharide (LPS), the major proinflammatory component of gram-negative bacteria, is well known to induce sepsis and microglial activation in the CNS. On the contrary, the effect of products from gram-positive bacteria especially in areas devoid of blood-brain barrier remains to be explored. In the present study, a panel of antibodies, namely, OX-6, OX-42 and ED-1 was used to study the response of microglia/macrophages in the pineal gland of rats given an intravenous LPS or lipoteichoic acid (LTA). These antibodies recognize MHC class II antigens, complement type 3 receptors and unknown lysosomal proteins in macrophages, respectively. In rats given LPS (50 microg/kg) injection and killed 48 h later, the cell density and immunoexpression of OX-6, OX-42 and ED-1 in pineal microglia/macrophages were markedly increased. In rats receiving a high dose (20 mg/kg) of LTA, OX-42 and OX-6, immunoreactivities in pineal microglia/macrophages were also enhanced, but that of ED-1 was not. In addition, both bacterial toxins induced an increase in astrocytic profiles labelled by glial fibrillary acid protein. An interesting feature following LPS or LTA treatment was the lowering effect on serum melatonin, enhanced serotonin immunolabelling and cellular vacuolation as studied by electron microscopy in pinealocytes. The LPS- or LTA-induced vacuoles appeared to originate from the granular endoplasmic reticulum as well as the Golgi saccules. The present results suggest that LPS and LTA could induce immune responses of microglia/macrophages and astroglial activation in the pineal gland. Furthermore, the metabolic and secretory activity of pinealocytes was modified by products from both gram-positive and -negative bacteria.

  20. Rational Design of a Plasmid Origin That Replicates Efficiently in Both Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Bryksin, Anton V.; Matsumura, Ichiro

    2010-01-01

    Background Most plasmids replicate only within a particular genus or family. Methodology/Principal Findings Here we describe an engineered high copy number expression vector, pBAV1K-T5, that produces varying quantities of active reporter proteins in Escherichia coli, Acinetobacter baylyi ADP1, Agrobacterium tumefaciens, (all Gram-negative), Streptococcus pneumoniae, Leifsonia shinshuensis, Peanibacillus sp. S18-36 and Bacillus subtilis (Gram-positive). Conclusions/Significance Our results demonstrate the efficiency of pBAV1K-T5 replication in different bacterial species, thereby facilitating the study of proteins that don't fold well in E. coli and pathogens not amenable to existing genetic tools. PMID:20949038

  1. Reproducible discrimination between gram-positive and gram-negative bacteria using surface enhanced Raman spectroscopy with infrared excitation.

    PubMed

    Prucek, Robert; Ranc, Václav; Kvítek, Libor; Panáček, Aleš; Zbořil, Radek; Kolář, Milan

    2012-06-21

    The on time diagnostics of bacterial diseases is one of the essential steps in the foregoing treatment of such pathogens. Here we sought to present an easy to use and robust method for the discrimination between Gram-positive (Enterococcus faecalis and Streptococcus pyogenes) and Gram-negative (Acinetobacter baumannii and Klebsiella pneumoniae) bacterial genera based on surface enhanced Raman scattering (SERS) spectroscopy. The robustness of our approach lies in the novel method for the production of the SER substrate based on silver nanoparticles and their subsequent re-crystallization in solutions containing high concentrations of chloride ions. The method presented here could be an interesting alternative both to commonly used histochemical approaches and commercial SERS substrates.

  2. Sequence-Based Characterization of Tn5801-Like Genomic Islands in Tetracycline-Resistant Staphylococcus pseudintermedius and Other Gram-positive Bacteria from Humans and Animals

    PubMed Central

    de Vries, Lisbeth E.; Hasman, Henrik; Jurado Rabadán, Sonia; Agersø, Yvonne

    2016-01-01

    Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI) including integrative and conjugative elements (ICEs). These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study was to investigate whether Tn5801-like GIs carrying the tetracycline resistance gene, tet(M), are common in Staphylococcus pseudintermedius from pets, and to do an overall sequences-based characterization of Tn5801-like GIs detected in Gram-positive bacteria from humans and animals. A total of 27 tetracycline-resistant S. pseudintermedius isolates from Danish pets (1998–2005) were screened for tet(M) by PCR. Selected isolates (13) were screened for GI- or ICE-specific genes (intTn5801 or xisTn916) and their tet(M) gene was sequenced (Sanger-method). Long-range PCR mappings and whole-genome-sequencing (Illumina) were performed for selected S. pseudintermedius-isolates (seven and three isolates, respectively) as well as for human S. aureus isolates (seven and one isolates, respectively) and one porcine Enterococcus faecium isolate known to carry Tn5801-like GIs. All 27 S. pseudintermedius were positive for tet(M). Out of 13 selected isolates, seven contained Tn5801-like GIs and six contained Tn916-like ICEs. Two different Tn5801-like GI types were detected among S. pseudintermedius (Tn5801 and GI6287) - both showed high similarity compared to GenBank sequences from human pathogens. Two distinct Tn5801-like GI types were detected among the porcine E. faecium and human S. aureus isolates (Tn6014 and GI6288). Tn5801-like GIs were detected in GenBank-sequences from Gram-positive bacteria of human, animal or food origin worldwide. Known Tn5801-like GIs were divided into seven types. The results showed that Tn5801-like GIs appear to be relatively common in tetracycline-resistant S. pseudintermedius in Denmark. Almost identical Tn5801-like GIs were identified in different Gram-positive species

  3. On-column labeling of gram-positive bacteria with a boronic acid functionalized squarylium cyanine dye for analysis by polymer-enhanced capillary transient isotachophoresis.

    PubMed

    Saito, Shingo; Massie, Tara L; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L

    2012-03-06

    A new asymmetric, squarylium cyanine dye functionalized by boronic acid ("SQ-BA") was designed and synthesized for on-capillary labeling of gram-positive bacteria to provide for high sensitivity detection by way of a modified form of capillary electrophoresis with laser induced fluorescence detection (CE-LIF). The CE-based separation employed a polymer-enhanced buffer with capillary transient isotachophoresis in a new hybrid method dubbed "PectI." It was found that the addition of various monosaccharides to SQ-BA in a batch aqueous solution greatly enhanced the emission of the boronic acid functionalized dye by a factor of up to 18.3 at a long wavelength (λ(ex) = 630 nm, λ(em) = 660 nm) with a high affinity constant (K = ~10(2.80) M(-1)) superior to other sugar probes. Semiempirical quantum mechanics calculations suggest that the mechanism for this high enhancement may involve the dissociation of initially nonemissive dye associates (stabilized by an intramolecular hydrogen bond) upon complex formation with sugars. The fluorescence emission of SQ-BA was also significantly enhanced in the presence of a gram-positive bacterial spore, Bacillus globigii (Bg), which serves as a simulant of B. anthracis (or anthrax) and which possesses a peptidoglycan (sugar)-rich spore coat to provide ample sites for interaction with the dye. Several peaks were observed for a pure Bg sample even with polyethyleneoxide (PEO) present in the CE separation buffer, despite the polymer's previously demonstrated ability to focus microoorganisms to a single peak during migration. Likewise, several peaks were observed for a Bg sample when capillary transient isotachophoresis (ctITP) alone was employed. However, the new combination of these techniques as "PectI" dramatically and reproducibly focused the bacteria to a single peak with no staining procedure. Using PectI, the trace detection of Bg spores (corresponding to approximately three cells per injection) along with separation efficiency

  4. Sequence-Based Characterization of Tn5801-Like Genomic Islands in Tetracycline-Resistant Staphylococcus pseudintermedius and Other Gram-positive Bacteria from Humans and Animals.

    PubMed

    de Vries, Lisbeth E; Hasman, Henrik; Jurado Rabadán, Sonia; Agersø, Yvonne

    2016-01-01

    Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI) including integrative and conjugative elements (ICEs). These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study was to investigate whether Tn5801-like GIs carrying the tetracycline resistance gene, tet(M), are common in Staphylococcus pseudintermedius from pets, and to do an overall sequences-based characterization of Tn5801-like GIs detected in Gram-positive bacteria from humans and animals. A total of 27 tetracycline-resistant S. pseudintermedius isolates from Danish pets (1998-2005) were screened for tet(M) by PCR. Selected isolates (13) were screened for GI- or ICE-specific genes (int Tn5801 or xis Tn916 ) and their tet(M) gene was sequenced (Sanger-method). Long-range PCR mappings and whole-genome-sequencing (Illumina) were performed for selected S. pseudintermedius-isolates (seven and three isolates, respectively) as well as for human S. aureus isolates (seven and one isolates, respectively) and one porcine Enterococcus faecium isolate known to carry Tn5801-like GIs. All 27 S. pseudintermedius were positive for tet(M). Out of 13 selected isolates, seven contained Tn5801-like GIs and six contained Tn916-like ICEs. Two different Tn5801-like GI types were detected among S. pseudintermedius (Tn5801 and GI6287) - both showed high similarity compared to GenBank sequences from human pathogens. Two distinct Tn5801-like GI types were detected among the porcine E. faecium and human S. aureus isolates (Tn6014 and GI6288). Tn5801-like GIs were detected in GenBank-sequences from Gram-positive bacteria of human, animal or food origin worldwide. Known Tn5801-like GIs were divided into seven types. The results showed that Tn5801-like GIs appear to be relatively common in tetracycline-resistant S. pseudintermedius in Denmark. Almost identical Tn5801-like GIs were identified in different Gram-positive species

  5. Lysis of gram-positive and gram-negative bacteria by antibacterial porous polymeric monolith formed in microfluidic biochips for sample preparation.

    PubMed

    Aly, Mohamed Aly Saad; Gauthier, Mario; Yeow, John

    2014-09-01

    Bacterial cell lysis is demonstrated using polymeric microfluidic biochips operating via a hybrid mechanical shearing/contact killing mechanism. These biochips are fabricated from a cross-linked poly(methyl methacrylate) (X-PMMA) substrate by well-controlled, high-throughput laser micromachining. The unreacted double bonds at the surface of X-PMMA provide covalent bonding for the formation of a porous polymeric monolith (PPM), thus contributing to the mechanical stability of the biochip and eliminating the need for surface treatment. The lysis efficiency of these biochips was tested for gram-positive (Enterococcus saccharolyticus and Bacillus subtilis) and gram-negative bacteria (Escherichia coli and Pseudomonas fluorescens) and confirmed by off-chip PCR without further purification. The influence of the flow rate when pumping the bacterial suspension through the PPM, and of the hydrophobic-hydrophilic balance on the cell lysis efficiency was investigated at a cell concentration of 10(5) CFU/mL. It was shown that the contribution of contact killing to cell lysis was more important than that of mechanical shearing in the PPM. The biochip showed better lysis efficiency than the off-chip chemical, mechanical, and thermal lysis techniques used in this work. The biochip also acts as a filter that isolates cell debris and allows PCR-amplifiable DNA to pass through. The system performs more efficient lysis for gram-negative than for gram-positive bacteria. The biochip does not require chemical/enzymatic reagents, power consumption, or complicated design and fabrication processes, which makes it an attractive on-chip lysis device that can be used in sample preparation for genetics and point-of-care diagnostics. The biochips were reused for 20 lysis cycles without any evidence of physical damage to the PPM, significant performance degradation, or DNA carryover when they were back-flushed between cycles. The biochips efficiently lysed both gram-positive and gram

  6. Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against Gram-positive and Gram-negative bacteria.

    PubMed

    Grumezescu, Alexandru Mihai; Gestal, Monica Cartelle; Holban, Alina Maria; Grumezescu, Valentina; Vasile, Bogdan Stefan; Mogoantă, Laurențiu; Iordache, Florin; Bleotu, Coralia; Mogoșanu, George Dan

    2014-04-22

    This paper reports the synthesis and characterization of amoxicillin- functionalized magnetite nanostructures (Fe3O4@AMO), revealing and discussing several biomedical applications of these nanomaterials. Our results proved that 10 nm Fe3O4@AMO nanoparticles does not alter the normal cell cycle progression of cultured diploid cells, and an in vivo murine model confirms that the nanostructures disperse through the host body and tend to localize in particular sites and organs. The nanoparticles were found clustered especially in the lungs, kidneys and spleen, next to the blood vessels at this level, while being totally absent in the brain and liver, suggesting that they are circulated through the blood flow and have low toxicity. Fe3O4@AMO has the ability to be easily circulated through the body and optimizations may be done so these nanostructures cluster to a specific target region. Functionalized magnetite nanostructures proved a great antimicrobial effect, being active against both the Gram positive pathogen S. aureus and the Gram negative pathogen E. coli. The fabricated nanostructures significantly reduced the minimum inhibitory concentration (MIC) of the active drug. This result has a great practical relevance, since the functionalized nanostructures may be used for decreasing the therapeutic doses which usually manifest great severe side effects, when administrated in high doses. Fe3O4@AMO represents also a suitable approach for the development of new alternative strategies for improving the activity of therapeutic agents by targeted delivery and controlled release.

  7. Studies on the O3-initiated disinfection from Gram-positive bacteria Bacillus subtilis in aquatic systems.

    PubMed

    Zuma, Favourite N; Jonnalagadda, S B

    2010-01-01

    The kinetics of inactivation of Gram-positive strain, Bacillus subtilis in aquatic systems was investigated as function ozone aeration duration under varied conditions. Oxygen flow was in situ enriched with ozone using ozoniser, with [O(3)] ranging from (0.3 - 9.8) x 10(-5) moles per liter of oxygen. The inactivation kinetics of B. subtilis followed pseudo-first-order kinetics with respect to microbe, under excess [O(3)] conditions. The disinfection kinetics had first order dependence on ozone concentration and the overall second-order rate constant was (7.54 +/- 1.37) x 10(3) M(-1) min(-1). The effect initial temperature and pH of the system on the ozone initiated inactivation of microbe was also explored. Relative to hydroxyl radicals, molecular ozone was found more effective in microbial inactivation. Appropriate mechanism for ozone initiated inactivation is proposed. Ozone aeration significantly decreased the BOD levels of natural and B. subtilis spiked waters.

  8. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria

    PubMed Central

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D.

    2014-01-01

    Objectives An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. Methods E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. Results The anthracycline Antibiotic 301A1 was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure–activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A1 abolishes activity. Conclusions Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. PMID:24627312

  9. Effect of kojic acid-grafted-chitosan oligosaccharides as a novel antibacterial agent on cell membrane of gram-positive and gram-negative bacteria.

    PubMed

    Liu, Xiaoli; Xia, Wenshui; Jiang, Qixing; Xu, Yanshun; Yu, Peipei

    2015-09-01

    Our work here, for the first time, reported the antibacterial activity of kojic acid-grafted-chitosan oligosaccharides (COS/KA) against three gram-positive and three gram-negative bacteria. Integrity of cell membrane, outer membrane (OM) and inner membrane (IM) permeabilization assay, alkaline phosphatase (ALP) and glucose-6-phosphate dehydrogenase (G6PDH) assay, and SDS-PAGE assay techniques were used to investigate the interactions between COS/KA and bacterial membranes. The antibacterial activity of COS/KA was higher than those of unmodified COS. The electric conductivity of bacteria suspensions increased, followed by increasing of the units of average release for ALP and G6PDH. COS/KA can also rapidly increase the 1-N-phenylanphthylamine (NPN) uptake and the release of β-galactosidase via increasing the permeability of OM and IM in Escherichia coli. SDS-PAGE indicated the content of cellular soluble proteins decreased significantly in COS/KA-treated bacteria. Hence, COS/KA has potential in food industry and biomedical sciences.

  10. Crystal Structure of DsbA from Corynebacterium diphtheriae and Its Functional Implications for CueP in Gram-Positive Bacteria.

    PubMed

    Um, Si-Hyeon; Kim, Jin-Sik; Song, Saemee; Kim, Nam Ah; Jeong, Seong Hoon; Ha, Nam-Chul

    2015-08-01

    In Gram-negative bacteria in the periplasmic space, the dimeric thioredoxin-fold protein DsbC isomerizes and reduces incorrect disulfide bonds of unfolded proteins, while the monomeric thioredoxin-fold protein DsbA introduces disulfide bonds in folding proteins. In the Gram-negative bacteria Salmonella enterica serovar Typhimurium, the reduced form of CueP scavenges the production of hydroxyl radicals in the copper-mediated Fenton reaction, and DsbC is responsible for keeping CueP in the reduced, active form. Some DsbA proteins fulfill the functions of DsbCs, which are not present in Gram-positive bacteria. In this study, we identified a DsbA homologous protein (CdDsbA) in the Corynebacterium diphtheriae genome and determined its crystal structure in the reduced condition at 1.5 Å resolution. CdDsbA consists of a monomeric thioredoxin-like fold with an inserted helical domain and unique N-terminal extended region. We confirmed that CdDsbA has disulfide bond isomerase/reductase activity, and we present evidence that the N-terminal extended region is not required for this activity and folding of the core DsbA-like domain. Furthermore, we found that CdDsbA could reduce CueP from C. diphtheriae.

  11. Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria

    PubMed Central

    Omardien, Soraya; Brul, Stanley; Zaat, Sebastian A. J.

    2016-01-01

    Antimicrobial peptides (AMPs) have been proposed as a novel class of antimicrobials that could aid the fight against antibiotic resistant bacteria. The mode of action of AMPs as acting on the bacterial cytoplasmic membrane has often been presented as an enigma and there are doubts whether the membrane is the sole target of AMPs. Progress has been made in clarifying the possible targets of these peptides, which is reported in this review with as focus gram-positive vegetative cells and spores. Numerical estimates are discussed to evaluate the possibility that targets, other than the membrane, could play a role in susceptibility to AMPs. Concerns about possible resistance that bacteria might develop to AMPs are addressed. Proteomics, transcriptomics, and other molecular techniques are reviewed in the context of explaining the response of bacteria to the presence of AMPs and to predict what resistance strategies might be. Emergent mechanisms are cell envelope stress responses as well as enzymes able to degrade and/or specifically bind (and thus inactivate) AMPs. Further studies are needed to address the broadness of the AMP resistance and stress responses observed. PMID:27790614

  12. The Na+ transport in gram-positive bacteria defect in the Mrp antiporter complex measured with 23Na nuclear magnetic resonance.

    PubMed

    Górecki, Kamil; Hägerhäll, Cecilia; Drakenberg, Torbjörn

    2014-01-15

    (23)Na nuclear magnetic resonance (NMR) has previously been used to monitor Na(+) translocation across membranes in gram-negative bacteria and in various other organelles and liposomes using a membrane-impermeable shift reagent to resolve the signals resulting from internal and external Na(+). In this work, the (23)Na NMR method was adapted for measurements of internal Na(+) concentration in the gram-positive bacterium Bacillus subtilis, with the aim of assessing the Na(+) translocation activity of the Mrp (multiple resistance and pH) antiporter complex, a member of the cation proton antiporter-3 (CPA-3) family. The sodium-sensitive growth phenotype observed in a B. subtilis strain with the gene encoding MrpA deleted could indeed be correlated to the inability of this strain to maintain a lower internal Na(+) concentration than an external one.

  13. Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

    PubMed Central

    Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

  14. Transcriptional attenuation controls macrolide inducible efflux and resistance in Streptococcus pneumoniae and in other Gram-positive bacteria containing mef/mel(msr(D)) elements.

    PubMed

    Chancey, Scott T; Bai, Xianhe; Kumar, Nikhil; Drabek, Elliott F; Daugherty, Sean C; Colon, Thomas; Ott, Sandra; Sengamalay, Naomi; Sadzewicz, Lisa; Tallon, Luke J; Fraser, Claire M; Tettelin, Hervé; Stephens, David S

    2015-01-01

    Macrolide resistance, emerging in Streptococcus pneumoniae and other Gram-positive bacteria, is increasingly due to efflux pumps encoded by mef/mel(msr) operons found on discrete mobile genetic elements. The regulation of mef/mel(msr) in these elements is not well understood. We identified the mef(E)/mel transcriptional start, localized the mef(E)/mel promoter, and demonstrated attenuation of transcription as a mechanism of regulation of macrolide-inducible mef-mediated macrolide resistance in S. pneumoniae. The mef(E)/mel transcriptional start site was a guanine 327 bp upstream of mef(E). Consensus pneumococcal promoter -10 (5'-TATACT-3') and -35 (5'-TTGAAC-3') boxes separated by 17 bp were identified 7 bp upstream of the start site. Analysis of the predicted secondary structure of the 327 5' region identified four pairs of inverted repeats R1-R8 predicted to fold into stem-loops, a small leader peptide [MTASMRLR, (Mef(E)L)] required for macrolide induction and a Rho-independent transcription terminator. RNA-seq analyses provided confirmation of transcriptional attenuation. In addition, expression of mef(E)L was also influenced by mef(E)L-dependent mRNA stability. The regulatory region 5' of mef(E) was highly conserved in other mef/mel(msr)-containing elements including Tn1207.1 and the 5612IQ complex in pneumococci and Tn1207.3 in Group A streptococci, indicating a regulatory mechanism common to a wide variety of Gram-positive bacteria containing mef/mel(msr) elements.

  15. A novel universal DNA labeling and amplification system for rapid microarray-based detection of 117 antibiotic resistance genes in Gram-positive bacteria.

    PubMed

    Strauss, Christian; Endimiani, Andrea; Perreten, Vincent

    2015-01-01

    A rapid and simple DNA labeling system has been developed for disposable microarrays and has been validated for the detection of 117 antibiotic resistance genes abundant in Gram-positive bacteria. The DNA was fragmented and amplified using phi-29 polymerase and random primers with linkers. Labeling and further amplification were then performed by classic PCR amplification using biotinylated primers specific for the linkers. The microarray developed by Perreten et al. (Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., Frey, J., 2005. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J.Clin.Microbiol. 43, 2291-2302.) was improved by additional oligonucleotides. A total of 244 oligonucleotides (26 to 37 nucleotide length and with similar melting temperatures) were spotted on the microarray, including genes conferring resistance to clinically important antibiotic classes like β-lactams, macrolides, aminoglycosides, glycopeptides and tetracyclines. Each antibiotic resistance gene is represented by at least 2 oligonucleotides designed from consensus sequences of gene families. The specificity of the oligonucleotides and the quality of the amplification and labeling were verified by analysis of a collection of 65 strains belonging to 24 species. Association between genotype and phenotype was verified for 6 antibiotics using 77 Staphylococcus strains belonging to different species and revealed 95% test specificity and a 93% predictive value of a positive test. The DNA labeling and amplification is independent of the species and of the target genes and could be used for different types of microarrays. This system has also the advantage to detect several genes within one bacterium at once, like in Staphylococcus aureus strain BM3318, in which up to 15 genes were detected. This new microarray-based detection system offers a large potential for applications in clinical diagnostic, basic research, food safety and

  16. Transcriptional Attenuation Controls Macrolide Inducible Efflux and Resistance in Streptococcus pneumoniae and in Other Gram-Positive Bacteria Containing mef/mel(msr(D)) Elements

    PubMed Central

    Chancey, Scott T.; Bai, Xianhe; Kumar, Nikhil; Drabek, Elliott F.; Daugherty, Sean C.; Colon, Thomas; Ott, Sandra; Sengamalay, Naomi; Sadzewicz, Lisa; Tallon, Luke J.; Fraser, Claire M.; Tettelin, Hervé; Stephens, David S.

    2015-01-01

    Macrolide resistance, emerging in Streptococcus pneumoniae and other Gram-positive bacteria, is increasingly due to efflux pumps encoded by mef/mel(msr) operons found on discrete mobile genetic elements. The regulation of mef/mel(msr) in these elements is not well understood. We identified the mef(E)/mel transcriptional start, localized the mef(E)/mel promoter, and demonstrated attenuation of transcription as a mechanism of regulation of macrolide-inducible mef-mediated macrolide resistance in S. pneumoniae. The mef(E)/mel transcriptional start site was a guanine 327 bp upstream of mef(E). Consensus pneumococcal promoter -10 (5′-TATACT-3′) and -35 (5′-TTGAAC-3′) boxes separated by 17 bp were identified 7 bp upstream of the start site. Analysis of the predicted secondary structure of the 327 5’ region identified four pairs of inverted repeats R1-R8 predicted to fold into stem-loops, a small leader peptide [MTASMRLR, (Mef(E)L)] required for macrolide induction and a Rho-independent transcription terminator. RNA-seq analyses provided confirmation of transcriptional attenuation. In addition, expression of mef(E)L was also influenced by mef(E)L-dependent mRNA stability. The regulatory region 5’ of mef(E) was highly conserved in other mef/mel(msr)-containing elements including Tn1207.1 and the 5612IQ complex in pneumococci and Tn1207.3 in Group A streptococci, indicating a regulatory mechanism common to a wide variety of Gram-positive bacteria containing mef/mel(msr) elements. PMID:25695510

  17. Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria.

    PubMed

    Rychert, Jenna; Burnham, Carey-Ann D; Bythrow, Maureen; Garner, Omai B; Ginocchio, Christine C; Jennemann, Rebecca; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Sercia, Linda; Westblade, Lars F; Ferraro, Mary Jane; Branda, John A

    2013-07-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting.

  18. Isolation and Structural Elucidation of Brevibacillin, an Antimicrobial Lipopeptide from Brevibacillus laterosporus That Combats Drug-Resistant Gram-Positive Bacteria

    PubMed Central

    Yang, Xu; Yuan, Chunhua; Zhang, Liwen

    2016-01-01

    A new environmental bacterial strain exhibited strong antimicrobial characteristics against methicillin-resistant Staphylococcus aureus, vancomycin-resistant strains of Enterococcus faecalis and Lactobacillus plantarum, and other Gram-positive bacteria. The producer strain, designated OSY-I1, was determined to be Brevibacillus laterosporus via morphological, biochemical, and genetic analyses. The antimicrobial agent was extracted from cells of OSY-I1 with isopropanol, purified by high-performance liquid chromatography, and structurally analyzed using mass spectrometry (MS) and nuclear magnetic resonance (NMR). The MS and NMR results, taken together, uncovered a linear lipopeptide consisting of 13 amino acids and an N-terminal C6 fatty acid (FA) chain, 2-hydroxy-3-methylpentanoic acid. The lipopeptide (FA-Dhb-Leu-Orn-Ile-Ile-Val-Lys-Val-Val-Lys-Tyr-Leu-valinol, where Dhb is α,β-didehydrobutyric acid and valinol is 2-amino-3-methyl-1-butanol) has a molecular mass of 1,583.0794 Da and contains three modified amino acid residues: α,β-didehydrobutyric acid, ornithine, and valinol. The compound, designated brevibacillin, was determined to be a member of a cationic lipopeptide antibiotic family. In addition to its potency against drug-resistant bacteria, brevibacillin also exhibited low MICs (1 to 8 μg/ml) against selected foodborne pathogenic and spoilage bacteria, such as Listeria monocytogenes, Bacillus cereus, and Alicyclobacillus acidoterrestris. Purified brevibacillin showed no sign of degradation when it was held at 80°C for 60 min, and it retained at least 50% of its antimicrobial activity when it was held for 22 h under acidic or alkaline conditions. On the basis of these findings, brevibacillin is a potent antimicrobial lipopeptide which is potentially useful to combat drug-resistant bacterial pathogens and foodborne pathogenic and spoilage bacteria. PMID:26921428

  19. Gram-Positive Bacteria with Probiotic Potential for the Apis mellifera L. Honey Bee: The Experience in the Northwest of Argentina.

    PubMed

    Audisio, Marcela Carina

    2017-03-01

    Apis mellifera L. is one of the most important natural pollinators of significant crops and flowers around the world. It can be affected by different types of illnesses: american foulbrood, nosemosis, varroasis, viruses, among others. Such infections mainly cause a reduction in honey production and in extreme situations, the death of the colony. Argentina is the world's second largest honey exporter and the third largest honey producer, after China and Turkey. Given both the prominence of the honey bee in nature and the economic importance of apiculture in Argentina and the world, it is crucial to develop efficient and sustainable strategies to control honey bee diseases and to improve bee colony health. Gram-positive bacteria, such as lactic acid bacteria, mainly Lactobacillus, and Bacillus spp. are promising options. In the Northwest of Argentina, several Lactobacillus and Bacillus strains from the honey bee gut and honey were isolated by our research group and characterized by using in vitro tests. Two strains were selected because of their potential probiotic properties: Lactobacillus johnsonii CRL1647 and Bacillus subtilis subsp. subtilis Mori2. Under independent trials with both experimental and commercial hives, it was determined that each strain was able to elicit probiotic effects on bee colonies reared in the northwestern region of Argentina. One result was the increase in egg-laying by the queen which therefore produced an increase in bee number and, consequently, a higher honey yield. Moreover, the beneficial bacteria reduced the incidence of two important bee diseases: nosemosis and varroosis. These results are promising and extend the horizon of probiotic bacteria to the insect world, serving beekeepers worldwide as a natural tool that they can administer as is, or combine with other disease-controlling methods.

  20. Isolation and Structural Elucidation of Brevibacillin, an Antimicrobial Lipopeptide from Brevibacillus laterosporus That Combats Drug-Resistant Gram-Positive Bacteria.

    PubMed

    Yang, Xu; Huang, En; Yuan, Chunhua; Zhang, Liwen; Yousef, Ahmed E

    2016-05-01

    A new environmental bacterial strain exhibited strong antimicrobial characteristics against methicillin-resistant Staphylococcus aureus, vancomycin-resistant strains of Enterococcus faecalis and Lactobacillus plantarum, and other Gram-positive bacteria. The producer strain, designated OSY-I1, was determined to be Brevibacillus laterosporusvia morphological, biochemical, and genetic analyses. The antimicrobial agent was extracted from cells of OSY-I1 with isopropanol, purified by high-performance liquid chromatography, and structurally analyzed using mass spectrometry (MS) and nuclear magnetic resonance (NMR). The MS and NMR results, taken together, uncovered a linear lipopeptide consisting of 13 amino acids and an N-terminal C6 fatty acid (FA) chain, 2-hydroxy-3-methylpentanoic acid. The lipopeptide (FA-Dhb-Leu-Orn-Ile-Ile-Val-Lys-Val-Val-Lys-Tyr-Leu-valinol, where Dhb is α,β-didehydrobutyric acid and valinol is 2-amino-3-methyl-1-butanol) has a molecular mass of 1,583.0794 Da and contains three modified amino acid residues: α,β-didehydrobutyric acid, ornithine, and valinol. The compound, designated brevibacillin, was determined to be a member of a cationic lipopeptide antibiotic family. In addition to its potency against drug-resistant bacteria, brevibacillin also exhibited low MICs (1 to 8 μg/ml) against selected foodborne pathogenic and spoilage bacteria, such as Listeria monocytogenes,Bacillus cereus, and Alicyclobacillus acidoterrestris Purified brevibacillin showed no sign of degradation when it was held at 80 °C for 60 min, and it retained at least 50% of its antimicrobial activity when it was held for 22 h under acidic or alkaline conditions. On the basis of these findings, brevibacillin is a potent antimicrobial lipopeptide which is potentially useful to combat drug-resistant bacterial pathogens and foodborne pathogenic and spoilage bacteria.

  1. Enhancement of Antibacterial Activity of Capped Silver Nanoparticles in Combination with Antibiotics, on Model Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Kora, Aruna Jyothi; Rastogi, Lori

    2013-01-01

    The nanoparticles used in this study were prepared from AgNO3 using NaBH4 in the presence of capping agents such as citrate, sodium dodecyl sulfate, and polyvinylpyrrolidone. The formed nanoparticles were characterized with UV-Vis, TEM, and XRD. The generation of silver nanoparticles was confirmed from the appearance of yellow colour and an absorption maximum between 399 and 404 nm. The produced nanoparticles were found to be spherical in shape and polydisperse. For citrate, SDS, and PVP capped nanoparticles, the average particle sizes were 38.3 ± 13.5, 19.3 ± 6.0, and 16.0 ± 4.8 nm, respectively. The crystallinity of the nanoparticles in FCC structure is confirmed from the SAED and XRD patterns. Also, the combined antibacterial activity of these differently capped nanoparticles with selected antibiotics (streptomycin, ampicillin, and tetracycline) was evaluated on model Gram-negative and Gram-positive bacteria, employing disc diffusion assay. The activity of the tested antibiotics was enhanced in combination with all the stabilized nanoparticles, against both the Gram classes of bacteria. The combined effects of silver nanoparticles and antibiotics were more prominent with PVP capped nanoparticles as compared to citrate and SDS capped ones. The results of this study demonstrate potential therapeutic applications of silver nanoparticles in combination with antibiotics. PMID:23970844

  2. Cloning of the mgtE Mg2+ transporter from Providencia stuartii and the distribution of mgtE in gram-negative and gram-positive bacteria.

    PubMed

    Townsend, D E; Esenwine, A J; George, J; Bross, D; Maguire, M E; Smith, R L

    1995-09-01

    The MM281 strain of Salmonella typhimurium possesses mutations in each of its three Mg2+ transport systems, requires 100 mM Mg2+ for growth, and was used to screen a genomic library from the gram-negative bacterium Providencia stuartii for clones that could restore the ability to grow without Mg2+ supplementation. The clones obtained also conferred sensitivity to Co2+, a phenotype similar to that seen with the S. typhimurium corA Mg2+ transport gene. The sequence of the cloned P. stuartii DNA revealed the presence of a single open reading frame, which was shown to express a protein with a gel molecular mass of 37 kDa in agreement with the deduced size of 34 kDa. Despite a phenotype similar to that of corA and the close phylogenetic relationship between P. stuartii and S. typhimurium, this new putative Mg2+ transporter lacks similarity to the CorA Mg2+ transporter and is instead homologous to MgtE, a newly discovered Mg2+ transport protein from the gram-positive bacterium Bacillus firmus OF4. The distribution of mgtE in bacteria was studied by Southern blot hybridization to PCR amplification products. In contrast to the ubiquity of the corA gene, which encodes the dominant constitutive Mg2+ influx system of bacteria, mgtE has a much more limited phylogenetic distribution.

  3. Rapid detection and quantification of tyrosine decarboxylase gene (tdc) and its expression in gram-positive bacteria associated with fermented foods using PCR-based methods.

    PubMed

    Torriani, Sandra; Gatto, Veronica; Sembeni, Silvia; Tofalo, Rosanna; Suzzi, Giovanna; Belletti, Nicoletta; Gardini, Fausto; Bover-Cid, Sara

    2008-01-01

    In this study, PCR-based procedures were developed to detect the occurrence and quantify the expression of the tyrosine decarboxylase gene (tdc) in gram-positive bacteria associated with fermented foods. Consensus primers were used in conventional and reverse transcription PCR to analyze a collection of 87 pure cultures of lactic acid bacteria and staphylococci. All enterococci, Staphylococcus epidermidis, Lactobacillus brevis, Lactobacillus curvatus, and Lactobacillus fermentum strains and 1 of 10 Staphylococcus xylosus strains produced amplification products with the primers DEC5 and DEC3 in accordance with results of the screening plate method and with previously reported result obtained with high-performance liquid chromatography. No amplicons were obtained for tyramine-negative strains, confirming the high specificity of these new primers. A novel quantitative real-time PCR assay was successfully applied to quantify tdc and its transcript in pure cultures and in meat and meat products. This assay allowed estimation of the influence of different variables (pH, temperature, and NaCl concentration) on the tdc expression of the tyraminogenic strain Enterococcus faecalis EF37 after 72 h of growth in M17 medium. Data obtained suggest that stressful conditions could induce greater tyrosine decarboxylase activity. The culture-independent PCR procedures developed here may be used for reliable and fast detection and quantification of bacterial tyraminogenic activity without the limitations of conventional techniques.

  4. Armadillidin: a novel glycine-rich antibacterial peptide directed against gram-positive bacteria in the woodlouse Armadillidium vulgare (Terrestrial Isopod, Crustacean).

    PubMed

    Herbinière, Juline; Braquart-Varnier, Christine; Grève, Pierre; Strub, Jean-Marc; Frère, Jacques; Van Dorsselaer, Alain; Martin, Gilbert

    2005-01-01

    We report the isolation and the characterization of a novel antibacterial peptide from hemocytes of the woodlouse Armadillidium vulgare, naturally infected or uninfected by Wolbachia, an intracellular Gram-negative bacterium. This molecule displays antibacterial activity against Gram-positive bacteria despite its composition which classes it into the glycine-rich antibacterial peptide family, usually directed against fungi and Gram-negative bacteria. The complete sequence was determined by a combination of Edman degradation, mass spectrometry and cDNA cloning using a hemocyte library. The mature peptide (53 residues) has a 5259 Da molecular mass and is post-translationally modified by a C-terminal amidation. This peptide is characterized by a high level of glycine (47%) and a fivefold repeated motif GGGFH(R/S). As no evident sequence homology to other hitherto described antibacterial peptides has been found out, this antibacterial peptide was named armadillidin. Armadillidin is constitutively expressed in hemocytes and appears to be specific of A. vulgare.

  5. Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria.

    PubMed

    Kora, Aruna Jyothi; Rastogi, Lori

    2013-01-01

    The nanoparticles used in this study were prepared from AgNO3 using NaBH4 in the presence of capping agents such as citrate, sodium dodecyl sulfate, and polyvinylpyrrolidone. The formed nanoparticles were characterized with UV-Vis, TEM, and XRD. The generation of silver nanoparticles was confirmed from the appearance of yellow colour and an absorption maximum between 399 and 404 nm. The produced nanoparticles were found to be spherical in shape and polydisperse. For citrate, SDS, and PVP capped nanoparticles, the average particle sizes were 38.3 ± 13.5, 19.3 ± 6.0, and 16.0 ± 4.8 nm, respectively. The crystallinity of the nanoparticles in FCC structure is confirmed from the SAED and XRD patterns. Also, the combined antibacterial activity of these differently capped nanoparticles with selected antibiotics (streptomycin, ampicillin, and tetracycline) was evaluated on model Gram-negative and Gram-positive bacteria, employing disc diffusion assay. The activity of the tested antibiotics was enhanced in combination with all the stabilized nanoparticles, against both the Gram classes of bacteria. The combined effects of silver nanoparticles and antibiotics were more prominent with PVP capped nanoparticles as compared to citrate and SDS capped ones. The results of this study demonstrate potential therapeutic applications of silver nanoparticles in combination with antibiotics.

  6. Distinct Mechanisms Underlie Boosted Polysaccharide-Specific IgG Responses Following Secondary Challenge with Intact Gram-Negative versus Gram-Positive Extracellular Bacteria.

    PubMed

    Kar, Swagata; Arjunaraja, Swadhinya; Akkoyunlu, Mustafa; Pier, Gerald B; Snapper, Clifford M

    2016-06-01

    Priming of mice with intact, heat-killed cells of Gram-negative Neisseria meningitidis, capsular serogroup C (MenC) or Gram-positive group B Streptococcus, capsular type III (GBS-III) bacteria resulted in augmented serum polysaccharide (PS)-specific IgG titers following booster immunization. Induction of memory required CD4(+) T cells during primary immunization. We determined whether PS-specific memory for IgG production was contained within the B cell and/or T cell populations, and whether augmented IgG responses following booster immunization were also dependent on CD4(+) T cells. Adoptive transfer of purified B cells from MenC- or GBS-III-primed, but not naive mice resulted in augmented PS-specific IgG responses following booster immunization. Similar responses were observed when cotransferred CD4(+) T cells were from primed or naive mice. Similarly, primary immunization with unencapsulated MenC or GBS-III, to potentially prime CD4(+) T cells, failed to enhance PS-specific IgG responses following booster immunization with their encapsulated isogenic partners. Furthermore, in contrast to GBS-III, depletion of CD4(+) T cells during secondary immunization with MenC or another Gram-negative bacteria, Acinetobacter baumannii, did not inhibit augmented PS-specific IgG booster responses of mice primed with heat-killed cells. Also, in contrast with GBS-III, booster immunization of MenC-primed mice with isolated MenC-PS, a TI Ag, or a conjugate of MenC-PS and tetanus toxoid elicited an augmented PS-specific IgG response similar to booster immunization with intact MenC. These data demonstrate that memory for augmented PS-specific IgG booster responses to Gram-negative and Gram-positive bacteria is contained solely within the B cell compartment, with a differential requirement for CD4(+) T cells for augmented IgG responses following booster immunization.

  7. Silver nanocrystallites: Facile biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria

    SciTech Connect

    Suresh, Anil K; Wang, Wei; Pelletier, Dale A; Moon, Ji Won; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David Charles; Phelps, Tommy Joe; Doktycz, Mitchel John

    2010-01-01

    Microorganisms have long been known to develop resistance to metal ions either by sequestering metals inside the cell or by effluxing them into the extracellular media. Here we report the biosynthesis of extracellular silver based single nanocrystallites of well-defined composition and homogeneous morphology utilizing the -proteobacterium, Shewanella oneidensis strain MR-1, upon incubation with an aqueous solution of silver nitrate. Further characterization of these particles revealed that the crystals consist of small, reasonably monodispersed spheres in the size range 2 11 nm (with an average of 4 1.5 nm). The bactericidal effect of these biologically synthesized silver nanoparticles (biogenic-Ag) are compared to similar chemically synthesized nanoparticles (colloidal silver [colloidal-Ag] and oleate capped silver [oleate-Ag]). The determination of the bactericidal effect of these different silver nanoparticles was assessed using both Gram-negative (E. coli) and Gram-positive (B. subtilis) bacteria and based on the diameter of the inhibition zone in disc diffusion tests, minimum inhibitory concentrations, Live/Dead staining assays, and atomic force microscopy. From a toxicity perspective, a clear synthesis procedure, and a surface coat- and strain-dependent inhibition were observed for silver nanoparticles. Biogenic-Ag was found to be of higher toxicity when compared to colloidal-Ag for both E. coli and B. subtilis. E. coli was found to be more resistant to either of these nanoparticles than B. subtilis. In contrast, Oleate-Ag was not toxic to either of the bacteria. These findings have important implications for the potential uses of Ag nanomaterials and for their fate in biological and environmental systems.

  8. Sulfoxides, Analogues of L-Methionine and L-Cysteine As Pro-Drugs against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Anufrieva, N. V.; Morozova, E. A.; Kulikova, V. V.; Bazhulina, N. P.; Manukhov, I. V.; Degtev, D. I.; Gnuchikh, E. Yu.; Rodionov, A. N.; Zavilgelsky, G. B.; Demidkina, T. V.

    2015-01-01

    The problem of resistance to antibiotics requires the development of new classes of broad-spectrum antimicrobial drugs. The concept of pro-drugs allows researchers to look for new approaches to obtain effective drugs with improved pharmacokinetic and pharmacodynamic properties. Thiosulfinates, formed enzymatically from amino acid sulfoxides upon crushing cells of genus Allium plants, are known as antimicrobial compounds. The instability and high reactivity of thiosulfinates complicate their use as individual antimicrobial compounds. We propose a pharmacologically complementary pair: an amino acid sulfoxide pro-drug and vitamin B6 – dependent methionine γ-lyase, which metabolizes it in the patient’s body. The enzyme catalyzes the γ- and β-elimination reactions of sulfoxides, analogues of L-methionine and L-cysteine, which leads to the formation of thiosulfinates. In the present work, we cloned the enzyme gene from Clostridium sporogenes. Ionic and tautomeric forms of the internal aldimine were determined by lognormal deconvolution of the holoenzyme spectrum and the catalytic parameters of the recombinant enzyme in the γ- and β-elimination reactions of amino acids, and some sulfoxides of amino acids were obtained. For the first time, the possibility of usage of the enzyme for effective conversion of sulfoxides was established and the antimicrobial activity of thiosulfinates against Gram-negative and Gram-positive bacteria in situ was shown. PMID:26798500

  9. [A new method for the disruption of cell walls of gram-positive bacteria and mycobacteria on the point of nucleic acid extraction: sand method].

    PubMed

    Şahin, Fikret; Kıyan, Mehmet; Karasartova, Djursun; Çalgın, M Kerem; Akhter, Shameem; Türegün Atasoy, Buse

    2016-01-01

    Nowadays molecular methods are widely used in the rapid diagnosis of infectious agents. Polymerase chain reaction (PCR) is the most preferred method for this purpose. Obtaining sufficient and pure DNA or RNA is important for the PCR. Different DNA extraction protocols such as phenol-chloroform, proteinase K, glass beads and boiling have been used successfully for DNA isolation from gram-negative bacteria. However since gram-positive bacteria have a thicker layer of peptidoglycan and mycobacteria have complex glycolipids in their cell walls, for the isolation of DNA or RNA from these microorganisms, the complex cell wall structure must be eliminated. For this purpose, the bacterial cell wall must be completely or partially removed forming sferoblast using lysostaphin in the Staphylococcus genus as gram-positive bacteria and using a chemical like cetyltrimethyl ammonium bromide for the Mycobacterium genus. In this study, we planned to use sand particles for the mechanical elimination of the cell wall without any need for chemicals and we called this procedure as "sand method". For the purpose of DNA extraction, the fine-grained sand was washed with ddH(2)O without losing small particles and then sterilized by autoclaving. For the purpose of RNA extraction; the sand was washed with ddH(2)O, incubated for 30 minutes with 10% HCl, and then autoclaved. A methicillin-resistant Staphylococcus aureus (MRSA) strain previously isolated and identified from a clinical specimen was mixed in 100 µl Tris-EDTA buffer with 100 mg sand. The mixture of bacteria and sand was vortexed at the maximum speed for 5 minutes. The MRSA-sand mix was treated with proteinase K and phenol-chloroform, and ethanol precipitation protocol was then followed for obtaining DNA. For comparison of the sand method with the other methods, the same amount of bacteria used in the sand method was incubated for one hour with lysostaphin, and then the proteinase K DNA extraction method were completed in the same

  10. Structural basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-D-glucosamine in Gram-positive bacteria.

    PubMed

    Little, Dustin J; Bamford, Natalie C; Pokrovskaya, Varvara; Robinson, Howard; Nitz, Mark; Howell, P Lynne

    2014-12-26

    Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In staphylococci, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by the extracellular protein IcaB is required for biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of IcaB from Ammonifex degensii (IcaBAd) has been determined to 1.7 Å resolution. The structure of IcaBAd reveals a (β/α)7 barrel common to the family four carbohydrate esterases (CE4s) with the canonical motifs circularly permuted. The metal dependence of IcaBAd is similar to most CE4s showing the maximum rates of de-N-acetylation with Ni(2+), Co(2+), and Zn(2+). From docking studies with β-1,6-GlcNAc oligomers and structural comparison to PgaB from Escherichia coli, the Gram-negative homologue of IcaB, we identify Arg-45, Tyr-67, and Trp-180 as key residues for PNAG binding during catalysis. The absence of these residues in PgaB provides a rationale for the requirement of a C-terminal domain for efficient deacetylation of PNAG in Gram-negative species. Mutational analysis of conserved active site residues suggests that IcaB uses an altered catalytic mechanism in comparison to other characterized CE4 members. Furthermore, we identified a conserved surface-exposed hydrophobic loop found only in Gram-positive homologues of IcaB. Our data suggest that this loop is required for membrane association and likely anchors IcaB to the membrane during polysaccharide biosynthesis. The work presented herein will help guide the design of IcaB inhibitors to combat biofilm formation by staphylococci.

  11. Phoenix 100 versus Vitek 2 in the identification of gram-positive and gram-negative bacteria: a comprehensive meta-analysis.

    PubMed

    Chatzigeorgiou, Kalliopi-Stavroula; Sergentanis, Theodoros N; Tsiodras, Sotirios; Hamodrakas, Stavros J; Bagos, Pantelis G

    2011-09-01

    Phoenix 100 and Vitek 2 (operating with the current colorimetric cards) are commonly used in hospital laboratories for rapid identification of microorganisms. The present meta-analysis aims to evaluate and compare their performance on Gram-positive and Gram-negative bacteria. The MEDLINE database was searched up to October 2010 for the retrieval of relevant articles. Pooled correct identification rates were derived from random-effects models, using the arcsine transformation. Separate analyses were conducted at the genus and species levels; subanalyses and meta-regression were undertaken to reveal meaningful system- and study-related modifiers. A total of 29 (6,635 isolates) and 19 (4,363 isolates) articles were eligible for Phoenix and colorimetric Vitek 2, respectively. No significant differences were observed between Phoenix and Vitek 2 either at the genus (97.70% versus 97.59%, P = 0.919) or the species (92.51% versus 88.77%, P = 0.149) level. Studies conducted with conventional comparator methods tended to report significantly better results compared to those using molecular reference techniques. Speciation of Staphylococcus aureus was significantly more accurate in comparison to coagulase-negative staphylococci by both Phoenix (99.78% versus 88.42%, P < 0.00001) and Vitek 2 (98.22% versus 91.89%, P = 0.043). Vitek 2 also reached higher correct identification rates for Gram-negative fermenters versus nonfermenters at the genus (99.60% versus 95.90%, P = 0.004) and the species (97.42% versus 84.85%, P = 0.003) level. In conclusion, the accuracy of both systems seems modified by underlying sample- and comparator method-related parameters. Future simultaneous assessment of the instruments against molecular comparator procedures may facilitate interpretation of the current observations.

  12. Covalent structure, synthesis, and structure-function studies of mesentericin Y 105(37), a defensive peptide from gram-positive bacteria Leuconostoc mesenteroides.

    PubMed

    Fleury, Y; Dayem, M A; Montagne, J J; Chaboisseau, E; Le Caer, J P; Nicolas, P; Delfour, A

    1996-06-14

    A 37-residue cationic antimicrobial peptide named mesentericin Y 105(37) was purified to homogeneity from cell-free culture supernatant of the Gram-positive bacterium Leuconostoc mesenteroides. The complete amino acid sequence of the peptide, KYYGNGVHCTKSGCSVNWGEAASAGIHRLANGGNGFW, has been established by automated Edman degradation, mass spectrometry, and solid phase synthesis. Mesentericin Y 105(37) contains a single intramolecular disulfide bond that forms a 6-membered ring within the molecule. Mesentericin Y 105(37) was synthesized by the solid phase method. The synthetic replicate was shown to be indistinguishable from the natural peptide with respect to electrophoretic and chromatographic properties, mass spectrometry analysis, automated amino acid sequence determination, and antimicrobial properties. At nanomolar concentrations, synthetic mesentericin Y 105(37) is active against Gram+ bacteria in the genera Lactobacillus and Carnobacterium. Most interestingly, the peptide is inhibitory to the growth of the food-borne pathogen Listeria. CD spectra of mesentericin Y 105(37) in low polarity medium, which mimic the lipophilicity of the membrane of target organisms, indicated 30-40% alpha-helical conformation, and predictions of secondary structure suggested that the peptide can be configured as an amphipathic helix spanning over residues 17-31. To reveal the molecular basis of the specificity of mesentericin Y 105(37) targetting and mode of action, NH2- or COOH-terminally truncated analogs together with point-substituted analogs were synthesized and evaluated for their ability to inhibit the growth of Listeria ivanovii. In sharp contrast with broad spectrum alpha-helical antimicrobial peptides from vertebrate animals, which can be shortened to 14-18 residues without deleterious effect on potency, molecular elements responsible for anti-Listeria activity of mesentericin Y 105(37) are to be traced at once to the NH2-terminal tripeptide KYY, the disulfide bridge

  13. Prevalence and Characteristics of Surgical Site Infections Caused by Gram-negative Rod-shaped Bacteria from the Family Enterobacteriacae and Gram-positive Cocci from the Genus Staphylococcus in Patients who Underwent Surgical Procedures on Selected Surgical Wards.

    PubMed

    Tomaszewska-Kowalska, Małgorzata; Kołomecki, Krzysztof; Wieloch-Torzecka, Maria

    2016-10-01

    Surgical site infections on surgical wards are the most common cause of postoperative complications. Prevalence of surgical site infections depends on the surgical specialization. Analysis of the causes of surgical site infections allows to conclude that microorganisms from the patient's own microbiota - Gram-negative rod-shaped bacteria from the family Enterobacteriacae and from the patient's skin microbiota - Gram-positive cocci - Staphylococcus are the most common agents inducing surgical site infections. The aim of the study was to assess prevalence and characteristics of surgical site infections caused by Gram-negative rod-shaped bacteria from the family Eneterobacteriacae and Gram-positive cocci from the genus Staphylococcus in patients who underwent surgical procedures at the Regional Specialist Hospital named after M. Copernika in Łódź on selected surgical wards.

  14. In-Vitro, Anti-Bacterial Activities of Aqueous Extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo Against Gram Positive and Gram Negative Bacteria

    PubMed Central

    Dashtdar, Mehrab; Dashtdar, Mohammad Reza; Dashtdar, Babak; shirazi, Mohammad khabaz; Khan, Saeed Ahmad

    2013-01-01

    Objective: Evaluations of the in-vitro anti-bacterial activities of aqueous extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and Shilajita mumiyo against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) and gram-negative bacteria (Escherichia coli, klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa) are reasonable since these ethnomedicinal plants have been used in Persian folk medicine for treating skin diseases, venereal diseases, respiratory problems and nervous disorders for ages. Methods: The well diffusion method (KB testing) with a concentration of 250 μg/disc was used for evaluating the minimal inhibitory concentrations (MIC). Maximum synergistic effects of different combinations of components were also observed. Results: A particular combination of Acacia catechu (L.F.) Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo extracts possesses an outstanding anti-bacterial activity. It's inhibiting effect on microorganisms is significant when compared to the control group (P< 0.05). Staphylococcus aureus was the most sensitive microorganism. The highest antibacterial activity against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) or gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, Proteus mirabilis and Pseudomonas aeruginosa) was exerted by formula number 2 (Table1). Conclusion: The results reveal the presence of antibacterial activities of Acacia catechu, Castanea sativa husk, Ephedra sp. and Mumiyo against gram-positive and gram-negative bacteria. Synergistic effects in a combined formula, especially in formula number 2 (ASLANⓇ) can lead to potential sources of new antiseptic agents for treatment of acute or chronic skin ulcers. These results considering the significant antibacterial effect of the present formulation, support ethno-pharmacological uses against diarrheal and venereal diseases and demonstrate use of these plants to treat

  15. Performance Evaluation of the Verigene Gram-Positive and Gram-Negative Blood Culture Test for Direct Identification of Bacteria and Their Resistance Determinants from Positive Blood Cultures in Hong Kong

    PubMed Central

    Siu, Gilman K. H.; Chen, Jonathan H. K.; Ng, T. K.; Lee, Rodney A.; Fung, Kitty S. C.; To, Sabrina W. C.; Wong, Barry K. C.; Cheung, Sherman; Wong, Ivan W. F.; Tam, Marble M. P.; Lee, Swing S. W.; Yam, W. C.

    2015-01-01

    Background A multicenter study was conducted to evaluate the diagnostic performance and the time to identifcation of the Verigene Blood Culture Test, the BC-GP and BC-GN assays, to identify both Gram-positive and Gram-negative bacteria and their drug resistance determinants directly from positive blood cultures collected in Hong Kong. Methods and Results A total of 364 blood cultures were prospectively collected from four public hospitals, in which 114 and 250 cultures yielded Gram-positive and Gram-negative bacteria, and were tested with the BC-GP and BC-GN assay respectively. The overall identification agreement for Gram-positive and Gram-negative bacteria were 89.6% and 90.5% in monomicrobial cultures and 62.5% and 53.6% in polymicrobial cultures, respectively. The sensitivities for most genus/species achieved at least 80% except Enterococcus spp. (60%), K.oxytoca (0%), K.pneumoniae (69.2%), whereas the specificities for all targets ranged from 98.9% to 100%. Of note, 50% (7/14) cultures containing K.pneumoniae that were missed by the BC-GN assay were subsequently identified as K.variicola. Approximately 5.5% (20/364) cultures contained non-target organisms, of which Aeromonas spp. accounted for 25% and are of particular concern. For drug resistance determination, the Verigene test showed 100% sensitivity for identification of MRSA, VRE and carbapenem resistant Acinetobacter, and 84.4% for ESBL-producing Enterobacteriaceae based on the positive detection of mecA, vanA, blaOXA and blaCTXM respectively. Conclusion Overall, the Verigene test provided acceptable accuracy for identification of bacteria and resistance markers with a range of turnaround time 40.5 to 99.2 h faster than conventional methods in our region. PMID:26431434

  16. Short-term inactivation rates of selected Gram-positive and Gram-negative bacteria attached to metal oxide mineral surfaces: role of solution and surface chemistry.

    PubMed

    Asadishad, Bahareh; Ghoshal, Subhasis; Tufenkji, Nathalie

    2013-06-04

    Metal oxides such as ferric or aluminum oxides can play an important role in the retention of bacteria in granular aquatic environments; however, their role in bacterial inactivation is not well understood. Herein, we examined the role of water chemistry and surface chemistry on the short-term inactivation rates of three bacteria when adhered to surfaces. To evaluate the role of water chemistry on the inactivation of attached bacteria, the loss in membrane integrity of bacteria attached to an iron oxide (Fe2O3) surface was measured over a range of water ionic strengths of either monovalent or divalent salts in the absence of a growth substrate. The influence of surface chemistry on the inactivation of attached bacteria was examined by measuring the loss in membrane integrity of cells attached to three surfaces (SiO2, Fe2O3, and Al2O3) at a specific water chemistry (10 mM KCl). Bacteria were allowed to attach onto the SiO2 or metal oxide coated slides mounted in a parallel-plate flow cell, and their inactivation rate (loss in membrane integrity) was measured directly without removing the cells from the surface and without disturbing the system. X-ray photoelectron spectroscopy analysis revealed a high correlation between the amounts of C-metal or O-metal bonds and the corresponding bacterial inactivation rates for each surface. Finally, for all three surfaces, a consistent increase in inactivation rate was observed with the type of bacterium in the order: Enterococcus faecalis, Escherichia coli O157:H7, and Escherichia coli D21f2.

  17. A 980nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles.

    PubMed

    Maaoui, Houcem; Jijie, Roxana; Pan, Guo-Hui; Drider, Djamel; Caly, Delphine; Bouckaert, Julie; Dumitrascu, Nicoleta; Chtourou, Radouane; Szunerits, Sabine; Boukherroub, Rabah

    2016-10-15

    A 980nm laser-driven antimicrobial photothermal therapy using poly(vinylpyrrolidone) -coated Prussian Blue nanoparticles (PVP/PB NPs) is demonstrated. This approach allows an efficient eradication of a virulent strain of Gram-negative Escherichia coli (E. coli) associated with urinary tract infection as well as for the ablation of antibiotic resistant pathogens such as methicillin resistant Staphylococcus aureus (MRSA) and extended spectrum β-lactamase (ESBL) E. coli. Interestingly the 980nm irradiation exhibits minimal effect on mammalian cells up to a PVP/PB NPs concentration of 50μgmL(-1), while at this concentration bacteria are completely eradicated. This feature is certainly very promising for the selective targeting of bacteria over mammalian cells.

  18. Effect of silver/copper and copper oxide nanoparticle powder on growth of Gram-negative and Gram-positive bacteria and their toxicity against the normal human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Peszke, Jerzy; Nowak, Anna; Szade, Jacek; Szurko, Agnieszka; Zygadło, Dorota; Michałowska, Marlena; Krzyściak, Paweł; Zygoń, Patrycja; Ratuszna, Alicja; Ostafin, Marek M.

    2016-12-01

    Engineered nanomaterials, especially metallic nanoparticles, are the most popular system applied in daily life products. The study of their biological and toxicity properties seems to be indispensable. In this paper, we present results of biological activity of Ag/Cu nanoparticles. These nanoparticles show more promising killing/inhibiting properties on Gram-negative bacteria than for Gram-positive ones. The Gram-negative bacteria show strong effect already at the concentration of 1 ppm after 15 min of incubation. Moreover, in vitro tests of toxicity made on normal human dermal fibroblast cultures showed that after 72 h of incubation with Ag/Cu nanoparticles, they are less toxic then Cu2O/CuO nanoparticles.

  19. Effects of clinical mastitis caused by gram-positive and gram-negative bacteria and other organisms on the probability of conception in New York State Holstein dairy cows.

    PubMed

    Hertl, J A; Gröhn, Y T; Leach, J D G; Bar, D; Bennett, G J; González, R N; Rauch, B J; Welcome, F L; Tauer, L W; Schukken, Y H

    2010-04-01

    The objective of this study was to estimate the effects of different types of clinical mastitis (CM) on the probability of conception in New York State Holstein cows. Data were available on 55,372 artificial inseminations (AI) in 23,695 lactations from 14,148 cows in 7 herds. We used generalized linear mixed models to model whether or not a cow conceived after a particular AI. Independent variables included AI number (first, second, third, fourth), parity, season when AI occurred, farm, type of CM (due to gram-positive bacteria, gram-negative bacteria, or other organisms) in the 6 wk before and after an AI, and occurrence of other diseases. Older cows were less likely to conceive. Inseminations occurring in the summer were least likely to be successful. Retained placenta decreased the probability of conception. Conception was also less likely with each successive AI. The probability of conception associated with the first AI was 0.29. The probability of conception decreased to 0.26, 0.25, and 0.24 for the second, third, and fourth AI, respectively. Clinical mastitis occurring any time between 14 d before until 35 d after an AI was associated with a lower probability of conception; the greatest effect was an 80% reduction associated with gram-negative CM occurring in the week after AI. In general, CM due to gram-negative bacteria had a more detrimental effect on probability of conception than did CM caused by gram-positive bacteria or other organisms. Furthermore, CM had more effect on probability of conception immediately around the time of AI. Additional information about CM (i.e., its timing with respect to AI, and whether the causative agent is gram-positive or gram-negative bacteria, or other organisms) is valuable to dairy personnel in determining why some cows are unable to conceive in a timely manner. These findings are also beneficial for the management of mastitic cows (especially those with gram-negative CM) when mastitis occurs close to AI.

  20. Antibacterial activity of Lactobacillus acidophilus strains isolated from honey marketed in Malaysia against selected multiple antibiotic resistant (MAR) Gram-positive bacteria.

    PubMed

    Aween, Mohamed Mustafa; Hassan, Zaiton; Muhialdin, Belal J; Eljamel, Yossra A; Al-Mabrok, Asma Saleh W; Lani, Mohd Nizam

    2012-07-01

    A total of 32 lactic acid bacteria (LAB) were isolated from 13 honey samples commercially marketed in Malaysia, 6 strains identified as Lactobacillus acidophilus by API CHL50. The isolates had antibacterial activities against multiple antibiotic resistant's Staphylococcus aureus (25 to 32 mm), Staphylococcus epidermis (14 to 22 mm) and Bacillus subtilis (12 to 19 mm) in the agar overlay method after 24 h incubation at 30 °C. The crude supernatant was heat stable at 90 °C and 121 °C for 1 h. Treatment with proteinase K and RNase II maintained the antimicrobial activity of all the supernatants except sample H006-A and H010-G. All the supernatants showed antimicrobial activities against target bacteria at pH 3 and pH 5 but not at pH 6 within 72 h incubation at 30 °C. S. aureus was not inhibited by sample H006-A isolated from Libyan honey and sample H008-D isolated from Malaysian honey at pH 5, compared to supernatants from other L. acidophilus isolates. The presence of different strains of L. acidophilus in honey obtained from different sources may contribute to the differences in the antimicrobial properties of honey.

  1. Adhesion and inactivation of Gram-negative and Gram-positive bacteria on photoreactive TiO2/polymer and Ag-TiO2/polymer nanohybrid films

    NASA Astrophysics Data System (ADS)

    Tallósy, Szabolcs Péter; Janovák, László; Nagy, Elisabeth; Deák, Ágota; Juhász, Ádám; Csapó, Edit; Buzás, Norbert; Dékány, Imre

    2016-05-01

    The aim of this study was to develop photoreactive surface coatings, possessing antibacterial properties and can be activated under visible light illumination (λmax = 405 nm) using LED-light source. The photocatalytically active titanium dioxide (TiO2) was functionalized with silver nanoparticles (Ag NPs) and immobilized in polyacrylate based nanohybrid thin film in order to facilitate visible light activity (λAg/TiO2,max = 500 nm). First, the photocatalytic activity was modelled by following ethanol vapor degradation. The plasmonic functionalization resulted in 15% enhancement of the activity compared to pure TiO2. The photoreactive antimicrobial (5 log reduction of cfu in 2 h) surface coatings are able to inactivate clinically relevant pathogen strains (methicillin resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa) within short time (60-120 min) due to the formed and quantified reactive oxygen species (ROS). The existence of electrostatic interactions between the negatively charged bacteria (from -0.89 to -3.19 μeq/109 cfu) and positively charged photocatalyst particles (in the range of +0.38 and +12.3 meq/100 g) was also proven by charge titration measurements. The surface inactivation of the bacteria and the photocatalytic degradation of the cell wall component were also confirmed by fluorescence and transmission electron microscopic observations, respectively. According to the results an effective sterilizing system and prevention strategy can be developed and carried out against dangerous microorganisms in health care.

  2. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  3. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance

    PubMed Central

    Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID

  4. Di-N-Methylation of Anti-Gram-Positive Aminoglycoside-Derived Membrane Disruptors Improves Antimicrobial Potency and Broadens Spectrum to Gram-Negative Bacteria.

    PubMed

    Benhamou, Raphael I; Shaul, Pazit; Herzog, Ido M; Fridman, Micha

    2015-11-09

    The effect of di-N-methylation of bacterial membrane disruptors derived from aminoglycosides (AGs) on antimicrobial activity is reported. Di-N-methylation of cationic amphiphiles derived from several diversely structured AGs resulted in a significant increase in hydrophobicity compared to the parent compounds that improved their interactions with membrane lipids. The modification led to an enhancement in antibacterial activity and a broader antimicrobial spectrum. While the parent compounds were either modestly active or inactive against Gram-negative pathogens, the corresponding di-N-methylated compounds were potent against the tested Gram-negative as well as Gram-positive bacterial strains. The reported modification offers a robust strategy for the development of broad-spectrum membrane-disrupting antibiotics for topical use.

  5. Induction of Plantaricin Production in Lactobacillus plantarum NC8 after Coculture with Specific Gram-Positive Bacteria Is Mediated by an Autoinduction Mechanism

    PubMed Central

    Maldonado, Antonio; Jiménez-Díaz, Rufino; Ruiz-Barba, José Luis

    2004-01-01

    Plantaricin NC8 (PLNC8), a coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8, has recently been purified and genetically characterized. Analysis of an 8.1-kb NC8 DNA region downstream of the PLNC8 operon revealed the presence of at least four operons involved in bacteriocin production, showing high homology to the plantaricin cluster in L. plantarum C11. However, we found a three-component regulatory operon involving a quorum-sensing mechanism. Two of these components, the induction factor (PLNC8IF) and the histidine kinase, are novel, while the response regulator is identical to PlnD from C11. Homologous expression of plNC8IF in NC8 allowed constitutive bacteriocin production. Heterologous expression of this gene in Lactococcus lactis MG1363 produced supernatants which promoted bacteriocin production in NC8. Reverse transcription-PCR studies indicated that cocultivation of NC8 with inducing cells promoted transcription of the bacteriocin and regulatory operons in NC8. An identical result was obtained after addition of an external source of PLNC8IF. We propose that the presence of specific bacteria could act as an environmental signal that is able to switch on bacteriocin production in L. plantarum NC8 via a quorum-sensing mechanism mediated by PLNC8IF. PMID:14973042

  6. Induction of plantaricin production in Lactobacillus plantarum NC8 after coculture with specific gram-positive bacteria is mediated by an autoinduction mechanism.

    PubMed

    Maldonado, Antonio; Jiménez-Díaz, Rufino; Ruiz-Barba, José Luis

    2004-03-01

    Plantaricin NC8 (PLNC8), a coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8, has recently been purified and genetically characterized. Analysis of an 8.1-kb NC8 DNA region downstream of the PLNC8 operon revealed the presence of at least four operons involved in bacteriocin production, showing high homology to the plantaricin cluster in L. plantarum C11. However, we found a three-component regulatory operon involving a quorum-sensing mechanism. Two of these components, the induction factor (PLNC8IF) and the histidine kinase, are novel, while the response regulator is identical to PlnD from C11. Homologous expression of plNC8IF in NC8 allowed constitutive bacteriocin production. Heterologous expression of this gene in Lactococcus lactis MG1363 produced supernatants which promoted bacteriocin production in NC8. Reverse transcription-PCR studies indicated that cocultivation of NC8 with inducing cells promoted transcription of the bacteriocin and regulatory operons in NC8. An identical result was obtained after addition of an external source of PLNC8IF. We propose that the presence of specific bacteria could act as an environmental signal that is able to switch on bacteriocin production in L. plantarum NC8 via a quorum-sensing mechanism mediated by PLNC8IF.

  7. Proteomics, DNA arrays and the analysis of still unknown regulons and unknown proteins of Bacillus subtilis and pathogenic gram-positive bacteria.

    PubMed

    Hecker, M; Engelmann, S

    2000-05-01

    The complete sequence of the bacterial genomes provides new perspectives for the study of gene expression and gene function. By the combination of the highly sensitive 2-dimensional (2D) protein gel electrophoresis with the identification of the protein spots by microsequencing or mass spectrometry we established a 2D protein index of Bacillus subtilis that currently comprises almost 400 protein entries. A computer-aided evaluation of the 2D gels loaded with radioactively-labelled proteins from growing or stressed/starved cells proved to be a powerful tool in the analysis of global regulation of the expression of the entire genome. For the general stress regulon it is demonstrated how the proteomics approach can be used to analyse the regulation, structure and function of still unknown regulons. The application of this approach is illustrated for the sigmaB dependent general stress regulon. For the comprehensive description of proteins/genes belonging to stimulons or regulons it is generally recommended to complement the proteome approach with DNA array techniques in order to identify and allocate still undiscovered members of individual regulons. This approach is also very attractive to uncover the function of still unknown global regulators and regulons and to dissect the entire genome into its basic modules of global regulation. The same strategy can be used to analyse the regulation, structure and function of regulons encoding virulence factors of pathogenic bacteria for a comprehensive understanding of the pathogenicity and for the identification of new antibacterial targets.

  8. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds.

    PubMed

    Torres, M J; Petroselli, G; Daz, M; Erra-Balsells, R; Audisio, M C

    2015-06-01

    In this work a new Bacillus sp. strain, isolated from honey, was characterized phylogenetically. Its antibacterial activity against three relevant foodborne pathogenic bacteria was studied; the main bioactive metabolites were analyzed using ultraviolet matrix assisted laser desorption-ionization mass spectrometry (UV-MALDI MS). Bacillus CBMDC3f was phylogenetically characterized as Bacillus subtilis subsp. subtilis after rRNA analysis of the 16S subunit and the gyrA gene (access codes Genbank JX120508 and JX120516, respectively). Its antibacterial potential was evaluated against Listeria monocytogenes (9 strains), B. cereus (3 strains) and Staphylococcus aureus ATCC29213. Its cell suspension and cell-free supernatant (CFS) exerted significant anti-Listeria and anti-S. aureus activities, while the lipopeptides fraction (LF) also showed anti-B. cereus effect. The UV-MALDI-MS analysis revealed surfactin, iturin and fengycin in the CFS, whereas surfactin predominated in the LF. The CFS from CBMDC3f contained surfactin, iturin and fengycin with four, two and four homologues per family, respectively, whereas four surfactin, one iturin and one fengycin homologues were identified in the LF. For some surfactin homologues, their UV-MALDI-TOF/TOF (MS/MS; Laser Induced Decomposition method, LID) spectra were also obtained. Mass spectrometry analysis contributed with relevant information about the type of lipopeptides that Bacillus strains can synthesize. From our results, surfactin would be the main metabolite responsible for the antibacterial effect.

  9. Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Barnes, Robert J.; Molina, Rodrigo; Xu, Jianbin; Dobson, Peter J.; Thompson, Ian P.

    2013-02-01

    Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles are important photocatalysts and as such have been extensively studied for the removal of organic compounds from contaminated air and water and for microbial disinfection. Despite much research on the effect of TiO2 and ZnO nanoparticles on different bacterial species, uncertainties remain about which bacteria are more sensitive to these compounds. Very few studies have directly compared the toxicity of ZnO to TiO2 under both light and dark conditions. In addition, authors investigating the photocatalytic inactivation of TiO2 and ZnO nanoparticles on bacteria have failed to investigate the reactive oxygen species (ROS) generation of the nanoparticles, making it difficult to correlate killing action with the generation of ROS. In this study, three types of metal nanoparticle (ZnO < 50 nm, ZnO < 100 nm and TiO2) have been characterised and ROS production assessed through the degradation of methylene blue (MB). The photocatalytic killing potential of three nanoparticle concentrations (0.01, 0.1 and 1 g/L) was then assessed on four representative bacteria: two gram-positive ( S. aureus and B. subtilis) and two gram-negative ( E. coli and P. aeruginosa). Results showed that out of the three nanoparticles tested, the TiO2 nanoparticles generated more ROS than the ZnO nanoparticles, corresponding to a greater photocatalytic inactivation of three of the four species of bacteria examined. The MB decomposition results correlated well with the bacterial inactivation results with higher TiO2 nanoparticle concentrations leading to greater ROS production and increased loss of cell viability. Although producing less ROS than the TiO2 nanoparticles under ultraviolet light, the ZnO nanoparticles were toxic to two of the bacterial species even under dark conditions. In this study, no correlation between cell wall type and bacterial inactivation was observed for any of the nanoparticles tested although both gram-positive

  10. pAO1 of Arthrobacter nicotinovorans and the spread of catabolic traits by horizontal gene transfer in gram-positive soil bacteria.

    PubMed

    Mihasan, Marius; Brandsch, Roderich

    2013-08-01

    The 165-kb megaplasmid pAO1 of Arthrobacter nicotinovorans carries two large gene clusters, one involved in nicotine catabolism (nic-gene cluster) and one in carbohydrate utilization (ch-gene cluster). Here, we propose that both gene clusters were acquired by A. nicotinovorans by horizontal gene transfer mediated by pAO1. Protein-protein blast search showed that none of the published Arthrobacter genomes contains nic-genes, but Rhodococcus opacus carries on its chromosome a nic-gene cluster highly similar to that of pAO1. Analysis of the nic-genes in the two species suggested a recombination event between their nic-gene clusters. Apparently, there was a gene exchange between pAO1, or a precursor plasmid, and a nic-gene cluster of an as yet unidentified Arthrobacter specie or other soil bacterium, possibly related to Rhodococcus, leading to the transfer by pAO1 of this catabolic trait to A. nicotinovorans. Analysis of the pAO1 ch-gene cluster revealed a virtually identical counterpart on the chromosome of Arthrobacter phenanthrenivorans. Moreover, the sequence analysis of the genes flanking the ch-gene cluster suggested that it was acquired by pAO1 by Xer-related site directed recombination and transferred via the plasmid to A. nicotinovorans. The G+C content, the level of sequence identity, gene co-linearity of nic- and ch-gene clusters as well as the signs of recombination events clearly supports the notion of pAO1 and its precursor plasmids as vehicles in HGT among Gram + soil bacteria.

  11. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale.

    PubMed

    Abou-Shanab, R A I; van Berkum, P; Angle, J S

    2007-06-01

    Forty-six bacterial cultures, including one culture collection strain, thirty from the rhizosphere of Alyssum murale and fifteen from Ni-rich soil, were tested for their ability to tolerate arsenate, cadmium, chromium, zinc, mercury, lead, cobalt, copper, and nickel in their growth medium. The resistance patterns, expressed as minimum inhibitory concentrations, for all cultures to the nine different metal ions were surveyed by using the agar dilution method. A large number of the cultures were resistant to Ni (100%), Pb (100%), Zn (100%), Cu (98%), and Co (93%). However, 82, 71, 58 and 47% were sensitive to As, Hg, Cd and Cr(VI), respectively. All cultures had multiple metal-resistant, with heptametal resistance as the major pattern (28.8%). Five of the cultures (about of 11.2% of the total), specifically Arthrobacter rhombi AY509239, Clavibacter xyli AY509235, Microbacterium arabinogalactanolyticum AY509226, Rhizobium mongolense AY509209 and Variovorax paradoxus AY512828 were tolerant to nine different metals. The polymerase chain reaction in combination with DNA sequence analysis was used to investigate the genetic mechanism responsible for the metal resistance in some of these gram-positive and gram-negative bacteria that were, highly resistant to Hg, Zn, Cr and Ni. The czc, chr, ncc and mer genes that are responsible for resistance to Zn, Cr, Ni and Hg, respectively, were shown to be present in these bacteria by using PCR. In the case of, M. arabinogalactanolyticum AY509226 these genes were shown to have high homology to the czcD, chrB, nccA, and mer genes of Ralstonia metallidurans CH34. Therefore, Hg, Zn, Cr and Ni resistance genes are widely distributed in both gram-positive and gram-negative isolates obtained from A. murale rhizosphere and Ni-rich soils.

  12. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria

    PubMed Central

    Mehmood, Shahid; Rehman, Malik A; Ismail, Hammad; Mirza, Bushra; Bhatti, Arshad S

    2015-01-01

    In this work, we highlighted the effect of surface modifications of one-dimensional (1D) ZnO nanostructures (NSs) grown by the vapor–solid mechanism on their antibacterial activity. Two sets of ZnO NSs were modified separately – one set was modified by annealing in an Ar environment, and the second set was modified in O2 plasma. Annealing in Ar below 800°C resulted in a compressed lattice, which was due to removal of Zn interstitials and increased O vacancies. Annealing above 1,000°C caused the formation of a new prominent phase, Zn2SiO4. Plasma oxidation of the ZnO NSs caused an expansion in the lattice due to the removal of O vacancies and incorporation of excess O. Photoluminescence (PL) spectroscopy was employed for the quantification of defects associated with Zn and O in the as-grown and processed ZnO NS. Two distinct bands were observed, one in the ultraviolet (UV) region, due to interband transitions, and other in the visible region, due to defects associated with Zn and O. PL confirmed the surface modification of ZnO NS, as substantial decrease in intensities of visible band was observed. Antibacterial activity of the modified ZnO NSs demonstrated that the surface modifications by Ar annealing limited the antibacterial characteristics of ZnO NS against Staphylococcus aureus. However, ZnO NSs annealed at 1,000°C or higher showed a remarkable antibacterial activity against Escherichia coli. O2 plasma–treated NS showed appreciable antibacterial activity against both E. coli and S. aureus. The minimum inhibition concentration was determined to be 0.5 mg/mL and 1 mg/mL for Ar-annealed and plasma-oxidized ZnO NS, respectively. It was thus proved that the O content at the surface of the ZnO NS was crucial to tune the antibacterial activity against both selected gram-negative (E. coli) and gram-positive (S. aureus) bacterial species. PMID:26213466

  13. Pharmacodynamics of TD-1792, a novel glycopeptide-cephalosporin heterodimer antibiotic used against Gram-positive bacteria, in a neutropenic murine thigh model.

    PubMed

    Hegde, Sharath S; Okusanya, Olanrewaju O; Skinner, Robert; Shaw, Jeng-Pyng; Obedencio, Glenmar; Ambrose, Paul G; Blais, Johanne; Bhavnani, Sujata M

    2012-03-01

    TD-1792 is a novel glycopeptide-cephalosporin heterodimer investigational antibiotic that displays potent bactericidal effects against clinically relevant Gram-positive organisms in vitro. The present studies evaluated the in vivo pharmacokinetics (PK) and pharmacodynamics (PD) of TD-1792 in the neutropenic murine thigh infection animal model. TD-1792, dosed subcutaneously (SC), produced dose-dependent reduction in the thigh bacterial burden of several organisms, including methicillin-susceptible and -resistant strains of Staphylococcus aureus and Staphylococcus epidermidis (MSSA, MRSA, MSSE, MRSE, respectively), penicillin-susceptible strains of Streptococcus pneumoniae (PSSP), Streptococcus pyogenes, and vancomycin-intermediate-susceptible Staphylococcus aureus (VISA). In single-dose efficacy studies, the 1-log(10) CFU kill effective dose (ED(1-log kill)) estimates for TD-1792 ranged from 0.049 to 2.55 mg/kg of body weight administered SC, and the bacterial burden was reduced by up to 3 log(10) CFU/g from pretreatment values. Against S. aureus ATCC 33591 (MRSA), the total 24-h log(10) stasis dose (ED(stasis)) and ED(1-logkill) doses for TD-1792 were 0.53 and 1.11 mg/kg/24 h, respectively, compared to 23.4 and 54.6 mg/kg/24 h for vancomycin, indicating that TD-1762 is 44- to 49-fold more potent than vancomycin. PK-PD analysis of data from single-dose and dose-fractionation studies for MRSA (ATCC 33591) demonstrated that the total-drug 24-h area under the concentration-time curve-to-MIC ratio (AUC/MIC ratio) was the best predictor of efficacy (r(2) = 0.826) compared to total-drug maximum plasma concentration of drug-to-MIC ratio (Cmax/MIC ratio; r(2) = 0.715) and percent time that the total-drug plasma drug concentration remains above the MIC (%Time>MIC; r(2) = 0.749). The magnitudes of the total-drug AUC/MIC ratios associated with net bacterial stasis, a 1-log(10) CFU reduction from baseline and near maximal effect, were 21.1, 37.2, and 51.8, respectively. PK

  14. ef1097 and ypkK encode enterococcin V583 and corynicin JK, members of a new family of antimicrobial proteins (bacteriocins) with modular structure from Gram-positive bacteria.

    PubMed

    Swe, Pearl M; Heng, Nicholas C K; Ting, Yi-Tian; Baird, Hayley J; Carne, Alan; Tauch, Andreas; Tagg, John R; Jack, Ralph W

    2007-10-01

    Unlike the colicins, microcins and related peptide antibiotics, little is known about antibiotic proteins (M(r)>10,000) from Gram-positive bacteria, since only few examples have been described to date. In this study we used heterologous expression of recombinant proteins to access the 17 kDa antibiotic protein SA-M57 from Streptococcus pyogenes, along with two proteins of unknown function identified in publicly available databases: EF1097 from Enterococcus faecalis and YpkK from Corynebacterium jeikeium. Here we show that all three are antibiotic proteins with different spectra of antimicrobial activity that kill sensitive bacteria at nanomolar concentrations. In silico structure predictions indicate that although the three proteins share little sequence similarity, they may be composed of conserved secondary structural elements: a relatively unstructured, acidic N-terminal portion and a basic C-terminal portion characterized by two helical elements separated by a loop structure and stabilized by an essential disulphide. Expression of individual segments as well as protein chimaeras revealed that, at least in the case of YpkK, the C-terminal portion is responsible for the killing action of the protein, whereas the role of the N-terminal portion remains unclear. Both scnM57 and ef1097 appear to be widely distributed in Strep. pyogenes and Ent. faecalis (respectively), whereas ypkK is found only rarely amongst clinical isolates of C. jeikeium. Finally, we determined that the proteins kill sensitive bacteria without lysis, a feature that distinguishes them from known murolytic proteins.

  15. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria.

    PubMed

    Warnes, S L; Caves, V; Keevil, C W

    2012-07-01

    We have reported previously that copper I and II ionic species, and superoxide but not Fenton reaction generated hydroxyl radicals, are important in the killing mechanism of pathogenic enterococci on copper surfaces. In this new work we determined if the mechanism was the same in non-pathogenic ancestral (K12) and laboratory (DH5α) strains, and a pathogenic strain (O157), of Escherichia coli. The pathogenic strain exhibited prolonged survival on stainless steel surfaces compared with the other E. coli strains but all died within 10 min on copper surfaces using a 'dry' inoculum protocol (with approximately 10(7)  cfu cm(-2) ) to mimic dry touch contamination. We observed immediate cytoplasmic membrane depolarization, not seen with enterococci or methicillin resistant Staphylococcus aureus, and loss of outer membrane integrity, inhibition of respiration and in situ generation of reactive oxygen species on copper and copper alloy surfaces that did not occur on stainless steel. Chelation of copper (I) and (II) ionic species still had the most significant impact on bacterial survival but protection by d-mannitol suggests hydroxyl radicals are involved in the killing mechanism. We also observed a much slower rate of DNA destruction on copper surfaces compared with previous results for enterococci. This may be due to protection of the nucleic acid by the periplasm and the extensive cell aggregation that we observed on copper surfaces. Similar results were obtained for Salmonella species but partial quenching by d-mannitol suggests radicals other than hydroxyl may be involved. The results indicate that copper biocidal surfaces are effective for Gram-positive and Gram-negative bacteria but bacterial morphology affects the mechanism of toxicity. These surfaces could not only help to prevent infection spread but also prevent horizontal gene transmission which is responsible for the evolution of virulent toxin producing and antibiotic resistant bacteria.

  16. The effect of recurrent episodes of clinical mastitis caused by gram-positive and gram-negative bacteria and other organisms on mortality and culling in Holstein dairy cows.

    PubMed

    Hertl, J A; Schukken, Y H; Bar, D; Bennett, G J; González, R N; Rauch, B J; Welcome, F L; Tauer, L W; Gröhn, Y T

    2011-10-01

    The objective of this study was to estimate the effects of recurrent episodes of different types of clinical mastitis (CM) caused by gram-positive (Streptococcus spp., Staphylococcus aureus, Staphylococcus spp.) and gram-negative (Escherichia coli, Klebsiella, Citrobacter, Enterobacter, Pseudomonas) bacteria, and other organisms (Arcanobacterium pyogenes, Mycoplasma, Corynebacterium bovis, yeast, miscellaneous) on the probability of mortality and culling in Holstein dairy cows. Data from 30,233 lactations in cows of 7 dairy farms in New York State were analyzed. Cows were followed for the first 10 mo in lactation, or until death or culling occurred, or until the end of our study period. Generalized linear mixed models with a Poisson error distribution were used to study the effects of recurrent cases of the different types of CM and several other factors (herd, parity, month of lactation, current year and season, profitability, net replacement cost, other diseases) on cows' probability of death (model 1) or being culled (model 2). Primiparous and multiparous cows were modeled separately because they had different risks of mortality and culling and potentially different CM effects on mortality and culling. Approximately 30% of multiparous cows had at least one case of CM in lactation compared with 16.6% of primiparous cows. Multipara also had higher lactational incidence risks of second (10.7%) and third (4.4%) cases than primipara (3.7% and 1.1%, respectively). For primipara, CM increased the probability of death, with each successive case occurring in a month being increasingly lethal. In multipara, gram-negative CM increased the probability of death, especially when the gram-negative case was the first or second CM case in lactation. Primiparous cows with CM were more likely to be culled after CM than if they did not have CM, particularly after a second or third case. In multipara, any type of CM increased the probability of being culled. Gram-negative CM cases

  17. Preliminary Evaluation of the Research-Use-Only (RUO) iCubate iC-GPC Assay for Identification of Select Gram-Positive Bacteria and Their Resistance Determinants in Blood Culture Broths.

    PubMed

    Buchan, Blake W; Reymann, Garrett C; Granato, Paul A; Alkins, Brenda R; Jim, Patricia; Young, Stephen

    2015-12-01

    The iC-GPC assay (iCubate, Huntsville, AL) provides a molecular option for the rapid, on-demand analysis of positive blood cultures. A preliminary evaluation of the iC-GPC assay using 203 clinical or seeded specimens demonstrated a sensitivity of 93.8% to 100% and a specificity of 98.0% to 100% for the identification of five Gram-positive bacterial species (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faecalis, and Enterococcus faecium) and three associated genetic resistance determinants (mecA, vanA, and vanB) in positive blood culture broths.

  18. Antimicrobial susceptibility of gram-negative and gram-positive bacteria collected from countries in Eastern Europe: results from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) 2004-2010.

    PubMed

    Balode, Arta; Punda-Polić, Volga; Dowzicky, Michael J

    2013-06-01

    The Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) commenced in 2004 to longitudinally monitor global changes in bacterial susceptibility to a suite of antimicrobial agents. The current study examined the activity of tigecycline and comparators against isolates collected across Eastern Europe between 2004 and 2010. Minimum inhibitory concentrations were determined using Clinical and Laboratory Standards Institute (CLSI) broth microdilution methodologies. Antimicrobial susceptibility was determined using CLSI interpretive criteria, and tigecycline susceptibility was established using European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints. This study included 10 295 Gram-negative and 4611 Gram-positive isolates from 42 centres. Extended-spectrum β-lactamases (ESBLs) were reported among 15.3% of Escherichia coli and 39.3% of Klebsiella pneumoniae isolates; the highest rates were observed in Turkey (30.9%) and Bulgaria (53.8%), respectively. Imipenem-non-susceptible K. pneumoniae were identified only in Turkey. ESBL-positive E. coli were highly susceptible to imipenem (95.1%), meropenem (98.0%) and tigecycline (98.5%). Most antimicrobials showed poor activity against Acinetobacter baumannii and Pseudomonas aeruginosa. Vancomycin resistance was noted among 0.9% of Enterococcus faecalis and 11.7% of Enterococcus faecium isolates. High rates of susceptibility were reported for linezolid (99.7%) and tigecycline (100%) against E. faecium. One-quarter of Staphylococcus aureus isolates were meticillin-resistant S. aureus (MRSA), with the highest rate in Romania (51.5%); all MRSA were susceptible to linezolid, tigecycline and vancomycin. Antimicrobial resistance is high in much of Eastern Europe, with considerable variation seen among countries. Tigecycline and the carbapenems retain excellent activity against many pathogens from Eastern Europe; linezolid and vancomycin are active against most Gram-positive pathogens.

  19. Differential staining of bacteria: acid fast stain.

    PubMed

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria.

  20. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  1. In Vitro Antibacterial Activity of AZD0914, a New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria

    PubMed Central

    Bradford, Patricia A.; Otterson, Linda G.; Basarab, Gregory S.; Kutschke, Amy C.; Giacobbe, Robert A.; Patey, Sara A.; Alm, Richard A.; Johnstone, Michele R.; Potter, Marie E.; Miller, Paul F.; Mueller, John P.

    2014-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  2. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  3. Uptake of indolmycin in gram-positive bacteria.

    PubMed Central

    Werner, R G

    1980-01-01

    The antimicrobial activity of indolmycin correlates with the generation time of the investigated strains. Thus, in Staphylococcus aureus ATCC 13150 with a 37-min generation time, the minimal inhibitory concentration (MIC) was 0.6 microgram ml-1, and in Bacillus subtilis ATCC 27142 with a generation time of 23 min, the MIC reached 10.5 micrograms ml-1. Competition experiments in staphylococci and B. subtilis with aromatic amino acids demonstrated that indolmycin uses the uptake systems that are responsible for tryptophan. When the Ki values of indolmycin for the uptake of the aromatic amino acids in staphylococci were compared, there was a significantly higher influence on the uptake of tryptophan with respect to phenylalanine and tyrosine. In addition, indolmycin low resistant mutants of S. aureus ATCC 13150 showed a 10- to 100-fold decrease in Km value for the uptake of tryptophan and a 10-fold decrease for tyrosine uptake. The Km value for phenylalanine remained unchanged. A significant correlation existed between the Ki values of indolmycin for the uptake of tryptophan in the wild-type strains of S. aureus and B. subtilis and the MIC against the corresponding strain. Low Ki values corresponded to low MIC. These results imply that, in addition to improvement of the antibiotic structure for target affinity, the tryptophan uptake system can be used as a test model for the structural evaluation of indolmycin with respect to an increased transport activity into bacterial cells. PMID:7235673

  4. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1996-01-09

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  5. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1999-06-29

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  6. Ethanol production in gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1999-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  7. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1996-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  8. Gram-negative and Gram-positive bacterial extracellular vesicles.

    PubMed

    Kim, Ji Hyun; Lee, Jaewook; Park, Jaesung; Gho, Yong Song

    2015-04-01

    Like mammalian cells, Gram-negative and Gram-positive bacteria release nano-sized membrane vesicles into the extracellular environment either in a constitutive manner or in a regulated manner. These bacterial extracellular vesicles are spherical bilayered proteolipids enriched with bioactive proteins, lipids, nucleic acids, and virulence factors. Recent progress in this field supports the critical pathophysiological functions of these vesicles in both bacteria-bacteria and bacteria-host interactions. This review provides an overview of the current understanding on Gram-negative and Gram-positive bacterial extracellular vesicles, especially regarding the biogenesis, components, and functions in poly-species communities. We hope that this review will stimulate additional research in this emerging field of bacterial extracellular vesicles and contribute to the development of extracellular vesicle-based diagnostic tools and effective vaccines against pathogenic Gram-negative and Gram-positive bacteria.

  9. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  10. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  11. Differential staining of bacteria: gram stain.

    PubMed

    Moyes, Rita B; Reynolds, Jackie; Breakwell, Donald P

    2009-11-01

    In 1884, Hans Christian Gram, a Danish doctor, developed a differential staining technique that is still the cornerstone of bacterial identification and taxonomic division. This multistep, sequential staining protocol separates bacteria into four groups based on cell morphology and cell wall structure: Gram-positive cocci, Gram-negative cocci, Gram-positive rods, and Gram-negative rods. The Gram stain is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures.

  12. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  13. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  14. Platinum electrodes for electrochemical detection of bacteria

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1979-01-01

    Bacteria is detected electro-chemically by measuring evolution of hydrogen in test system with platinum and reference electrode. Using system, electrodes of platinum are used to detect and enumerate varieties of gram-positive and gram-negative organisms compared in different media.

  15. Why engineering lactic acid bacteria for biobutanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Gram-positive Lactic acid bacteria (LAB) are considered attractive biocatalysts for biomass to biofuels for several reasons. They have GRAS (Generally Recognized As Safe) status that are acceptable in food, feed, and medical applications. LAB are fermentative: selected strains are capable of f...

  16. Mechanisms of action of newer antibiotics for Gram-positive pathogens.

    PubMed

    Hancock, Robert Ew

    2005-04-01

    Certain Gram-positive bacteria, including meticillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and quinolone-resistant Streptococcus pneumoniae have achieved the status of "superbugs", in that there are few or no antibiotics available for therapy against these pathogens. Only a few classes of novel antibiotics have been introduced in the past 40 years, and all since 1999, including the streptogramin combination quinupristin/dalfopristin (Synercid), the oxazolidinone linezolid, and the lipopeptide daptomycin. This review discusses the mechanisms of antibiotic action against Gram-positive pathogens, and resistance counter-mechanisms developed by Gram-positive bacteria, with emphasis on the newer agents.

  17. Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract

    PubMed Central

    Kline, Kimberly A.; Lewis, Amanda L.

    2015-01-01

    Gram-positive bacteria are a common cause of urinary tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI. PMID:27227294

  18. Production of Value-added Products by Lactic Acid Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  19. Evaluation of a fluorescent lectin-based staining technique for some acidophilic mining bacteria

    SciTech Connect

    Fife, D.J.; Bruhn, D.F.; Miller, K.S.; Stoner, D.L.

    2000-05-01

    A fluorescence-labeled wheat germ agglutinin staining technique was modified and found to be effective for staining gram-positive, acidophilic mining bacteria. Bacteria identified by others as being gram positive through 16S rRNA sequence analyses, yet clustering near the divergence of that group, stained weakly. Gram-negative bacteria did not stain. Background staining of environmental samples was negligible, and pyrite and soil particles in the samples did not interfere with the staining procedure.

  20. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens

    PubMed Central

    Van Tyne, Daria; Gilmore, Michael S.

    2014-01-01

    SUMMARY Gram-positive bacteria are leading causes of many types of human infection, including pneumonia, skin and nasopharyngeal infections, as well as urinary tract and surgical wound infections among hospitalized patients. These infections have become particularly problematic because many of the species causing them have become highly resistant to antibiotics. The role of mobile genetic elements, such as plasmids, in the dissemination of antibiotic resistance among Gram-positive bacteria has been well studied; less well understood is the role of mobile elements in the evolution and spread of virulence traits among these pathogens. While these organisms are leading agents of infection, they are also prominent members of the human commensal ecology. It appears that these bacteria are able to take advantage of the intimate association between host and commensal, via virulence traits that exacerbate infection and cause disease. However, evolution into an obligate pathogen has not occurred, presumably because it would lead to rejection of pathogenic organisms from the host ecology. Instead, in organisms that exist as both commensal and pathogen, selection has favored the development of mechanisms for variability. As a result, many virulence traits are localized on mobile genetic elements, such as virulence plasmids and pathogenicity islands. Virulence traits may occur within a minority of isolates of a given species, but these minority populations have nonetheless emerged as a leading problem in infectious disease. This chapter reviews virulence plasmids in nonsporulating Gram-positive bacteria, and examines their contribution to disease pathogenesis. PMID:25544937

  1. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  2. [A universal instinct for designing thermoregulated promotors in gram-positive bacteria].

    PubMed

    Khazak, V E; Veĭko, V P; Sorokin, A V

    1991-01-01

    The construction of plasmid pVKH300, which is useful for modifying any promoter into the thermoregulated form in B. subtilis cells, is presented. The main features of the plasmid are the presence of effectively expressed in B. subtilis lambda C1857 gene and recognition site of BglII restriction enzyme between OR2 and OR3 lambda phage operator sites. Promoterless alpha-amylase gene of B. amyloliquefaciens is used as a reporter gene for promoter cloning into BglII site of pVKH300. Examples of promoter-containing DNA fragments cloning with pVKH300 as vector are presented. It was found that the best regulated promoter, in a plasmid named pVKH332, was cloned in such a way that the distance between central nucleotides of OR2 and OR3 is equal to integer number of DNA helix turns (84 b.p. in the case).

  3. [Infections caused by multi-resistant Gram-positive bacteria (Staphylococcus aureus and Enterococcus spp.)].

    PubMed

    Cantón, Rafael; Ruiz-Garbajosa, Patricia

    2013-10-01

    Methicillin -resistant Staphylocccus aureus (MRSA) and multirresistant entorococci are still problematic in nosocomial infections and new challenges have emerged for their containment. MRSA has increased the multiresistant profile; it has been described vancomycin and linezolid resistant isolates and isolates with decreased daptomycin susceptibility. Moreover, new clones (ST398) have emerged, initially associated with piggeries, and new mec variants (mecC) with livestock origin that escape to the detection with current molecular methods based on mecA gene have been detected. In enterococci, linzeolid resistant isolates and isolates with deceased susceptibility to daptomycin have been described. Moreover, ampicillin resistant Enterococcus faecium due to β-lactamase production has been recently found in Europe. Control of MRSA isolates and multiresistant enteroccocci should combined antibiotic stewardship strategies and epidemiological measures, including detection of colonized patients in order to reduce colonization pressure and their transmission.

  4. The phage-related chromosomal islands of Gram-positive bacteria.

    PubMed

    Novick, Richard P; Christie, Gail E; Penadés, Jose R

    2010-08-01

    The phage-related chromosomal islands (PRCIs) were first identified in Staphylococcus aureus as highly mobile, superantigen-encoding genetic elements known as the S. aureus pathogenicity islands (SaPIs). These elements are characterized by a specific set of phage-related functions that enable them to use the phage reproduction cycle for their own transduction and inhibit phage reproduction in the process. SaPIs produce many phage-like infectious particles; their streptococcal counterparts have a role in gene regulation but may not be infectious. These elements therefore represent phage satellites or parasites, not defective phages. In this Review, we discuss the shared genetic content of PRCIs, their life cycle and their ability to be transferred across large phylogenetic distances.

  5. The Drosophila immune system detects bacteria through specific peptidoglycan recognition.

    PubMed

    Leulier, François; Parquet, Claudine; Pili-Floury, Sebastien; Ryu, Ji-Hwan; Caroff, Martine; Lee, Won-Jae; Mengin-Lecreulx, Dominique; Lemaitre, Bruno

    2003-05-01

    The Drosophila immune system discriminates between different classes of infectious microbes and responds with pathogen-specific defense reactions through selective activation of the Toll and the immune deficiency (Imd) signaling pathways. The Toll pathway mediates most defenses against Gram-positive bacteria and fungi, whereas the Imd pathway is required to resist infection by Gram-negative bacteria. The bacterial components recognized by these pathways remain to be defined. Here we report that Gram-negative diaminopimelic acid-type peptidoglycan is the most potent inducer of the Imd pathway and that the Toll pathway is predominantly activated by Gram-positive lysine-type peptidoglycan. Thus, the ability of Drosophila to discriminate between Gram-positive and Gram-negative bacteria relies on the recognition of specific forms of peptidoglycan.

  6. Cadmium uptake and resistance among selected bacteria

    SciTech Connect

    Burke, B.E.

    1987-01-01

    The purpose of this research was to determine the relationship between Cd resistance and Cd uptake by lake sediment bacteria. For the Gram positive and gram negative sediment bacteria that were tested, the relationship between resistance and Cd uptake varied and was dependent on the isolate under consideration. Results of this study indicated that bacterial communities in lake sediments may influence the concentration and availability of Cd in sediments and the water column. In addition, results of this study did not support the theory that the genes encoding for Cd resistance are usually carried on antibiotic resistance plasmids.

  7. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  8. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  9. Isolation and characterization of fenamiphos degrading bacteria.

    PubMed

    Cabrera, J Alfonso; Kurtz, Andreas; Sikora, Richard A; Schouten, Alexander

    2010-11-01

    The biological factors responsible for the microbial breakdown of the organophosphorus nematicide fenamiphos were investigated. Microorganisms responsible for the enhanced degradation of fenamiphos were isolated from soil that had a long application history of this nematicide. Bacteria proved to be the most important group of microbes responsible for the fenamiphos biodegradation process. Seventeen bacterial isolates utilized the pure active ingredient fenamiphos as a carbon source. Sixteen isolates rapidly degraded the active ingredient in Nemacur 5GR. Most of the fenamiphos degrading bacteria were Microbacterium species, although Sinorhizobium, Brevundimonas, Ralstonia and Cupriavidus were also identified. This array of gram positive and gram negative fenamiphos degrading bacteria appeared to be pesticide-specific, since cross-degradation toward fosthiazate, another organophosphorus pesticide used for nematode control, did not occur. It was established that the phylogenetical relationship among nematicide degrading bacteria is closer than that to non-degrading isolates.

  10. Use of magnetic beads for Gram staining of bacteria in aqueous suspension.

    PubMed

    Yazdankhah, S P; Sørum, H; Larsen, H J; Gogstad, G

    2001-12-01

    A Gram staining technique was developed using monodisperse magnetic beads in concentrating bacteria in suspension for downstream application. The technique does not require heat fixation of organisms, electrical power, or a microscope. Gram-negative and Gram-positive bacteria were identified macroscopically based on the colour of the suspension. The bacteria concentrated on magnetic beads may also be identified microscopically.

  11. Bacteria Inactivation During Lithotripsy

    NASA Astrophysics Data System (ADS)

    del Sol Quintero, María; Mora, Ulises; Gutiérrez, Jorge; Mues, Enrique; Castaño, Eduardo; Fernández, Francisco; Loske, Achim M.

    2006-09-01

    The influence of extracorporeal and intracorporeal lithotripsy on the viability of bacteria contained inside artificial kidney stones was investigated in vitro. Two different bacteria were exposed to the action of one extracorporeal shock wave generator and four intracorporeal lithotripters.

  12. Cell Size Regulation in Bacteria

    NASA Astrophysics Data System (ADS)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  13. Rapid discrimination of bacteria by paper spray mass spectrometry.

    PubMed

    Hamid, Ahmed M; Jarmusch, Alan K; Pirro, Valentina; Pincus, David H; Clay, Bradford G; Gervasi, Gaspard; Cooks, R Graham

    2014-08-05

    Paper spray mass spectrometry ambient ionization is utilized for rapid discrimination of bacteria without sample preparation. Bacterial colonies were smeared onto filter paper precut to a sharp point, then wetted with solvent and held at a high potential. Charged droplets released by field emission were sucked into the mass spectrometer inlet and mass spectra were recorded. Sixteen different species representing eight different genera from Gram-positive and Gram-negative bacteria were investigated. Phospholipids were the predominant species observed in the mass spectra in both the negative and positive ion modes. Multivariate data analysis based on principal component analysis, followed by linear discriminant analysis, allowed bacterial discrimination. The lipid information in the negative ion mass spectra proved useful for species level differentiation of the investigated Gram-positive bacteria. Gram-negative bacteria were differentiated at the species level by using a numerical data fusion strategy of positive and negative ion mass spectra.

  14. The Structure and Function of the Gram-Positive Bacterial RNA Degradosome

    PubMed Central

    Cho, Kyu Hong

    2017-01-01

    The RNA degradosome is a highly structured protein complex responsible for bulk RNA decay in bacteria. The main components of the complex, ribonucleases, an RNA helicase, and glycolytic enzymes are well-conserved in bacteria. Some components of the degradosome are essential for growth and the disruption of degradosome formation causes slower growth, indicating that this complex is required for proper cellular function. The study of the Escherichia coli degradosome has been performed extensively for the last several decades and has revealed detailed information on its structure and function. On the contrary, the Gram-positive bacterial degradosome, which contains ribonucleases different from the E. coli one, has been studied only recently. Studies on the Gram-positive degradosome revealed that its major component RNase Y was necessary for the full virulence of medically important Gram-positive bacterial pathogens, suggesting that it could be a target of antimicrobial therapy. This review describes the structures and function of Gram-positive bacterial RNA degradosomes, especially those of a Gram-positive model organism Bacillus subtilis, and two important Gram-positive pathogens, Staphylococcus aureus and Streptococcus pyogenes. PMID:28217125

  15. The Structure and Function of the Gram-Positive Bacterial RNA Degradosome.

    PubMed

    Cho, Kyu Hong

    2017-01-01

    The RNA degradosome is a highly structured protein complex responsible for bulk RNA decay in bacteria. The main components of the complex, ribonucleases, an RNA helicase, and glycolytic enzymes are well-conserved in bacteria. Some components of the degradosome are essential for growth and the disruption of degradosome formation causes slower growth, indicating that this complex is required for proper cellular function. The study of the Escherichia coli degradosome has been performed extensively for the last several decades and has revealed detailed information on its structure and function. On the contrary, the Gram-positive bacterial degradosome, which contains ribonucleases different from the E. coli one, has been studied only recently. Studies on the Gram-positive degradosome revealed that its major component RNase Y was necessary for the full virulence of medically important Gram-positive bacterial pathogens, suggesting that it could be a target of antimicrobial therapy. This review describes the structures and function of Gram-positive bacterial RNA degradosomes, especially those of a Gram-positive model organism Bacillus subtilis, and two important Gram-positive pathogens, Staphylococcus aureus and Streptococcus pyogenes.

  16. Desorption electrospray ionization mass spectrometry of intact bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desorption electrospray ionization (DESI) mass spectrometry (MS) was used to differentiate 7 bacterial species based on their measured DESI-mass spectral profile. Both Gram positive and Gram negative bacteria were tested and included Escherichia coli, Staphyloccocus aureus, Enterococcus sp., Bordete...

  17. [Bacteriocins produced by lactic acid bacteria].

    PubMed

    Bilková, Andrea; Sepova, Hana Kinová; Bilka, Frantisek; Balázová, Andrea

    2011-04-01

    Lactic acid bacteria comprise several genera of gram-positive bacteria that are known for the production of structurally different antimicrobial substances. Among them, bacteriocins are nowadays in the centre of scientific interest. Bacteriocins, proteinaceous antimicrobial substances, are produced ribosomally and have usually a narrow spectrum of bacterial growth inhibition. According to their structure and the target of their activity, they are divided into four classes, although there are some suggestions for a renewed classification. The most interesting and usable class are lantibiotics. They comprise the most widely commercially used and well examined bacteriocin, nisin. The non-pathogenic character of lactic acid bacteria is advantageous for using their bacteriocins in food preservation as well as in feed supplements or in veterinary medicine.

  18. ["Quorum sensing" or social behavior of bacteria].

    PubMed

    Gintsburg, A L; Il'ina, T S; Romanova, Iu M

    2003-01-01

    The review deals with the data of literature on the role of the "quorum sensing" (QS) system ensuring the social behavior of bacteria in the regulation of virulence genes. The mechanisms of the action of these systems in Gram-negative and Gram-positive bacteria, as well as the influence of acyl-homoserine lactones, one of the components of the QS system, on the immune response of the infected host are discussed. In addition, in this review the data of literature on the existence of bacteria in the form of biofilms are presented. The methods of the identification of biofilms, the methods of their experimental preparation and the role of the QS system in the process of their formation are considered.

  19. How methylglyoxal kills bacteria: An ultrastructural study.

    PubMed

    Rabie, Erika; Serem, June Cheptoo; Oberholzer, Hester Magdalena; Gaspar, Anabella Regina Marques; Bester, Megan Jean

    2016-01-01

    Antibacterial activity of honey is due to the presence of methylglyoxal (MGO), H2O2, bee defensin as well as polyphenols. High MGO levels in manuka honey are the main source of antibacterial activity. Manuka honey has been reported to reduce the swarming and swimming motility of Pseudomonas aeruginosa due to de-flagellation. Due to the complexity of honey it is unknown if this effect is directly due to MGO. In this ultrastructural investigation the effects of MGO on the morphology of bacteria and specifically the structure of fimbriae and flagella were investigated. MGO effectively inhibited Gram positive (Bacillus subtilis; MIC 0.8 mM and Staphylococcus aureus; MIC 1.2 mM) and Gram negative (P. aeruginosa; MIC 1.0 mM and Escherichia coli; MIC 1.2 mM) bacteria growth. The ultrastructural effects of 0.5, 1.0 and 2 mM MGO on B. substilis and E. coli morphology was then evaluated. At 0.5 mM MGO, bacteria structure was unaltered. For both bacteria at 1 mM MGO fewer fimbriae were present and the flagella were less or absent. Identified structures appeared stunted and fragile. At 2 mM MGO fimbriae and flagella were absent while the bacteria were rounded with shrinkage and loss of membrane integrity. Antibacterial MGO causes alterations in the structure of bacterial fimbriae and flagella which would limit bacteria adherence and motility.

  20. Tyramine and phenylethylamine biosynthesis by food bacteria.

    PubMed

    Marcobal, Angela; De las Rivas, Blanca; Landete, José María; Tabera, Laura; Muñoz, Rosario

    2012-01-01

    Tyramine poisoning is caused by the ingestion of food containing high levels of tyramine, a biogenic amine. Any foods containing free tyrosine are subject to tyramine formation if poor sanitation and low quality foods are used or if the food is subject to temperature abuse or extended storage time. Tyramine is generated by decarboxylation of the tyrosine through tyrosine decarboxylase (TDC) enzymes derived from the bacteria present in the food. Bacterial TDC have been only unequivocally identified and characterized in Gram-positive bacteria, especially in lactic acid bacteria. Pyridoxal phosphate (PLP)-dependent TDC encoding genes (tyrDC) appeared flanked by a similar genetic organization in several species of lactic acid bacteria, suggesting a common origin by a single mobile genetic element. Bacterial TDC are also able to decarboxylate phenylalanine to produce phenylethylamine (PEA), another biogenic amine. The molecular knowledge of the genes involved in tyramine production has led to the development of molecular methods for the detection of bacteria able to produce tyramine and PEA. These rapid and simple methods could be used for the analysis of the ability to form tyramine by bacteria in order to evaluate the potential risk of tyramine biosynthesis in food products.

  1. First Report of Human Infection by Agromyces mediolanus, a Gram-Positive Organism Found in Soil

    PubMed Central

    Sridhar, Siddharth; Wang, Angela Y. M.; Chan, Jasper F. W.; Yip, Cyril C. Y.; Woo, Patrick C. Y.; Yuen, Kwok-Yung

    2015-01-01

    We report the first human infection by a member of the Agromyces genus, a group of Gram-positive bacteria found in soil. A patient with a long-term venous catheter developed bacteremia due to a non-vancomycin-susceptible isolate of Agromyces mediolanus. Rapid identification was possible by matrix-assisted laser desorption ionization–time of flight mass spectrometry. PMID:26202108

  2. Future gazing in the management of multiply drug-resistant Gram-positive infection.

    PubMed

    Wilcox, Mark H

    2009-09-01

    Gram-positive bacteria have evolved to become predominant health care associated pathogens. To meet this challenge, novel approaches to the development, prescribing, and control of antibiotics will be needed. Additional infection control methods must also be explored. This review discusses the challenges posed in particular by methicillin-resistant staphylococci and potential ways forward.

  3. Native and heterologous production of bacteriocins from gram-positive microorganisms.

    PubMed

    Muñoz, Mabel; Jaramillo, Diana; Melendez, Adelina Del Pilar; J Alméciga-Diaz, Carlos; Sánchez, Oscar F

    2011-12-01

    In nature, microorganisms can present several mechanisms for setting intercommunication and defense. One of these mechanisms is related to the production of bacteriocins, which are peptides with antimicrobial activity. Bacteriocins can be found in Gram-positive and Gram-negative bacteria. Nevertheless, bacteriocins produced by Gram-positive bacteria are of particular interest due to the industrial use of several strains that belong to this group, especially lactic acid bacteria (LAB), which have the status of generally recognized as safe (GRAS) microorganisms. In this work, we will review recent tendencies in the field of invention and state of art related to bacteriocin production by Gram-positive microorganism. Hundred-eight patents related to Gram-positive bacteriocin producers have been disclosed since 1965, from which 57% are related bacteriocins derived from Lactococcus, Lactobacillus, Streptococcus, and Pediococcus strains. Surprisingly, patents regarding heterologous bacteriocins production were mainly presented just in the last decade. Although the major application of bacteriocins is concerned to food industry to control spoilage and foodborne bacteria, during the last years bacteriocin applications have been displacing to the diagnosis and treatment of cancer, and plant disease resistance and growth promotion.

  4. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  5. Some bacteria are beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  6. Bacteria turn tiny gears

    SciTech Connect

    2009-01-01

    Swarms of bacteria turn two 380-micron long gears, opening the possibility of building hybrid biological machines at the microscopic scale. Read more at Wired: http://www.wired.com/wiredscience/2009/12/bacterial-micro-machine/#more-15684 or Scientific American: http://www.scientificamerican.com/article.cfm?id=brownian-motion-bacteria

  7. The effect of nutrient media water purity on LIBS based identification of bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single pulse laser induced breakdown spectroscopy (LIBS) is used as the basis for discrimination between 3 genera of Gram-negative bacteria and 2 genera of gram-positive bacteria representing pathogenic threats commonly found in poultry processing rinse waters. Because LIBS-based discrimination reli...

  8. Genome Sequences of Three Spore-Forming Bacteria Isolated from the Feces of Organically Raised Chickens

    PubMed Central

    Kennedy, Victoria; Van Laar, Tricia A.; Aleru, Omoshola; Thomas, Michael; Ganci, Michelle

    2016-01-01

    Antibiotic feed supplements have been implicated in the rise of multidrug-resistant bacteria. An alternative to antibiotics is probiotics. Here, we report the genome sequences of two Bacillus and one Solibacillus species, all spore-forming, Gram-positive bacteria, isolated from the feces organically raised chicken feces, with potential to serve as probiotics. PMID:27587809

  9. A bivalent cationic dye enabling selective photo-inactivation against Gram-negative bacteria.

    PubMed

    Li, Ke; Zhang, Yang-Yang; Jiang, Guo-Yu; Hou, Yuan-Jun; Zhang, Bao-Wen; Zhou, Qian-Xiong; Wang, Xue-Song

    2015-05-07

    A piperazine-modified Crystal Violet was found to be able to selectively inactivate Gram-negative bacteria upon visible light irradiation but left Gram-positive bacteria less damaged, which can serve as a blueprint for the development of novel narrow-spectrum agents to replenish the current arsenal of photodynamic antimicrobial chemotherapy (PACT).

  10. Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota

    PubMed Central

    Chen, T; Isomäki, P; Rimpiläinen, M; Toivanen, P

    1999-01-01

    The normal microbiota plays an important role in the health of the host, but little is known of how the human immune system recognizes and responds to Gram-positive indigenous bacteria. We have investigated cytokine responses of peripheral blood mononuclear cells (PBMC) to Gram-positive cell walls (CW) derived from four common intestinal indigenous bacteria, Eubacterium aerofaciens (Eu.a.), Eubacterium limosum(Eu.l.), Lactobacillus casei(L.c.), and Lactobacillus fermentum (L.f.). Our results indicate that Gram-positive CW of the normal intestinal microbiota can induce cytokine responses of the human PBMC. The profile, level and kinetics of these responses are similar to those induced by lipopolysaccharide (LPS) or CW derived from a pathogen, Streptococcus pyogenes (S.p.). Bacterial CW are capable of inducing production of a proinflammatory cytokine, tumour necrosis factor-alpha (TNF-α), and an anti-inflammatory cytokine, IL-10, but not that of IL-4 or interferon-gamma (IFN-γ). Monocytes are the main cell population in PBMC to produce TNF-α and IL-10. Induction of cytokine secretion is serum-dependent; both CD14-dependent and -independent pathways are involved. These findings suggest that the human cytokine responses induced by Gram-positive CW of the normal intestinal microbiota are similar to those induced by LPS or Gram-positive CW of the pathogens. PMID:10540188

  11. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  12. Antibiotics from predatory bacteria

    PubMed Central

    Korp, Juliane; Vela Gurovic, María S

    2016-01-01

    Summary Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  13. Selective toxicity of Catechin-a natural flavonoid towards bacteria.

    PubMed

    Fathima, Aafreen; Rao, Jonnalagadda Raghava

    2016-07-01

    Catechin is a plant polyphenol composed of epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) as diastereoisomers. Among the various classes of flavonoids, catechin was found to be the most powerful free radical scavenger, scavenging the reactive oxygen species (ROS) generated due to oxidative damage with antibacterial and anti-inflammatory activity. The toxicity of catechin towards bacteria was studied using gram-positive bacteria (B. subtilis) and gram-negative bacteria (E. coli) as model organisms and was found to be more toxic towards gram-positive bacteria. From the results, catechin was found to be beneficial as well as toxic (inhibitory) to the bacteria at a selective concentration behaving as double-edged swords with an IC50 value of 9 ppm for both the bacteria. The inhibitory mechanism of catechin was by oxidative damage through membrane permeabilization which was confirmed by the formation and treatment of bacterial liposomes. SEM images of the control and treated bacteria reveals membrane damage with morphological changes.

  14. Indicator For Pseudomonas Bacteria

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  15. Phosphatidic Acid Synthesis in Bacteria

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2012-01-01

    Membrane phospholipid synthesis is a vital facet of bacterial physiology. Although the spectrum of phospholipid headgroup structures produced by bacteria is large, the key precursor to all of these molecules is phosphatidic acid (PtdOH). Glycerol-3-phosphate derived from the glycolysis via glycerol-phosphate synthase is the universal source for the glycerol backbone of PtdOH. There are two distinct families of enzymes responsible for the acylation of the 1-position of glycerol-3-phosphate. The PlsB acyltransferase was discovered in Escherichia coli, and homologs are present in many eukaryotes. This protein family primarily uses acyl-acyl carrier protein (ACP) endproducts of fatty acid synthesis as acyl donors, but may also use acyl-CoA derived from exogenous fatty acids. The second protein family, PlsY, is more widely distributed in bacteria and utilizes the unique acyl donor, acyl-phosphate, which is produced from acyl-ACP by the enzyme PlsX. The acylation of the 2-position is carried out by members of the PlsC protein family. All PlsCs use acyl-ACP as the acyl donor, although the PlsCs of the γ-proteobacteria also may use acyl-CoA. Phospholipid headgroups are precursors in the biosynthesis of other membrane-associated molecules and the diacylglycerol product of these reactions is converted to PtdOH by one of two distinct families of lipid kinases. The central importance of the de novo and recycling pathways to PtdOH in cell physiology suggest these enzymes are suitable targets for the development of antibacterial therapeutics in Gram-positive pathogens. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:22981714

  16. Cell Size Control in Bacteria

    PubMed Central

    Chien, An-Chun; Hill, Norbert S.; Levin, Petra Anne

    2012-01-01

    Like eukaryotes, bacteria must coordinate division with growth to ensure cells are the appropriate size for a given environmental condition or developmental fate. As single-celled organisms, nutrient availability is one of the strongest influences on bacterial cell size. Classic physiological experiments conducted over four decades ago first demonstrated that cell size is directly correlated with nutrient source and growth rate in the Gram-negative bacterium Salmonella typhimurium. This observation subsequently served as the basis for studies revealing a role for cell size in cell cycle progression in a closely related organism, Escherichia coli. More recently, the development of powerful genetic, molecular, and imaging tools has allowed us to identify and characterize the nutrient-dependent pathway responsible for coordinating cell division and cell size with growth rate in the Gram-positive model organism B. subtilis. Here, we discuss the role of cell size in bacterial growth and development and propose a broadly applicable model for cell size control in this important and highly divergent domain of life. PMID:22575476

  17. Predicting gram-positive bacterial protein subcellular localization based on localization motifs.

    PubMed

    Hu, Yinxia; Li, Tonghua; Sun, Jiangming; Tang, Shengnan; Xiong, Wenwei; Li, Dapeng; Chen, Guanyan; Cong, Peisheng

    2012-09-07

    The subcellular localization of proteins is closely related to their functions. In this work, we propose a novel approach based on localization motifs to improve the accuracy of predicting subcellular localization of Gram-positive bacterial proteins. Our approach performed well on a five-fold cross validation with an overall success rate of 89.5%. Besides, the overall success rate of an independent testing dataset was 97.7%. Moreover, our approach was tested using a new experimentally-determined set of Gram-positive bacteria proteins and achieved an overall success rate of 96.3%.

  18. Lipopolysaccharides in diazotrophic bacteria.

    PubMed

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  19. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  20. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    USGS Publications Warehouse

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  1. Gram-negative bacteria can also form pellicles.

    PubMed

    Armitano, Joshua; Méjean, Vincent; Jourlin-Castelli, Cécile

    2014-12-01

    There is a growing interest in the bacterial pellicle, a biofilm floating at the air-liquid interface. Pellicles have been well studied in the Gram-positive bacterium Bacillus subtilis, but far less in Gram-negative bacteria, where pellicle studies have mostly focused on matrix components rather than on the regulatory cascades involved. Several Gram-negative bacteria, including pathogenic bacteria, have been shown to be able to form a pellicle under static conditions. Here, we summarize the growing body of knowledge about pellicle formation in Gram-negative bacteria, especially about the components of the pellicle matrix. We also propose that the pellicle is a specific biofilm, and that its formation involves particular processes. Since this lifestyle concerns a growing number of bacteria, its properties undoubtedly deserve further investigation.

  2. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  3. PVC biodeterioration and DEHP leaching by DEHP-degrading bacteria

    PubMed Central

    Latorre, Isomar; Hwang, Sangchul; Sevillano, Maria; Montalvo-Rodriguez, Rafael

    2012-01-01

    Newly isolated, not previously reported, di-(2-ethylhexyl) phthalate (DEHP)-degraders were augmented to assess their role in polyvinyl chloride (PVC) shower curtain deterioration and DEHP leaching. The biofilms that developed on the surfaces of the bioaugmented shower curtains with Gram-positive strains LHM1 and LHM2 were thicker than those of the biostimulated and Gram-negative strain LHM3-augmented shower curtains. The first derivative thermogravimetric (DTG) peaks of the bioaugmented shower curtains with the Gram-positive bacteria were observed at ~287°C, whereas the control and Gram-negative strain LHM3-augmented shower curtains were detected at ~283°C. This slight delay in the first DTG peak temperature is indicative of lower plasticizer concentrations in the shower curtains that were bioaugmented with Gram positive bacteria. Despite bioaugmentation with DEHP-degraders, aqueous solutions of the bioaugmentation reactors were not DEHP-free due probably to the presence of co-solutes that must have supported microbial growth. Generally, the bioaugmented reactors with the Gram-positive strains LHM1 and LHM2 had greater aqueous DEHP concentrations in the first-half (<3 wk) of the biodeterioration experiment than the biostimulated and strain LHM3-augmented reactors. Therefore, strains LHM1 and LHM2 may play an important role in DEHP leaching to the environment and PVC biodeterioration. PMID:22736894

  4. Endocarditis Due to Rare and Fastidious Bacteria

    PubMed Central

    Brouqui, P.; Raoult, D.

    2001-01-01

    The etiologic diagnosis of infective endocarditis is easily made in the presence of continuous bacteremia with gram-positive cocci. However, the blood culture may contain a bacterium rarely associated with endocarditis, such as Lactobacillus spp., Klebsiella spp., or nontoxigenic Corynebacterium, Salmonella, Gemella, Campylobacter, Aeromonas, Yersinia, Nocardia, Pasteurella, Listeria, or Erysipelothrix spp., that requires further investigation to establish the relationship with endocarditis, or the blood culture may be uninformative despite a supportive clinical evaluation. In the latter case, the etiologic agents are either fastidious extracellular or intracellular bacteria. Fastidious extracellular bacteria such as Abiotrophia, HACEK group bacteria, Clostridium, Brucella, Legionella, Mycobacterium, and Bartonella spp. need supplemented media, prolonged incubation time, and special culture conditions. Intracellular bacteria such as Coxiella burnetii cannot be isolated routinely. The two most prevalent etiologic agents of culture-negative endocarditis are C. burnetti and Bartonella spp. Their diagnosis is usually carried out serologically. A systemic pathologic examination of excised heart valves including periodic acid-Schiff (PAS) staining and molecular methods has allowed the identification of Whipple's bacillus endocarditis. Pathologic examination of the valve using special staining, such as Warthin-Starry, Gimenez, and PAS, and broad-spectrum PCR should be performed systematically when no etiologic diagnosis is evident through routine laboratory evaluation. PMID:11148009

  5. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections.

    PubMed

    Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes

    2013-01-01

    In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections.

  6. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  7. Inhibitory effect of short cationic homopeptides against Gram-negative bacteria.

    PubMed

    Carvajal-Rondanelli, Patricio; Aróstica, Mónica; Marshall, Sergio Hernan; Albericio, Fernando; Álvarez, Claudio Andrés; Ojeda, Claudia; Aguilar, Luis Felipe; Guzmán, Fanny

    2016-06-01

    Previous work demonstrated that Lys homopeptides with an odd number of residues (9, 11 and 13) were capable of inhibiting the growth of Gram-positive bacteria in a broader spectrum and more efficiently than those with an even number of Lys residues or Arg homopeptides of the same size. Indeed, all Gram-positive bacteria tested were totally inhibited by 11-residue Lys homopeptides. In the present work, a wide variety of Gram-negative bacteria were used to evaluate the inhibitory activity of chemically synthesized homopeptides of L-Lys and L-Arg ranging from 7 to 14 residues. Gram-negative bacteria were comparatively more resistant than Gram-positive bacteria to Lys homopeptides with an odd number of residues, but exhibited a similar inhibition pattern than on Gram-positive bacteria. CD spectra for the odd-numbered Lys homopeptides in anionic lipid dimyristoylphosphatidylglycerol, and Escherichia coli membrane extract increased polyproline II content, as compared to those measured in phosphate buffer solution. Lys and Arg homopeptides were covalently linked to rhodamine to visualize the peptide interactions with E. coli cells using confocal laser scanning microscopy. Analysis of Z-stack images showed that Arg homopeptides indeed appear to be localized intracellularly, while the Lys homopeptide is localized exclusively on the plasma membrane. Moreover, these Lys homopeptides induced membrane disruption since the Sytox fluorophore was able to bind to the DNA in E. coli cultures.

  8. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  9. Bacteria-surface interactions.

    PubMed

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  10. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  11. Monoclonal antibodies against bacteria.

    PubMed

    Macario, A J; Conway de Macario, E

    1988-01-01

    Highlights are presented of most recent work in which monoclonal antibodies have been instrumental in the study of bacteria and their products. Topics summarized pertain to human and veterinary medicines, dentistry, phytopathology, ichthyology, and bacterial ecophysiology, differentiation, evolution and methanogenic biotechnology.

  12. Enteric bacteria mandibular osteomyelitis.

    PubMed

    Scolozzi, Paolo; Lombardi, Tommaso; Edney, Timothy; Jaques, Bertrand

    2005-06-01

    Osteomyelitis of the mandible is a relatively rare inflammatory disease that usually stems from the odontogenic polymicrobial flora of the oral cavity. We are reporting 2 unusual cases of mandibular osteomyelitis resulting from enteric bacteria infection. In one patient, abundant clinical evidence suggested a diagnosis of a chronic factitious disease, whereas in the second patient no obvious etiology was found.

  13. Bacteria-surface interactions

    PubMed Central

    Tuson, Hannah H.; Weibel, Douglas B.

    2013-01-01

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field. PMID:23930134

  14. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    SciTech Connect

    Lunov, O. Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-02-02

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  15. Gram-Negative Bacteria Produce Membrane Vesicles Which Are Capable of Killing Other Bacteria

    PubMed Central

    Li, Zusheng; Clarke, Anthony J.; Beveridge, Terry J.

    1998-01-01

    Naturally produced membrane vesicles (MVs), isolated from 15 strains of gram-negative bacteria (Citrobacter, Enterobacter, Escherichia, Klebsiella, Morganella, Proteus, Salmonella, and Shigella strains), lysed many gram-positive (including Mycobacterium) and gram-negative cultures. Peptidoglycan zymograms suggested that MVs contained peptidoglycan hydrolases, and electron microscopy revealed that the murein sacculi were digested, confirming a previous modus operandi (J. L. Kadurugamuwa and T. J. Beveridge, J. Bacteriol. 174:2767–2774, 1996). MV-sensitive bacteria possessed A1α, A4α, A1γ, A2α, and A4γ peptidoglycan chemotypes, whereas A3α, A3β, A3γ, A4β, B1α, and B1β chemotypes were not affected. Pseudomonas aeruginosa PAO1 vesicles possessed the most lytic activity. PMID:9765585

  16. Cell wall structure and function in lactic acid bacteria

    PubMed Central

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  17. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    PubMed Central

    Berendsen, Erwin M.; Wells-Bennik, Marjon H. J.; Krawczyk, Antonina O.; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T.

    2016-01-01

    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria. PMID:27151781

  18. Development of a rapid and sensitive immunosensor for the detection of bacteria.

    PubMed

    Verdoodt, Niels; Basso, Caroline R; Rossi, Bruna F; Pedrosa, Valber A

    2017-04-15

    The presence of Gram-positive bacteria in foodstuffs is a chronic worldwide problem. Here, we present a cheap and simple colorimetric method for the detection of Lactobacillus species (spp.) and Staphylococcus aureus (S. aureus) using gold nanoparticles (AuNP) modified with monoclonal anti-Gram-positive bacteria to produce an immune-sensor. Detection is based on the fact that antibody-conjugated AuNPs can readily identify Gram-positive bacteria through antibody-antigen recognition, which results in a color change of AuNPs upon aggregation. The detection limit was 105CFU/ml in pure culture for Lactobacillus spp. and 120CFU/ml in pure culture for S. aureus. The method was applied successfully for detection of bacteria in samples of sugar cane, and agreed well with values obtained using other methods. These results suggested that the detection system could be used for the quantitative analysis of Gram-positive bacteria and might be applied potentially by the food industry.

  19. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  20. Detection of bacteria with bioluminescent reporter bacteriophage.

    PubMed

    Klumpp, Jochen; Loessner, Martin J

    2014-01-01

    Bacteriophages are viruses that exclusively infect bacteria. They are ideally suited for the development of highly specific diagnostic assay systems. Bioluminescent reporter bacteriophages are designed and constructed by integration of a luciferase gene in the virus genome. Relying on the host specificity of the phage, the system enables rapid, sensitive, and specific detection of bacterial pathogens. A bioluminescent reporter phage assay is superior to any other molecular detection method, because gene expression and light emission are dependent on an active metabolism of the bacterial cell, and only viable cells will yield a signal. In this chapter we introduce the concept of creating reporter phages, discuss their advantages and disadvantages, and illustrate the advances made in developing such systems for different Gram-negative and Gram-positive pathogens. The application of bioluminescent reporter phages for the detection of foodborne pathogens is emphasized.

  1. Reanimation of Ancient Bacteria

    SciTech Connect

    Vreeland, Russell H.

    2009-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  2. Reanimation of Ancient Bacteria

    SciTech Connect

    Vreeland, Russell H.

    2002-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  3. Manufacture of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  4. Computation by Bacteria

    DTIC Science & Technology

    2011-01-03

    inversion symmetry and time reversal symmetry by dissipat - ing energy , and breaking both these symmetries allows ratcheting. The ability of...durations. All of these devices take advantage of the conversion of chemical energy into propulsion that occurs within bacteria. These devices break spatial...micromachines relying on energy that microorganisms would dissipate “anyway” even in the absence of ratchet structures suggests that researchers could

  5. Biocide tolerance in bacteria.

    PubMed

    Ortega Morente, Elena; Fernández-Fuentes, Miguel Angel; Grande Burgos, Maria José; Abriouel, Hikmate; Pérez Pulido, Rubén; Gálvez, Antonio

    2013-03-01

    Biocides have been employed for centuries, so today a wide range of compounds showing different levels of antimicrobial activity have become available. At the present time, understanding the mechanisms of action of biocides has also become an important issue with the emergence of bacterial tolerance to biocides and the suggestion that biocide and antibiotic resistance in bacteria might be linked. While most of the mechanisms providing antibiotic resistance are agent specific, providing resistance to a single antimicrobial or class of antimicrobial, there are currently numerous examples of efflux systems that accommodate and, thus, provide tolerance to a broad range of structurally unrelated antimicrobials, both antibiotics and biocides. If biocide tolerance becomes increasingly common and it is linked to antibiotic resistance, not only resistant (even multi-resistant) bacteria could be passed along the food chain, but also there are resistance determinants that can spread and lead to the emergence of new resistant microorganisms, which can only be detected and monitored when the building blocks of resistance traits are understood on the molecular level. This review summarizes the main advances reached in understanding the mechanism of action of biocides, the mechanisms of bacterial resistance to both biocides and antibiotics, and the incidence of biocide tolerance in bacteria of concern to human health and the food industry.

  6. How honey kills bacteria.

    PubMed

    Kwakman, Paulus H S; te Velde, Anje A; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M J E; Zaat, Sebastian A J

    2010-07-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria tested, including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase producing Escherichia coli, ciprofloxacin-resistant Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus faecium, were killed by 10-20% (v/v) honey, whereas > or = 40% (v/v) of a honey-equivalent sugar solution was required for similar activity. Honey accumulated up to 5.62 +/- 0.54 mM H(2)O(2) and contained 0.25 +/- 0.01 mM methylglyoxal (MGO). After enzymatic neutralization of these two compounds, honey retained substantial activity. Using B. subtilis for activity-guided isolation of the additional antimicrobial factors, we discovered bee defensin-1 in honey. After combined neutralization of H(2)O(2), MGO, and bee defensin-1, 20% honey had only minimal activity left, and subsequent adjustment of the pH of this honey from 3.3 to 7.0 reduced the activity to that of sugar alone. Activity against all other bacteria tested depended on sugar, H(2)O(2), MGO, and bee defensin-1. Thus, we fully characterized the antibacterial activity of medical-grade honey.

  7. Beer spoilage bacteria and hop resistance.

    PubMed

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  8. Survival of freeze-dried bacteria.

    PubMed

    Miyamoto-Shinohara, Yukie; Sukenobe, Junji; Imaizumi, Takashi; Nakahara, Toro

    2008-02-01

    The aim of this study was to investigate the survival of freeze-dried bacterial species stored at the International Patent Organism Depository (IPOD) and to elucidate the characteristics affecting survival. Bacterial strains were freeze-dried, sealed in ampoules under a vacuum (<1 Pa), and stored in the dark at 5 degrees C. The survival of a variety of species following storage for up to 20 years was analyzed. The survival of freeze-dried species was analyzed in terms of two stages, freeze-drying and storing. Nonmotile genera showed relatively high survival after freeze-drying. Motile genera with peritrichous flagella showed low survival rates after freeze-drying. Vibrio and Aeromonas, which produce numerous flagella, showed very low survival rates. In Lactobacillus, non-trehalose-fermenting species showed better survival rates after freeze-drying than did fermenting species, and those species with teichoic acid in the cell wall showed lower survival rates during storage than species with teichoic acid in the cell membrane. Human pathogenic species of Corynebacterium, Bacillus, Streptococcus, and Klebsiella showed lower survival rates during storage than nonpathogenic species within the same genus. Among Pseudomonas species, P. chlororaphis, the only species tested that forms levan from sucrose, showed the lowest survival rate during storage in the genus. Survival rates of Gram-negative species during storage tended to be lower than those of Gram-positive species, though Chryseobacterium meningosepticum had stable survival during storage. The conclusion is that smooth cell surfaces (i.e., no flagella) and lack of trehalose outside the cytoplasm improved survival rates after freeze-drying. Because desiccation is important for survival during storage, the presence of extracellular polysaccharides or teichoic acids is disadvantageous for long-term survival. The lower survival rates of freeze-dried Gram-negative bacteria compared with those of Gram-positive bacteria

  9. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  10. Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Le Coustumer, Phillippe; Constantin, Liliana Violeta; Predoi, Daniela

    2012-06-01

    Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10- x Ag x (PO4)6(OH)2, x Ag = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for x Ag = 0.05, a = b = 9.443 Å, c = 6.875 Å for x Ag = 0.2, and a = b = 9.445 Å, c = 6.877 Å for x Ag = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples ( x Ag = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of x Ag in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth ( P. stuartii).

  11. Mechanism of action of recombinant Acc-royalisin from royal jelly of Chinese honeybee against gram-positive bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Chinese honeybee Apis cerana...

  12. Design and synthesis of novel antimicrobials with activity against Gram-positive bacteria and mycobacterial species, including M. tuberculosis

    PubMed Central

    Tiruveedhula, V.V.N. Phani Babu; Witzigmann, Christopher M.; Verma, Ranjit; Kabir, M. Shahjahan; Rott, Marc; Schwan, William R.; Medina-Bielski, Sara; Lane, Michelle; Close, William; Polanowski, Rebecca L.; Sherman, David; Monte, Aaron; Deschamps, Jeffrey R.; Cook, James M.

    2013-01-01

    The alarming increase in bacterial resistance over the last decade along with a dramatic decrease in new treatments for infections has led to problems in the healthcare industry. Tuberculosis (TB) is caused mainly by Mycobacterium tuberculosis which is responsible for 1.4 million deaths per year. A world-wide threat with HIV co-infected with multi and extensively drug-resistant strains of TB has emerged. In this regard, herein, novel acrylic acid ethyl ester derivatives were synthesized in simple, efficient routes and evaluated as potential agents against several Mycobacterium species. These were synthesized via a stereospecific process for structure activity relationship (SAR) studies. Minimum inhibitory concentration (MIC) assays indicated that esters 12, 13, and 20 exhibited greater in vitro activity against Mycobacterium smegmatis than rifampin, one of the current, first-line anti-mycobacterial chemotherapeutic agents. Based on these studies the acrylic ester 20 has been developed as a potential lead compound which was found to have an MIC value of 0.4 μg/mL against Mycobacterium tuberculosis. The SAR and biological activity of this series is presented; a Michael – acceptor mechanism appears to be important for potent activity of this series of analogs. PMID:24200931

  13. The Unique Molecular Choreography of Giant Pore Formation by the Cholesterol-Dependent Cytolysins of Gram-Positive Bacteria.

    PubMed

    Tweten, Rodney K; Hotze, Eileen M; Wade, Kristin R

    2015-01-01

    The mechanism by which the cholesterol-dependent cytolysins (CDCs) assemble their giant β-barrel pore in cholesterol-rich membranes has been the subject of intense study in the past two decades. A combination of structural, biophysical, and biochemical analyses has revealed deep insights into the series of complex and highly choreographed secondary and tertiary structural transitions that the CDCs undergo to assemble their β-barrel pore in eukaryotic membranes. Our knowledge of the molecular details of these dramatic structural changes in CDCs has transformed our understanding of how giant pore complexes are assembled and has been critical to our understanding of the mechanisms of other important classes of pore-forming toxins and proteins across the kingdoms of life. Finally, there are tantalizing hints that the CDC pore-forming mechanism is more sophisticated than previously imagined and that some CDCs are employed in pore-independent processes.

  14. Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria

    PubMed Central

    2012-01-01

    Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10-xAgx(PO4)6(OH)2, xAg = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for xAg = 0.05, a = b = 9.443 Å, c = 6.875 Å for xAg = 0.2, and a = b = 9.445 Å, c = 6.877 Å for xAg = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples (xAg = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of xAg in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth (P. stuartii). PMID:22721352

  15. Novel Electroporation System for both Gram-Negative and Gram-Positive Bacteria Assisted by Multi-Walled Carbon Nanotubes

    DTIC Science & Technology

    2005-01-01

    to the nanoscale will allow selective manipulation of cell organelles in eukaryotic cells and prokaryotic microorganisms. The main goal of this...to study the interaction of water-dispersible muti-walled carbon nanotubes (CNTs) with the bacterial cell envelope during microwave (MW) energy...an intimate contact between the CNT tips and the cell envelope. This phenomenon can be explained in terms of attractive forces between opposite

  16. Minimum inhibitory concentrations of herbal essential oils and monolaurin for gram-positive and gram-negative bacteria.

    PubMed

    Preuss, Harry G; Echard, Bobby; Enig, Mary; Brook, Itzhak; Elliott, Thomas B

    2005-04-01

    New, safe antimicrobial agents are needed to prevent and overcome severe bacterial, viral, and fungal infections. Based on our previous experience and that of others, we postulated that herbal essential oils, such as those of origanum, and monolaurin offer such possibilities. We examined in vitro the cidal and/or static effects of oil of origanum, several other essential oils, and monolaurin on Staphylococcus aureus, Bacillus anthracis Sterne, Escherichia coli, Klebsiella pneumoniae, Helicobacter pylori, and Mycobacterium terrae. Origanum proved cidal to all tested organisms with the exception of B. anthracis Sterne in which it was static. Monolaurin was cidal to S. aureus and M. terrae but not to E. coli and K. pneumoniae. Unlike the other two gram-negative organisms, H. pylori were extremely sensitive to monolaurin. Similar to origanum, monolaurin was static to B. anthracis Sterne. Because of their longstanding safety record, origanum and/or monolaurin, alone or combined with antibiotics, might prove useful in the prevention and treatment of severe bacterial infections, especially those that are difficult to treat and/or are antibiotic resistant.

  17. Postantibiotic effects of grepafloxacin compared to those of five other agents against 12 gram-positive and -negative bacteria.

    PubMed

    Spangler, S K; Bajaksouzian, S; Jacobs, M R; Appelbaum, P C

    2000-01-01

    The postantibiotic effect (PAE) (10x the MIC) and the postantibiotic sub-MIC effects (0.125, 0.25, and 0.5x the MIC) were determined for six compounds against 12 strains. Measurable PAEs ranged between 0 and 1.8 h for grepafloxacin, 0 and 2.2 h for ciprofloxacin, 0 and 3. 1 h for levofloxacin, 0 and 2.2 h for sparfloxacin, 0 and 2.4 h for amoxicillin-clavulanate and 0 and 4.8 h for clarithromycin. Reexposure to subinhibitory concentrations increased the PAEs against some strains.

  18. Sonodynamic inactivation of Gram-positive and Gram-negative bacteria using a Rose Bengal-antimicrobial peptide conjugate.

    PubMed

    Costley, David; Nesbitt, Heather; Ternan, Nigel; Dooley, James; Huang, Ying-Ying; Hamblin, Michael R; McHale, Anthony P; Callan, John F

    2017-01-01

    Combating antimicrobial resistance is one of the most serious public health challenges facing society today. The development of new antibiotics or alternative techniques that can help combat antimicrobial resistance is being prioritised by many governments and stakeholders across the globe. Antimicrobial photodynamic therapy is one such technique that has received considerable attention but is limited by the inability of light to penetrate through human tissue, reducing its effectiveness when used to treat deep-seated infections. The related technique sonodynamic therapy (SDT) has the potential to overcome this limitation given the ability of low-intensity ultrasound to penetrate human tissue. In this study, a Rose Bengal-antimicrobial peptide conjugate was prepared for use in antimicrobial SDT (ASDT). When Staphylococcus aureus and Pseudomonas aeruginosa planktonic cultures were treated with the conjugate and subsequently exposed to ultrasound, 5 log and 7 log reductions, respectively, in bacterial numbers were observed. The conjugate also displayed improved uptake by bacterial cells compared with a mammalian cell line (P ≤ 0.01), whilst pre-treatment of a P. aeruginosa biofilm with ultrasound resulted in a 2.6-fold improvement in sensitiser diffusion (P ≤ 0.01). A preliminary in vivo experiment involving ASDT treatment of P. aeruginosa-infected wounds in mice demonstrated that ultrasound irradiation of conjugate-treated wounds affects a substantial reduction in bacterial burden. Combined, the results obtained from this study highlight ASDT as a targeted broad-spectrum novel modality with potential for the treatment of deep-seated bacterial infections.

  19. Phenotypic and Phylogenetic Characterization of Ruminal Tannin-Tolerant Bacteria

    PubMed Central

    Nelson, Karen E.; Thonney, Michael L.; Woolston, Tina K.; Zinder, Stephen H.; Pell, Alice N.

    1998-01-01

    The 16S rRNA sequences and selected phenotypic characteristics were determined for six recently isolated bacteria that can tolerate high levels of hydrolyzable and condensed tannins. Bacteria were isolated from the ruminal contents of animals in different geographic locations, including Sardinian sheep (Ovis aries), Honduran and Colombian goats (Capra hircus), white-tail deer (Odocoileus virginianus) from upstate New York, and Rocky Mountain elk (Cervus elaphus nelsoni) from Oregon. Nearly complete sequences of the small-subunit rRNA genes, which were obtained by PCR amplification, cloning, and sequencing, were used for phylogenetic characterization. Comparisons of the 16S rRNA of the six isolates showed that four of the isolates were members of the genus Streptococcus and were most closely related to ruminal strains of Streptococcus bovis and the recently described organism Streptococcus gallolyticus. One of the other isolates, a gram-positive rod, clustered with the clostridia in the low-G+C-content group of gram-positive bacteria. The sixth isolate, a gram-negative rod, was a member of the family Enterobacteriaceae in the gamma subdivision of the class Proteobacteria. None of the 16S rRNA sequences of the tannin-tolerant bacteria examined was identical to the sequence of any previously described microorganism or to the sequence of any of the other organisms examined in this study. Three phylogenetically distinct groups of ruminal bacteria were isolated from four species of ruminants in Europe, North America, and South America. The presence of tannin-tolerant bacteria is not restricted by climate, geography, or host animal, although attempts to isolate tannin-tolerant bacteria from cows on low-tannin diets failed. PMID:9758806

  20. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  1. Gram-Positive Anaerobic Cocci

    PubMed Central

    Murdoch, D. A.

    1998-01-01

    Gram-positive anaerobic cocci (GPAC) are a heterogeneous group of organisms defined by their morphological appearance and their inability to grow in the presence of oxygen; most clinical isolates are identified to species in the genus Peptostreptococcus. GPAC are part of the normal flora of all mucocutaneous surfaces and are often isolated from infections such as deep organ abscesses, obstetric and gynecological sepsis, and intraoral infections. They have been little studied for several reasons, which include an inadequate classification, difficulties with laboratory identification, and the mixed nature of the infections from which they are usually isolated. Nucleic acid studies indicate that the classification is in need of radical revision at the genus level. Several species of Peptostreptococcus have recently been described, but others still await formal recognition. Identification has been based on carbohydrate fermentation tests, but most GPAC are asaccharolytic and use the products of protein degradation for their metabolism; the introduction of commercially available preformed enzyme kits affords a physiologically more appropriate method of identification, which is simple and relatively rapid and can be used in routine diagnostic laboratories. Recent reports have documented the isolation in pure culture of several species, notably Peptostreptococcus magnus, from serious infections. Studies of P. magnus have elucidated several virulence factors which correlate with the site of infection, and reveal some similarities to Staphylococcus aureus. P. micros is a strongly proteolytic species; it is increasingly recognized as an important pathogen in intraoral infections, particularly periodontitis, and mixed anaerobic deep-organ abscesses. Comparison of antibiotic susceptibility patterns reveals major differences between species. Penicillins are the antibiotics of choice, although some strains of P. anaerobius show broad-spectrum β-lactam resistance. PMID:9457430

  2. Microcins from Enterobacteria: On the Edge Between Gram-Positive Bacteriocins and Colicins

    NASA Astrophysics Data System (ADS)

    Rebuffat, Sylvie

    Most bacteria and archaea produce gene-encoded antimicrobial peptides/proteins called bacteriocins, which are secreted by the producing bacteria to compete against other microorganisms in a given niche. They are considered important mediators of intra- and interspecies interactions and therefore a factor in ­maintaining the microbial diversity and stability. They are ribosomally synthesized, and most of them are produced as inactive precursor proteins, which in some cases are further enzymatically modified. Bacteriocins generally exert potent antibacterial activities directed against bacterial species closely related to the producing bacteria. Bacteriocins are abundant and diverse in Gram-negative and Gram-positive bacteria. This chapter focuses on colicins and microcins from enterobacteria (mainly Escherichia coli) and on bacteriocins from lactic acid bacteria (LAB). Microcins are the lower-molecular-mass bacteriocins produced by Gram-negative bacteria with a repertoire of only 14 representatives. They form a very restricted family of bacteriocins, compared to the huge family of LAB bacteriocins that is constituted of several hundreds of peptides, with which microcins share common characteristics. Nevertheless, microcins also show similarities, particularly in their uptake mechanisms, with the higher-molecular-mass colicins, also produced by E. coli strains. On the edge between LAB bacteriocins and colicins, microcins appear to combine highly efficient strategies developed by both Gram-positive and Gram-negative bacteria at different levels, including uptake, translocation, killing of target cells, and immunity of the producing bacteria, making them important actors of bacterial competitions and fascinating models for novel concepts toward antimicrobial strategies and against resistance mechanisms.

  3. Bacteria in solitary confinement.

    PubMed

    Mullineaux, Conrad W

    2015-02-15

    Even in clonal bacterial cultures, individual bacteria can show substantial stochastic variation, leading to pitfalls in the interpretation of data derived from millions of cells in a culture. In this issue of the Journal of Bacteriology, as part of their study on osmoadaptation in a cyanobacterium, Nanatani et al. describe employing an ingenious microfluidic device that gently cages individual cells (J Bacteriol 197:676-687, 2015, http://dx.doi.org/10.1128/JB.02276-14). The device is a welcome addition to the toolkit available to probe the responses of individual cells to environmental cues.

  4. Surface layers of bacteria.

    PubMed Central

    Beveridge, T J; Graham, L L

    1991-01-01

    Since bacteria are so small, microscopy has traditionally been used to study them as individual cells. To this end, electron microscopy has been a most powerful tool for studying bacterial surfaces; the viewing of macromolecular arrangements of some surfaces is now possible. This review compares older conventional electron-microscopic methods with new cryotechniques currently available and the results each has produced. Emphasis is not placed on the methodology but, rather, on the importance of the results in terms of our perception of the makeup and function of bacterial surfaces and their interaction with the surrounding environment. Images PMID:1723487

  5. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents--special references to bacteria isolated between April 2010 and March 2011].

    PubMed

    Shinagawa, Nagao; Taniguchi, Masaaki; Hirata, Koichi; Furuhata, Tomohisa; Fukuhara, Kenichiro; Mizugucwi, Tohru; Osanai, Hiroyuki; Yanai, Yoshiyuki; Hata, Fumitake; Kihara, Chikasi; Sasaki, Kazuaki; Oono, Keisuke; Nakamura, Masashi; Shibuya, Hitoshi; Hasegawa, Itaru; Kimura, Masami; Watabe, Kosho; Kobayashi, Yasuhito; Yamaue, Hiroki; Hirono, Seiko; Takesue, Yoshio; Fujiwara, Toshiyoshi; Shinoura, Susumu; Kimura, Hideyuki; Hoshikawa, Tsuyoshi; Oshima, Hideki; Aikawa, Naoki; Sasaki, Junichi; Suzuki, Masaru; Sekine, Kazuhiko; Abe, Shinya; Takeyama, Hiromitsu; Wakasugi, Takehiro; Mashita, Keiji; Tanaka, Moritsugu; Mizuno, Akira; Ishikawa, Masakazu; Iwai, Akihiko; Saito, Takaaki; Muramoto, Masayuki; Kubo, Shoji; Lee, Shigeru; Fukuhara, Kenichiro; Iwagaki, Hiromi; Tokunaga, Naoyuki; Sueda, Taijliro; Hiyama, Elso; Murakami, Yoshiaki; Ohge, Hiroki; Uemura, Kenichiro; Tsumura, Hiroaki; Kanehiro, Tetsuya; Takeuchi, Hitoshi; Tanakaya, Koujn; Iwasaki, Mitsuhiro

    2014-10-01

    Bacteria isolated from surgical infections during the period from April 2010 to March 2011 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 631 strains including 25 strains of Candida spp. were isolated from 170 (81.7%) of 208 patients with surgical infections. Four hundred and twenty two strains were isolated from primary infections, and 184 strains were isolated from surgical site infection. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from surgical site infection aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Enterococcus spp. such as Enterococcus faecalis, Enterococcus faecium, and Enterococcus avium was highest, followed by Streptococcus spp. such as Streptococcus anginosus and Staphylococcus spp. such as Staphylococcus aureus, in this order, from primary infections, while Enterococcus spp. such as E. faecalis and E. faecium was highest, followed by Staphylococcus spp. such as S. aureus from surgical site infection. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Pseudomonas aeruginosa in this order, and from surgical site infection, E. coli and R aeruginosa were most predominantly isolated, followed by E. cloacae and K. pneumoniae. Among anaerobic Gram-positive bacteria, the isolation rates of Parvimonas micra, Eggerthella lenta, Streptococcus constellatus, Gemella morbillorum, and Collinsella aerofaciens were the highest from primary infections, and the isolation rate from surgical site infection was generally low. Among anaerobic Gram-negative bacteria, the isolation rate of Bilophila wadsworthia was the highest from primary infections, followed by, Bacteroides

  6. Gram-staining characterisation of activated sludge filamentous bacteria by automated colour analysis.

    PubMed

    Pandolfi, Denis; Pons, Marie-Noëlle

    2004-12-01

    An automated image analysis method has been developed for the monitoring of the Gram-staining characteristics of filamentous bacteria in activated sludge. The binary method of pixel classification agreed with manual estimation (level of correlation of 0.9 for Gram-positive bacteria). Its robustness has been assessed by repeatability tests. Population shifts in terms of Gram-staining characteristics have been monitored in laboratory-scale experiments with two feeding schedules using this technique.

  7. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    DOEpatents

    DiSpirito, Alan A.; Zahn, James A.; Graham, David W.; Kim, Hyung J.; Alterman, Michail; Larive, Cynthia

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  8. Photocatalytic disinfection of spoilage bacteria Pseudomonas fluorescens and Macrococcus caseolyticus by nano-TiO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photocatalytic disinfection of spoilage bacteria gram-negative (G-) P. fluorescens and gram-positive (G+) M. caseolyticus by nano-TiO2 under different experimental conditions and the disinfection mechanism were investigated. The experimental conditions included the initial bacterial populations, nan...

  9. Effects of inulin chain length on fermentation by equine fecal bacteria and Streptococcus bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructans from pasture can be fermented by Gram-positive bacteria (e.g., Streptococcus bovis) in the equine hindgut, increasing production of lactic acid and decreasing pH. The degree of polymerization (DP) of fructans has been suggested to influence fermentation rates. The objective of the current ...

  10. Chemical communication in bacteria

    NASA Astrophysics Data System (ADS)

    Suravajhala, Srinivasa Sandeep; Saini, Deepak; Nott, Prabhu

    Luminescence in Vibrio fischeri is a model for quorum-sensing-gene-regulation in bacteria. We study luminescence response of V. fischeri to both internal and external cues at the single cell and population level. Experiments with ES114, a wild-type strain, and ainS mutant show that luminescence induction in cultures is not always proportional to cell-density and there is always a basal level of luminescence. At any given concentration of the exogenously added signals, C6-HSL and C8-HSL, luminescence per cell reaches a maximum during the exponential phase and decreases thereafter. We hypothesize that (1) C6-HSL production and LuxR activity are not proportional to cell-density, and (2) there is a shift in equilibrium from C6-HSL to C8-HSL during the later stages of growth of the culture. RT-PCR analysis of luxI and luxR shows that the expression of these genes is maximum corresponding to the highest level of luminescence. The shift in equilibrium is shown by studying competitive binding of C6-HSL and C8-HSL to LuxR. We argue that luminescence is a unicellular behaviour, and an intensive property like per cell luminescence is more important than gross luminescence of the population in understanding response of bacteria to chemical signalling. Funding from the Department of Science and Technology, India is acknowledged.

  11. Functional amyloids in bacteria.

    PubMed

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end.

  12. Sensitivity and specificity of subgingival bacteria in predicting preterm birth- a pilot cohort study

    PubMed Central

    Hassan, Khalid S; El Tantawi, Maha M.; Alagl, Adel S; Alnimr, Amani M; Haseeb, Yasmeen A

    2016-01-01

    Objective Preterm birth (PTB) increases the risk of adverse outcomes for new born infants. Subgingival bacteria are implicated in causing PTB. The aim of the present study was to assess the accuracy of some subgingival gram positive and gram negative bacteria detected by routine lab procedures in predicting PTB. Methodology Pregnant Saudi women (n= 170) visiting King Fahad hospital, Dammam, Saudi Arabia, were included in a pilot cohort study. Plaque was collected in the 2nd trimester and screened for subgingival anaerobes using Vitek2. Pregnancy outcome (preterm/full term birth) was assessed at delivery. Sensitivity, specificity and positive and negative likelihood ratios were calculated for the identified bacteria to predict PTB. Results Data about time of delivery was available for 94 subjects and 22 (23.4%) had PTB. Three gram negative and 4 gram positive subgingival bacteria had sensitivity ≥ 95% with two of each having negative likelihood ratios ≤0.10. Three gram positive bacteria had specificity > 95% with only one having positive likelihood ratio >2. Conclusion Subgingival bacteria identified using readily available lab techniques in the plaque of pregnant Saudi women in their 2nd trimester have useful potential to rule out PTB. PMID:27833518

  13. High-level fluorescence labeling of gram-positive pathogens.

    PubMed

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  14. Designing surfaces that kill bacteria on contact

    NASA Astrophysics Data System (ADS)

    Tiller, Joerg C.; Liao, Chun-Jen; Lewis, Kim; Klibanov, Alexander M.

    2001-05-01

    Poly(4-vinyl-N-alkylpyridinium bromide) was covalently attached to glass slides to create a surface that kills airborne bacteria on contact. The antibacterial properties were assessed by spraying aqueous suspensions of bacterial cells on the surface, followed by air drying and counting the number of cells remaining viable (i.e., capable of growing colonies). Amino glass slides were acylated with acryloyl chloride, copolymerized with 4-vinylpyridine, and N-alkylated with different alkyl bromides (from propyl to hexadecyl). The resultant surfaces, depending on the alkyl group, were able to kill up to 94 ± 4% of Staphylococcus aureus cells sprayed on them. A surface alternatively created by attaching poly(4-vinylpyridine) to a glass slide and alkylating it with hexyl bromide killed 94 ± 3% of the deposited S. aureus cells. On surfaces modified with N-hexylated poly(4-vinylpyridine), the numbers of viable cells of another Gram-positive bacterium, Staphylococcus epidermidis, as well as of the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, dropped more than 100-fold compared with the original amino glass. In contrast, the number of viable bacterial cells did not decline significantly after spraying on such common materials as ceramics, plastics, metals, and wood.

  15. Aerobic salivary bacteria in wild and captive Komodo dragons.

    PubMed

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals.

  16. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H2 and other valuable compounds.

  17. Influence of bentonite particles on representative gram negative and gram positive bacterial deposition in porous media.

    PubMed

    Yang, Haiyan; Tong, Meiping; Kim, Hyunjung

    2012-11-06

    The significance of clay particles on the transport and deposition kinetics of bacteria in irregular quartz sand was examined by direct comparison of both breakthrough curves and retained profiles with clay particles in bacteria suspension versus those without clay particles. Two representative cell types, Gram-negative strain E. coli DH5α and Gram-positive strain Bacillus subtilis were utilized to systematically determine the influence of clay particles (bentonite) on cell transport behavior. Packed column experiments for both cell types were conducted in both NaCl (5 and 25 mM ionic strengths) and CaCl(2) (5 mM ionic strength) solutions at pH 6.0. The breakthrough plateaus with bentonite in solutions (30 mg L(-1) and 50 mg L(-1)) were lower than those without bentonite for both cell types under all examined conditions, indicating that bentonite in solutions decreased cell transport in porous media regardless of cell types (Gram-negative or Gram-positive) and solution chemistry (ionic strength and ion valence). The enhanced cell deposition with bentonite particles was mainly observed at segments near to column inlet, retained profiles for both cell types with bentonite particles were therefore steeper relative to those without bentonite. The increased cell deposition with bentonite observed in NaCl solutions was attributed to the codeposition of bacteria with bentonite particles whereas, in addition to codeposition of bacteria with bentonite, the bacteria-bentonite-bacteria cluster formed in suspensions also contributed to the increased deposition of bacteria with bentonite in CaCl(2) solution.

  18. Kin Recognition in Bacteria.

    PubMed

    Wall, Daniel

    2016-09-08

    The ability of bacteria to recognize kin provides a means to form social groups. In turn these groups can lead to cooperative behaviors that surpass the ability of the individual. Kin recognition involves specific biochemical interactions between a receptor(s) and an identification molecule(s). Recognition specificity, ensuring that nonkin are excluded and kin are included, is critical and depends on the number of loci and polymorphisms involved. After recognition and biochemical perception, the common ensuing cooperative behaviors include biofilm formation, quorum responses, development, and swarming motility. Although kin recognition is a fundamental mechanism through which cells might interact, microbiologists are only beginning to explore the topic. This review considers both molecular and theoretical aspects of bacterial kin recognition. Consideration is also given to bacterial diversity, genetic relatedness, kin selection theory, and mechanisms of recognition.

  19. Acoustofluidic bacteria separation

    NASA Astrophysics Data System (ADS)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  20. Phosphonate utilization by bacteria.

    PubMed Central

    Cook, A M; Daughton, C G; Alexander, M

    1978-01-01

    Bacteria able to use at least one of 13 ionic alkylphosphonates of O-alkyl or O,O-dialkyl alkylphosphonates as phosphorus sources were isolated from sewage and soil. Four of these isolates used 2-aminoethylphosphonic acid (AEP) as a sole carbon, nitrogen, and phosphorus source. None of the other phosphonates served as a carbon source for the organisms. One isolate, identified as Pseudomonas putida, grew with AEP as its sole carbon, nitrogen, and phosphorus source and released nearly all of the organic phosphorus as orthophosphate and 72% of the AEP nitrogen as ammonium. This is the first demonstration of utilization of a phosphonoalkyl moiety as a sole carbon source. Cell-free extracts of P. putida contained an inducible enzyme system that required pyruvate and pyridoxal phosphate to release orthophosphate from AEP; acetaldehyde was tentatively identified as a second product. Phosphite inhibited the enzyme system. PMID:618850

  1. [Antimicrobial activity of ornidazole and 6 other antibiotics against anaerobic bacteria].

    PubMed

    Alados, J C; Martínez-Brocal, A; Miranda, C; Rojo, M D; García, V; Domínguez, M C; de la Rosa, M

    1991-04-01

    The antimicrobial susceptibility of 235 anaerobic bacterial strains to ornidazole, metronidazole, chloramphenicol, clindamycin, penicillin, cefoxitin and imipenem has been studied using agar-dilution technique. Ornidazole and metronidazole were active against 88.6% and 86% of gram-positive cocci. Overall, 99.1% of Bacteroides group fragilis, and 91.3% of non-fragilis Bacteroides were also sensitive to both drugs. We did not find any Clostridium perfringens resistant strain. Cefoxitin and penicillin showed good activity against all Clostridium perfringens strains, and also against 97.7% and 92.5% of gram-positive cocci. We found one single imipenem resistant strain among gram-positive bacteria. Bacteroides fragilis also showed sensitivity to penicillin (41.5%), cefoxitin (85.7%) and imipenem (97.1%). Clindamycin was active against Clostridium perfringens (90.9%), gram-positive cocci (86.7%) and imipenem (68.6%). Chloramphenicol showed good activity against Clostridium perfringens (100%), gram-positive cocci (95.5%) and Bacteroides spp. (99.4%). Our results showed an overall good activity of all the seven drugs tested against anaerobic gram-positive microorganisms. Of notice, we found a good activity of chloramphenicol, imipenem, metronidazole and ornidazole against Bacteroides spp.

  2. Clay-Bacteria Systems and Biofilm Production

    NASA Astrophysics Data System (ADS)

    Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

    2007-12-01

    Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

  3. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms.

    PubMed

    Suganya, K S Uma; Govindaraju, K; Kumar, V Ganesh; Dhas, T Stalin; Karthick, V; Singaravelu, G; Elanchezhiyan, M

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ~ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus.

  4. Determination of the gram-positive bacterial content of soils and sediments by analysis of teichoic acid components

    NASA Technical Reports Server (NTRS)

    Gehron, M. J.; Davis, J. D.; Smith, G. A.; White, D. C.

    1984-01-01

    Many gram-positive bacteria form substituted polymers of glycerol and ribitol phosphate esters known as teichoic acids. Utilizing the relative specificity of cold concentrated hydrofluoric acid in the hydrolysis of polyphosphate esters it proved possible to quantitatively assay the teichoic acid-derived glycerol and ribitol from gram-positive bacteria added to various soils and sediments. The lipids are first removed from the soils or sediments with a one phase chloroform-methanol extraction and the lipid extracted residue is hydrolyzed with cold concentrated hydrofluoric acid. To achieve maximum recovery of the teichoic acid ribitol, a second acid hydrolysis of the aqueous extract is required. The glycerol and ribitol are then acetylated after neutralization and analyzed by capillary gas-liquid chromatography. This technique together with measures of the total phospholipid, the phospholipid fatty acid, the muramic acid and the hydroxy fatty acids of the lipopolysaccharide lipid A of the gram-negative bacteria makes it possible to describe the community structure environmental samples. The proportion of gram-positive bacteria measured as the teichoic acid glycerol and ribitol is higher in soils than in sediments and increases with depth in both.

  5. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  6. Sec-Secretion and Sortase-Mediated Anchoring of Proteins in Gram-Postive Bacteria

    PubMed Central

    Schneewind, Olaf; Missiakas, Dominique

    2014-01-01

    Signal peptide-driven secretion of precursor proteins directs polypeptides across the plasma membrane of bacteria. Two pathways, Sec- and SRP-dependent, converge at the SecYEG translocon to thread unfolded precursor proteins across the membrane, whereas folded preproteins are routed via the Tat secretion pathway. Gram-positive bacteria lack an outer membrane and are surrounded by a rigid layer of peptidoglycan. Interactions with their environment are mediated by proteins that are retained in the cell wall, often through covalent attachment to the peptidoglycan. In this review, we describe the mechanisms for both Sec-dependent secretion and sortase-dependent assembly of proteins in the envelope of Gram-positive bacteria. PMID:24269844

  7. [Pseudomonas genus bacteria on weeds].

    PubMed

    Gvozdiak, R I; Iakovleva, L M; Pasichnik, L A; Shcherbina, T N; Ogorodnik, L E

    2005-01-01

    It has been shown in the work that the weeds (couch-grass and ryegrass) may be affected by bacterial diseases in natural conditions, Pseudomonas genus bacteria being their agents. The isolated bacteria are highly-aggressive in respect of the host-plant and a wide range of cultivated plants: wheat, rye, oats, barley, apple-tree and pear-tree. In contrast to highly aggressive bacteria isolated from the affected weeds, bacteria-epi phytes isolated from formally healthy plants (common amaranth, orache, flat-leaved spurge, field sow thistle, matricary, common coltsfoot, narrow-leaved vetch) and identified as P. syringae pv. coronafaciens, were characterized by weak aggression. A wide range of ecological niches of bacteria evidently promote their revival and distribution everywhere in nature.

  8. Sociomicrobiology and pathogenic bacteria

    PubMed Central

    Xavier, Joao B.

    2015-01-01

    The study of microbial pathogenesis has been primarily a reductionist science since Koch's principles. Reductionist approaches are essential to identify the causal agents of infectious disease, their molecular mechanisms of action and potential drug targets, and much of medicine's success in the treatment of infectious disease comes from this approach. But many bacterial caused diseases cannot be explained by focusing on a single bacterium. Many aspects of bacterial pathogenesis will benefit from a more holistic approach that takes into account social interaction within bacteria of the same species and between different species in consortia such as the human microbiome. I discuss recent advances in the emerging discipline of sociomicrobiology and how it provides a framework to dissect microbial interactions in single and multispecies communities without compromising mechanistic detail. The study of bacterial pathogenesis can benefit greatly from incorporating concepts from other disciplines such as social evolution theory and microbial ecology where communities, their interactions with hosts and with the environment play key roles. PMID:27337482

  9. Tetrachloroethene-dehalogenating bacteria.

    PubMed

    Damborský, J

    1999-01-01

    Tetrachloroethene is a frequent groundwater contaminant often persisting in the subsurface environments. It is recalcitrant under aerobic conditions because it is in a highly oxidized state and is not readily susceptible to oxidation. Nevertheless, at least 15 organisms from different metabolic groups, viz. halorespirators (9), acetogens (2), methanogens (3) and facultative anaerobes (2), that are able to metabolize tetrachloroethene have been isolated as axenic cultures to-date. Some of these organisms couple dehalo-genation to energy conservation and utilize tetrachloroethene as the only source of energy while others dehalogenate tetrachloroethene fortuitously. Halorespiring organisms (halorespirators) utilize halogenated organic compounds as electron acceptors in an anaerobic respiratory process. Different organisms exhibit differences in the final products of tetrachloroethene dehalogenation, some strains convert tetrachloroethene to trichloroethene only, while others also carry out consecutive dehalogenation to dichloroethenes and vinyl chloride. Thus far, only a single organism, 'Dehalococcoides ethenogenes' strain 195, has been isolated which dechlorinates tetrachloroethene all the way down to ethylene. The majority of tetrachloroethene-dehalogenating organisms have been isolated only in the past few years and several of them, i.e., Dehalobacter restrictus, Desulfitobacterium dehalogenans, 'Dehalococcoides ethenogenes', 'Dehalospirillum multivorans', Desulfuromonas chloroethenica, and Desulfomonile tiedjei, are representatives of new taxonomic groups. This contribution summarizes the available information regarding the axenic cultures of the tetrachloroethene-dehalogenating bacteria. The present knowledge about the isolation of these organisms, their physiological characteristics, morphology, taxonomy and their ability to dechlorinate tetrachloroethene is presented to facilitate a comprehensive comparison.

  10. Antimicrobial activity of the carnivorous plant Dionaea muscipula against food-related pathogenic and putrefactive bacteria.

    PubMed

    Ogihara, Hirokazu; Endou, Fumiko; Furukawa, Soichi; Matsufuji, Hiroshi; Suzuki, Kouichi; Anzai, Hiroshi

    2013-01-01

    Solvent extracts from the carnivorous plant Dionaea muscipula (Venus flytrap) were prepared using eight different organic solvents, and examined for antibacterial activity against food-related pathogenic and putrefactive bacteria. All solvent extracts showed higher antibacterial activity against gram positive bacteria than against gram negative bacteria. The TLC-bioautography analysis of the extracts revealed that a yellow spot was detected at Rf value of 0.85, which showed strong antibacterial activity. The UV, MS, and NMR analyses revealed that the antibacterial compound was plumbagin.

  11. Selective detection of bacteria in urine with a long-range surface plasmon waveguide biosensor

    PubMed Central

    Béland, Paul; Krupin, Oleksiy; Berini, Pierre

    2015-01-01

    Experimentation demonstrates long-range surface plasmon polariton waveguides as a useful biosensor to selectively detect gram negative or gram positive bacteria in human urine having a low concentration of constituents. The biosensor can detect bacteria at concentrations of 105 CFU/ml, the internationally recommended threshold for diagnostic of urinary tract infection. Using a negative control urine solution of bacterial concentration 1000☓ higher than the targeted bacteria, we obtain a ratio of 5.4 for the positive to negative signals. PMID:26309755

  12. A flow-cytometric gram-staining technique for milk-associated bacteria.

    PubMed

    Holm, Claus; Jespersen, Lene

    2003-05-01

    A Gram-staining technique combining staining with two fluorescent stains, Oregon Green-conjugated wheat germ agglutinin (WGA) and hexidium iodide (HI) followed by flow-cytometric detection is described. WGA stains gram-positive bacteria while HI binds to the DNA of all bacteria after permeabilization by EDTA and incubation at 50 degrees C for 15 min. For WGA to bind to gram-positive bacteria, a 3 M potassium chloride solution was found to give the highest fluorescence intensity. A total of 12 strains representing some of the predominant bacterial species in bulk tank milk and mixtures of these were stained and analyzed by flow cytometry. Overall, the staining method showed a clear differentiation between gram-positive and gram-negative bacterial populations. For stationary-stage cultures of seven gram-positive bacteria and five gram-negative bacteria, an average of 99% of the cells were correctly interpreted. The method was only slightly influenced by the growth phase of the bacteria or conditions such as freezing at -18 degrees C for 24 h. For any of these conditions, an average of at least 95% of the cells were correctly interpreted. When stationary-stage cultures were stored at 5 degrees C for 14 days, an average of 86% of the cells were correctly interpreted. The Gram-staining technique was applied to the flow cytometry analysis of bulk tank milk inoculated with Staphylococcus aureus and Escherichia coli. These results demonstrate that the technique is suitable for analyzing milk samples without precultivation.

  13. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.

    PubMed Central

    Postma, P W; Lengeler, J W; Jacobson, G R

    1993-01-01

    Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the

  14. Opioid Exacerbation of Gram-positive sepsis, induced by Gut Microbial Modulation, is Rescued by IL-17A Neutralization

    PubMed Central

    Meng, Jingjing; Banerjee, Santanu; Li, Dan; Sindberg, Gregory M.; Wang, Fuyuan; Ma, Jing; Roy, Sabita

    2015-01-01

    Sepsis is the predominant cause of mortality in ICUs, and opioids are the preferred analgesic in this setting. However, the role of opioids in sepsis progression has not been well characterized. The present study demonstrated that morphine alone altered the gut microbiome and selectively induced the translocation of Gram-positive gut bacteria in mice. Using a murine model of poly-microbial sepsis, we further demonstrated that morphine treatment led to predominantly Gram-positive bacterial dissemination. Activation of TLR2 by disseminated Gram-positive bacteria induced sustained up-regulation of IL-17A and IL-6. We subsequently showed that overexpression of IL-17A compromised intestinal epithelial barrier function, sustained bacterial dissemination and elevated systemic inflammation. IL-17A neutralization protected barrier integrity and improved survival in morphine-treated animals. We further demonstrated that TLR2 expressed on both dendritic cells and T cells play essential roles in IL-17A production. Additionally, intestinal sections from sepsis patients on opioids exhibit similar disruption in gut epithelial integrity, thus establishing the clinical relevance of this study. This is the first study to provide a mechanistic insight into the opioid exacerbation of sepsis and show that neutralization of IL-17A might be an effective therapeutic strategy to manage Gram-positive sepsis in patients on an opioid regimen. PMID:26039416

  15. Interactions between Diatoms and Bacteria

    PubMed Central

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  16. Bacteria detection by flow cytometry.

    PubMed

    Karo, Oliver; Wahl, Alexandra; Nicol, Sven-Boris; Brachert, Julia; Lambrecht, Bernd; Spengler, Hans-Peter; Nauwelaers, Frans; Schmidt, Michael; Schneider, Christian K; Müller, Thomas H; Montag, Thomas

    2008-01-01

    Since bacterial infection of the recipient has become the most frequent infection risk in transfusion medicine, suitable methods for bacteria detection in blood components are of great interest. Platelet concentrates are currently the focus of attention, as they are stored under temperature conditions, which enable the multiplication of most bacteria species contaminating blood donations. Rapid methods for bacteria detection allow testing immediately before transfusion in a bed-side like manner. This approach would overcome the sampling error observed in early sampling combined with culturing of bacteria and would, at least, prevent the transfusion of highly contaminated blood components leading to acute septic shock or even death of the patient. Flow cytometry has been demonstrated to be a rapid and feasible approach for detection of bacteria in platelet concentrates. The general aim of the current study was to develop protocols for the application of this technique under routine conditions. The effect of improved test reagents on practicability and sensitivity of the method is evaluated. Furthermore, the implementation of fluorescent absolute count beads as an internal standard is demonstrated. A simplified pre-incubation procedure has been undertaken to diminish the detection limit in a pragmatic manner. Additionally, the application of bacteria detection by flow cytometry as a culture method is shown, i.e., transfer of samples from platelet concentrates into a satellite bag, incubation of the latter at 37 degrees C, and measuring the contaminating bacteria in a flow cytometer.

  17. Interactions between diatoms and bacteria.

    PubMed

    Amin, Shady A; Parker, Micaela S; Armbrust, E Virginia

    2012-09-01

    Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.

  18. Motility of Electric Cable Bacteria

    PubMed Central

    Damgaard, Lars Riis; Holm, Simon Agner; Schramm, Andreas; Nielsen, Lars Peter

    2016-01-01

    ABSTRACT Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces with a highly variable speed of 0.5 ± 0.3 μm s−1 (mean ± standard deviation) and time between reversals of 155 ± 108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment. IMPORTANCE This study reports on the motility of cable bacteria, capable of transmitting electrons over centimeter distances. It gives us a new insight into their behavior in sediments and explains previously puzzling findings. Cable bacteria greatly influence their environment, and this article adds significantly to the body of knowledge about this organism. PMID:27084019

  19. Antibiotics for gram-positive organisms.

    PubMed

    Pagan, F S

    1981-01-01

    Most infections due to Gram-positive organisms can be treated with quite a small number of antibiotics. Penicillin, cloxacillin, and erythromycin should be enough to cover 90 per cent of Gram-positive infections. The relatively narrow spectrum of these drugs should be the incentive to prescribers to use them selectively, together with adequate bacteriological investigation, in order to achieve effective treatment with a minimum of disturbance to the patient's normal bacterial flora and without any other harmful side effects.

  20. Cytokinesis in Bacteria

    PubMed Central

    Errington, Jeffery; Daniel, Richard A.; Scheffers, Dirk-Jan

    2003-01-01

    Work on two diverse rod-shaped bacteria, Escherichia coli and Bacillus subtilis, has defined a set of about 10 conserved proteins that are important for cell division in a wide range of eubacteria. These proteins are directed to the division site by the combination of two negative regulatory systems. Nucleoid occlusion is a poorly understood mechanism whereby the nucleoid prevents division in the cylindrical part of the cell, until chromosome segregation has occurred near midcell. The Min proteins prevent division in the nucleoid-free spaces near the cell poles in a manner that is beginning to be understood in cytological and biochemical terms. The hierarchy whereby the essential division proteins assemble at the midcell division site has been worked out for both E. coli and B. subtilis. They can be divided into essentially three classes depending on their position in the hierarchy and, to a certain extent, their subcellular localization. FtsZ is a cytosolic tubulin-like protein that polymerizes into an oligomeric structure that forms the initial ring at midcell. FtsA is another cytosolic protein that is related to actin, but its precise function is unclear. The cytoplasmic proteins are linked to the membrane by putative membrane anchor proteins, such as ZipA of E. coli and possibly EzrA of B. subtilis, which have a single membrane span but a cytoplasmic C-terminal domain. The remaining proteins are either integral membrane proteins or transmembrane proteins with their major domains outside the cell. The functions of most of these proteins are unclear with the exception of at least one penicillin-binding protein, which catalyzes a key step in cell wall synthesis in the division septum. PMID:12626683

  1. Sampling bacteria with a laser

    NASA Astrophysics Data System (ADS)

    Schwarzwälder, Kordula; Rutschmann, Peter

    2014-05-01

    Water quality is a topic of high interest and it's getting more and more important due to climate change and the implementation of European Water Framework Directive (WFD). One point of interest here is the inflow of bacteria into a river caused by combined sewer overflows which lead untreated wastewater including bacteria directly into a river. These bacteria remain in the river for a certain time, they settle down and can be remobilised again. In our study we want to investigate these processes of sedimentation and resuspension and use the results for the development of a software module coupled with the software Flow3D. Thereby we should be able to simulate and therefore predict the water quality influenced by combined sewer overflows. Hence we need to get information about the bacteria transport and fate. We need to know about the size of the bacteria or of the bacteria clumps and the size of the particles the bacteria are attached to. The agglomerates lead to different characteristics and velocities of settlement. The timespan during this bacteria can be detected in the bulk phase depends on many factors like the intensity of UV light, turbidity of the water, the temperature of the water, if there are grazers and a lot more. The size, density and composition of the agglomerates is just a part of all these influencing factors, but it is extremely difficult to differ between the other effects if we have no information about the simple sedimentation in default of these basic information. However we have a big problem getting the data. The chaining between bacteria or bacteria and particles is not too strong, so filtering the water to get a sieving curve may destroy these connections. We did some experiments similar to PIV (particle image velocimetry) measurements and evaluated the pictures with a macro written for the software ImageJ. Doing so we were able to get the concentration of bacteria in the water and collect information about the size of the bacteria. We

  2. Synergy of nitric oxide and silver sulfadiazine against gram-negative, gram-positive, and antibiotic-resistant pathogens.

    PubMed

    Privett, Benjamin J; Deupree, Susan M; Backlund, Christopher J; Rao, Kavitha S; Johnson, C Bryce; Coneski, Peter N; Schoenfisch, Mark H

    2010-12-06

    The synergistic activity between nitric oxide (NO) released from diazeniumdiolate-modified proline (PROLI/NO) and silver(I) sulfadiazine (AgSD) was evaluated against Escherichia coli, Enterococcus faecalis, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis using a modified broth microdilution technique and a checkerboard-type assay. The combination of NO and AgSD was defined as synergistic when the fractional bactericidal concentration (FBC) was calculated to be <0.5. Gram-negative species were generally more susceptible to the individual antimicrobial agents than the Gram-positive bacteria, while Gram-positive bacteria were more susceptible to combination therapy. The in vitro synergistic activity of AgSD and NO observed against a range of pathogens strongly supports future investigation of this therapeutic combination, particularly for its potential use in the treatment of burns and chronic wounds.

  3. Effects of Ultraviolet Radiation on the Gram-positive marine bacterium Microbacterium maritypicum.

    PubMed

    Williams, Patrick D; Eichstadt, Shaundra L; Kokjohn, Tyler A; Martin, Eugene L

    2007-07-01

    Although extensive information is available on the effect ultraviolet (UV) radiation has on Gram-negative marine bacteria, there is a scarcity of data concerning UV radiation and Gram-positive marine bacteria. The focus of this paper is on Microbacterium maritypicum, with the Gram-negative Vibrio natriegens being used as a standard of comparison. M. maritypicum exhibited growth over a NaCl range of 0-1000 mM: , with optimum growth occurring between 0 and 400 mM: NaCl. In contrast, V. natriegens grew over a NaCl span of 250-1000 mM: , with best growth being observed between 250 and 600 mM: NaCl. UV radiation experiments were done using the medium with 250 mM: NaCl. For solar (UV-A and B) radiation and log-phase cells, M. maritypicum was determined to be three times more resistant than V. natriegens. For germicidal (UV-C) radiation, the pattern of resistance of the log-phase cells to the lethal effects of the radiation was even more pronounced, with the Gram-positive bacterium being more than 12 to 13 times more resistant. Similar data to the solar and germicidal log-phase UV kill curves were obtained for stationary-phase cells of both organisms. Photoreactivation was observed for both types of cells exposed to UV-C but none for cells treated with UV-A and B. When log phase cells of M.maritypicum were grown at 0.0 and 0.6 M: NaCl and exposed to UV-C radiation, no difference in survivorship patterns was noted from that of 0.25 M: NaCl grown cells. Although this study has only focused on two marine bacteria, our results indicate that the Gram-positive M. maritypicum could have a built-in advantage for survival in some marine ecosystems.

  4. pH-switchable bacteria detection using zwitterionic fluorescent polymer.

    PubMed

    Khoerunnisa; Mazrad, Zihnil A I; In, Insik; Park, Sung Young

    2017-04-15

    A zwitterionic fluorescent polymer with high sensitivity to pH changes was constructed for the detection and imaging of both gram-positive and gram-negative pathogenic bacteria. A detection probe using the zwitterionic fluorescent polymer was synthesized with single boron dipyrromethane (BODIPY) as a hydrophobic dye and bromoethane as a cationic group for bacteria binding with conjugated poly(sulfobetaine methacrylate) (BOD/BE-PSM). The zwitterionic fluorescent polymer bound to bacteria through ionic complexes between anionic groups on the bacterial surface and cationic BOD/BE-PSM groups after 1h incubation. This finding demonstrated that the fluorescence on/off system operated via changes in the hydrophilic and hydrophobic nature of the zwitterionic fluorescent polymer, depending on the pH (6.0, 7.4, or 9.0), at a fixed 1mg/mL polymer concentration. The system showed good stability with a limit of detection of 1mg/mL. Quenching caused by interactions with the hydrophobic BODIPY dye was also observed, enabling bacteria detection, as shown by fluorescence spectroscopy and confocal microscopy images. Our results indicated that the zwitterionic fluorescent polymer could be used to detect bacteria over a wide range of pH values.

  5. Adherence of bacteria to heart valves in vitro.

    PubMed

    Gould, K; Ramirez-Ronda, C H; Holmes, R K; Sanford, J P

    1975-12-01

    The abilities of 14 strains of aerobic gram-positive cocci and gram-negative bacilli to adhere in vitro to human or canine aortic valve leaflets were compared. 2-mm sections of excised valve leaflets were obtained by punch biopsy and were incubated under standardized conditions in suspensions of bacteria. Valve sections were subsequently washed and homogenized, and quantitative techniques were used to determine the proportions of bacteria from the initial suspensions that had adhered to the valve sections. Comparable results were obtained when these adherence ratios were determined by two independent methods based either on measurements of bacterial viability or of radioactivity in 51Cr-labeled bacteria. For each bacterial strain, the adherence ratio was constant over a wide range of concentrations of bacteria in the incubation medium. Strains of enterococci, viridans streptococci, coagulase-positive and coagulase-negative staphylococci and Pseudomonas aeruginosa (adherence ratios 0.003-0.017) were found to adhere more readily to valve sections than strains of Escherichia coli and Klebsiella pneumoniae (adherence ratios 0.00002-0.00004). The organisms that most frequently cause bacterial endocarditis were found to adhere best to heart valves in vitro, suggesting that the ability to adhere to valvular endothelium may be an important or essential charcteristic of bacteria that cause endocarditis in man.

  6. Potent Antibacterial Nanoparticles against Biofilm and Intracellular Bacteria

    NASA Astrophysics Data System (ADS)

    Mu, Haibo; Tang, Jiangjiang; Liu, Qianjin; Sun, Chunli; Wang, Tingting; Duan, Jinyou

    2016-01-01

    The chronic infections related to biofilm and intracellular bacteria are always hard to be cured because of their inherent resistance to both antimicrobial agents and host defenses. Herein we develop a facile approach to overcome the above conundrum through phosphatidylcholine-decorated Au nanoparticles loaded with gentamicin (GPA NPs). The nanoparticles were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS) and ultraviolet‑visible (UV‑vis) absorption spectra which demonstrated that GPA NPs with a diameter of approximately 180 nm were uniform. The loading manner and release behaviors were also investigated. The generated GPA NPs maintained their antibiotic activities against planktonic bacteria, but more effective to damage established biofilms and inhibited biofilm formation of pathogens including Gram-positive and Gram-negative bacteria. In addition, GPA NPs were observed to be nontoxic to RAW 264.7 cells and readily engulfed by the macrophages, which facilitated the killing of intracellular bacteria in infected macrophages. These results suggested GPA NPs might be a promising antibacterial agent for effective treatment of chronic infections due to microbial biofilm and intracellular bacteria.

  7. Silver enhances antibiotic activity against gram-negative bacteria.

    PubMed

    Morones-Ramirez, Jose Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  8. Motility enhancement of bacteria actuated microstructures using selective bacteria adhesion.

    PubMed

    Park, Sung Jun; Bae, Hyeoni; Kim, Joonhwuy; Lim, Byungjik; Park, Jongoh; Park, Sukho

    2010-07-07

    Microrobots developed by the technological advances are useful for application in various fields. Nevertheless, they have limitations with respect to their actuator and motility. Our experiments aim to determine whether a bioactuator using the flagellated bacteria Serratia marcescens would enhance the motility of microrobots. In this study, we investigate that the flagellated bacteria Serratia marcescens could be utilized as actuators for SU-8 microstructures by bovine serum albumin-selective patterning. Firstly, we analyze the adherence of the bacteria to the SU-8 micro cube by selective patterning using 5% BSA. The results show that number of attached-bacteria in the uncoated side of the selectively- coated micro cube with BSA increased by 200% compared with that in all sides of the non treated micro cube. Secondly, the selectively BSA coated micro cube had 210% higher motility than the uncoated micro cube. The results revealed that the bacteria patterned to a specific site using 5% BSA significantly increase the motility of the bacteria actuated microstructure.

  9. Chlorine resistance patterns of bacteria from two drinking water distribution systems.

    PubMed Central

    Ridgway, H F; Olson, B H

    1982-01-01

    The relative chlorine sensitivities of bacteria isolated from chlorinated and unchlorinated drinking water distribution systems were compared by two independent methods. One method measured the toxic effect of free chlorine on bacteria, whereas the other measured the effect of combined chlorine. Bacteria from the chlorinated system were more resistant to both the combined and free forms of chlorine than those from the unchlorinated system, suggesting that there may be selection for more chlorine-tolerant microorganisms in chlorinated waters. Bacteria retained on the surfaces of 2.0-microns Nuclepore membrane filters were significantly more resistant to free chlorine compared to the total microbial population recovered on 0.2-micron membrane filters, presumably because aggregated cells or bacteria attached to suspended particulate matter exhibit more resistance than unassociated microorganisms. In accordance with this hypothesis, scanning electron microscopy of suspended particulate matter from the water samples revealed the presence of attached bacteria. The most resistant microorganisms were able to survive a 2-min exposure to 10 mg of free chlorine per liter. These included gram-positive spore-forming bacilli, actinomycetes, and some micrococci. The most sensitive bacteria were readily killed by chlorine concentrations of 1.0 mg liter-1 or less, and included most gram-positive micrococci, Corynebacterium/Arthrobacter, Klebsiella, Pseudomonas/Alcaligenes, Flavobacterium/Moraxella, and Acinetobacter. Images PMID:7149722

  10. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria.

    PubMed

    Zhao, Lei; Zhang, Heyan; Hao, Tianyang; Li, Siran

    2015-11-15

    The objective of this study was to evaluate the antibacterial activities of sugar fatty acid esters, with different fatty acid and saccharide moieties, against five food-related bacteria including Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. Sucrose monocaprate showed the strongest antibacterial activity against all tested bacteria, especially Gram-positive bacteria. The minimum inhibitory concentrations (MICs) for Gram-positive bacteria and Gram-negative bacteria were 2.5 and 10 mM, respectively. The minimum bactericidal concentrations (MBCs) for Gram-positive bacteria were 10 mM. Time-kill assay also showed that sucrose monocaprate significantly inhibit the growth of tested bacteria. The permeability of the cell membrane and intracellular proteins were both changed by sucrose monocaprate according to cell constituents' leakage, SDS-PAGE and scanning electron microscope assays. It is suggested that sucrose monocaprate, with both emulsifying and antibacterial activities, have a potential to serve as a safe multifunctional food additive in food industries.

  11. Bacteriocins of lactic acid bacteria: extending the family.

    PubMed

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-04-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceous antimicrobial molecules with a diverse genetic origin, posttranslationally modified or not, that can help the producer organism to outcompete other bacterial species. In this review, we focus on the various types of bacteriocins that can be found in LAB and the organization and regulation of the gene clusters responsible for their production and biosynthesis, and consider the food applications of the prototype bacteriocins from LAB. Furthermore, we propose a revised classification of bacteriocins that can accommodate the increasing number of classes reported over the last years.

  12. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  13. Targeting bacteria via iminoboronate chemistry of amine-presenting lipids.

    PubMed

    Bandyopadhyay, Anupam; McCarthy, Kelly A; Kelly, Michael A; Gao, Jianmin

    2015-03-12

    Synthetic molecules that target specific lipids serve as powerful tools for understanding membrane biology and may also enable new applications in biotechnology and medicine. For example, selective recognition of bacterial lipids may give rise to novel antibiotics, as well as diagnostic methods for bacterial infection. Currently known lipid-binding molecules primarily rely on noncovalent interactions to achieve lipid selectivity. Here we show that targeted recognition of lipids can be realized by selectively modifying the lipid of interest via covalent bond formation. Specifically, we report an unnatural amino acid that preferentially labels amine-presenting lipids via iminoboronate formation under physiological conditions. By targeting phosphatidylethanolamine and lysylphosphatidylglycerol, the two lipids enriched on bacterial cell surfaces, the iminoboronate chemistry allows potent labelling of Gram-positive bacteria even in the presence of 10% serum, while bypassing mammalian cells and Gram-negative bacteria. The covalent strategy for lipid recognition should be extendable to other important membrane lipids.

  14. Antibacterial Compounds from Marine Bacteria, 2010-2015.

    PubMed

    Schinke, Claudia; Martins, Thamires; Queiroz, Sonia C N; Melo, Itamar S; Reyes, Felix G R

    2017-03-31

    This review summarizes the reports on antibacterial compounds that have been obtained from marine-derived bacteria during the period 2010-2015. Over 50 active compounds were isolated during this period, most of which (69%) were obtained from Actinobacteria. Several compounds were already known, such as etamycin A (11) and nosiheptide (65), and new experiments with them showed some previously undetected antibacterial activities, highlighting the fact that known natural products may be an important source of new antibacterial leads. New broad-spectrum antibacterial compounds were reported with activity against antibiotic resistant Gram-positive and Gram-negative bacteria. Anthracimycin (33), kocurin (66), gageotetrins A-C (72-74), and gageomacrolactins 1-3 (86-88) are examples of compounds that display promising properties and could be leads to new antibiotics. A number of microbes produced mixtures of metabolites sharing similar chemical scaffolds, and structure-activity relationships are discussed.

  15. Targeting Bacteria via Iminoboronate Chemistry of Amine-Presenting Lipids

    PubMed Central

    Bandyopadhyay, Anupam; McCarthy, Kelly A.; Kelly, Michael A.; Gao, Jianmin

    2015-01-01

    Synthetic molecules that target specific lipids serve as powerful tools for understanding membrane biology and may also enable new applications in biotechnology and medicine. For example, selective recognition of bacterial lipids may give rise to novel antibiotics, as well as diagnostic methods for bacterial infection. Currently known lipid-binding molecules primarily rely on noncovalent interactions to achieve lipid selectivity. Here we show that targeted recognition of lipids can be realized by selectively modifying the lipid of interest via covalent bond formation. Specifically, we report an unnatural amino acid that preferentially labels amine-presenting lipids via iminoboronate formation under physiological conditions. By targeting phosphatidylethanolamine and lysylphosphatidylglycerol, the two lipids enriched on bacterial cell surfaces, the iminoboronate chemistry allows potent labeling of Gram-positive bacteria even in presence of 10% serum, while bypassing mammalian cells and Gram-negative bacteria. The covalent strategy for lipid recognition should be extendable to other important membrane lipids. PMID:25761996

  16. Biopreservation by lactic acid bacteria.

    PubMed

    Stiles, M E

    1996-10-01

    Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Lactic acid bacteria have a major potential for use in biopreservation because they are safe to consume and during storage they naturally dominate the microflora of many foods. In milk, brined vegetables, many cereal products and meats with added carbohydrate, the growth of lactic acid bacteria produces a new food product. In raw meats and fish that are chill stored under vacuum or in an environment with elevated carbon dioxide concentration, the lactic acid bacteria become the dominant population and preserve the meat with a "hidden' fermentation. The same applies to processed meats provided that the lactic acid bacteria survive the heat treatment or they are inoculated onto the product after heat treatment. This paper reviews the current status and potential for controlled biopreservation of foods.

  17. Environmental sources of fecal bacteria

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara N.; Ishii, Satoshi; Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    This chapter provides a review of the research on environmental occurrences of faecal indicator bacteria in a variety of terrestrial and aquatic habitats under different geographic and climatic conditions, and discusses how these external sources may affect surface water quality.

  18. Macrophage elastase kills bacteria within murine macrophages.

    PubMed

    Houghton, A McGarry; Hartzell, William O; Robbins, Clinton S; Gomis-Rüth, F Xavier; Shapiro, Steven D

    2009-07-30

    Macrophages are aptly positioned to function as the primary line of defence against invading pathogens in many organs, including the lung and peritoneum. Their ability to phagocytose and clear microorganisms has been well documented. Macrophages possess several substances with which they can kill bacteria, including reactive oxygen species, nitric oxide, and antimicrobial proteins. We proposed that macrophage-derived proteinases may contribute to the antimicrobial properties of macrophages. Macrophage elastase (also known as matrix metalloproteinase 12 or MMP12) is an enzyme predominantly expressed in mature tissue macrophages and is implicated in several disease processes, including emphysema. Physiological functions for MMP12 have not been described. Here we show that Mmp12(-/-) mice exhibit impaired bacterial clearance and increased mortality when challenged with both gram-negative and gram-positive bacteria at macrophage-rich portals of entry, such as the peritoneum and lung. Intracellular stores of MMP12 are mobilized to macrophage phagolysosomes after the ingestion of bacterial pathogens. Once inside phagolysosomes, MMP12 adheres to bacterial cell walls where it disrupts cellular membranes resulting in bacterial death. The antimicrobial properties of MMP12 do not reside within its catalytic domain, but rather within the carboxy-terminal domain. This domain contains a unique four amino acid sequence on an exposed beta loop of the protein that is required for the observed antimicrobial activity. The present study represents, to our knowledge, the first report of direct antimicrobial activity by a matrix metallopeptidase, and describes a new antimicrobial peptide that is sequentially and structurally unique in nature.

  19. Fewer Bacteria Adhere to Softer Hydrogels

    PubMed Central

    Kolewe, Kristopher W.; Peyton, Shelly R.; Schiffman, Jessica D.

    2015-01-01

    Clinically, biofilm-associated infections commonly form on intravascular catheters and other hydrogel surfaces. The overuse of antibiotics to treat these infections has led to the spread of antibiotic resistance and underscores the importance of developing alternative strategies that delay the onset of biofilm formation. Previously, it has been reported that during surface contact, bacteria can detect surfaces through subtle changes in the function of their motors. However, how the stiffness of a polymer hydrogel influences the initial attachment of bacteria is unknown. Systematically, we investigated poly(ethylene glycol) dimethacrylate (PEGDMA) and agar hydrogels that were twenty times thicker than the cumulative size of bacterial cell appendages, as a function of Young’s moduli. Soft (44.05 – 308.5 kPa), intermediate (1495 – 2877 kPa), and stiff (5152 – 6489 kPa) hydrogels were synthesized. Escherichia coli and Staphylococcus aureus attachment onto the hydrogels was analyzed using confocal microscopy after 2 and 24 hr incubation periods. Independent of hydrogel chemistry and incubation time, E. coli and S. aureus attachment correlated positively to increasing hydrogel stiffness. For example, after a 24 hr incubation period, there were 52% and 82% less E. coli adhered to soft PEGDMA hydrogels, than to the intermediate and stiff PEGDMA hydrogels, respectively. A 62% and 79% reduction in the area coverage by the Gram-positive microbe S. aureus occurred after 24 hr incubation on the soft versus intermediate and stiff PEGDMA hydrogels. We suggest that hydrogel stiffness is an easily tunable variable that, potentially, could be used synergistically with traditional antimicrobial strategies to reduce early bacterial adhesion, and therefore the occurrence of biofilm-associated infections. PMID:26291308

  20. The Mechanical World of Bacteria

    PubMed Central

    Persat, Alexandre; Nadell, Carey D.; Kim, Minyoung Kevin; Ingremeau, Francois; Siryaporn, Albert; Drescher, Knut; Wingreen, Ned S.; Bassler, Bonnie L.; Gitai, Zemer; Stone, Howard A.

    2015-01-01

    Summary In the wild, bacteria are predominantly associated with surfaces as opposed to existing as free-swimming, isolated organisms. They are thus subject to surface-specific mechanics including hydrodynamic forces, adhesive forces, the rheology of their surroundings and transport rules that define their encounters with nutrients and signaling molecules. Here, we highlight the effects of mechanics on bacterial behaviors on surfaces at multiple length scales, from single bacteria to the development of multicellular bacterial communities such as biofilms. PMID:26000479

  1. [Nosocomial bacteria: profiles of resistance].

    PubMed

    Sow, A I

    2005-01-01

    Nosocomial infections may be parasitic, mycosal or viral, but bacterial infections are more frequent. They are transmitted by hands or by oral route. This paper describes the main bacteria responsive of nosocomial infections, dominated by Staphylococcus, enterobacteria and Pseudomonas aeruginosa. The author relates natural and savage profiles of these bacterias, characterized by multiresistance due to large use of antibiotics. Knowledge of natural resistance and verification of aquired resistance permit to well lead probabilist antibiotherapy.

  2. Bioreporter bacteria for landmine detection

    SciTech Connect

    Burlage, R.S.; Youngblood, T.; Lamothe, D.

    1998-04-01

    Landmines (and other UXO) gradually leak explosive chemicals into the soil at significant concentrations. Bacteria, which have adapted to scavenge low concentrations of nutrients, can detect these explosive chemicals. Uptake of these chemicals results in the triggering of specific bacterial genes. The authors have created genetically recombinant bioreporter bacteria that detect small concentrations of energetic chemicals. These bacteria are genetically engineered to produce a bioluminescent signal when they contact specific explosives. A gene for a brightly fluorescent compound can be substituted for increased sensitivity. By finding the fluorescent bacteria, you find the landmine. Detection might be accomplished using stand-off illumination of the minefield and GPS technology, which would result in greatly reduced risk to the deminers. Bioreporter technology has been proven at the laboratory scale, and will be tested under field conditions in the near future. They have created a bacterial strain that detects sub-micromolar concentrations of o- and p-nitrotoluene. Related bacterial strains were produced using standard laboratory protocols, and bioreporters of dinitrotoluene and trinitrotoluene were produced, screening for activity with the explosive compounds. Response time is dependent on the growth rate of the bacteria. Although frill signal production may require several hours, the bacteria can be applied over vast areas and scanned quickly, producing an equivalent detection speed that is very fast. This technology may be applicable to other needs, such as locating buried explosives at military and ordnance/explosive manufacturing facilities.

  3. Filtrating forms of soil bacteria

    NASA Astrophysics Data System (ADS)

    Van'kova, A. A.; Ivanov, P. I.; Emtsev, V. T.

    2013-03-01

    Filtrating (ultramicroscopic) forms (FF) of bacteria were studied in a soddy-podzolic soil and the root zone of alfalfa plants as part of populations of the most widespread physiological groups of soil bacteria. FF were obtained by filtering soil solutions through membrane filters with a pore diameter of 0.22 μm. It was established that the greater part of the bacteria in the soil and in the root zone of the plants has an ultramicroscopic size: the average diameter of the cells is 0.3 μm, and their length is 0.6 μm, which is significantly less than the cell size of banal bacteria. The number of FF varies within a wide range depending on the physicochemical conditions of the habitat. The FF number's dynamics in the soil is of a seasonal nature; i.e., the number of bacteria found increases in the summer and fall and decreases in the winter-spring period. In the rhizosphere of the alfalfa, over the vegetation period, the number of FF and their fraction in the total mass of the bacteria increase. A reverse tendency is observed in the rhizoplane. The morphological particularities (identified by an electron microscopy) and the nature of the FF indicate their physiological activity.

  4. Gram-typing of mastitis bacteria in milk samples using flow cytometry.

    PubMed

    Langerhuus, S N; Ingvartsen, K L; Bennedsgaard, T W; Røntved, C M

    2013-01-01

    Fast identification of pathogenic bacteria in milk samples from cows with clinical mastitis is central to proper treatment. In Denmark, time to bacterial diagnosis is typically 24 to 48 h when using traditional culturing methods. The PCR technique provides a faster and highly sensitive identification of bacterial pathogens, although shipment of samples to diagnostic laboratories delays treatment decisions. Due to the lack of fast on-site tests that can identify the causative pathogens, antibiotic treatments are often initiated before bacterial identification. The present study describes a flow cytometry-based method, which can detect and distinguish gram-negative and gram-positive bacteria in mastitis milk samples. The differentiation was based on bacterial fluorescence intensities upon labeling with biotin-conjugated wheat germ agglutinin and acridine orange. Initially 19 in-house bacterial cultures (4 gram-negative and 15 gram-positive strains) were analyzed, and biotin-conjugated wheat germ agglutinin and acridine orange florescence intensities were determined for gram-negative and gram-positive bacteria, respectively. Fluorescence cut-off values were established based on receiver operating characteristic curves for the 19 bacterial cultures. The method was then tested on 53 selected mastitis cases obtained from the department biobank (milk samples from 6 gram-negative and 47 gram-positive mastitis cases). Gram-negative bacteria in milk samples were detected with a sensitivity of 1 and a specificity of 0.74, when classification was based on the previously established cut-off values. However, when receiver operating characteristic curves were constructed for the 53 mastitis cases, results indicate that a sensitivity and specificity of 1 could be reached if cut-off values were reduced. This flow cytometry-based technique could potentially provide dairy farmers and attending veterinarians with on-site information on bacterial gram-type and prevent ineffective

  5. Isolation and Identification of Concrete Environment Bacteria

    NASA Astrophysics Data System (ADS)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  6. [Strategies for management of resistant Gram-positive infections: from S. pneumoniae to MRSA].

    PubMed

    Cristini, Francesco

    2007-09-01

    S. pneumoniae and methicillin-resistant S. aureus are the main Gram-positive pathogens responsible for severe infections. In the context of community infections S. pneumoniae is the leading Gram-positive pathogen causing severe infections such as purulent meningitis and pneumonia. The typical pattern of antibiotic sensitivity of this bacterium, frequently resistant to macrolides and with significantly reduced sensitivity to penicillin, is only a relative therapeutic problem in that the preserved sensitivity to third-generation cephalosporins and respiratory fluoroquinolones is sufficient to make these antibiotics valid therapeutic solutions without having to use the latest generation of drugs. On the other hand, methicillin-resistant S. aureus, one of the main bacteria responsible for nosocomial infections such as bacteraemia and respiratory tract infections in severely ill patients, is a more challenging therapeutic problem since, historically, the therapeutic options available in clinical practice have been fewer and essentially limited to glycopeptides. The recent availability of oxazolidinones and the pharmacologically more rational and appropriate use of the glycopeptides have undoubtedly brought substantial benefits; the imminent introduction of new molecules active against Gram-positive pathogens will certainly make an important contribution, although their use in clinical practice will need to be monitored.

  7. Evolving resistance among Gram-positive pathogens.

    PubMed

    Munita, Jose M; Bayer, Arnold S; Arias, Cesar A

    2015-09-15

    Antimicrobial therapy is a key component of modern medical practice and a cornerstone for the development of complex clinical interventions in critically ill patients. Unfortunately, the increasing problem of antimicrobial resistance is now recognized as a major public health threat jeopardizing the care of thousands of patients worldwide. Gram-positive pathogens exhibit an immense genetic repertoire to adapt and develop resistance to virtually all antimicrobials clinically available. As more molecules become available to treat resistant gram-positive infections, resistance emerges as an evolutionary response. Thus, antimicrobial resistance has to be envisaged as an evolving phenomenon that demands constant surveillance and continuous efforts to identify emerging mechanisms of resistance to optimize the use of antibiotics and create strategies to circumvent this problem. Here, we will provide a broad perspective on the clinical aspects of antibiotic resistance in relevant gram-positive pathogens with emphasis on the mechanistic strategies used by these organisms to avoid being killed by commonly used antimicrobial agents.

  8. Rapid killing of bacteria by a new type of photosensitizer.

    PubMed

    Zhang, Yaxin; Zheng, Ke; Chen, Zhuo; Chen, Jincan; Hu, Ping; Cai, Linrong; Iqbal, Zafar; Huang, Mingdong

    2017-03-01

    Photodynamic antimicrobial chemotherapy (PACT) uses non-traditional mechanisms (free radicals) and is a highly advocated method with promise of inactivating drug-resistance bacteria for local infections. However, there is no related drug used in clinical practice yet. Therefore, new photosensitizers for PACT are under active development. Here, we report the synthesis of a series of photosensitizers with variable positive charges (ZnPc(TAP)4(n+), n = 0, 4, 8, 12) and their inactivation against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The binding kinetics of ZnPc(TAP)4(n+) to bacteria were measured by flow cytometer. Reactive oxygen species (ROS) generation mechanism of the photosensitizers was studied. The toxicity of these compounds to human blood cells was also evaluated. These compounds showed negligible toxicity against human erythocytes but potent bactericidal effects. The compound with 8 positive charges, ZnPc(TAP)4(8+), turned out to have the strongest antibacterial effect among this series of compounds, giving IC50 value of 59 nM at a light dosage of 5 J/cm(2) toward E. coli. For a multi-resistant E. coli strain, ZnPc(TAP)4(8+) decreased the bacteria load by 1000-fold at a concentration of 1 μM. Interestingly, ZnPc(TAP)4(12+), instead of ZnPc(TAP)4(8+), exhibited the highest amount of binding to bacteria. Flow cytometry studies showed that all PSs have fast binding onto bacteria, reaching saturated binding within 5 min. Mechanistically, ZnPc(TAP)4(12+) generated ROS primarily via Type I mechanism, while ZnPc(TAP)4(4+) or ZnPc(TAP)4(8+) created ROS by both type I and type II mechanisms. ZnPc(TAP)4(n+) are highly potent, rapid-acting and non-toxic photosensitizers capable of inactivating bacteria.

  9. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.

    PubMed

    Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan

    2002-10-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.

  10. Daptomycin: an evidence-based review of its role in the treatment of Gram-positive infections

    PubMed Central

    Gonzalez-Ruiz, Armando; Seaton, R Andrew; Hamed, Kamal

    2016-01-01

    Infections caused by Gram-positive pathogens remain a major public health burden and are associated with high morbidity and mortality. Increasing rates of infection with Gram-positive bacteria and the emergence of resistance to commonly used antibiotics have led to the need for novel antibiotics. Daptomycin, a cyclic lipopeptide with rapid bactericidal activity against a wide range of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus, has been shown to be effective and has a good safety profile for the approved indications of complicated skin and soft tissue infections (4 mg/kg/day), right-sided infective endocarditis caused by S. aureus, and bacteremia associated with complicated skin and soft tissue infections or right-sided infective endocarditis (6 mg/kg/day). Based on its pharmacokinetic profile and concentration-dependent bactericidal activity, high-dose (>6 mg/kg/day) daptomycin is considered an important treatment option in the management of various difficult-to-treat Gram-positive infections. Although daptomycin resistance has been documented, it remains uncommon despite the increasing use of daptomycin. To enhance activity and to minimize resistance, daptomycin in combination with other antibiotics has also been explored and found to be beneficial in certain severe infections. The availability of daptomycin via a 2-minute intravenous bolus facilitates its outpatient administration, providing an opportunity to reduce risk of health care-associated infections, improve patient satisfaction, and minimize health care costs. Daptomycin, not currently approved for use in the pediatric population, has been shown to be widely used for treating Gram-positive infections in children. PMID:27143941

  11. Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology.

    PubMed

    Prudêncio, Cláudia Vieira; Dos Santos, Miriam Teresinha; Vanetti, Maria Cristina Dantas

    2015-09-01

    Bacteriocins are ribosomally synthesized peptides that have bacteriostatic or bactericidal effects on other bacteria. The use of bacteriocins has emerged as an important strategy to increase food security and to minimize the incidence of foodborne diseases, due to its minimal impact on the nutritional and sensory properties of food products. Gram-negative bacteria are naturally resistant to the action of bacteriocins produced by Gram-positive bacteria, which are widely explored in foods. However, these microorganisms can be sensitized by mild treatments, such as the use of chelating agents, by treatment with plant essential oils or by physical treatments such as heating, freezing or high pressure processing. This sensitization is important in food microbiology, because most pathogens that cause foodborne diseases are Gram-negative bacteria. However, the effectiveness of these treatments is influenced by several factors, such as pH, temperature, the composition of the food and target microbiota. In this review, we comment on the main methods used for the sensitization of Gram-negative bacteria, especially Salmonella, to improve the action of bacteriocins produced by Gram-positive bacteria.

  12. Microgravity effects on magnetotactic bacteria

    NASA Astrophysics Data System (ADS)

    Urban, James E.

    1998-01-01

    An unusual group of iron bacteria has recently been discovered which form inclusion bodies containing a form of iron oxide known as magnetite (ferrosoferric oxide, Fe3O4.) The inclusions are of a nano-particle size, are encased within a protein envelope, and are called magnetosomes. Magnetosomes are arranged adjacent to one another and parallel to the long axis of the cell such that cells appear to contain an electron-dense string of beads. The bacteria containing magnetosomes exhibit metal reductase activity, an activity critical to element recycling in nature, and the inclusions are a means for the organism to sequester reduced iron atoms and thereby keep iron reduction stoichiometry favorable. The magnetosomes also allow the bacteria to display magnetotaxis, which is movement in response to a magnetic field, such as the north or south magnetic poles. It is presumed that the bacteria use the alignment to the earth's magnetic field to orient themselves downward towards sediments where the habitat is favorable to their growth and metabolism. The comparatively few species of these bacteria isolated in the northern and southern hemispheres respond to magnetic north and south respectively, or alternatively respond only to the magnetic pole of the hemisphere from which they were isolated. This apparent dichotomy in response to magnetism could mean that the organisms are not responding to magnetism, per se, but instead are using the magnetosomes to respond to gravity. To resolve if magnetosomes respond to gravity in addition to magnetism we have used Magnetospirillum magnetotacticum, a well-studied magnetotactic bacterium isolated in the northern hemisphere, to examine magnetotactic behavior in the absence of gravity. Experiments to compare the orientation of Magnetospirillum magnetotacticum to north- or south-pole magnets were conducted in normal gravity and in the microgravity environments aboard the Space Shuttle and Space Station MIR. In each of the microgravity

  13. DNA Polymerases of Low-GC Gram-Positive Eubacteria: Identification of the Replication-Specific Enzyme Encoded by dnaE

    PubMed Central

    Barnes, Marjorie H.; Miller, Shelley D.; Brown, Neal C.

    2002-01-01

    dnaE, the gene encoding one of the two replication-specific DNA polymerases (Pols) of low-GC-content gram-positive bacteria (E. Dervyn et al., Science 294:1716-1719, 2001; R. Inoue et al., Mol. Genet. Genomics 266:564-571, 2001), was cloned from Bacillus subtilis, a model low-GC gram-positive organism. The gene was overexpressed in Escherichia coli. The purified recombinant product displayed inhibitor responses and physical, catalytic, and antigenic properties indistinguishable from those of the low-GC gram-positive-organism-specific enzyme previously named DNA Pol II after the polB-encoded DNA Pol II of E. coli. Whereas a polB-like gene is absent from low-GC gram-positive genomes and whereas the low-GC gram-positive DNA Pol II strongly conserves a dnaE-like, Pol III primary structure, it is proposed that it be renamed DNA polymerase III E (Pol III E) to accurately reflect its replicative function and its origin from dnaE. It is also proposed that DNA Pol III, the other replication-specific Pol of low-GC gram-positive organisms, be renamed DNA polymerase III C (Pol III C) to denote its origin from polC. By this revised nomenclature, the DNA Pols that are expressed constitutively in low-GC gram-positive bacteria would include DNA Pol I, the dispensable repair enzyme encoded by polA, and the two essential, replication-specific enzymes Pol III C and Pol III E, encoded, respectively, by polC and dnaE. PMID:12081953

  14. Antibiotic-producing bacteria from stag beetle mycangia.

    PubMed

    Miyashita, Atsushi; Hirai, Yuuki; Sekimizu, Kazuhisa; Kaito, Chikara

    2015-02-01

    The search for new antibiotics or antifungal agents is crucial for the chemotherapies of infectious diseases. The limited resource of soil bacteria makes it difficult to discover such new drug candidate. We, therefore, focused on another bacterial resource than soil bacteria, the microbial flora of insect species. In the present study, we isolated 40 strains of bacteria and fungi from the mycangia of three species of stag beetle, Dorcus hopei binodulosus, Dorcus rectus, and Dorcus titanus pilifer. We identified those species with their ribosomal DNA sequences, and revealed that Klebsiella spp. are the most frequent symbiont in the stag beetle mycangia. We examined whether these microorganisms produce antibiotics against a Gram-negative bacterium, Escherichia coli, a Gram-positive bacterium, Staphylococcus aureus, or a fungus, Cryptococcus neoformans. Culture supernatants from 33, 29, or 18 strains showed antimicrobial activity against E. coli, S. aureus, or C. neoformans, respectively. These findings suggest that bacteria present in the mycangia of stag beetles are useful resources for screening novel antibiotics.

  15. Characteristics of airborne bacteria in Mumbai urban environment.

    PubMed

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM.

  16. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria

    PubMed Central

    Chahales, Peter; Thanassi, David G.

    2015-01-01

    Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities such as biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hairlike fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections. PMID:26542038

  17. Chemical signature of magnetotactic bacteria.

    PubMed

    Amor, Matthieu; Busigny, Vincent; Durand-Dubief, Mickaël; Tharaud, Mickaël; Ona-Nguema, Georges; Gélabert, Alexandre; Alphandéry, Edouard; Menguy, Nicolas; Benedetti, Marc F; Chebbi, Imène; Guyot, François

    2015-02-10

    There are longstanding and ongoing controversies about the abiotic or biological origin of nanocrystals of magnetite. On Earth, magnetotactic bacteria perform biomineralization of intracellular magnetite nanoparticles under a controlled pathway. These bacteria are ubiquitous in modern natural environments. However, their identification in ancient geological material remains challenging. Together with physical and mineralogical properties, the chemical composition of magnetite was proposed as a promising tracer for bacterial magnetofossil identification, but this had never been explored quantitatively and systematically for many trace elements. Here, we determine the incorporation of 34 trace elements in magnetite in both cases of abiotic aqueous precipitation and of production by the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1. We show that, in biomagnetite, most elements are at least 100 times less concentrated than in abiotic magnetite and we provide a quantitative pattern of this depletion. Furthermore, we propose a previously unidentified method based on strontium and calcium incorporation to identify magnetite produced by magnetotactic bacteria in the geological record.

  18. Commensal bacteria and cutaneous immunity.

    PubMed

    Nakamizo, Satoshi; Egawa, Gyohei; Honda, Tetsuya; Nakajima, Saeko; Belkaid, Yasmine; Kabashima, Kenji

    2015-01-01

    The skin is the human body's largest organ and is home to a diverse and complex variety of innate and adaptive immune functions that protect against pathogenic invasion. Recent studies have demonstrated that cutaneous commensal bacteria modulated the host immune system. For example, Staphylococcus epidermidis, a skin commensal bacterium, has been demonstrated to induce cutaneous interferon (IFN)-γ- and interleukin (IL)-17A-producing T cells. In addition, cutaneous microbiota changes occur in the chronic inflammatory skin disorders, such as atopic dermatitis, and may influence the activity of skin diseases. In this article, we will review the recent findings related to the interactions of the commensal bacteria with skin homeostasis and discuss the role of the dysbiosis of these bacteria in the pathogenesis of skin diseases.

  19. Genetic transfer in acidophilic bacteria

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Bulmer, D.; Ward, T.E.

    1990-01-01

    There is increasing interest in the use of microorganisms to recover metals from ores, as well as to remove sulfur from coal. These so-called bioleaching processes are mediated by a number of bacteria. The best-studied of these organisms are acidophiles including Thiobacillus and Acidiphilium species. Our laboratory has focused on developing genetic strategies to allow the manipulation of acidophilic bacteria to improve and augment their utility in large scale operations. We have recently been successful in employing conjugation for interbacterial transfer of genetic information, as well as in directly transforming Acidiphilium by use of electroporation. We are now testing the properties of IncPl, IncW and IncQ plasmid vectors in Acidiphilium to determine their relative usefulness in routine manipulation of acidophiles and transfer between organisms. This study also allows us to determine the natural ability of these bacteria to transfer genetic material amongst themselves in their particular environment. 21 refs., 3 figs., 2 tabs.

  20. Methylotrophic bacteria in sustainable agriculture.

    PubMed

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  1. Symmetrically Substituted Xanthone Amphiphiles Combat Gram-Positive Bacterial Resistance with Enhanced Membrane Selectivity.

    PubMed

    Lin, Shuimu; Koh, Jun-Jie; Aung, Thet Tun; Lim, Fanghui; Li, Jianguo; Zou, Hanxun; Wang, Lin; Lakshminarayanan, Rajamani; Verma, Chandra; Wang, Yingjun; Tan, Donald T H; Cao, Derong; Beuerman, Roger W; Ren, Li; Liu, Shouping

    2017-02-23

    This is the first report of the design of a new series of symmetric xanthone derivatives that mimic antimicrobial peptides using a total synthesis approach. This novel design is advantageous because of its low cost, synthetic simplicity and versatility, and easy tuning of amphiphilicity by controlling the incorporated cationic and hydrophobic moieties. Two water-soluble optimized compounds, 6 and 18, showed potent activities against Gram-positive bacteria, including MRSA and VRE (MICs = 0.78-6.25 μg/mL) with a rapid bactericidal effect, low toxicity, and no emergence of drug resistance. Both compounds demonstrated enhanced membrane selectivity that was higher than those of most membrane-active antimicrobials in clinical trials or previous reports. The compounds appear to kill bacteria by disrupting their membranes. Significantly, 6 was effective in vivo using a mouse model of corneal infection. These results provide compelling evidence that these compounds have therapeutic potential as novel antimicrobials for multidrug-resistant Gram-positive infections.

  2. Transcriptomic response of immune signalling pathways in intestinal epithelial cells exposed to lipopolysaccharides, Gram-negative bacteria or potentially probiotic microbes.

    PubMed

    Audy, J; Mathieu, O; Belvis, J; Tompkins, T A

    2012-12-01

    In order to understand the appropriate use of potentially probiotic Gram-positive microbes through their introduction in the gut microbiome, it is necessary to understand the influence of individual bacteria on the host-response system at a cellular level. In the present study, we have shown that lipopolysaccharides, flagellated Gram-negative bacteria, potentially probiotic Gram-positive bacteria and yeast interact differently with human intestinal epithelial cells with a custom-designed expression microarray evaluating 17 specific host-response pathways. Only lipopolysaccharides and flagellated Gram-negative bacteria induced inflammatory response, while a subset of Gram-positive microbes had anti-inflammatory potential. The main outcome from the study was the differential regulation of the central mitogen-activated protein kinase signalling pathway by these Gram-positive microbes versus commensal/pathogenic Gram-negative bacteria. The microarray was efficient to highlight the impact of individual bacteria on the response of intestinal epithelial cells, but quantitative real-time polymerase chain reaction validation demonstrated some underestimation for down-regulated genes by the microarray. This immune array will allow us to better understand the mechanisms underlying microbe-induced host immune responses.

  3. Global Association between Thermophilicity and Vancomycin Susceptibility in Bacteria

    PubMed Central

    Roy, Chayan; Alam, Masrure; Mandal, Subhrangshu; Haldar, Prabir K.; Bhattacharya, Sabyasachi; Mukherjee, Trinetra; Roy, Rimi; Rameez, Moidu J.; Misra, Anup K.; Chakraborty, Ranadhir; Nanda, Ashish K.; Mukhopadhyay, Subhra K.; Ghosh, Wriddhiman

    2016-01-01

    Exploration of the aquatic microbiota of several circum-neutral (6.0–8.5 pH) mid-temperature (55–85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 μg ml−1 vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D

  4. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    PubMed Central

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  5. Antimicrobial photodynamic therapy to kill Gram-negative bacteria.

    PubMed

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-08-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photo-stimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl₂. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT.

  6. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents - Special references to bacteria isolated between April 2011 and March 2012].

    PubMed

    Shinagawa, Nagao; Taniguchi, Masaaki; Hirata, Koichi; Furuhata, Tomohisa; Mizuguchi, Tohru; Osanai, Hiroyuki; Yanai, Yoshiyuki; Hata, Fumitake; Kihara, Chikasi; Sasaki, Kazuaki; Oono, Keisuke; Nakamura, Masashi; Shibuya, Hitoshi; Hasegawa, Itaru; Kimura, Masami; Watabe, Kosho; Hoshikawa, Tsuyoshi; Oshima, Hideki; Aikawa, Naoki; Sasaki, Junichi; Suzuki, Masaru; Sekine, Kazuhiko; Abe, Shinya; Takeyama, Hiromitsu; Wakasugi, Takehiro; Mashita, Keiji; Tanaka, Moritsugu; Mizuno, Akira; Ishikawa, Masakazu; Iwai, Akihiko; Saito, Takaaki; Muramoto, Masayuki; Kubo, Shoji; Lee, Shigeru; Fukuhara, Kenichiro; Kobayashi, Yasuhito; Yamaue, Hiroki; Hirono, Seiko; Takesue, Yoshio; Fujiwara, Toshiyoshi; Shinoura, Susumu; Kimura, Hideyuki; Iwagaki, Hiromi; Tokunaga, Naoyuki; Sueda, Taijiro; Hiyama, Eiso; Murakami, Yoshiaki; Ohge, Hiroki; Uemura, Kenichiro; Tsumura, Hiroaki; Kanehiro, Tetsuya; Takeuchi, Hitoshi; Tanakaya, Kouji; Iwasaki, Mitsuhiro

    2014-12-01

    Bacteria isolated from surgical infections during the period from April 2011 to March 2012 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 785 strains including 31 strains of Candida spp. were isolated from 204 (78.8%) of 259 patients with surgical infections. Five hundred and twenty three strains were isolated from primary infections, and 231 strains were isolated from surgical site infection. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from surgical site infection aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Enterococcus spp. was highest, followed by Streptococcus spp. and Staphylococcus spp., in this order, from primary infections, while Enterococcus spp. was highest, followed by Staphylococcus spp. from surgical site infection. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterobacter cloacae, in this order, and from surgical site infection, E. coli was most predominantly isolated, followed by P. aeruginosa, K. pneumoniae, and E. cloacae. Among anaerobic Gram-positive bacteria, the isolation rate of Eggerthella lenta was the highest from primary infections, followed by Parvimonas micra, Collinsella aerofaciens, Lactobacillus acidophilus and Finegoldia magna, and from surgical site infection, E. lenta was most predominantly isolated, followed by P micra and L. acidophilus, in this order. Among anaerobic Gram-negative bacteria, the isolation rate of Bacteroidesfragilis was the highest from primary infections, followed by Bilophila wadsworthia, Bacteroides thetaiotaomicron, Bacteroides uniformis and Bacteroides vulgatus, and from surgical site infection, B. fragilis was most

  7. Interaction of a free-living soil nematode, Caenorhabditis elegans, with surrogates of foodborne pathogenic bacteria.

    PubMed

    Anderson, Gary L; Caldwell, Krishaun N; Beuchat, Larry R; Williams, Phillip L

    2003-09-01

    Free-living nematodes may harbor, protect, and disperse bacteria, including those ingested and passed in viable form in feces. These nematodes are potential vectors for human pathogens and may play a role in foodborne diseases associated with fruits and vegetables eaten raw. In this study, we evaluated the associations between a free-living soil nematode, Caenorhabditis elegans, and Escherichia coli, an avirulent strain of Salmonella Typhimurium, Listeria welshimeri, and Bacillus cereus. On an agar medium, young adult worms quickly moved toward colonies of all four bacteria; over 90% of 3-day-old adult worms entered colonies within 16 min after inoculation. After 48 h, worms moved in and out of colonies of L. welshimeri and B. cereus but remained associated with E. coli and Salmonella Typhimurium colonies for at least 96 h. Young adult worms fed on cells of the four bacteria suspended in K medium. Worms survived and reproduced with the use of nutrients derived from all test bacteria, as determined for eggs laid by second-generation worms after culturing for 96 h. Development was slightly slower for worms fed gram-positive bacteria than for worms fed gram-negative bacteria. Worms that fed for 24 h on bacterial lawns formed on tryptic soy agar dispersed bacteria over a 3-h period when they were transferred to a bacteria-free agar surface. The results of this study suggest that C. elegans and perhaps other free-living nematodes are potential vectors for both gram-positive and gram-negative bacteria, including foodborne pathogens in soil.

  8. Antibacterial peptide nisin: a potential role in the inhibition of oral pathogenic bacteria.

    PubMed

    Tong, Zhongchun; Ni, Longxing; Ling, Junqi

    2014-10-01

    Although the antimicrobial peptide nisin has been extensively studied in the food industry for decades, its application in the oral cavity remains to develop and evaluate its feasibility in treating oral common diseases. Nisin is an odorless, colorless, tasteless substance with low toxicity and with antibacterial activities against Gram-positive bacteria. These biologic properties may establish its use in promising products for oral diseases. This article summarizes the antibacterial efficiency of nisin against pathogenic bacteria related to dental caries and root canal infection and discusses the combination of nisin and common oral drugs.

  9. Raman spectroscopy of oral bacteria

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Zhu, Qingyuan; Quivey, Robert G.

    2003-10-01

    Raman spectroscopy has been employed to measure the varying concentrations of two oral bacteria in simple mixtures. Evaporated droplets of centrifuged mixtures of Streptococcus sanguis and Streptococcus mutans were analyzed via Raman microspectroscopy. The concentration of s. sanguis was determined based upon the measured Raman spectrum, using partial least squares cross-validation, with an r2 value of 0.98.

  10. Hydrocarbon degradation by antarctic bacteria

    SciTech Connect

    Cavanagh, J.A.E.; Nichols, P.D.; McMeekin, T.A.; Franzmann, P.D.

    1996-12-31

    Bacterial cultures obtained from sediment samples collected during a trial oil spill experiment conducted at Airport beach, Eastern Antarctica were selectively enriched for n-alkane-degrading and phenanthrenedegrading bacteria. Samples were collected from a control site and sites treated with different hydrocarbon mixtures - Special Antarctic blend (SAB), BP-Visco and orange roughy oils. One set of replicate sites was also treated with water from Organic Lake which had previously been shown to contain hydrocarbon-degrading bacteria. No viable bacteria were obtained from samples collected from sites treated with orange roughy oil. Extensive degradation of n-alkanes by enrichment cultures obtained from sites treated with SAB and BP-Visco occurred at both 25{degrees}C and 10{degrees}C. Extensive degradation of phenanthrene also occurred in enrichment cultures from these sites grown at 25{degrees}C. Concurrent increases of polar lipid in these cultures were also observed. The presence of 1,4-naphthaquinone and 1-naphthol during the growth of the cultures on phenanthrene is unusual and warrants further investigation of the mechanism of phenanthrene-degradation by these Antarctic bacteria.

  11. Antibacterial susceptibility of plaque bacteria.

    PubMed

    Newman, M G; Hulem, C; Colgate, J; Anselmo, C

    1979-07-01

    Selected anaerobic, capnophilic and facultative bacteria isolated from patients with various forms of periodontal health and disease were tested for their susceptibility to antibiotics and antimicrobial agents. Specific bactericidal and minimum inhibitory concentrations were compared to disc zone diameters, thereby generating new standards for the potential selection of antimicrobial agents.

  12. Manipulating Genetic Material in Bacteria

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lisa Crawford, a graduate research assistant from the University of Toledo, works with Laurel Karr of Marshall Space Flight Center (MSFC) in the molecular biology laboratory. They are donducting genetic manipulation of bacteria and yeast for the production of large amount of desired protein. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  13. Functional genomics of intracellular bacteria.

    PubMed

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  14. Role of Bacteria in Oncogenesis

    PubMed Central

    Chang, Alicia H.; Parsonnet, Julie

    2010-01-01

    Summary: Although scientific knowledge in viral oncology has exploded in the 20th century, the role of bacteria as mediators of oncogenesis has been less well elucidated. Understanding bacterial carcinogenesis has become increasingly important as a possible means of cancer prevention. This review summarizes clinical, epidemiological, and experimental evidence as well as possible mechanisms of bacterial induction of or protection from malignancy. PMID:20930075

  15. Antiadhesion agents against Gram-positive pathogens.

    PubMed

    Cascioferro, Stella; Cusimano, Maria Grazia; Schillaci, Domenico

    2014-01-01

    A fundamental step of Gram-positive pathogenesis is the bacterial adhesion to the host tissue involving interaction between bacterial surface molecules and host ligands. This review is focused on antivirulence compounds that target Gram-positive adhesins and on their potential development as therapeutic agents alternative or complementary to conventional antibiotics in the contrast of pathogens. In particular, compounds that target the sortase A, wall theicoic acid inhibitors, carbohydrates able to bind bacterial proteins and proteins capable of influencing the bacterial adhesion, were described. We further discuss the advantages and disadvantages of this strategy in the development of novel antimicrobials and the future perspective of this research field still at its first steps.

  16. Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis.

    PubMed

    Merriman, Joseph A; Nemeth, Kimberly A; Schlievert, Patrick M

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges.

  17. Chip-based in situ hybridization for identification of bacteria from the human microbiome.

    SciTech Connect

    Light, Yooli Kim; Meagher, Robert J.; Singh, Anup K.; Liu, Peng

    2010-11-01

    The emerging field of metagenomics seeks to assess the genetic diversity of complex mixed populations of bacteria, such as those found at different sites within the human body. A single person's mouth typically harbors up to 100 bacterial species, while surveys of many people have found more than 700 different species, of which {approx}50% have never been cultivated. In typical metagenomics studies, the cells themselves are destroyed in the process of gathering sequence information, and thus the connection between genotype and phenotype is lost. A great deal of sequence information may be generated, but it is impossible to assign any given sequence to a specific cell. We seek non-destructive, culture-independent means of gathering sequence information from selected individual cells from mixed populations. As a first step, we have developed a microfluidic device for concentrating and specifically labeling bacteria from a mixed population. Bacteria are electrophoretically concentrated against a photopolymerized membrane element, and then incubated with a specific fluorescent label, which can include antibodies as well as specific or non-specific nucleic acid stains. Unbound stain is washed away, and the labeled bacteria are released from the membrane. The stained cells can then be observed via epifluorescence microscopy, or counted via flow cytometry. We have tested our device with three representative bacteria from the human microbiome: E. coli (gut, Gram-negative), Lactobacillus acidophilus (mouth, Gram-positive), and Streptococcus mutans (mouth, Gram-positive), with results comparable to off-chip labeling techniques.

  18. Photodynamic inactivation of antibiotic-resistant bacteria and biofilms by hematoporphyrin monomethyl ether.

    PubMed

    Liu, Chengcheng; Hu, Min; Ma, Dandan; Lei, Jin'e; Xu, Jiru

    2016-02-01

    The worldwide increase in bacterial antibiotic resistance has led to a search for alternative antibacterial therapies. A promising approach to killing antibiotic-resistant bacteria is photodynamic antimicrobial chemotherapy, which uses light in combination with a photosensitizer to induce a phototoxic reaction. We evaluated the photodynamic inactivation (PDI) efficiency of hematoporphyrin monomethyl ether (HMME) on antibiotic-resistant bacteria and biofilms. HMME exhibited no significant dark toxicity and provided dose-dependent inactivation of antibiotic-resistant bacteria and biofilms. After incubation with 100-μM HMME and irradiation with 72-J cm(-2) white light, 4.19-7.59 log10 reductions in survival were achieved in planktonic suspension. Antibiotic-resistant strains were as susceptible to PDI in biofilms as in planktonic suspensions, but the inactivation of bacterial cells in biofilms was attenuated. In addition, gram-positive bacterial strains and biofilms were more susceptible than gram-negative strains and biofilms to the PDI effect of HMME. Thus, HMME is a promising photosensitizer for the treatment of infectious diseases caused by antibiotic-resistant bacteria, especially gram-positive bacteria.

  19. Synergistic action of Galleria mellonella anionic peptide 2 and lysozyme against Gram-negative bacteria.

    PubMed

    Zdybicka-Barabas, Agnieszka; Mak, Pawel; Klys, Anna; Skrzypiec, Krzysztof; Mendyk, Ewaryst; Fiołka, Marta J; Cytryńska, Małgorzata

    2012-11-01

    Lysozyme and antimicrobial peptides are key factors of the humoral immune response in insects. In the present work lysozyme and anionic defense peptide (GMAP2) were isolated from the hemolymph of the greater wax moth Galleria mellonella and their antibacterial activity was investigated. Adsorption of G. mellonella lysozyme on the cell surface of Gram-positive and Gram-negative bacteria was demonstrated using immunoblotting with anti-G. mellonella lysozyme antibodies. Lysozyme effectively inhibited the growth of selected Gram-positive bacteria, which was accompanied by serious alterations of the cell surface, as revealed by atomic force microscopy (AFM) imaging. G. mellonella lysozyme used in concentrations found in the hemolymph of naive and immunized larvae, perforated also the Escherichia coli cell membrane and the level of such perforation was considerably increased by GMAP2. GMAP2 used alone did not perforate E. coli cells nor influence lysozyme muramidase activity. However, the peptide induced a decrease in the turgor pressure of the bacterial cell. Moreover, in the samples of bacteria treated with a mixture of lysozyme and GMAP2 the sodium chloride crystals were found, suggesting disturbance of ion transport across the membrane leading to cell disruption. These results clearly indicated the synergistic action of G. mellonella lysozyme and anionic peptide 2 against Gram-negative bacteria. The reported results suggested that, thanks to immune factors constitutively present in hemolymph, G. mellonella larvae are to some extent protected against infection caused by Gram-negative bacteria.

  20. Properties of bacteria that trigger hemocytopenia in the Atlantic blue crab, Callinectes sapidus.

    PubMed

    Johnson, Nathaniel G; Burnett, Louis E; Burnett, Karen G

    2011-10-01

    In the blue crab Callinectes sapidus, injection with the bacterial pathogen Vibrio campbellii causes a decrease in oxygen consumption. Histological and physiological evidence suggests that the physical obstruction of hemolymph flow through the gill vasculature, caused by aggregations of bacteria and hemocytes, underlies the decrease in aerobic function associated with bacterial infection. We sought to elucidate the bacterial properties sufficient to induce a decrease in circulating hemocytes (hemocytopenia) as an indicator for the initiation of hemocyte aggregation and subsequent impairment of respiration. Lipopolysaccharide (LPS), the primary component of the gram-negative bacterial cell wall, is known to interact with crustacean hemocytes. Purified LPS was covalently bound to the surfaces of polystyrene beads resembling bacteria in size. Injection of these "LPS beads" caused a decrease in circulating hemocytes comparable to that seen with V. campbellii injection, while beads alone failed to do so. These data suggest that in general, gram-negative bacteria could stimulate hemocytopenia. To test this hypothesis, crabs were injected with different bacteria--seven gram-negative and one gram-positive species--and their effects on circulating hemocytes were assessed. With one exception, all gram-negative strains caused decreases in circulating hemocytes, suggesting an important role for LPS in the induction of this response. However, LPS is not necessary to provoke the immune response given that Bacillus coral, a gram-positive species that lacks LPS, caused a decrease in circulating hemocytes. These results suggest that a wide range of bacteria could impair metabolism in C. sapidus.

  1. Count, identification and antimicrobial susceptibility of bacteria recovered from dental solid waste in Brazil.

    PubMed

    Vieira, Cristina Dutra; de Carvalho, Maria Auxiliadora Roque; Cussiol, Noil Amorim de Menezes; Alvarez-Leite, Maria Eugênia; dos Santos, Simone Gonçalves; Gomes, Renata Maria da Fonseca; Silva, Marcos Xavier; Nicoli, Jacques Robert; Farias, Luiz de Macêdo

    2011-06-01

    In Brazil, few studies on microbial content of dental solid waste and its antibiotic susceptibility are available. An effort has been made through this study to evaluate the hazardous status of dental solid waste, keeping in mind its possible role in cross-infection chain. Six samples of solid waste were collected at different times and seasons from three dental health services. The microbial content was evaluated in different culture media and atmospheric conditions, and the isolates were submitted to antibiotic susceptibility testing. A total of 766 bacterial strains were isolated and identified during the study period. Gram-positive cocci were the most frequent morphotype isolated (48.0%), followed by Gram-negative rods (46.2%), Gram-positive rods (5.0%), Gram-negative-cocci (0.4%), and Gram-positive coccobacillus (0.1%). Only two anaerobic bacteria were isolated (0.3%). The most frequently isolated species was Staphylococcus epidermidis (29.9%), followed by Stenotrophomonas maltophilia (8.2%), and Enterococcus faecalis (6.7%). High resistance rate to ampicillin was observed among Gram-negative rods (59.4%) and Gram-positive cocci (44.4%). For Gram-negative rods, high resistance was also noted to aztreonam (47.7%), cefotaxime (47.4%), ceftriaxone and cefazolin (43.7%), and ticarcillin-clavulanic acid (38.2%). Against Gram-positive cocci penicillin exhibit a higher resistance rate (45.0%), followed by ampicillin, erythromycin (27.2%), and tetracycline (22.0%). The present study demonstrated that several pathogenic bacteria are present in dental solid waste and can survive after 48 h from the waste generation time and harbor resistance profiles against several clinical recommended antibiotics.

  2. Inactivation of Gram-positive biofilms by low-temperature plasma jet at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Robert, H.; Merbahi, N.; Fontagné-Faucher, C.; Yousfi, M.; Romain, C. E.; Eichwald, O.; Rondel, C.; Gabriel, B.

    2012-08-01

    This work is devoted to the evaluation of the efficiency of a new low-temperature plasma jet driven in ambient air by a dc-corona discharge to inactivate adherent cells and biofilms of Gram-positive bacteria. The selected microorganisms were lactic acid bacteria, a Weissella confusa strain which has the particularity to excrete a polysaccharide polymer (dextran) when sucrose is present. Both adherent cells and biofilms were treated with the low-temperature plasma jet for different exposure times. The antimicrobial efficiency of the plasma was tested against adherent cells and 48 h-old biofilms grown with or without sucrose. Bacterial survival was estimated using both colony-forming unit counts and fluorescence-based assays for bacterial cell viability. The experiments show the ability of the low-temperature plasma jet at atmospheric pressure to inactivate the bacteria. An increased resistance of bacteria embedded within biofilms is clearly observed. The resistance is also significantly higher with biofilm in the presence of sucrose, which indicates that dextran could play a protective role.

  3. Discovery of a new family of relaxases in Firmicutes bacteria

    PubMed Central

    Singh, Praveen K.; Hao, Jian An; Luque-Ortega, Juan Roman; Wu, Ling J.; Boer, D. Roeland

    2017-01-01

    Antibiotic resistance is a serious global problem. Antibiotic resistance genes (ARG), which are widespread in environmental bacteria, can be transferred to pathogenic bacteria via horizontal gene transfer (HGT). Gut microbiomes are especially apt for the emergence and dissemination of ARG. Conjugation is the HGT route that is predominantly responsible for the spread of ARG. Little is known about conjugative elements of Gram-positive bacteria, including those of the phylum Firmicutes, which are abundantly present in gut microbiomes. A critical step in the conjugation process is the relaxase-mediated site- and strand-specific nick in the oriT region of the conjugative element. This generates a single-stranded DNA molecule that is transferred from the donor to the recipient cell via a connecting channel. Here we identified and characterized the relaxosome components oriT and the relaxase of the conjugative plasmid pLS20 of the Firmicute Bacillus subtilis. We show that the relaxase gene, named relLS20, is essential for conjugation, that it can function in trans and provide evidence that Tyr26 constitutes the active site residue. In vivo and in vitro analyses revealed that the oriT is located far upstream of the relaxase gene and that the nick site within oriT is located on the template strand of the conjugation genes. Surprisingly, the RelLS20 shows very limited similarity to known relaxases. However, more than 800 genes to which no function had been attributed so far are predicted to encode proteins showing significant similarity to RelLS20. Interestingly, these putative relaxases are encoded almost exclusively in Firmicutes bacteria. Thus, RelLS20 constitutes the prototype of a new family of relaxases. The identification of this novel relaxase family will have an important impact in different aspects of future research in the field of HGT in Gram-positive bacteria in general, and specifically in the phylum of Firmicutes, and in gut microbiome research. PMID:28207825

  4. Monensin-based medium for determination of total gram-negative bacteria and Escherichia coli.

    PubMed Central

    Petzel, J P; Hartman, P A

    1985-01-01

    Plate count-monensin-KCl (PMK) agar, for enumeration of both gram-negative bacteria and Escherichia coli, is composed of (per liter) 23.5 g of plate count agar, 35 mg of monensin, 7.5 g of KCl, and 75 mg of 4-methylumbelliferyl-beta-D-glucuronide (MUG). Monensin was added after the medium was sterilized. The diluent of choice for use with PMK agar was 0.1% peptone (pH 6.8); other diluents were unsatisfactory. Gram-negative bacteria (selected for by the ionophore monensin) can be used to judge the general quality or sanitary history of a commodity. E. coli (differentiated by its ability to hydrolyze the fluorogenic compound MUG) can be used to assess the safety of a commodity in regard to the possible presence of enteric pathogens. Pure-culture studies demonstrated that monensin completely inhibited gram-positive bacteria and had little or no effect on gram-negative bacteria. When gram-negative bacteria were injured by one of several methods, a few species (including E. coli) became sensitive to monensin; this sensitivity was completely reversed in most instances by the inclusion of KCl in the medium. When PMK agar was tested with food and environmental samples, 96% of 535 isolates were gram negative; approximately 68% of colonies from nonselective medium were gram negative. PMK agar was more selective than two other media against gram-positive bacteria and was less inhibitory for gram-negative bacteria. However, with water samples, KCl had an inhibitory effect on gram-negative bacteria, and it should therefore be deleted from monensin-containing medium for water analysis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3890742

  5. Surface-enhanced Raman spectroscopy of bacteria coated by silver

    NASA Astrophysics Data System (ADS)

    Efrima, Schlomo; Bronk, Burt V.; Czege, Jozsef

    1999-05-01

    We present a novel method to measure Raman spectra from whole bacteria cells by using Surface Enhanced Raman Scattering (SERS). We deposit a silver coat on Escherichia coli and Bacillus megaterium bacteria and measure strongly enhanced (greater than 400,000 fold) and highly reproducible Raman spectra. The spectra are rich but not overly congested, as the surface enhancement is selective to the precise chemical nature of the biochemical molecules, and their proximity to the silver particulate matter. The main bands we observe can be associated with peptides and polysaccharides in the cell- wall and its membrane. The spectra from E. coli (a Gram- negative bacterium) and B. megaterium (a Gram-positive bacterium) are similar in their general form, but differ in detail. The spectrum from a commercial yeast extract is vastly different. This approach can be extended to probe the internal chemical environment within bacteria and applied to the identification of micro-organisms also applied to studying other biochemical problems and phenomena, such as biomineralization, heavy metal toxicity, cell-wall structure and others.

  6. The Sweet Tooth of Bacteria: Common Themes in Bacterial Glycoconjugates

    PubMed Central

    Tytgat, Hanne L. P.

    2014-01-01

    SUMMARY Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed. PMID:25184559

  7. How bacteria maintain location and number of flagella?

    PubMed

    Schuhmacher, Jan S; Thormann, Kai M; Bange, Gert

    2015-11-01

    Bacteria differ in number and location of their flagella that appear in regular patterns at the cell surface (flagellation pattern). Despite the plethora of bacterial species, only a handful of these patterns exist. The correct flagellation pattern is a prerequisite for motility, but also relates to biofilm formation and the pathogenicity of disease-causing flagellated bacteria. However, the mechanisms that maintain location and number of flagella are far from being understood. Here, we review our knowledge on mechanisms that enable bacteria to maintain their appropriate flagellation pattern. While some peritrichous flagellation patterns might occur by rather simple stochastic processes, other bacterial species appear to rely on landmark systems to define the designated flagellar position. Such landmarks are the Tip system of Caulobacter crescentus or the signal recognition particle (SRP)-GTPase FlhF and the MinD/ParA-type ATPase FlhG (synonyms: FleN, YlxH and MinD2). The latter two proteins constitute a regulatory circuit essential for diverse flagellation patterns in many Gram-positive and negative species. The interactome of FlhF/G (e.g. C-ring proteins FliM, FliN, FliY or the transcriptional regulator FleQ/FlrA) seems evolutionary adapted to meet the specific needs for a respective pattern. This variability highlights the importance of the correct flagellation pattern for motile species.

  8. Light controllable surface coating for effective photothermal killing of bacteria.

    PubMed

    Kim, Sung Han; Kang, Eun Bi; Jeong, Chan Jin; Sharker, Shazid Md; In, Insik; Park, Sung Young

    2015-07-22

    Although the electronic properties of conducting films have been widely explored in optoelectronic fields, the optical absorption abilities of surface-coated films for photothermal conversion have been relatively less explored in the production of antibacterial coatings. Here, we present catechol-conjugated poly(vinylpyrrolidone) sulfobetaine (PVPS) and polyaniline (PANI) tightly linked by ionic interaction (PVPS:PANI) as a novel photothermal antibacterial agent for surface coating, which can absorb broadband near-infrared (NIR) light. Taking advantage of the NIR light absorption, this coating film can release eminent photothermal heat for the rapid killing of surface bacteria. The NIR light triggers a sharp rise in photothermal heat, providing the rapid and effective killing of 99.9% of the Gram-positive and -negative bacteria tested within 3 min of NIR light exposure when used at the concentration of 1 mg/mL. Although considerable progress has been made in the design of antibacterial coatings, the user control of NIR-irradiated rapid photothermal destruction of surface bacteria holds increasing attention beyond the traditional boundaries of typical antibacterial surfaces.

  9. Survival of human-associated bacteria in SLS

    NASA Astrophysics Data System (ADS)

    Fu, Yuming; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..; Khizhnyak, Sergey; Kovalev, Vladimir

    2016-07-01

    Management of microbial communities to minimize the potential for risk to the crew and to the plants to be used for supporting the crew is an essential component of successful bioregenerative life support systems (BLSS). Previously it was shown that soil-like substrate (SLS), obtained as a result of bioconversion of non-edible plant biomass in the higher plants based BLSS, demonstrates strong anti-fungal activity against soil-borne plant pathogens (Nesterenko et al., 2009). The present study is devoted to the estimation of anti-bacterial activity of SLS against gram-negative (presented with Escherichia coli) and gram-positive (presented with Staphylococcus aureus) human-associated bacteria, both of which belong to the group of opportunistic pathogen. In vitro effects of different types of SLS on E. coli and S. aureus and in situ survival curves of the bacteria with corresponding math models are presented. Additionally we have examined the influence of community richness (the indigenous community of SLS) on the ability of introduced human-associated bacteria to persist within SLS. The work was carried out within the frames of the state task on the subject No 56.1.4 of the Basic Research Program (Section VI) of Russian State Academies for 2013-2020.

  10. Acetic acid bacteria spoilage of bottled red wine -- a review.

    PubMed

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (<10(3) cfu/mL), which under conducive conditions might proliferate. Bottled red wines, sealed with natural cork closures, and stored in a vertical upright position may develop spoilage by acetic acid bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine.

  11. In Vitro Activities of a New Lipopeptide, HMR 1043, against Susceptible and Resistant Gram-Positive Isolates

    PubMed Central

    Bemer, Pascale; Juvin, Marie-Emmanuelle; Bryskier, Andre; Drugeon, Henri

    2003-01-01

    The purpose of this study was to compare the activity of HMR 1043 with those of daptomycin and teicoplanin against gram-positive isolates. Susceptibility tests were performed for 52 strains, 26 parental strains, including staphylococcal, streptococcal, enterococcal, and listerial strains, and 26 HMR 1043-resistant mutants obtained from parental strains by using the Szybalski method. Agar dilution and disk diffusion susceptibility tests were performed by the procedures outlined by the NCCLS. HMR 1043 demonstrated good activity against susceptible and resistant gram-positive bacteria. The activity of HMR 1043 in vitro was less influenced by the presence of calcium ions than that of daptomycin. Susceptibility test breakpoints were not defined because of the poor correlation coefficients obtained with the different disks tested. PMID:12937020

  12. In vitro activities of a new lipopeptide, HMR 1043, against susceptible and resistant gram-positive isolates.

    PubMed

    Bemer, Pascale; Juvin, Marie-Emmanuelle; Bryskier, Andre; Drugeon, Henri

    2003-09-01

    The purpose of this study was to compare the activity of HMR 1043 with those of daptomycin and teicoplanin against gram-positive isolates. Susceptibility tests were performed for 52 strains, 26 parental strains, including staphylococcal, streptococcal, enterococcal, and listerial strains, and 26 HMR 1043-resistant mutants obtained from parental strains by using the Szybalski method. Agar dilution and disk diffusion susceptibility tests were performed by the procedures outlined by the NCCLS. HMR 1043 demonstrated good activity against susceptible and resistant gram-positive bacteria. The activity of HMR 1043 in vitro was less influenced by the presence of calcium ions than that of daptomycin. Susceptibility test breakpoints were not defined because of the poor correlation coefficients obtained with the different disks tested.

  13. Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains

    PubMed Central

    Zolfagharian, Hossein; Mohajeri, Mohammad; Babaie, Mahdi

    2016-01-01

    Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. Methods: This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus (S. aureus), Salmonella typhimurium, Escherichia coli (E. coli) O157:H7, Pseudomonas aeruginosa, Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. Results: BV was found to have a significant antibacterial effect against E. coli, S. aureus, and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. Conclusion: The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood. PMID:27695631

  14. EVALUATION OF THE TEA TREE OIL ACTIVITY TO ANAEROBIC BACTERIA--IN VITRO STUDY.

    PubMed

    Ziółkowska-Klinkosz, Marta; Kedzia, Anna; Meissner, Hhenry O; Kedzia, Andrzej W

    2016-01-01

    The study of the sensitivity to tea tree oil (Australian Company TTD International Pty. Ltd. Sydney) was carried out on 193 strains of anaerobic bacteria isolated from patients with various infections within the oral cavity and respiratory tracts. The suscept