Sample records for bacteria including actinomycetes

  1. Unusual multifocal granulomatous disease caused by actinomycetous bacteria in a nestling Derbyan parrot (Psittacula derbiana).

    PubMed

    Park, F J; Jaensch, S

    2009-01-01

    A nestling Derbyan parrot (Psittacula derbiana) was presented with unusual subcutaneous swellings of the thigh regions, and poor growth. Histological examination revealed actinomycetous bacteria associated with multifocal systemic granulomas. The clinical and pathological findings of the case are presented, and some relevant aspects of actinomycetous bacterial infections in mammals and birds are discussed. Although granulomatous disease is encountered at times in avian species, the actinomycetous bacteria (Nocardia and Actinomyces spp.) have rarely been reported in association with multifocal granulomatous disease in birds.

  2. Actinomycetes of Orthosipon stamineus rhizosphere as producer of antibacterial compound against multidrug resistant bacteria

    NASA Astrophysics Data System (ADS)

    Rante, H.; Yulianty, R.; Usmar; Djide, N.; Subehan; Burhamzah, R.; Prasad, M. B.

    2017-11-01

    The increasing case of antibiotic resistence has become an important problem to be faced in treating the infection diseases. The diversities of microbia, especially actinomycetes bacteria which originated from rizosphere soil of medicinal plant, has opened a chance for discovering the metabolites which can be used in solving the antibiotic resistant pathogenic bacteria problems. The aim of this research was to isolate the actinobacteria originated from medicinal plant rizosphere of Orthosipon stamineus as the producer of anti-multidrug resistances bacteria compounds. Three isolates of actinomycetes has been isolated from Orthosipon stamineus rhizosphere named KC3-1, KC3-2 and KC3-3. One isolate (KC3-3) showed big activity in inhibiting the test microbes by antagonistic test of actinomycetes isolates against Staphylococcus aureus and Eschericia coli antibiotic resistant bacteria. Furthermore, the KC3-3 isolate was fermented in Starch Nitrate Broth (SNB) medium for 14 days. The supernatant and the biomass of the fermentation yield were separated. The supernatant were extracted using ethyl acetate as the solvent and the biomass were extracted using methanol. The antibacterial activity test of ethyl acetate and methanol extract revealed that the extracts can inhibit the bacteria test up to 5% concentration. The ethyl acetate and methanol extracts can inhibit the bacteria test up to 5% concentration.

  3. Diversity of Fungi, Bacteria, and Actinomycetes on Leaves Decomposing in a Stream▿

    PubMed Central

    Das, Mitali; Royer, Todd V.; Leff, Laura G.

    2007-01-01

    Although fungi, bacteria, and specific bacterial taxa, such as the actinomycetes, have been studied extensively in various habitats, few studies have examined them simultaneously, especially on decomposing leaves in streams. In this study, sugar maple and white oak leaves were incubated in a stream in northeastern Ohio for 181 days during which samples were collected at regular intervals. Following DNA extraction, PCR-denaturing gradient gel electrophoresis (DGGE) was performed using fungus-, bacterium-, and actinomycete-specific primers. In addition, fungal and bacterial biomass was estimated. Fungal biomass differed on different days but not between leaves of the two species and was always greater than bacterial biomass. There were significant differences in bacterial biomass through time and between leaf types on some days. Generally, on the basis of DGGE, few differences in community structure were found for different leaf types. However, the ribotype richness of fungi was significantly greater than those of the bacteria and actinomycetes, which were similar to each other. Ribotype richness decreased toward the end of the study for each group except bacteria. Lack of differences between the two leaf types suggests that the microorganisms colonizing the leaf biofilm were primarily generalists that could exploit the resources of the leaves of either species equally well. Thus, we conclude that factors, such as the ecological role of the taxa (generalists versus specialists), stage of decay, and time of exposure, appeared to be more important determinants of microbial community structure than leaf quality. PMID:17142366

  4. Lipoquinones of some spore-forming rods, lactic-acid bacteria and actinomycetes.

    PubMed

    Hess, A; Holländer, R; Mannheim, W

    1979-11-01

    The respiratory quinones of 73 strains of Gram-positive bacteria including spore-forming rods, lactic-acid bacteria and actinomyctes were examined. Menaquinones with seven isoprenoid units (MK-7) were the main quinone type found in representatives of the genus Bacillus and in Sporolactobacillus inulinus. However, a strain of B. thuringiensis produced MK-8 in addition to MK-7, and strains of B. lentus and B. pantothenticus appeared to produce MK-9 and MK-8, respectively, with no MK-7. In the clostridia and lactic-acid bacteria, no quinones were found, except in Pediococcus cerevisiae NCTC 8066 and Lactobacillus casei subsp. rhamnosus ATCC 7469, which contained menaquinones, and Streptococcus faecalis NCTC 775 and HIM 478-1, which contained demethylmenaquinones, in relatively low concentrations. Menaquinones were also found in the actinomycetes (except Actinomyces odontolyticus and Bifidobacterium bifidum which did not produce any quinones) and in Protaminobacter alboflavus ATCC 8458, the so-called Actinobacillus actinoides ATCC 15900 and Noguchia granulosis NCTC 10559.

  5. Chemical ecology of antibiotic production by actinomycetes.

    PubMed

    van der Meij, Anne; Worsley, Sarah F; Hutchings, Matthew I; van Wezel, Gilles P

    2017-05-01

    Actinomycetes are a diverse family of filamentous bacteria that produce a plethora of natural products relevant for agriculture, biotechnology and medicine, including the majority of the antibiotics we use in the clinic. Rather than as free-living bacteria, many actinomycetes have evolved to live in symbiosis with among others plants, fungi, insects and sponges. As a common theme, these organisms profit from the natural products and enzymes produced by the actinomycetes, for example, for protection against pathogenic microbes, for growth promotion or for the degradation of complex natural polymers such as lignocellulose. At the same time, the actinomycetes benefit from the resources of the hosts they interact with. Evidence is accumulating that these interactions control the expression of biosynthetic gene clusters and have played a major role in the evolution of the high chemical diversity of actinomycete-produced secondary metabolites. Many of the biosynthetic gene clusters for antibiotics are poorly expressed under laboratory conditions, but they are likely expressed in response to host-specific demands. Here, we review the environmental triggers and cues that control natural product formation by actinomycetes and provide pointers as to how these insights may be harnessed for drug discovery. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Actinomycetes in Karstic caves of northern Spain (Altamira and Tito Bustillo).

    PubMed

    Groth, I; Vettermann, R; Schuetze, B; Schumann, P; Saiz-Jimenez, C

    1999-05-01

    A variety of isolation procedures were carried out to study the involvement of bacteria in the colonisation and biodeterioration of Spanish caves with paleolithic rock art (Altamira and Tito Bustillo). The applied techniques mainly aimed to isolate heterotrophic bacteria such as streptomycetes, nocardioform and coryneform actinomycetes, and other gram-positive and gram-negative bacteria. The results demonstrated that actinomycetes were the most abundant gram-positive bacteria in the caves. Actinomycetes revealed a great taxonomic diversity with the predominant isolates belonging to the genus Streptomyces. Members of the genera Nocardia, Rhodococcus, Nocardioides, Amycolatopsis, Saccharothrix, Brevibacterium, Microbacterium, and coccoid actinomycetes (family Micrococcaceae) were also found.

  7. Cephamycins, a New Family of β-Lactam Antibiotics I. Production by Actinomycetes, Including Streptomyces lactamdurans sp. n1

    PubMed Central

    Stapley, E. O.; Jackson, M.; Hernandez, S.; Zimmerman, S. B.; Currie, S. A.; Mochales, S.; Mata, J. M.; Woodruff, H. B.; Hendlin, D.

    1972-01-01

    A number of actinomycetes isolated from soil were found to produce one or more members of a new family of antibiotics, the cephamycins, which are structurally related to cephalosporin C. The cephamycins were produced in submerged fermentation in a wide variety of media by one or more of eight different species of Streptomyces, including a newly described species, S. lactamdurans. These antibiotics exhibit antibacterial activity against a broad spectrum of bacteria which includes many that are resistant to the cephalosporins and penicillins. PMID:4790552

  8. Marine actinomycetes: an ongoing source of novel bioactive metabolites.

    PubMed

    Subramani, Ramesh; Aalbersberg, William

    2012-12-20

    Actinomycetes are virtually unlimited sources of novel compounds with many therapeutic applications and hold a prominent position due to their diversity and proven ability to produce novel bioactive compounds. There are more than 22,000 known microbial secondary metabolites, 70% of which are produced by actinomycetes, 20% from fungi, 7% from Bacillus spp. and 1-2% by other bacteria. Among the actinomycetes, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50-55% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of rare and new actinomycetes is of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. Modern molecular technologies are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes, and continued development of improved cultivation methods and molecular technologies for accessing the marine environment promises to provide access to this significant new source of chemical diversity with novel/rare actinomycetes including new species of previously reported actinomycetes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Identification and screening of rare actinomycetes isolated from Neesia altissima Bl.

    NASA Astrophysics Data System (ADS)

    Pratiwi, R. H.; Hidayat, I.; Hanafi, M.; Mangunwardoyo, W.

    2017-07-01

    Actinomycetes is the main source of antibiotics and endophytic actinomycetes from medicinal plants has considerable potential as like the host. The aim of this research is to identify rare actinomycetes isolated from Neesia altissima and to screen their antagonistic activity against diarrhea-causing bacteria in order to find new potential secondary metabolites. Samples of N. altissima were collected from mount Halimun-Salak National Park. Endophytic actinomycetes were isolated from roots of N. altissima by surface sterilization method. Screening of antagonistic activity was conducted against five diarrhea-causing bacteria such as Bacillus cereus ATCC 10876, Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 25241, Shigella flexneri ATCC 12022, and Staphylococcus aureus ATCC 25923 by using diffusion disc methods. The endophytic actinomycete showed in vitro antibacterial activity against four diarrhea-causing bacteria, except the B. cereus ATCC 10876. The phylogenetic tree generated from 16S rRNA sequence showed that sequence of endophytic actinomycetes isolates nested in the clade belonging to the genus Nonomuraea. Sequence of UICC B-94 formed a monophyletic clade with N. jabiensis strain A4036 and N. rubra strain AC 615. Therefore, it is named as Nonomuraea sp. strain UICC B-94.

  10. Moderately haloalkaliphilic actinomycetes in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.

    2009-12-01

    It was found that the population density of actinomycetes in solonchaks and saline desert soils varied from hundreds to tens of thousands of colony-forming units (CFUs) per 1 g of soil depending on soil type and was by 1-3 orders of magnitude lower than the number of mycelial bacteria in main soil types. Actinomycetes grow actively in saline soils, and the length of their mycelium reaches 140 m per 1 g of soil. Domination of moderately halophilic, alkaliphilic, and haloalkaliphilic actinomycetes, which grow well under 5% NaCl and pH 8-9, is a specific feature of actinomycetal complexes in saline soils. Representatives of Streptomyces and Micromonospora genera were found among the haloalkaliphilic actinomycetes. Micromonospores demonstrated lower (than streptomycetes) adaptability to high salt concentrations. Investigation of the phylogenetic position of isolated dominant haloalkaliphilic strains of streptomycetes performed on the basis of sequencing of the gene 16S rRNA enabled identifying these strains as Streptomyces pluricolorescens and S. prunicolor.

  11. Extremophilic and extremotolerant actinomycetes in different soil types

    NASA Astrophysics Data System (ADS)

    Zenova, G. M.; Manucharova, N. A.; Zvyagintsev, D. G.

    2011-04-01

    Problems on the resistance of soil actinomycetes to various environmental factors (pH, salinity, temperature, and moisture) are discussed. Actinomycetes as a special group of prokaryotes were revealed to have a greater range of tolerance to these factors than was thought earlier. The regularities of the distribution of extremophilic and extremotolerant actinomycetes developing in unusual for mycelial bacteria conditions, their structural-functional characteristics, and their taxonomic composition were determined. The predominance of acidophilic representatives of the Micromonospora genus in acid soils (typical peat, soddy-podzolic, and taiga podzol) and the haloalkaliphilic Streptomyces pluricilirescens and S. prunicolor species in desert saline soils are shown. The specific features of the actinomycete complexes on thermal fields of the weakly developed stratified volcanic soils are described. In these complexes, the thermophilic forms were represented only by species of the Micromonospora genus; and the mesophilic forms, by Microbispora species. In the periodically heated desert soils, among the thermophilic actinomycetes, representatives of rare Actinomadura, Saccharopolyspora and Streptosporangium genera along with Streptomyces species were indicated. The mechanisms of the resistance of the actinomycetes to the extreme environmental conditions are discussed.

  12. Bioprospecting marine actinomycetes for multidrug-resistant pathogen control from Rameswaram coastal area, Tamil Nadu, India.

    PubMed

    Wahaab, Femina; Subramaniam, Kalidass

    2018-01-01

    A potent Streptomyces bacillaris strain RAM25C4 was isolated for controlling methicillin-resistant Staphylococcus aureus and multidrug-resistant bacteria such as Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa. A total of 131 actinomycetes were isolated from the Rameswaram coastal region, Tamil Nadu, India. Among 131 actinomycetes, maximum number of actinomycetes (55%) isolated at the distance of 3-6 m from seashore. Out of 131 actinomycetes, 85% of the actinomycetes exhibited different degree of antagonistic activity against test pathogens. The antagonistic activity evaluated using actinomycetes direct culture filtrate and culture filtrate extracts. Among these culture filtrate, extracts had supreme antagonistic activity against multidrug-resistant bacteria and the solvent ethyl acetate was the best for extracting secondary metabolites from actinomycetes. In HPTLC analysis, the presence of macrolides, terpenoids, and quinolones was identified in RAM25C4 extract. In GC-MS analysis, various potent compounds such as phenolic compound-2,6-di-tert-butylphenol, alkaloid compound-1H, 5H, pyrrolo (1' 2':3, 4) imidazo, and quinolone compound-1,4-benzenediol, 2,5-bis(1,1-dimethylethyl) were identified in the ethyl acetate extract of RAM25C4. The phylogenetic analysis of 16S rRNA gene sequence of RAM25C4 isolate was deposited in NCBI with name Streptomyces bacillaris strain RAM25C4 and accession number KM513543.

  13. Actinomycetes inhibit filamentous fungi from the cuticle of Acromyrmex leafcutter ants.

    PubMed

    Dângelo, Rômulo Augusto Cotta; de Souza, Danival José; Mendes, Thais Demarchi; Couceiro, Joel da Cruz; Lucia, Terezinha Maria Castro Della

    2016-03-01

    Actinomycetes bacteria associated with leafcutter ants produce secondary metabolites with antimicrobial properties against Escovopsis, a fungus specialized in attacking the gardens of fungus-growing ants, which denies the ants their food source. Because previous studies have used fungi isolated from fungus gardens but not from ant integument, the aims of the present study were to isolate actinomycetes associated with the cuticle of the Acromyrmex spp. and to quantify their inhibition abilities against the filamentous fungal species carried by these ants. The results demonstrated that actinomycetes had varied strain-dependent effects on several filamentous fungal species in addition to antagonistic activity against Escovopsis. The strain isolated from Acromyrmex balzani was identified as a Streptomyces species, whereas the remaining isolates were identified as different strains belonging to the genus Pseudonocardia. These findings corroborate the hypothesis that actinomycetes do not act specifically against Escovopsis mycoparasites and may have the ability to inhibit other species of pathogenic fungi. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Antibiotics production by an actinomycete isolated from the termite gut.

    PubMed

    Matsui, Toru; Tanaka, Junichi; Namihira, Tomoyuki; Shinzato, Naoya

    2012-12-01

    As well as the search for new antibiotics, a new resource or strains for the known antibiotics is also important. Microbial symbionts in the gut of termites could be regarded as one of the feasible resource for such purpose. In this study, antibiotic-producing actinomycetes were screened from symbionts of the termite gut. 16SrRNA sequence analysis for the 10 isolates revealed that they belong to actinomycetes such as Streptomyces sp., Kitasatospora sp., and Mycobacterium sp. A culture broth from one of the isolate, namely strain CA1, belonging to the genera Streptomyces exhibited antagonistic activity against actinomycetes (Micrococcus spp.), gram-positive bacteria (Bacillus spp.), and yeast (Candida spp.). The structures of 2 compounds isolated from the culture broth of the strain CA1 were identified as those of actinomycin X2 and its analog, D. This study is the first to report that some symbionts of the termite gut are antibiotic-producing actinomycetes, and suggest that the termite gut is a feasible resource for bioprospecting. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Population densities and genetic diversity of actinomycetes associated to the rhizosphere of Theobroma cacao

    PubMed Central

    Barreto, Tâmara R.; da Silva, Augusto C.M.; Soares, Ana Cristina F.; de Souza, Jorge T.

    2008-01-01

    In spite of the acknowledged importance of growth-promoting bacteria, only a reduced number of studies were conducted with these microorganisms on Theobroma cacao. The objectives of this work were to study the population densities and genetic diversity of actinomycetes associated with the rhizosphere of cacao as a first step in their application in plant growth promotion and biological control. The populations densities of actinomycetes in soil and cacao roots were similar, with mean values of 1,0 x 106 CFU/g and 9,6 x 105 CFU/g, respectively. All isolates selected and used in this study were identified through sequencing analyses of a fragment of the rpoB gene that encodes the β-subunit of the RNA polymerase as species of the genus Streptomyces. In vitro cellulolytic, xilanolytic and chitinolytic activity, indolacetic acid production and phosphate solubilization activities were observed in most of the isolates tested. The data obtained in this study demonstrate that actinomycetes account for a higher percentage of the total population of culturable bacteria in soil than on cacao roots. Additionally, actinomycetes from the cacao rhizosphere are genetically diverse and have potential applications as agents of growth promotion. PMID:24031247

  16. CRISPR-Cas9 Toolkit for Actinomycete Genome Editing.

    PubMed

    Tong, Yaojun; Robertsen, Helene Lunde; Blin, Kai; Weber, Tilmann; Lee, Sang Yup

    2018-01-01

    Bacteria of the order Actinomycetales are one of the most important sources of bioactive natural products, which are the source of many drugs. However, many of them still lack efficient genome editing methods, some strains even cannot be manipulated at all. This restricts systematic metabolic engineering approaches for boosting known and discovering novel natural products. In order to facilitate the genome editing for actinomycetes, we developed a CRISPR-Cas9 toolkit with high efficiency for actinomyces genome editing. This basic toolkit includes a software for spacer (sgRNA) identification, a system for in-frame gene/gene cluster knockout, a system for gene loss-of-function study, a system for generating a random size deletion library, and a system for gene knockdown. For the latter, a uracil-specific excision reagent (USER) cloning technology was adapted to simplify the CRISPR vector construction process. The application of this toolkit was successfully demonstrated by perturbation of genomes of Streptomyces coelicolor A3(2) and Streptomyces collinus Tü 365. The CRISPR-Cas9 toolkit and related protocol described here can be widely used for metabolic engineering of actinomycetes.

  17. Enumerating actinomycetes in compost bioaerosols at source—Use of soil compost agar to address plate 'masking'

    NASA Astrophysics Data System (ADS)

    Taha, M. P. M.; Drew, G. H.; Tamer Vestlund, A.; Aldred, D.; Longhurst, P. J.; Pollard, S. J. T.

    Actinomycetes are the dominant bacteria isolated from bioaerosols sampled at composting facilities. Here, a novel method for the isolation of actinomycetes is reported, overcoming masking of conventional agar plates, as well as reducing analysis time and costs. Repeatable and reliable actinomycetes growth was best achieved using a soil compost media at an incubation temperature of 44 °C and 7 days' incubation. The results are of particular value to waste management operators and their advisors undertaking regulatory risk assessments that support environmental approvals for compost facilities.

  18. Atrazine, chlorpyrifos, and iprodione effect on the biodiversity of bacteria, actinomycetes, and fungi in a pilot biopurification system with a green cover.

    PubMed

    Elgueta, Sebastian; Correa, Arturo; Campo, Marco; Gallardo, Felipe; Karpouzas, Dimitrios; Diez, Maria Cristina

    2017-09-02

    The use of biopurification systems can mitigate the effects of pesticide contamination on farms. The primary aim of this study was to evaluate the effect of pesticide dissipation on microbial communities in a pilot biopurification system. The pesticide dissipation of atrazine, chlorpyrifos and iprodione (35 mg kg -1 active ingredient [a.i.]) and biological activity were determined for 40 days. The microbial communities (bacteria, actinomycetes and fungi) were analyzed using denaturing gradient gel electrophoresis (DGGE). In general, pesticide dissipation was the highest by day 5 and reached 95%. The pesticides did not affect biological activity during the experiment. The structure of the actinomycete and bacterial communities in the rhizosphere was more stable during the evaluation than that in the communities in the control without pesticides. The rhizosphere fungal communities, detected using DGGE, showed small and transitory shifts with time. To conclude, rhizosphere microbial communities were not affected during pesticide dissipation in a pilot biopurification system.

  19. Deep Sea Actinomycetes and Their Secondary Metabolites

    PubMed Central

    Kamjam, Manita; Sivalingam, Periyasamy; Deng, Zinxin; Hong, Kui

    2017-01-01

    Deep sea is a unique and extreme environment. It is a hot spot for hunting marine actinomycetes resources and secondary metabolites. The novel deep sea actinomycete species reported from 2006 to 2016 including 21 species under 13 genera with the maximum number from Microbacterium, followed by Dermacoccus, Streptomyces and Verrucosispora, and one novel species for the other 9 genera. Eight genera of actinomycetes were reported to produce secondary metabolites, among which Streptomyces is the richest producer. Most of the compounds produced by the deep sea actinomycetes presented antimicrobial and anti-cancer cell activities. Gene clusters related to biosynthesis of desotamide, heronamide, and lobophorin have been identified from the deep sea derived Streptomyces. PMID:28507537

  20. Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes

    PubMed Central

    Abdelmohsen, Usama Ramadan; Pimentel-Elardo, Sheila M.; Hanora, Amro; Radwan, Mona; Abou-El-Ela, Soad H.; Ahmed, Safwat; Hentschel, Ute

    2010-01-01

    Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents. PMID:20411105

  1. The biodegradation of layered silicates under the influence of cyanobacterial-actinomycetes associations

    NASA Astrophysics Data System (ADS)

    Ivanova, Ekaterina

    2013-04-01

    The weathering of sheet silicates is well known to be related to local and global geochemical cycles. Content and composition of clay minerals in soil determine the sorption properties of the soil horizons, water-holding capacity of the soil, stickiness, plasticity, etc. Microorganisms have a diverse range of mechanisms of minerals' structure transformation (acid- and alkali formation, biosorption, complexing, etc). One of the methods is an ability of exopolysaccharide-formation, in particular the formation of mucus, common to many bacteria, including cyanobacteria. Mucous covers cyanobacteria are the specific econiches for other bacteria, including actinomycetes. The objective was to analyze the structural changes of clay minerals under the influence of the cyanobacterial-actinomycetes associative growth. The objects of the study were: 1) the experimental symbiotic association, consisting of free-living heterocyst-formative cyanobacterium Anabaena variabilis Kutz. ATCC 294132 and actinomycete Streptomyces cyaneofuscatus FR837630, 2) rock samples obtained from the Museum of the Soil Science Department of the Lomonosov Moscow State University: kaolinite, consisting of kaolin (96%) Al4 (OH) 8 [Si4O10]; mixed with hydromica, chlorite and quartz; vermiculite, consisting of vermiculite (Ca, Mg, ...)*(Mg, Fe)3(OH)2[(Si, Al)4O10]*4H2O and trioctahedral mica (biotite). The mineralogical compositions of the rocks were determined by the universal X-ray Diffractometer Carl Zeiss Yena. The operationg regime was kept constant (30 kv, 40 mA). The cultivation of the association of actinomycete S. cyanoefuscatus and cyanobacterium A. variabilis caused a reduction in the intensity of kaolinite and hydromica reflexes. However, since both (mica and kaolinite) components have a rigid structure, the significant structural transformation of the minerals was not revealed. Another pattern was observed in the experiment, where the rock sample of vermiculite was used as the mineral

  2. Natural Products from Mangrove Actinomycetes

    PubMed Central

    Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui

    2014-01-01

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926

  3. Old meets new: using interspecies interactions to detect secondary metabolite production in actinomycetes.

    PubMed

    Seyedsayamdost, Mohammad R; Traxler, Matthew F; Clardy, Jon; Kolter, Roberto

    2012-01-01

    Actinomycetes, a group of filamentous, Gram-positive bacteria, have long been a remarkable source of useful therapeutics. Recent genome sequencing and transcriptomic studies have shown that these bacteria, responsible for half of the clinically used antibiotics, also harbor a large reservoir of gene clusters, which have the potential to produce novel secreted small molecules. Yet, many of these clusters are not expressed under common culture conditions. One reason why these clusters have not been linked to a secreted small molecule lies in the way that actinomycetes have typically been studied: as pure cultures in nutrient-rich media that do not mimic the complex environments in which these bacteria evolved. New methods based on multispecies culture conditions provide an alternative approach to investigating the products of these gene clusters. We have recently implemented binary interspecies interaction assays to mine for new secondary metabolites and to study the underlying biology of interactinomycete interactions. Here, we describe the detailed biological and chemical methods comprising these studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Powdered Chitin Agar as a Selective Medium for Enumeration of Actinomycetes in Water and Soil1

    PubMed Central

    Hsu, S. C.; Lockwood, J. L.

    1975-01-01

    Agar media made with 0.4% colloidal chitin plus mineral salts and adjusted to pH 8.0 was superior to four other commonly used media for the isolation and enumeration of actinomycetes from water samples. More actinomycetes developed on chitin agar, and the development of bacteria and fungi was suppressed. Frozen and vacuum-dried chitin from aqueous colloidal suspensions was finely divided and gave results comparable to those obtained with media prepared from colloidal suspensions. Images PMID:234719

  5. In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes.

    PubMed

    Schuppler, M; Wagner, M; Schön, G; Göbel, U B

    1998-01-01

    Hitherto, few environmental samples have been investigated by a 'full cycle rRNA analysis'. Here the results of in situ hybridization experiments with specific rRNA-targeted oligonucleotide probes developed on the basis of new sequences derived from a previously described comparative 16S rRNA analysis of nocardioform actinomycetes in activated sludge are reported. Application of the specific probes enabled identification and discrimination of the distinct populations of nocardioform actinomycetes in activated sludge. One of the specific probes (DLP) detected rod-shaped bacteria which were found in 13 of the 16 investigated sludge samples from various wastewater treatment plants, suggesting their importance in the wastewater treatment process. Another probe (GLP2) hybridized with typically branched filaments of nocardioforms mainly found in samples from enhanced biological phosphorus removal plants, suggesting that these bacteria are involved in sludge foaming. The combination of in situ hybridization with fluorescently labelled rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy improved the detection of nocardioform actinomycetes, which often showed only weak signals inside the activated-sludge flocs.

  6. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants.

    PubMed Central

    Benson, D R; Silvester, W B

    1993-01-01

    Frankia strains are N2-fixing actinomycetes whose isolation and cultivation were first reported in 1978. They induce N2-fixing root nodules on diverse nonleguminous (actinorhizal) plants that are important in ecological successions and in land reclamation and remediation. The genus Frankia encompasses a diverse group of soil actinomycetes that have in common the formation of multilocular sporangia, filamentous growth, and nitrogenase-containing vesicles enveloped in multilaminated lipid envelopes. The relatively constant morphology of vesicles in culture is modified by plant interactions in symbiosis to give a diverse array of vesicles shapes. Recent studies of the genetics and molecular genetics of these organisms have begun to provide new insights into higher-plant-bacterium interactions that lead to productive N2-fixing symbioses. Sufficient information about the relationship of Frankia strains to other bacteria, and to each other, is now available to warrant the creation of some species based on phenotypic and genetic criteria. Images PMID:8336669

  7. [Chemical-genetics based screening for furanonaphthoquinone producing endophytic actinomycetes from seeds of Trewia nudiflora].

    PubMed

    Li, Fang; Kang, Qianjin; Yao, Xiaoling; Li, Yanyan; Wei, Maolong; Cao, Yong; Lin, Shuangjun; Bai, Linquan; Ma, Wei; Deng, Zixin

    2012-04-04

    The seeds of Trewia nudiflora containing maytansine (an anticancer agent), was investigated to explore the endophytic actinomycetes diversity and screen for naphthoquinones producing strain. The seeds of Trewia nudiflora were sliced and plated on different selective media after surface sterilization. Clones that looked like actinomycetes were selected, and classified according to the 16S rRNA sequences. Isolated strains were screened for furanonaphthoquinone biosynthesis gene by PCR, and tested for antibacterial and antifungal activity using Staphyloccocusaureus, Pseudomon-asaeruginosa, Bacillus subtilis, Rhizoctoniasolani and Gibberellasaubinetii. LC-MS and NMR were used to determine the structure of candidate compounds. More than 100 endophytic bacteria were isolated. Among them 66 were streptomycetes. FNQ6 (polyketide synthase Type III) and FNQ21 (carboxymuconate cycloisomerase) were only detected in Streptomyces sp. HTZ 27. We got 5 mg pure furanonaphthoquinone (FNQI) from 1 liter Streptomyces sp. HTZ 27 agar fermentation medium. The use of chemical-genetics method increased the efficiency of screening for target compound producing bacteria.

  8. Bacteria in a water-damaged building: associations of actinomycetes and non-tuberculous mycobacteria with respiratory health in occupants

    PubMed Central

    Park, J.-H.; Cox-Ganser, J. M.; White, S. K.; Laney, A. S.; Caulfield, S. M.; Turner, W. A.; Sumner, A. D.; Kreiss, K.

    2016-01-01

    We examined microbial correlates of health outcomes in building occupants with a sarcoidosis cluster and excess asthma. We offered employees a questionnaire and pulmonary function testing and collected floor dust and liquid/sludge from drain tubing traps of heat pumps that were analyzed for various microbial agents. Forty-nine percent of participants reported any symptom reflecting possible granulomatous disease (shortness of breath on exertion, flu-like achiness, or fever and chills) weekly in the last 4 weeks. In multivariate regressions, thermophilic actinomycetes (median = 529 CFU/m2) in dust were associated with FEV1/FVC [coefficient =−2.8 per interquartile range change, P = 0.02], percent predicted FEF25–75% (coefficient =−12.9, P = 0.01), and any granulomatous disease-like symptom [odds ratio (OR) = 3.1, 95% confidence interval (CI) = 1.45–6.73]. Mycobacteria (median = 658 CFU/m2) were positively associated with asthma symptoms (OR = 1.5, 95% CI = 0.97–2.43). Composite score (median = 11.5) of total bacteria from heat pumps was negatively associated with asthma (0.8, 0.71–1.00) and positively associated with FEV1/FVC (coefficient = 0.44, P = 0.095). Endotoxin (median score = 12.0) was negatively associated with two or more granulomatous disease-like symptoms (OR = 0.8, 95% CI = 0.67–0.98) and asthma (0.8, 0.67–0.96). Fungi or (1→3)-β-D-glucan in dust or heat pump traps was not associated with any health outcomes. Thermophilic actinomycetes and non-tuberculous mycobacteria may have played a role in the occupants’ respiratory outcomes in this water-damaged building. PMID:26717439

  9. Genetic screening strategy for rapid access to polyether ionophore producers and products in actinomycetes.

    PubMed

    Wang, Hao; Liu, Ning; Xi, Lijun; Rong, Xiaoying; Ruan, Jisheng; Huang, Ying

    2011-05-01

    Polyether ionophores are a unique class of polyketides with broad-spectrum activity and outstanding potency for the control of drug-resistant bacteria and parasites, and they are produced exclusively by actinomycetes. A special epoxidase gene encoding a critical tailoring enzyme involved in the biosynthesis of these compounds has been found in all five of the complete gene clusters of polyether ionophores published so far. To detect potential producer strains of these antibiotics, a pair of degenerate primers was designed according to the conserved regions of the five known polyether epoxidases. A total of 44 putative polyether epoxidase gene-positive strains were obtained by the PCR-based screening of 1,068 actinomycetes isolated from eight different habitats and 236 reference strains encompassing eight major families of Actinomycetales. The isolates spanned a wide taxonomic diversity based on 16S rRNA gene analysis, and actinomycetes isolated from acidic soils seemed to be a promising source of polyether ionophores. Four genera were detected to contain putative polyether epoxidases, including Micromonospora, which has not previously been reported to produce polyether ionophores. The designed primers also detected putative epoxidase genes from diverse known producer strains that produce polyether ionophores unrelated to the five published gene clusters. Moreover, phylogenetic and chemical analyses showed a strong correlation between the sequence of polyether epoxidases and the structure of encoded polyethers. Thirteen positive isolates were proven to be polyether ionophore producers as expected, and two new analogues were found. These results demonstrate the feasibility of using this epoxidase gene screening strategy to aid the rapid identification of known products and the discovery of unknown polyethers in actinomycetes.

  10. Soil actinomycetes in the National Forest Park in northeastern China

    NASA Astrophysics Data System (ADS)

    Shirokikh, I. G.; Shirokikh, A. A.

    2017-01-01

    The taxonomic and functional structure of actinomycete complexes in the litters and upper horizons of the soils under an artificial coniferous-broad-leaved forest located around the town of Chanchun (Tszilin province, PRC). The complex of actinomycetes included representatives of the Streptomyces, Micromonospora, Streptosporangium, and Streptoverticillium genera and oligosporous forms. In the actinomycete complexes, streptomycetes prevailed in the abundance (61-95%) and frequency of occurrence (100%). In the parcels of Korean pine ( Pinus koraiensis) and Mongolian oak ( Quercus mongolica), streptomycetes of 19 species from 8 series and 4 sections were isolated. The most representative, as in European forest biomes, was the Cinereus Achromogenes series. A distinguishing feature of the streptomycete complex in the biomes studied was the high participation of species from the Imperfectus series. The verification of the functional activity of natural isolates made it possible to reveal strains with high antagonistic and cellulolytic abilities. A high similarity of actinomycete complexes was found in Eurasian forest ecosystems remote from each other, probably due to the similarity of plant polymers decomposable by actinomycetes.

  11. Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes.

    PubMed

    Hamedi, Javad; Mohammadipanah, Fatemeh; Ventosa, Antonio

    2013-01-01

    More than 70 species of halotolerant and halophilic actinomycetes belonging to at least 24 genera have been validly described. Halophilic actinomycetes are a less explored source of actinomycetes for discovery of novel bioactive secondary metabolites. Degradation of aliphatic and aromatic organic compounds, detoxification of pollutants, production of new enzymes and other metabolites such as antibiotics, compatible solutes and polymers are other potential industrial applications of halophilic and halotolerant actinomycetes. Especially new bioactive secondary metabolites that are derived from only a small fraction of the investigated halophilic actinomycetes, mainly from marine habitats, have revealed the huge capacity of this physiological group in production of new bioactive chemical entities. Combined high metabolic capacities of actinomycetes and unique features related to extremophilic nature of the halophilic actinomycetes have conferred on them an influential role for future biotechnological applications.

  12. Widespread and Persistent Populations of a Major New Marine Actinomycete Taxon in Ocean Sediments

    PubMed Central

    Mincer, Tracy J.; Jensen, Paul R.; Kauffman, Christopher A.; Fenical, William

    2002-01-01

    A major taxon of obligate marine bacteria within the order Actinomycetales has been discovered from ocean sediments. Populations of these bacteria (designated MAR 1) are persistent and widespread, spanning at least three distinct ocean systems. In this study, 212 actinomycete isolates possessing MAR 1 morphologies were examined and all but two displayed an obligate requirement of seawater for growth. Forty-five of these isolates, representing all observed seawater-requiring morphotypes, were partially sequenced and found to share characteristic small-subunit rRNA signature nucleotides between positions 207 and 468 (Escherichia coli numbering). Phylogenetic characterization of seven representative isolates based on almost complete sequences of genes encoding 16S rRNA (16S ribosomal DNA) yielded a monophyletic clade within the family Micromonosporaceae and suggests novelty at the genus level. This is the first evidence for the existence of widespread populations of obligate marine actinomycetes. Organic extracts from cultured members of this new group exhibit remarkable biological activity, suggesting that they represent a prolific resource for biotechnological applications. PMID:12324350

  13. Evidence of heat-resistant microorganisms with a special emphasis on filamentous Actinomycetes in hyper-arid soils of Gandom Beryan area, Lut Desert, Iran.

    PubMed

    Mazkour, Somaye; Hosseinzadeh, Saeid; Shekarforoush, Seyed Shahram

    2017-12-01

    In the present study, the Lut Desert, Iran was chosen as one of the hottest places in the world (with the recorded temperature of 70.7°C during 2003-2009) to find out whether any heat-resistant microorganisms were present in the soil. The samples were collected from surface and depth of three identified places of Gandom Beryan in the Lut Desert. Chemical analysis and enumeration of the total bacteria, yeasts and molds were performed. Four selective culture media were employed to isolate the filamentous actinomycetes. The suspected colonies were further confirmed using PCR assay. Then the culture cell-free-supernatants (CFS) of isolates were used to investigate their antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium and Escherichia coli . Chemical analysis of the samples included moisture (0.2-0.9%), ash (85-91%), organic materials (8.3-14.4%), pH (7.59-9.40) and electrical conductivity (380-2000 μS/cm). The number of isolated bacteria and molds varied from 0-20 to 0-40 CFU/g, respectively. Number of Actinomycetes isolated from the soil samples were between 0-12.2 CFU/g. Nine isolated colonies were identified as filamentous Actinomycetes. To determine the possibility of antimicrobial peptides, the CFS (cell-free supernatant) was firstly neutralized by NaOH and catalase. The results showed that none of the CFS of the isolates was effective against E. coli, S. Typhimurium and S. aureus , while the maximum inhibitory effect was investigated on B. cereus , which was 33.1%±1.19% (mean ± SD). The results of the current study imply the presence of rare heat-resistant microorganisms in the soil of Gandom Beryan which may be further used to find out more about the function of natural bioactive compounds. Actinomycetes, as extremophile microorganisms, have shown the greatest genomic and metabolic diversity, as such the discovery of the novel Actinomycetes as a source of secondary metabolites is essential.

  14. Genetic Screening Strategy for Rapid Access to Polyether Ionophore Producers and Products in Actinomycetes ▿ †

    PubMed Central

    Wang, Hao; Liu, Ning; Xi, Lijun; Rong, Xiaoying; Ruan, Jisheng; Huang, Ying

    2011-01-01

    Polyether ionophores are a unique class of polyketides with broad-spectrum activity and outstanding potency for the control of drug-resistant bacteria and parasites, and they are produced exclusively by actinomycetes. A special epoxidase gene encoding a critical tailoring enzyme involved in the biosynthesis of these compounds has been found in all five of the complete gene clusters of polyether ionophores published so far. To detect potential producer strains of these antibiotics, a pair of degenerate primers was designed according to the conserved regions of the five known polyether epoxidases. A total of 44 putative polyether epoxidase gene-positive strains were obtained by the PCR-based screening of 1,068 actinomycetes isolated from eight different habitats and 236 reference strains encompassing eight major families of Actinomycetales. The isolates spanned a wide taxonomic diversity based on 16S rRNA gene analysis, and actinomycetes isolated from acidic soils seemed to be a promising source of polyether ionophores. Four genera were detected to contain putative polyether epoxidases, including Micromonospora, which has not previously been reported to produce polyether ionophores. The designed primers also detected putative epoxidase genes from diverse known producer strains that produce polyether ionophores unrelated to the five published gene clusters. Moreover, phylogenetic and chemical analyses showed a strong correlation between the sequence of polyether epoxidases and the structure of encoded polyethers. Thirteen positive isolates were proven to be polyether ionophore producers as expected, and two new analogues were found. These results demonstrate the feasibility of using this epoxidase gene screening strategy to aid the rapid identification of known products and the discovery of unknown polyethers in actinomycetes. PMID:21421776

  15. Inhibition of norsolorinic acid accumulation to Aspergillus parasiticus by marine actinomycetes

    NASA Astrophysics Data System (ADS)

    Yan, Peisheng; Shi, Cuijuan; Shen, Jihong; Wang, Kai; Gao, Xiujun; Li, Ping

    2014-11-01

    Thirty-six strains of marine actinomycetes were isolated from a sample of marine sediment collected from the Yellow Sea and evaluated in terms of their inhibitory activity on the growth of Aspergillus parasiticus and the production of norsolorinic acid using dual culture plate assay and agar diffusion methods. Among them, three strains showed strong antifungal activity and were subsequently identified as Streptomyces sp. by 16S rRNA gene sequencing analysis. The supernatant from the fermentation of the MA01 strain was extracted sequentially with chloroform and ethyl acetate, and the activities of the extracts were determined by tip culture assay. The assay results show that both extracts inhibited mycelium growth and toxin production, and the inhibitory activities of the extracts increased as their concentrations increased. The results of this study suggest that marine actinomycetes are biologically important for the control of mycotoxins, and that these bacteria could be used as novel biopesticides against mycotoxins.

  16. The medically important aerobic actinomycetes: epidemiology and microbiology.

    PubMed Central

    McNeil, M M; Brown, J M

    1994-01-01

    The aerobic actinomycetes are soil-inhabiting microorganisms that occur worldwide. In 1888, Nocard first recognized the pathogenic potential of this group of microorganisms. Since then, several aerobic actinomycetes have been a major source of interest for the commercial drug industry and have proved to be extremely useful microorganisms for producing novel antimicrobial agents. They have also been well known as potential veterinary pathogens affecting many different animal species. The medically important aerobic actinomycetes may cause significant morbidity and mortality, in particular in highly susceptible severely immunocompromised patients, including transplant recipients and patients infected with human immunodeficiency virus. However, the diagnosis of these infections may be difficult, and effective antimicrobial therapy may be complicated by antimicrobial resistance. The taxonomy of these microorganisms has been problematic. In recent revisions of their classification, new pathogenic species have been recognized. The development of additional and more reliable diagnostic tests and of a standardized method for antimicrobial susceptibility testing and the application of molecular techniques for the diagnosis and subtyping of these microorganisms are needed to better diagnose and treat infected patients and to identify effective control measures for these unusual pathogens. We review the epidemiology and microbiology of the major medically important aerobic actinomycetes. Images PMID:7923055

  17. Actinomycetes benefaction role in soil and plant health.

    PubMed

    Bhatti, Asma Absar; Haq, Shamsul; Bhat, Rouf Ahmad

    2017-10-01

    Actinomycetes are aerobic, spore forming gram-positive bacteria, belonging to the order actinomycetales characterized with substrate and aerial mycelium growth. They are the most abundant organisms that form thread-like filaments in the soil and are responsible for characteristically "earthy" smell of freshly turned healthy soil. They play major roles in the cycling of organic matter; inhibit the growth of several plant pathogens in the rhizosphere and decompose complex mixtures of polymer in dead plant, animal and fungal material results in production of many extracellular enzymes which are conductive to crop production. The major contribution in biological buffering of soils, biological control of soil environments by nitrogen fixation and degradation of high molecular weight compounds like hydrocarbons in the polluted soils are remarkable characteristics of actinomycetes. Besides this, they are known to improve the availability of nutrients, minerals, enhance the production of metabolites and promote plant growth regulators. Furthermore, actinobacteria do not contaminate the environment instead, they help sustainably in improving soil health by formation and stabilization of compost piles, formation of stable humus and combine with other soil microorganisms in breaking down the tough plant residues such as cellulose and animal residues to maintain the biotic equilibrium of soil by cooperating with nutrient cycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bacterial, Fungal, and Actinomycete Populations in Soils Receiving Repeated Applications of 2,4-Dichlorophenoxyacetic Acid and Trifluralin 1

    PubMed Central

    Breazeale, F. W.; Camper, N. D.

    1970-01-01

    Soil samples were collected from an untreated plot and plots receiving repeated applications of 2,4-dichlorophenoxyacetic acid (2,4-D) and α,α,α-trifluoro-2, 6-dinitro-N,N-dipropyl-p-toluidine (trifluralin); they were then plated on media specific for bacteria, fungi, and actinomycetes. The actinomycete colony count in the trifluralin-treated plot was greater than the control, but the same as the control in the 2,4-D-treated plot. The bacterial count was lower in both treated plots. Fungal colonies in the trifluralin-treated plots were greater than the control, but not different from the control in the 2,4-D-treated plot. PMID:5437308

  19. Effects of Actinomycete Secondary Metabolites on Sediment Microbial Communities.

    PubMed

    Patin, Nastassia V; Schorn, Michelle; Aguinaldo, Kristen; Lincecum, Tommie; Moore, Bradley S; Jensen, Paul R

    2017-02-15

    Marine sediments harbor complex microbial communities that remain poorly studied relative to other biomes such as seawater. Moreover, bacteria in these communities produce antibiotics and other bioactive secondary metabolites, yet little is known about how these compounds affect microbial community structure. In this study, we used next-generation amplicon sequencing to assess native microbial community composition in shallow tropical marine sediments. The results revealed complex communities comprised of largely uncultured taxa, with considerable spatial heterogeneity and known antibiotic producers comprising only a small fraction of the total diversity. Organic extracts from cultured strains of the sediment-dwelling actinomycete genus Salinispora were then used in mesocosm studies to address how secondary metabolites shape sediment community composition. We identified predatory bacteria and other taxa that were consistently reduced in the extract-treated mesocosms, suggesting that they may be the targets of allelopathic interactions. We tested related taxa for extract sensitivity and found general agreement with the culture-independent results. Conversely, several taxa were enriched in the extract-treated mesocosms, suggesting that some bacteria benefited from the interactions. The results provide evidence that bacterial secondary metabolites can have complex and significant effects on sediment microbial communities. Ocean sediments represent one of Earth's largest and most poorly studied biomes. These habitats are characterized by complex microbial communities where competition for space and nutrients can be intense. This study addressed the hypothesis that secondary metabolites produced by the sediment-inhabiting actinomycete Salinispora arenicola affect community composition and thus mediate interactions among competing microbes. Next-generation amplicon sequencing of mesocosm experiments revealed complex communities that shifted following exposure to S

  20. [Experiment to study some suspension media for the lyophilization of actinomycetes].

    PubMed

    Semenov, S M

    1975-09-01

    Viability and cultural properties of 59 actinomycetes and 17 bacteria lyophilized in polyvinylpyrrolidone (PVP), sodium glutamate, their combinations and horse serum were studied after storage for 2 years at a temperature of 4-10 degrees. A 5 per cent solution of sodium glutamate had a high protective effect on viability of the above organisms. The solution containing 3 per cent of sodium glutamate and 3 per cent of PVP was somewhat less effective. The cultures lyophilized in 5 per cent solution of sodium glutamate had the same viability levels as those lyophilized in horse serum, while the latter had better growth rates on their plating out on nutrient media. A 5 per cent solution of PVP had no advantages over sodium glutamate or horse serum with respect to preservation of the organism viability. No significant differences in the cultural properties: colour of the aerial and substrate mycelium and pigment production were noted in the actinomycetes lyophilized in various protective media and the analogous control cultures maintained by means of passages on fresh nutrient media.

  1. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia

    PubMed Central

    Gebreyohannes, Gebreselema; Moges, Feleke; Sahile, Samuel; Raja, Nagappan

    2013-01-01

    Objective To isolate, evaluate and characterize potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Methods A total of 31 strains of actinomycetes were isolated and tested against Gram positive and Gram negative bacterial strains by primary screening. In the primary screening, 11 promising isolates were identified and subjected to solid state and submerged state fermentation methods to produce crude extracts. The fermented biomass was extracted by organic solvent extraction method and tested against bacterial strains by disc and agar well diffusion methods. The isolates were characterized by using morphological, physiological and biochemical methods. Results The result obtained from agar well diffusion method was better than disc diffusion method. The crude extract showed higher inhibition zone against Gram positive bacteria than Gram negative bacteria. One-way analysis of variance confirmed most of the crude extracts were statistically significant at 95% confidence interval. The minimum inhibitory concentration and minimum bactericidal concentration of crude extracts were 1.65 mg/mL and 3.30 mg/mL against Staphylococcus aureus, and 1.84 mg/mL and 3.80 mg/mL against Escherichia coli respectively. The growth of aerial and substrate mycelium varied in different culture media used. Most of the isolates were able to hydrolysis starch and urea; able to survive at 5% concentration of sodium chloride; optimum temperature for their growth was 30 °C. Conclusions The results of the present study revealed that freshwater actinomycetes of Lake Tana appear to have immense potential as a source of antibacterial compounds. PMID:23730554

  2. Dynamics of Gram-negative bacteria population density in a soil in the course of the succession initiated by chitin and cellulose

    NASA Astrophysics Data System (ADS)

    Konstantin, Ivanov; Lubov, Polyanskaya

    2014-05-01

    The functions of actinomycetes in polymer destruction in soil traditionally considered as the dominant, compare to another groups of bacteria. Gram-positive bacteria also have ecological functions in destruction of soil organic matter. The role of Gram-negative bacteria has been researched in the microbial succession in terms of polymers destruction, which are widely spreads in soils: chitin and cellulose. The method with nalidixic acid as an inhibitor of DNA division of Gram-negative bacteria was modified. By modified method microbial succession of Gram-negative bacteria in the different horizons of a chernozem under aerobic and anaerobic conditions was researched. Chitin and cellulose as the source of nutrients with moistening was used in experiments. The introduction of chitin had no positive effect on the population density of Gram-negative bacteria in a chernozem, but it advanced the date of their appearance in microbial succession: the maximum of Gram-negative bacteria population density was registered on the 3rd- 7th day of the experiment with adding chitin. Compare to the control, which one was without any nutrient adding this dynamics registered much earlier. Consequently, the introduction of chitin as an additional source of nutrition promoted revealing of the Gram-negative bacteria in soil already at the early stages of the succession. In the course of the succession, when the fungal mycelium begins to die off, the actinomycetic mycelium increases in length, i.e., Gram-negative bacteria are replaced at this stage with Gram-positive ones, the leading role among which belongs to actinomycetes. The growth rate of Gram-negative bacteria is higher than that of actinomycetes, so they start chitin utilization at the early stages of the succession, whereas actinomycetes dominate at the late stages. The population density of Gram-negative bacteria was lower under the anaerobic conditions as compared with that in the aerobic ones. The population density of Gram

  3. Antifungal Spectra of Actinomycetes Isolated from Tobacco1

    PubMed Central

    Lukic, Anka; Welty, R. E.; Lucas, G. B.

    1972-01-01

    Five species (28 strains) of actinomycetes isolated from tobacco were tested for antagonism against 12 species of storage and field fungi associated with tobacco. Two strains of Streptomyces albus were antagonistic against all test fungi. The actinomycetes grew more rapidly, produced more pigment, and had more pronounced antibiotic activity when grown at 36 C than at 28 C. Krasilnikov's synthetic medium, SMK-1, supported the greatest antifungal activity. More of the actinomycetes were antagonistic against more test fungi when grown for 20 days rather than 10 days. Images PMID:4677614

  4. Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease.

    PubMed

    Intra, Bungonsiri; Mungsuntisuk, Isada; Nihira, Takuya; Igarashi, Yasuhiro; Panbangred, Watanalai

    2011-04-01

    Colletotrichum is one of the most widespread and important genus of plant pathogenic fungi worldwide. Various species of Colletotrichum are the causative agents of anthracnose disease in plants, which is a severe problem to agricultural crops particularly in Thailand. These phytopathogens are usually controlled using chemicals; however, the use of these agents can lead to environmental pollution. Potential non-chemical control strategies for anthracnose disease include the use of bacteria capable of producing anti-fungal compounds such as actinomycetes spp., that comprise a large group of filamentous, Gram positive bacteria from soil. The aim of this study was to isolate actinomycetes capable of inhibiting the growth of Colletotrichum spp, and to analyze the diversity of actinomycetes from plant rhizospheric soil. A total of 304 actinomycetes were isolated and tested for their inhibitory activity against Colletotrichum gloeosporioides strains DoA d0762 and DoA c1060 and Colletotrichum capsici strain DoA c1511 which cause anthracnose disease as well as the non-pathogenic Saccharomyces cerevisiae strain IFO 10217. Most isolates (222 out of 304, 73.0%) were active against at least one indicator fungus or yeast. Fifty four (17.8%) were active against three anthracnose fungi and 17 (5.6%) could inhibit the growth of all three fungi and S. cerevisiae used in the test. Detailed analysis on 30 selected isolates from an orchard at Chanthaburi using the comparison of 16S rRNA gene sequences revealed that most of the isolates (87%) belong to the genus Streptomyces sp., while one each belongs to Saccharopolyspora (strain SB-2) and Nocardiopsis (strain CM-2) and two to Nocardia (strains BP-3 and LK-1). Strains LC-1, LC-4, JF-1, SC-1 and MG-1 exerted high inhibitory activity against all three anthracnose fungi and yeast. In addition, the organic solvent extracts prepared from these five strains inhibited conidial growth of the three indicator fungi. Preliminary analysis of crude

  5. Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease

    PubMed Central

    2011-01-01

    Background Colletotrichum is one of the most widespread and important genus of plant pathogenic fungi worldwide. Various species of Colletotrichum are the causative agents of anthracnose disease in plants, which is a severe problem to agricultural crops particularly in Thailand. These phytopathogens are usually controlled using chemicals; however, the use of these agents can lead to environmental pollution. Potential non-chemical control strategies for anthracnose disease include the use of bacteria capable of producing anti-fungal compounds such as actinomycetes spp., that comprise a large group of filamentous, Gram positive bacteria from soil. The aim of this study was to isolate actinomycetes capable of inhibiting the growth of Colletotrichum spp, and to analyze the diversity of actinomycetes from plant rhizospheric soil. Results A total of 304 actinomycetes were isolated and tested for their inhibitory activity against Colletotrichum gloeosporioides strains DoA d0762 and DoA c1060 and Colletotrichum capsici strain DoA c1511 which cause anthracnose disease as well as the non-pathogenic Saccharomyces cerevisiae strain IFO 10217. Most isolates (222 out of 304, 73.0%) were active against at least one indicator fungus or yeast. Fifty four (17.8%) were active against three anthracnose fungi and 17 (5.6%) could inhibit the growth of all three fungi and S. cerevisiae used in the test. Detailed analysis on 30 selected isolates from an orchard at Chanthaburi using the comparison of 16S rRNA gene sequences revealed that most of the isolates (87%) belong to the genus Streptomyces sp., while one each belongs to Saccharopolyspora (strain SB-2) and Nocardiopsis (strain CM-2) and two to Nocardia (strains BP-3 and LK-1). Strains LC-1, LC-4, JF-1, SC-1 and MG-1 exerted high inhibitory activity against all three anthracnose fungi and yeast. In addition, the organic solvent extracts prepared from these five strains inhibited conidial growth of the three indicator fungi

  6. Actinomycetes: still a source of novel antibiotics.

    PubMed

    Genilloud, Olga

    2017-10-18

    Covering: 2006 to 2017Actinomycetes have been, for decades, one of the most important sources for the discovery of new antibiotics with an important number of drugs and analogs successfully introduced in the market and still used today in clinical practice. The intensive antibacterial discovery effort that generated the large number of highly potent broad-spectrum antibiotics, has seen a dramatic decline in the large pharma industry in the last two decades resulting in a lack of new classes of antibiotics with novel mechanisms of action reaching the clinic. Whereas the decline in the number of new chemical scaffolds and the rediscovery problem of old known molecules has become a hurdle for industrial natural products discovery programs, new actinomycetes compounds and leads have continued to be discovered and developed to the preclinical stages. Actinomycetes are still one of the most important sources of chemical diversity and a reservoir to mine for novel structures that is requiring the integration of diverse disciplines. These can range from novel strategies to isolate species previously not cultivated, innovative whole cell screening approaches and on-site analytical detection and dereplication tools for novel compounds, to in silico biosynthetic predictions from whole gene sequences and novel engineered heterologous expression, that have inspired the isolation of new NPs and shown their potential application in the discovery of novel antibiotics. This review will address the discovery of antibiotics from actinomycetes from two different perspectives including: (1) an update of the most important antibiotics that have only reached the clinical development in the recent years despite their early discovery, and (2) an overview of the most recent classes of antibiotics described from 2006 to 2017 in the framework of the different strategies employed to untap novel compounds previously overlooked with traditional approaches.

  7. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters.

    PubMed

    Schorn, Michelle A; Alanjary, Mohammad M; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R; Ziemert, Nadine; Moore, Bradley S

    2016-12-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.

  8. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters

    PubMed Central

    Schorn, Michelle A.; Alanjary, Mohammad M.; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R.; Ziemert, Nadine

    2016-01-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites. PMID:27902408

  9. The detection of diverse aminoglycoside phosphotransferases within natural populations of actinomycetes.

    PubMed

    Anderson, A S; Clark, D J; Gibbons, P H; Sigmund, J M

    2002-08-01

    The conserved nature of the genes that code for actinomycete secondary metabolite biosynthetic pathways suggests a common evolutionary ancestor and incidences of lateral gene transfer. Resistance genes associated with these biosynthetic pathways also display a high degree of similarity. Actinomycete aminoglycoside phosphotransferase antibiotic resistance enzymes (APH) are coded for by such genes and are therefore good targets for evaluating the bioactive potential of actinomycetes. A set of universal PCR primers for APH encoding genes was used to probe genomic DNA from three collections of actinomycetes to determine the utility of molecular screening. An additional monitoring of populations for the predominance of specific classes of enzymes to predict the potential of environmental sites for providing isolates with interesting metabolic profiles. Approximately one-fifth of all isolates screened gave a positive result by PCR. The PCR products obtained were sequenced and compared to existing APH family members. Sequence analysis resolved the family into nine groups of which six had recognizable phenotypes: 6'-phosphotransferase (APH(6)), 3'-phosphotransferase (APH(3)), hydroxyurea phosphotransferase (HUR), peptide phosphotransferase, hygromycin B phosphotransferase (APH(7")) and oxidoreductase. The actinomycetes screened fell into seven groups, including three novel groups with unknown phenotypes. The strains clustered according to the environmental site from where they were obtained, providing evidence for the movement of these genes within populations. The value of this as a method for obtaining novel compounds and the significance to the ecology of antibiotic biosynthesis are discussed.

  10. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    PubMed

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  11. Fluctuations in the population density of Gram-negative bacteria in a chernozem in the course of a succession initiated by moistening and chitin and cellulose introduction

    NASA Astrophysics Data System (ADS)

    Polyanskaya, L. M.; Ivanov, K. E.; Zvyagintsev, D. G.

    2012-10-01

    The role has been studied of Gram-negative bacteria in the destruction of polymers widely spread in soils: chitin and cellulose. The introduction of chitin had no positive effect on the population density of Gram-negative bacteria, but it advanced the date of their appearance: the maximum population density of Gram-negative bacteria was recorded not on the 7th-15th day as in the control but much earlier, on the 3rd-7th day of the experiment. Consequently, the introduction of chitin as an additional source of nutrition promoted revealing of the Gram-negative bacteria already at the early stages of the succession. In the course of the succession, when the fungal mycelium begins to die off, the actinomycetic mycelium increases in length, i.e., Gram-negative bacteria are replaced at this stage with Gram-positive ones, the leading role among which belongs to actinomycetes. The growth rate of Gram-negative bacteria is higher than that of actinomycetes, so they start chitin utilization at the early stages of the succession, whereas actinomycetes dominate at the late stages. The population density of Gram-negative bacteria was lower under the anaerobic conditions as compared with that in the aerobic ones. The population density of Gram-negative bacteria in the lower layer of the A horizon and in the B horizon was slightly higher only in the case of the chitin introduction. When cellulose was introduced into the soil under aerobic conditions, the population density of Gram-negative bacteria in all the layers of the A horizon was maximal from the 14th to the 22nd day of the experiment. Cellulose was utilized in the soil mostly by fungi, and this was suggested by the increase of the length of the fungal mycelium. Simultaneously, an increase in the length of the actinomycetal mycelium was observed, as these organisms also perform cellulose hydrolysis in soils. The Gram-negative bacteria began to develop at the stage of the fungal mycelium destruction, which indirectly

  12. Actinomycetal complex of light sierozem on the Kopet-Dag piedmont plain

    NASA Astrophysics Data System (ADS)

    Zenova, G. M.; Zvyagintsev, D. G.; Manucharova, N. A.; Stepanova, O. A.; Chernov, I. Yu.

    2016-10-01

    The population density of actinomycetes in the samples of light sierozem from the Kopet Dag piedmont plain (75 km from Ashkhabad, Turkmenistan) reaches hundreds of thousand CFU/g soil. The actinomycetal complex is represented by two genera: Streptomyces and Micromonospora. Representatives of the Streptomyces genus predominate and comprise 73 to 87% of the actinomycetal complex. In one sample, representatives of the Micromonospora genus predominated in the complex (75%). The Streptomyces genus in the studied soil samples is represented by the species from several sections and series: the species of section Helvolo-Flavus series Helvolus represent the dominant component of the streptomycetal complex; their portion is up to 77% of all isolated actinomycetes. The species of other sections and series are much less abundant. Thus, the percentage of the Cinereus Achromogenes section in the actinomycetal complex does not exceed 28%; representatives of the Albus section Albus series, Roseus section Lavendulae-Roseus series, and Imperfectus section belong to rare species; they have been isolated not from all the studied samples of light sierozem, and their portion does not exceed 10% of the actinomycetal complex.

  13. Melanogenic actinomycetes from rhizosphere soil-antagonistic activity against Xanthomonas oryzae and plant-growth-promoting traits.

    PubMed

    Muangham, Supattra; Pathom-Aree, Wasu; Duangmal, Kannika

    2015-02-01

    A total of 210 melanogenic actinomycetes were isolated from 75 rhizospheric soils using ISP6 and ISP7 agar supplemented with antifungal and antibacterial agents. Their morphological characteristics and the presence of ll-diaminopimelic acid in whole-cell hydrolyzates revealed that all isolates belonged to the genus Streptomyces. Their ability to inhibit the growth of 2 pathogenic rice bacteria, Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, was observed using the agar overlay method. The results indicated that 61.9% of the isolates could inhibit at least one of the tested rice pathogens. Among these, isolate TY68-3 showed the highest antibacterial activity and siderophore production. The 16S rRNA gene sequence analysis of 46 representative isolates revealed that isolates with high similarity to Streptomyces bungoensis were frequently found. The present study indicated the potential of melanogenic actinomycetes for use as biocontrol agents against X. oryzae as well as their diversity in rhizospheric soils.

  14. Ecological and Taxonomic Features of Actinomycetal Complexes in Soils of the Lake Elton Basin

    NASA Astrophysics Data System (ADS)

    Zenova, G. M.; Dubrova, M. S.; Kuznetsova, A. I.; Gracheva, T. A.; Manucharova, N. A.; Zvyagintsev, D. G.

    2016-02-01

    In the sor (playa) solonchaks of chloride and sulfate-chloride salinity (the content of readily soluble salts is 0.9-1.0%) in the delta of the Khara River discharging into Lake Elton, the number of mycelial actinobacteria (actinomycetes) is low ((2-3) × 103 CFU/g of soil). At a distance from the water's edge, these soils are substituted for the light chestnut ones, for which an elevated number of actinomycetes (an order of magnitude higher than in the sor solonchaks) and a wider generic spectrum are characteristic. The actinomycetal complex is included the Streptomyces and Micromonospora genera, whereas in the sor solonchaks around the lake, representatives of Micromonospora were not found.

  15. Diversity and bioprospecting of culturable actinomycetes from marine sediment of the Yellow Sea, China.

    PubMed

    Xiong, Zhi-Qiang; Liu, Qiao-Xia; Pan, Zhao-Long; Zhao, Na; Feng, Zhi-Xiang; Wang, Yong

    2015-03-01

    Marine actinomycetes are a potential source of a wide variety of bioactive natural products. In this work, seven pretreatments, three selective isolation media, and five artificial seawater concentrations were used to isolate actinomycetes from the sediments collected from Yellow Sea, China. Statistical analysis showed that only the isolation medium strongly affected the total and bioactive numbers of actinomycete isolates. A total of 613 actinobacterial strains were isolated and screened for antimicrobial activities; 154 isolates showed activity against at least one of nine test drug-resistant microorganisms. Eighty-nine representatives with strong antimicrobial activity were identified phylogenetically based on 16S rRNA gene sequencing, which were assigned to five different actinomycete genera Streptomyces, Kocuria, Saccharomonospora, Micromonospora, and Nocardiopsis. Using PCR-based screening for six biosynthetic genes of secondary metabolites, all 45 isolates with acute activity have at least one biosynthetic gene, 28.8 % of which possess more than three biosynthetic genes. As a case, strain SMA-1 was selected for antimicrobial natural product discovery. Three diketopiperazine dimers including a new compound iso-naseseazine B (1) and two known compounds naseseazine B (2) and aspergilazine A (3) were isolated by bioassay-guided separation. These results suggested that actinomycetes from marine sediments are a potential resource of novel secondary metabolites and drugs.

  16. Eco-taxonomic insights into actinomycete symbionts of termites for discovery of novel bioactive compounds.

    PubMed

    Kurtböke, D Ipek; French, John R J; Hayes, R Andrew; Quinn, Ronald J

    2015-01-01

    Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in "omics" sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the "omics" science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia.

  17. Plants as sources of airborne bacteria, including ice nucleation-active bacteria.

    PubMed

    Lindemann, J; Constantinidou, H A; Barchet, W R; Upper, C D

    1982-11-01

    Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colony-forming units per m over young corn and wet soil to 663 colony-forming units per m over dry soil and 6,500 colony-forming units per m over a closed wheat canopy. In simultaneous samples, concentrations of viable bacteria in the air 10 m inside an alfalfa field were fourfold higher than those over a field with dry, bare soil immediately upwind. The upward flux of viable bacteria over alfalfa was three- to fourfold greater than over dry soil. Concentrations of ice nucleation-active bacteria were higher over plants than over soil. Thus, plant canopies may constitute a major source of bacteria, including ice nucleation-active bacteria, in the air.

  18. Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163.

    PubMed

    Dashti, Yousef; Grkovic, Tanja; Abdelmohsen, Usama Ramadan; Hentschel, Ute; Quinn, Ronald J

    2014-05-22

    Two sponge-derived actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163, were grown in co-culture and the presence of induced metabolites monitored by ¹H NMR. Ten known compounds, including angucycline, diketopiperazine and β-carboline derivatives 1-10, were isolated from the EtOAc extracts of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Co-cultivation of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163 induced the biosynthesis of three natural products that were not detected in the single culture of either microorganism, namely N-(2-hydroxyphenyl)-acetamide (11), 1,6-dihydroxyphenazine (12) and 5a,6,11a,12-tetrahydro-5a,11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a). When tested for biological activity against a range of bacteria and parasites, only the phenazine 12 was active against Bacillus sp. P25, Trypanosoma brucei and interestingly, against Actinokineospora sp. EG49. These findings highlight the co-cultivation approach as an effective strategy to access the bioactive secondary metabolites hidden in the genomes of marine actinomycetes.

  19. [Study of marine actinomycetes isolated from the central coast of Peru and their antibacterial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis].

    PubMed

    León, Jorge; Aponte, Juan José; Rojas, Rosario; Cuadra, D'Lourdes; Ayala, Nathaly; Tomás, Gloria; Guerrero, Marco

    2011-06-01

    To determine the antimicrobial potential of marine actinomycetes against drug-resistant pathogens represented by strains of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). Strains of actinomycetes (29) isolated from marine sediment were evaluated by their characteristics in two culture media and by testing their inhibitory capacity by in vitro antagonism against multi-drug resistant (MDR) pathogenic bacteria for MRSA and VRE. Organic extracts of 3 selected actinomicetes were processed to determine the minimum inhibitory concentration (MIC) of the active compound. Most isolated actinomycetes belong to a homogeneous group of write-gray actinomycetes with a good growth in Marine Agar. The inhibitory rates of the isolates were above 85% for both pathogens with inhibition zones greater than 69 and 78 mm in diameter for MRSA and VRE respectively. Dichloromethane extracts of 3 isolates (I-400A, B1-T61, M10-77) showed strong inhibitory activity of both pathogens, M10-77 being the highest actinomycete strain with antibiotic activity against methicillin-resistant S. aureus ATCC 43300 and vancomycin-resistant E. faecalis ATCC 51299 with a minimum inhibitory concentrations (MIC) of 7.9 and 31.7 μg/ml respectively. Phylogenetic analysis of M10-77 strain showed 99% similarity with the marine species Streptomyces erythrogriseus. Marine sediments of the central coast of Peru, are a source of actinomycetes strains showing high capacity to produce bioactive compounds able to inhibit pathogens classified as multi-drug-resistant such as methicillin-resistant S. aureus and vancomycin-resistant E. faecalis.

  20. Diversity, bioactivities, and metabolic potentials of endophytic actinomycetes isolated from traditional medicinal plants in Sichuan, China.

    PubMed

    Qiu, Peng; Feng, Zhi-Xiang; Tian, Jie-Wei; Lei, Zu-Chao; Wang, Lei; Zeng, Zhi-Gang; Chu, Yi-Wen; Tian, Yong-Qiang

    2015-12-01

    The present study was designed to determine the taxonomic diversity and metabolic activity of the actinomycetes community, including 13 traditional medicinal plants collected in Sichuan province, China, using multiple approaches such as morphological and molecular identification methods, bioactivity assays, and PCR screening for genes involved in antibiotics biosynthesis. 119 endophytic actinomycetes were recovered; 80 representative strains were chosen for 16S rRNA gene partial sequence analyses, with 66 of them being affiliated to genus Streptomyces and the remaining 14 strains being rare actinomycetes. Antimicrobial tests showed that 12 (15%) of the 80 endophytic actinomycetes displayed inhibitory effects against at least one indicator pathogens, which were all assigned to the genus Streptomyces. In addition, 87.5% and 58.8% of the isolates showed anticancer and anti-diabetic activities, respectively. Meanwhile, the anticancer activities of the isolates negatively correlated with their anti-diabetic activities. Based on the results of PCR screening, five genes, PKS-I, PKS-II, NRPS, ANSA, and oxyB, were detected in 55.0%, 58.8%, 90.0%, 18.8% and 8.8% of the 80 actinomycetes, respectively. In conclusion, the PCR screening method employed in the present study was conducive for screening and selection of potential actinomycetes and predicting potential secondary metabolites, which could overcome the limitations of traditional activity screening models. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  1. Isolation and characterization of actinomycete antagonists of a fungal root pathogen.

    PubMed

    Crawford, D L; Lynch, J M; Whipps, J M; Ousley, M A

    1993-11-01

    By use of selective media, 267 actinomycete strains were isolated from four rhizosphere-associated and four non-rhizosphere-associated British soils. Organic media with low nutrient concentrations were found to be best for isolating diverse actinomycetes while avoiding contamination and overgrowth of isolation media by eubacteria and fungi. While all isolates grew well at pHs 6.5 to 8.0, a few were unable to grow at pH 6.0 and a significant number failed to grow at pH 5.5. Eighty-two selected isolates were screened for in vitro antagonism towards Pythium ultimum by use of a Difco cornmeal agar assay procedure. Five isolates were very strong antagonists of the fungus, four were strong antagonists, and ten others were weakly antagonistic. The remaining isolates showed no antagonism by this assay. Additional studies showed that several of the P. ultimum antagonists also strongly inhibited growth of other root-pathogenic fungi. Twelve isolates showing antifungal activity in the in vitro assay were also tested for their effects on the germination and short-term growth of lettuce plants in glasshouse pot studies in the absence of pathogens. None of the actinomycetes prevented seed germination, although half of the isolates retarded seed germination and outgrowth of the plants by 1 to 3 days. During 18-day growth experiments, biomass yields of some actinomycete-inoculated plants were reduced in comparison with untreated control plants, although all plants appeared healthy and well rooted. None of the actinomycetes significantly enhanced plant growth over these short-term experiments. For some, but not all, actinomycetes, some correlations between delayed seed germination and reduced 18-day plant biomass yields were seen. For others, plant biomass yields were not reduced despite an actinomycete-associated delay in seed germination and plant outgrowth. Preliminary glasshouse experiments indicated that some of the actinomycetes protect germinating lettuce seeds against

  2. Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile†

    PubMed Central

    Webster, Nicole S.; Wilson, Kate J.; Blackall, Linda L.; Hill, Russell T.

    2001-01-01

    Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge. PMID:11133476

  3. Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants.

    PubMed

    Gohain, Anwesha; Gogoi, Animesh; Debnath, Rajal; Yadav, Archana; Singh, Bhim P; Gupta, Vijai K; Sharma, Rajeev; Saikia, Ratul

    2015-10-01

    Endophytic actinomycetes are one of the primary groups that share symbiotic relationships with medicinal plants and are key reservoir of biologically active compounds. In this study, six selective medicinal plants were targeted for the first time for endophytic actinomycetes isolation from Gibbon Wild Life Sanctuary, Assam, India, during winter and summer and 76 isolates were obtained. The isolates were found to be prevalent in roots followed by stem and leaves. 16S rRNA gene sequence analysis revealed 16 genera, including rare genera, Verrucosispora, Isoptericola and Kytococcus, which have never been previously reported as endophytic. The genus Streptomyces (66%) was dominant in both seasons. Shannon's diversity index showed that Azadirachta indica (1.49), Rauwolfia serpentina (1.43) and Emblica officinalis (1.24) were relatively good habitat for endophytic actinomycetes. Antimicrobial strains showed prevalence of polyketide synthase (PKS) type-II (85%) followed by PKS type-I (14%) encoded in the genomes. Expression studies showed 12-fold upregulation of PKSII gene in seventh day of incubation for Streptomyces antibioticus (EAAG90). Our results emphasize that the actinomycetes assemblages within plant tissue exhibited biosynthetic systems encoding for important biologically active compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Diversity of Ktedonobacteria with Actinomycetes-Like Morphology in Terrestrial Environments

    PubMed Central

    Yabe, Shuhei; Sakai, Yasuteru; Abe, Keietsu; Yokota, Akira

    2017-01-01

    Bacteria with an actinomycetes-like morphology have recently been discovered, and the class Ktedonobacteria was created for these bacteria in the phylum Chloroflexi. They may prove to be a valuable resource with the potential to produce unprecedented secondary metabolites. However, our understanding of their diversity, richness, habitat, and ecological significance is very limited. We herein developed a 16S rRNA gene-targeted, Ktedonobacteria-specific primer and analyzed ktedonobacterial amplicons. We investigated abundance, diversity, and community structure in forest and garden soils, sand, bark, geothermal sediment, and compost. Forest soils had the highest diversity among the samples tested (1181–2934 operational taxonomic units [OTUs]; Chao 1 estimate, 2503–5613; Shannon index, 4.21–6.42). A phylogenetic analysis of representative OTUs revealed at least eight groups within unclassified Ktedonobacterales, expanding the known diversity of this order. Ktedonobacterial communities markedly varied among our samples. The common mesic environments (soil, sand, and bark) were dominated by diverse phylotypes within the eight groups. In contrast, compost and geothermal sediment samples were dominated by known ktedonobacterial families (Thermosporotrichaceae and Thermogemmatisporaceae, respectively). The relative abundance of Ktedonobacteria in the communities, based on universal primers, was ≤0.8%, but was 12.9% in the geothermal sediment. These results suggest that unknown diverse Ktedonobacteria inhabit common environments including forests, gardens, and sand at low abundances, as well as extreme environments such as geothermal areas. PMID:28321007

  5. [Secondary Metabolites from Marine Microorganisms. I. Secondary Metabolites from Marine Actinomycetes].

    PubMed

    Orlova, T I; Bulgakova, V G; Polin, A N

    2015-01-01

    Review represents data on new active metabolites isolated from marine actinomycetes published in 2007 to 2014. Marine actinomycetes are an unlimited source of novel secondary metabolites with various biological activities. Among them there are antibiotics, anticancer compounds, inhibitors of biochemical processes.

  6. Isolation and identification of actinomycetes for production of novel extracellular glutaminase free L-asparaginase.

    PubMed

    Saxena, Akansha; Upadhyay, Ramraj; Kango, Naveen

    2015-12-01

    Over the recent years glutaminase free L-asparaginase has gained more importance due to better therapeutic properties for treatment of acute lymphoblastic leukemia. Actinomycetes are known for L-asparaginase activity. In the current study, 80 actinomycetes were isolated from various soil habitats by serial dilution technique. Presence of L-asparaginase was investigated in a total of 240 actinomycetes by tubed agar method using modified M-9 medium. A total of 165 actinomycetes were found positive for L-asparaginase activity. Among these, 57 actinomycetes producing larger zones of L-asparagine hydrolysis were further screened for their capacity to produce glutaminase-free L-asparaginase. Four L-glutaminase-free actinomycetes were found to be potential L-asparaginase producers. These actinomycetes were identified as Streptomyces cyaneus (SAP 1287, CFS 1560), S. exfoliates (CFS 1557) and S. phaeochromogenes (GS 1573) on the basis of morphological and biochemical identification studies. Maximum L-asparaginase activity (19.2 Uml(-1)) was observed in culture filtrate of S. phaeochromogenes under submerged fermentation. Results indicate that S. phaeochromogenes could be a potential source of glutaminase free L-asparaginase for commercial purpose. To the best of our knowledge, this is the first report on production of glutaminase free L-asparaginase from S. cyaneus, S. exfoliatus and S. phaeochromogenes.

  7. Isolation and Characterization of Actinomycete Antagonists of a Fungal Root Pathogen †

    PubMed Central

    Crawford, Don L.; Lynch, James M.; Whipps, John M.; Ousley, Margaret A.

    1993-01-01

    By use of selective media, 267 actinomycete strains were isolated from four rhizosphere-associated and four non-rhizosphere-associated British soils. Organic media with low nutrient concentrations were found to be best for isolating diverse actinomycetes while avoiding contamination and overgrowth of isolation media by eubacteria and fungi. While all isolates grew well at pHs 6.5 to 8.0, a few were unable to grow at pH 6.0 and a significant number failed to grow at pH 5.5. Eighty-two selected isolates were screened for in vitro antagonism towards Pythium ultimum by use of a Difco cornmeal agar assay procedure. Five isolates were very strong antagonists of the fungus, four were strong antagonists, and ten others were weakly antagonistic. The remaining isolates showed no antagonism by this assay. Additional studies showed that several of the P. ultimum antagonists also strongly inhibited growth of other root-pathogenic fungi. Twelve isolates showing antifungal activity in the in vitro assay were also tested for their effects on the germination and short-term growth of lettuce plants in glasshouse pot studies in the absence of pathogens. None of the actinomycetes prevented seed germination, although half of the isolates retarded seed germination and outgrowth of the plants by 1 to 3 days. During 18-day growth experiments, biomass yields of some actinomycete-inoculated plants were reduced in comparison with untreated control plants, although all plants appeared healthy and well rooted. None of the actinomycetes significantly enhanced plant growth over these short-term experiments. For some, but not all, actinomycetes, some correlations between delayed seed germination and reduced 18-day plant biomass yields were seen. For others, plant biomass yields were not reduced despite an actinomycete-associated delay in seed germination and plant outgrowth. Preliminary glasshouse experiments indicated that some of the actinomycetes protect germinating lettuce seeds against

  8. The structural-functional organization of thermotolerant complexes of actinomycetes in desert and volcanic soils

    NASA Astrophysics Data System (ADS)

    Zenova, G. M.; Kurapova, A. I.; Lysenko, A. M.; Zvyagintsev, D. G.

    2009-05-01

    It has been found that the number of thermotolerant actinomycetes in strongly heated soils of deserts and volcanic regions is comparable to or exceeds the number of mesophilic actinomycetes. Among the latter group, streptomyces usually predominate; among thermotolerant actinomycetes, representatives of the Micromonospora, Streptosporangium, Actinomadura, Saccharopolyspora, Microtetraspora, and Microbispora genera are identified. Thermotolerant actinomycetes display the full cycle of their development in these soils. The method of fluorescent in situ hybridization has made it possible to determine that mycelial forms predominate among the metabolically active representatives of Actinobacteria; their portion increases with the rise in the temperature of soil incubation.

  9. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  10. [Ecological distribution and antimicrobial effects of soil actinomycetes in artificial vegetation systems in Shazhuyu of Qinghai, China].

    PubMed

    Yang, Bin; Xue, Quan-hong; Chen, Zhan-quan; Guo, Zhi-ying; Zhang, Xiao-lu; Zhou, Yong-qiang; Xu, Ying-jun; Sun, De-fu

    2008-08-01

    In order to probe into the effects of artificial vegetation rehabilitation on soil actinomycetes, dilution plate and agar block methods were used to investigate the ecological distribution and antimicrobial effects of actinomycetes in sandy soil in Shazhuyu area of Qinghai after artificial vegetation restoration. The results showed that with the vegetation rehabilitation and the improvement of vegetation coverage on alpine sandy dry land, the quantity of soil actinomycetes increased significantly, being 145.4% higher in the grassland transferred from farmland than in sandy land. The quantity of soil Micromonospora in grassland transferred from farmland was about six times as much as that in sandy land. The average selection rate of antimicrobial actinomycetes was increased greatly, with the antimicrobial actinomycetes in the soil of grassland transferred from farmland, the antibacterial actinomycetes in the soil of natural grassland, and the pathogenic fungus resistant aetinomycetes in the soil of forestland being approximately 2, 3.2 and 1.5 times as much as those in the soil of sandy land, respectively. Vegetation coverage and soil nutrients had great influences on the quantities of actinomycetes and antimicrobial actinomycetes. The contents of soil organic matter and alkali-hydrolyzable nitrogen and the yield of fresh grasses had significant correlations with the quantities of actinomycetes (P < 0.01), and the content of soil organic matter and the yield of fresh grasses significantly correlated with the strain numbers of antimicrobial actinomycetes (P < 0.01). Furthermore, vegetation coverage and the contents of soil total nitrogen, total phosphorous, total potassium, total salt, and available potassium had significant correlations with the total quantities of actinomycetes, Streptomycetes, and Micromonospora (P < 0.05).

  11. Eliciting antibiotics active against the ESKAPE pathogens in a collection of actinomycetes isolated from mountain soils.

    PubMed

    Zhu, Hua; Swierstra, Jasper; Wu, Changsheng; Girard, Geneviève; Choi, Young Hae; van Wamel, Willem; Sandiford, Stephanie K; van Wezel, Gilles P

    2014-08-01

    The rapid emergence of multidrug-resistant (MDR) bacterial pathogens poses a major threat for human health. In recent years, genome sequencing has unveiled many poorly expressed antibiotic clusters in actinomycetes. Here, we report a well-defined ecological collection of >800 actinomycetes obtained from sites in the Himalaya and Qinling mountains, and we used these in a concept study to see how efficiently antibiotics can be elicited against MDR pathogens isolated recently from the clinic. Using 40 different growth conditions, 96 actinomycetes were identified - predominantly Streptomyces - that produced antibiotics with efficacy against the MDR clinical isolates referred to as ESKAPE pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and/or Enterobacter cloacae. Antimicrobial activities that fluctuated strongly with growth conditions were correlated with specific compounds, including borrelidin, resistomycin, carbomethoxy-phenazine, and 6,7,8- and 5,6,8-trimethoxy-3-methylisocoumarin, of which the latter was not described previously. Our work provided insights into the potential of actinomycetes as producers of drugs with efficacy against clinical isolates that have emerged recently and also underlined the importance of targeting a specific pathogen. © 2014 The Authors.

  12. Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments.

    PubMed Central

    Pasti-Grigsby, M B; Lewis, T A; Crawford, D L; Crawford, R L

    1996-01-01

    Actinomycete strains isolated from 2,4,6-trinitrotoluene (TNT)-contaminated and uncontaminated environments were compared for TNT tolerance and abilities to transform TNT. Regardless of previous TNT exposure history, no significant differences in TNT tolerance were seen among strains. Selected strains did not significantly mineralize [14C]TNT. The actinomycetes did, however, transform TNT into reduced intermediates. The data indicate that, in actinomycete-rich aerobic environments like composts, actinomycetes will transform TNT into intermediates which are known to form recalcitrant polymers. PMID:8975606

  13. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

    PubMed Central

    Sreevidya, M.; Gopalakrishnan, S.; Kudapa, H.; Varshney, R.K.

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20 °C to 40 °C, pH range of 7–11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea. PMID:26887230

  14. Specificity of Induction of Glycopeptide Antibiotic Resistance in the Producing Actinomycetes.

    PubMed

    Binda, Elisa; Cappelletti, Pamela; Marinelli, Flavia; Marcone, Giorgia Letizia

    2018-04-25

    Glycopeptide antibiotics are drugs of last resort for treating severe infections caused by Gram-positive pathogens. It is widely believed that glycopeptide-resistance determinants ( van genes) are ultimately derived from the producing actinomycetes. We hereby investigated the relationship between the antimicrobial activity of vancomycin and teicoplanins and their differential ability to induce van gene expression in Actinoplanes teichomyceticus —the producer of teicoplanin—and Nonomuraea gerenzanensis —the producer of the teicoplanin-like A40926. As a control, we used the well-characterized resistance model Streptomyces coelicolor . The enzyme activities of a cytoplasmic-soluble d,d-dipeptidase and of a membrane-associated d,d-carboxypeptidase (corresponding to VanX and VanY respectively) involved in resistant cell wall remodeling were measured in the actinomycetes grown in the presence or absence of subinhibitory concentrations of vancomycin, teicoplanin, and A40926. Results indicated that actinomycetes possess diverse self-resistance mechanisms, and that each of them responds differently to glycopeptide induction. Gene swapping among teicoplanins-producing actinomycetes indicated that cross-talking is possible and provides useful information for predicting the evolution of future resistance gene combinations emerging in pathogens.

  15. Actinobase: Database on molecular diversity, phylogeny and biocatalytic potential of salt tolerant alkaliphilic actinomycetes.

    PubMed

    Sharma, Amit K; Gohel, Sangeeta; Singh, Satya P

    2012-01-01

    Actinobase is a relational database of molecular diversity, phylogeny and biocatalytic potential of haloalkaliphilic actinomycetes. The main objective of this data base is to provide easy access to range of information, data storage, comparison and analysis apart from reduced data redundancy, data entry, storage, retrieval costs and improve data security. Information related to habitat, cell morphology, Gram reaction, biochemical characterization and molecular features would allow researchers in understanding identification and stress adaptation of the existing and new candidates belonging to salt tolerant alkaliphilic actinomycetes. The PHP front end helps to add nucleotides and protein sequence of reported entries which directly help researchers to obtain the required details. Analysis of the genus wise status of the salt tolerant alkaliphilic actinomycetes indicated 6 different genera among the 40 classified entries of the salt tolerant alkaliphilic actinomycetes. The results represented wide spread occurrence of salt tolerant alkaliphilic actinomycetes belonging to diverse taxonomic positions. Entries and information related to actinomycetes in the database are publicly accessible at http://www.actinobase.in. On clustalW/X multiple sequence alignment of the alkaline protease gene sequences, different clusters emerged among the groups. The narrow search and limit options of the constructed database provided comparable information. The user friendly access to PHP front end facilitates would facilitate addition of sequences of reported entries. The database is available for free at http://www.actinobase.in.

  16. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation.

    PubMed

    Nandimath, Arusha P; Karad, Dilip D; Gupta, Shantikumar G; Kharat, Arun S

    2017-10-01

    Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4 th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml -1 . As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting.

  17. In silico studies on marine actinomycetes as potential inhibitors for Glioblastoma multiforme

    PubMed Central

    Kirubakaran, Palani; Kothapalli, Roopa; Singh, Kh Dhanachandra; Nagamani, Selvaraman; Arjunan, Subramanian; Muthusamy, Karthikeyan

    2011-01-01

    Glioblastoma multiforme (GBM) is considered to be the most common and often deadly disorder which affects the brain. It is caused by the over expression of proteins such as ephrin type-A receptor 2 (EphA2), epidermal growth factor receptor (EGFR) and EGFRvIII. These 3 proteins are considered to be the potential therapeutic targets for GBM. Among these, EphA2 is reported to be over-expressed in ˜90% of GBM. Herein we selected 35 compounds from marine actinomycetes, 5 in vitro and in vivo studied drug candidates and 4 commercially available drugs for GBM which were identified from literature and analysed by using comparative docking studies. Based on the glide scores and other in silico parameters available in Schrödinger, two selected marine actinomycetes compounds which include Tetracenomycin D and Chartreusin exhibited better binding energy among all the compounds studied in comparative docking. In this study we have demonstrated the inhibition of the 3 selected targets by the two bioactive compounds from marine actinomycetes through in-silico docking studies. Furthermore molecular dynamics simulation were also been performed to check the stability and the amino acids interacted with the 3 molecular targets (EphA2 receptor, EGFR, EGFRvIII) for GBM. Our results suggest that Tetracinomycin D and Chartreusin are the novel and potential inhibitor for the treatment of GBM. PMID:21584184

  18. Stimulation of 2-methylisoborneol (MIB) production by actinomycetes after cyclic chlorination in drinking water distribution systems.

    PubMed

    Abbaszadegan, Morteza; Yi, Min; Alum, Absar

    2015-01-01

    The impact of fluctuation in chlorine residual on actinomycetes and the production of 2-methylisoborneol (MIB) were studied in cast-iron and PVC model distribution systems. Actinomycetes were spiked in each system and continued operation for a 12-day non-chlorine experiment, resulting in no changes in actinomycetes and MIB concentrations. Three cyclic chlorination events were performed and chlorine residuals were maintained as follows: 1.0 mg L(-1) for 24 h, 0 mg L(-1) for 48 h, 0.5 mg L(-1) for 48 h, 0 mg L(-1) for 48 h and 2 mg L(-1) for 24 h. After each chlorination event, 2 -3 log decrease in actinomycetes was noted in both systems. However, within 48 h at 0 mg L(-1) chlorine, the actinomycetes recovered to the pre-chlorination levels. On the contrary, MIB concentration in both systems remained un-impacted after the first cycle and increased by fourfold (< 5 to > 20 mg L(-1)) after the second cycle, which lasted through the third cycle despite the fact that actinomycetes numbers fluctuated 2-3 logs during this time period. For obtaining biofilm samples from field, water meters were collected from municipality drinking water distribution systems located in central Arizona. The actinomycetes concentration in asbestos cement pipe and cast iron pipe averaged 3.1 × 10(3) and 1.9 × 10(4) CFU cm(-2), respectively. The study shows that production of MIB is associated with changes in chlorine residual in the systems. This is the first report of cyclic chlorine shock as a stimulus for MIB production by actinomycetes in drinking water distribution system's ecology.

  19. Studies on L-asparaginase enzyme of actinomycetes isolated from estuarine fishes.

    PubMed

    Sahu, Maloy Kumar; Sivakumar, K; Poorani, E; Thangaradjou, T; Kannan, L

    2007-04-01

    Actinomycetes were isolated from different organs viz. skin, gills and gut contents of three species of fishes viz. Mugil cephalus (Linnaeus, 1758), Chanos chanos (Forskal, 1775) and Etroplus suratensis (Bloch, 1780) using three different media from the Vellar estuary, situated along the southeast coast of India. Among the three fishes, M. cephalus harboured highest number of actinomycetes population in all the three body parts examined followed by C. chanos and E. suratensis. Out of the three body parts of all fishes, gut contents had highest actinomycetes population followed by gills and skin. Among the three media used for isolation of actinomycetes, Kuster's agar medium was found to be suitable than the starch casein agar and glucose asparagine agar media. Out of the 40 strains isolated, only six strains (LA-2, LA-8, LA-15, LA-20, LA-29 and LA-35) showed significant L-asparagianse activity and were taken up for further studies. Impact of various physical and chemical factors such as pH, temperature, sodium chloride concentration, carbon sources and amino acids on the growth of actinomycetes and L-asparaginase activity was also studied. Optimum growth and enzyme activity was noticed under pH 7 to 8, temperature 37 degrees C, 1-2% sodium chloride concentration, sucrose as carbon source and without any amino acids. Analysis of the cell components of the isolated strains has revealed the wall type-I (the wall type-I is typical for the genus Streptomyces) and the strains were micromorphologically similar to the genus Streptomyces. Hence, the morphological, physiological and biochemical along with the micromorphological results obtained for the L-asparaginase producing strains were compared and the strains were tentatively identified as Streptomyces aureofasciculus (LA-2), S. chattanoogenesis (LA-8), S. hawaiiensis (LA-15), S. orientalis (LA-20), S. canus (LA-29) and S. olivoviridis (LA-35).

  20. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation

    PubMed Central

    Nandimath, Arusha P.; Karad, Dilip D.; Gupta, Shantikumar G.; Kharat, Arun S.

    2017-01-01

    Background and Objectives: Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. Materials and Methods: In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Results: Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml−1. Conclusion: As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting. PMID:29296275

  1. Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes.

    PubMed

    Pacheco da Rosa, Juliana; Korenblum, Elisa; Franco-Cirigliano, Marcella Novaes; Abreu, Fernanda; Lins, Ulysses; Soares, Rosângela M A; Macrae, Andrew; Seldin, Lucy; Coelho, Rosalie R R

    2013-01-01

    Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with proteinase K and trypsin. The antimicrobial substances present in the concentrated supernatant from growth media were partially characterized by SDS-PAGE and extracellular polypeptides were seen. Bands in the size range of 12 to 14.4 kDa caused antimicrobial activity. Transmission electron microscopy of D. alaskensis cells treated with the concentrated supernatant containing the antimicrobial substances revealed the formation of prominent bubbles, the spherical double-layered structures on the cell membrane, and the periplasmic space completely filled with electron-dense material. This is the first report on the production of antimicrobial substances by actinomycetes against bacteria involved in biocorrosion processes, and these findings may be of great relevance as an alternative source of biocides to those currently employed in the petroleum industry.

  2. Studies on the Thermophilic Actinomycetes1

    PubMed Central

    Tendler, M. D.; Burkholder, P. R.

    1961-01-01

    A total of 1,000 isolates of thermophilic actinomycetes representing two genera, Streptomyces and Thermoactinomyces, were studied. Media for cultivation and for physiological studies were designed. Differences between the two genera are noted and taxonomic criteria for the genus Thermoactinomyces are suggested. The importance of the nutritional environment to the thermophilic habit is noted. PMID:13775873

  3. Comparison of methods for isolation and enumeration of thermophilic actinomycetes from dust.

    PubMed Central

    Treuhaft, M W; Arden Jones, M P

    1982-01-01

    Thermophilic actinomycetes are the primary sensitizing agents in farmer's lung disease. We compared dilution pour-plate and spread-plate methods for their usefulness in enumerating thermophilic actinomycetes in moldy silage dust and evaluated the ability of a nonquantitative gravity settling technique to recover thermophilic actinomycetes from moldy silage. Spread plates and pour plates yielded similar estimates of total thermophiles. Higher counts were observed on spread plates (P less than 0.05) for Thermoactinomyces candidus, Micropolyspora faeni, and Saccharomonospora viridis. M. faeni and S. viridis were less efficient than T. candidus in breaking through the agar of pour plates to form colonies which could be identified. Coefficients of variability were less than 10% for the two methods. The relative proportion of organisms recovered by the settling method correlated well with that recovered on spread plates for M. faeni (r = 0.79), S. viridis (r = 0.88), and Thermomonospora spp. (r = 0.79), but not well for T. candidus (r = 0.28). When sophisticated air-sampling equipment is not available, dilution spread plates of dust washings provide a reproducible method for enumerating a broad range of thermophilic actinomycetes of interest. The gravity settling method is a simple, rapid alternative when isolation is all that is required. PMID:6761363

  4. Larvicidal potential of Asteraceae family endophytic actinomycetes against Culex quinquefasciatus mosquito larvae.

    PubMed

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida

    2014-01-01

    Pakistan is blessed with plants of Asteraceae family with known medicinal background used for centuries by Hakims (traditional physicians). Keeping in mind the background of their anti-larval potential, a total of 21 endophytic actinomycetes were isolated from four Asteraceae plants and screened against the first and fourth instar stages of Culex quinquefasciatus Say mosquito larvae. Of the 21 isolates, 6 of them gave strong larvicidal activity (80-100% mortality) in the screening results and 4 isolates gave a potent larvicidal activity (100% mortality) at the fourth instar stage. These isolates belonged to different species within the actinomycetes group, namely Streptomyces albovinaceus and Streptomyces badius. This communication reports the larvicidal potential of endophytic actinomycetes residing within the native Asteraceae plants in Pakistan. The study suggests further exploration through large-scale productions leading to the identification of the larvicidal compounds.

  5. The Madeira Archipelago As a Significant Source of Marine-Derived Actinomycete Diversity with Anticancer and Antimicrobial Potential

    PubMed Central

    Prieto-Davó, Alejandra; Dias, Tiago; Gomes, Sofia E.; Rodrigues, Sara; Parera-Valadez, Yessica; Borralho, Pedro M.; Pereira, Florbela; Rodrigues, Cecilia M. P.; Santos-Sanches, Ilda; Gaudêncio, Susana P.

    2016-01-01

    Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry. PMID:27774089

  6. Use of Direct-Infusion Electrospray Mass Spectrometry To Guide Empirical Development of Improved Conditions for Expression of Secondary Metabolites from Actinomycetes

    PubMed Central

    Zahn, James A.; Higgs, Richard E.; Hilton, Matthew D.

    2001-01-01

    A major barrier in the discovery of new secondary metabolites from microorganisms is the difficulty of distinguishing the minor fraction of productive cultures from the majority of unproductive cultures and growth conditions. In this study, a rapid, direct-infusion electrospray mass spectrometry (ES-MS) technique was used to identify chemical differences that occurred in the expression of secondary metabolites by 44 actinomycetes cultivated under six different fermentation conditions. Samples from actinomycete fermentations were prepared by solid-phase extraction, analyzed by ES-MS, and ranked according to a chemical productivity index based on the total number and relative intensity of ions present in each sample. The actinomycete cultures were tested for chemical productivity following treatments that included nutritional manipulations, autoregulator additions, and different agitation speeds and incubation temperatures. Evaluation of the ES-MS data from submerged and solid-state fermentations by paired t test analyses showed that solid-state growth significantly altered the chemical profiles of extracts from 75% of the actinomycetes evaluated. Parallel analysis of the same extracts by high-performance liquid chromatography–ES-MS–evaporative light scattering showed that the chemical differences detected by the ES-MS method were associated with growth condition-dependent changes in the yield of secondary metabolites. Our results indicate that the high-throughput ES-MS method is useful for identification of fermentation conditions that enhance expression of secondary metabolites from actinomycetes. PMID:11133469

  7. Use of direct-infusion electrospray mass spectrometry to guide empirical development of improved conditions for expression of secondary metabolites from actinomycetes.

    PubMed

    Zahn, J A; Higgs, R E; Hilton, M D

    2001-01-01

    A major barrier in the discovery of new secondary metabolites from microorganisms is the difficulty of distinguishing the minor fraction of productive cultures from the majority of unproductive cultures and growth conditions. In this study, a rapid, direct-infusion electrospray mass spectrometry (ES-MS) technique was used to identify chemical differences that occurred in the expression of secondary metabolites by 44 actinomycetes cultivated under six different fermentation conditions. Samples from actinomycete fermentations were prepared by solid-phase extraction, analyzed by ES-MS, and ranked according to a chemical productivity index based on the total number and relative intensity of ions present in each sample. The actinomycete cultures were tested for chemical productivity following treatments that included nutritional manipulations, autoregulator additions, and different agitation speeds and incubation temperatures. Evaluation of the ES-MS data from submerged and solid-state fermentations by paired t test analyses showed that solid-state growth significantly altered the chemical profiles of extracts from 75% of the actinomycetes evaluated. Parallel analysis of the same extracts by high-performance liquid chromatography-ES-MS-evaporative light scattering showed that the chemical differences detected by the ES-MS method were associated with growth condition-dependent changes in the yield of secondary metabolites. Our results indicate that the high-throughput ES-MS method is useful for identification of fermentation conditions that enhance expression of secondary metabolites from actinomycetes.

  8. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut.

    PubMed Central

    Pasti, M B; Pometto, A L; Nuti, M P; Crawford, D L

    1990-01-01

    The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of [14C]lignin- and [14C]cellulose-labeled phloem of Abies concolor to 14CO2 and 14C-labeled water-soluble products, (ii) determining lignocellulose, lignin, and carbohydrate losses resulting from growth on a lignocellulose substrate prepared from corn stalks (Zea mays), and (iii) quantifying production of a water-soluble lignin degradation intermediate (acid-precipitable polymeric lignin). The actinomycetes were all Streptomyces strains and could be placed into three groups, including a group of five strains that appear superior to S. viridosporus T7A in lignocellulose-degrading ability, three strains of approximately equal ability, and three strains of lesser ability. Strain A2 was clearly the superior and most effective lignocellulose decomposer of those tested. Of the assays used, total lignocellulose weight loss was most useful in determining overall bioconversion ability but not in identifying the best lignin-solubilizing strains. A screening procedure based on 14CO2 evolution from [14C-lignin]lignocellulose combined with measurement of acid-precipitable polymeric lignin yield was the most effective in identifying lignin-solubilizing strains. For the termite gut strains, the pH of the medium showed no increase after 3 weeks of growth on lignocellulose. This is markedly different from the pattern observed with S. viridosporus T7A, which raises the medium pH considerably. Production of extracellular peroxidases by the 11 strains and S. viridosporus T7A was followed for 5 days in liquid cultures.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167628

  9. [Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].

    PubMed

    Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai

    2015-09-01

    In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.

  10. Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10.

    PubMed

    Balagurunathan, R; Radhakrishnan, M; Rajendran, R Babu; Velmurugan, D

    2011-10-01

    Biosynthesis of gold nanoparticles by Streptomycetes from Himalayan Mountain was undertaken for the first time. Out of 10 actinomycete strains tested, four strains (D10, HM10, ANS2 and MSU) showed evidence for the intracellular biosynthesis of gold nanoparticles, among which the strain HM10 showed high potency. Presence of spherical and rod shaped gold nanoparticles in mycelium of the strain HM10 was determined by transmission electron microscopy (TEM) and X-ray diffraction analysis. The average particle size ranged from 18-20 nm. UV spectral analysis indicated that the reduction of chloroauric acid (HAuCl4) occurred within 24 h of reaction period. Further, the strain HM10 showed enhanced growth at 1 and 10 mM concentration of HAuCl4. The gold nanoparticles synthesized by the strain HM10 showed good antibacterial activity against S. aureus and E. coli in well-diffusion method. The potential actinomycete HM10 strain was phenotypically characterized and identified as Streptomyces viridogens (HM10). Thus, actinomycete strain HM10 reported in this study is a newly added source for the biosynthesis of gold nanoparticles.

  11. Streptomyces lunalinharesii Strain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes

    PubMed Central

    Pacheco da Rosa, Juliana; Korenblum, Elisa; Franco-Cirigliano, Marcella Novaes; Abreu, Fernanda; Lins, Ulysses; Soares, Rosângela M. A.; Macrae, Andrew; Seldin, Lucy; Coelho, Rosalie R. R.

    2013-01-01

    Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with proteinase K and trypsin. The antimicrobial substances present in the concentrated supernatant from growth media were partially characterized by SDS-PAGE and extracellular polypeptides were seen. Bands in the size range of 12 to 14.4 kDa caused antimicrobial activity. Transmission electron microscopy of D. alaskensis cells treated with the concentrated supernatant containing the antimicrobial substances revealed the formation of prominent bubbles, the spherical double-layered structures on the cell membrane, and the periplasmic space completely filled with electron-dense material. This is the first report on the production of antimicrobial substances by actinomycetes against bacteria involved in biocorrosion processes, and these findings may be of great relevance as an alternative source of biocides to those currently employed in the petroleum industry. PMID:23484107

  12. Secondary Metabolites from an Actinomycete from Vietnam's East Sea.

    PubMed

    Thi, Quyen Vu; Tran, Van Hieu; Mai, Huong Doan Thi; Le, Cong Vinh; Hong, Min Le Thi; Murphy, Brian T; Chau, Van Minh; Pham, Van Cuong

    2016-03-01

    Analysis of an antimicrobial extract prepared from culture broth of the marine-derived actinomycete Nocardiopsis sp. (strain G057) led to the isolation of twelve compounds, 1-12. Compound 1 (2-[(2R-hydroxypropanoyl)amino]benzamide) was found to be a new enantiomeric isomer while compounds 2 (3-acetyl-4-hydroxycinnoline) and 3 (3,3'-bis-indole) were isolated from a natural source for the first time. The structures of 1-12 were determined by analyses of MS and 2D NMR data. All compounds were evaluated for their antimicrobial activity against a panel of clinically significant microorganisms. Compound 1 selectively inhibited Escherichia coli (MIC: 16 µg/mL). Compounds 2 and 3 exhibited antimicrobial activity against several strains of both Gram-positive and Gram-negative bacteria, and the yeast Candida albicans. Cytotoxic evaluation of compounds 1-3 against four cancer cell lines (KB, LU-1, HepG-2 and MCF-7) indicated that compound 3 produced a weak inhibition against KB and LU cell lines. Two remaining compounds, 1 and 2 were not cytotoxic, even at the concentration of 128 µg/mL.

  13. Phosphatic precipitates associated with actinomycetes in speleothems from Grand Cayman, British West Indies

    NASA Astrophysics Data System (ADS)

    Jones, Brian

    2009-07-01

    Calcitic speleothems from a cave located on the north central coast of Grand Cayman commonly include corrosion surfaces that developed when calcite precipitation ceased and corrosion mediated by condensates became the operative process. Dissolution features associated with these surfaces, including etched crystal surfaces, microcavities, and solution-widened boundaries between crystals, are commonly occupied by microbes and microbial mats that have been replaced by calcium phosphate and/or coated with calcium phosphate. No mineralized microbes were found in the calcite crystals that form the speleothems. The morphology of the mineralized hyphae (eight morphotypes) and spores (nine morphotypes) are indicative of actinomycetes, a group of microbes that are ideally adapted to life in oligotrophic cave environs. Superb preservation of the delicate hyphae, aerial hyphae, and delicate ornamentation on the hyphae and spores indicate that the microbes underwent rapid mineralized while close to their original life positions. Although these actinomycetes were extremely susceptible to replacement by calcium phosphate, there is no evidence that they directly or indirectly controlled precipitation. Nevertheless, the association between the P-rich precipitates and microbes shows that the use of phosphorus as a proxy for seasonal climate changes in paleoclimate analyses must be treated with caution.

  14. β-Glucuronidase as a Sensitive and Versatile Reporter in Actinomycetes

    PubMed Central

    Myronovskyi, Maksym; Welle, Elisabeth; Fedorenko, Viktor; Luzhetskyy, Andriy

    2011-01-01

    Here we describe a versatile and sensitive reporter system for actinomycetes that is based on gusA, which encodes the β-glucuronidase enzyme. A series of gusA-containing transcriptional and translational fusion vectors were constructed and utilized to study the regulatory cascade of the phenalinolactone biosynthetic gene cluster. Furthermore, these vectors were used to study the efficiency of translation initiation at the ATG, GTG, TTG, and CTG start codons. Surprisingly, constructs using a TTG start codon showed the best activity, whereas those using ATG or GTG were approximately one-half or one-third as active, respectively. The CTG fusion showed only 5% of the activity of the TTG fusion. A suicide vector, pKGLP2, carrying gusA in its backbone was used to visually detect merodiploid formation and resolution, making gene targeting in actinomycetes much faster and easier. Three regulatory genes, plaR1, plaR2, and plaR3, involved in phenalinolactone biosynthesis were efficiently replaced with an apramycin resistance marker using this system. Finally, we expanded the genetic code of actinomycetes by introducing the nonproteinogenic amino acid N-epsilon-cyclopentyloxycarbonyl-l-lysine with the GusA protein as a reporter. PMID:21685164

  15. Antibiotic Producing Potentials of Three Freshwater Actinomycetes Isolated from the Eastern Cape Province of South Africa

    PubMed Central

    Sibanda, Timothy; Mabinya, Leonard V.; Mazomba, Ntsikelelo; Akinpelu, David A.; Bernard, Kim; Olaniran, Ademola O.; Okoh, Anthony I.

    2010-01-01

    Crude extracts of three actinomycetes species belonging to Saccharopolyspora (TR 046 and TR 039) and Actinosynnema (TR 024) genera were screened for antibacterial activities against a panel of several bacterial strains. The extracts showed antibacterial activities against both gram-negative and gram-positive test bacteria with inhibition zones ranging from 8 to 28 mm (TR 046); 8 to15 mm (TR 039); and 10 to 13 mm (TR 024). The minimum inhibitory concentrations ranged from 0.078 to 10 mg/mL (TR 046); 5 to >10 mg/mL (TR 039); and 1.25 to 5 mg/mL (TR 024). Time-kill studies revealed that crude extract of TR 046 showed strong bactericidal activity against Bacillus pumilus (ATCC14884), reducing the bacterial load by 104 cfu/mL and 102 cfu/mL at 4× MIC and 2× MIC, respectively, after 6 h of exposure. Similarly, against Proteus vulgaris (CSIR 0030), crude extract of TR 046 achieved a 0.9log10 and 0.13log10 cfu/mL reduction at 5 mg/mL (4× MIC) and 1.25 mg/mL (2× MIC) after 12 h of exposure. The extract was however weakly bactericidal against two environmental bacterial strains (Klebsiella pneumoniae and Staphylococcus epidermidis); and against Pseudomonas aeruginosa (ATCC 19582): the extract showed bacteriostatic activities at all concentrations tested. These freshwater actinomycetes appear to have immense potential as a source of new antibacterial compound(s). PMID:20717525

  16. Diversity of culturable nocardioform actinomycetes from wastewater treatment plants in Spain and their role in the biodegradability of aromatic compounds.

    PubMed

    Soler, Albert; García-Hernández, Jorge; Zornoza, Andrés; Alonso, José Luis

    2018-01-01

    Currently, municipal and industrial wastewater treatment plants (WWTPs) are mainly focusing on reduction of biological oxygen demand and on the removal of nutrients. However, there are microorganisms that interfere with the process. In this environment, there is a large diversity of microorganisms that have not been studied in detail and that could provide real and practical solutions to the foaming problems. Among such microorganisms, Gram-positive actinomycete bacteria are of special interest because they are known for producing secondary metabolites as well as chemically diverse compounds and for their capacity to degrade recalcitrant pollutants. Three different media were chosen to isolate actinomycetes from 28 WWTPs in Spain. A total of 189 activated sludge samples were collected; 126 strains were isolated and identified to belong to 1 suborder, i.e. Corynebacterineae, and 7 genera, i.e. Corynebacterium, Dietzia, Gordonia, Mycobacterium, Rhodococcus, Tsukamurella and Williamsia. Furthermore, 71 strains were capable of biodegrading at least 1 aromatic product, and that 27 of them amplified for catA gene. The results of this research help us understand the complexity of the foam-forming microbial populations in Spain and it shows that WWTPs can be a good source of microorganisms that can degrade phenol or naphthalene.

  17. Red Soils Harbor Diverse Culturable Actinomycetes That Are Promising Sources of Novel Secondary Metabolites

    PubMed Central

    Guo, Xiaoxuan; Liu, Ning; Li, Xiaomin; Ding, Yun; Shang, Fei; Gao, Yongsheng; Ruan, Jisheng

    2015-01-01

    Red soils, which are widely distributed in tropical and subtropical regions of southern China, are characterized by low organic carbon, high content of iron oxides, and acidity and, hence, are likely to be ideal habitats for acidophilic actinomycetes. However, the diversity and biosynthetic potential of actinomycetes in such habitats are underexplored. Here, a total of 600 actinomycete strains were isolated from red soils collected in Jiangxi Province in southeast China. 16S rRNA gene sequence analysis revealed a high diversity of the isolates, which were distributed into 26 genera, 10 families, and 7 orders within the class Actinobacteria; these taxa contained at least 49 phylotypes that are likely to represent new species within 15 genera. The isolates showed good physiological potentials for biosynthesis and biocontrol. Chemical screening of 107 semirandomly selected isolates spanning 20 genera revealed the presence of at least 193 secondary metabolites from 52 isolates, of which 125 compounds from 39 isolates of 12 genera were putatively novel. Macrolides, polyethers, diketopiperazines, and siderophores accounted for most of the known compounds. The structures of six novel compounds were elucidated, two of which had a unique skeleton and represented characteristic secondary metabolites of a putative novel Streptomyces phylotype. These results demonstrate that red soils are rich reservoirs for diverse culturable actinomycetes, notably members of the families Streptomycetaceae, Pseudonocardiaceae, and Streptosporangiaceae, with the capacity to synthesize novel bioactive compounds. PMID:25724963

  18. Determination of the Residual Anthracene Concentration in Cultures of Haloalkalitolerant Actinomycetes by Excitation Fluorescence, Emission Fluorescence, and Synchronous Fluorescence: Comparative Study

    PubMed Central

    Lara-Severino, Reyna del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M.; Sandoval-Trujillo, Ángel H.; Isaac-Olive, Keila; Ramírez-Durán, Ninfa

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes. PMID:26925294

  19. Bioprospecting of Novel and Bioactive Compounds from Marine Actinomycetes Isolated from South China Sea Sediments.

    PubMed

    Yang, Na; Song, Fuhang

    2018-02-01

    Marine actinomycetes are less investigated compared to terrestrial strains as potential sources of natural products. To date, few investigations have been performed on culturable actinomycetes associated with South China Sea sediments. In the present study, twenty-eight actinomycetes were recovered from South China Sea sediments after dereplication by traditional culture-dependent method. The 16S rRNA gene sequences analyses revealed that these strains related to five families and seven genera. Twelve representative strains possessed at least one of the biosynthetic genes coding for polyketide synthase I, II, and nonribosomal peptide synthetase. Four strains had anti-Mycobacterium phlei activities and five strains had activities against methicillin-resistant Staphylococcus aureus. 10 L-scale fermentation of strains Salinispora sp. NHF45, Nocardiopsis sp. NHF48, and Streptomyces sp. NHF86 were carried out for novel and bioactive compounds discovery. Finally, we obtained a novel α-pyrone compound from marine Nocardiopsis sp. NHF48, an analogue of paulomenol from marine Streptomyces sp. NHF86 and a new source of rifamycin B, produced by Salinispora sp. NHF45. The present study concluded that marine actinomycetes, which we isolated from South China Sea sediments, will be a suitable source for the development of novel and bioactive compounds.

  20. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome.

    PubMed

    Traxler, Matthew F; Watrous, Jeramie D; Alexandrov, Theodore; Dorrestein, Pieter C; Kolter, Roberto

    2013-08-20

    Soils host diverse microbial communities that include filamentous actinobacteria (actinomycetes). These bacteria have been a rich source of useful metabolites, including antimicrobials, antifungals, anticancer agents, siderophores, and immunosuppressants. While humans have long exploited these compounds for therapeutic purposes, the role these natural products may play in mediating interactions between actinomycetes has been difficult to ascertain. As an initial step toward understanding these chemical interactions at a systems level, we employed the emerging techniques of nanospray desorption electrospray ionization (NanoDESI) and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry to gain a global chemical view of the model bacterium Streptomyces coelicolor interacting with five other actinomycetes. In each interaction, the majority of secreted compounds associated with S. coelicolor colonies were unique, suggesting an idiosyncratic response from S. coelicolor. Spectral networking revealed a family of unknown compounds produced by S. coelicolor during several interactions. These compounds constitute an extended suite of at least 12 different desferrioxamines with acyl side chains of various lengths; their production was triggered by siderophores made by neighboring strains. Taken together, these results illustrate that chemical interactions between actinomycete bacteria exhibit high complexity and specificity and can drive differential secondary metabolite production. Actinomycetes, filamentous actinobacteria from the soil, are the deepest natural source of useful medicinal compounds, including antibiotics, antifungals, and anticancer agents. There is great interest in developing new strategies that increase the diversity of metabolites secreted by actinomycetes in the laboratory. Here we used several metabolomic approaches to examine the chemicals made by these bacteria when grown in pairwise coculture. We found that

  1. Interaction specificity between leaf-cutting ants and vertically transmitted Pseudonocardia bacteria.

    PubMed

    Andersen, Sandra B; Yek, Sze Huei; Nash, David R; Boomsma, Jacobus J

    2015-02-25

    The obligate mutualism between fungus-growing ants and microbial symbionts offers excellent opportunities to study the specificity and stability of multi-species interactions. In addition to cultivating fungus gardens, these ants have domesticated actinomycete bacteria to defend gardens against the fungal parasite Escovopsis and possibly other pathogens. Panamanian Acromyrmex echinatior leaf-cutting ants primarily associate with actinomycetes of the genus Pseudonocardia. Colonies are inoculated with one of two vertically transmitted phylotypes (Ps1 or Ps2), and maintain the same phylotype over their lifetime. We performed a cross-fostering experiment to test whether co-adaptations between ants and bacterial phylotypes have evolved, and how this affects bacterial growth and ant prophylactic behavior after infection with Escovopsis. We show that Pseudonocardia readily colonized ants irrespective of their colony of origin, but that the Ps2 phylotype, which was previously shown to be better able to maintain its monocultural integrity after workers became foragers than Ps1, reached a higher final cover when grown on its native host than on alternative hosts. The frequencies of major grooming and weeding behaviors co-varied with symbiont/host combinations, showing that ant behavior also was affected when cuticular actinomycete phylotypes were swapped. These results show that the interactions between leaf-cutting ants and Pseudonocardia bear signatures of mutual co-adaptation within a single ant population.

  2. [Effect on calcium carbonate morphology by a strain of rock actinomycete].

    PubMed

    Chu, Yue; Cao, Chengliang; Lian, Bin

    2016-07-04

    Microbes-induced mineralization is one of the hottest issues in the field of geomicrobiology. Strain DHS C013T isolated from the surfaces of rocks in the Karst region was used to investigate microbial influence on the formation of carbonate and its morphology in the metallogenic system consisting NaHCO3 and Ca(NO3)2·4H2O. Strain DHS C013T was inoculated into malt extract-glucose-yeast extract peptone (MGYP) liquid medium. After cultivation we put the fermented solution, supernatant, hypha pellets, sterile MGYP liquid medium and ultrapure water into the metallogenic system separately. Scanning electronic microscope was applied to observe the crystals at the bottom of the petri dishes. In the metallogenic system with ultrapure water, only standard calcite of rhombohedron was found. However, special morphology of CaCO3, such as dumbbelllike, spherulite and scaly cylindrical shapes, were found in the metallogenic system with actinomycetes, hyphae fragment and their cell metabolism products. These calcium carbonates of special morphology might be resulted from their nucleation on smaller hypha pellets, hyphae fragment or extracellular secretion. Actinomycetes can induce the formation of CaCO3, and the mycelium and metabolites have important effects on regulating and influencing CaCO3 morphology. Our data provide new evidence for further understanding of the biological mineralization mediated by actinomycete and its metabolic products.

  3. Anticancer property of sediment actinomycetes against MCF-7 and MDA-MB-231 cell lines.

    PubMed

    Ravikumar, S; Fredimoses, M; Gnanadesigan, M

    2012-02-01

    To investigate the anticancer property of marine sediment actinomycetes against two different breast cancer cell lines. In vitro anticancer activity was carried out against breast (MCF-7 and MDA-MB-231) cancer cell lines. Partial sequences of the 16s rRNA gene, phylogenetic tree construction, multiple sequence analysis and secondary structure analysis were also carried out with the actinomycetes isolates. Of the selected five actinomycete isolates, ACT01 and ACT02 showed the IC50 value with (10.13±0.92) and (22.34±5.82) µg/mL concentrations, respectively for MCF-7 cell line at 48 h, but ACT01 showed the minimum (18.54±2.49 µg/mL) level of IC50 value with MDA-MB-231 cell line. Further, the 16s rRNA partial sequences of ACT01, ACT02, ACT03, ACT04 and ACT05 isolates were also deposited in NCBI data bank with the accession numbers of GQ478246, GQ478247, GQ478248, GQ478249 and GQ478250, respectively. The phylogenetic tree analysis showed that, the isolates of ACT02 and ACT03 were represented in group I and III, respectively, but ACT01 and ACT02 were represented in group II. The multiple sequence alignment of the actinomycete isolates showed that, the maximum identical conserved regions were identified with the nucleotide regions of 125 to 221st base pairs, 65 to 119th base pairs and 55, 48 and 31st base pairs. Secondary structure prediction of the 16s rRNA showed that, the maximum free energy was consumed with ACT03 isolate (-45.4 kkal/mol) and the minimum free energy was consumed with ACT04 isolate (-57.6 kkal/mol). The actinomycete isolates of ACT01 and ACT02 (GQ478246 and GQ478247) which are isolated from sediment sample can be further used as anticancer agents against breast cancer cell lines.

  4. The genus Nonomuraea: A review of a rare actinomycete taxon for novel metabolites.

    PubMed

    Sungthong, Rungroch; Nakaew, Nareeluk

    2015-05-01

    The genus Nonomuraea is a rare actinomycete taxon with a long taxonomic history, while its generic description was recently emended. The genus is less known among the rare actinomycete genera as its taxonomic position was revised several times. It can be found in diverse ecological niches, while most of its member species were isolated from soil samples. However, new trends to discover the genus in other habitats are increasing. Generic abundance of the genus was found to be dependent on geographical changes. Novel sources together with selective and invented isolation techniques might increase a chance to explore the genus and its novel candidates. Interestingly, some of its members have been revealed as a valuable source of novel metabolites for medical and industrial purposes. Broad-range of potent bioactive compounds including antimicrobial, anticancer, and antipsychotic substances, broad-spectrum antibiotics and biocatalysts can be synthesized by the genus. In order to investigate biosynthetic pathways of the bioactive compounds and self-resistant mechanisms to these compounds, the links from genes to metabolites have yet been needed for further discovery and biotechnological development of the genus Nonomuraea. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Metabolic Profile of the Cellulolytic Industrial Actinomycete Thermobifida fusca

    PubMed Central

    Vanee, Niti

    2017-01-01

    Actinomycetes have a long history of being the source of numerous valuable natural products and medicinals. To expedite product discovery and optimization of biochemical production, high-throughput technologies can now be used to screen the library of compounds present (or produced) at a given time in an organism. This not only facilitates chemical product screening, but also provides a comprehensive methodology to the study cellular metabolic networks to inform cellular engineering. Here, we present some of the first metabolomic data of the industrial cellulolytic actinomycete Thermobifida fusca generated using LC-MS/MS. The underlying objective of conducting global metabolite profiling was to gain better insight on the innate capabilities of T. fusca, with a long-term goal of facilitating T. fusca-based bioprocesses. The T. fusca metabolome was characterized for growth on two cellulose-relevant carbon sources, cellobiose and Avicel. Furthermore, the comprehensive list of measured metabolites was computationally integrated into a metabolic model of T. fusca, to study metabolic shifts in the network flux associated with carbohydrate and amino acid metabolism. PMID:29137138

  6. The SsgA-like proteins in actinomycetes: small proteins up to a big task.

    PubMed

    Traag, Bjørn A; van Wezel, Gilles P

    2008-06-01

    Several unique protein families have been identified that play a role in the control of developmental cell division in streptomycetes. The SsgA-like proteins or SALPs, of which streptomycetes typically have at least five paralogues, control specific steps of sporulation-specific cell division in streptomycetes, affecting cell wall-related events such as septum localization and synthesis, thickening of the spore wall and autolytic spore separation. The expression level of SsgA, the best studied SALP, has a rather dramatic effect on septation and on hyphal morphology, which is not only of relevance for our understanding of (developmental) cell division but has also been successfully applied in industrial fermentation, to improve growth and production of filamentous actinomycetes. Recent observations suggest that SsgB most likely is the archetypal SALP, with only SsgB orthologues occurring in all morphologically complex actinomycetes. Here we review 10 years of research on the SsgA-like proteins in actinomycetes and discuss the most interesting regulatory, functional, phylogenetic and applied aspects of this relatively unknown protein family.

  7. Current approaches to exploit actinomycetes as a source of novel natural products.

    PubMed

    Genilloud, Olga; González, Ignacio; Salazar, Oscar; Martín, Jesus; Tormo, José Rubén; Vicente, Francisca

    2011-03-01

    For decades, microbial natural products have been one of the major sources of novel drugs for pharmaceutical companies, and today all evidence suggests that novel molecules with potential therapeutic applications are still waiting to be discovered from these natural sources, especially from actinomycetes. Any appropriate exploitation of the chemical diversity of these microbial sources relies on proper understanding of their biological diversity and other related key factors that maximize the possibility of successful identification of novel molecules. Without doubt, the discovery of platensimycin has shown that microbial natural products can continue to deliver novel scaffolds if appropriate tools are put in place to reveal them in a cost-effective manner. Whereas today innovative technologies involving exploitation of uncultivated environmental diversity, together with chemical biology and in silico approaches, are seeing rapid development in natural products research, maximization of the chances of exploiting chemical diversity from microbial collections is still essential for novel drug discovery. This work provides an overview of the integrated approaches developed at the former Basic Research Center of Merck Sharp and Dohme in Spain to exploit the diversity and biosynthetic potential of actinomycetes, and includes some examples of those that were successfully applied to the discovery of novel antibiotics.

  8. Biosynthetic Potential of Phylogenetically Unique Endophytic Actinomycetes from Tropical Plants▿ †

    PubMed Central

    Janso, Jeffrey E.; Carter, Guy T.

    2010-01-01

    The culturable diversity of endophytic actinomycetes associated with tropical, native plants is essentially unexplored. In this study, 123 endophytic actinomycetes were isolated from tropical plants collected from several locations in Papua New Guinea and Mborokua Island, Solomon Islands. Isolates were found to be prevalent in roots but uncommon in leaves. Initially, isolates were dereplicated to the strain level by ribotyping. Subsequent characterization of 105 unique strains by 16S rRNA gene sequence analysis revealed that 17 different genera were represented, and rare genera, such as Sphaerisporangium and Planotetraspora, which have never been previously reported to be endophytic, were quite prevalent. Phylogenetic analyses grouped many of the strains into clades distinct from known genera within Thermomonosporaceae and Micromonosporaceae, indicating that they may be unique genera. Bioactivity testing and liquid chromatography-mass spectrometry (LC-MS) profiling of crude fermentation extracts were performed on 91 strains. About 60% of the extracts exhibited bioactivity or displayed LC-MS profiles with spectra indicative of secondary metabolites. The biosynthetic potential of 29 nonproductive strains was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. Despite their lack of detectable secondary metabolite production in fermentation, most were positive for type I (66%) and type II (79%) PKS genes, and all were positive for NRPS genes. These results suggest that tropical plants from New Guinea and the adjacent archipelago are hosts to unique endophytic actinomycetes that possess significant biosynthetic potential. PMID:20472734

  9. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66.

    PubMed

    You, JianLan; Xue, XiaoLi; Cao, LiXiang; Lu, Xin; Wang, Jian; Zhang, LiXin; Zhou, ShiNing

    2007-10-01

    China remains by far the largest aquaculture producer in the world. However, biofilms formed by pathogenic Vibrio strains pose serious problems to marine aquaculture. To provide a strategy for biofilm prevention, control, and eradication, extracts from 88 marine actinomycetes were screened. Thirty-five inhibited the biofilm formation of Vibrio harveyi, Vibrio vulnificus, and Vibrio anguillarum at a concentration of 2.5% (v/v). Thirty-three of the actinomycete extracts dispersed the mature biofilm. Six extracts inhibited the quorum-sensing system of V. harveyi by attenuating the signal molecules N-acylated homoserine lactones' activity. Strain A66, which was identified as Streptomyces albus, both attenuated the biofilms and inhibited their quorum-sensing system. It is suggested that strain A66 is a promising candidate to be used in future marine aquaculture.

  10. REFORESTATION AND SEEDLING SYMBIONTS

    EPA Science Inventory

    Tree seedlings are dependent on symbiotic associations with microorganisms including bacteria, fungi, and actinomycetes for normal growth and development. itrogen fixing leguminous and non-leguminous trees form symbiotic relationships with Rhizobium (bacteria) and Frankia (actino...

  11. Antimicrobial effects of a new therapeutic liquid dentifrice formulation on oral bacteria including odorigenic species.

    PubMed

    Sreenivasan, P K; Furgang, D; Zhang, Y; DeVizio, W; Fine, D H

    2005-03-01

    The control of oral malodor is well-recognized in efforts to improve oral health. Antimicrobial formulations can mitigate oral malodor, however, procedures to assess effects on oral bacteria including those implicated in halitosis are unavailable. This investigation examined the antimicrobial effects of a new liquid triclosan/copolymer dentifrice (test) formulation that demonstrated significant inhibition of oral malodor in previous organoleptic clinical studies. Procedures compared antimicrobial effects of the test and control formulations on a range of oral micro-organisms including members implicated in halitosis, substantive antimicrobial effects of formulations with hydroxyapatite as a surrogate for human teeth and ex vivo effects on oral bacteria from human volunteers. With Actinomyces viscosus, as a model system, the test formulation demonstrated a dose-dependent effect. At these concentrations the test formulation provided significant antimicrobial effects on 13 strains of oral bacteria including those implicated in bad breath at selected posttreatment time points. Treatment of hydroxyapatite by the test dentifrice resulted in a significant and substantive antimicrobial effect vs. controls. Oral bacteria from subjects treated ex vivo with the test dentifrice resulted in significant reductions in cultivable oral bacteria and odorigenic bacteria producing hydrogen sulfide. In summary, microbiological methods adapted to study odorigenic bacteria demonstrate the significant antimicrobial effects of the test (triclosan/copolymer) dentifrice with laboratory and clinical strains of oral bacteria implicated in bad breath.

  12. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes.

    PubMed

    Tanaka, Yukinori; Kasahara, Ken; Hirose, Yutaka; Murakami, Kiriko; Kugimiya, Rie; Ochi, Kozo

    2013-07-01

    A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.

  13. Algicidal effects of a novel marine actinomycete on the toxic dinoflagellate Alexandrium tamarense.

    PubMed

    Bai, Shijie J; Huang, Liping P; Su, Jianqiang Q; Tian, Yun; Zheng, Tianling L

    2011-06-01

    A marine actinomycete strain BS01 with algicidal activity to the toxic dinoflagellate, Alexandrium tamarense, was isolated from Xiamen Bay, China. Sequence analysis of 16S rDNA demonstrates that BS01 is closely related to the genus Brevibacterium of Actinomycetales. BS01 exhibited algicidal activity in an indirect manner. Additional organic nutrients, but not algal-derived dissolved organic matter, were necessary for the synthesis of yet unidentified algicidal compounds (molecular weight less than 100), which were heat tolerant, a stable in acidic or alkali conditions, and exhibited a wide range of algicidal activity. This is the first report of an actinomycete algicide to the toxic dinoflagellate A. tamarense. Our results indicate that BS01 could be a potential bio-agent for controlling harmful algal blooms.

  14. Broad Spectrum Antimicrobial Activity of Forest-Derived Soil Actinomycete, Nocardia sp. PB-52

    PubMed Central

    Sharma, Priyanka; Kalita, Mohan C.; Thakur, Debajit

    2016-01-01

    A mesophilic actinomycete strain designated as PB-52 was isolated from soil samples of Pobitora Wildlife Sanctuary of Assam, India. Based on phenotypic and molecular characteristics, the strain was identified as Nocardia sp. which shares 99.7% sequence similarity with Nocardia niigatensis IFM 0330 (NR_112195). The strain is a Gram-positive filamentous bacterium with rugose spore surface which exhibited a wide range of antimicrobial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative bacteria, and yeasts. Optimization for the growth and antimicrobial activity of the strain PB-52 was carried out in batch culture under shaking condition. The optimum growth and antimicrobial potential of the strain were recorded in GLM medium at 28°C, initial pH 7.4 of the medium and incubation period of 8 days. Based on polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) gene-targeted PCR amplification, the occurrence of both of these biosynthetic pathways was detected which might be involved in the production of antimicrobial compounds in PB-52. Extract of the fermented broth culture of PB-52 was prepared with organic solvent extraction method using ethyl acetate. The ethyl acetate extract of PB-52 (EA-PB-52) showed lowest minimum inhibitory concentration (MIC) against S. aureus MTCC 96 (0.975 μg/mL) whereas highest was recorded against Klebsiella pneumoniae ATCC 13883 (62.5 μg/mL). Scanning electron microscopy (SEM) revealed that treatment of the test microorganisms with EA-PB-52 destroyed the targeted cells with prominent loss of cell shape and integrity. In order to determine the constituents responsible for its antimicrobial activity, EA-PB-52 was subjected to chemical analysis using gas chromatography-mass spectrometry (GC-MS). GC-MS analysis showed the presence of twelve different chemical constituents in the extract, some of which are reported to possess diverse biological activity. These

  15. Evaluation of Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry for Identification of Mycobacterium species, Nocardia species, and Other Aerobic Actinomycetes

    PubMed Central

    Buckwalter, S. P.; Olson, S. L.; Connelly, B. J.; Lucas, B. C.; Rodning, A. A.; Walchak, R. C.; Deml, S. M.; Wohlfiel, S. L.

    2015-01-01

    The value of matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and yeasts is well documented in the literature. Its utility for the identification of mycobacteria and Nocardia spp. has also been reported in a limited scope. In this work, we report the specificity of MALDI-TOF MS for the identification of 162 Mycobacterium species and subspecies, 53 Nocardia species, and 13 genera (totaling 43 species) of other aerobic actinomycetes using both the MALDI-TOF MS manufacturer's supplied database(s) and a custom database generated in our laboratory. The performance of a simplified processing and extraction procedure was also evaluated, and, similar to the results in an earlier literature report, our viability studies confirmed the ability of this process to inactivate Mycobacterium tuberculosis prior to analysis. Following library construction and the specificity study, the performance of MALDI-TOF MS was directly compared with that of 16S rRNA gene sequencing for the evaluation of 297 mycobacteria isolates, 148 Nocardia species isolates, and 61 other aerobic actinomycetes isolates under routine clinical laboratory working conditions over a 6-month period. MALDI-TOF MS is a valuable tool for the identification of these groups of organisms. Limitations in the databases and in the ability of MALDI-TOF MS to rapidly identify slowly growing mycobacteria are discussed. PMID:26637381

  16. Numerical taxonomy and ecology of petroleum-degrading bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, B.; Calomiris, J.J.; Walker, J.D.

    1977-07-01

    A total of 99 strains of petroleum-degrading bacteria isolated from Chesapeake Bay water and sediment were identified by using numerical taxonomy procedures. The isolates, together with 33 reference cultures, were examined for 48 biochemical, cultural, morphological, and physiological characters. The data were analyzed by computer, using both the simple matching and the Jaccard coefficients. Clustering was achieved by the unweighted average linkage method. From the sorted similarity matrix and dendrogram, 14 phenetic groups, comprising 85 of the petroleum-degrading bacteria, were defined at the 80 to 85% similarity level. These groups were identified as actinomycetes (mycelial forms, four clusters), coryneforms, Enterobacteriaceae,more » Klebsiella aerogenes, Micrococcus spp. (two clusters), Nocardia species (two clusters), Pseudomonas spp. (two clusters), and Sphaerotilus natans. It is concluded that the degradation of petroleum is accomplished by a diverse range of bacterial taxa, some of which were isolated only at given sampling stations and, more specifically, from sediment collected at a given station.« less

  17. Numerical taxonomy and ecology of petroleum-degrading bacteria.

    PubMed Central

    Austin, B; Calomiris, J J; Walker, J D; Colwell, R R

    1977-01-01

    A total of 99 strains of petroleum-degrading bacteria isolated from Chesapeake Bay water and sediment were identified by using numerical taxonomy procedures. The isolates, together with 33 reference cultures, were examined for 48 biochemical, cultural, morphological, and physiological characters. The data were analyzed by computer, using both the simple matching and the Jaccard coefficients. Clustering was achieved by the unweighted average linkage method. From the sorted similarity matrix and dendrogram, 14 phenetic groups, comprising 85 of the petroleum-degrading bacteria, were defined at the 80 to 85% similarity level. These groups were identified as actinomycetes (mycelial forms, four clusters), coryneforms, Enterobacteriaceae, Klebsiella aerogenes, Micrococcus spp. (two clusters), Nocardia species (two clusters), Pseudomonas spp. (two clusters), and Sphaerotilus natans. It is concluded that the degradation of petroleum is accomplished by a diverse range of bacterial taxa, some of which were isolated only at given sampling stations and, more specifically, from sediment collected at a given station. PMID:889329

  18. The SsgA-like proteins in actinomycetes: small proteins up to a big task

    PubMed Central

    Traag, Bjørn A.

    2008-01-01

    Several unique protein families have been identified that play a role in the control of developmental cell division in streptomycetes. The SsgA-like proteins or SALPs, of which streptomycetes typically have at least five paralogues, control specific steps of sporulation-specific cell division in streptomycetes, affecting cell wall-related events such as septum localization and synthesis, thickening of the spore wall and autolytic spore separation. The expression level of SsgA, the best studied SALP, has a rather dramatic effect on septation and on hyphal morphology, which is not only of relevance for our understanding of (developmental) cell division but has also been succesfully applied in industrial fermentation, to improve growth and production of filamentous actinomycetes. Recent observations suggest that SsgB most likely is the archetypal SALP, with only SsgB orthologues occurring in all morphologically complex actinomycetes. Here we review 10 years of research on the SsgA-like proteins in actinomycetes and discuss the most interesting regulatory, functional, phylogenetic and applied aspects of this relatively unknown protein family. Electronic supplementary material The online version of this article (doi:10.1007/s10482-008-9225-3) contains supplementary material, which is available to authorized users. PMID:18273689

  19. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites.

    PubMed

    Ballav, Shuvankar; Kerkar, Savita; Thomas, Sabu; Augustine, Nimmy

    2015-03-01

    Marine salterns are estuarine ecosystems in Goa, receiving inputs from riverine and marine waters. The Salinity fluctuates between 0 and 300 psu which makes it a conducive niche for salt tolerant and salt loving Actinomycetales. Halotolerant and halophilic Actinomycetales producing anti-bacterial metabolites were studied from crystallizer pond sediments of Ribandar saltern, Goa. Three media viz. Starch casein, R2A and Inorganic salt starch agar at four different salinities (35, 50, 75 and 100 psu) were used for isolation. R2A agar at 35 psu was the most preferred by hypersaline actinomycetes. The dominant group was halotolerant Streptomyces spp. others being rare actinomycetes viz. Nocardiopsis, Micromonospora and Kocuria spp. More than 50% of the isolates showed anti-bacterial activity against one or more of the fifteen human pathogens tested. Eight strains from 4 genera showed consistent anti-bacterial activity and studied in detail. Most halotolerant isolates grew from 0 to 75 psu, with optimum antibiotic production at 35 psu whereas halophiles grew at 20 to 100 psu with optimum antibiotic production at 35 psu. Four Streptomyces strains showed multiple inhibition against test organisms while four rare actinomycetes were specific in their inhibitory activity. This is the first report of a halophilic Kocuria sp., Nocardiopsis sp., and halotolerant Micromonospora sp. producing anti-bacterial compound(s) against Staphylococcus aureus, Staphylococcus citreus, and Vibrio cholerae, respectively. Sequential extraction with varying polarity of organic solvents showed that the extracts inhibited different test pathogens. These results suggest that halophilic and halotolerant actinomycetes from marine salterns are a potential source of anti-bacterial compounds. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Biological and Chemical Diversity of Bacteria Associated with a Marine Flatworm.

    PubMed

    Lin, Hui-Na; Wang, Kai-Ling; Wu, Ze-Hong; Tian, Ren-Mao; Liu, Guo-Zhu; Xu, Ying

    2017-09-01

    The aim of this research is to explore the biological and chemical diversity of bacteria associated with a marine flatworm Paraplanocera sp., and to discover the bioactive metabolites from culturable strains. A total of 141 strains of bacteria including 45 strains of actinomycetes and 96 strains of other bacteria were isolated, identified and fermented on a small scale. Bioactive screening (antibacterial and cytotoxic activities) and chemical screening (ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)) yielded several target bacterial strains. Among these strains, the ethyl acetate (EA) crude extract of Streptomyces sp. XY-FW47 fermentation broth showed strong antibacterial activity against methicillin-resistant Staphylococcus aureus ATCC43300 (MRSA ATCC43300) and potent cytotoxic effects on HeLa cells. The UPLC-MS spectral analysis of the crude extract indicated that the strain XY-FW47 could produce a series of geldanamycins (GMs). One new geldanamycin (GM) analog, 4,5-dihydro-17-O-demethylgeldanamycin (1), and three known GMs (2-4) were obtained. All of these compounds were tested for antibacterial, cytotoxic, and antifungal activities, yet only GM (3) showed potent cytotoxic (HeLa cells, EC 50 = 1.12 μg/mL) and antifungal ( Setosphaeria turcica MIC = 2.40 μg/mL) activities. Their structure-activity relationship (SAR) was also preliminarily discussed in this study.

  1. Complete Genome Sequence of Micromonospora Strain L5, a Potential Plant-Growth-Regulating Actinomycete, Originally Isolated from Casuarina equisetifolia Root Nodules

    DOE PAGES

    Hirsch, Ann M.; Alvarado, Johana; Bruce, David; ...

    2013-09-26

    Micromonospora species live in diverse environments and exhibit a broad range of functions, including antibiotic production, biocontrol, and degradation of complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico.

  2. Use of the BioMerieux ID 32C yeast identification system for identification of aerobic actinomycetes of medical importance.

    PubMed Central

    Muir, D B; Pritchard, R C

    1997-01-01

    The BioMerieux ID 32C Yeast Identification System was examined to determine its usefulness as a rapid method for the identification of medically important aerobic actinomycetes. More than 290 strains were tested by this method and the results were compared to those obtained by conventional methods. It was found that aerobic actinomycetes could be differentiated to species level in 7 days by the ID 32C system. PMID:9399526

  3. Xylanase and feruloyl esterase from actinomycetes cultures could enhance sugarcane bagasse hydrolysis in the production of fermentable sugars.

    PubMed

    Rahmani, Nanik; Kahar, Prihardi; Lisdiyanti, Puspita; Hermiati, Euis; Lee, Jaemin; Yopi; Prasetya, Bambang; Ogino, Chiaki; Kondo, Akihiko

    2018-02-23

    The addition of enzymes that are capable of degrading hemicellulose has a potential to reduce the need for commercial enzymes during biomass hydrolysis in the production of fermentable sugars. In this study, a high xylanase producing actinomycete strain (Kitasatospora sp. ID06-480) and the first ethyl ferulate producing actinomycete strain (Nonomuraea sp. ID06-094) were selected from 797 rare actinomycetes, respectively, which were isolated in Indonesia. The addition (30%, v/v) of a crude enzyme supernatant from the selected strains in sugarcane bagasse hydrolysis with low-level loading (1 FPU/g-biomass) of Cellic® CTec2 enhanced both the released amount of glucose and reducing sugars. When the reaction with Ctec2 was combined with crude enzymes containing either xylanase or feruloyl esterase, high conversion yield of glucose from cellulose at 60.5% could be achieved after 72 h-saccharification.

  4. Complete Genome Sequence of Micromonospora Strain L5, a Potential Plant-Growth-Regulating Actinomycete, Originally Isolated from Casuarina equisetifolia Root Nodules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, A. M.; Alvarado, J.; Bruce, D.

    2013-08-29

    Micromonospora species live in diverse environments and exhibit a broad range of functions including antibiotic production, biocontrol, and ability to degrade complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico.

  5. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture

    PubMed Central

    Bernal, Milagro García; Campa-Córdova, Ángel Isidro; Saucedo, Pedro Enrique; González, Marlen Casanova; Marrero, Ricardo Medina; Mazón-Suástegui, José Manuel

    2015-01-01

    Aim: This study was designed to describe a series of in vitro tests that may aid the discovery of probiotic strains from actinomycetes. Materials and Methods: Actinomycetes were isolated from marine sediments using four different isolation media, followed by antimicrobial activity and toxicity assessment by the agar diffusion method and the hemolysis of human blood cells, respectively. Extracellular enzymatic production was monitored by the hydrolysis of proteins, lipids and carbohydrates. Tolerance to different pH values and salt concentrations was also determined, followed by hydrophobicity analysis and genetic identification of the most promising strains. Results: Five out of 31 isolated strains showed antimicrobial activity against three Vibrio species. Three non-hemolytic strains (N7, RL8 and V4) among these active isolates yielded positive results in hydrophobicity tests and exhibited good growth at salt concentrations ranging from 0% to 10%, except strain RL8, which required a salt concentration >0.6%. Although these strains did not grow at pH<3, they showed different enzymatic activities. Phylogenetic analysis revealed that strains N7 and V4 have more than 99% identity with several Streptomyces species, whereas the closest matches to strain RL8 are Streptomyces panacagri and Streptomyces flocculus, with 98% and 98.2% similarity, respectively. Conclusion: Three actinomycetes strains showing probiotic-like properties were discovered using several in vitro tests that can be easily implemented in different institutions around the world. PMID:27047067

  6. Screening of phospholipase A activity and its production by new actinomycete strains cultivated by solid-state fermentation.

    PubMed

    Sutto-Ortiz, Priscila; Camacho-Ruiz, María de Los Angeles; Kirchmayr, Manuel R; Camacho-Ruiz, Rosa María; Mateos-Díaz, Juan Carlos; Noiriel, Alexandre; Carrière, Frédéric; Abousalham, Abdelkarim; Rodríguez, Jorge A

    2017-01-01

    Novel microbial phospholipases A (PLAs) can be found in actinomycetes which have been poorly explored as producers of this activity. To investigate microbial PLA production, efficient methods are necessary such as high-throughput screening (HTS) assays for direct search of PLAs in microbial cultures and cultivation conditions to promote this activity. About 200 strains isolated with selected media for actinomycetes and mostly belonging to Streptomyces (73%) and Micromonospora (10%) genus were first screened on agar-plates containing the fluorophore rhodamine 6G and egg yolk phosphatidylcholine (PC) to detect strains producing phospholipase activity. Then, a colorimetric HTS assay for general PLA activity detection (cHTS-PLA) using enriched PC (≈60%) as substrate and cresol red as indicator was developed and applied; this cHTS-PLA assay was validated with known PLAs. For the first time, actinomycete strains were cultivated by solid-state fermentation (SSF) using PC as inductor and sugar-cane bagasse as support to produce high PLA activity (from 207 to 2,591 mU/g of support). Phospholipase activity of the enzymatic extracts from SSF was determined using the implemented cHTS-PLA assay and the PC hydrolysis products obtained, were analyzed by TLC showing the presence of lyso-PC. Three actinomycete strains of the Streptomyces genus that stood out for high accumulation of lyso-PC, were selected and analyzed with the specific substrate 1,2-α-eleostearoyl- sn -glycero-3-phosphocholine (EEPC) in order to confirm the presence of PLA activity in their enzymatic extracts. Overall, the results obtained pave the way toward the HTS of PLA activity in crude microbial enzymatic extracts at a larger scale. The cHTS-PLA assay developed here can be also proposed as a routine assay for PLA activity determination during enzyme purification,directed evolution or mutagenesis approaches. In addition, the production of PLA activity by actinomycetes using SSF allow find and produce novel

  7. Screening of phospholipase A activity and its production by new actinomycete strains cultivated by solid-state fermentation

    PubMed Central

    Sutto-Ortiz, Priscila; Camacho-Ruiz, María de los Angeles; Kirchmayr, Manuel R.; Camacho-Ruiz, Rosa María; Mateos-Díaz, Juan Carlos; Noiriel, Alexandre; Carrière, Frédéric; Abousalham, Abdelkarim

    2017-01-01

    Novel microbial phospholipases A (PLAs) can be found in actinomycetes which have been poorly explored as producers of this activity. To investigate microbial PLA production, efficient methods are necessary such as high-throughput screening (HTS) assays for direct search of PLAs in microbial cultures and cultivation conditions to promote this activity. About 200 strains isolated with selected media for actinomycetes and mostly belonging to Streptomyces (73%) and Micromonospora (10%) genus were first screened on agar-plates containing the fluorophore rhodamine 6G and egg yolk phosphatidylcholine (PC) to detect strains producing phospholipase activity. Then, a colorimetric HTS assay for general PLA activity detection (cHTS-PLA) using enriched PC (≈60%) as substrate and cresol red as indicator was developed and applied; this cHTS-PLA assay was validated with known PLAs. For the first time, actinomycete strains were cultivated by solid-state fermentation (SSF) using PC as inductor and sugar-cane bagasse as support to produce high PLA activity (from 207 to 2,591 mU/g of support). Phospholipase activity of the enzymatic extracts from SSF was determined using the implemented cHTS-PLA assay and the PC hydrolysis products obtained, were analyzed by TLC showing the presence of lyso-PC. Three actinomycete strains of the Streptomyces genus that stood out for high accumulation of lyso-PC, were selected and analyzed with the specific substrate 1,2-α-eleostearoyl-sn-glycero-3-phosphocholine (EEPC) in order to confirm the presence of PLA activity in their enzymatic extracts. Overall, the results obtained pave the way toward the HTS of PLA activity in crude microbial enzymatic extracts at a larger scale. The cHTS-PLA assay developed here can be also proposed as a routine assay for PLA activity determination during enzyme purification,directed evolution or mutagenesis approaches. In addition, the production of PLA activity by actinomycetes using SSF allow find and produce novel

  8. Genome sequencing reveals complex secondary metabolome in themarine actinomycete Salinispora tropica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udwary, Daniel W.; Zeigler, Lisa; Asolkar, Ratnakar

    2007-05-01

    Recent fermentation studies have identified actinomycetes ofthe marine-dwelling genus Salinispora as prolific natural productproducers. To further evaluate their biosynthetic potential, we analyzedall identifiable secondary natural product gene clusters from therecently sequenced 5,184,724 bp S. tropica CNB-440 circular genome. Ouranalysis shows that biosynthetic potential meets or exceeds that shown byprevious Streptomyces genome sequences as well as other naturalproduct-producing actinomycetes. The S. tropica genome features ninepolyketide synthase systems of every known formally classified family,non-ribosomal peptide synthetases and several hybrid clusters. While afew clusters appear to encode molecules previously identified inStreptomyces species,the majority of the 15 biosynthetic loci are novel.Specific chemical information aboutmore » putative and observed natural productmolecules is presented and discussed. In addition, our bioinformaticanalysis was critical for the structure elucidation of the novelpolyenemacrolactam salinilactam A. This study demonstrates the potentialfor genomic analysis to complement and strengthen traditional naturalproduct isolation studies and firmly establishes the genus Salinispora asa rich source of novel drug-like molecules.« less

  9. Development of actinomycetes in brown semidesert soil under low water pressure

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, D. G.; Zenova, G. M.; Sudnitsyn, I. I.; Gracheva, T. A.; Lapygina, E. E.; Napol'skaya, K. R.; Sydnitsyna, A. E.

    2012-07-01

    Under laboratory conditions, the spores of a xerotolerant Streptomyces odorifera strain germinated in brown semidesert soil even at extremely low soil water pressure ( P = -96.4 MPa, -964 atm, a w 0.50); the plantlets increased in length and formed mycelium, on which a new generation of spores was produced (a complete development cycle of the actinomycetes—from a spore to the formation of new spores—passed). The duration of the first cycles of the actinomycetes' development varied from 13 days at P = -27 atm to 57 days at P = -964 atm and was directly proportional to the absolute value of the soil water pressure ( P). In the first cycles of the actinomycetes' development, the rate of increase of the concentration of the germinated spores and mycelium, as well as the logarithms of the mycelium-to-germinated spore concentration ratios, was inversely proportional to the logarithm of P. These relationships indicated that the energy state of the water determined its availability to soil biota and, hence, the activity of its physiological and biochemical processes.

  10. GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea.

    PubMed

    Yao, Li-Li; Liao, Cheng-Heng; Huang, Gang; Zhou, Ying; Rigali, Sebastien; Zhang, Buchang; Ye, Bang-Ce

    2014-09-01

    Nitrogen source sensing, uptake, and assimilation are central for growth and development of microorganisms which requires the participation of a global control of nitrogen metabolism-associated genes at the transcriptional level. In soil-dwelling antibiotic-producing actinomycetes, this role is played by GlnR, an OmpR family regulator. In this work, we demonstrate that SACE_7101 is the ortholog of actinomycetes' GlnR global regulators in the erythromycin producer Saccharopolyspora erythraea. Indeed, the chromosomal deletion of SACE_7101 severely affects the viability of S. erythraea when inoculated in minimal media supplemented with NaNO3, NaNO2, NH4Cl, glutamine, or glutamate as sole nitrogen source. Combination of in silico prediction of cis-acting elements, subsequent in vitro (through gel shift assays) and in vivo (real-time reverse transcription polymerase chain reaction) validations of the predicted target genes revealed a very large GlnR regulon aimed at adapting the nitrogen metabolism of S. erythraea. Indeed, enzymes/proteins involved in (i) uptake and assimilation of ammonium, (ii) transport and utilization of urea, (iii) nitrite/nitrate, (iv) glutamate/glutamine, (v) arginine metabolism, (vi) nitric oxide biosynthesis, and (vii) signal transduction associated with the nitrogen source supplied have at least one paralog gene which expression is controlled by GlnR. Our work highlights a GlnR-binding site consensus sequence (t/gna/cAC-n6-GaAAc) which is similar although not identical to the consensus sequences proposed for other actinomycetes. Finally, we discuss the distinct and common features of the GlnR-mediated transcriptional control of nitrogen metabolism between S. erythraea and the model organism Streptomyces coelicolor.

  11. Marine actinomycetes: a new source of compounds against the human malaria parasite.

    PubMed

    Prudhomme, Jacques; McDaniel, Eric; Ponts, Nadia; Bertani, Stéphane; Fenical, William; Jensen, Paul; Le Roch, Karine

    2008-06-04

    Malaria continues to be a devastating parasitic disease that causes the death of 2 million individuals annually. The increase in multi-drug resistance together with the absence of an efficient vaccine hastens the need for speedy and comprehensive antimalarial drug discovery and development. Throughout history, traditional herbal remedies or natural products have been a reliable source of antimalarial agents, e.g. quinine and artemisinin. Today, one emerging source of small molecule drug leads is the world's oceans. Included among the source of marine natural products are marine microorganisms such as the recently described actinomycete. Members of the genus Salinispora have yielded a wealth of new secondary metabolites including salinosporamide A, a molecule currently advancing through clinical trials as an anticancer agent. Because of the biological activity of metabolites being isolated from marine microorganisms, our group became interested in exploring the potential efficacy of these compounds against the malaria parasite. We screened 80 bacterial crude extracts for their activity against malaria growth. We established that the pure compound, salinosporamide A, produced by the marine actinomycete, Salinispora tropica, shows strong inhibitory activity against the erythrocytic stages of the parasite cycle. Biochemical experiments support the likely inhibition of the parasite 20S proteasome. Crystal structure modeling of salinosporamide A and the parasite catalytic 20S subunit further confirm this hypothesis. Ultimately we showed that salinosporamide A protected mice against deadly malaria infection when administered at an extremely low dosage. These findings underline the potential of secondary metabolites, derived from marine microorganisms, to inhibit Plasmodium growth. More specifically, we highlight the effect of proteasome inhibitors such as salinosporamide A on in vitro and in vivo parasite development. Salinosporamide A (NPI-0052) now being advanced to

  12. Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes.

    PubMed

    Meng, Sitong; Wu, Hang; Wang, Lei; Zhang, Buchang; Bai, Linquan

    2017-07-01

    Nitrate is necessary for primary and secondary metabolism of actinomycetes and stimulates the production of a few antibiotics, such as lincomycin and rifamycin. However, the mechanism of this nitrate-stimulating effect was not fully understood. Two putative ABC-type nitrate transporters were identified in Streptomyces lincolnensis NRRL2936 and verified to be involved in lincomycin biosynthesis. With nitrate supplementation, the transcription of nitrogen assimilation genes, nitrate-specific ABC1 transporter genes, and lincomycin exporter gene lmrA was found to be enhanced and positively regulated by the global regulator GlnR, whose expression was also improved. Moreover, heterologous expression of ABC2 transporter genes in Streptomyces coelicolor M145 resulted in an increased actinorhodin production. Further incorporation of a nitrite-specific transporter gene nirC, as in nirC-ABC2 cassette, led to an even higher actinorhodin production. Similarly, the titers of salinomycin, ansamitocin, lincomycin, and geldanamycin were increased with the integration of this cassette to Streptomyces albus BK3-25, Actinosynnema pretiosum ATCC31280, S. lincolnensis LC-G, and Streptomyces hygroscopicus XM201, respectively. Our work expanded the nitrate-stimulating effect to many antibiotic producers by utilizing the nirC-ABC2 cassette for enhanced nitrate utilization, which could become a general tool for titer increase of antibiotics in actinomycetes.

  13. Identification of poly(cis-1,4-Isoprene) degradation intermediates during growth of moderately thermophilic actinomycetes on rubber and cloning of a functional lcp homologue from Nocardia farcinica strain E1.

    PubMed

    Ibrahim, Ebaid M A; Arenskötter, Matthias; Luftmann, Heinrich; Steinbüchel, Alexander

    2006-05-01

    The enrichment and isolation of thermophilic bacteria capable of rubber [poly(cis-1,4-isoprene)] degradation revealed eight different strains exhibiting both currently known strategies used by rubber-degrading mesophilic bacteria. Taxonomic characterization of these isolates by 16S rRNA gene sequence analysis demonstrated closest relationships to Actinomadura nitritigenes, Nocardia farcinica, and Thermomonospora curvata. While strains related to N. farcinica exhibited adhesive growth as described for mycolic acid-containing actinomycetes belonging to the genus Gordonia, strains related to A. nitritigenes and T. curvata formed translucent halos on natural rubber latex agar as described for several mycelium-forming actinomycetes. For all strains, optimum growth rates were observed at 50 degrees C. The capability of rubber degradation was confirmed by mineralization experiments and by gel permeation chromatography (GPC). Intermediates resulting from early degradation steps were purified by preparative GPC, and their analysis by infrared spectroscopy revealed the occurrence of carbonyl carbon atoms. Staining with Schiff's reagent also revealed the presence of aldehyde groups in the intermediates. Bifunctional isoprenoid species terminated with a keto and aldehyde function were found by matrix-assisted laser desorption ionization-time-of-flight and electrospray ionization mass spectrometry analyses. Evidence was obtained that biodegradation of poly(cis-1,4-isoprene) is initiated by endocleavage, rather than by exocleavage. A gene (lcp) coding for a protein with high homology to Lcp (latex-clearing protein) from Streptomyces sp. strain K30 was identified in Nocardia farcinica E1. Streptomyces lividans TK23 expressing this Lcp homologue was able to cleave synthetic poly(cis-1,4-isoprene), confirming its involvement in initial polymer cleavage.

  14. Identification of Poly(cis-1,4-Isoprene) Degradation Intermediates during Growth of Moderately Thermophilic Actinomycetes on Rubber and Cloning of a Functional lcp Homologue from Nocardia farcinica Strain E1

    PubMed Central

    Ibrahim, Ebaid M. A.; Arenskötter, Matthias; Luftmann, Heinrich; Steinbüchel, Alexander

    2006-01-01

    The enrichment and isolation of thermophilic bacteria capable of rubber [poly(cis-1,4-isoprene)] degradation revealed eight different strains exhibiting both currently known strategies used by rubber-degrading mesophilic bacteria. Taxonomic characterization of these isolates by 16S rRNA gene sequence analysis demonstrated closest relationships to Actinomadura nitritigenes, Nocardia farcinica, and Thermomonospora curvata. While strains related to N. farcinica exhibited adhesive growth as described for mycolic acid-containing actinomycetes belonging to the genus Gordonia, strains related to A. nitritigenes and T. curvata formed translucent halos on natural rubber latex agar as described for several mycelium-forming actinomycetes. For all strains, optimum growth rates were observed at 50°C. The capability of rubber degradation was confirmed by mineralization experiments and by gel permeation chromatography (GPC). Intermediates resulting from early degradation steps were purified by preparative GPC, and their analysis by infrared spectroscopy revealed the occurrence of carbonyl carbon atoms. Staining with Schiff's reagent also revealed the presence of aldehyde groups in the intermediates. Bifunctional isoprenoid species terminated with a keto and aldehyde function were found by matrix-assisted laser desorption ionization-time-of-flight and electrospray ionization mass spectrometry analyses. Evidence was obtained that biodegradation of poly(cis-1,4-isoprene) is initiated by endocleavage, rather than by exocleavage. A gene (lcp) coding for a protein with high homology to Lcp (latex-clearing protein) from Streptomyces sp. strain K30 was identified in Nocardia farcinica E1. Streptomyces lividans TK23 expressing this Lcp homologue was able to cleave synthetic poly(cis-1,4-isoprene), confirming its involvement in initial polymer cleavage. PMID:16672480

  15. Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes.

    PubMed

    Xu, Qingping; Traag, Bjørn A; Willemse, Joost; McMullan, Daniel; Miller, Mitchell D; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chruszcz, Maksymilian; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Grzechnik, Slawomir K; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Krishna, S Sri; Kumar, Abhinav; Marciano, David; Minor, Wladek; Mommaas, A Mieke; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L; Sefcovic, Natasha; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Wang, Shuren; Weekes, Dana; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A; van Wezel, Gilles P

    2009-09-11

    SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 A resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic "whirly" single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.

  16. Structural and Functional Characterizations of SsgB, a Conserved Activator of Developmental Cell Division in Morphologically Complex Actinomycetes*

    PubMed Central

    Xu, Qingping; Traag, Bjørn A.; Willemse, Joost; McMullan, Daniel; Miller, Mitchell D.; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chruszcz, Maksymilian; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Minor, Wladek; Mommaas, A. Mieke; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Wang, Shuren; Weekes, Dana; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.; van Wezel, Gilles P.

    2009-01-01

    SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 Å resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic “whirly” single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners. PMID:19567872

  17. Screening of Marine Actinomycetes from Segara Anakan for Natural Pigment and Hydrolytic Activities

    NASA Astrophysics Data System (ADS)

    Asnani, A.; Ryandini, D.; Suwandri

    2016-02-01

    Marine actinomycetes have become sources of great interest to natural product chemistry due to their new chemical entities and bioactive metabolites. Since April 2010, we have screened actinobacteria from five sites that represent different ecosystems of Segara Anakan lagoon. In this present study we focus on specific isolates, K-2C which covers 1) actinomycetes identification based on morphology observation and 16S rRNA gene; 2) fermentation and isolation of pigment; 3) structure determination of pigment; and 4) hydrolytic enzymes characterization; Methodologies relevant to the studies were implemented accordingly. The results indicated that K-2C was likely Streptomyces fradiae strain RSU15, and the best fermentation medium should contain starch and casein with 21 days of incubation. The isolate has extracellular as well as intracellular pigments. Isolated pigments gave purple color with λmax of 529.00 nm. The pigment was structurally characterized. Interestingly, Streptomyces K-2C was able to produce potential hydrolytic enzymes such as amylase, cellulase, protease, lipase, urease, and nitrate reductase.

  18. Interspecies Interactions Stimulate Diversification of the Streptomyces coelicolor Secreted Metabolome

    PubMed Central

    Traxler, Matthew F.; Watrous, Jeramie D.; Alexandrov, Theodore; Dorrestein, Pieter C.; Kolter, Roberto

    2013-01-01

    ABSTRACT Soils host diverse microbial communities that include filamentous actinobacteria (actinomycetes). These bacteria have been a rich source of useful metabolites, including antimicrobials, antifungals, anticancer agents, siderophores, and immunosuppressants. While humans have long exploited these compounds for therapeutic purposes, the role these natural products may play in mediating interactions between actinomycetes has been difficult to ascertain. As an initial step toward understanding these chemical interactions at a systems level, we employed the emerging techniques of nanospray desorption electrospray ionization (NanoDESI) and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) imaging mass spectrometry to gain a global chemical view of the model bacterium Streptomyces coelicolor interacting with five other actinomycetes. In each interaction, the majority of secreted compounds associated with S. coelicolor colonies were unique, suggesting an idiosyncratic response from S. coelicolor. Spectral networking revealed a family of unknown compounds produced by S. coelicolor during several interactions. These compounds constitute an extended suite of at least 12 different desferrioxamines with acyl side chains of various lengths; their production was triggered by siderophores made by neighboring strains. Taken together, these results illustrate that chemical interactions between actinomycete bacteria exhibit high complexity and specificity and can drive differential secondary metabolite production. PMID:23963177

  19. The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow.

    PubMed

    Lenart, Anna; Wolny-Koładka, Katarzyna

    2013-01-01

    The present study aimed to identify the effect of heavy metal concentration and soil pH on the abundance of the selected soil microorganisms within ArcelorMittal Poland steelworks, Cracow. The analysis included 20 soil samples, where the concentration of Fe, Zn, Cd, Pb, Ni, Cu, Mn, Cr and soil pH were evaluated together with the number of mesophilic bacteria, fungi, Actinomycetes and Azotobacter spp. In the majority of samples soil pH was alkaline. The limits of heavy metals exceeded in eight samples and in one sample, the concentration of Zn exceeded 31-fold. Chromium was the element which most significantly limited the number of bacteria and Actinomycetes.

  20. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea.

    PubMed

    Singh, S P; Gaur, R

    2016-08-01

    To evaluate the potential of chitinolytic endophytic Actinomycetes isolated from medicinal plants in order to diminish the collar rot infestation induced by Sclerotium rolfsii in chickpea. Sixty-eight chitinolytic endophytic Actinomycetes were recovered from various medicinal plants and evaluated for their chitinase activity. Among these isolates, 12 were screened for their plant growth promoting abilities and antagonistic potential against Sc. rolfsii. Further, these isolates were validated in vivo for their ability to protect chickpea against Sc. rolfsii infestation under greenhouse conditions. The isolates significantly (P < 0·05) increased the biomass (1·2-2·0 fold) and reduced plant mortality (42-75%) of chickpea. On the basis of 16S rDNA profiling, the selected antagonistic strains were identified as Streptomyces diastaticus, Streptomyces fradiae, Streptomyces olivochromogenes, Streptomyces collinus, Streptomyces ossamyceticus and Streptomyces griseus. This study is the first report of the isolation of endophytic Actinomycetes from various medicinal plants having antagonistic and plant growth promoting abilities. The isolated species showed potential for controlling collar rot disease on chickpea and could be useful in integrated control against diverse soil borne plant pathogens. Our investigation suggests that endophytic Actinomycetes associated with medicinal plants can be used as bioinoculants for developing safe, efficacious and environment-friendly biocontrol strategies in the near future. © 2016 The Society for Applied Microbiology.

  1. Prospecting Anticancer Compounds in Actinomycetes Recovered from the Sediments of Saint Peter and Saint Paul's Archipelago, Brazil.

    PubMed

    Ferreira, Elthon G; Torres, Maria da Conceição M; da Silva, Alison B; Colares, Larissa L F; Pires, Karine; Lotufo, Tito M C; Silveira, Edilberto R; Pessoa, Otília D L; Costa-Lotufo, Leticia V; Jimenez, Paula C

    2016-09-01

    Saint Peter and Saint Paul's Archipelago is a collection of 15 islets and rocks remotely located in the equatorial Atlantic Ocean. In this particular site, the present project intended to assess the biodiversity and biotechnological potential of bacteria from the actinomycete group. This study presents the first results of this assessment. From 21 sediment samples, 268 strains were isolated and codified as BRA followed by three numbers. Of those, 94 strains were grown in liquid media and submitted to chemical extractions with AcOEt (A), BuOH (B), and MeOH (M). A total of 224 extracts were screened for their cytotoxic activity and 41 were significantly active against HCT-116 cancer cells. The obtained IC 50 values ranged from 0.04 to 31.55 μg/ml. The HR-LC/MS dereplication analysis of the active extracts showed the occurrence of several known anticancer compounds. Individual compounds, identified using HR-MS combined with analysis of the AntiMarin database, included saliniketals A and B, piericidins A and C and glucopiericidin A, staurosporine, N-methylstaurosporine, hydroxydimethyl-staurosporine and N-carbamoylstaurosporine, salinisporamycin A, and rifamycins S and B. BRA-199, identified as Streptomyces sp., was submitted to bioassay-guided fractionation, leading to isolation of the bioactive piericidins A and C, glucopiericidin, and three known diketopiperazines, cyclo(l-Phe-trans-4-OH-l-Pro), cyclo(l-Phe-l-Pro), and cyclo(l-Trp-l-Pro). © 2016 Wiley-VHCA AG, Zürich.

  2. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    PubMed

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  3. Biosynthetic potential of actinomycetes in brown forest soil on the eastern coast of the aegean sea

    NASA Astrophysics Data System (ADS)

    Shirokikh, I. G.; Shirokikh, A. A.

    2017-11-01

    The taxonomic and functional structures of the actinomycetal complex in the litter and upper horizon of the brown forest soil was studied in a Pinus brutia var. pendulifolia forest on the eastern coast of the Aegean Sea. The complex of actinomycetes included representatives of the Streptomyces and Micromonospora genera and oligosporus forms. Streptomycetes predominated (73.8%) in the soil, and micromonospores (66.7%) were dominants in the litter. Thirty isolates of ten Streptomyces species from five series and three sections prevailed. In the upper soil horizon, species of the Helvolo-Flavus Helvolus section predominated (48%); the S. felleus species occurred most frequently. Among the isolated cultures, the S. globisporus and S. sindenensis species capable to produce antitumor antibiotics were found. The testing of the antimicrobial activity of the natural isolates showed that five strains inhibit the growth of pathogenic Fusarium sp., Alternaria sp., Acremonium sp., and Bipolaris sorokiniana fungi. When testing the effect of streptomycetes on the production of cellulases, a high-efficient strain belonging to the S. noboritoensis species was revealed. All the streptomycetes isolated from the brown forest soil produced auxins at the rate of 7.8 to 19.7 μg of indole acetic acid/mL of the liquid medium in the presence of 200 mg/L of tryptophan. Twelve isolates of streptomycetes were transferred to the collection of biotechnologically promising cultures for studying their properties.

  4. Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines).

    PubMed

    Nour, Sarah M; Lawrence, John R; Zhu, Hong; Swerhone, George D W; Welsh, Martha; Welacky, Tom W; Topp, Edward

    2003-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, causes economically significant damage to soybeans (Glycine max) in many parts of the world. The cysts of this nematode can remain quiescent in soils for many years as a reservoir of infection for future crops. To investigate bacterial communities associated with SCN cysts, cysts were obtained from eight SCN-infested farms in southern Ontario, Canada, and analyzed by culture-dependent and -independent means. Confocal laser scanning microscopy observations of cyst contents revealed a microbial flora located on the cyst exterior, within a polymer plug region and within the cyst. Microscopic counts using 5-(4,6-dichlorotriazine-2-yl)aminofluorescein staining and in situ hybridization (EUB 338) indicated that the cysts contained (2.6 +/- 0.5) x 10(5) bacteria (mean +/- standard deviation) with various cellular morphologies. Filamentous fungi were also observed. Live-dead staining indicated that the majority of cyst bacteria were viable. The probe Nile red also bound to the interior polymer, indicating that it is lipid rich in nature. Bacterial community profiles determined by denaturing gradient gel electrophoresis analysis were simple in composition. Bands shared by all eight samples included the actinobacterium genera Actinomadura and STREPTOMYCES: A collection of 290 bacteria were obtained by plating macerated surface-sterilized cysts onto nutrient broth yeast extract agar or on actinomycete medium. These were clustered into groups of siblings by repetitive extragenic palindromic PCR fingerprinting, and representative isolates were tentatively identified on the basis of 16S rRNA gene sequence. Thirty phylotypes were detected, with the collection dominated by Lysobacter and Variovorax spp. This study has revealed the cysts of this important plant pathogen to be rich in a variety of bacteria, some of which could presumably play a role in the ecology of SCN or have potential as biocontrol agents.

  5. Bacteria Associated with Cysts of the Soybean Cyst Nematode (Heterodera glycines)

    PubMed Central

    Nour, Sarah M.; Lawrence, John R.; Zhu, Hong; Swerhone, George D. W.; Welsh, Martha; Welacky, Tom W.; Topp, Edward

    2003-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, causes economically significant damage to soybeans (Glycine max) in many parts of the world. The cysts of this nematode can remain quiescent in soils for many years as a reservoir of infection for future crops. To investigate bacterial communities associated with SCN cysts, cysts were obtained from eight SCN-infested farms in southern Ontario, Canada, and analyzed by culture-dependent and -independent means. Confocal laser scanning microscopy observations of cyst contents revealed a microbial flora located on the cyst exterior, within a polymer plug region and within the cyst. Microscopic counts using 5-(4,6-dichlorotriazine-2-yl)aminofluorescein staining and in situ hybridization (EUB 338) indicated that the cysts contained (2.6 ± 0.5) × 105 bacteria (mean ± standard deviation) with various cellular morphologies. Filamentous fungi were also observed. Live-dead staining indicated that the majority of cyst bacteria were viable. The probe Nile red also bound to the interior polymer, indicating that it is lipid rich in nature. Bacterial community profiles determined by denaturing gradient gel electrophoresis analysis were simple in composition. Bands shared by all eight samples included the actinobacterium genera Actinomadura and Streptomyces. A collection of 290 bacteria were obtained by plating macerated surface-sterilized cysts onto nutrient broth yeast extract agar or on actinomycete medium. These were clustered into groups of siblings by repetitive extragenic palindromic PCR fingerprinting, and representative isolates were tentatively identified on the basis of 16S rRNA gene sequence. Thirty phylotypes were detected, with the collection dominated by Lysobacter and Variovorax spp. This study has revealed the cysts of this important plant pathogen to be rich in a variety of bacteria, some of which could presumably play a role in the ecology of SCN or have potential as biocontrol agents. PMID:12514048

  6. In vitro interaction of actinomycetes isolates with Aspergillus flavus: impact on aflatoxins B1 and B2 production.

    PubMed

    Verheecke, C; Liboz, T; Darriet, M; Sabaou, N; Mathieu, F

    2014-06-01

    This work aimed to study the interaction between Actinomycetal isolates and Aspergillus flavus to promote mutual antagonism in contact. Thirty-seven soilborn Streptomyces spp. isolates were chosen as potential candidates. After a 10-day in vitro co-incubation period, 27 isolates respond to the criteria, that is, mutual antagonism in contact. Further aflatoxins B1 and B2 analysis revealed that those 27 isolates reduced aflatoxin B1 residual concentration from 38·6 to 4·4%, depending on the isolate. We selected 12 isolates and tested their capacity to reduce AFB1 in pure culture to start identifying the mechanisms involved in its reduction. AFB1 was reduced by eight isolates. The remaining AFB1 concentration varied between 82·2 and 15·6%. These findings led us to suggest that these eight isolates could be used as biocontrol agents against AFB1 and B2 with low risk of impacting the natural microbial equilibrium. Interaction between Aspergillus flavus and Actinomycetes isolates was conducted in vitro. Actinomycetes isolates having a mutual antagonism in contact with A. flavus were chosen for further aflatoxins production study. This is a new approach based to develop biocontrol against aflatoxins accumulation in maize while respecting natural microbial equilibrium. © 2014 The Society for Applied Microbiology.

  7. Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria.

    PubMed

    Hill, Steven C; Pan, Yong-Le; Williamson, Chatt; Santarpia, Joshua L; Hill, Hanna H

    2013-09-23

    This paper describes a mathematical model of fluorescent biological particles composed of bacteria, viruses, or proteins. The fluorescent and/or light absorbing molecules included in the model are amino acids (tryptophan, etc.); nucleic acids (DNA, RNA, etc.); coenzymes (nicotinamide adenine dinucleotides, flavins, and vitamins B₆ and K and variants of these); and dipicolinates. The concentrations, absorptivities, and fluorescence quantum yields are estimated from the literature, often with large uncertainties. The bioparticles in the model are spherical and homogeneous. Calculated fluorescence cross sections for particles excited at 266, 280, and 355 nm are compared with measured values from the literature for several bacteria, bacterial spores and albumins. The calculated 266- and 280-nm excited fluorescence is within a factor of 3.2 of the measurements for the vegetative cells and proteins, but overestimates the fluorescence of spores by a factor of 10 or more. This is the first reported modeling of the fluorescence of bioaerosols in which the primary fluorophores and absorbing molecules are included.

  8. Viability of fungal and actinomycetal spores after microwave radiation of building materials.

    PubMed

    Górny, Rafał L; Mainelis, Gediminas; Wlazło, Agnieszka; Niesler, Anna; Lis, Danuta O; Marzec, Stanisław; Siwińska, Ewa; Łudzeń-Izbińska, Beata; Harkawy, Aleksander; Kasznia-Kocot, Joanna

    2007-01-01

    The effects of microwave radiation on viability of fungal and actinomycetal spores growing on agar (medium optimal for growth) as well as on wooden panel and drywall (common building construction/finishing materials) were studied. All materials were incubated at high (97-99%) and low (32-33%) relative humidity to mimic "wet" and "dry" environmental conditions. Two microwave power densities (10 and 60 mW/cm2) and three times of exposure (5, 30, and 60 min) were tested to find the most effective parameters of radiation which could be applied to non-invasive reduction or cleaning of building materials from microbial contaminants. Additionally, a control of the surface temperature during the experiments allowed differentiation between thermal and microwave effect of such radiation. The results showed that the viability of studied microorganisms differed depending on their strains, growth conditions, power density of microwave radiation, time of exposure, and varied according to the applied combination of the two latter elements. The effect of radiation resulting in a decrease of spore viability on "wet" wooden panel and drywall was generally observed at 60 min exposure. Shorter exposure times decreased the viability of fungal spores only, while in actinomycetes colonizing the studied building materials, such radiation caused an opposite (supporting growth) effect.

  9. Molecular taxonomy and phylogenetic position of lactic acid bacteria.

    PubMed

    Stackebrandt, E; Teuber, M

    1988-03-01

    Lactic acid bacteria, important in food technology, are Gram-positive organisms exhibiting a DNA G + C content of less than 50 mol%. Phylogenetically they are members of the Clostridium-Bacillus subdivision of Gram-positive eubacteria. Lactobacillus and streptococci together with related facultatively anaerobic taxa evolved as individual lines of descent about 1.5-2 billion years ago when the earth passed from an anaerobic to an aerobic environment. In contrast to the traditional, morphology-based classification, the genus Lactobacillus is intermixed with strains of Pediococcus and Leuconostoc. Similarly, the physiology-based clustering of lactobacilli into Thermo-, Strepto- and Betabacterium does not agree with their phylogenetic relationships. On the other hand, the phenotypically defined genus Streptococcus is not a phylogenetic coherent genus but its members fall into at least 3 moderately related genera, i.e. Streptococcus, Lactococcus and Enterococcus. The genus Bifidobacterium, frequently grouped with the lactobacilli, is the most ancient group of the second, the Actinomycetes subdivision of the Gram-positive eubacteria. In addition, propionibacteria, microbacteria and brevibacteria belong to this subdivision but the latter organisms appear as offshoots of non-lactic acid bacteria.

  10. Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances?

    PubMed

    Trigo, C; Ball, A S

    1994-11-01

    Three actinomycetes (Streptomyces sp. EC22, Streptomyces viridosporus T7A and Thermomonospora fusca BD25) were assessed for their ability to degrade ball-milled wheat straw. All gave maximum levels of solubilized lignocellulose products (APPL) at the beginning of the stationary phase of growth (72-96 h). Low-molecular-mass aromatic compounds extracted from the APPL were analysed by reverse-phase and gas chromatography. Although the number of chromatographic peaks detected made identification of the products difficult, p-coumaric acid (4-hydroxycinnamic acid), protocatechuic acid (3,4-dihydroxybenzoic acid), gallic acid (3,4,5-trihydroxybenzoic acid), gallic acid methyl ester (methyl-3,4,5-trihydroxybenzoate) and 4-methoxyphenol were recognized. The infrared spectra of the three strains were similar to the spectra of humic acids, with all APPL extracts showing carbonyl, amino, carboxyl, aliphatic and aromatic group vibrations. Also detected were peptide linkages of proteins. The results suggest a role for actinomycetes in the formation of humic substances in soils and composts.

  11. A Marine Actinomycete Rescues Caenorhabditis elegans from Pseudomonas aeruginosa Infection through Restitution of Lysozyme 7

    PubMed Central

    Fatin, Siti N.; Boon-Khai, Tan; Shu-Chien, Alexander Chong; Khairuddean, Melati; Al-Ashraf Abdullah, Amirul

    2017-01-01

    The resistance of Pseudomonas aeruginosa to conventional antimicrobial treatment is a major scourge in healthcare. Therefore, it is crucial that novel potent anti-infectives are discovered. The aim of the present study is to screen marine actinomycetes for chemical entities capable of overcoming P. aeruginosa infection through mechanisms involving anti-virulence or host immunity activities. A total of 18 actinomycetes isolates were sampled from marine sediment of Songsong Island, Kedah, Malaysia. Upon confirming that the methanolic crude extract of these isolates do not display direct bactericidal activities, they were tested for capacity to rescue Caenorhabditis elegans infected with P. aeruginosa strain PA14. A hexane partition of the extract from one isolate, designated as Streptomyces sp. CCB-PSK207, could promote the survival of PA14 infected worms by more than 60%. Partial 16S sequence analysis on this isolate showed identity of 99.79% with Streptomyces sundarbansensis. This partition did not impair feeding behavior of C. elegans worms. Tested on PA14, the partition also did not affect bacterial growth or its ability to colonize host gut. The production of biofilm, protease, and pyocyanin in PA14 were uninterrupted, although there was an increase in elastase production. In lys-7::GFP worms, this partition was shown to induce the expression of lysozyme 7, an important innate immunity defense molecule that was repressed during PA14 infection. GC-MS analysis of the bioactive fraction of Streptomyces sp. CCB-PSK207 revealed the presence of methyl esters of branched saturated fatty acids. In conclusion, this is the first report of a marine actinomycete producing metabolites capable of rescuing C. elegans from PA14 through a lys-7 mediated activity. PMID:29201023

  12. Structural and functional properties of actinomycetal communities in chernozems and saline soils of Ukraine

    NASA Astrophysics Data System (ADS)

    Grishko, V. N.; Syshchikova, O. V.

    2010-02-01

    In the profiles of ordinary and southern chernozems, the total numbers of amylolytic microorganisms and actinomycetes decreased with the depth by 2.4-4.2 and 3.4 times, respectively; in the profiles of solonetz and solonchak soils, by 4.2-5.3 and 4.8 times, respectively. In the genetic horizons of the ordinary and southern chernozems, the share of actinomycetes amounted to 29-30% of the total population of microorganisms; in the saline soils, it increases with the depth from 23 to 43%. In the chernozems, Streptomyces violaceomaculatus (Roseus section), St. sporoherbeus (Azureus), St. aerionidulus (Cinereus), St. enduracidicus (Cinereus), and St. grisinus (Cinereus) predominated; in the saline soils, St. violaceomaculatus and St. aerionidulus prevailed. In the ordinary chernozem, the Berger-Parker index was 1.5 times higher than in the southern chernozem. High similarity was found between the streptomycete communities in the chernozems (the Sorensen coefficient was 0.78). In the solonetzes, the species richness of the streptomycetes was higher by 1.7 times than in the solonchaks. In the chernozems, the similarity of the streptomycete communities was higher than in the solonchaks (0.78 and 0.60, respectively).

  13. Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains.

    PubMed

    Bourguignon, Natalia; Isaac, Paula; Alvarez, Héctor; Amoroso, María J; Ferrero, Marcela A

    2014-12-01

    Fifteen actinomycete strains were evaluated for their potential use in removal of polycyclic aromatic hydrocarbons (PAH). Their capability to degrade of naphthalene, phenanthrene, and pyrene was tested in minimal medium (MM) and MM with glucose as another substrate. Degradation of naphthalene in MM was observed in all isolates at different rates, reaching maximum values near to 76% in some strains of Streptomyces, Rhodococcus sp. 016 and Amycolatopsis tucumanensis DSM 45259. Maximum values of degradation of phenanthrene in MM occurred in cultures of A. tucumanensis DSM 45259 (36.2%) and Streptomyces sp. A12 (20%), while the degradation of pyrene in MM was poor and only significant with Streptomyces sp. A12 (4.3%). Because of the poor performance when growing on phenanthrene and pyrene alone, Rhodococcus sp. 20, Rhodococcus sp. 016, A. tucumanensis DSM 45259, Streptomyces sp. A2, and Streptomyces sp. A12 were challenged to an adaptation schedule of successive cultures on a fresh solid medium supplemented with PAHs, decreasing concentration of glucose in each step. As a result, an enhanced degradation of PAHs by adapted strains was observed in the presence of glucose as co-substrate, without degradation of phenanthrene and pyrene in MM while an increase to up to 50% of degradation was seen with these strains in glucose amended media. An internal fragment of the catA gene, which codes for catechol 1,2-dioxygenase, was amplified from both Rhodococcus strains, showing the potential for degradation of aromatic compounds via salycilate. These results allow us to propose the usefulness of these actinomycete strains for PAH bioremediation in the environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Toxic effects of oxytetracycline and copper, separately or combined, on soil microbial biomasses.

    PubMed

    Wang, Lanjun; Wang, Jinhua; Zhu, Lusheng; Wang, Jun

    2018-04-01

    The production of commercial livestock and poultry often involves using with antibiotics and feed additives, such as oxytetracycline (OTC) and copper (Cu). These are often excreted into the soil by animal feces; hence, combined pollutants may contaminate the soil. To evaluate single and combined toxic effects of OTC and Cu on the soil ecology, changes in quantities of bacteria, fungi, and actinomycetes in the soil were studied over a 28-d incubation period by a plate count method, microbes numbers counted on days 7, 14, 21, and 28. Abundances of ammonia monooxygenase (amoA) gene expression by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in soil samples also were tested by real-time polymerase chain reactions (RT-PCRs) on day 21. The results revealed that the numbers of bacteria, fungi and actinomycetes and amoA genes copies of AOA and AOB were reduced seriously by exposure to Cu (1.60 mmol/kg). Similarly, the combined pollution treatments (mole ratios of OTC: Cu was 1:2, 1:8, and 1:32) also had inhibitory effect on bacteria, fungi, and actinomycetes numbers and amoA gene copies of AOA and AOB; the inhibitory rate was on obvious growth trend with the increasing mole ratios. Effects from single OTC pollution were found on bacteria (days 7 and 14), fungi (days 7, 14, 21, and 28), and AOA-amoA gene copies (day 21), with promotion at a low concentration (0.05 mmol/kg) and suppression at higher concentrations (0.2 and 0.8 mmol/kg). Also, numbers of bacteria, fungi, and actinomycetes decreased with longer culture times. Combining OTC and Cu led to a higher inhibition of soil microbes than when either chemical was used alone. However, there was no significant relationship between single and combined toxic chemicals because of their complicated interactions, either antagonistic or synergistic. The results also indicated the sensitivity of bacteria, fungi, actinomycetes on toxic chemicals existed difference and that the AOA were more tolerant than

  15. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting.

    PubMed

    Zhao, Yi; Zhao, Yue; Zhang, Zhechao; Wei, Yuquan; Wang, Huan; Lu, Qian; Li, Yanjie; Wei, Zimin

    2017-10-01

    The inoculum containing four cellulolytic thermophilic actinomycetes was screened from compost samples, and was inoculated into co-composting during different inoculation phases. The effect of different inoculation phases on cellulose degradation, humic substances formation and the relationship between inoculation and physical-chemical parameters was determined. The results revealed that inoculation at different phases of composting improved cellulase activities, accelerated the degradation of cellulose, increased the content of humic substances and influenced the structure of actinomycetic community, but there were significant differences between different inoculation phases. Redundancy analysis showed that the different inoculation phases had different impacts on the relationship between exogenous actinobacteria and physical-chemical parameters. Therefore, based on the promoting effort of inoculation in thermophilic phase of composting for the formation of humic substances, we suggested an optimized inoculation strategy to increase the content of humic substances, alleviate CO 2 emission during composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The effects of a new therapeutic triclosan/copolymer/sodium-fluoride dentifrice on oral bacteria, including odorigenic species.

    PubMed

    Furgang, David; Sreenivasan, Prem K; Zhang, Yun Po; Fine, Daniel H; Cummins, Diane

    2003-09-01

    This investigation examined the in vitro and ex vivo antimicrobial effects of a new dentifrice, Colgate Total Advanced Fresh, formulated with triclosan/copolymer/sodium fluoride, on oral bacteria, including those odorigenic bacteria implicated in bad breath. The effects of Colgate Total Advanced Fresh were compared to commercially available fluoride dentifrices that served as controls. Three experimental approaches were undertaken for these studies. In the first approach, the dentifrice formulations were tested in vitro against 13 species of oral bacteria implicated in bad breath. The second approach examined the antimicrobial activity derived from dentifrice that was adsorbed to and released from hydroxyapatite disks. In this approach, dentifrice-treated hydroxyapatite disks were immersed in a suspension of bacteria, and reduction in bacterial viability from the release of bioactive agents from hydroxyapatite was determined. The third approach examined the effect of treating bacteria immediately after their removal from the oral cavity of 11 adult human volunteers. This ex vivo study examined the viability of cultivable oral bacteria after dentifrice treatment for 2 minutes. Antimicrobial effects were determined by plating Colgate Total Advanced Fresh and control-dentifrice-treated samples on enriched media (for all cultivable oral bacteria) and indicator media (for hydrogen-sulfide-producing organisms), respectively. Results indicated that the antimicrobial effects of Colgate Total Advanced Fresh were significantly greater than either of the other dentifrices for all 13 oral odorigenic bacterial strains tested in vitro (P < or = 0.05). In the second approach, Colgate Total Advanced Fresh-treated hydroxyapatite disks were significantly more active in reducing bacterial growth than the other dentifrices tested (P < or = 0.05). Finally, ex vivo treatment of oral bacteria with Colgate Total Advanced Fresh demonstrated a 90.9% reduction of all oral cultivable bacteria

  17. Dynamics of the biological properties of soil and the nutrient release of Amorpha fruticosa L. litter in soil polluted by crude oil.

    PubMed

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Liang, Xiao; Liu, Xiaobo

    2015-11-01

    Litter from Amorpha fruticosa, a potential phytoremediating plant, was collected and used in a decomposition experiment that involved the litterbag in soil polluted by crude oil. The dynamics of the biological properties of soil and the nutrient release of the litter were detected. The results indicated that (1) in lightly polluted soil (LP, petroleum concentration was 15 g kg(-1)), the bacteria (including actinomycetes), and fungi populations were significant higher than those in unpolluted soil (CK) at the 1st month after pollution, and the bacteria (including actinomycetes) populations were higher than those in the CK at the 6th and 12th months. In moderately polluted soil (MP, 30 g kg(-1)), the bacteria (including actinomycetes) populations were higher than those in the CK at the 1st and 6th months, whereas only the actinomycetes population was greater than that in the CK at the 12th month. In seriously polluted soil (SP, 45 g kg(-1)), only the fungi population was higher than that in the CK at the 6th month. (2) The activities of soil protease, carboxymethyl cellulase, and sucrase were generally inhibited in polluted soil. Peroxidase activity was generally inhibited in the LP and MP soil, and polyphenol oxidase activity was inhibited in the SP soil at 6-12 months. (3) At the end of litter decomposition, the LP soil significantly increased the release rate of all nutrients, except for K. The MP soil reduced the release rate of Fe and Mn, whereas it increased that of C and Cu. The SP soil decreased the release rate of all nutrients except for Cu and Zn. In conclusion, SP by crude oil would lead to limitations in the release of nutrients from the litter and to decreases in the community stability of a phytoremediating plant. A. fruticosa could only be used in phytoremediation of polluted soil at concentrations below 45 g kg(-1) (crude).

  18. Actinopolysporins A-C and tubercidin as a Pdcd4 stabilizer from the halophilic actinomycete Actinopolyspora erythraea YIM 90600.

    PubMed

    Zhao, Li-Xing; Huang, Sheng-Xiong; Tang, Shu-Kun; Jiang, Cheng-Lin; Duan, Yanwen; Beutler, John A; Henrich, Curtis J; McMahon, James B; Schmid, Tobias; Blees, Johanna S; Colburn, Nancy H; Rajski, Scott R; Shen, Ben

    2011-09-23

    Our current natural product program utilizes new actinomycetes originating from unexplored and underexplored ecological niches, employing cytotoxicity against a selected panel of cancer cell lines as the preliminary screen to identify hit strains for natural product dereplication, followed by mechanism-based assays of the purified natural products to discover potential anticancer drug leads. Three new linear polyketides, actinopolysporins A (1), B (2), and C (3), along with the known antineoplastic antibiotic tubercidin (4), were isolated from the halophilic actinomycete Actinopolyspora erythraea YIM 90600, and the structures of the new compounds were elucidated on the basis of spectroscopic data interpretation. All four compounds were assayed for their ability to stabilize the tumor suppressor programmed cell death protein 4 (Pdcd4), which is known to antagonize critical events in oncogenic pathways. Only 4 significantly inhibited proteasomal degradation of a model Pdcd4-luciferase fusion protein, with an IC50 of 0.88±0.09 μM, unveiling a novel biological activity for this well-studied natural product.

  19. Identification of thermophilic bacteria in solid-waste composting.

    PubMed Central

    Strom, P F

    1985-01-01

    The thermophilic microbiota of solid-waste composting, with major emphasis on Bacillus spp., was examined with Trypticase soy broth (BBL Microbiology Systems) with 2% agar as the initial plating medium. Five 4.5-liter laboratory units at 49 to 69 degrees C were fed a mixture of dried table scraps and shredded newspaper. The composting plants treating refuse at Altoona, Pa., and refuse-sludge at Leicester, England, were also sampled. Of 652 randomly picked colonies, 87% were identified as Bacillus spp. Other isolates included two genera of unidentified nonsporeforming bacteria (one of gram-negative small rods and the other of gram-variable coccobacilli), the actinomycetes Streptomyces spp. and Thermoactinomyces sp., and the fungus Aspergillus fumigatus. Among the Bacillus isolates, the following, in order of decreasing frequency, were observed: B. circulans complex, B. stearothermophilus, B. coagulans types A and B, B. licheniformis, B. brevis, B. sphaericus, Bacillus spp. types i and ii, and B. subtilis. About 15% of the Bacillus isolates could be assigned to species only by allowing for greater variability in one or more characteristics than has been reported by other authors for their strains. In particular, growth at higher temperatures than previously reported was found for strains of several species. A small number of Bacillus isolates (less than 2%) could not be assigned to any recognized species. PMID:4083886

  20. Optimization of antifungal production by an alkaliphilic and halotolerant actinomycete, Streptomyces sp. SY-BS5, using response surface methodology.

    PubMed

    Souagui, Y; Tritsch, D; Grosdemange-Billiard, C; Kecha, M

    2015-06-01

    Optimization of medium components and physicochemical parameters for antifungal production by an alkaliphilic and salt-tolerant actinomycete designated Streptomyces sp. SY-BS5; isolated from an arid region in south of Algeria. The strain showed broad-spectrum activity against pathogenic and toxinogenic fungi. Identification of the actinomycete strain was realized on the basis of 16S rRNA gene sequencing. Antifungal production was optimized following one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The most suitable medium for growth and antifungal production was found using one-factor-at-a-time methodology. The individual and interaction effects of three nutritional variables, carbon source (glucose), nitrogen source (yeast extract) and sodium chloride (NaCl) were optimized by Box-Behnken design. Finally, culture conditions for the antifungal production, pH and temperature were studied and determined. Analysis of the 16S rRNA gene sequence (1454 nucleotides) assigned this strain to Streptomyces genus with 99% similarity with Streptomyces cyaneofuscatus JCM4364(T), the most closely related. The results of the optimization study show that concentrations 3.476g/L of glucose, 3.876g/L of yeast extract and 41.140g/L of NaCl are responsible for the enhancement of antifungal production by Streptomyces sp. SY-BS5. The preferable culture conditions for antifungal production were pH 10, temperature 30°C for 09 days. This study proved that RSM is usual and powerful tool for the optimization of antifungal production from actinomycetes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Antichlamydial Dimeric Indole Derivatives from Marine Actinomycete Rubrobacter radiotolerans.

    PubMed

    Li, Jian Lin; Chen, Dandan; Huang, Lei; Ni, Min; Zhao, Yu; Fan, Huizhou; Bao, Xiaofeng

    2017-06-01

    Chlamydiae are widely distributed pathogens of human populations, which can lead to serious reproductive and other health problems. In our search for novel antichlamydial metabolites from marine derived-microorganisms, one new ( 1 ) and two known ( 2, 3 ) dimeric indole derivatives were isolated from the sponge-derived actinomycete Rubrobacter radiotolerans . The chemical structures of these metabolites were elucidated by NMR spectroscopic data as well as CD calculations. All three metabolites suppressed chlamydial growth in a concentration-dependent manner. Among them, compound 1 exhibited the most effective antichlamydial activity with IC 50 values of 46.6 ~ 96.4 µM in the production of infectious progeny. Compounds appeared to target the mid-stage of the chlamydial developmental cycle by interfering with reticular body replication, but not directly inactivating the infectious elementary body. Georg Thieme Verlag KG Stuttgart · New York.

  2. Diversity and bioactivity of actinomycetes from marine sediments of the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Shumin; Ye, Liang; Tang, Xuexi

    2012-03-01

    Among the 116 actinomycetes collected from marine sediments of the Yellow Sea, 56 grew slowly and appeared after 2-3 weeks of incubation. Among the 56 strains, only 3 required seawater (SW) for growth, and 21 grew well in the medium prepared with SW rather than distilled water (DW), while the remaining 32 grew well either with SW or with DW. Six representatives with different morphological characteristics, including 1 SW-requiring strain and 5 well-growing with SW strains, were selected for phylogenetic analysis based on 16S rRNA gene. Two strains belong to Micrococcaceae and Nocardiopsaceae respectively. The other 4 strains belong to the family of Streptomycetaceae. In the analyzed 6 strains, one was related to Nocardiopsis spp. and the other three were related to Streptomyces spp., representing new taxa. Bioactivity testing of fermentation products from 3 SW-requiring strains and 21 well-growing with SW strains revealed that 17 strains possessed remarkable activities against gram-positive pathogen or/and tumor cells, suggesting that they were prolific resources for natural drug discovery.

  3. Screening of Actinomycetes from mangrove ecosystem for L-asparaginase activity and optimization by response surface methodology.

    PubMed

    Usha, Rajamanickam; Mala, Krishnaswami Kanjana; Venil, Chidambaram Kulandaisamy; Palaniswamy, Muthusamy

    2011-01-01

    Marine actinomycetes were isolated from sediment samples collected from Pitchavaram mangrove ecosystem situated along the southeast coast of India. Maximum actinomycete population was noted in rhizosphere region. About 38% of the isolates produced L-asparaginase. One potential strain KUA106 produced higher level of enzyme using tryptone glucose yeast extract medium. Based on the studied phenotypic characteristics, strain KUA106 was identified as Streptomyces parvulus KUA106. The optimization method that combines the Plackett-Burman design, a factorial design and the response surface method, which were used to optimize the medium for the production of L-asparaginase by Streptomycetes parvulus. Four medium factors were screened from eleven medium factors by Plackett-Burman design experiments and subsequent optimization process to find out the optimum values of the selected parameters using central composite design was performed. Asparagine, tryptone, d) extrose and NaCl components were found to be the best medium for the L-asparaginase production. The combined optimization method described here is the effective method for screening medium factors as well as determining their optimum level for the production of L-asparaginase by Streptomycetes parvulus KUAP106.

  4. Mycelial actinobacteria in salt-affected soils of arid territories of Ukraine and Russia

    NASA Astrophysics Data System (ADS)

    Grishko, V. N.; Syshchikova, O. V.; Zenova, G. M.; Kozhevin, P. A.; Dubrova, M. S.; Lubsanova, D. A.; Chernov, I. Yu.

    2015-01-01

    A high population density (up to hundreds of thousands or millions CFU/g soil) of mycelial bacteria (actinomycetes) is determined in salt-affected soils of arid territories of Ukraine, Russia, and Turkmenistan. Of all the studied soils, the lowest amounts of actinomycetes (thousands and tens of thousands CFU/g soil) are isolated from sor (playa) and soda solonchaks developed on the bottoms of drying salt lakes in Buryatia and in the Amu Darya Delta. Actinomycetes of the Streptomyces, Micromonospora, and Nocardiopsis genera were recorded in the studied soils. It is found that conditions of preincubation greatly affect the activity of substrate consumption by the cultures of actinomycetes. This could be attributed to changes in the metabolism of actinomycetes as a mechanism of their adaptation to the increased osmotic pressure of the medium. The alkali tolerance of halotolerant actinomycetes isolated from the salt-affected soils is experimentally proved.

  5. Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasti-Grigsby, M.B.; Lewis, T.A.; Crawford, D.L.

    1996-03-01

    Biotransformation of TNT has been reported under both aerobic and anaerobic conditions. Actinomycetes are important decomposers in composts. This study examines the tolerance of acitomycete cultures, isolated from both TNT-contaminated and uncontaminated environments for different concentrations to TNT, determined how selected isolates transform TNT, and examined whether such TNT transformations were constitutive or induced by exposure to TNT. 33 refs., 1 figs., 1 tab.

  6. Thiol Redox and pKa Properties of Mycothiol, the Predominant Low-Molecular-Weight Thiol Cofactor in the Actinomycetes.

    PubMed

    Sharma, Sunil V; Van Laer, Koen; Messens, Joris; Hamilton, Chris J

    2016-09-15

    The thiol pKa and standard redox potential of mycothiol, the major low-molecular-weight thiol cofactor in the actinomycetes, are reported. The measured standard redox potential reveals substantial discrepancies in one or more of the other previously measured intracellular parameters that are relevant to mycothiol redox biochemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17.

    PubMed

    Gao, Xiaochun; Lu, Yuanyuan; Xing, Yingying; Ma, Yihua; Lu, Jiansheng; Bao, Weiwei; Wang, Yiming; Xi, Tao

    2012-12-20

    A marine actinomycete, designated strain BM-17, was isolated from a sediment sample collected in the Arctic Ocean. The strain was identified as Nocardia dassonvillei based on morphological, cultural, physiological, biochemical characteristics, along with the cell wall analysis and 16S rDNA gene sequence analysis. A new secondary metabolite (1), N-(2-hydroxyphenyl)-2-phenazinamine (NHP), and six known antibiotics (2-7) have been isolated from the saline culture broth of the stain by sequentially purification over macroporous resin D101, silica gel, Sephadex LH-20 column chromatography and preparative HPLC after the stain was incubated in soy bean media at 28°C for 7 days. The chemical structures of the compounds were elucidated on the basis of spectroscopic analysis, including two-dimensional (2D) NMR and HR-ESI-MS data. The new compound showed significant antifungal activity against Candida albicans, with a MIC of 64 μg/ml and high cancer cell cytotoxicity against HepG2, A549, HCT-116 and COC1 cells. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Rhodococcus equi: the many facets of a pathogenic actinomycete.

    PubMed

    Vázquez-Boland, José A; Giguère, Steeve; Hapeshi, Alexia; MacArthur, Iain; Anastasi, Elisa; Valero-Rello, Ana

    2013-11-29

    Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. FORMATION OF NITRITE AND NITRATE BY ACTINOMYCETES AND FUNGI

    PubMed Central

    Hirsch, P.; Overrein, L.; Alexander, M.

    1961-01-01

    Hirsch, P. (Cornell University, Ithaca, New York), L. Overrein, and M. Alexander. Formation of nitrite and nitrate by actinomycetes and fungi. J. Bacteriol. 82:442–448. 1961.—Nitrite was produced by strains of Mycobacterium, Nocardia, Streptomyces, Micromonospora, and Streptosporangium in media containing ammonium phosphate as the sole nitrogen source. The quantity of nitrite formed was small, and the concentration was affected by pH and by the relative levels of carbon and nitrogen. Aspergillus flavus produced little nitrite from ammonium but formed in excess of 100 parts per million of nitrate-nitrogen. Peroxidase activity and heterotrophic nitrification were reduced in acid conditions, but mycelial development of the fungus was not markedly affected. The inability of A. flavus to form nitrate and nitrite at low pH appears to result from a selective effect of pH upon nitrification rather than being a consequence of the decomposition of nitrogenous intermediates. PMID:13714587

  10. Kibdelones: novel anticancer polyketides from a rare Australian actinomycete.

    PubMed

    Ratnayake, Ranjala; Lacey, Ernest; Tennant, Shaun; Gill, Jennifer H; Capon, Robert J

    2007-01-01

    The kibdelones are a novel family of bioactive heterocyclic polyketides produced by a rare soil actinomycete, Kibdelosporangium sp. (MST-108465). Complete relative stereostructures were assigned to kibdelones A-C (1-3), kibdelone B rhamnoside (5), 13-oxokibdelone A (7), and 25-methoxy-24-oxokibdelone C (8) on the basis of detailed spectroscopic analysis and chemical interconversion, as well as mechanistic and biosynthetic considerations. Under mild conditions, kibdelones B (2) and C (3) undergo a facile equilibration to kibdelones A-C (1-3), while kibdelone B rhamnoside (5) equilibrates to a mixture of kibdelone A-C rhamnosides (4-6). A plausible mechanism for this equilibration is proposed and involves air oxidation, quinone/hydroquinone redox transformations, and a choreographed sequence of keto/enol tautomerizations that aromatize ring C via a quinone methide intermediate. Kibdelones exhibit potent and selective cytotoxicity against a panel of human tumor cell lines and display significant antibacterial and nematocidal activity.

  11. Genome Sequence and Analysis of the Soil Cellulolytic ActinomyceteThermobifida fusca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykidis, Athanasios; Mavromatis, Konstantinos; Ivanova, Natalia

    Thermobifida fusca is a moderately thermophilic soilbacterium that belongs to Actinobacteria. 3 It is a major degrader ofplant cell walls and has been used as a model organism for the study of 4secreted, thermostable cellulases. The complete genome sequence showedthat T. fusca has a 5 single circular chromosome of 3642249 bp predictedto encode 3117 proteins and 65 RNA6 species with a coding densityof 85percent. Genome analysis revealed the existence of 29 putative 7glycoside hydrolases in addition to the previously identified cellulasesand xylanases. The 8 glycosyl hydrolases include enzymes predicted toexhibit mainly dextran/starch and xylan 9 degrading functions. T. fuscapossesses twomore » protein secretion systems: the sec general secretion 10system and the twin-arginine translocation system. Several of thesecreted cellulases have 11 sequence signatures indicating theirsecretion may be mediated by the twin-arginine12 translocation system. T.fusca has extensive transport systems for import of carbohydrates 13coupled to transcriptional regulators controlling the expression of thetransporters and14 glycosylhydrolases. In addition to providing anoverview of the physiology of a soil 15 actinomycete, this study presentsinsights on the transcriptional regulation and secretion of16 cellulaseswhich may facilitate the industrial exploitation of thesesystems.« less

  12. Effect of media composition, including gelling agents, on isolation of previously uncultured rumen bacteria.

    PubMed

    Nyonyo, T; Shinkai, T; Tajima, A; Mitsumori, M

    2013-01-01

    The aim of this study was to develop novel anaerobic media using gellan gum for the isolation of previously uncultured rumen bacteria. Four anaerobic media, a basal liquid medium (BM) with agar (A-BM), a modified BM (MBM) with agar (A-MBM), an MBM with phytagel (P-MBM) and an MBM with gelrite (G-MBM) were used for the isolation of rumen bacteria and evaluated for the growth of previously uncultured rumen bacteria. Of the 214 isolates composed of 144 OTUs, 103 isolates (83 OTUs) were previously uncultured rumen bacteria. Most of the previously uncultured strains were obtained from A-MBM, G-MBM and P-MBM, but the predominant cultural members, isolated from each medium, differed. A-MBM and G-MBM showed significantly higher numbers of different OTUs derived from isolates than A-BM (P < 0·05). The Shannon index indicated that the isolates of A-MBM showed the highest diversity (H' = 3·89) compared with those of G-MBM, P-MBM and A-BM (H' = 3·59, 3·23 and 3·39, respectively). Although previously uncultured rumen bacteria were isolated from all media used, the ratio of previously uncultured bacteria to total isolates was increased in A-MBM, P-MBM and G-MBM. © 2012 The Society for Applied Microbiology.

  13. Biosynthesis of nitrogen-containing natural products, C7N aminocyclitols and bis-indoles, from actinomycetes.

    PubMed

    Asamizu, Shumpei

    2017-05-01

    Actinomycetes are a major source of bioactive natural products with important pharmaceutical properties. Understanding the natural enzymatic assembly of complex small molecules is important for rational metabolic pathway design to produce "artificial" natural products in bacterial cells. This review will highlight current research on the biosynthetic mechanisms of two classes of nitrogen-containing natural products, C 7 N aminocyclitols and bis-indoles. Validamycin A is a member of C 7 N aminocyclitol natural products from Streptomyces hygroscopicus. Here, two important biosynthetic steps, pseudoglycosyltranferase-catalyzed C-N bond formation, and C 7 -sugar phosphate cyclase-catalyzed divergent carbasugar formation, will be reviewed. In addition, the bis-indolic natural products indolocarbazole, staurosporine from Streptomyces sp. TP-A0274, and rearranged bis-indole violacein from Chromobacterium violaceum are reviewed including the oxidative course of the assembly pathway for the bis-indolic scaffold. The identified biosynthesis mechanisms will be useful to generating new biocatalytic tools and bioactive compounds.

  14. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters.

    PubMed

    Kennedy, Jonathan; Baker, Paul; Piper, Clare; Cotter, Paul D; Walsh, Marcella; Mooij, Marlies J; Bourke, Marie B; Rea, Mary C; O'Connor, Paula M; Ross, R Paul; Hill, Colin; O'Gara, Fergal; Marchesi, Julian R; Dobson, Alan D W

    2009-01-01

    Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.

  15. Inhibition of Aspergillus parasiticus and cancer cells by marine actinomycete strains

    NASA Astrophysics Data System (ADS)

    Li, Ping; Yan, Peisheng

    2014-12-01

    Ten actinomycete strains isolated from the Yellow Sea off China's coasts were identified as belonging to two genera by 16S rDNA phylogenetic analysis: Streptomyces and Nocardiopsis. Six Streptomyces strains (MA10, 2SHXF01-3, MA35, MA05-2, MA05-2-1 and MA08-1) and one Nocardiopsis strain (MA03) were predicted to have the potential to produce aromatic polyketides based on the analysis of the KSα (ketoacyl-synthase) gene in the type II PKS (polyketides synthase) gene cluster. Four strains (MA03, MA01, MA10 and MA05-2) exhibited significant inhibitory effects on mycelia growth (inhibition rate >50%) and subsequent aflatoxin production (inhibition rate >75%) of the mutant aflatoxigenic Aspergillus parasiticus NFRI-95. The ethyl acetate extracts of the broth of these four strains displayed significant inhibitory effects on mycelia growth, and the IC50 values were calculated (MA03: 0.275 mg mL-1, MA01: 0.106 mg mL-1, MA10: 1.345 mg mL-1 and MA05-2: 1.362 mg mL-1). Five strains (2SHXF01-3, MA03, MA05-2, MA01 and MA08-1) were selected based on their high cytotoxic activities. The ethyl acetate extract of the Nocardiopsis strain MA03 was particularly noted for its high antitumor activity against human carcinomas of the cervix (HeLa), lung (A549), kidney (Caki-1) and liver (HepG2) (IC50: 2.890, 1.981, 3.032 and 2.603 μg mL-1, respectively). The extract also remarkably inhibited colony formation of HeLa cells at an extremely low concentration (0.5 μg mL-1). This study highlights that marine-derived actinomycetes are a huge resource of compounds for the biological control of aflatoxin contamination and the development of novel drugs for human carcinomas.

  16. Martinomycin, a new polyether antibiotic produced by Streptomyces salvialis. I. Taxonomy, fermentation and biological activity.

    PubMed

    Bernan, V S; Montenegro, D A; Goodman, J J; Alluri, M R; Carter, G T; Abbanat, D R; Pearce, C J; Maiese, W M; Greenstein, M

    1994-12-01

    Actinomycete culture LL-D37187 has been found to produce the new polyether antibiotic martinomycin. Taxonomic studies, including morphological, physiological, and cell wall chemistry analyses, revealed that culture LL-D37187 is a novel streptomycete species, and the proposed name is Streptomyces salvialis. Martinomycin exhibits activity against the Southern Army Worm (Spodoptera eridania) and Gram-positive bacteria.

  17. Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests.

    PubMed

    Bascom-Slack, Carol A; Ma, Cong; Moore, Emily; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Schorn, Michelle A; Vekhter, Daniel; Boulanger, Lori-Ann; Hess, W M; Vargas, Percy Núñez; Strobel, Gary A; Strobel, Scott A

    2009-08-01

    Microbial biodiversity provides an increasingly important source of medically and industrially useful compounds. We have isolated 14 actinomycete species from a collection of approximately 300 plant stem samples from the upper Amazonian rainforest in Peru. All of the cultured isolates produce substances with inhibitory activity directed at a range of potential fungal and bacterial pathogens. For some organisms, this activity is very broad in spectrum while other organisms show specific activity against a limited number of organisms. Two of these organisms preferentially inhibit bacterial test organisms over eukaryotic organisms. rDNA sequence analysis indicates that these organisms are not equivalent to any other cultured deposits in GenBank. Our results provide evidence of the untapped biodiversity in the form of biologically active microbes present within the tissues of higher plants.

  18. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Shamshuddin, Jusop; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  19. Biochemical and Molecular Characterization of Potential Phosphate-Solubilizing Bacteria in Acid Sulfate Soils and Their Beneficial Effects on Rice Growth

    PubMed Central

    Panhwar, Qurban Ali; Naher, Umme Aminun; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmolc kg−1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

  20. Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Saccharopolyspora sp. nov.

    PubMed

    Liu, Rui; Cui, Cheng-Bin; Duan, Lin; Gu, Qian-Qun; Zhu, Wei-Ming

    2005-12-01

    Bioassay-guided fractionation of CHCl3 extract from the fermentation broth of a sponge Mycale plumose-derived actinomycete Saccharopolyspora sp. nov., led to the isolation of two known prodigiosin analogs--metacycloprodigiosin (1) and undecylprodigiosin (2). These compounds exhibited significant cytotoxic activities against five cancer cell lines: P388, HL60, A-549, BEL-7402, and SPCA4. This is the first report on the significant cytotoxicity of metacycloprodigiosin (1) against human cancer cell lines.

  1. Structure Elucidation of Verucopeptin, a HIF-1 Inhibitory Polyketide-Hexapeptide Hybrid Metabolite from an Actinomycete.

    PubMed

    Yoshimura, Aya; Nishimura, Shinichi; Otsuka, Saori; Hattori, Akira; Kakeya, Hideaki

    2015-11-06

    The transcriptional factor, hypoxia inducible factor-1 (HIF-1), is a promising target for cancer chemotherapy. From an actinomycete, verucopeptin (1) was identified as a HIF-1 signaling inhibitor. By a combination of chemical degradation and spectroscopic analyses, the absolute stereochemistry of metabolite 1 was determined to be 10R, 15S, 16S, 23S, 27S, 28R, 31S, 33S, 35R. Moreover, metabolite 1 was revealed to attenuate the HIF-1α and mTORC1 pathway, indicating that verucopeptin (1) would be a potent lead compound for anticancer chemotherapy.

  2. Molecular insights into the mechanism of thermal stability of actinomycete mannanase.

    PubMed

    Kumagai, Yuya; Uraji, Misugi; Wan, Kun; Okuyama, Masayuki; Kimura, Atsuo; Hatanaka, Tadashi

    2016-09-01

    Streptomyces thermolilacinus mannanase (StMan), which requires Ca(2+) for its enhanced thermal stability and hydrolysis activity, possesses two Ca(2+) -binding sites in loop6 and loop7. We evaluated the function of the Ca(2+) -binding site in loop7 and the hydrogen bond between residues Ser247 in loop6 and Asp279 in loop7. The Ca(2+) -binding in loop7 was involved only in thermal stability. Mutations of Ser247 or Asp279 retained the Ca(2+) -binding ability; however, mutants showed less thermal stability than StMan. Phylogenetic analysis indicated that most glycoside hydrolase family 5 subfamily 8 mannanases could be stabilized by Ca(2+) ; however, the mechanism of StMan thermal stability was found to be quite specific in some actinomycete mannanases. © 2016 Federation of European Biochemical Societies.

  3. Production of polypeptide antibiotic from Streptomyces parvulus and its antibacterial activity

    PubMed Central

    Shetty, Prakasham Reddy; Buddana, Sudheer Kumar; Tatipamula, Vinay Bharadwaj; Naga, Yaswanth Varanasi Venkata; Ahmad, Jamal

    2014-01-01

    A highly potent secondary metabolite producing actinomycetes strain is isolated from marine soil sediments of Visakhapatnam sea coast, Bay of Bengal. Over all ten strains are isolated from the collected soil sediments. Among the ten actinomycetes strains the broad spectrum strain RSPSN2 was selected for molecular characterization, antibiotic production and its purification. The nucleotide sequence of the 1 rRNA gene (1261 base pairs) of the most potent strain evidenced a 96% similarity with Streptomyces parvulus 1044 strain, Streptomyces parvulus NBRC 13193 and Streptomyces parvulus BY-F. From the taxonomic features, the actinomycetes isolate RSPSN2 matches with Streptomyces parvulus in the morphological, physiological and biochemical characters. Thus, it was given the suggested name Streptomyces parvulus RSPSN2. The active metabolite was extracted using ethyl acetate (1:3, v/v) at pH 7.0. The separation of active ingredient and its purification was performed by using both thin layer chromatography (TLC) and column chromatography (CC) techniques. Spectrometric studies such as UV-visible, FTIR, and NMR and mass were performed. The antibacterial activity of pure compound was performed by cup plate method against some pathogenic bacteria including of streptomycin resistant bacteria like (Pseudomonas mirabilis, Pseudomonas putida and Bacillus cereus). In conclusion, the collected data emphasized the fact that a polypeptide antibiotic (Actinomycin D) was produced by Streptomyces parvulus RSPSN2. PMID:24948949

  4. PCR screening reveals considerable unexploited biosynthetic potential of ansamycins and a mysterious family of AHBA-containing natural products in actinomycetes.

    PubMed

    Wang, H-X; Chen, Y-Y; Ge, L; Fang, T-T; Meng, J; Liu, Z; Fang, X-Y; Ni, S; Lin, C; Wu, Y-Y; Wang, M-L; Shi, N-N; He, H-G; Hong, K; Shen, Y-M

    2013-07-01

    Ansamycins are a family of macrolactams that are synthesized by type I polyketide synthase (PKS) using 3-amino-5-hydroxybenzoic acid (AHBA) as the starter unit. Most members of the family have strong antimicrobial, antifungal, anticancer and/or antiviral activities. We aimed to discover new ansamycins and/or other AHBA-containing natural products from actinobacteria. Through PCR screening of AHBA synthase gene, we identified 26 AHBA synthase gene-positive strains from 206 plant-associated actinomycetes (five positives) and 688 marine-derived actinomycetes (21 positives), representing a positive ratio of 2·4-3·1%. Twenty-five ansamycins, including eight new compounds, were isolated from six AHBA synthase gene-positive strains through TLC-guided fractionations followed by repeated column chromatography. To gain information about those potential ansamycin gene clusters whose products were unknown, seven strains with phylogenetically divergent AHBA synthase genes were subjected to fosmid library construction. Of the seven gene clusters we obtained, three show characteristics for typical ansamycin gene clusters, and other four, from Micromonospora spp., appear to lack the amide synthase gene, which is unusual for ansamycin biosynthesis. The gene composition of these four gene clusters suggests that they are involved in the biosynthesis of a new family of hybrid PK-NRP compounds containing AHBA substructure. PCR screening of AHBA synthase is an efficient approach to discover novel ansamycins and other AHBA-containing natural products. This work demonstrates that the AHBA-based screening method is a useful approach for discovering novel ansamycins and other AHBA-containing natural products from new microbial resources. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  5. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes.

    PubMed

    Weber, Tilmann; Charusanti, Pep; Musiol-Kroll, Ewa Maria; Jiang, Xinglin; Tong, Yaojun; Kim, Hyun Uk; Lee, Sang Yup

    2015-01-01

    Actinomycetes are excellent sources for novel bioactive compounds, which serve as potential drug candidates for antibiotics development. While industrial efforts to find and develop novel antimicrobials have been severely reduced during the past two decades, the increasing threat of multidrug-resistant pathogens and the development of new technologies to find and produce such compounds have again attracted interest in this field. Based on improvements in whole-genome sequencing, novel methods have been developed to identify the secondary metabolite biosynthetic gene clusters by genome mining, to clone them, and to express them in heterologous hosts in much higher throughput than before. These technologies now enable metabolic engineering approaches to optimize production yields and to directly manipulate the pathways to generate modified products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.

    PubMed

    Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei

    2017-09-01

    In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Secondary metabolites from a deep-sea-derived actinomycete Micrococcus sp. R21].

    PubMed

    Peng, Kun; Su, Rui-qiang; Zhang, Gai-yun; Cheng, Xuan-xuan; Yang, Quan; Liu, Yong-hong; Yang, Xian-wen

    2015-06-01

    To investigate cytotoxic secondary metabolites of Micrococcus sp. R21, an actinomycete isolated from a deep-sea sediment (-6 310 m; 142 degrees 19. 9' E, 10 degrees 54. 6' N) of the Western Pacific Ocean, column chromatography was introduced over silica gel, ODS, and Sephadex LH-20. As a result, eight compounds were obtained. By mainly detailed analysis of the NMR data, their structures were elucidated as cyclo(4-hydroxy-L-Pro-L-leu) (1), cyclo(L-Pro-L-Gly) (2), cyclo( L-Pro-L-Ala) (3), cyclo( D-Pro-L-Leu) (4), N-β-acetyltryptamine (5), 2-hydroxybenzoic acid (6), and phenylacetic acid (7). Compound 1 exhibited weak cytotoxic activity against RAW264. 7 cells with IC50 value of 9.1 μmol x L(-1).

  8. [Preservation of fungi and actinomycetes of medical importance in distilled water].

    PubMed

    Rodrigues, E G; Lírio, V S; Lacaz, C da S

    1992-01-01

    Several methods have been used for the preservation of fungi, all of them presenting advantages and disadvantages. The choice of the methods depends upon the laboratory availabilities, time of preservation, genetic stability of the cultures and other factors. In this work the results obtained through the utilization of Castellani's method (preservation in distilled water) for the maintenance of 174 strains belonging to the "Micoteca do Instituto de Medicina Tropical de São Paulo" are presented. These strains were analyzed after 6, 12, 18 and 24 months, with regard to the percentage of viability taking into consideration the rates of growth and contamination. The smallest percentage of viability occurred in the group of the actinomycetes (50 to 100%) and the largest one in the group of the yeasts (near 100%). According to other authors, the Castellani's method, besides being simple and economically feasible for small size laboratories, yields good results.

  9. Antibiofilm effect of Nocardiopsis sp. GRG 1 (KT235640) compound against biofilm forming Gram negative bacteria on UTIs.

    PubMed

    Rajivgandhi, Govindan; Vijayan, Ramachandran; Maruthupandy, Muthuchamy; Vaseeharan, Baskaralingam; Manoharan, Natesan

    2018-05-01

    Urinary tract infections (UTIs) are diverse public health complication and caused by range of pathogens, however mostly Gram negative bacteria cause significant life threatening risks to different populations. The prevalence rate and antimicrobial resistance among the Gram negative uropathogens alarmed significantly heighten the economic burden of these infections. In this study, we investigated the antibiofilm efficiency of Pyrrolo [1,2-a] pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl) extracted from endophytic actinomycetes Nocardiopsis sp. GRG 1 (KT235640) against P. mirabilis and E. coli. The extracted compound was characterized through TLC, HPLC, GC-MS, LC-MS and confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM). The compound, Pyrrolo [1,2-a] pyrazine-1, 4-dione, hexahydro-3-(2-methylpropyl) inhibits both bacterial biofilm formation as well as reduces the viability of preformed biofilms. Furthermore, CLSM image shows cell shrinkage, disorganized cell membrane and loss of viability. The SEM result also confirms the cell wall degradation in treated cells of the bacteria. Hence, the Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) is active against P. mirabilis and E. coli. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Actinomycetes from Eucalyptus and their biological activities for controlling Eucalyptus leaf and shoot blight.

    PubMed

    Himaman, Winanda; Thamchaipenet, Arinthip; Pathom-Aree, Wasu; Duangmal, Kannika

    2016-01-01

    In Thailand, Eucalyptus plantations rapidly expand across the country. Leaf and shoot blight caused by Cryptosporiopsis eucalypti, Cylindrocladium sp. and Teratosphaeria destructans is a serious disease in Eucalyptus plantations. In this study, a total of 477 actinomycete strains were successfully isolated from roots and rhizosphere soil of Eucalyptus. Four hundred and thirty nine isolates were classified as streptomycetes and 38 isolates were non-streptomycetes. Among these isolates, 272 (57.0%), 118 (24.7%) and 241 (50.5%) isolates were antagonistic to Cryptosporiopsis eucalypti, Cylindrocladium sp. and Teratosphaeria destructans, respectively. All isolates were tested for their abilities to produce siderophores, indole acetic acid (IAA) and solubilise phosphate. Most isolates (464, 97.3%) produced siderophores. The majority of isolates (345, 72.3%) solubilised phosphate. In addition, almost half of these isolates (237, 49.7%) produced indole acetic acid. Strain EUSKR2S82 which showed the strongest inhibitory effect against all tested fungi with plant growth promoting ability was selected to test with Eucalyptus. This strain could colonize plant roots and increase Eucalyptus roots length. In a detached leaves bioassay, the disease severity of EUSKR2S82-inoculated Eucalyptus leaves was only 30% compared to 95% in the control treatment. The 16S rRNA gene sequence analysis revealed that the strain EUSKR2S82 was related to Streptomyces ramulosus NRRL-B 2714(T) (99.44% similarity). Identification of non-streptomycete isolates using 16S rRNA gene sequences classified them into 9 genera: Actinoallomurus, Actinomadura, Amycolatopsis, Cryptosporangium, Microbispora, Micromonospora, Nocardia, Nonomuraea and Pseudonocardia. It is evident that Eucalyptus tree harbored several genera of actinomycetes. The selected isolate, EUSKR2S82 showed potential as a candidate for biocontrol agent of leaf and shoot blight of Eucalyptus and to promote growth. Copyright © 2016 Elsevier Gmb

  11. Changes in Microbial Communities, Including both Uncultured and Culturable Bacteria, with Mid-Ocean Ballast-Water Exchange during a Voyage from Japan to Australia

    PubMed Central

    Tomaru, Akiko; Kawachi, Masanobu; Demura, Mikihide; Fukuyo, Yasuwo

    2014-01-01

    We assessed changes in the microbial communities in ballast water during a trans-Pacific voyage from Japan to Australia that included a mid-ocean ballast-water exchange. Uncultured (i.e., total) and culturable bacteria were counted and were characterized by using denaturing gradient gel electrophoresis (DGGE). There was a clear decrease over time in numbers of uncultured microorganisms, except for heterotrophic nanoflagellates, whereas the abundance of culturable bacteria initially decreased after the ballast-water exchange but then increased. The increase, however, was only up to 5.34% of the total number of uncultured bacteria. Cluster analysis showed that the DGGE profiles of uncultured bacteria clearly changed after the exchange. In contrast, there was no clear change in the DGGE profiles of culturable bacteria after the exchange. Multidimensional scaling analysis showed changes in microbial communities over the course of the voyage. Although indicator microbes as defined by the International Convention for the Control and Management of Ships' Ballast Water and Sediments were occasionally detected, no coliform bacteria were detected after the exchange. PMID:24817212

  12. Bioethanol Production from Empty Fruit Bunch using Direct Fermentation by an Actinomycete Streptosporangium roseum

    NASA Astrophysics Data System (ADS)

    Nik Him, N. R.; Huda, T.

    2018-05-01

    Study on the production of bioethanol using palm oil empty fruit bunch (EFB) has been performed using actinomycete Streptosporangium roseum. Positive result of bioethanol production was recorded using Iodoform test followed by confirmation with GC-FID using a polar capillary column (PEG-type, 10m x 0.53, with autosampler) and n-propanol as internal standard. The first and second round distillation has produced azeotrope (85-15% ethanol-water) and the third round has concentrated the ethanol to 96.1%. Therefore, the process was accomplished by using molecular sieves that selectively absorbed the final excess water. Direct fermentation using Streptosporangium roseum has shown to be a very potential way to catalyst for the synthesis of bioethanol from EFB.

  13. A New Benzofuran Glycoside and Indole Alkaloids from a Sponge-Associated Rare Actinomycete, Amycolatopsis sp.

    PubMed Central

    Kwon, Yun; Kim, Seong-Hwan; Shin, Yoonho; Bae, Munhyung; Kim, Byung-Yong; Lee, Sang Kook; Oh, Ki-Bong; Shin, Jongheon; Oh, Dong-Chan

    2014-01-01

    Three new secondary metabolites, amycofuran (1), amycocyclopiazonic acid (2), and amycolactam (3), were isolated from the sponge-associated rare actinomycete Amycolatopsis sp. Based on combined spectroscopic analyses, the structures of 1–3 were determined to be a new benzofuran glycoside and new indole alkaloids related to cyclopiazonic acids, a class that has previously only been reported in fungi. The absolute configurations of 1 and 3 were deduced by ECD calculations, whereas that of 2 was determined using the modified Mosher method. Amycolactam (3) displayed significant cytotoxicity against the gastric cancer cell line SNU638 and the colon cancer cell line HCT116. PMID:24759001

  14. Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases

    PubMed Central

    Palombo, Enzo A.

    2011-01-01

    Oral diseases are major health problems with dental caries and periodontal diseases among the most important preventable global infectious diseases. Oral health influences the general quality of life and poor oral health is linked to chronic conditions and systemic diseases. The association between oral diseases and the oral microbiota is well established. Of the more than 750 species of bacteria that inhabit the oral cavity, a number are implicated in oral diseases. The development of dental caries involves acidogenic and aciduric Gram-positive bacteria (mutans streptococci, lactobacilli and actinomycetes). Periodontal diseases have been linked to anaerobic Gram-negative bacteria (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Given the incidence of oral disease, increased resistance by bacteria to antibiotics, adverse affects of some antibacterial agents currently used in dentistry and financial considerations in developing countries, there is a need for alternative prevention and treatment options that are safe, effective and economical. While several agents are commercially available, these chemicals can alter oral microbiota and have undesirable side-effects such as vomiting, diarrhea and tooth staining. Hence, the search for alternative products continues and natural phytochemicals isolated from plants used as traditional medicines are considered as good alternatives. In this review, plant extracts or phytochemicals that inhibit the growth of oral pathogens, reduce the development of biofilms and dental plaque, influence the adhesion of bacteria to surfaces and reduce the symptoms of oral diseases will be discussed further. Clinical studies that have investigated the safety and efficacy of such plant-derived medicines will also be described. PMID:19596745

  15. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients.

    PubMed

    Noon, Jason B; Baum, Thomas J

    2016-04-12

    niches. GNATs were horizontally acquired late in Hoplolaimina PPN evolution from bacteria most similar to the saprophytic and plant-pathogenic actinomycetes. INVs and CMs were horizontally acquired from bacteria most similar to rhizobacteria and Burkholderia soil bacteria, respectively, before the radiation of Hoplolaimina. Also, these three gene groups appear to have been frequent subjects of HGT from different bacteria to numerous, diverse lineages of eukaryotes and archaea, which suggests that these genes may confer important evolutionary advantages to many taxa. In the case of Hoplolaimina PPN, this advantage likely was an improved ability to parasitize plants.

  16. [Diversity of actinomycetes associated with root-knot nematode and their potential for nematode control].

    PubMed

    Luo, Hong-li; Sun, Man-hong; Xie, Jian-ping; Liu, Zhi-heng; Huang, Ying

    2006-08-01

    Twenty actinomycetes were isolated from root-knot nematode eggs and females collected from 11 plant root samples infested by Meloidogyne spp.. The isolates were assigned to the genera Streptomyces, Nocardia and Pseudonocardia respectively, based on analysis of morphological characteristics, cell-wall DAPs and 16S rRNA gene sequences. 80% of them were streptomycetes. Biocontrol potential of the isolates against Meloidogyne hapla was evaluated in liquid culture in vitro. The average percentages of egg parasitism, egg hatching, and juvenile mortality were 54.1, 40.4 and 26.2, respectively. Three Streptomyces strains and one Nocardia strain with high pathogenicity in vitro were selected to determine their ability to reduce tomato root galls in greenhouse. The results demonstrated good biocontrol efficacy (31.4%-56.4%) of the strains.

  17. Microbial diversity associated with odor modification for production of fertilizers from chicken litter.

    PubMed

    Enticknap, Julie J; Nonogaki, Hirofumi; Place, Allen R; Hill, Russell T

    2006-06-01

    Litter from the chicken industry can present several environmental challenges, including offensive odors and runoff into waterways leading to eutrophication. An economically viable solution to the disposal of waste from chicken houses is treatment to produce a natural, granulated fertilizer that can be commercially marketed for garden and commercial use. Odor of the final product is important in consumer acceptance, and an earthy odor is desirable. By understanding and manipulating the microbial processes occurring during this process, it may be possible to modify the odors produced. Geosmin and related volatiles produced by soil actinomycetes are responsible for earthy odors, and actinomycetes are likely to be present in the composting manure. Bacterial communities at each stage of the process were analyzed by culturing studies and denaturing gradient gel electrophoresis (DGGE). The processing steps changed the culturable bacterial community, but the total community was shown by DGGE to be stable throughout the process. A local agricultural soil was analyzed in parallel as a potential source of geosmin-producing actinomycetes. This agricultural soil had higher microbial diversity than the compost at both the culturable and the molecular levels. Actinomycete bacteria were isolated and analyzed by AromaTrax, a gas chromatography-olfactometry system. This system enables the odor production of individual isolates to be monitored, allowing for rational selection of strains for augmentation experiments to improve the odor of the final fertilizer product.

  18. Microbial Diversity Associated with Odor Modification for Production of Fertilizers from Chicken Litter†

    PubMed Central

    Enticknap, Julie J.; Nonogaki, Hirofumi; Place, Allen R.; Hill, Russell T.

    2006-01-01

    Litter from the chicken industry can present several environmental challenges, including offensive odors and runoff into waterways leading to eutrophication. An economically viable solution to the disposal of waste from chicken houses is treatment to produce a natural, granulated fertilizer that can be commercially marketed for garden and commercial use. Odor of the final product is important in consumer acceptance, and an earthy odor is desirable. By understanding and manipulating the microbial processes occurring during this process, it may be possible to modify the odors produced. Geosmin and related volatiles produced by soil actinomycetes are responsible for earthy odors, and actinomycetes are likely to be present in the composting manure. Bacterial communities at each stage of the process were analyzed by culturing studies and denaturing gradient gel electrophoresis (DGGE). The processing steps changed the culturable bacterial community, but the total community was shown by DGGE to be stable throughout the process. A local agricultural soil was analyzed in parallel as a potential source of geosmin-producing actinomycetes. This agricultural soil had higher microbial diversity than the compost at both the culturable and the molecular levels. Actinomycete bacteria were isolated and analyzed by AromaTrax, a gas chromatography-olfactometry system. This system enables the odor production of individual isolates to be monitored, allowing for rational selection of strains for augmentation experiments to improve the odor of the final fertilizer product. PMID:16751521

  19. Complete Genome Sequence of the Soil Actinomycete Kocuria rhizophila▿

    PubMed Central

    Takarada, Hiromi; Sekine, Mitsuo; Kosugi, Hiroki; Matsuo, Yasunori; Fujisawa, Takatomo; Omata, Seiha; Kishi, Emi; Shimizu, Ai; Tsukatani, Naofumi; Tanikawa, Satoshi; Fujita, Nobuyuki; Harayama, Shigeaki

    2008-01-01

    The soil actinomycete Kocuria rhizophila belongs to the suborder Micrococcineae, a divergent bacterial group for which only a limited amount of genomic information is currently available. K. rhizophila is also important in industrial applications; e.g., it is commonly used as a standard quality control strain for antimicrobial susceptibility testing. Sequencing and annotation of the genome of K. rhizophila DC2201 (NBRC 103217) revealed a single circular chromosome (2,697,540 bp; G+C content of 71.16%) containing 2,357 predicted protein-coding genes. Most of the predicted proteins (87.7%) were orthologous to actinobacterial proteins, and the genome showed fairly good conservation of synteny with taxonomically related actinobacterial genomes. On the other hand, the genome seems to encode much smaller numbers of proteins necessary for secondary metabolism (one each of nonribosomal peptide synthetase and type III polyketide synthase), transcriptional regulation, and lateral gene transfer, reflecting the small genome size. The presence of probable metabolic pathways for the transformation of phenolic compounds generated from the decomposition of plant materials, and the presence of a large number of genes associated with membrane transport, particularly amino acid transporters and drug efflux pumps, may contribute to the organism's utilization of root exudates, as well as the tolerance to various organic compounds. PMID:18408034

  20. Optimum conditions for L-glutaminase production by actinomycete strain isolated from estuarine fish, Chanos chanos (Forskal, 1775).

    PubMed

    Sivakumar, K; Sahu, Maloy Kumar; Manivel, P R; Kannan, L

    2006-03-01

    Actinomycetes were isolated from skin, gills and gut contents of estuarine fish. Chanos chanos using Kuster's agar medium. Out of 20 strains tested, the strain LG-10 which was tentatively identified as Streptomyces rimosus showed L-glutaminase activity. Optimum production of L-glutaminase enzyme (17.51 IU/ml) was observed after 96 h of incubation at 27 degrees C, pH 9 and glucose and malt extract as carbon and nitrogen sources, respectively. The present study indicated scope for the use of S. rimosus as an ideal organism for the industrial production of extracellular L-glutaminase.

  1. [Dynamic changes of soil microbial populations and enzyme activities in super-high yielding summer maize farmland soil].

    PubMed

    Hou, Peng; Wang, Yong-jun; Wang, Kong-jun; Yang, Jin-sheng; Li, Deng-hai; Dong, Shu-ting; Liu, Jing-guo

    2008-08-01

    To reveal the characteristics of the dynamic changes of soil microbial populations and enzyme activities in super-high yielding ( > 15,000 kg x hm(-2)) summer maize farmland soil, a comparative study was conducted in the experimental fields in National Maize Engineering Research Center (Shandong). On the fields with an annual yield of >15,000 kg x hm(-2) in continuous three years, a plot with the yield of 20 322 kg x hm(-2) (HF) was chosen to make comparison with the conventional farmland (CF) whose maize yield was 8920. 1 kg x hm(-2). The numbers of bacteria, fungi, and actinomycetes as well as the activities of urease and invertase in 0-20 cm soil layer were determined. The results showed that in the growth period of maize, the numbers of bacteria, fungi, and actinomycetes in the two farmland soils increased first and declined then. At the later growth stages of maize, the numbers of soil microbes, especially those of bacteria and actinomycetes, were lower in HF than those in CF. At harvest stage, the ratio of the number of soil bacteria to fungi (B/ F) in HF was 2.03 times higher than that at sowing stage, and 3.02 times higher than that in CF. The B/F in CF had less difference at harvest and sowing stages. The soil urease activity in HF was significantly lower than that in CF at jointing stage, and the invertase activity in HF decreased rapidly after blooming stage, being significantly lower than that in CF.

  2. Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth.

    PubMed

    Han, Dandan; Wang, Lanying; Luo, Yanping

    2018-03-01

    Actinomycetes are an important group of gram-positive bacteria that play an essential role in the rhizosphere ecosystem. The confrontation culture and Oxford cup method were used to evaluate the antagonistic activities of strains, which were isolated from the rhizosphere soil of Mikania micrantha. The two isolates were identified using morphological and physiological tests combined with 16S rRNA-based molecular analysis, respectively. The type I polyketone synthase (PKS-I) was amplified. The constituents of fermentation metabolites were analyzed by gas chromatography mass spectrometry. The plant growth promoting effect was determined. Finally, the growth of wheat seedlings was assessed using the Petri dish method. Overall, of the isolated twelve strains, WZS1-1 and WZS2-1 could significantly inhibit target fungi. Isolate WZS1-1 was identified as Streptomyces rochei, and WZS2-1 was identified as Streptomyces sundarbansensis. In particular, Fusarium graminearum (FG) from wheat was inhibited by more than 80%, and the inhibitory bandwidths against FG were 31 ± 0.3 mm and 19 ± 0.5 mm, respectively. The genes PKS-I were successfully amplified, confirming that these strains are capable of producing biosynthetic secondary metabolites. Major component analysis revealed aliphatic ketones, carboxylic acids, and esters, with n-hexadecanoic acid being the most abundant compound. Plant growth promoting test indicated that both strains produced IAA, presented with orange loops on CAS plates, dissolved phosphorus and potassium, fixed nitrogen, but did not generate organic acids; both strains colonized in soil, while only WZS1-1 colonized in wheat roots. Additionally, the fermentation broth significantly promoted the growth of wheat. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Biotechnological potential of endophytic actinomycetes associated with Asteraceae plants: isolation, biodiversity and bioactivities.

    PubMed

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida

    2014-04-01

    Endophytic actinomycetes from five Asteraceae plants were isolated and evaluated for their bioactivities. From Parthenium hysterophorus, Ageratum conyzoides, Sonchus oleraceus, Sonchus asper and Hieracium canadense, 42, 45, 90, 3, and 2 isolates, respectively, were obtained. Of the isolates, 86 (47.2 %) showed antimicrobial activity. Majority of the isolates were recovered from the roots (n = 127, 69.7 %). The dominant genus was Streptomyces (n = 96, 52.7 %), while Amycolatopsis, Pseudonocardia, Nocardia and Micromonospora were also recovered. Overall, 36 of the 86 isolates were significantly bioactivity while 18 (20.9 %) showed strong bioactivity. In total, 52.1 and 66.6 % showed potent cytotoxicity and antioxidant activities. The LC50 for 15 strains was <20 μg/ml. Compared to the ascorbate standard (EC50 0.34 μg/ml), all isolates gave impressive results with notable EC50 values of 0.65, 0.67, 0.74 and 0.79 μg/ml.

  4. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].

    PubMed

    Huang, Yi-Mei; Liu, Xue-Ling; Jiang, Ji-Shao; Huang, Hua; Liu, Dong

    2012-08-01

    Taking substrates swine manure and wheat straw (fresh mass ratio 10.5:1) as the control (PMW), a composting experiment was conducted in a self-made aerated static composting bin to study the effects of adding 8% grape seed (treatment PMW + G) on the succession of microbial community and the transformation of carbon and nitrogen in the substrates during the composting. Seven samples were collected from each treatment, according to the temperature of the compost during the 30 d composting period. The microbial population and physiological groups were determined, and the NH4(+)-N, NO3(-)-N, organic N, and organic C concentrations in the compost were measured. Grape seed addition induced a slight increase of bacterial count and a significant increase of actinomycetes count, but decreased the fungal count significantly. Grape seed addition also decreased the ratio of bacteria to actinomycetes and the counts of ammonifiers and denitrifiers, but increased the counts of nitrifiers, N-fixing bacteria, and cellulose-decomposing microorganisms. The contents of NH4(+)-N and organic C decreased, while that of NO3(-)-N increased obviously. The NO3(-)-N content in the compost was positively correlated with the actinomycetes count. During composting, the compost temperature in treatment PMW + G increased more rapidly, and remained steady in thermophilic phase, while the water content changed little, which provided a stable and higher population of actinomycetes and nitrifiers in thermophilic phase, being beneficial to the increase of compost nitrate N.

  5. Interactions of Liquid Propellant/LP XM46 With Soils

    DTIC Science & Technology

    1994-09-01

    of the solution was plated for colony counting. Results Microbial populations before contact with I.P (controls) Bacteria were detected in BRL-SAS B...agars ( bacteria ) from the control and short-term contact tests .................... 96 Figure 3 i. Response of microfiora in Picatinny A soil to 1 hr...native actinomycetes, bacteria , and fungi after contact with LP or nmtrin, acid. Effects of washing the soil with water immediately after contact with LP

  6. Bacterial complexes of a high moor related to different elements of microrelief

    NASA Astrophysics Data System (ADS)

    Dobrovol'skaya, T. G.; Golovchenko, A. V.; Yakushev, A. V.; Yurchenko, E. N.; Manucharov, N. A.; Chernov, I. Yu.

    2017-04-01

    The analysis of bacterial complexes, including the number, taxonomic composition, physiological state, and proportion of ecological trophic groups was performed in a high moorland related to different elements of the microrelief. The abundance of bacteria, their ability for hydrolysis of polymers and the share of r-strategists were found to be higher in the sphagnum hillocks than on the flat surfaces. The total prokaryote biomass was 4 times greater in the sphagnum samples from microhighs (hillocks). On these elements of the microrelief, the density of actinomycetal mycelium was higher. Bacteria of the hydrolytic complex ( Cytophaga and Chitinophaga genera) were found only in microhigh samples.

  7. Streptomyces fuscichromogenes sp. nov., an actinomycete from soil.

    PubMed

    Zhang, Hao; Zheng, Jimei; Zhuang, Junli; Xin, Yuhua; Zheng, Xiaowei; Zhang, Jianli

    2017-01-01

    A novel actinomycete, designated strain m16T, was isolated from a soil sample collected from the tropical rain forest of Xishuangbanna, a prefecture in Yunnan Province, south-west China, and characterized by using polyphasic taxomomy. Cells were aerobic and Gram-reaction-positive, and spore chains were observed to be of the helical type, with elliptical spores and smooth spore surfaces. The novel strain grew over a temperature range of 15-35 °C, at pH 5.0-11.0 and in the presence of 0-3 % (w/v) NaCl. The DNA G+C content of strain m16T was 70.0 mol%. The main fatty acids were iso-C16 : 0 (29.3 %), iso-C15: 0 (15.4 %) and anteiso-C15:0 (14.6 %), and the predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). Comparative 16S rRNA gene sequence analysis showed that strain m16T was most closely related to Streptomyces jiujiangensis KCTC 29262T (98.7 %), Streptomyces panaciradicis KACC 17632T (98.7 %), Streptomyces rhizophilus NBRC 108885T (98.5 %), Streptomyces shenzhenensis DSM 42034T (98.4 %), Streptomyces graminisoli JR-19T (98.4 %) and Streptomyces gramineus JR-43T (98.3 %). Phylogenetic, chemotaxonomic and phenotypic analyses indicated that strain m16T represents a novel species within the genus Streptomyces, for which the name Streptomyces fuscichromogenes is proposed. The type strain is m16T (=CGMCC 4.7110T=KCTC 29195T).

  8. Beverages obtained from soda fountain machines in the U.S. contain microorganisms, including coliform bacteria.

    PubMed

    White, Amy S; Godard, Renee D; Belling, Carolyn; Kasza, Victoria; Beach, Rebecca L

    2010-01-31

    Ninety beverages of three types (sugar sodas, diet sodas and water) were obtained from 20 self-service and 10 personnel-dispensed soda fountains, analyzed for microbial contamination, and evaluated with respect to U.S. drinking water regulations. A follow-up study compared the concentration and composition of microbial populations in 27 beverages collected from 9 soda fountain machines in the morning as well as in the afternoon. Ice dispensed from these machines was also examined for microbial contamination. While none of the ice samples exceeded U.S. drinking water standards, coliform bacteria was detected in 48% of the beverages and 20% had a heterotrophic plate count greater than 500cfu/ml. Statistical analyses revealed no difference in levels of microbial contamination between beverage types or between those dispensed from self-service and personnel-dispensed soda fountains. More than 11% of the beverages analyzed contained Escherichia coli and over 17% contained Chryseobacterium meningosepticum. Other opportunistic pathogenic microorganisms isolated from the beverages included species of Klebsiella, Staphylococcus, Stenotrophomonas, Candida, and Serratia. Most of the identified bacteria showed resistance to one or more of the 11 antibiotics tested. These findings suggest that soda fountain machines may harbor persistent communities of potentially pathogenic microorganisms which may contribute to episodic gastric distress in the general population and could pose a more significant health risk to immunocompromised individuals. These findings have important public health implications and signal the need for regulations enforcing hygienic practices associated with these beverage dispensers. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil.

    PubMed

    Hozzein, Wael N; Goodfellow, Michael

    2008-11-01

    The taxonomic status of an unknown actinomycete isolated from a sand-dune soil was established using a polyphasic approach. Isolate S186(T) had chemotaxonomic and morphological properties consistent with its classification in the genus Nocardiopsis, grew on agar plates at NaCl concentrations of up to 15 % (w/v) and formed a distinct phyletic line in the Nocardiopsis 16S rRNA gene sequence tree. Its closest phylogenetic neighbours were Nocardiopsis chromatogenes, Nocardiopsis composta, Nocardiopsis gilva and Nocardiopsis trehalosi, with sequence similarity to the various type strains of 96.9 %, but it was readily distinguished from the type strains of these and related species using a range of phenotypic properties. It is apparent from the genotypic and phenotypic data that strain S186(T) belongs to a novel species of the genus Nocardiopsis, for which the name Nocardiopsis arabia sp. nov. is proposed. The type strain is S186(T) (=CGMCC 4.2057(T) =DSM 45083(T)).

  10. Bacterial inactivation of the anticancer drug doxorubicin.

    PubMed

    Westman, Erin L; Canova, Marc J; Radhi, Inas J; Koteva, Kalinka; Kireeva, Inga; Waglechner, Nicholas; Wright, Gerard D

    2012-10-26

    Microbes are exposed to compounds produced by members of their ecological niche, including molecules with antibiotic or antineoplastic activities. As a result, even bacteria that do not produce such compounds can harbor the genetic machinery to inactivate or degrade these molecules. Here, we investigated environmental actinomycetes for their ability to inactivate doxorubicin, an aminoglycosylated anthracycline anticancer drug. One strain, Streptomyces WAC04685, inactivates doxorubicin via a deglycosylation mechanism. Activity-based purification of the enzymes responsible for drug inactivation identified the NADH dehydrogenase component of respiratory electron transport complex I, which was confirmed by gene inactivation studies. A mechanism where reduction of the quinone ring of the anthracycline by NADH dehydrogenase leads to deglycosylation is proposed. This work adds anticancer drug inactivation to the enzymatic inactivation portfolio of actinomycetes and offers possibilities for novel applications in drug detoxification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  12. Bacteria-surface interactions.

    PubMed

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  13. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities.

    PubMed

    Gopal, Murali; Gupta, Alka; Arunachalam, V; Magu, S P

    2007-11-01

    The effect of 10% azadirachtin granules (alcoholic extract of neem seed kernel mixed with China clay) was studied on the population of bacteria, actinomycetes, fungi, Azotobacter and nitrifying bacteria; soil dehydrogenase, phosphatase and respiratory activities on 0, 15th, 30th, 60th and 90th days after application in sandy loam soil collected from the fields. It was observed that baring the Azotobacter sp., azadirachtin at all the doses exerted a suppressive effect on the rest of the microbial communities and enzyme activities in the initial 15 day period. The population of bacteria, actinomycetes besides phosphatase and respiratory activities recovered after 60th day and subsequently increased significantly. The fungi and nitrifiers were most sensitive groups as their numbers were reduced significantly throughout the studies. The two times and five times recommended dose of azadirachtin had very high biocidal effects on the soil microorganisms and its activities. However, analysis of the data by the Shannon Weaver index showed that azadirachtin reduces both the form and functional microbial diversity at all doses.

  14. Accumulated sediments in a detention basin: chemical and microbial hazard assessment linked to hydrological processes.

    PubMed

    Sébastian, C; Barraud, S; Ribun, S; Zoropogui, A; Blaha, D; Becouze-Lareure, C; Kouyi, G Lipeme; Cournoyer, B

    2014-04-01

    Accumulated sediments in a 32,000-m(3) detention basin linked to a separate stormwater system were characterized in order to infer their health hazards. A sampling scheme of 15 points was defined according to the hydrological behaviour of the basin. Physical parameters (particle size and volatile organic matter content) were in the range of those previously reported for stormwater sediments. Chemical analyses on hydrocarbons, PAHs, PCBs and heavy metals showed high pollutant concentrations. Microbiological analyses of these points highlighted the presence of faecal indicator bacteria (Escherichia coli and intestinal enterococci) and actinomycetes of the genus Nocardia. These are indicative of the presence of human pathogens. E. coli and enterococcal numbers in the sediments were higher at the proximity of the low-flow gutter receiving waters from the catchment. These bacteria appeared to persist over time among urban sediments. Samples highly contaminated by hydrocarbons were also shown to be heavily contaminated by these bacteria. These results demonstrated for the first time the presence of Nocardial actinomycetes in such an urban context with concentrations as high as 11,400 cfu g(-1).

  15. Nonomuraea glycinis sp. nov., a novel actinomycete isolated from the root of black soya bean [Glycine max (L.) Merr].

    PubMed

    Li, Zhilei; Song, Wei; Zhao, Junwei; Zhuang, Xiaoxin; Zhao, Yue; Wang, Xiangjing; Xiang, Wensheng

    2017-12-01

    A novel actinomycete, designated strain NEAU-BB2C19 T , was isolated from the root of black soya bean [Glycine max (L.) Merr] collected from Harbin, Heilongjiang Province, China, and characterized using a polyphasic approach. The strain was an aerobic, Gram-stain-positive actinomycete that formed extensively branched substrate mycelium and aerial hyphae. The predominant menaquinones were MK-9(H2) and MK-9(H0). The major cellular fatty acid profile consisted of iso-C16 : 0, 10-methyl C17 : 0 and 10-methyl C18 : 0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, phosphatidylglycerol and glycolipid. The DNA G+C content was 68.2±0.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-BB2C19 T should be assigned to the genus Nonomuraea and formed a distinct branch with its closest neighbour Nonomuraea guangzhouensis NEAU-ZJ3 T (98.75 % 16S rRNA gene sequence similarity). The morphological and chemotaxonomic properties of the strain were also consistent with those of members of the genus Nonomuraea. A combination of DNA-DNA hybridization results and some phenotypic characteristics indicated that strain NEAU-BB2C19 T could be clearly differentiated from its closest phylogenetic relative. Thus, the strain is concluded to represent a novel species of the genus Nonomuraea, for which the name Nonomuraea glycinis sp. nov. is proposed. The type strain is NEAU-BB2C19 T (=CGMCC 4.7430 T =DSM 104838 T ).

  16. Genome-guided Investigation of Antibiotic Substances produced by Allosalinactinospora lopnorensis CA15-2T from Lop Nor region, China

    PubMed Central

    Huang, Chen; Leung, Ross Ka-Kit; Guo, Min; Tuo, Li; Guo, Lin; Yew, Wing Wai; Lou, Inchio; Lee, Simon Ming Yuen; Sun, Chenghang

    2016-01-01

    Microbial secondary metabolites are valuable resources for novel drug discovery. In particular, actinomycetes expressed a range of antibiotics against a spectrum of bacteria. In genus level, strain Allosalinactinospora lopnorensis CA15-2T is the first new actinomycete isolated from the Lop Nor region, China. Antimicrobial assays revealed that the strain could inhibit the growth of certain types of bacteria, including Acinetobacter baumannii and Staphylococcus aureus, highlighting its clinical significance. Here we report the 5,894,259 base pairs genome of the strain, containing 5,662 predicted genes, and 832 of them cannot be detected by sequence similarity-based methods, suggesting the new species may carry a novel gene pool. Furthermore, our genome-mining investigation reveals that A. lopnorensis CA15-2T contains 17 gene clusters coding for known or novel secondary metabolites. Meanwhile, at least six secondary metabolites were disclosed from ethyl acetate (EA) extract of the fermentation broth of the strain by high-resolution UPLC-MS. Compared with reported clusters of other species, many new genes were found in clusters, and the physical chromosomal location and order of genes in the clusters are distinct. This study presents evidence in support of A. lopnorensis CA15-2T as a potent natural products source for drug discovery. PMID:26864220

  17. Industrial Microorganisms.

    ERIC Educational Resources Information Center

    Phaff, Herman J.

    1981-01-01

    Describes industrially important yeasts, molds, bacteria, and actinomycetes. Discussed in detail are microbial products, such as primary metabolites, secondary metabolites, enzymes, and capsular polysaccharides. Traces the historical background of human cell culture, mentioning recombinant DNA research and hybridization of normal mammalian cells…

  18. Algicidal activity of an actinomycete strain, Streptomyces rameus, against Microcystis aeruginosa.

    PubMed

    Phankhajon, Kanchariya; Somdee, Anchana; Somdee, Theerasak

    2016-09-01

    An actinomycete strain (KKU-A3) with algicidal activity against Microcystis aeruginosa was isolated from soil in Khon Kaen Province, Thailand. Based on its phenotypic characteristics and 16S rDNA sequence, strain KKU-A3 was identified as Streptomyces rameus. Strain KKU-A3 also exhibited algicidal activity against the cyanobacteria Synechococcus elongatus, Cylindrospermum sp. and Oscillatoria sp. A mathematical and statistical technique was used to optimize the culture conditions and maximize its anti-Microcystis activity. The single factor experiments indicated that glucose and casein were the most effective carbon and nitrogen sources, respectively, and produced the highest anti-Microcystis activity. Response surface methodology indicated that the optimum culture conditions were 19.81 g/L glucose and 2.0 g/L casein at an initial pH of 7.8 and an incubation temperature of 30 °C. The anti-Microcystis activity increased from 82% to 95% under optimum conditions. In an internal airlift loop bioreactor, the removal of M. aeruginosa KKU-13 by the bacterium was investigated in batch and continuous flow experiments. In the batch experiment, KKU-A3 displayed maximum anti-Microcystis activity of 95% at day 7, whereas in the continuous flow experiment, KKU-A3 displayed maximum anti-Microcystis activity of 95% at day 10.

  19. Characterization of a chitinase from the cellulolytic actinomycete Thermobifida fusca.

    PubMed

    Gaber, Yasser; Mekasha, Sophanit; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H; Fraaije, Marco W

    2016-09-01

    Thermobifida fusca is a well-known cellulose-degrading actinomycete, which produces various glycoside hydrolases for this purpose. However, despite the presence of putative chitinase genes in its genome, T. fusca has not been reported to grow on chitin as sole carbon source. In this study, a gene encoding a putative membrane-anchored GH18 chitinase (Tfu0868) from T. fusca has been cloned and overexpressed in Escherichia coli. The protein was produced as SUMO fusion protein and, upon removal of the SUMO domain, soluble pure TfChi18A was obtained with yields typically amounting to 150mg per litre of culture. The enzyme was found to be relatively thermostable (apparent Tm=57.5°C) but not particularly thermoactive, the optimum temperature being 40-45°C. TfChi18A bound to α- and β-chitin and degraded both these substrates. Interestingly, activity towards colloidal chitin was minimal and in this case, substrate inhibition was observed. TfChi18A also cleaved soluble chito-oligosaccharides and showed a clear preference for substrates having five sugars or more. While these results show that TfChi18A is a catalytically competent GH18 chitinase, the observed catalytic rates were low compared to those of well-studied GH18 chitinases. This suggests that TfChi18A is not a true chitinase and not likely to endow T. fusca with the ability to grow on chitin. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Transformation of gram positive bacteria by sonoporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yunfeng; Li, Yongchao

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  1. Streptomyces gilvifuscus sp. nov., an actinomycete that produces antibacterial compounds isolated from soil.

    PubMed

    Nguyen, uan Manh; Kim, Jaisoo

    2015-10-01

    This study describes a novel actinomycete, designated T113T, which was isolated from forest soil in Pyeongchang-gun, Republic of Korea, and is an aerobic, Gram-stain-positive actinobacterium that forms flexibilis chains of smooth, elliptical or short rod-shaped spores. The results of 16S rRNA sequence analysis indicated that strain T113T exhibited high levels of similarity to previously characterized species of the genus Streptomyces (98.19–98.89 %, respectively). However, the results of phylogenetic and DNA–DNA hybridization analyses confirmed that the organism represented a novel member of the genus Streptomyces. Furthermore, using chemotaxonomic and phenotypic analyses it was demonstrated that the strain exhibited characteristics similar to those of other members of the genus Streptomyces. The primary cellular fatty acids expressed by this strain included anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C16 : 0. While diphosphatidylglycerol and phosphatidylethanolamine were the predominant lipids expressed by strain T113T, moderate amounts of phosphatidylinositol and phosphatidylinositol mannoside were also detected. Whole-cell hydrolysates contained glucose and ribose, and the predominant menaquinone detected was MK-9 (H6); however, moderate amounts of MK-9 (H8) and trace amounts of MK-10 (H2) and MK-10 (H4) were also detected. We therefore propose that strain T113T be considered as representing a novel species of the genus Streptomyces and propose the name Streptomyces gilvifuscus sp. nov. for this species, with strain T113T ( = KEMB 9005-213T = KACC 18248T = NBRC 110904T) being the type strain.

  2. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  3. Pseudonocardians A–C, New Diazaanthraquinone Derivatives from a Deap-Sea Actinomycete Pseudonocardia sp. SCSIO 01299

    PubMed Central

    Li, Sumei; Tian, Xinpeng; Niu, Siwen; Zhang, Wenjun; Chen, Yuchan; Zhang, Haibo; Yang, Xianwen; Zhang, Weimin; Li, Wenjun; Zhang, Si; Ju, Jianhua; Zhang, Changsheng

    2011-01-01

    Pseudonocardians A–C (2–4), three new diazaanthraquinone derivatives, along with a previously synthesized compound deoxynyboquinone (1), were produced by the strain SCSIO 01299, a marine actinomycete member of the genus Pseudonocardia, isolated from deep-sea sediment of the South China Sea. The structures of compounds 1–4 were determined by mass spectrometry and NMR experiments (1H, 13C, HSQC, and HMBC). The structure of compound 1, which was obtained for the first time from a natural source, was confirmed by X-ray analysis. Compounds 1–3 exhibited potent cytotoxic activities against three tumor cell lines of SF-268, MCF-7 and NCI-H460 with IC50 values between 0.01 and 0.21 μm, and also showed antibacterial activities on Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 and Bacillus thuringensis SCSIO BT01, with MIC values of 1–4 μg mL−1. PMID:21892356

  4. Variation in microbial population during composting of agro-industrial waste.

    PubMed

    Coelho, Luísa; Reis, Mário; Dionísio, Lídia

    2013-05-01

    Two compost piles were prepared, using two ventilation systems: forced ventilation and ventilation through mechanical turning. The material to compost was a mixture of orange waste, olive pomace, and grass clippings (2:1:1 v/v). During the composting period (375 days), samples were periodically taken from both piles, and the enumeration of fungi, actinomycetes, and heterotrophic bacteria was carried out. All studied microorganisms were incubated at 25 and 55 °C after inoculation in appropriate growth media. Fungi were dominant in the early stages of both composting processes; heterotrophic bacteria proliferated mainly during the thermophilic stage, and actinomycetes were more abundant in the final stage of the composting process. Our results showed that the physical and chemical parameters: temperature, pH, moisture, and aeration influenced the variation of the microbial population along the composting process. This study demonstrated that composting of these types of wastes, despite the prolonged mesophilic stage, provided an expected microbial variation.

  5. Indigenous microorganisms production and the effect on composting process

    NASA Astrophysics Data System (ADS)

    Abu-Bakar, Nurul-Ain; Ibrahim, Nazlina

    2013-11-01

    In this study, production of indigenous microorganisms (IMO) and effect on addition of IMO in composting process were done. Production of IMO was done in a series of steps to allow propagation of beneficial microorganisms. Effect of IMO addition in composting process was investigated by having 4 treatments; 1) rice straw without IMO nor manure and rice bran, 2) rice straw with IMO only, 3) rice straw with manure and rice bran, 4) rice straw with IMO, manure and rice bran. Production of IMO using cooked rice yields white molds. Addition of IMO during composting did not affect temperature increment. However, there were differences in numbers of microorganisms found during each stages of composting. Initial composting stage was dominated by mesophilic bacteria and actinomycetes, followed by thermophilic bacteria and later by actinomycetes upon composting completion. In conclusion, this study showed that IMO addition in composting increased microorganisms which are responsible in organic decomposition.

  6. BioNLP Shared Task--The Bacteria Track.

    PubMed

    Bossy, Robert; Jourde, Julien; Manine, Alain-Pierre; Veber, Philippe; Alphonse, Erick; van de Guchte, Maarten; Bessières, Philippe; Nédellec, Claire

    2012-06-26

    We present the BioNLP 2011 Shared Task Bacteria Track, the first Information Extraction challenge entirely dedicated to bacteria. It includes three tasks that cover different levels of biological knowledge. The Bacteria Gene Renaming supporting task is aimed at extracting gene renaming and gene name synonymy in PubMed abstracts. The Bacteria Gene Interaction is a gene/protein interaction extraction task from individual sentences. The interactions have been categorized into ten different sub-types, thus giving a detailed account of genetic regulations at the molecular level. Finally, the Bacteria Biotopes task focuses on the localization and environment of bacteria mentioned in textbook articles. We describe the process of creation for the three corpora, including document acquisition and manual annotation, as well as the metrics used to evaluate the participants' submissions. Three teams submitted to the Bacteria Gene Renaming task; the best team achieved an F-score of 87%. For the Bacteria Gene Interaction task, the only participant's score had reached a global F-score of 77%, although the system efficiency varies significantly from one sub-type to another. Three teams submitted to the Bacteria Biotopes task with very different approaches; the best team achieved an F-score of 45%. However, the detailed study of the participating systems efficiency reveals the strengths and weaknesses of each participating system. The three tasks of the Bacteria Track offer participants a chance to address a wide range of issues in Information Extraction, including entity recognition, semantic typing and coreference resolution. We found common trends in the most efficient systems: the systematic use of syntactic dependencies and machine learning. Nevertheless, the originality of the Bacteria Biotopes task encouraged the use of interesting novel methods and techniques, such as term compositionality, scopes wider than the sentence.

  7. Future potential for anti-infectives from bacteria - how to exploit biodiversity and genomic potential.

    PubMed

    Müller, Rolf; Wink, Joachim

    2014-01-01

    The early stages of antibiotic development include the identification of novel hit compounds. Since actinomycetes and myxobacteria are still the most important natural sources of active metabolites, we provide an overview on these producers and discuss three of the most promising approaches toward finding novel anti-infectives from microorganisms. These are defined as the use of biodiversity to find novel producers, the variation of culture conditions and induction of silent genes, and the exploitation of the genomic potential of producers via "genome mining". Challenges that exist beyond compound discovery are outlined in the last section. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Marine actinomycete crude extracts with potent TRAIL-resistance overcoming activity against breast cancer cells.

    PubMed

    Elmallah, Mohammed I Y; Micheau, Olivier; Eid, Mennat Allah G; Hebishy, Ali M S; Abdelfattah, Mohamed S

    2017-06-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent, as it can kill tumor cells selectively. In our search of bioactive natural products to overcome TRAIL-resistance, we isolated 47 actinomycete strains from different sediments and seawater samples collected from the Red Sea coast in Egypt and found four crude extracts (EGY1, EGY3, EGY24 and EGY34) displaying TRAIL sensitizing activity in the resistant breast cancer cell line MDA-MB-231. None of these crude extracts exhibited cytotoxic effect on normal mouse embryonic fibroblasts (MEF), with the exception of EGY34. Analysis of the signaling pathways underlying the sensitization of MDA-MB-231 cells to TRAIL-induced apoptosis, by western blotting, revealed that all crude extracts facilitated initiator caspase‑8/-10 activation upon TRAIL stimulation, but that in addition, EGY3 and EGY34, alone, induced strong ER-stress activation, with the appearance of BiP in the cytosolic extracts. Our results pave the way to the discovery and the development of marine-derived drugs for cancer therapy.

  9. The influence of aeration and temperature on the structure of bacterial complexes in high-moor peat soil

    NASA Astrophysics Data System (ADS)

    Kukharenko, O. S.; Pavlova, N. S.; Dobrovol'Skaya, T. G.; Golovchenko, A. V.; Pochatkova, T. N.; Zenova, G. M.; Zvyagintsev, D. G.

    2010-05-01

    The number and taxonomic structure of the heterotrophic block of aerobic and facultative anaerobic bacteria were studied in monoliths from a high-moor peat (stored at room temperature and in a refrigerator) and in the peat horizons mixed in laboratory vessels. The monitoring lasted for a year. In the T0 horizon, spirilla predominated at room and low temperatures; in the T1 and T2 horizons, bacilli were the dominants. The continuous mixing of the peat layers increased the oxygen concentration and the peat decomposition; hence, the shares of actinomycetes and bacilli (bacteria of the hydrolytic complex) increased. In the peat studied, the bacilli were in the active state; i.e., vegetative cells predominated, whose amount ranged from 65 to 90%. The representatives of the main species of bacilli (the facultative anaerobic forms prevailed) hydrolyzed starch, pectin, and carboxymethylcellulose. Thus, precisely sporiferous bacteria can actively participate in the decomposition of plant polysaccharides in high-moor peat soils that are characterized by low temperatures and an oxygen deficit. The development of actinomycetes is inhibited by low temperatures; they can develop only under elevated temperature and better aeration.

  10. Glycomyces tarimensis sp. nov., an actinomycete isolated from a saline-alkali habitat.

    PubMed

    Lv, Ling-Ling; Zhang, Yue-Feng; Zhang, Li-Li

    2015-05-01

    A novel actinomycete strain, designated TRM 45387(T), was isolated from a saline-alkali soil in Xinjiang Province (40° 22' N 79° 08' E), north-west China. The isolate was characterized using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain TRM 45387(T) belonged to the genus Glycomyces and was closely related to Glycomyces arizonensis DSM 44726(T) (96.59% 16S rRNA gene sequence similarity). The G+C content of the DNA was 71.26 mol%. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid, and xylose, glucose, galactose, arabinose and ribose as the major whole-cell sugars. The diagnostic phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositolmannosides. The predominant menaquinone was MK-10(H6). The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. On the basis of the evidence from this polyphasic study, a novel species, Glycomyces tarimensis sp. nov., is proposed. The type strain of Glycomyces tarimensis is TRM 45387(T) ( =CCTCC AA 2014007(T) =JCM 30184(T)). © 2015 Xinjiang Production & Construction Corps Key Laborartory of Protection and Utilization of Biological Resources in Tarim Basin.

  11. The Genome Sequence of the Tomato-Pathogenic Actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 Reveals a Large Island Involved in Pathogenicity▿ †

    PubMed Central

    Gartemann, Karl-Heinz; Abt, Birte; Bekel, Thomas; Burger, Annette; Engemann, Jutta; Flügel, Monika; Gaigalat, Lars; Goesmann, Alexander; Gräfen, Ines; Kalinowski, Jörn; Kaup, Olaf; Kirchner, Oliver; Krause, Lutz; Linke, Burkhard; McHardy, Alice; Meyer, Folker; Pohle, Sandra; Rückert, Christian; Schneiker, Susanne; Zellermann, Eva-Maria; Pühler, Alfred; Eichenlaub, Rudolf; Kaiser, Olaf; Bartels, Daniela

    2008-01-01

    Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil. PMID:18192381

  12. Will anticipated future climatic conditions affect belowground C utilization? - Insights into the role of microbial functional groups in a temperate heath/grassland.

    NASA Astrophysics Data System (ADS)

    Reinsch, Sabine; Michelsen, Anders; Sárossy, Zsuzsa; Egsgaard, Helge; Kappel Schmidt, Inger; Jakobsen, Iver; Ambus, Per

    2013-04-01

    The global terrestrial soil organic matter stock is the biggest terrestrial carbon pool (1500 Pg C) of which about 4 % is turned over annually. Thus, terrestrial ecosystems have the potential to accelerate or diminish atmospheric climate change effects via belowground carbon processes. We investigated the effect of elevated CO2 (510 ppm), prolonged spring/summer droughts and increased temperature (1 ˚C) on belowground carbon allocation and on the recovery of carbon by the soil microbial community. An in-situ 13C-carbon pulse-labeling experiment was carried out in a temperate heath/grassland (Denmark) in May 2011. Recently assimilated 13C-carbon was traced into roots, soil and microbial biomass 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in microbial functional groups on the basis of phospholipid fatty acids (PLFAs) in roots. Gram-negative and gram-positive bacteria were distinguished from the decomposer groups of actinomycetes (belonging to the group of gram-positive bacteria) and saprophytic fungi. Mycorrhizal fungi specific PLFAs were not detected probably due to limited sample size in combination with restricted sensitivity of the used GC-c-IRMS setup. Climate treatments did not affect 13C allocation into roots, soil and microbial biomass carbon and also the total microbial biomass size stayed unchanged as frequently observed. However, climate treatments changed the composition of the microbial community: elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy) but did not affect the abundance of decomposers. Drought favored the bacterial community whereas increased temperatures showed reduced abundance of gram-negative bacteria (19:0cy) and changed the actinomycetes community (10Me16:0, 10Me18:0). However, not only the microbial community composition was affected by the applied climatic conditions, but also the activity of microbial

  13. Streptomyces gamaensis sp. nov., a novel actinomycete with antifungal activity isolated from soil in Gama, Chad.

    PubMed

    Zhao, Shanshan; Ye, Lan; Liu, Chongxi; Abagana, Adam Yacoub; Zheng, Weiwei; Sun, Pengyu; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing

    2017-04-01

    During an investigation exploring potential sources of novel species and natural products, a novel actinomycete with antifungal activity, designated strain NEAU-Gz11 T , was isolated from a soil sample, which was collected from Gama, Chad. The isolate was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain NEAU-Gz11 T belongs to the genus Streptomyces with high sequence similarity to Streptomyces hiroshimensis JCM 4098 T (98.0 %). Similarities to other type strains of the genus Streptomyces were lower than 98.0 %. However, the physiological and biochemical characteristics and low levels of DNA-DNA relatedness could differentiate the isolate genotypically and phenotypically from S. hiroshimensis JCM 4098 T . Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces gamaensis sp. nov. is proposed. The type strain is NEAU-Gz11 T (=CGMCC 4.7304 T =DSM 101531 T ).

  14. Isolation, characterization and chromatography based purification of antibacterial compound isolated from rare endophytic actinomycetes Micrococcus yunnanensis.

    PubMed

    Ranjan, Ravi; Jadeja, Vasantba

    2017-10-01

    Endophytic actinomycetes are considered as one of the relatively unexplored potential sources in search of antibiotic producer against antibiotic resistant pathogens. A potent strain isolated from Catharanthus roseus that displays antibacterial potential against antibiotic resistant human pathogen Staphylococcus aureus was characterized and designated as Micrococcus yunnanensis strain rsk5. Rsk5 is capable of producing optimum antibacterial metabolites on starch casein medium at 30 °C, pH 5 and 2% NaCl condition. The crude antibacterial agent was extracted from fermentation broth by ethyl acetate and separated by TLC using chloroform-methanol (24:1, v/v) solvent system with R f value of 0.26. It was partially purified by flash chromatography, followed by HPLC and analyzed by ultraviolet visible spectrophotometer to get absorption maxima at 208.4 nm. The ESI-MS spectra showed molecular ion peaks at m / z 472.4 [M-H], which does not match with any known antibacterial compound.

  15. Microbial populations and activities of mangrove, restinga and Atlantic forest soils from Cardoso Island, Brazil.

    PubMed

    Pupin, B; Nahas, E

    2014-04-01

    Mangroves provide a distinctive ecological environment that differentiates them from other ecosystems. This study deal to evaluate the frequency of microbial groups and the metabolic activities of bacteria and fungi isolated from mangrove, restinga and Atlantic forest soils. Soil samples were collected during the summer and winter at depths of 0-2, 2-5 and 5-10 cm. Except for fungi, the counts of the total, sporulating, Gram-negative, actinomycetes, nitrifying and denitrifying bacteria decreased significantly in the following order: Atlantic forest >mangrove > restinga. The counts of micro-organisms decreased by 11 and 21% from the surface to the 2-5 and 5-10 cm layers, but denitrifying bacteria increased by 44 and 166%, respectively. A larger growth of micro-organisms was verified in the summer compared with the winter, except for actinomycetes and fungi. The average frequency of bacteria isolated from mangrove, restinga and Atlantic forest soils was 95, 77 and 78%, and 93, 90 and 95% for fungi, respectively. Bacteria were amylolytic (33%), producers of acid phosphatase (79%) and solubilizers (18%) of inorganic phosphate. The proportions of fungi were 19, 90 and 27%. The mangrove soil studied had higher chemical characteristics than the Atlantic forest, but the high salinity may have restricted the growth of microbial populations. Estimates of the microbial counts and activities were important to elucidate the differences of mangrove ecosystem from restinga and Atlantic forest. © 2013 The Society for Applied Microbiology.

  16. Relative Numbers of Certain Microbial Groups Present in Compost Used for Mushroom (Agaricus bisporus) Propagation

    PubMed Central

    Fordyce, C.

    1970-01-01

    The relative numbers of microorganisms associated with compost during mushroom production were studied by the dilution plate method. Thermophilic actinomycetes and fungi were isolated with a very high frequency early in the growing season. Although numbers of thermophilic bacteria diminished slowly during the season, the thermophilic fungi and actinomycetes diminished rapidly with the latter disappearing after 6 weeks. Mesophilic fungi other than Agaricus or Trichoderma remained relatively stable throughout the growing period. Agaricus could be isolated between the first and third break. Trichoderma became dominant after the fourth break. The mesophilic bacterial counts diminished during the most productive portion of the mushroom cropping season and then increased to much higher numbers toward the end of the season. PMID:5529631

  17. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    PubMed

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  18. Review on SERS of Bacteria

    PubMed Central

    Mosier-Boss, Pamela A.

    2017-01-01

    Surface enhanced Raman spectroscopy (SERS) has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data. PMID:29137201

  19. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOEpatents

    Tyndall, Richard L.

    1996-01-01

    A method of dispersing a hydrocarbon includes the steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; autoclaving the bacterium to derive a dispersant solution therefrom; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; and autoclaving the bacterium to derive a dispersant solution therefrom.

  20. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOEpatents

    Tyndall, R.L.

    1996-11-26

    A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.

  1. Streptomyces castaneus sp. nov., a novel actinomycete isolated from the rhizosphere of Peucedanum praeruptorum Dunn.

    PubMed

    Zhou, Shuyu; Li, Zhilei; Bai, Lu; Yan, Kai; Zhao, Junwei; Lu, Chang; Liu, Chongxi; Wang, Xiangjing; Xiang, Wensheng

    2017-01-01

    During an investigation of microbial diversity in medicinal herbs, a novel actinomycete, strain NEAU-QHHV11 T was isolated from the rhizosphere of Peucedanum praeruptorum Dunn collected from Xianglu Mountain in Heilongjiang Province, northeast China and characterized using a polyphasic approach. The organism was found to have typical characteristics of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequence also indicated that strain NEAU-QHHV11 T belongs to the genus Streptomyces and was most closely related to Streptomyces graminilatus NBRC 108882 T (98.7 % sequence similarity) and Streptomyces turgidiscabies NBRC 16080 T (98.7 % sequence similarity). The results of DNA-DNA hybridization and some phenotypic characteristics indicated that strain NEAU-QHHV11 T could be distinguished from its close phylogenetic relatives. Thus, strain NEAU-QHHV11 T represents a novel species of the genus Streptomyces, for which the name Streptomyces castaneus sp. nov. is proposed. The type strain is NEAU-QHHV11 T (=CGMCC 4.7235 T  = DSM 100520 T ).

  2. Field studies on two rock phosphate solubilizing actinomycete isolates as biofertilizer sources

    NASA Astrophysics Data System (ADS)

    Mba, Caroline C.

    1994-03-01

    Recently biotechnology is focusing attention on utilization of biological resources to solve a number of environmental problems such as soil fertility management. Results of microbial studies on earthworm compost in the University of Nigeria farm identified a number of rock phosphate solubilizing actinomycetes. Two of these, isclates 02 and 13, were found to be efficient rock phosphate (RP) solubilizers and fast-growing cellulolytic microbes producing extracellular hydrolase enzymes. In this preliminary field study the two microbial isolates were investigated with respect to their effects on the growth of soybean and egusi as well as their effect on the incidence of toxicity of poultry droppings. Application of these isolates in poultry manure-treated field plots, as microbial fertilizers, brought about yield increases of 43% and 17% with soybeans and 19% and 33% with egusi, respectively. Soil properties were also improved. With isolates 02 and 13, the soil available phosphorus increased at the five-leaf stage, while N-fixation in the soil increased by 45% or 11% relative to control. It was further observed that air-dried poultry manure after four days of incubation was still toxic to soybean. The toxic effect of the applied poultry manure was reduced or eliminated with microbial fertilizers 02 or 13, respectively. The beneficial effects of the microbial organic fertilizer are discussed. Justification for more intensive research on rock phosphate organic fertilizer is highlighted.

  3. Diketopiperazine Derivatives from the Marine-Derived Actinomycete Streptomyces sp. FXJ7.328

    PubMed Central

    Wang, Pei; Xi, Lijun; Liu, Peipei; Wang, Yi; Wang, Wei; Huang, Ying; Zhu, Weiming

    2013-01-01

    Five new diketopiperazine derivatives, (3Z,6E)-1-N-methyl-3-benzylidene-6-(2S-methyl-3-hydroxypropylidene)piperazine-2,5-dione (1), (3Z,6E)-1-N-methyl-3-benzylidene-6-(2R-methyl-3-hydroxypropylidene)piperazine-2,5-dione (2), (3Z,6Z)-3-(4-hydroxybenzylidene)-6-isobutylidenepiperazine-2,5-dione (3), (3Z,6Z)-3-((1H-imidazol-5-yl)-methylene)-6-isobutylidenepiperazine-2,5-dione (4), and (3Z,6S)-3-benzylidene-6-(2S-but-2-yl)piperazine-2,5-dione (5), were isolated from the marine-derived actinomycete Streptomyces sp. FXJ7.328. The structures of 1–5 were determined by spectroscopic analysis, CD exciton chirality, the modified Mosher’s, Marfey’s and the C3 Marfey’s methods. Compound 3 showed modest antivirus activity against influenza A (H1N1) virus with an IC50 value of 41.5 ± 4.5 μM. In addition, compound 6 and 7 displayed potent anti-H1N1 activity with IC50 value of 28.9 ± 2.2 and 6.8 ± 1.5 μM, respectively. Due to the lack of corresponding data in the literature, the 13C NMR data of (3Z,6S)-3-benzylidene-6-isobutylpiperazine-2,5-dione (6) were also reported here for the first time. PMID:23538868

  4. [Effects of litter and root exclusion on soil microbial community composition and function of four plantations in subtropical sandy coastal plain area, China].

    PubMed

    Sang, Chang Peng; Wan, Xiao Hua; Yu, Zai Peng; Wang, Min Huang; Lin, Yu; Huang, Zhi Qun

    2017-04-18

    We conducted detritus input and removal treatment (DIRT) to examine the effects of shifting above- and belowground carbon (C) inputs on soil microbial biomass, community composition and function in subtropical Pinus elliottii, Eucalyptus urophylla × Eucalyptus grandis, Acacia aulacocarpa and Casuarina equisetifolia coastal sandy plain forests, and the treatments included: root trenching, litter removal and control. Up to September 2015, one year after the experiment began, we collected the 0-10 cm soil samples from each plot. Phospholipid fatty acid (PLFA) analysis was used to characterize the microbial community composition, and micro-hole enzymatic detection technology was utilized to determine the activity of six kinds of soil enzymes. Results showed that changes in microbial biomass induced by the C input manipulations differed among tree species, and mainly affected by litter and root qualily. In E. urophylla × E. grandis stands, root trenching significantly decreased the contents of total PLFAs, Gram-positive bacteria, Gram-negative bacteria, fungi and actinomycetes by 31%, 30%, 32%, 36% and 26%, respectively. Litter removal reduced the contents of Gram-positive bacteria, fungi and actinomycetes by 24%, 27% and 24%, respectively. However, C input manipulations had no significant effect on soil microbial biomassunder other three plantations. According to the effect of C input manipulations on soil microbial community structure, litter and root exclusion decreased fungi abundance and increased actinomycetes abundance. Different treatments under different plantations resulted in various soil enzyme activities. Litter removal significantly decreased the activities of cellobiohydrolase, β-glucosidase, acid phosphatase and N-acetyl-β-d-glucosaminidase of P. elliottii, A. aulacocarpa and C. equisetifolia, root exclusion only decreased and increased the activities of β-glucosidase in P. elliottii and A. aulacocarpa forest soils, respectively. Litter removal also

  5. Isolating antifungals from fungus-growing ant symbionts using a genome-guided chemistry approach.

    PubMed

    Seipke, Ryan F; Grüschow, Sabine; Goss, Rebecca J M; Hutchings, Matthew I

    2012-01-01

    We describe methods used to isolate and identify antifungal compounds from actinomycete strains associated with the leaf-cutter ant Acromyrmex octospinosus. These ants use antibiotics produced by symbiotic actinomycete bacteria to protect themselves and their fungal cultivar against bacterial and fungal infections. The fungal cultivar serves as the sole food source for the ant colony, which can number up to tens of thousands of individuals. We describe how we isolate bacteria from leaf-cutter ants collected in Trinidad and analyze the antifungal compounds made by two of these strains (Pseudonocardia and Streptomyces spp.), using a combination of genome analysis, mutagenesis, and chemical isolation. These methods should be generalizable to a wide variety of insect-symbiont situations. Although more time consuming than traditional activity-guided fractionation methods, this approach provides a powerful technique for unlocking the complete biosynthetic potential of individual strains and for avoiding the problems of rediscovery of known compounds. We describe the discovery of a novel nystatin compound, named nystatin P1, and identification of the biosynthetic pathway for antimycins, compounds that were first described more than 60 years ago. We also report that disruption of two known antifungal pathways in a single Streptomyces strain has revealed a third, and likely novel, antifungal plus four more pathways with unknown products. This validates our approach, which clearly has the potential to identify numerous new compounds, even from well-characterized actinomycete strains. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Laser-Based Identification of Pathogenic Bacteria

    NASA Astrophysics Data System (ADS)

    Rehse, Steven J.

    2009-03-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the last 10 years, however, several events have occurred that demand the attention of the general populace — including the ranks of physicists among them.

  7. Enhancing the biofiltration of geosmin by seeding sand filter columns with a consortium of geosmin-degrading bacteria.

    PubMed

    McDowall, Bridget; Hoefel, Daniel; Newcombe, Gayle; Saint, Christopher P; Ho, Lionel

    2009-02-01

    Geosmin is a secondary metabolite that can be produced by many species of cyanobacteria and Actinomycetes. It imparts a musty/earthy taste and odour to drinking water which can result in consumer complaints and a general perception that there is a problem with the water quality. As geosmin is recalcitrant to conventional water treatment, processes are sought to ensure effective removal of this compound from potable water. Biological filtration (biofiltration) is an attractive option for geosmin removal as this compound has been shown to be biodegradable. However, effective biofiltration of geosmin can be site specific as it is highly dependent upon the types of organism present and there is often an extended acclimation period before efficient removals are achieved. We report here, a novel approach to enhance the biofiltration of geosmin by seeding sand filter columns with a bacterial consortium previously shown to be capable of effectively degrading geosmin. Geosmin removals of up to 75% were evident through sand columns which had been inoculated with the geosmin-degrading bacteria, when compared with non-inoculated sand columns where geosmin removals were as low as 25%. These low geosmin removals through the non-inoculated sand columns are consistent with previous studies and were attributed to physical/abiotic losses. The presence of an existing biofilm was shown to influence geosmin removal, as the biofilm allowed for greater attachment of the geosmin-degrading consortium (as determined by an ATP assay), and enhanced removals of geosmin. Minimal difference in geosmin removal was observed when the geosmin-degrading bacteria were inoculated into the sand columns containing either an active or inactive biofilm.

  8. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  9. Description of Kibdelosporangium banguiense sp. nov., a novel actinomycete isolated from soil of the forest of Pama, on the plateau of Bangui, Central African Republic.

    PubMed

    Pascual, Javier; González, Ignacio; Estévez, Mar; Benito, Patricia; Trujillo, Martha E; Genilloud, Olga

    2016-05-01

    A novel actinomycete strain F-240,109(T) from the MEDINA collection was isolated from a soil sample collected in the forest of Pama, on the plateau of Bangui, Central African Republic. The strain was identified according to its 16S rRNA gene sequence as a new member of the genus Kibdelosporangium, being closely related to Kibdelosporangium aridum subsp. aridum (98.6 % sequence similarity), Kibledosporangium phytohabitans (98.3 %), Kibdelosporangium aridum subsp. largum (97.7 %), Kibdelosporangium philippinense (97.6 %) and Kibledosporangium lantanae (96.9 %). In order to resolve its precise taxonomic status, the strain was characterised through a polyphasic approach. The strain is a Gram-stain positive, aerobic, non-motile and catalase-positive actinomycete characterised by formation of extensively branched substrate mycelia and sparse brownish grey aerial mycelia with sporangium-like globular structures. The chemotaxonomic characterisation of strain F-240,109(T) corroborated its affiliation into the genus Kibdelosporangium. The peptidoglycan contains meso-diaminopimelic acid; the major menaquinone is MK-9(H4); the phospholipid profile contains high amounts of phosphatidylethanolamine, hydroxyphosphatidylethanolamine, diphosphatidylglycerol and an unidentified phospholipid; and the predominant cellular fatty acid methyl esters are iso-C16:0, iso-C14:0, iso-C15:0 and 2OH iso-C16:0. However, some key phenotypic differences regarding to its close relatives and DNA-DNA hybridization values indicate that strain F-240,109(T) represents a novel Kibdelosporangium species, for which the name Kibdelosporangium banguiense sp. nov. is proposed. The type strain is strain F-240,109(T) (=DSM 46670(T), =LMG 28181(T)).

  10. Actinopolyspora biskrensis sp. nov., a novel halophilic actinomycete isolated from Northern Sahara.

    PubMed

    Saker, Rafika; Bouras, Noureddine; Meklat, Atika; Zitouni, Abdelghani; Schumann, Peter; Spröer, Cathrin; Klenk, Hans-Peter; Sabaou, Nasserdine

    2015-03-01

    A novel halophilic, filamentous actinomycete, designated H254(T), was isolated from a Saharan soil sample collected from Biskra (Northern Sahara), and subjected to a polyphasic taxonomic characterization. The strain is Gram-positive, aerobic, and halophilic, and the optimum NaCl concentration for growth is 15-20 % (w/v). The cell-wall hydrolysate contained meso-diaminopimelic acid, and the diagnostic whole-cell sugars were arabinose and galactose. The diagnostic phospholipid detected was phosphatidylcholine, and MK-9(H4) was the predominant menaquinone. The major fatty acid profiles were anteiso-C17:0 (32.8 %), C15:0 (28 %), and iso-C17:0 (12.3 %). Comparative analysis of the 16S rRNA gene sequences revealed that the strain H254(T) formed a well-separated sub-branch within the radiation of the genus Actinopolyspora, and the microorganism was most closely related to Actinopolyspora saharensis DSM 45459(T) (99.2 %), Actinopolyspora halophila DSM 43834(T) (99.1 %), and Actinopolyspora algeriensis DSM 45476(T) (99.0 %). Nevertheless, the strain had relatively lower mean values for DNA-DNA relatedness with the above strains (57.2, 68.4, and 45.6 %, respectively). Based on phenotypic features and phylogenetic position, we propose that strain H254(T) represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora biskrensis sp. nov. is proposed. The type strain of A. biskrensis is strain H254(T) (=DSM 46684(T) =CECT 8576(T)).

  11. Individual Patterns of Complexity in Cystic Fibrosis Lung Microbiota, Including Predator Bacteria, over a 1-Year Period

    PubMed Central

    de Dios Caballero, Juan; Vida, Rafael; Cobo, Marta; Máiz, Luis; Suárez, Lucrecia; Galeano, Javier; Baquero, Fernando; Cantón, Rafael

    2017-01-01

    ABSTRACT Cystic fibrosis (CF) lung microbiota composition has recently been redefined by the application of next-generation sequencing (NGS) tools, identifying, among others, previously undescribed anaerobic and uncultivable bacteria. In the present study, we monitored the fluctuations of this ecosystem in 15 CF patients during a 1-year follow-up period, describing for the first time, as far as we know, the presence of predator bacteria in the CF lung microbiome. In addition, a new computational model was developed to ascertain the hypothetical ecological repercussions of a prey-predator interaction in CF lung microbial communities. Fifteen adult CF patients, stratified according to their pulmonary function into mild (n = 5), moderate (n = 9), and severe (n = 1) disease, were recruited at the CF unit of the Ramón y Cajal University Hospital (Madrid, Spain). Each patient contributed three or four induced sputum samples during a 1-year follow-up period. Lung microbiota composition was determined by both cultivation and NGS techniques and was compared with the patients’ clinical variables. Results revealed a particular microbiota composition for each patient that was maintained during the study period, although some fluctuations were detected without any clinical correlation. For the first time, Bdellovibrio and Vampirovibrio predator bacteria were shown in CF lung microbiota and reduced-genome bacterial parasites of the phylum Parcubacteria were also consistently detected. The newly designed computational model allows us to hypothesize that inoculation of predators into the pulmonary microbiome might contribute to the control of chronic colonization by CF pathogens in early colonization stages. PMID:28951476

  12. Spectroscopic diagnostics for bacteria in biologic sample

    DOEpatents

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  13. Methylotrophic bacteria in sustainable agriculture.

    PubMed

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  14. 40 CFR 165.63 - Scope of pesticide products included.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... caused by bacteria, viruses, fungi, protozoa, algae, or slime; and (B) In the intended use is subject to... bacteria, viruses, fungi, protozoa, algae, or slime. (ii) The labeling of the pesticide product includes...

  15. 40 CFR 165.63 - Scope of pesticide products included.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... caused by bacteria, viruses, fungi, protozoa, algae, or slime; and (B) In the intended use is subject to... bacteria, viruses, fungi, protozoa, algae, or slime. (ii) The labeling of the pesticide product includes...

  16. 40 CFR 165.63 - Scope of pesticide products included.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... caused by bacteria, viruses, fungi, protozoa, algae, or slime; and (B) In the intended use is subject to... bacteria, viruses, fungi, protozoa, algae, or slime. (ii) The labeling of the pesticide product includes...

  17. 40 CFR 165.63 - Scope of pesticide products included.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... caused by bacteria, viruses, fungi, protozoa, algae, or slime; and (B) In the intended use is subject to... bacteria, viruses, fungi, protozoa, algae, or slime. (ii) The labeling of the pesticide product includes...

  18. Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766).

    PubMed

    Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Zucchi, Tiago Domingues; Pansa, Camila Cristiane; de Figueiredo Vasconcellos, Rafael Leandro; Crevelin, Eduardo José; de Moraes, Luiz Alberto Beraldo; Melo, Itamar Soares

    2016-11-01

    The taxonomic position of a novel marine actinomycete isolated from a marine sponge, Aplysina fulva, which had been collected in the Archipelago of Saint Peter and Saint Paul (Equatorial Atlantic Ocean), was determined by using a polyphasic approach. The organism showed a combination of morphological and chemotaxonomic characteristics consistent with its classification in the genus Streptomyces and forms a distinct branch within the Streptomyces somaliensis 16S rRNA gene tree subclade. It is closely related to Streptomyces violascens ISP 5183 T (97.27 % 16S rRNA gene sequence similarity) and Streptomyces hydrogenans NBRC 13475 T (97.15 % 16S rRNA gene sequence similarity). The 16S rRNA gene similarities between the isolate and the remaining members of the subclade are lower than 96.77 %. The organism can be distinguished readily from other members of the S. violacens subclade using a combination of phenotypic properties. On the basis of these results, it is proposed that isolate 103 T (=NRRL B-65309 T  = CMAA 1378 T ) merits recognition as the type strain of a new Streptomyces species, namely Streptomyces atlanticus sp. nov.

  19. Actinomadura gamaensis sp. nov., a novel actinomycete isolated from soil in Gama, Chad.

    PubMed

    Abagana, Adam Yacoub; Sun, Pengyu; Liu, Chongxi; Cao, Tingting; Zheng, Weiwei; Zhao, Shanshan; Xiang, Wensheng; Wang, Xiangjing

    2016-06-01

    A novel single spore-producing actinomycete, designated strain NEAU-Gz5(T), was isolated from a soil sample from Gama, Chad. A polyphasic taxonomic study was carried out to establish the status of this strain. The diamino acid present in the cell wall is meso-diaminopimelic acid. Glucose, mannose and madurose occur in whole cell hydrolysates. The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside and an unidentified glycolipid. The predominant menaquinones were identified as MK-9(H8) and MK-9(H6). The predominant cellular fatty acids were found to be C16:0, iso-C15:0, iso-C16:0 and C18:0 10-methyl. Phylogenetic analysis based on the 16S rRNA gene showed that strain NEAU-Gz5(T) belongs to the genus Actinomadura and is closely related to Actinomadura oligospora JCM 10648(T) (ATCC 43269(T); 98.3 % similarity). However, the low level of DNA-DNA relatedness and some different phenotypic characteristics allowed the strain to be distinguished from its close relatives. Therefore, it is concluded that strain NEAU-Gz5(T) represents a novel species of the genus of Actinomadura, for which the name Actinomadura gamaensis sp. nov. is proposed. The type strain is NEAU-Gz5(T) (= CGMCC 4.7301(T) = DSM 100815(T)).

  20. [Isolation and phylogenetic analysis of one actinomycete strain YIM 90022 exhibiting anticancer activity].

    PubMed

    Chen, Yi-Guang; Li, Wen-Jun; Cui, Xiao-Long; Jiang, Cheng-Lin; Xu, Li-Hua

    2006-10-01

    One facultative alkaliphilic actinomycete strain YIM 90022 was isolated from hypersaline alkaline soil in Qinghai province, China. An almost-complete 16S rRNA gene sequence (1500 bp) for strain YIM 90022 was obtained. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 90022 was closely related to four members of the genus Nocardiopsis with 16S rRNA gene sequence similarity values of 98.8% (N. exhalans DSM 44407T), 98.5% (N. prasina DSM 43845T), 98.4% (N. metallicus DSM 44598T) and 97.8% (N. listeri DSM 40297T), but represented a distinct phylogenetic lineage. Repetitive element sequence-based PCR (rep-PCR) genomic fingerprinting was evaluated on strain YIM 90022 and its closest relatives to investigate their genetic relatedness. The analysis of the rep-PCR genomic fingerprints showed that strain YIM 90022 was distinguishable from its closest relatives. The polyphasic taxonomic data presented in this study, including its morphology, physiological and biochemical characteristics, chemotaxonomy, 16S rRNA gene sequence-based phylogenetic analysis and rep-PCR genomic fingerprinting, supported the view that strain YIM 90022 represented a potential new species of the genus Nocardiopsis. The fermentation broth of strain YIM 90022 strongly inhibited growth of cell series of gastric cancer, lung cancer, mammary cancer, melanoma cancer, renal cancer and uterus cancer. Strain YIM 90022 grew well on most tested media, producing exuberant vegetative hyphae and aerial hyphae. The vegetative hyphae are long and fragmented. Light yellow to deep brown diffusible pigments were produced on ISP 2, ISP 3 and ISP 6. Growth of the strain occurred in the pH range 6.0-12.0, with optimal pH8.5. The NaCl tolerate range was 0-15% (W/V). Cell walls contain meso-diaminopimelic acid and have no diagnostic sugars. Polar lipids are phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmethylethanolamine. Major menaquinones are MK-10 (H4, H6). The

  1. Gastric spiral bacteria in small felids.

    PubMed

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens.

  2. Isolation of Novel Bacteria Including Rarely Cultivated Phyla, Acidobacteria and Verrucomicrobia, from the Roots of Emergent Plants by Simple Culturing Method

    PubMed Central

    Tanaka, Yasuhiro; Matsuzawa, Hiroaki; Tamaki, Hideyuki; Tagawa, Masahiro; Toyama, Tadashi; Kamagata, Yoichi; Mori, Kazuhiro

    2017-01-01

    A number of novel bacteria including members of rarely cultivated phyla, Acidobacteria and Verrucomicrobia, were successfully isolated from the roots of two emergent plants, Iris pseudacorus and Scirpus juncoides, by a simple culturing method. A total of 47.1% (66 strains) for I. pseudacorus and 42.1% (59 strains) for S. juncoides of all isolates (140 strains from each sample) were phylogenetically novel. Furthermore, Acidobacteria and Verrucomicrobia occupied 10.7% (15 strains) and 2.9% (4 strains) of I. pseudacorus isolates, and 2.1% (3 strains) and 3.6% (5 strains) of S. juncoides isolates, respectively, indicating that plant roots are attractive sources for isolating rarely cultivated microbes. PMID:28740039

  3. Streptomyces bryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta).

    PubMed

    Li, Chuang; Jin, Pinjiao; Liu, Chongxi; Ma, Zhaoxu; Zhao, Junwei; Li, Jiansong; Wang, Xiangjing; Xiang, Wensheng

    2016-09-01

    A novel endophytic actinomycete, designated strain NEAU-HZ10(T) was isolated from moss and characterised using a polyphasic approach. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Streptomyces. Strain NEAU-HZ10(T) formed grayish aerial mycelia, which differentiated into straight to flexuous chains of cylindrical spores. The cell wall peptidoglycan was found to contain LL-diaminopimelic acid. Predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The polar lipid profile was found to consist of phosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. The major fatty acids were identified as iso-C16:0, anteiso-C15:0 and C16:0. 16S rRNA gene sequence similarity studies showed that strain NEAU-HZ10(T) belongs to the genus Streptomyces and exhibits high sequence similarity to Streptomyces cocklensis DSM 42063(T) (98.9 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-HZ10(T) clustered with S. cocklensis DSM 42063(T), Streptomyces yeochonensis CGMCC 4.1882(T) (98.7 %), Streptomyces paucisporeus CGMCC 4.2025(T) (98.4 %) and Streptomyces yanglinensis CGMCC 4.2023(T) (98.1 %). However, a combination of DNA-DNA hybridisation results and some phenotypic characteristics indicated that strain NEAU-HZ10(T) can be distinguished from its phylogenetically closely related strains. Therefore, it is proposed that strain NEAU-HZ10(T) represents a novel species of the genus Streptomyces for which the name Streptomyces bryophytorum sp. nov. is proposed. The type strain is NEAU-HZ10(T) (= CGMCC 4.7151(T) = DSM 42138(T)).

  4. Resistance of soil microorganisms to starvation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1972-01-01

    Most groups of soil microorganisms died when exposed to prolonged starvation in a carbon-free solution, but the relative abundance of Bacillus and actinomycetes increased with time. Certain nonspore-forming bacteria also persisted. The ability of individual soil isolates to endure starvation in solution was not correlated with their glycogen content or rate of endogenous respiration. However, cells of the resistant populations were rich in poly-beta-hydroxybutyrate, whereas the starvation-susceptible bacteria generally contained little of this substance. Poly-beta-hydroxybutyrate was used rapidly in cells deprived of exogenous sources of carbon.

  5. Individual Patterns of Complexity in Cystic Fibrosis Lung Microbiota, Including Predator Bacteria, over a 1-Year Period.

    PubMed

    de Dios Caballero, Juan; Vida, Rafael; Cobo, Marta; Máiz, Luis; Suárez, Lucrecia; Galeano, Javier; Baquero, Fernando; Cantón, Rafael; Del Campo, Rosa

    2017-09-26

    Cystic fibrosis (CF) lung microbiota composition has recently been redefined by the application of next-generation sequencing (NGS) tools, identifying, among others, previously undescribed anaerobic and uncultivable bacteria. In the present study, we monitored the fluctuations of this ecosystem in 15 CF patients during a 1-year follow-up period, describing for the first time, as far as we know, the presence of predator bacteria in the CF lung microbiome. In addition, a new computational model was developed to ascertain the hypothetical ecological repercussions of a prey-predator interaction in CF lung microbial communities. Fifteen adult CF patients, stratified according to their pulmonary function into mild ( n = 5), moderate ( n = 9), and severe ( n = 1) disease, were recruited at the CF unit of the Ramón y Cajal University Hospital (Madrid, Spain). Each patient contributed three or four induced sputum samples during a 1-year follow-up period. Lung microbiota composition was determined by both cultivation and NGS techniques and was compared with the patients' clinical variables. Results revealed a particular microbiota composition for each patient that was maintained during the study period, although some fluctuations were detected without any clinical correlation. For the first time, Bdellovibrio and Vampirovibrio predator bacteria were shown in CF lung microbiota and reduced-genome bacterial parasites of the phylum Parcubacteria were also consistently detected. The newly designed computational model allows us to hypothesize that inoculation of predators into the pulmonary microbiome might contribute to the control of chronic colonization by CF pathogens in early colonization stages. IMPORTANCE The application of NGS to sequential samples of CF patients demonstrated the complexity of the organisms present in the lung (156 species) and the constancy of basic individual colonization patterns, although some differences between samples from the same patient were

  6. Streptomyces canalis sp. nov., an actinomycete isolated from an alkali-removing canal.

    PubMed

    Xie, Yu-Xuan; Han, Xiao-Xue; Luo, Xiao-Xia; Xia, Zhan-Feng; Wan, Chuan-Xing; Zhang, Li-Li

    2016-08-01

    A novel actinomycete strain, designated TRM 46794-61T, was isolated from an alkali-removing canal in 14th Farms of Xinjiang Production and Construction Corps, north-west China. The isolate contained ll-diaminopimelic acid as the diagnostic diamino acid. The whole-cell sugar patterns of the isolate contained ribose, mannose and glucose. The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannoside and two unidentified phospholipids. The predominant menaquinones were MK-9(H2), MK-9(H4), MK-9(H6) and MK-9(H8). The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. The G+C content of the DNA was 70.4 mol%. Phylogenetic analysis showed that strain TRM 46794-61T had a 16S rRNA gene sequence similarity of 97.6 % with the most closely related species with a validly published name, Streptomyces aidingensis TRM 46012T, and it could be distinguished from all species in the genus Streptomyces based on data from this polyphasic taxonomic study. However, DNA-DNA hybridization studies between strain TRM 46794-61T and S.aidingensis TRM 46012T showed only 45.4 % relatedness. On the basis of these data, strain TRM 46794-61T should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces canalis sp. nov. is proposed. The type strain is TRM 46794-61T (=CCTCC AA 2015006T=KCTC 39568T).

  7. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  8. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  9. Bad bacteria in acute appendicitis: rare but relevant.

    PubMed

    Reinisch, Alexander; Malkomes, Patrizia; Habbe, Nils; Bechstein, Wolf Otto; Liese, Juliane

    2017-09-01

    Bacterial infections are a factor for morbidity in patients with acute appendicitis (AA). The spreading of multidrug-resistant (MDR) bacteria is a significant problem in surgery, and the most relevant MDR pathogens are summarized as Enterobacteriaceae, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococci (ESKAPE) bacteria. Data regarding the species and distribution of bacteria in AA are available, but information about the resistances and their relevance is deficient. In this retrospective study, we analyzed microbiological swabs of patients with AA. The outcome parameters of patients after laparoscopic appendectomy were analyzed against microbiological results, including antibiotic resistance testing. Positive swabs were compared with bacteria cultivated after alternative abdominal emergency surgery (AES). In total, 584 patients with AA were included and had a mean age of 35.5 years. In 216 patients (36.9%), a swab was taken, and in 128 (59.3%) swabs, bacteria could be cultivated. The most frequent organisms were Escherichia coli, Bacteroides species, and Pseudomonas. In 9.4% of the positive AA swabs, MDR germs were cultivated, and all of them were ESKAPE pathogens. Patients with MDR bacteria in AA suffered more infectious complications (p = 0.006) and needed longer hospitalizations (p < 0.009). In AES, aside from appendicitis, a different spectrum containing more MDR bacteria was cultivated (5.9 vs. 20.9%; p < 0.0001). Although they occur less frequently in appendectomy compared to emergency surgeries for other abdominal diseases, MDR bacteria are traceable in this common disease and contribute to additional morbidity.

  10. Fate and transport of bacteria injected into aquifers

    USGS Publications Warehouse

    Harvey, Ronald W.

    1993-01-01

    Advances in our understanding of the fate and transport of bacteria introduced into aquifers, including the potential use of genetically engineered bacteria for biorestoration, are highlighted by new findings in the following areas: modeling of bacterial attachment during transport through porous media, the long-term survival of a chlorobenzoate-degrading bacterium injected into a contaminated sandy aquifer, and molecular techniques that may be used in tracking genetically engineered bacteria in groundwater environments.

  11. [Streptoverticillium griseoviridum n. sp., a producer of the candidin-amphotericin B group, antifungal heptaene nonaromatic antibiotic 0185].

    PubMed

    Konev, Iu E; Efimova, V M; Etingov, E D; Zaval'naia, N M

    1978-02-01

    An actinomyceteous strain LIA-0185 producing a heptaenic non-aromatic antibiotic of the candidin type was isolated from a soil sample taken in the Georgian SSR under the programme of screening antifungal antibiotics. The taxonomic study of the strain showed that it belonged to the series of viridoflavum and had the following main taxonomic features: the sporophores in the whorls, straight, remote: the aerial mycelium from yellow to dark-olive-grey; the substrate mycelium olive; the soluble pigment absent; the melanine pigment was produced on the peptone medium; the culture formed H2S; assimilated glucose, mannose, inozide and to a lesser extent fructose; did not assimilate arabinose, xylose, sucrose, lactose, ramnose and raffinose. The strain inhibited the growth of yeast and fungi, grampositive bacteria and actinomycetes and produced a complex of non-aromatic heptaenic antibiotics. The actinomycete differed from the other whorl cultures. It was classified as a new species Sv. griseoviridum sp. nov. The antibiotic complex was a mixture of 2 components, i. e. I and II present approximately in equal amounts. Component II was analogous to candidin. Component I was a new original substance.

  12. Effects of marine actinomycete on the removal of a toxicity alga Phaeocystis globose in eutrophication waters.

    PubMed

    Zhang, Huajun; Zhang, Su; Peng, Yun; Li, Yi; Chen, Zhangran; Xu, Hong; Yu, Zhiming; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Phaeocystis globosa blooms in eutrophication waters can cause severely damage in marine ecosystem and consequently influence human activities. This study investigated the effect and role of an algicidal actinomycete (Streptomyces sp. JS01) on the elimination process of P. globosa. JS01 supernatant could alter algal cell membrane permeability in 4 h when analyzed with flow cytometry. Reactive oxygen species (ROS) levels were 7.2 times higher than that at 0 h following exposure to JS01 supernatant for 8 h, which indicated that algal cells suffered from oxidative damage. The Fv/Fm value which could reflect photosystem II (PS II) electron flow status also decreased. Real-time PCR showed that the expression of the photosynthesis related genes psbA and rbcS were suppressed by JS01 supernatant, which might induce damage to PS II. Our results demonstrated that JS01 supernatant can change algal membrane permeability in a short time and then affect photosynthesis process, which might block the PS II electron transport chain to produce excessive ROS. This experiment demonstrated that Streptomyces sp. JS01 could eliminate harmful algae in marine waters efficiently and may be function as a harmful algal bloom controller material.

  13. Effects of marine actinomycete on the removal of a toxicity alga Phaeocystis globose in eutrophication waters

    PubMed Central

    Zhang, Huajun; Zhang, Su; Peng, Yun; Li, Yi; Chen, Zhangran; Xu, Hong; Yu, Zhiming; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Phaeocystis globosa blooms in eutrophication waters can cause severely damage in marine ecosystem and consequently influence human activities. This study investigated the effect and role of an algicidal actinomycete (Streptomyces sp. JS01) on the elimination process of P. globosa. JS01 supernatant could alter algal cell membrane permeability in 4 h when analyzed with flow cytometry. Reactive oxygen species (ROS) levels were 7.2 times higher than that at 0 h following exposure to JS01 supernatant for 8 h, which indicated that algal cells suffered from oxidative damage. The Fv/Fm value which could reflect photosystem II (PS II) electron flow status also decreased. Real-time PCR showed that the expression of the photosynthesis related genes psbA and rbcS were suppressed by JS01 supernatant, which might induce damage to PS II. Our results demonstrated that JS01 supernatant can change algal membrane permeability in a short time and then affect photosynthesis process, which might block the PS II electron transport chain to produce excessive ROS. This experiment demonstrated that Streptomyces sp. JS01 could eliminate harmful algae in marine waters efficiently and may be function as a harmful algal bloom controller material. PMID:26042109

  14. Streptomyces tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.).

    PubMed

    Zhao, Junwei; Shi, Linlin; Li, Wenchao; Wang, Jiabin; Wang, Han; Tian, Yuanyuan; Xiang, Wensheng; Wang, Xiangjing

    2018-02-01

    Two novel actinomycete isolates, designated strains NEAU-A4 T and NEAU-A3, were isolated from rhizosphere soil of wheat (Triticumaestivum L.) and characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics of the two strains coincided with those of the genus Streptomyces. The 16S rRNA gene sequence analysis showed that the two isolates exhibited 99.6 % 16S rRNA gene sequence similarity with each other and that they were most closely related to Streptomyces violaceorectus DSM 40279 T (98.8, 99.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains clustered together and formed a separate subclade. Furthermore, a combination of DNA-DNA hybridization results and some physiological and biochemical properties demonstrated that the two strains could be distinguished from its closest relative. Therefore, it is proposed that strains NEAU-A4 T and NEAU-A3 should be classified as representatives of a novel species of the genus Streptomyces, for which the name Streptomycestritici sp. nov. is proposed. The type strain is NEAU-A4 T (=CGMCC 4.7393 T =DSM 104540 T ).

  15. Biosynthetic Potential-Based Strain Prioritization for Natural Product Discovery: A Showcase for Diterpenoid-Producing Actinomycetes

    PubMed Central

    2015-01-01

    Natural products remain the best sources of drugs and drug leads and serve as outstanding small-molecule probes to dissect fundamental biological processes. A great challenge for the natural product community is to discover novel natural products efficiently and cost effectively. Here we report the development of a practical method to survey biosynthetic potential in microorganisms, thereby identifying the most promising strains and prioritizing them for natural product discovery. Central to our approach is the innovative preparation, by a two-tiered PCR method, of a pool of pathway-specific probes, thereby allowing the survey of all variants of the biosynthetic machineries for the targeted class of natural products. The utility of the method was demonstrated by surveying 100 strains, randomly selected from our actinomycete collection, for their biosynthetic potential of four classes of natural products, aromatic polyketides, reduced polyketides, nonribosomal peptides, and diterpenoids, identifying 16 talented strains. One of the talented strains, Streptomyces griseus CB00830, was finally chosen to showcase the discovery of the targeted classes of natural products, resulting in the isolation of three diterpenoids, six nonribosomal peptides and related metabolites, and three polyketides. Variations of this method should be applicable to the discovery of other classes of natural products. PMID:24484381

  16. Extracellular deoxyribonuclease production by periodontal bacteria.

    PubMed

    Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R

    2012-08-01

    Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.

  17. Streptomyces salilacus sp. nov., an actinomycete isolated from a salt lake.

    PubMed

    Luo, Xiao-Xia; Gao, Guang-Bin; Xia, Zhan-Feng; Chen, Zheng-Jun; Wan, Chuan-Xing; Zhang, Li-Li

    2018-05-01

    The taxonomic position of a novel actinomycete, strain TRM 41337 T , isolated from sediment of a salt lake, Xiaoerkule Lake, Xinjiang, China, was determined by a polyphasic approach. Strain TRM 41337 T grew optimally at 28 °C and in the presence of 1 % (w/v) NaCl. It grew at up to pH 12. The whole-cell sugars of strain TRM 41337 T were ribose and xylose. The diagnostic diamino acid contained ll-diaminopimelic acid. The polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside and two other unidentified phospholipids. The predominant menaquinones were MK-9(H8), MK-9, MK-9(H4) and MK-9(H6). The major fatty acids were iso-C16 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 1 H. Based on morphological and chemotaxonomic characteristics, the isolate was determined to belong to the genus Streptomyces. The phylogenetic tree based on its nearly complete 16S rRNA gene sequence (1498 nt) with representative strains showed that the strain consistently falls into a distinct phyletic lineage together with Streptomyces barkulensis DSM 42082 T (97.48 % similarity) and a subclade consisting of Streptomyces fenghuangensis GIMN 4.003 T (97.20 %), Streptomyces macrosporus NBRC 14748 T (97.14 %) and Streptomyces radiopugnans R97 T (97.01 %). On the basis of these data, strain TRM 41337 T should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces salilacus sp. nov. is proposed. The type strain is TRM 41337 T (=CCTCC AA 2015030 T =KCTC 39726 T ).

  18. An efficient approach for cloning the dNDP-glucose synthase gene from actinomycetes and its application in Streptomyces spectabilis, a spectinomycin producer.

    PubMed

    Hyun, C; Kim, S S; Sohng, J K; Hahn, J; Kim, J; Suh, J

    2000-02-01

    Specifically designed PCR primers were applied to amplify a segment of dTDP-glucose synthase gene from six actinomycete strains. About 300-bp or 580-bp DNA fragments were obtained from all the organisms tested. By DNA sequence analysis, seven amplified fragments showed high homology with dTDP-glucose synthase genes that participate in the biosynthesis of secondary metabolites or in deoxy-sugar moieties in lipopolysaccharides. In addition, we have cloned a 45-kb region of DNA from Streptomyces spectabilis ATCC27741, a spectinomycin producer which contained the dTDP-glucose synthase and dTDP-glucose 4,6-dehydratase genes named spcD and spcE, respectively. The spcE gene was expressed in Escherichia coli and the activity was assayed in cell extracts. The enzyme showed substrate specificity only to dTDP-glucose.

  19. Positive and negative feedback regulatory loops of thiol-oxidative stress response mediated by an unstable isoform of sigmaR in actinomycetes.

    PubMed

    Kim, Min-Sik; Hahn, Mi-Young; Cho, Yoobok; Cho, Sang-Nae; Roe, Jung-Hye

    2009-09-01

    Alternate sigma factors provide an effective way of diversifying bacterial gene expression in response to environmental changes. In Streptomyces coelicolor where more than 65 sigma factors are predicted, sigma(R) is the major regulator for response to thiol-oxidative stresses. sigma(R) becomes available when its bound anti-sigma factor RsrA is oxidized at sensitive cysteine thiols to form disulphide bonds. sigma(R) regulon includes genes for itself and multiple thiol-reducing systems, which constitute positive and negative feedback loops respectively. We found that the positive amplification loop involves an isoform of sigma(R) (sigma(R')) with an N-terminal extension of 55 amino acids, produced from an upstream start codon. A major difference between constitutive sigma(R) and inducible sigma(R') is that the latter is markedly unstable (t(1/2) approximately 10 min) compared with the former (> 70 min). The rapid turnover of sigma(R') is partly due to induced ClpP1/P2 proteases from the sigma(R) regulon. This represents a novel way of elaborating positive and negative feedback loops in a control circuit. Similar phenomenon may occur in other actinomycetes that harbour multiple start codons in the sigR homologous gene. We observed that sigH gene, the sigR orthologue in Mycobacterium smegmatis, produces an unstable larger isoform of sigma(H) upon induction by thiol-oxidative stress.

  20. Bacteria in atmospheric waters: Detection, characteristics and implications

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou

    2018-04-01

    In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.

  1. Chemotactic selection of pollutant degrading soil bacteria

    DOEpatents

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  2. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  3. Production of Value-added Products by Lactic Acid Bacteria

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  4. A Trojan-Horse Strategy Including a Bacterial Suicide Action for the Efficient Use of a Specific Gram-Positive Antibiotic on Gram-Negative Bacteria.

    PubMed

    Schalk, Isabelle J

    2018-05-10

    In the alarming context of rising bacterial antibiotic resistance, there is an urgent need to discover new antibiotics or increase and/or enlarge the activity of those currently in use. The need for new antibiotics is even more urgent in the case of Gram-negative bacteria, such as Acinetobacter, Pseudomonas, and Enterobacteria, which have become resistant to many antibiotics and have an outer membrane with very low permeability to drugs. Vectorization of antibiotics using siderophores may be a solution to bypass such a bacterial wall: the drugs use the iron transporters of the outer membrane as gates to enter bacteria in a Trojan-horse strategy. Designing siderophore-antibiotics that can cross outer membranes has become almost routine, but their transport across the inner membrane is still a limiting step, as well as a strategy that allows dissociation of the antibiotic from the siderophore once inside the bacteria. Liu et al. ( J. Med. Chem. 2018 , DOI: 10.1021/acs.jmedchem.8b00218 ) report the synthesis of a siderophore-cephalosporin compound and demonstrate that β-lactams, such as cephalosporins, can serve as β-lactamase-triggered releasable linkers to allow intracellular delivery of Gram-positive antibiotics to Gram-negative bacteria.

  5. Optimization of Antimicrobial Production by a Marine Actinomycete Streptomyces afghaniensis VPTS3-1 Isolated from Palk Strait, East Coast of India.

    PubMed

    Vijayakumar, R; Panneerselvam, K; Muthukumar, C; Thajuddin, N; Panneerselvam, A; Saravanamuthu, R

    2012-06-01

    Totally 25 marine soil samples were collected from the region of Palk Strait of Bay of Bengal, Tamil Nadu, and were subjected to the isolation of actinomycetes. Sixty-eight morphologically distinct isolates were obtained and 37% (25) of them had antimicrobial activity. The potential producer was named as Streptomyces sp. VPTS3-1 and the phylogenetic evaluation on the basis of 16S rDNA sequence further categorized the organism as Streptomyces afghaniensis VPTS3-1. Further, the antimicrobial compound was extracted from the isolate using various solvents and the antimicrobial efficacies were tested against bacterial and fungal pathogens. In addition, in vitro optimization of parameters for the antimicrobial compound production revealed that the suitable pH as 7-8, the period of incubation as 9 days, temperature (30°C), salinity (2%), and starch and KNO3 as the suitable carbon and nitrogen sources respectively in starch-casein medium.

  6. Streptomyces kronopolitis sp. nov., an actinomycete that produces phoslactomycins isolated from a millipede (Kronopolites svenhedind Verhoeff).

    PubMed

    Liu, Chongxi; Ye, Lan; Li, Yao; Jiang, Shanwen; Liu, Hui; Yan, Kai; Xiang, Wensheng; Wang, Xiangjing

    2016-12-01

    A phoslactomycin-producing actinomycete, designated strain NEAU-ML8T, was isolated from a millipede (Kronopolites svenhedind Verhoeff) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain NEAU-ML8T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces lydicus NBRC 13058T (99.39 %) and Streptomyces chattanoogensis DSM 40002T (99.25 %). The maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences showed that the isolate formed a distinct phyletic line with NBRC 13058T and S. chattanoogensis DSM 40002T. This branching pattern was also supported by the tree rconstructed with the neighbour-joining method. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain NEAU-ML8T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that NEAU-ML8T could be distinguished from NBRC 13058T and S. chattanoogensis DSM 40002T. Therefore, it is concluded that strain NEAU-ML8T can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces kronopolitis sp. nov. is proposed. The type strain is NEAU-ML8T (=DSM 101986T=CGMCC 4.7323T).

  7. Microfluidic Transducer for Detecting Nanomechanical Movements of Bacteria

    NASA Astrophysics Data System (ADS)

    Kara, Vural; Ekinci, Kamil

    2017-11-01

    Various nanomechanical movements of bacteria are currently being explored as an indication of bacterial viability. Most notably, these movements have been observed to subside rapidly and dramatically when the bacteria are exposed to an effective antibiotic. This suggests that monitoring bacterial movements, if performed with high fidelity, can offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and sensitive microfluidic transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microchannel which the bacteria populate. These electrical fluctuations are caused by the swimming of motile, planktonic bacteria and random oscillations of surface-immobilized bacteria. The technique provides enough sensitivity to detect even the slightest movements of a single cell and lends itself to smooth integration with other microfluidic methods and devices; it may eventually be used for rapid antibiotic susceptibility testing. We acknowledge support from Boston University Office of Technology Development, Boston University College of Engineering, NIH (1R03AI126168-01) and The Wallace H. Coulter Foundation.

  8. Cloning and characterization of the first actinomycete β-propeller phytase from Streptomyces sp. US42.

    PubMed

    Boukhris, Ines; Farhat-Khemakhem, Ameny; Bouchaala, Kameleddine; Virolle, Marie-Joëlle; Chouayekh, Hichem

    2016-10-01

    A gene encoding an extracellular phytase was cloned for the first time from an Actinomycete, Streptomyces sp. US42 and sequenced. The sequence of this gene revealed an encoded polypeptide (PHY US42) exhibiting one and six residues difference with the putative phytases of Streptomyces lividans TK24 and Streptomyces coelicolor A3(2), respectively. The molecular modeling of PHY US42 indicated that this phytase belongs to the group of β-propeller phytases that are usually calcium-dependent. PHY US42 was purified and characterized. Its activity was calcium-dependent and maximal at pH 7 and 65 °C. The enzyme was perfectly stable at pH ranging from 5 to 10 and its thermostability was greatly enhanced in the presence of calcium. Indeed, PHY US42 maintained 80% of activity after 10 min of incubation at 75 °C in the presence of 5 mM CaCl 2 . PHY US42 was also found to exhibit high stability after incubation at 37 °C for 1 h in the presence of bovine bile and digestive proteases like of pepsin, trypsin, and chymotrypsin. Considering its biochemical properties, PHY US42 could be used as feed additive in combination with an acid phytase for monogastric animals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Assessment of Workers' Exposure to Grain Dust and Bioaerosols During the Loading of Vessels' Hold: An Example at a Port in the Province of Québec.

    PubMed

    Marchand, Geneviève; Gardette, Marie; Nguyen, Kiet; Amano, Valérie; Neesham-Grenon, Eve; Debia, Maximilien

    2017-08-01

    Longshoremen are exposed to large amounts of grain dust while loading of grain into the holds of vessels. Grain dust inhalation has been linked to respiratory diseases such as chronic bronchitis, hypersensitivity, pneumonitis, and toxic pneumonitis. Our objective was to characterize the exposure of longshoremen to inhalable and total dust, endotoxins, and cultivable bacteria and fungi during the loading of grain in a vessel's hold at the Port of Montreal in order to assess the potential health risks. Sampling campaigns were conducted during the loading of two different types of grain (wheat and corn). Environmental samples of microorganisms (bacteria, fungus, and actinomycetes) were taken near the top opening of the ship's holds while personal breathing zone measurements of dust and endotoxins were sampled during the worker's 5-hour shifts. Our study show that all measurements are above the recommendations with concentration going up to 390 mg m-3 of total dust, 89 mg m-3 of inhalable fraction, 550 000 EU m-3 of endotoxins, 20 000 CFU m-3 of bacteria, 61 000 CFU m-3 of fungus and 2500 CFU m-3 of actinomycetes. In conclusion, longshoremen are exposed to very high levels of dust and of microorganisms and their components during grain loading work. Protective equipment needs to be enforced for all workers during such tasks in order to reduce their exposure. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  10. The spread of carbapenemase-producing bacteria in Africa: a systematic review

    PubMed Central

    Manenzhe, Rendani I.; Zar, Heather J.; Nicol, Mark P.; Kaba, Mamadou

    2015-01-01

    Background Carbapenems are the last line of defence against ever more prevalent MDR Gram-negative bacteria, but their efficacy is threatened worldwide by bacteria that produce carbapenemase enzymes. The epidemiology of bacteria producing carbapenemases has been described in considerable detail in Europe, North America and Asia; however, little is known about their spread and clinical relevance in Africa. Methods We systematically searched in PubMed, EBSCOhost, Web of Science, Scopus, Elsevier Masson Consulte and African Journals Online, international conference proceedings, published theses and dissertations for studies reporting on carbapenemase-producing bacteria in Africa. We included articles published in English or French up to 28 February 2014. We calculated the prevalence of carbapenemase producers only including studies where the total number of isolates tested was at least 30. Results Eighty-three studies were included and analysed. Most studies were conducted in North Africa (74%, 61/83), followed by Southern Africa (12%, 10/83), especially South Africa (90%, 9/10), West Africa (8%, 7/83) and East Africa (6%, 6/83). Carbapenemase-producing bacteria were isolated from humans, the hospital environment and community environmental water samples, but not from animals. The prevalence of carbapenemase-producing isolates in hospital settings ranged from 2.3% to 67.7% in North Africa and from 9% to 60% in sub-Saharan Africa. Conclusions Carbapenemase-producing bacteria have been described in many African countries; however, their prevalence is poorly defined and has not been systematically studied. Antibiotic stewardship and surveillance systems, including molecular detection and genotyping of resistant isolates, should be implemented to monitor and reduce the spread of carbapenemase-producing bacteria. PMID:25261423

  11. Streptomyces euryhalinus sp. nov., a new actinomycete isolated from a mangrove forest.

    PubMed

    Biswas, Kaushik; Choudhury, Jayanta D; Mahansaria, Riddhi; Saha, Malay; Mukherjee, Joydeep

    2017-06-01

    A Gram-positive, aerobic, non-motile actinomycete (strain MS 3/20 T ) was isolated from the sediment of the Sundarbans mangrove forest in India. On International Streptomyces Project (ISP) medium 2, the isolate produced yellowish brown to red aerial hyphae that carried spiny-surfaced spores in a retinaculum-apertum arrangement. Whole-cell hydrolysate of the strain contained LL-diaminopimelic acid and galactose. Predominant menaquinones were MK-9(H 8 ) and MK-9(H 6 ). Diagnostic polar lipids were glycolipid, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unidentified phospholipid and unidentified amino lipid. The major fatty acids were anteiso-C 15:0 (17.53%), iso-C 16:0 (23.89%) and anteiso-C 17:0 (10.29%). The strain showed 100% 16S ribosomal RNA (rRNA) gene sequence similarity with Streptomyces variabilis NBRC 12825 T , Streptomyces erythrogriseus LMG 19406 T , Streptomyces griseoincarnatus LMG 19316 T and Streptomyces labedae NBRC 15864 T . However, strain MS 3/20 T could be distinguished from these and seven other closely related species based on low levels of DNA-DNA relatedness (27.2-53.8%), supported by the unique banding pattern obtained from random amplified polymorphic DNA-PCR amplification and the distinctive matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) profile of whole-cell proteins acquired for strain MS 3/20 T in comparison with its phylogenetic relatives. Disparate morphological, physiological and chemotaxonomic features, principally growth in NaCl, further corroborated the distinction of strain MS 3/20 T from other phylogenetic relatives. Strain MS 3/20 T is therefore suggested to be a novel species of the genus Streptomyces, for which the name Streptomyces euryhalinus sp. nov. is proposed. The type strain is MS 3/20 T (=CICC 11032 T =DSM 103378 T ).

  12. Fate and distribution of brevetoxin (PbTx) following lysis of Karenia brevis by algicidal bacteria, including analysis of open A-ring derivatives.

    PubMed

    Roth, Patricia B; Twiner, Michael J; Wang, Zhihong; Bottein Dechraoui, Marie-Yasmine; Doucette, Gregory J

    2007-12-15

    Flavobacteriaceae (strain S03) and Cytophaga sp. (strain 41-DBG2) are algicidal bacteria active against the brevetoxin (PbTx)-producing, red tide dinoflagellate, Karenia brevis. Little is known about the fate of PbTx associated with K. brevis cells following attack by such bacteria. The fate and distribution of PbTx in K. brevis cultures exposed to these algicidal strains were thus examined by receptor binding assay and liquid chromatography/mass spectrometry (LC/MS) in three size fractions (>5, 0.22-5, <0.22microm) over a 2-week time course. In control cultures, brevetoxin concentrations in the >5microm particulate size fraction correlated with changes in cell density, whereas significant increases in dissolved (i.e., <0.22microm) toxin were observed in the later stages of culture growth. Exposure of K. brevis to either of the two algicidal bacteria tested caused cell lysis, coinciding with a rapid decline in the >5microm PbTX size fraction and a simultaneous release of dissolved toxin into the growth medium. Upon cell lysis, dissolved brevetoxin accounted for ca. 60% of total toxin and consisted of 51-82% open A-ring derivatives. Open A-ring PbTx-2 and PbTx-3 derivatives bound with lower affinity (approximately 22- and 57-fold, respectively) to voltage-gated sodium channels and were considerably less cytotoxic (86- and 142-fold, respectively) to N2A cells than their individual parent toxins (i.e., PbTx-2 and PbTx-3). These novel findings of changes in PbTx size-fractioned distribution and overall reduction in K. brevis toxicity following attack by algicidal bacteria improve our understanding of potential trophic transfer routes and the fate of PbTx during red tide events. Moreover, this information will be important to consider when evaluating the potential role of algicidal bacteria in harmful algal bloom (HAB) management strategies involving control of bloom populations.

  13. Relations between hydrology, water quality, and taste-and-odor causing organisms and compounds in Lake Houston, Texas, April 2006-September 2008

    USGS Publications Warehouse

    Beussink, Amy M.; Graham, Jennifer L.

    2011-01-01

    Lake Houston is a surface-water-supply reservoir and an important recreational resource for the city of Houston, Texas. Growing concerns over water quality in Lake Houston prompted a detailed assessment of water quality in the reservoir. The assessment focused on water-quality constituents that affect the aesthetic quality of drinking water. The hydrologic and water-quality conditions influencing the occurrence of taste-and-odor causing organisms and compounds in Lake Houston were assessed using discrete and continuously monitored water-quality data collected during April 2006– September 2008. The hydrology of Lake Houston is characterized by rapidly changing conditions. During inflow events, water residence time can change by orders of magnitude within a matter of hours. Likewise, the reservoir can stratify and destratify over a period of several hours, even during non-summer and at relatively short water residence times, given extended periods with warm temperatures and little wind. The rapidly changing hydrology likely influences all other aspects of water quality in Lake Houston, including the occurrence of taste-and-odor causing organisms and compounds. Water quality in Lake Houston varied with respect to season and water residence time but typically was indicative of turbid, eutrophic to hypereutrophic conditions. In general, turbidity and nutrient concentrations were largest during non-summer (October–May) and when water residence times were relatively short (less than 100 days), which reflects the influence of inflow events on water-quality conditions. Large inflow events can cause substantial changes in water-quality conditions over relatively short periods of time (hours). The taste-and-odor causing organisms cyanobacteria and actinomycetes bacteria were always present in Lake Houston. Cyanobacterial biovolume was largest during summer (June– September) and when water residence time was greater than 100 days. Annual maxima in cyanobacterial

  14. Protist-Bacteria Associations: Gammaproteobacteria and Alphaproteobacteria Are Prevalent as Digestion-Resistant Bacteria in Ciliated Protozoa

    PubMed Central

    Gong, Jun; Qing, Yao; Zou, Songbao; Fu, Rao; Su, Lei; Zhang, Xiaoli; Zhang, Qianqian

    2016-01-01

    Protistan bacterivory, a microbial process involving ingestion and digestion, is ecologically important in the microbial loop in aquatic and terrestrial ecosystems. While bacterial resistance to protistan ingestion has been relatively well understood, little is known about protistan digestion in which some ingested bacteria could not be digested in cells of major protistan grazers in the natural environment. Here we report the phylogenetic identities of digestion-resistant bacteria (DRB) that could survive starvation and form relatively stable associations with 11 marine and one freshwater ciliate species. Using clone library and sequencing of 16S rRNA genes, we found that the protistan predators could host a high diversity of DRB, most of which represented novel bacterial taxa that have not been cultivated. The localization inside host cells, quantity, and viability of these bacteria were checked using fluorescence in situ hybridization. The DRB were affiliated with Actinobacteria, Bacteroidetes, Firmicutes, Parcubacteria (OD1), Planctomycetes, and Proteobacteria, with Gammaproteobacteria and Alphaproteobacteria being the most frequently occurring classes. The dominance of Gamma- and Alphaproteobacteria corresponds well to a previous study of Global Ocean Sampling metagenomic data showing the widespread types of bacterial type VI and IV secretion systems (T6SS and T4SS) in these two taxa, suggesting a putatively significant role of secretion systems in promoting marine protist-bacteria associations. In the DRB assemblages, opportunistic bacteria such as Alteromonadaceae, Pseudoalteromonadaceae, and Vibrionaceae often presented with high proportions, indicating these bacteria could evade protistan grazing thus persist and accumulate in the community, which, however, contrasts with their well-known rarity in nature. This begs the question whether viral lysis is significant in killing these indigestible bacteria in microbial communities. Taken together, our study on

  15. Genotypic characterization of bacteria cultured from duck faeces.

    PubMed

    Murphy, J; Devane, M L; Robson, B; Gilpin, B J

    2005-01-01

    To characterize the bacterial composition of mallard duck faeces and determine if novel bacterial species are present that could be utilized as potential indicators of avian faecal contamination. Combined samples of fresh faeces from four ducks were serially diluted and plated onto six different media selected to allow the growth of a range of organisms at 42 degrees C under three atmospheric conditions: aerobic, microaerophilic and anaerobic. Forty-seven morphologically dissimilar isolates were purified and partial sequencing of the16S rRNA indicated at least 31 bacterial species. Twenty of these could be identified to the species level including pathogenic species of Bacillus, Campylobacter, Clostridium and Streptococcus. Other species identified included: Enterococcus, Escherichia, Megamonas, Cellulosimicrobium, Neisseria, Staphylococcus and Veillonella. Potentially novel species, which could represent bacteria specific to avian fauna included Bacillus, Corynebacterium, Macrococcus and Peptostreptococcus, while four isolates had <97% similarity to known bacterial species in the available databases. A survey of the natural microflora of the mallard duck and its hybrid with the grey duck identified both bacteria that are potentially human pathogenic and putative novel bacteria species as determined by 16S rRNA sequencing. This study provides further evidence that duck faeces is a potential human health hazard, and has identified bacteria potentially useful for distinguishing duck faeces from other faecal sources.

  16. Transition Metals and Virulence in Bacteria.

    PubMed

    Palmer, Lauren D; Skaar, Eric P

    2016-11-23

    Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.

  17. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    PubMed Central

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and remove them from the oral cavity. To test this hypothesis, we developed two methods to quantify numbers of bacteria trapped in chewed gum. In the first method, known numbers of bacteria were finger-chewed into gum and chewed gums were molded to standard dimensions, sonicated and plated to determine numbers of colony-forming-units incorporated, yielding calibration curves of colony-forming-units retrieved versus finger-chewed in. In a second method, calibration curves were created by finger-chewing known numbers of bacteria into gum and subsequently dissolving the gum in a mixture of chloroform and tris-ethylenediaminetetraacetic-acid (TE)-buffer. The TE-buffer was analyzed using quantitative Polymerase-Chain-Reaction (qPCR), yielding calibration curves of total numbers of bacteria versus finger-chewed in. Next, five volunteers were requested to chew gum up to 10 min after which numbers of colony-forming-units and total numbers of bacteria trapped in chewed gum were determined using the above methods. The qPCR method, involving both dead and live bacteria yielded higher numbers of retrieved bacteria than plating, involving only viable bacteria. Numbers of trapped bacteria were maximal during initial chewing after which a slow decrease over time up to 10 min was observed. Around 108 bacteria were detected per gum piece depending on the method and gum considered. The number of species trapped in chewed gum increased with chewing time. Trapped bacteria were clearly visualized in chewed gum using scanning-electron-microscopy. Summarizing, using novel methods to quantify and qualify oral bacteria trapped in chewed gum, the hypothesis is confirmed that chewing of gum can trap

  18. Quantification of spatial distribution and spread of bacteria in soil at microscale

    NASA Astrophysics Data System (ADS)

    Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Baveye, Philippe; Otten, Wilfred

    2015-04-01

    Soil bacteria play an essential role in functioning of ecosystems and maintaining of biogeochemical cycles. Soil is a complex heterogeneous environment comprising of highly variable and dynamic micro-habitats that have significant impacts on the growth and activity of resident microbiota including bacteria and fungi. Bacteria occupy a very small portion of available pore space in soil which demonstrates that their spatial arrangement in soil has a huge impact on the contact to their target and on the way they interact to carry out their functions. Due to limitation of techniques, there is scant information on spatial distribution of indigenous or introduced bacteria at microhabitat scale. There is a need to understand the interaction between soil structure and microorganisms including fungi for ecosystem-level processes such as carbon sequestration and improving the predictive models for soil management. In this work, a combination of techniques was used including X-ray CT to characterize the soil structure and in-situ detection via fluorescence microscopy to visualize and quantify bacteria in soil thin sections. Pseudomonas fluorescens bacteria were introduced in sterilized soil of aggregate size 1-2 mm and packed at bulk-densities 1.3 g cm-3 and 1.5 g cm-3. A subset of samples was fixed with paraformaldehyde and subsequently impregnated with resin. DAPI and fluorescence in situ hybridization (FISH) were used to visualize bacteria in thin sections of soil cores by epifluorescence microscopy to enumerate spatial distribution of bacteria in soil. The pore geometry of soil was quantified after X-ray microtomography scanning. The distribution of bacteria introduced locally reduced significantly (P

  19. [Effects of tree species transition on soil microbial community composition and functions in subtropical China].

    PubMed

    Ding, Guo Chang; Wang, Xiao Hua; Yang, Qi Fan; Lin, Qun Xing; Huang, Zhi Qun

    2017-11-01

    We employed a comparative study to examine the effects of tree species transition on soil microbial biomass, community composition and enzymes activities under Cunninghamia lanceolata (Lamb.) Hook, Eucalyptus grandis and a N-fixing species, Acacia melanoxylon in subtropical China. Results showed that the effect of tree species on soil microbial community and enzymes activities was significant only in the 0-10 cm soil layer. Reforestation with N-fixing species A. melanoxylon on the C. lanceolata harvest site significantly increased the total phospholipid fatty acid (PLFA), fungal PLFAs, Gram-positive bacterial PLFAs, Gram-negative bacterial PLFAs and actinomycetes biomasses in the 0-10 cm soil layer. The principal component analysis (PCA) showed that the soil microbial community composition in A. melanoxylon soil differed significantly from that in C. lanceolata and E. grandis soils. N-fixing species (A. melanoxylon) significantly enhanced the percent abundance of Gram-positive bacteria, Gram-negative bacteria and actinomycetes. Activities of cellobiohydrolase, N-acetyl-β-d-glucosaminidase and acid phosphatase were significantly higher under A. melanoxylon than under C. lanceolata and E. grandis plantations. Our results suggested that reforestation with N-fixing species, A. melanoxylon on C. lanceolata harvest site could increase soil microbial biomass, enzyme activities and soil organic matter content.

  20. The spread of carbapenemase-producing bacteria in Africa: a systematic review.

    PubMed

    Manenzhe, Rendani I; Zar, Heather J; Nicol, Mark P; Kaba, Mamadou

    2015-01-01

    Carbapenems are the last line of defence against ever more prevalent MDR Gram-negative bacteria, but their efficacy is threatened worldwide by bacteria that produce carbapenemase enzymes. The epidemiology of bacteria producing carbapenemases has been described in considerable detail in Europe, North America and Asia; however, little is known about their spread and clinical relevance in Africa. We systematically searched in PubMed, EBSCOhost, Web of Science, Scopus, Elsevier Masson Consulte and African Journals Online, international conference proceedings, published theses and dissertations for studies reporting on carbapenemase-producing bacteria in Africa. We included articles published in English or French up to 28 February 2014. We calculated the prevalence of carbapenemase producers only including studies where the total number of isolates tested was at least 30. Eighty-three studies were included and analysed. Most studies were conducted in North Africa (74%, 61/83), followed by Southern Africa (12%, 10/83), especially South Africa (90%, 9/10), West Africa (8%, 7/83) and East Africa (6%, 6/83). Carbapenemase-producing bacteria were isolated from humans, the hospital environment and community environmental water samples, but not from animals. The prevalence of carbapenemase-producing isolates in hospital settings ranged from 2.3% to 67.7% in North Africa and from 9% to 60% in sub-Saharan Africa. Carbapenemase-producing bacteria have been described in many African countries; however, their prevalence is poorly defined and has not been systematically studied. Antibiotic stewardship and surveillance systems, including molecular detection and genotyping of resistant isolates, should be implemented to monitor and reduce the spread of carbapenemase-producing bacteria. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    PubMed

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  2. Effect of common pesticides used in the Niger Delta basin of southern Nigeria on soil microbial populations.

    PubMed

    Ekundayo, E O

    2003-11-01

    The effects of eleven pesticides on the populations of bacteria, actinomycetes, fungi and protozoa was investigated by treating a garden soil with their recommended rates. The microbial populations were estimated using the standard plate-count technique. Of the 11 pesticides investigated, phenylmercuric acetate (agrosan) at 50 microg g(-1) inhibited bacterial density the most, i.e. from 4,600,000 to 220 cells g(-1). The pesticides were Pentachloronitrobenzene (PCNB), tetramethylmethylthiuram disulphide (thiram), 1-naphthylmethylcarbamate (Vetox 85), 1,2,3,4,5,6-hexachlorocyclohexane (Gammalin 20), phenylmercuric acetate (Agrosan), tetrachloroterephthalic acid (Dacthal), 4-nitrophenyl-2-nitro-4-trifluoromethylphenyl ether (Preforan), 2-ethyl-6-methyl-N-2-methoxy-1-methyl ethyl-chloroacetanide (Dual), Benlate, Brestan and Gramoxone. Pentachloronitrobenzene (PCNB) at 240,000 microg g(-1) reduced bacterial population from 4,600,000 to 2,100 cells g(-1), whereas tetramethylthiuram disulphide (thiram) at 100 microg g(-1) suppressed it by 2 log orders of magnitude. Soil application of 1-naphthylmethylcarbamate (Vetox 85) at 100 microg g(-1) and 1,2,3,4,5,6,-hexachlorocyclohexane (Gamalin 20) at 1,300 microg g(-1) repressed the bacterial numbers by 2 log orders of magnitude each. Pentachloronitrobenzene reduced the actinomycetes density from 340,000 to 320 cells g(-1) and completely eliminated all fungal and protozoan propagules from the soil. The Gammalin 20 completely wiped out all the fungi, whereas phenylmercuric acetate totally eliminated all the protozoa and reduced the fungal population from 34,000 to 60 cells g(-1). In general, protozoa and fungi were more susceptible to fungicides than bacteria and actinomycetes. Pentachloronitrobenzene, 1,2,3,4,5,6,-hexachlorocyclohexane and phenylmercuric acetate were toxic particularly to soil microorganisms, whereas the herbicides dacthal, Preforan and Dual were quite harmless in soil at application rates of 0.1, 0.06 and 0

  3. New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae.

    PubMed

    Pullen, Christian; Schmitz, Petra; Meurer, Kristina; Bamberg, Daniel D v; Lohmann, Stephanie; De Castro França, Suzelei; Groth, Ingrid; Schlegel, Brigitte; Möllmann, Ute; Gollmick, Friedrich; Gräfe, Udo; Leistner, Eckhard

    2002-11-01

    Wood from three different plants of the Celastraceae growing in their natural habitats in Brazil (Maytenus aquifolia Mart.) and South Africa [Putterlickia retrospinosa van Wyk and Mostert, P. verrucosa (E. Meyer ex Sonder) Szyszyl.] was established as a source of endophytic bacteria using a medium selective for actinomycetes. Two isolates were identified as Streptomyces setonii and S. sampsonii whereas two others were not assignable to any of the known Streptomyces species. They were preliminarily named Streptomyces Q21 and Streptomyces MaB-QuH-8. The latter strain produces a new chloropyrrol and chlorinated anthracyclinone. The chloropyrrol showed high activity against a series of multiresistent bacteria and mycobacteria.

  4. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria

    PubMed Central

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D.

    2014-01-01

    Objectives An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. Methods E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. Results The anthracycline Antibiotic 301A1 was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure–activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A1 abolishes activity. Conclusions Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. PMID:24627312

  5. Competitive interactions between sponge-associated bacteria.

    PubMed

    Esteves, Ana I S; Cullen, Alescia; Thomas, Torsten

    2017-03-01

    The diversity of the microbial communities associated with marine sponges has been extensively studied, but their functioning and interactions within the sponge holobiont are only recently being appreciated. Sponge-associated microorganisms are known for the production of a range of inhibitory metabolites with biotechnological application, but the ecological role that these compounds remains elusive. In this work, we explore the competitive interactions between cultivated sponge-associated bacteria to inspect whether bacteria that produce antimicrobial activities are able to inhibit potentially pathogenic bacteria. We isolated a Bacillus sp. bacterium with sponge-degrading activity, which likely has a negative impact on the host. This bacterium, along with other sponge isolates from the same genus, was found to be inhibited by a subpopulation of closely related sponge-derived Pseudovibrio spp. In some Pseudovibrio strains, these inhibitory activities were correlated with the genetic capacity to produce polyketides, such as erythronolide. Our observations suggest that antagonistic activities likely influence the composition of the sponge microbiome, including the abundance of bacteria that can be harmful to the host. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Transition Metals and Virulence in Bacteria

    PubMed Central

    Palmer, Lauren D.; Skaar, Eric P.

    2016-01-01

    Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. Presumably, in response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface. PMID:27617971

  7. Comprehensive list of names of plant pathogenic bacteria, 1980-2007.

    USDA-ARS?s Scientific Manuscript database

    This list contains the names of all plant pathogenic bacteria which have been effectively and validly published in terms of the International Code of Nomenclature of Bacteria and the Standards for Naming Pathovars and their revisions. Included are species names from the Approved Lists of Bacterial N...

  8. Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds.

    PubMed

    Van Aken, Benoit; Doty, Sharon Lafferty

    2010-01-01

    Phytoremediation is the use of plants for the treatment of environmental pollution, including chlorinated organics. Although conceptually very attractive, removal and biodegradation of chlorinated pollutants by plants is a rather slow and inefficient process resulting in incomplete treatment and potential release of toxic metabolites into the environment. In order to overcome inherent limitations of plant metabolic capabilities, plants have been genetically modified, following a strategy similar to the development of transgenic crops: genes from bacteria, fungi, and mammals involved in the metabolism of organic contaminants, such as cytochrome P-450 and glutathione S-transferase, have been introduced into higher plants, resulting in significant improvement of tolerance, removal, and degradation of pollutants. Recently, plant-associated bacteria have been recognized playing a significant role in phytoremediation, leading to the development of genetically modified rhizospheric and endophytic bacteria with improved biodegradation capabilities. Transgenic plants and associated bacteria constitute a new generation of genetically modified organisms for efficient and environmental-friendly treatment of polluted soil and water. This review focuses on recent advances in the development of transgenic plants and bacteria for the treatment of chlorinated pollutants, including chlorinated solvents, polychlorinated phenols, and chlorinated herbicides.

  9. Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.).

    PubMed

    Shen, Yue; Zhang, Yuejing; Liu, Chongxi; Wang, Xiangjing; Zhao, Junwei; Jia, Feiyu; Yang, Lingyu; Yang, Deguang; Xiang, Wensheng

    2014-11-01

    A novel actinomycete, designated strain NEAU-gq9(T), was isolated from corn root (Zea mays L.) and characterized using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Micromonospora. On the basis of 16S rRNA gene sequence similarity studies, strain NEAU-gq9(T) was most closely related to Micromonospora zamorensis CR38(T) (99.3%), Micromonospora jinlongensis NEAU-GRX11(T) (99.2%), Micromonospora saelicesensis Lupac 09(T) (99.2%), Micromonospora chokoriensis 2-19(6)(T) (98.9%), Micromonospora coxensis 2-30-b(28)(T) (98.6%) and Micromonospora lupini Lupac 14N(T) (98.5%). Phylogenetic analysis based on the 16S rRNA gene and gyrB gene demonstrated that strain NEAU-gq9(T) is a member of the genus Micromonospora and supported the closest phylogenetic relationship to M. zamorensis CR38(T), M. jinlongensis NEAU-GRX11(T), M. saelicesensis Lupac 09(T), M. chokoriensis 2-19(6)(T) and M. lupini Lupac 14N(T). A combination of DNA-DNA hybridization, morphological and physiological characteristics indicated that the novel strain could be readily distinguished from the closest phylogenetic relatives. Therefore, it is proposed that strain NEAU-gq9(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora zeae sp. nov. is proposed. The type strain is NEAU-gq9(T) (=CGMCC 4.7092(T)=DSM 45882(T)).

  10. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr.

    PubMed

    Bai, Lu; Liu, Chongxi; Guo, Lifeng; Piao, Chenyu; Li, Zhilei; Li, Jiansong; Jia, Feiyu; Wang, Xiangjing; Xiang, Wensheng

    2016-02-01

    During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinomycete with antifungal activity, designated strain 1H-GS9(T), was isolated from the head of a Camponotus japonicus Mayr ant, which were collected from Northeast Agricultural University (Harbin, Heilongjiang, China). Strain 1H-GS9(T) was characterised using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain 1H-GS9(T) belongs to the genus Streptomyces with high sequence similarities to Streptomyces scopuliridis DSM 41917(T) (98.8 %) and Streptomyces mauvecolor JCM 5002(T) (98.6 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that it forms a monophyletic clade with Streptomyces kurssanovii JCM 4388(T) (98.6 %), Streptomyces xantholiticus JCM 4282(T) (98.6 %) and Streptomyces peucetius JCM 9920(T) (98.5 %). Thus, a combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-GS9(T) and the above-mentioned five strains, which further clarified their relatedness and demonstrated that strain 1H-GS9(T) could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces formicae sp. nov. is proposed. The type strain is 1H-GS9(T) (=CGMCC 4.7277(T) = DSM 100524(T)).

  11. A study on the selection of indigenous leaching-bacteria for effective bioleaching

    NASA Astrophysics Data System (ADS)

    Oh, S. J.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    Bioleaching technology, which is based on the ability of microorganisms to transform solid compounds into soluble and extractable valuable elements that can be recovered, has been rapidly developed in recent decades for its advantages, which include mild reaction condition, low energy consumption, simple process, low environmental impact and being suitable for low grade mine tailings and residues. The bacteria activities (survival, adaptation of toxically environments etc.) in the bioleaching technology play a key role in the solubilization of metals. The purpose of this study was to selection of optimal leaching-bacteria through changed pH and redox potential on bio-oxidation in batch experiments for successful bioleaching technology. Twenty three indigenous bacteria used throughout this study, leaching-bacteria were obtained from various geochemical conditions; bacteria inhabitation type (acid mine drainage, mine wastes leachate and sulfur hot springs) and base-metal type (sulfur, sulfide, iron and coal). Bio-oxidation experiment result was showed that 9 cycles (1 cycle - 28days) after the leaching-bacteria were inoculated to a leaching medium, pH was observed decreasing and redox potential increased. In the bacteria inhabitation type, bio-oxidation of sulfur hot springs bacteria was greater than other types (acid mine drainage and mine wastes leachate). In addition, bio-oxidation on base-metal type was appeared sulfur was greater than other types (sulfide, iron and coal). This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

  12. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria.

    PubMed

    Sonthiphand, Puntipar; Hall, Michael W; Neufeld, Josh D

    2014-01-01

    Anaerobic ammonia-oxidizing (anammox) bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP), anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Although anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, broad scale anammox bacterial distributions have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. Co-occurrence network analysis indicated that Ca. Scalindua strongly connected with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments.

  13. Rapid separation of bacteria from blood — Chemical aspects

    PubMed Central

    Alizadeh, Mahsa; Wood, Ryan L.; Buchanan, Clara M.; Bledsoe, Colin G.; Wood, Madison E.; McClellan, Daniel S.; Blanco, Rae; Ravsten, Tanner V.; Husseini, Ghaleb A.; Hickey, Caroline L.; Robison, Richard A.; Pitt, William G.

    2017-01-01

    To rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000 rpm for 1 min. The red and white cells sediment more than 30-fold faster than bacteria, leaving much of the bacteria in the plasma. When the disk is slowly decelerated, the plasma flows to a collection site and the red and white cells are trapped in the disk. Analysis of the recovered plasma shows that about 36% of the bacteria is recovered in the plasma. The plasma is not perfectly clear of red blood cells, but about 94% have been removed. This paper describes the effects of various chemical aspects of this process, including the influence of anticoagulant chemistry on the separation efficiency and the use of wetting agents and platelet aggregators that may influence the bacterial recovery. In a clinical scenario, the recovered bacteria can be subsequently analyzed to determine their species and resistance to various antibiotics. PMID:28365426

  14. Selection and Transmission of Antibiotic-Resistant Bacteria.

    PubMed

    Andersson, Dan I; Hughes, Diarmaid

    2017-07-01

    Ever since antibiotics were introduced into human and veterinary medicine to treat and prevent bacterial infections there has been a steady selection and increase in the frequency of antibiotic resistant bacteria. To be able to reduce the rate of resistance evolution, we need to understand how various biotic and abiotic factors interact to drive the complex processes of resistance emergence and transmission. We describe several of the fundamental factors that underlay resistance evolution, including rates and niches of emergence and persistence of resistant bacteria, time- and space-gradients of various selective agents, and rates and routes of transmission of resistant bacteria between humans, animals and other environments. Furthermore, we discuss the options available to reduce the rate of resistance evolution and/ or transmission and their advantages and disadvantages.

  15. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    PubMed Central

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  16. High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean.

    PubMed

    Lami, Raphaël; Cottrell, Matthew T; Ras, Joséphine; Ulloa, Osvaldo; Obernosterer, Ingrid; Claustre, Hervé; Kirchman, David L; Lebaron, Philippe

    2007-07-01

    Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 x 10(5) cells ml(-1) and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 x 10(-3) microg liter(-1)) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.

  17. Isolation, Characterisation and Antagonistic Activity of Bacteria Symbionts Hardcoral Pavona sp. Isolated from Panjang Island, Jepara Against Infectious Multi-drug Resistant (MDR) Bacteria

    NASA Astrophysics Data System (ADS)

    Ayuningrum, D.; Kristiana, R.; Asagabaldan, M. A.; Sabdono, A.; Radjasa, O. K.; Nuryadi, H.; Trianto, A.

    2017-02-01

    Pavona sp. is highly spread over Indonesian waters including Panjang Island. Several studies showed that bacteria symbionts hardcoral were the big source of antibiotic product, but there was limited research of the bacteria symbionts with hardcoral Pavona sp. In this research bacteria symbionts from hardcoral Pavona sp. had been collected from Panjang Island, Jepara. Marine bacteria symbionts were isolated by serial dillution method, while antibacterial activity was performed by using overlay and agar block method. The total of 2 from 5 isolates were active to MDR bacteria such as Enterobacter aerogenes and Acinetobacter baumanii, the code were PHC 44/04 and PHC 44/05. Then both of them were identified by morphological and molecular DNA characterization using 16 S rRNA gene sequence. The result of 16 S rRNA identification shows PHC 44/04 has 99% similarities with Virgibacillus salarius strain sa-Vb 1, while PHC 44/05 shows 99% similarities with Pseudoalteromonas flavipulchra strain NCIMB 2033.

  18. Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities

    NASA Astrophysics Data System (ADS)

    Baskar, Sushmitha; Baskar, R.; Lee, Natuschka; Theophilus, P. K.

    2009-05-01

    The Mawsmai cave and Krem Phyllut caves, East Khasi hills, Meghalaya, India has so far not yet attracted the attention of geomicrobiologists. Observations and hypotheses on the possible influence of identified microorganisms for speleothem formations in Meghalaya are reported for the first time. XRD studies identified calcite in speleothems and gypsum in cave wall deposits as the dominant minerals. SEM-EDAX showed interesting microfabric features showing strong resemblance with fossilised bacteria, calcified filaments, needle calcite and numerous nano scale calcite crystals, highly weathered and disintegrated crystals of calcite, that point towards a significant microbial influence in its genesis. Thin section petrography showed laminated stromatolitic features. The microorganisms identified by conventional isolation and further evaluation of isolates by molecular techniques include Bacillus cereus, Bacillus mycoides, Bacillus licheniformis, Micrococcus luteus, and Actinomycetes. Microscopic observations also showed unidentifiable cocci and four unidentifiable strains of CaSO4 (gypsum) precipitating bacteria. Experimental studies confirmed that these bacteria are able to precipitate calcium minerals (calcite, gypsum, minor amounts of dolomite) in the laboratory. These results allow us to postulate that species like these may contribute to active biogenic influence in the cave formations at Meghalaya.

  19. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  20. Chemotaxis by natural populations of coral reef bacteria.

    PubMed

    Tout, Jessica; Jeffries, Thomas C; Petrou, Katherina; Tyson, Gene W; Webster, Nicole S; Garren, Melissa; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2015-08-01

    Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont.

  1. Presence of Pathogenic Bacteria and Viruses in the Daycare Environment.

    PubMed

    Ibfelt, Tobias; Engelund, Eva Hoy; Permin, Anders; Madsen, Jonas Stenløkke; Schultz, Anna Charlotte; Andersen, Leif Percival

    2015-10-01

    The number of children in daycare centers (DCCs) is rising. This increases exposure to microorganisms and infectious diseases. Little is known about which bacteria and viruses are present in the DCC environment and where they are located. In the study described in this article, the authors set out to determine the prevalence of pathogenic bacteria and viruses and to find the most contaminated fomites in DCCs. Fifteen locations in each DCC were sampled for bacteria, respiratory viruses, and gastrointestinal viruses. The locations were in the toilet, kitchen, and playroom areas and included nursery pillows, toys, and tables, among other things. Coliform bacteria were primarily found in the toilet and kitchen areas whereas nasopharyngeal bacteria were found mostly on toys and fabric surfaces in the playroom. Respiratory viruses were omnipresent in the DCC environment, especially on the toys.

  2. Vibrio bacteria in raw oysters: managing risks to human health.

    PubMed

    Froelich, Brett A; Noble, Rachel T

    2016-03-05

    The human-pathogenic marine bacteria Vibrio vulnificus and V. parahaemolyticus are strongly correlated with water temperature, with concentrations increasing as waters warm seasonally. Both of these bacteria can be concentrated in filter-feeding shellfish, especially oysters. Because oysters are often consumed raw, this exposes people to large doses of potentially harmful bacteria. Various models are used to predict the abundance of these bacteria in oysters, which guide shellfish harvest policy meant to reduce human health risk. Vibrio abundance and behaviour varies from site to site, suggesting that location-specific studies are needed to establish targeted risk reduction strategies. Moreover, virulence potential, rather than simple abundance, should be also be included in future modeling efforts. © 2016 The Author(s).

  3. Diversity of microflora in the gut and casts of tropical composting earthworms reared on different substrates.

    PubMed

    Parthasarathi, K; Ranganathan, L S; Anandi, V; Zeyer, Josef

    2007-01-01

    The diversity of fungi, bacteria, yeast, actinomycetes and protozoa were analysed in the gut and casts of Eudrilus eugeniae, Lampito mauritii, Eisenia fetida and Perionyx excavatus, both qualitatively and quantitatively as influenced by different feed substrates like clay loam soil, cowdung and pressmud. While actinomycetes (Streptomyces albus, S. somaliensis, Nocardia asteroides, N. caviae and Saccharomonosporia) were not digested by any of these species of worms, protozoa (Amoeba proteus, A. terricola, Paramecium trichium, Euglena viridis, E. orientalis, Vorticella picta and Trichomonas hominis) and yeast (Candida tropicalis, C. krusei C. albicans and Cryptococcus neoformans) were totally digested. Certain species of fungi (Saksenae vasiformis, Mucor plumbeus, Cladosporium carrionii, C. herbacium, Alternaria sp., Cunninghamella echinulata, Mycetia sterila, Syncephalostrum racemosum, Curvalaria lunata, C. geniculata and Geotrichum candidum) and bacteria (Pseudomonas aeruginosa, Bacterium antitratum, Mima polymorpha, Enterobacter aerogenes, E. cloacae, Proteus vulgaris, P. mirabilis, P. rettgeri, Escherichia coli, Staphylococus citreus, Bacillus subtilis, B. cereus, Enterococci and Micrococci) were completely digested. Certain other species were not digested fungi like Aspergillus fumigatus, A. flavus, A. ochraceous, Trichoderma koningii (except by Eeugeniae), Fusarium moniliforme (except by E. eugeniae) and Rhizopus sp., and bacteria like Klebsiella pneumoniae and Morganella morganii) and these were multiplied during the transit of the organic residues through the gut of worms. The microbial proliferation was more in the casts, due to the environment prevailing--rich in nutrient supply and large surface area available for growth and reproduction of the microbes that lead to enhanced microbial activity and humic acid contents in the casts.

  4. [Characterization of soil humus by FTIR spectroscopic analyses after being inoculated with different microorganisms plus wheat straw].

    PubMed

    Wang, Shuail; Dou, Sen; Liu, Yan-Li; Li, Hui-Min; Cui, Jun-Tao; Zhang, Wei; Wang, Cheng-Yu

    2012-09-01

    The effects of different microbial communities on the structural characteristics of humus from the black soil amended with wheat straw were studied by FTIR Spectroscopy. The results indicated that (1) The structure and amount of functional groups in the water soluble substances (WSS) was tremendously influenced by the tested microorganisms, of which the amino and aryl ether was degraded rapidly in the inoculation process, and in the meantime, the content of hydroxyl groups was significantly reduced. The bacteria was helpful to increasing the amount of aliphatic hydrocarbons, while the other inoculated treatments were contrary. At the end of culture, the phenols and polysaccharides were gradually consumed, but the content of carboxyl groups had an increasing trend. (2) In the aspect of reducing hydroxyl groups of fulvic acid (FA), the role of actinomycetes was the biggest. The fungi had the biggest effect in improving the net generation of FA content. In addition, the fungi was conducive to improve the contents of carboxyl groups and carbohydrates of FA fraction. Except the mixed strains, the other treatments were all beneficial to the degradation of polysaccharide in the FA fraction, whose rate was greater than the decomposition of lipids. (3) The bacteria, actinomycetes and fungi were all helpful to reducing the amount of aliphatic hydrocarbons of HA fraction except the mixed strains. The content of carboxyl was effectively increased by fungi, but the effect of bacteria was contrary. The tested microorganisms could consume and utilize the polysaccharides of HA fraction, which could transform the humic-like fractions from plant residues into the real humus of soil.

  5. Emergence of drug resistant bacteria at the Hajj: A systematic review.

    PubMed

    Leangapichart, Thongpan; Rolain, Jean-Marc; Memish, Ziad A; Al-Tawfiq, Jaffar A; Gautret, Philippe

    Hajj is the annual mass gathering of Muslims, and is a reservoir and potential source of bacterial transmission. The emergence of bacterial transmission, including multi-drug resistance (MDR) bacteria, during Hajj has not been systematically assessed. Articles in Pubmed, Scopus, and Google scholar were identified using controlled words relating to antibiotic resistance (AR) at the Hajj from January 2002 to January 2017. Eligible studies were identified by two researchers. AR patterns of bacteria were obtained for each study. We included 31 publications involving pilgrims, Hajj workers or local patients attending hospitals in Mecca, Mina, and the Medina area. Most of these publications provided antibiotic susceptibility results. Ten of them used the PCR approach to identify AR genes. MRSA carriage was reported in pilgrims and food handlers at a rate of 20%. Low rates of vancomycin-resistant gram-positive bacteria were reported in pilgrims and patients. The prevalence of third-generation cephalosporin-resistant bacteria was common in the Hajj region. Across all studies, carbapenem-resistant bacteria were detected in fewer than 10% of E.coli isolates tested but up to 100% in K. pneumoniae and A. baumannii. Colistin-resistant Salmonella enterica, including mcr-1 colistin-resistant E.coli and K.pneumoniae were only detected in the pilgrim cohorts. This study provides an overview of the prevalence of MDR bacteria at the Hajj. Pilgrims are at high risk of AR bacterial transmission and may carry and transfer these bacteria when returning to their home countries. Thus, pilgrims should be instructed by health care practitioners about hygiene practices aiming at reducing traveler's diarrhea and limited use of antibiotics during travel in order to reduce the risk of MDR bacterial transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  7. Molecular and chemical dialogues in bacteria-protozoa interactions.

    PubMed

    Song, Chunxu; Mazzola, Mark; Cheng, Xu; Oetjen, Janina; Alexandrov, Theodore; Dorrestein, Pieter; Watrous, Jeramie; van der Voort, Menno; Raaijmakers, Jos M

    2015-08-06

    Protozoan predation of bacteria can significantly affect soil microbial community composition and ecosystem functioning. Bacteria possess diverse defense strategies to resist or evade protozoan predation. For soil-dwelling Pseudomonas species, several secondary metabolites were proposed to provide protection against different protozoan genera. By combining whole-genome transcriptome analyses with (live) imaging mass spectrometry (IMS), we observed multiple changes in the molecular and chemical dialogues between Pseudomonas fluorescens and the protist Naegleria americana. Lipopeptide (LP) biosynthesis was induced in Pseudomonas upon protozoan grazing and LP accumulation transitioned from homogeneous distributions across bacterial colonies to site-specific accumulation at the bacteria-protist interface. Also putrescine biosynthesis was upregulated in P. fluorescens upon predation. We demonstrated that putrescine induces protozoan trophozoite encystment and adversely affects cyst viability. This multifaceted study provides new insights in common and strain-specific responses in bacteria-protozoa interactions, including responses that contribute to bacterial survival in highly competitive soil and rhizosphere environments.

  8. [Immobilization of introduced bacteria and degradation of pyrene and benzo(alpha) pyrene in soil by immobilized bacteria].

    PubMed

    Wang, Xin; Li, Peijun; Song, Shouzhi; Zhong, Yong; Zhang, Hui; Verkhozina, E V

    2006-11-01

    In this study, introduced bacteria were applied in the bioremediation of pyrene and benzo (alpha) pyrene in organic pollutants-contaminated soils, aimed to test whether it was feasible to introduce bacteria to environmental engineering. Three introduced bacteria were immobilized separately or together to degrade the pyrene and benzo (alpha) pyrene in soil, taking dissociated bacteria as the control, and comparing with three indigenous bacteria. The results showed that immobilized introduced bacteria, either single or mixed, had higher degradation efficiency than dissociated bacteria. Compared with indigenous bacteria, some introduced bacteria had predominance to some degree. The introduced bacteria-mixture had better degradation efficiency after being immobilized. The degradation rate of pyrene and benzo(alpha) pyrene after treated with immobilized bacteria-( B61-B67)-mixture for 96 hours was 43.49% and 38.55%, respectively.

  9. Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations.

    PubMed

    Scaffaro, Roberto; Lopresti, Francesco; Sutera, Alberto; Botta, Luigi; Fontana, Rosa Maria; Gallo, Giuseppe

    2017-09-01

    Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O 2 -plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-pigmented undecylprodigiosin (RED), and constitutes a model for the study of antibiotic-producing actinomycetes. Wet contact angles and X-ray photoelectron spectroscopy analysis confirmed the increased wettability of PLA-plasma due to the formation of polar functional groups such as carboxyl and hydroxyl moieties. Scanning electron microscope observations, carried out at different incubation times, revealed that S. coelicolor immobilized-cells created a dense "biofilm-like" mycelial network on both kinds of PLA membranes. Cultures of S. coelicolor immobilized-cells on PLA or PLA-plasma membranes produced higher biomass (between 1.5 and 2 fold) as well as higher levels of RED and ACT than planktonic cultures. In particular, cultures of immobilized-cells on PLA and PLA-plasma produced comparable levels of RED that were approximatively 4 and 5 fold higher than those produced by planktonic cultures, respectively. In contrast, levels of ACT produced by immobilized-cell cultures on PLA and PLA-plasma were different, being 5 and 10 fold higher than those of planktonic cultures, respectively. Therefore, this is study demonstrated the positive influence of PLA membrane on growth and secondary metabolite production in S. coelicolor and also revealed that O 2 -plasma treated PLA membranes

  10. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  11. Nonomuraea indica sp. nov., novel actinomycetes isolated from lime-stone open pit mine, India.

    PubMed

    Quadri, Syed Raziuddin; Tian, Xin-Peng; Zhang, Jing; Li, Jie; Nie, Guo-Xing; Tang, Shu-Kun; Al Ruwaili, Jamal; Agsar, Dayanand; Li, Wen-Jun; Dastager, Syed G

    2015-08-01

    A Gram-positive, aerobic, nonmotile actinomycete strain designated DRQ-2(T) was isolated from the soil sample collected from lime-stone open pit mine from the Gulbarga region, Karnataka province, India. Strain DRQ-2(T) was identified as a member of the genus Nonomuraea by a polyphasic approach. Strain DRQ-2(T) could be differentiated from other members of the genus Nonomuraea on the basis of physiology and 16S rRNA gene sequence analysis. The 16S rRNA gene sequence similarity of strain DRQ-2(T) showed highest sequence similarity to Nonomuraea muscovyensis DSM 45913(T) (99.1%), N. salmonea DSM 43678(T) (98.2%) and N. maheshkhaliensis JCM 13929(T) with 98.0%, respectively. Chemotaxonomic properties showing predominant menaquinones of MK-9 (H4), MK-9(H2) and MK-9(H6), major polar lipids comprised diphosphatidylglycerol, phosphatidylmono methyl ethanolamine (PME), phosphatidylethanolamine (PE), hydroxy-PME (OH-PME), hydroxy PE (OH-PEE), phosphatidylglycerol (PG), ninhydrin-positive phosphoglycolipid and unknown phospholipid, fatty acids with major amounts of i-C16:0, ai-C15:0 and ai-C17:0 supported allocation of the strain to the genus Nonomuraea. Results of DNA-DNA hybridization and physiological tests allowed genotypic and phenotypic differentiation of strain DRQ-2(T) from closely related species. The genomic DNA G+C content of the organism was 72.5 mol%. On the basis of phenotypic, chemotypic and molecular characteristics, strain DRQ-2(T) represents a novel species of the genus Nonomuraea, for which the name N. indica sp. nov. is proposed, with type strain DRQ-2(T) (=NCIM 5480(T)= CCTCC AA 209050(T)).

  12. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes.

    PubMed

    Ju, Kou-San; Gao, Jiangtao; Doroghazi, James R; Wang, Kwo-Kwang A; Thibodeaux, Christopher J; Li, Steven; Metzger, Emily; Fudala, John; Su, Joleen; Zhang, Jun Kai; Lee, Jaeheon; Cioni, Joel P; Evans, Bradley S; Hirota, Ryuichi; Labeda, David P; van der Donk, Wilfred A; Metcalf, William W

    2015-09-29

    Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N(5)-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.

  13. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes

    PubMed Central

    Ju, Kou-San; Gao, Jiangtao; Doroghazi, James R.; Wang, Kwo-Kwang A.; Thibodeaux, Christopher J.; Li, Steven; Metzger, Emily; Fudala, John; Su, Joleen; Zhang, Jun Kai; Lee, Jaeheon; Cioni, Joel P.; Evans, Bradley S.; Hirota, Ryuichi; Labeda, David P.; van der Donk, Wilfred A.; Metcalf, William W.

    2015-01-01

    Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed “genome mining” as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N5-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products. PMID:26324907

  14. Nocardiopsis akesuensis sp. nov., an actinomycete isolated from a salt water beach.

    PubMed

    Gao, Guang-Bin; Luo, Xiao-Xia; Xia, Zhan-Feng; Zhang, Yao; Wan, Chuan-Xing; Zhang, Li-Li

    2016-12-01

    The taxonomic position of a novel actinomycete, strain TRM 46250T, isolated from the sediment of a salt water beach at Baicheng, Xinjiang, China, was determined by a polyphasic approach. Strain TRM 46250T grew optimally in the presence of 2 % (w/v) NaCl and an optimum temperature range for growth of 28-37 °C. The whole-cell sugars of strain TRM 46250T were ribose, xylose, mannose and galactose. The diagnostic diamino acid was meso-diaminopimelic acid. The polar lipids were phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmethyl ethanolamine and six unidentified phospholipids. The predominant menaquinones were MK-10, MK-10(H6) and MK-10(H8). The major fatty acids were 10-methyl C18 : 0, iso-C16 : 0, C16 : 0, iso-G C16 : 1 and C18 : 1ω9c. Based on morphological and chemotaxonomic characteristics the isolate was determined to belong to the genus Nocardiopsis. The phylogenetic tree based on its nearly complete 16S rRNA gene sequence (1493 nt) with those of representative strains showed that the strain consistently falls into a distinct phyletic line together with Nocardiopsis gilva YIM 90087T (97.68 % similarity) and a subclade consisting of Nocardiopsis composta KS9T (97.52 %), Nocardiopsis rosea YIM 90094T (97.44 %) and Nocardiopsis rhodophaea YIM 90096T (97.16 %). However, DNA-DNA hybridization studies between strain TRM 46250T and N. gilva YIM 90087T showed only 36.94 % relatedness. On the basis of these data, strain TRM 46250T should be designated as a representative of a novel species of the genus Nocardiopsis, for which the name Nocardiopsis akesuensis sp. nov. is proposed. The type strain is TRM 46250T (=CCTCC AA 2015027T=KCTC 39725T).

  15. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria

    PubMed Central

    Sonthiphand, Puntipar; Hall, Michael W.; Neufeld, Josh D.

    2014-01-01

    Anaerobic ammonia-oxidizing (anammox) bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP), anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Although anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, broad scale anammox bacterial distributions have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. Co-occurrence network analysis indicated that Ca. Scalindua strongly connected with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments. PMID:25147546

  16. Thermoactinomyces guangxiensis sp. nov., a thermophilic actinomycete isolated from mushroom compost.

    PubMed

    Wu, Hao; Liu, Bin; Pan, Shangli

    2015-09-01

    A novel thermophilic actinomycete, designated strain CD-1(T), was isolated from mushroom compost in Nanning, Guangxi province, China. The strain grew at 37-55 °C (optimum 45-50 °C), pH 6.0-11.0 (optimum pH 7.0-9.0) and with 0-2.0% NaCl (optimum 0-1.0%), formed well-developed white aerial mycelium and pale-yellow vegetative mycelium, and single endospores (0.8-1.0 μm diameter) were borne on long sporophores (2-3 μm length). The endospores were spherical-polyhedron in shape with smooth surface. Based on its phenotypic and phylogenetic characteristics, strain CD-1(T) is affiliated to the genus Thermoactinomyces. It contained meso-diaminopimelic acid as the diagnostic diamino acid; the whole-cell sugars were ribose and glucose. Major fatty acids were iso-C15 :  0, C16 : 0, anteiso-C15  : 0 and iso-C17  : 0. MK-7 was the predominant menaquinone. The polar phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylethanolamine containing hydroxylated fatty acids, ninhydrin-positive glycophospholipid, an unknown phospholipid and glycolipids. The G+C content of the genomic DNA was 48.8%. 16S rRNA gene sequence analysis showed that the organism was closely related to Lihuaxuella thermophila YIM 77831(T) (95.69% sequence similarity), Thermoactinomyces daqus H-18(T) (95.49%), Laceyella putida KCTC 3666(T) (95.05%), Thermoactinomyces vulgaris KCTC 9076(T) (95.01%) and Thermoactinomyces intermedius JCM 3312(T) (94.55%). Levels of DNA-DNA relatedness between strain CD-1T and Lihuaxuella thermophila JCM 18059(T), Thermoactinomyces daqus DSM 45914(T), Laceyella putida JCM 8091(T), Thermoactinomyces vulgaris JCM 3162(T) and Thermoactinomyces intermedius JCM 3312(T) were low (22.8, 33.3, 24.7, 29.4 and 30.0%, respectively). A battery of phenotypic, genotypic and DNA-DNA relatedness data indicated that strain CD-1T represented a novel species of the genus Thermoactinomyces, for which the name Thermoactinomyces guangxiensis sp. nov

  17. Thermal control of virulence factors in bacteria: A hot topic

    PubMed Central

    Lam, Oliver; Wheeler, Jun; Tang, Christoph M

    2014-01-01

    Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health. PMID:25494856

  18. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    USGS Publications Warehouse

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  19. Rapid Separation of Bacteria from Blood—Review and Outlook

    PubMed Central

    Alizadeh, Mahsa; Husseini, Ghaleb A.; McClellan, Daniel S.; Buchanan, Clara M.; Bledsoe, Colin G.; Robison, Richard A.; Blanco, Rae; Roeder, Beverly L.; Melville, Madison; Hunter, Alex K.

    2017-01-01

    The high morbidity and mortality rate of bloodstream infections involving antibiotic-resistant bacteria necessitate a rapid identification of the infectious organism and its resistance profile. Traditional methods based on culturing the blood typically require at least 24 h, and genetic amplification by PCR in the presence of blood components has been problematic. The rapid separation of bacteria from blood would facilitate their genetic identification by PCR or other methods so that the proper antibiotic regimen can quickly be selected for the septic patient. Microfluidic systems that separate bacteria from whole blood have been developed, but these are designed to process only microliter quantities of whole blood or only highly diluted blood. However, symptoms of clinical blood infections can be manifest with bacterial burdens perhaps as low as 10 CFU/mL, and thus milliliter quantities of blood must be processed to collect enough bacteria for reliable genetic analysis. This review considers the advantages and shortcomings of various methods to separate bacteria from blood, with emphasis on techniques that can be done in less than 10 min on milliliter-quantities of whole blood. These techniques include filtration, screening, centrifugation, sedimentation, hydrodynamic focusing, chemical capture on surfaces or beads, field-flow fractionation, and dielectrophoresis. Techniques with the most promise include screening, sedimentation, and magnetic bead capture, as they allow large quantities of blood to be processed quickly. Some microfluidic techniques can be scaled up. PMID:27160415

  20. Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products.

    PubMed

    Katla, A K; Kruse, H; Johnsen, G; Herikstad, H

    2001-07-20

    Commercial starter culture bacteria are widely used in the production of dairy products and could represent a potential source for spread of genes encoding resistance to antimicrobial agents. To learn more about the antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products, a total of 189 isolates of lactic acid bacteria were examined for susceptibility to ampicillin, penicillin G, cephalothin, vancomycin, bacitracin, gentamicin, streptomycin, erythromycin, tetracycline, chloramphenicol, quinupristin/dalfopristin, ciprofloxacin, trimethoprim and sulphadiazine using Etest for MIC determination. Most of the isolates (140) originated from 39 dairy products (yoghurt, sour cream, fermented milk and cheese), while 49 were isolated directly from nine commercial cultures. The bacteria belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Streptococcus. Only one of the 189 isolates was classified as resistant to an antimicrobial agent included in the study. This isolate, a lactobacillus, was classified as high level resistant to streptomycin. The remaining isolates were not classified as resistant to the antimicrobial agents included other than to those they are known to have a natural reduced susceptibility to. Thus, starter culture bacteria in Norwegian dairy products do not seem to represent a source for spread of genes encoding resistance to antimicrobial agents.

  1. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    NASA Astrophysics Data System (ADS)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  2. Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater.

    PubMed

    Paul, Dhiraj; Kazy, Sufia K; Banerjee, Tirtha Das; Gupta, Ashok K; Pal, Taraknath; Sar, Pinaki

    2015-01-01

    Arsenic (As) biotransformation and release by indigenous bacteria from As rich groundwater was investigated. Metabolic landscape of 173 bacterial isolates indicated broad catabolic repertoire including abundance of As(5+) reductase activity and abilities in utilizing wide ranges of organic and inorganic respiratory substrates. Abundance of As homeostasis genes and utilization of hydrocarbon as carbon/electron donor and As(5+) as electron acceptor were noted within the isolates. Sediment microcosm study (for 300 days) showed a pivotal role of metal reducing facultative anaerobic bacteria in toxic As(3+) release in aqueous phase. Inhabitant bacteria catalyze As transformation and facilitate its release through a cascade of reactions including mineral bioweathering and As(5+) and/or Fe(3+) reduction activities. Compared to anaerobic incubation with As(5+) reducing strains, oxic state and/or incubation with As(3+) oxidizing bacteria resulted in reduced As release, thus indicating a strong role of such condition or biocatalytic mechanism in controlling in situ As contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Sulfur cycling and metabolism of phototrophic and filamentous sulfur bacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Brune, D.; Poplawski, R.; Schmidt, T. M.

    1985-01-01

    Phototrophic sulfur bacteria taken from different habitate (Alum Rock State Park, Palo Alto salt marsh, and Big Soda Lake) were grown on selective media, characterized by morphological and pigment analysis, and compared with bacteria maintained in pure culture. A study was made of the anaerobic reduction of intracellular sulfur globules by a phototrophic sulfur bacterium (Chromatium vinosum) and a filamentous aerobic sulfur bacterium (Beggiatoa alba). Buoyant densities of different bacteria were measured in Percoll gradients. This method was also used to separate different chlorobia in mixed cultures and to assess the relative homogeneity of cultures taken directly or enriched from natural samples (including the purple bacterial layer found at a depth of 20 meters at Big Soda Lake.) Interactions between sulfide oxidizing bacteria were studied.

  4. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide.

    PubMed

    Cui, Yanbing; Meng, Yiwei; Zhang, Juan; Cheng, Bin; Yin, Huijia; Gao, Chao; Xu, Ping; Yang, Chunyu

    2017-01-01

    In well-established heterologous hosts, such as Escherichia coli, recombinant proteins are usually intracellular and frequently found as inclusion bodies-especially proteins possessing high rare codon content. In this study, successful secretory expression of three hydrolases, in a constructed inducible or constitutive system, was achieved by fusion with a novel signal peptide (Kp-SP) from an actinomycete. The signal peptide efficiently enabled extracellular protein secretion and also contributed to the active expression of the intracellular recombinant proteins. The thermophilic α-amylase gene of Bacillus licheniformis was fused with Kp-SP. Both recombinants, carrying inducible and constitutive plasmids, showed remarkable increases in extracellular and intracellular amylolytic activity. Amylase activity was observed to be > 10-fold in recombinant cultures with the constitutive plasmid, pBSPPc, compared to that in recombinants lacking Kp-SP. Further, the signal peptide enabled efficient secretion of a thermophilic cellulase into the culture medium, as demonstrated by larger halo zones and increased enzymatic activities detected in both constructs from different plasmids. For heterologous proteins with a high proportion of rare codons, it is difficult to obtain high expression in E. coli owing to the codon bias. Here, the fusion of an archaeal homologue of the amylase encoding gene, FSA, with Kp-SP resulted in > 5-fold higher extracellular activity. The successful extracellular expression of the amylase indicated that the signal peptide also contributed significantly to its active expression and signified the potential value of this novel and versatile signal peptide in recombinant protein production. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Pulling Helices inside Bacteria: Imperfect Helices and Rings

    NASA Astrophysics Data System (ADS)

    Allard, Jun F.; Rutenberg, Andrew D.

    2009-04-01

    We study steady-state configurations of intrinsically-straight elastic filaments constrained within rod-shaped bacteria that have applied forces distributed along their length. Perfect steady-state helices result from axial or azimuthal forces applied at filament ends, however azimuthal forces are required for the small pitches observed for MreB filaments within bacteria. Helix-like configurations can result from distributed forces, including coexistence between rings and imperfect helices. Levels of expression and/or bundling of the polymeric protein could mediate this coexistence.

  6. Macrophage defense mechanisms against intracellular bacteria

    PubMed Central

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  7. Micromonospora taraxaci sp. nov., a novel endophytic actinomycete isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.).

    PubMed

    Zhao, Junwei; Guo, Lifeng; He, Hairong; Liu, Chongxi; Zhang, Yuejing; Li, Chuang; Wang, Xiangjing; Xiang, Wensheng

    2014-10-01

    A novel actinomycete, designated strain NEAU-P5(T), was isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.). Strain NEAU-P5(T) showed closest 16S rRNA gene sequence similarity to Micromonospora chokoriensis 2-19/6(T) (99.5%), and phylogenetically clustered with Micromonospora violae NEAU-zh8(T) (99.3%), M. saelicesensis Lupac 09(T) (99.0%), M. lupini Lupac 14N(T) (98.8%), M. zeae NEAU-gq9(T) (98.4%), M. jinlongensis NEAU-GRX11(T) (98.3%) and M. zamorensis CR38(T) (97.9%). Phylogenetic analysis based on the gyrB gene sequence also indicated that the isolate clustered with the above type strains except M. violae NEAU-zh8(T). The cell-wall peptidoglycan consisted of meso-diaminopimelic acid and glycine. The major menaquinones were MK-9(H8), MK-9(H6) and MK-10(H2). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were C(16:0), iso-C(15:0) and C(17:0). Furthermore, some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from members of closely related species. Therefore, it is proposed that strain NEAU-P5(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora taraxaci sp. nov. is proposed. The type strain is NEAU-P5(T) (=CGMCC 4.7098(T) = DSM 45885(T)).

  8. [Darwin and bacteria].

    PubMed

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  9. Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains: Bee Venom an Effective Potential for Bacteria.

    PubMed

    Zolfagharian, Hossein; Mohajeri, Mohammad; Babaie, Mahdi

    2016-09-01

    Mellitine, a major component of bee venom (BV, Apis mellifera ), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus ( S. aureus ), Salmonella typhimurium , Escherichia coli ( E. coli ) O157:H7, Pseudomonas aeruginosa , Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. BV was found to have a significant antibacterial effect against E. coli , S. aureus , and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood.

  10. High prevalence of fastidious bacteria in 1520 cases of uveitis of unknown etiology.

    PubMed

    Drancourt, Michel; Berger, Pierre; Terrada, Céline; Bodaghi, Bahram; Conrath, John; Raoult, Didier; LeHoang, Phuc

    2008-05-01

    The etiologic evaluation of uveitis is frequently unsuccessful when noninvasive methods are used. We conducted a prospective study to evaluate systematic screening for pathogens of uveitis. All patients with uveitis referred to the participating tertiary ophthalmology departments from January 2001 to September 2007 underwent intraocular and serum specimen collection. The standardized protocol for laboratory investigations included universal polymerase chain reaction (PCR)-based detection of any bacteria and mycoses, specific PCR-based detection of fastidious (difficult-to-grow) bacteria and herpes viruses, and culture of vitreous fluid. Sera were tested for fastidious bacteria. Among the 1321 included patients (1520 specimens), infection was diagnosed in 147 (11.1%) patients: 78 (53%) were caused by fastidious bacteria that included spirochetes, Bartonella species, intracellular bacteria (Chlamydia species, Rickettsia species, Coxiella burnetii), and Tropheryma whipplei; 18 by herpes viruses; and 9 by fungi. Bartonella quintana, Coxiella burnetii, Paracoccus yeei, Aspergillus oryzae, and Cryptococcus albidus were found to be associated with uveitis for the first time, to our knowledge. We recommend applying a 1-step diagnostic procedure that incorporates intraocular, specific microbial PCR with serum analyses in tertiary centers to determine the etiology of uveitis.

  11. Beer spoilage bacteria and hop resistance.

    PubMed

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  12. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    PubMed

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  14. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.

    PubMed

    Kong, Zhaoyu; Glick, Bernard R

    2017-01-01

    Phytoremediation is a promising technology that uses plants and their associated microbes to clean up contaminants from the environment. In recent years, phytoremediation assisted by plant growth-promoting bacteria (PGPB) has been highly touted for cleaning up toxic metals from soil. PGPB include rhizospheric bacteria, endophytic bacteria and the bacteria that facilitate phytoremediation by other means. This review provides information about the traits and mechanisms possessed by PGPB that improve plant metal tolerance and growth, and illustrate mechanisms responsible for plant metal accumulation/translocation in plants. Several recent examples of phytoremediation of metals facilitated by PGPB are reviewed. Although many encouraging results have been reported in the past years, there have also been numerous challenges encountered in phytoremediation in the field. To implement PGPB-assisted phytoremediation of metals in the natural environment, there is also a need to critically assess the ecological effects of PGPB, especially for those nonnative bacteria. © 2017 Elsevier Ltd All rights reserved.

  15. Sioxanthin, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway.

    PubMed

    Richter, Taylor K S; Hughes, Chambers C; Moore, Bradley S

    2015-06-01

    Members of the marine actinomycete genus Salinispora constitutively produce a characteristic orange pigment during vegetative growth. Contrary to the understanding of widespread carotenoid biosynthesis pathways in bacteria, Salinispora carotenoid biosynthesis genes are not confined to a single cluster. Instead, bioinformatic and genetic investigations confirm that four regions of the Salinispora tropica CNB-440 genome, consisting of two gene clusters and two independent genes, contribute to the in vivo production of a single carotenoid. This compound, namely (2'S)-1'-(β-D-glucopyranosyloxy)-3',4'-didehydro-1',2'-dihydro-φ,ψ-caroten-2'-ol, is novel and has been given the trivial name 'sioxanthin'. Sioxanthin is a C40 -carotenoid, glycosylated on one end of the molecule and containing an aryl moiety on the opposite end. Glycosylation is unusual among actinomycete carotenoids, and sioxanthin joins a rare group of carotenoids with polar and non-polar head groups. Gene sequence homology predicts that the sioxanthin biosynthetic pathway is present in all of the Salinispora as well as other members of the family Micromonosporaceae. Additionally, this study's investigations of clustering of carotenoid biosynthetic genes in heterotrophic bacteria show that a non-clustered genome arrangement is more common than previously suggested, with nearly half of the investigated genomes showing a non-clustered architecture. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. [Relationships between soil nutrients and rhizospheric soil microbial communities and enzyme activities in a maize-capsicum intercropping system].

    PubMed

    Xu, Qiang; Cheng, Zhi-Hui; Meng, Huan-Wen; Zhang, Yu

    2007-12-01

    By using plastic sheet and nylon mesh to partition the root systems of maize and capsicum in a maize-capsicum intercropping system, this paper studied the relationships between soil biological factors and nutritive status in the intercropping system, with no partitioning and maize monoculture and capsicum monoculture as the control. The results showed that intercropping maize and capsicum had its high superiority. In the treatments of no partitioning and nylon mesh portioning in the intercropping system, soil enzyme activities, microbial individuals and nutrient contents were significantly higher, compared with those in the treatments of nylon mesh partitioning and monocultures. All kinds of soil available nutrients showed significant or very significant positive correlations with soil biological factors, except that soil available Mg was negatively correlated with soil fungi and catalase activity. Pathway analysis indicated that in the intercropping system, soil urease, catalase, protease, and bacteria were the main factors affecting the accumulation of soil organic matter, saccharase was the most important factor affecting soil alkali-hydrolyzable N, urease was the most important factor affecting soil available P, and bacteria largely determined soil available K. Soil alkaline phosphatase and fungi selectively affected the accumulation of soil organic matter and available N, P and K. There was a slight negative correlation between soil actinomycetes and soil nutrients, suggesting that actinomycetes had little effect on soil nutrient formation.

  17. Airborne bacteria in the atmosphere: Presence, purpose, and potential

    NASA Astrophysics Data System (ADS)

    Smets, Wenke; Moretti, Serena; Denys, Siegfried; Lebeer, Sarah

    2016-08-01

    Numerous recent studies have highlighted that the types of bacteria present in the atmosphere often show predictable patterns across space and time. These patterns can be driven by differences in bacterial sources of the atmosphere and a wide range of environmental factors, including UV intensity, precipitation events, and humidity. The abundance of certain bacterial taxa is of interest, not only for their ability to mediate a range of chemical and physical processes in the atmosphere, such as cloud formation and ice nucleation, but also for their implications -both beneficial and detrimental-for human health. Consequently, the widespread importance of airborne bacteria has stimulated the search for their applicability. Improving air quality, modelling the dispersal of airborne bacteria (e.g. pathogens) and biotechnological purposes are already being explored. Nevertheless, many technological challenges still need to be overcome to fully understand the roles of airborne bacteria in our health and global ecosystems.

  18. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity.

    PubMed

    Chen, Zhongyi; Guo, Lilu; Zhang, Yongqin; Walzem, Rosemary L; Pendergast, Julie S; Printz, Richard L; Morris, Lindsey C; Matafonova, Elena; Stien, Xavier; Kang, Li; Coulon, Denis; McGuinness, Owen P; Niswender, Kevin D; Davies, Sean S

    2014-08-01

    Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.

  19. Symbiotic bacteria enable olive fly larvae to overcome host defences

    PubMed Central

    Ben-Yosef, Michael; Pasternak, Zohar; Jurkevitch, Edouard; Yuval, Boaz

    2015-01-01

    Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein—the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae. PMID:26587275

  20. Pulling helices inside bacteria: imperfect helices and rings

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew; Allard, Jun

    2009-03-01

    We study steady-state configurations of intrinsically-straight elastic filaments constrained within rod-shaped bacteria that have applied forces distributed along their length. Perfect steady-state helices result from axial or azimuthal forces applied at filament ends, however azimuthal forces are required for the small pitches observed for MreB filaments within bacteria. Helix-like configurations can result from distributed forces, including co-existence between rings and imperfect helices. Levels of expression and/or bundling of the polymeric protein could mediate this co-existence.

  1. Synergistic reaction of silver nitrate, silver nanoparticles, and methylene blue against bacteria

    PubMed Central

    Li, Runze; Chen, Jie; Cesario, Thomas C.; Wang, Xin; Yuan, Joshua S.; Rentzepis, Peter M.

    2016-01-01

    In this paper we describe the antibacterial effect of methylene blue, MB, and silver nitrate reacting alone and in combination against five bacterial strains including Serratia marcescens and Escherichia coli bacteria. The data presented suggest that when the two components are combined and react together against bacteria, the effects can be up to three orders of magnitude greater than that of the sum of the two components reacting alone against bacteria. Analysis of the experimental data provides proof that a synergistic mechanism is operative within a dose range when the two components react together, and additive when reacting alone against bacteria. PMID:27849602

  2. Aptamer-based viability impedimetric sensor for bacteria.

    PubMed

    Labib, Mahmoud; Zamay, Anna S; Kolovskaya, Olga S; Reshetneva, Irina T; Zamay, Galina S; Kibbee, Richard J; Sattar, Syed A; Zamay, Tatiana N; Berezovski, Maxim V

    2012-11-06

    The development of an aptamer-based viability impedimetric sensor for bacteria (AptaVISens-B) is presented. Highly specific DNA aptamers to live Salmonella typhimurium were selected via the cell-systematic evolution of ligands by exponential enrichment (SELEX) technique. Twelve rounds of selection were performed; each comprises a positive selection step against viable S. typhimurium and a negative selection step against heat killed S. typhimurium and a mixture of related pathogens, including Salmonella enteritidis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii to ensure the species specificity of the selected aptamers. The DNA sequence showing the highest binding affinity to the bacteria was further integrated into an impedimetric sensor via self-assembly onto a gold nanoparticle-modified screen-printed carbon electrode (GNP-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. typhimurium down to 600 CFU mL(-1) (equivalent to 18 live cells in 30 μL of assay volume) and distinguish it from other Salmonella species, including S. enteritidis and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based viability sensing of a variety of microorganisms, particularly viable but nonculturable (VBNC) bacteria, using a rapid, economic, and label-free electrochemical platform.

  3. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  4. Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung.

    PubMed

    Lv, Baoyi; Xing, Meiyan; Yang, Jian; Zhang, Liangbo

    2015-12-01

    This study aimed to compare the microbial community structures and compositions in composting and vermicomposting processes. We applied 454 high-throughput pyrosequencing to analyze the 16S rRNA gene of bacteria obtained from bio-stabilization of sewage sludge and cattle dung. Results demonstrated that vermicomposting process presented higher operational taxonomic units and bacterial diversity than the composting. Analysis using weighted UniFrac indicated that composting exhibited higher effects on shaping microbial community structure than the vermicomposting. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting and shifted to Actinomycetes in the maturing stage. By contrast, Proteobacteria accounted for the highest proportions in the whole process of the vermicomposting. Furthermore, vermicomposting contained more uncultured and unidentified bacteria at the taxonomy level of genus than the composting. In summary, the bacterial community during composting significantly differed from that during vermicomposting. These two techniques played different roles in changing the diversity and composition of microbial communities.

  5. Lipopolysaccharides in diazotrophic bacteria.

    PubMed

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  6. Lipopolysaccharides in diazotrophic bacteria

    PubMed Central

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure. PMID:25232535

  7. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation.

    PubMed

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida; Kulik, Andreas; Grond, Stephanie

    2016-04-01

    Two strains identified as Nocardia caishijiensis (SORS 64b) and Pseudonocardia carboxydivorans (AGLS 2) were isolated as endophytes from Sonchus oleraceus and Ageratum conyzoides respectively. The analysis of their extracts revealed them to be strongly bioactive. The N. caishijiensis extract gave an LC50 of 570 μg/ml(-1) in the brine shrimp cytotoxicity assay and an EC50 of 0.552 μg/ml(-1) in the DPPH antioxidant assay. Antimicrobial activity was observed against Methicillin resistant Staphlococcus aureus (MRSA) and Escherichia coli ATCC 25922 (14 mm), Klebsiella pneumoniae ATCC 706003 (13 mm), S. aureus ATCC 25923 (11 mm) and Candida tropicalis (20 mm). For the extract of P. carboxydivorans the EC50 was 0.670 μg/ml(-1) and it was observed to be more bioactive against Bacillus subtilis DSM 10 ATCC 6051 (21 mm), C. tropicalis (20 mm), S. aureus ATCC 25923 (17 mm), MRSA (17 mm), E. coli K12 (W1130) (16 mm) and Chlorella vulgaris (10 mm). The genotoxicity testing revealed a 20 mm zone of inhibition against the polA mutant strain E. coli K-12 AB 3027 suggesting damage to the DNA and polA genes. The TLC and bioautography screening revealed a diversity of active bands of medium polar and nonpolar compounds. Metabolite analysis by HPLC-DAD via UV/vis spectral screening suggested the possibility of stenothricin and bagremycin A in the mycelium extract of N. caishijiensis respectively. In the broth and mycelium extract of P. carboxydivorans borrelidin was suggested along with α-pyrone. The HPLC-MS revealed bioactive long chained amide derivatives such as 7-Octadecenamide, 9, 12 octadecandienamide. This study reports the rare actinomycetes N. caishijiensis and P. carboxydivorans as endophytes and evaluates their bioactive metabolites. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Method of Detecting Coliform Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K. (Inventor)

    2014-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  9. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    PubMed

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Endocarditis Due to Rare and Fastidious Bacteria

    PubMed Central

    Brouqui, P.; Raoult, D.

    2001-01-01

    The etiologic diagnosis of infective endocarditis is easily made in the presence of continuous bacteremia with gram-positive cocci. However, the blood culture may contain a bacterium rarely associated with endocarditis, such as Lactobacillus spp., Klebsiella spp., or nontoxigenic Corynebacterium, Salmonella, Gemella, Campylobacter, Aeromonas, Yersinia, Nocardia, Pasteurella, Listeria, or Erysipelothrix spp., that requires further investigation to establish the relationship with endocarditis, or the blood culture may be uninformative despite a supportive clinical evaluation. In the latter case, the etiologic agents are either fastidious extracellular or intracellular bacteria. Fastidious extracellular bacteria such as Abiotrophia, HACEK group bacteria, Clostridium, Brucella, Legionella, Mycobacterium, and Bartonella spp. need supplemented media, prolonged incubation time, and special culture conditions. Intracellular bacteria such as Coxiella burnetii cannot be isolated routinely. The two most prevalent etiologic agents of culture-negative endocarditis are C. burnetti and Bartonella spp. Their diagnosis is usually carried out serologically. A systemic pathologic examination of excised heart valves including periodic acid-Schiff (PAS) staining and molecular methods has allowed the identification of Whipple's bacillus endocarditis. Pathologic examination of the valve using special staining, such as Warthin-Starry, Gimenez, and PAS, and broad-spectrum PCR should be performed systematically when no etiologic diagnosis is evident through routine laboratory evaluation. PMID:11148009

  11. Interactions between yeasts and bacteria in the smear surface-ripened cheeses.

    PubMed

    Corsetti, A; Rossi, J; Gobbetti, M

    2001-09-19

    In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper.

  12. Diversity, Roles, and Biotechnological Applications of Symbiotic Microorganisms in the Gut of Termite.

    PubMed

    Zhou, Jing; Duan, Jiwei; Gao, Mingkun; Wang, Ying; Wang, Xiaohua; Zhao, Kai

    2018-05-12

    Termites are global pests and can cause serious damage to buildings, crops, and plantation forests. The symbiotic intestinal flora plays an important role in the digestion of cellulose and nitrogen in the life of termites. Termites and their symbiotic microbes in the gut form a synergistic system. These organism work together to digest lignocellulose to make the termites grow on nitrogen deficient food. In this paper, the diversity of symbiotic microorganisms in the gut of termites, including protozoan, spirochetes, actinomycetes, fungus and bacteria, and their role in the digestion of lignocellulose and also the biotechnological applications of these symbiotic microorganisms are discussed. The high efficiency lignocellulose degradation systems of symbiotic microbes in termite gut not only provided a new way of biological energy development, but also has immense prospect in the application of cellulase enzymes. In addition, the study on the symbiotic microorganisms in the gut of termites will also provide a new method for the biological control of termites by the endophytic bacteria in the gut of termites.

  13. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOEpatents

    Apel, William A.; Dugan, Patrick R.

    1995-01-01

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  14. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOEpatents

    Apel, William A.; Dugan, Patrick R.

    1995-04-04

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  15. Characterization of lactic acid bacteria from local cow´s milk kefir

    NASA Astrophysics Data System (ADS)

    Ismail, YS; Yulvizar, C.; Mazhitov, B.

    2018-03-01

    One of products from milk fermentation is kefir. It is made by adding kefir grains which are composed of lactic acid bacteria and yeast into milk. The lactic acid bacteria are a group of bacteria that produce antimicrobial substances and able to inhibit the growth of pathogenic bacteria. In this research, the lactic acid bacteria were isolated from Aceh local cow`s milk kefir to determine the genus of the isolates. The methods used in the characterization of lactic acid bacteria are colony morphology, cell morphology, and biochemical tests which includes a catalase test; 5%, 6.5%, and 10% salt endurance tests; 37°C and 14°C temperature endurance tests, SIM test, TSIA test, MR-VP test, and O/F test. Of the four isolates found from the cow’s milk kefir, two isolates were confirmed as lactic acid bacteria (isolates SK-1 and SK-4). Both isolates are Gram positive bacteria, and have negative catalase activity. From the observations of colony morphology, cell morphology, and biochemical tests, it was found that the genus of SK-1 is Lactobacillus and the genus of SK-4 is Enterococcus.

  16. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity

    PubMed Central

    Chen, Zhongyi; Guo, Lilu; Zhang, Yongqin; L. Walzem, Rosemary; Pendergast, Julie S.; Printz, Richard L.; Morris, Lindsey C.; Matafonova, Elena; Stien, Xavier; Kang, Li; Coulon, Denis; McGuinness, Owen P.; Niswender, Kevin D.; Davies, Sean S.

    2014-01-01

    Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person’s microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders. PMID:24960158

  17. Platelets and Infections – Complex Interactions with Bacteria

    PubMed Central

    Hamzeh-Cognasse, Hind; Damien, Pauline; Chabert, Adrien; Pozzetto, Bruno; Cognasse, Fabrice; Garraud, Olivier

    2015-01-01

    Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-like receptors but also integrins conventionally described in the hemostatic response, such as GPIIb–IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet-bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis, or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of neutrophil extracellular traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet–bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the aggregation response

  18. Model documentation for relations between continuous real-time and discrete water-quality constituents in Cheney Reservoir near Cheney, Kansas, 2001--2009

    USGS Publications Warehouse

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    Cheney Reservoir, located in south-central Kansas, is one of the primary water supplies for the city of Wichita, Kansas. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station in Cheney Reservoir since 2001; continuously measured physicochemical properties include specific conductance, pH, water temperature, dissolved oxygen, turbidity, fluorescence (wavelength range 650 to 700 nanometers; estimate of total chlorophyll), and reservoir elevation. Discrete water-quality samples were collected during 2001 through 2009 and analyzed for sediment, nutrients, taste-and-odor compounds, cyanotoxins, phytoplankton community composition, actinomycetes bacteria, and other water-quality measures. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physicochemical properties to compute concentrations of constituents that are not easily measured in real time. The water-quality information in this report is important to the city of Wichita because it allows quantification and characterization of potential constituents of concern in Cheney Reservoir. This report updates linear regression models published in 2006 that were based on data collected during 2001 through 2003. The update uses discrete and continuous data collected during May 2001 through December 2009. Updated models to compute dissolved solids, sodium, chloride, and suspended solids were similar to previously published models. However, several other updated models changed substantially from previously published models. In addition to updating relations that were previously developed, models also were developed for four new constituents, including magnesium, dissolved phosphorus, actinomycetes bacteria, and the cyanotoxin microcystin. In addition, a conversion factor of 0.74 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI

  19. Exploring the potential environmental functions of viable but non-culturable bacteria.

    PubMed

    Su, Xiaomei; Chen, Xi; Hu, Jinxing; Shen, Chaofeng; Ding, Linxian

    2013-12-01

    A conventional plate count is the most commonly employed method to estimate the number of living bacteria in environmental samples. In fact, judging the level of viable culture by plate count is limited, because it is often several orders of magnitude less than the number of living bacteria actually present. Most of the bacteria are in "viable but non-culturable" (VBNC) state, whose cells are intact and alive and can resuscitate when surrounding conditions are more favorable. The most exciting recent development in resuscitating VBNC bacteria is a bacterial cytokine, namely, the resuscitation-promoting factor (Rpf), secreted by Micrococcus luteus, which promotes the resuscitation and growth of high G+C Gram-positive organisms, including some species of the genus Mycobacterium. However, most of studies deal with VBNC bacteria only from the point of view of medicine and epidemiology. It is therefore of great significance to research whether these VBNC state bacteria also possess some useful environmental capabilities, such as degradation, flocculation, etc. Further studies are needed to elucidate the possible environmental role of the VBNC bacteria, rather than only considering their role as potential pathogens from the point view of epidemiology and public health. We have studied the resuscitation of these VBNC bacteria in polluted environments by adding culture supernatant containing Rpf from M. luteus, and it was found that, as a huge microbial resource, VBNC bacteria could provide important answers to dealing with existing problems of environmental pollution. This mini-review will provide new insight for considering the potentially environmental functions of VBNC bacteria.

  20. Virulence properties of cariogenic bacteria

    PubMed Central

    Kuramitsu, Howard K; Wang, Bing-Yan

    2006-01-01

    The importance of Streptococcus mutans in the etiology of dental caries has been well documented. However, there is growing recognition that the cariogenic potential of dental plaque may be determined by the composite interactions of the total plaque bacteria rather than solely the virulence properties of a single organism. This study will examine how the interactions of S. mutans with other biofilm constituents may influence the cariogenicity of plaque samples. In order to begin to investigate the effects of nonmutans streptococci on the cariogenic potential of S. mutans, we have examined the effects of Streptococcus gordonii on the virulence properties of the former organisms. These studies have indicated that S.gordonii can attenuate several potential virulence properties of S. mutans including bacteriocin production, genetic transformation, and biofilm formation. Therefore, modulation of the interactions between plaque bacteria might be a novel approach for attenuating dental caries initiation. PMID:16934112

  1. Streptomyces camponoticapitis sp. nov., an actinomycete isolated from the head of an ant (Camponotus japonicus Mayr).

    PubMed

    Li, Yao; Ye, Lan; Wang, Xiangjing; Zhao, Junwei; Ma, Zhaoxu; Yan, Kai; Xiang, Wensheng; Liu, Chongxi

    2016-10-01

    A novel single-spore-producing actinomycete, designated strain 2H-TWYE14T, was isolated from the head of an ant (Camponotus japonicus Mayr) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain 2H-TWYE14T belongs to the genus Streptomyces, with highest sequence similarity to Streptomyces niveus NRRL 2466T (98.84 %). Analysis based on the gyrB gene also indicated that strain 2H-TWYE14T should be assigned to the genus Streptomyces. The chemotaxonomic properties of strain 2H-TWYE14T were consistent with those of members of the genus Streptomyces. The cell wall contained ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were iso-C16 : 0 and iso-C15 : 0. DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 2H-TWYE14T and its phylogenetically closely related strain S. niveus JCM 4251T, which further clarified their relatedness and demonstrated that 2H-TWYE14T could be distinguished from S. niveus. Therefore, it is concluded that strain 2H-TWYE14T can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces camponoticapitis sp. nov. is proposed. The type strain is 2H-TWYE14T (=DSM 100523T=CGMCC 4.7275T).

  2. Streptomyces luozhongensis sp. nov., a novel actinomycete with antifungal activity and antibacterial activity.

    PubMed

    Zhang, Renwen; Han, Xiaoxue; Xia, Zhanfeng; Luo, Xiaoxia; Wan, Chuanxing; Zhang, Lili

    2017-02-01

    A novel actinomycete strain, designated TRM 49605 T , was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605 T to the genus Streptomyces. Strain TRM 49605 T shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815 T (98.62 %), Streptomyces flavovariabilis NRRL B-16367 T (98.45 %) and Streptomyces variegatus NRRL B-16380 T (98.45 %). Whole cell hydrolysates of strain TRM 49605 T were found to contain LL-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605 T were identified as iso C 16:0 , anteiso C 15:0 , C 16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H 4 ), MK-9(H 6 ), MK-9(H 8 ) and MK-10(H 6 ). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA-DNA relatedness between strain TRM 49605 T and the phylogenetically related strain S. roseolilacinus NBRC 12815 T was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605 T (=CCTCC AA2015026 T  = KCTC 39666 T ) should be designated as the type strain of a novel species of the genus

  3. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks.

    PubMed

    Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein

    2015-12-01

    This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.

  4. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks

    PubMed Central

    AMANIDAZ, Nazak; ZAFARZADEH, Ali; MAHVI, Amir Hossein

    2015-01-01

    Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. Results: In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Conclusion: Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms. PMID:26811820

  5. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  6. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    USDA-ARS?s Scientific Manuscript database

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  7. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO 2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO 2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H 2 and other valuable compounds.

  8. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria

    PubMed Central

    Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596

  9. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, Howard I.

    1984-01-01

    A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

  10. Bacteria Mediate Methylation of Iodine in Marine and Terrestrial Environments

    PubMed Central

    Amachi, Seigo; Kamagata, Yoichi; Kanagawa, Takahiro; Muramatsu, Yasuyuki

    2001-01-01

    Methyl iodide (CH3I) plays an important role in the natural iodine cycle and participates in atmospheric ozone destruction. However, the main source of this compound in nature is still unclear. Here we report that a wide variety of bacteria including terrestrial and marine bacteria are capable of methylating the environmental level of iodide (0.1 μM). Of the strains tested, Rhizobium sp. strain MRCD 19 was chosen for further analysis, and it was found that the cell extract catalyzed the methylation of iodide with S-adenosyl-l-methionine as the methyl donor. These results strongly indicate that bacteria contribute to iodine transfer from the terrestrial and marine ecosystems into the atmosphere. PMID:11375186

  11. Electro-responsive supramolecular graphene oxide hydrogels for active bacteria adsorption and removal

    NASA Astrophysics Data System (ADS)

    Xue, Bin; Cao, Yi; Wang, Wei

    Bacteria are major contaminations in drinking water and healthcare products. Bacteria contamination may cause severe health problems, including food poisoning and diseases. Currently water sterilization and purification methods to remove contaminated bacteria are mainly based on the size-exclusion mechanism. In order to completely remove all bacteria in water, the pore sizes of the membranes or cartilages should be comparable to the size of bacteria, which inevitable leads to high cross-membrane water pressure and slow purification speed. Moreover, the membranes can easily get clogged. Therefore it is highly demanded to develop efficient methods and novel materials for water purification. Recently, Cui and coworker have introduced a bacteria inactivation method with high efficiency and fast purification speed based on a kind of complex materials made of silver nanofibers, carbon nanotubes and cotton, operating in an electric field. With the help of electric field, the bacteria can be efficiently kill when passing through the membrance even the pore sizes are larger than bacteria. Inspired by their work, here we report a proof-of-principle demonstration of bacteria removal using electro-reponsive hydrogels. This work is funded by Six talent peaks project in Jiangsu Province, the National Natural Science Foundation of China (Nos. 11304156, 11334004, 31170813, 81421091 and 91127026), the 973 Program of China (No. 2012CB921801 and 2013CB834100), the Priority Ac.

  12. Effect of mineral fertilizers on microbiological and biochemical characteristics of agrochernozem.

    NASA Astrophysics Data System (ADS)

    Tkhakakhova, Azida; Vasilenko, Elena; Kutovaya, Olga

    2013-04-01

    . Content of humic substances in the soil affects all groups of microorganisms, except actinomycetes and cellulolytices. These microorganisms have an active system of hydrolytic enzymes that taking action on hard organic materials. Movable carbon largely affects the anaerobic microorganisms nitrogen cycle and inverse relationship takes place during with the developing of actinomycetes. Correlation between the aqueous extract carbon with cellulolitic bacteria, aerobic nitrogen-fixing bacteria and amylolytic microorganisms using mineral nitrogen is the highest. Organic material of the soil solution in the growing season associated with NO3-. The content of total nitrogen and nitrate associated with anaerobic denitrifying bacteria, nitrogen-fixing bacteria and amylolytic microorganisms. The content of ammonia nitrogen N-NH4+ renders very strong influence on soil microorganisms. A positive correlation is observed with ammonifiers, nitrogen-fixing bacteria, denitrifying bacteria. There is inverse relationship with actinomycetes (R = - 0,96) and anaerobic cellulolitic bacteria (R = - 0,80). Representatives of these microorganisms are active participants in the carbon cycle; their development in the presence of the ammonium form of nitrogen is possibly suspended. There is a complicated relationship of biochemical indicators of the development of soil microorganisms in the black earth. The problem preserving stable humus and physiologically active mobile forms that affect plant growth can only be achieved while maintaining the living organisms in it.

  13. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals.

    PubMed

    Sarkar, Amar; Lehto, Soili M; Harty, Siobhán; Dinan, Timothy G; Cryan, John F; Burnet, Philip W J

    2016-11-01

    Psychobiotics were previously defined as live bacteria (probiotics) which, when ingested, confer mental health benefits through interactions with commensal gut bacteria. We expand this definition to encompass prebiotics, which enhance the growth of beneficial gut bacteria. We review probiotic and prebiotic effects on emotional, cognitive, systemic, and neural variables relevant to health and disease. We discuss gut-brain signalling mechanisms enabling psychobiotic effects, such as metabolite production. Overall, knowledge of how the microbiome responds to exogenous influence remains limited. We tabulate several important research questions and issues, exploration of which will generate both mechanistic insights and facilitate future psychobiotic development. We suggest the definition of psychobiotics be expanded beyond probiotics and prebiotics to include other means of influencing the microbiome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Detection and categorization of bacteria habitats using shallow linguistic analysis

    PubMed Central

    2015-01-01

    Background Information regarding bacteria biotopes is important for several research areas including health sciences, microbiology, and food processing and preservation. One of the challenges for scientists in these domains is the huge amount of information buried in the text of electronic resources. Developing methods to automatically extract bacteria habitat relations from the text of these electronic resources is crucial for facilitating research in these areas. Methods We introduce a linguistically motivated rule-based approach for recognizing and normalizing names of bacteria habitats in biomedical text by using an ontology. Our approach is based on the shallow syntactic analysis of the text that include sentence segmentation, part-of-speech (POS) tagging, partial parsing, and lemmatization. In addition, we propose two methods for identifying bacteria habitat localization relations. The underlying assumption for the first method is that discourse changes with a new paragraph. Therefore, it operates on a paragraph-basis. The second method performs a more fine-grained analysis of the text and operates on a sentence-basis. We also develop a novel anaphora resolution method for bacteria coreferences and incorporate it with the sentence-based relation extraction approach. Results We participated in the Bacteria Biotope (BB) Task of the BioNLP Shared Task 2013. Our system (Boun) achieved the second best performance with 68% Slot Error Rate (SER) in Sub-task 1 (Entity Detection and Categorization), and ranked third with an F-score of 27% in Sub-task 2 (Localization Event Extraction). This paper reports the system that is implemented for the shared task, including the novel methods developed and the improvements obtained after the official evaluation. The extensions include the expansion of the OntoBiotope ontology using the training set for Sub-task 1, and the novel sentence-based relation extraction method incorporated with anaphora resolution for Sub-task 2. These

  15. Phenotypic and phylogenetic characterization of ruminal tannin-tolerant bacteria.

    PubMed

    Nelson, K E; Thonney, M L; Woolston, T K; Zinder, S H; Pell, A N

    1998-10-01

    The 16S rRNA sequences and selected phenotypic characteristics were determined for six recently isolated bacteria that can tolerate high levels of hydrolyzable and condensed tannins. Bacteria were isolated from the ruminal contents of animals in different geographic locations, including Sardinian sheep (Ovis aries), Honduran and Colombian goats (Capra hircus), white-tail deer (Odocoileus virginianus) from upstate New York, and Rocky Mountain elk (Cervus elaphus nelsoni) from Oregon. Nearly complete sequences of the small-subunit rRNA genes, which were obtained by PCR amplification, cloning, and sequencing, were used for phylogenetic characterization. Comparisons of the 16S rRNA of the six isolates showed that four of the isolates were members of the genus Streptococcus and were most closely related to ruminal strains of Streptococcus bovis and the recently described organism Streptococcus gallolyticus. One of the other isolates, a gram-positive rod, clustered with the clostridia in the low-G+C-content group of gram-positive bacteria. The sixth isolate, a gram-negative rod, was a member of the family Enterobacteriaceae in the gamma subdivision of the class Proteobacteria. None of the 16S rRNA sequences of the tannin-tolerant bacteria examined was identical to the sequence of any previously described microorganism or to the sequence of any of the other organisms examined in this study. Three phylogenetically distinct groups of ruminal bacteria were isolated from four species of ruminants in Europe, North America, and South America. The presence of tannin-tolerant bacteria is not restricted by climate, geography, or host animal, although attempts to isolate tannin-tolerant bacteria from cows on low-tannin diets failed.

  16. Phenotypic and Phylogenetic Characterization of Ruminal Tannin-Tolerant Bacteria

    PubMed Central

    Nelson, Karen E.; Thonney, Michael L.; Woolston, Tina K.; Zinder, Stephen H.; Pell, Alice N.

    1998-01-01

    The 16S rRNA sequences and selected phenotypic characteristics were determined for six recently isolated bacteria that can tolerate high levels of hydrolyzable and condensed tannins. Bacteria were isolated from the ruminal contents of animals in different geographic locations, including Sardinian sheep (Ovis aries), Honduran and Colombian goats (Capra hircus), white-tail deer (Odocoileus virginianus) from upstate New York, and Rocky Mountain elk (Cervus elaphus nelsoni) from Oregon. Nearly complete sequences of the small-subunit rRNA genes, which were obtained by PCR amplification, cloning, and sequencing, were used for phylogenetic characterization. Comparisons of the 16S rRNA of the six isolates showed that four of the isolates were members of the genus Streptococcus and were most closely related to ruminal strains of Streptococcus bovis and the recently described organism Streptococcus gallolyticus. One of the other isolates, a gram-positive rod, clustered with the clostridia in the low-G+C-content group of gram-positive bacteria. The sixth isolate, a gram-negative rod, was a member of the family Enterobacteriaceae in the gamma subdivision of the class Proteobacteria. None of the 16S rRNA sequences of the tannin-tolerant bacteria examined was identical to the sequence of any previously described microorganism or to the sequence of any of the other organisms examined in this study. Three phylogenetically distinct groups of ruminal bacteria were isolated from four species of ruminants in Europe, North America, and South America. The presence of tannin-tolerant bacteria is not restricted by climate, geography, or host animal, although attempts to isolate tannin-tolerant bacteria from cows on low-tannin diets failed. PMID:9758806

  17. Interactions between Diatoms and Bacteria

    PubMed Central

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  18. Pathways for degradation of lignin in bacteria and fungi.

    PubMed

    Bugg, Timothy D H; Ahmad, Mark; Hardiman, Elizabeth M; Rahmanpour, Rahman

    2011-11-01

    Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes. There are also reports of bacteria that can degrade lignin, and recent work indicates that bacterial lignin breakdown may be more significant than previously thought. The review will discuss the enzymes for lignin breakdown in fungi and bacteria, and the catabolic pathways for breakdown of the β-aryl ether, biphenyl and other components of lignin in bacteria and fungi. The review will also discuss small molecule phenolic breakdown products from lignin that have been identified from lignin-degrading microbes, and includes a bioinformatic analysis of the occurrence of known lignin-degradation pathways in Gram-positive and Gram-negative bacteria.

  19. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  20. Money and transmission of bacteria

    PubMed Central

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria to people who come in contact with the banknotes. The survival rate was highest for the Romanian Leu yielding all three microorganisms used after both three and six hours of drying. Furthermore, the Leu was the only banknote to yield VRE after one day of drying. Other currencies either enabled the survival of Extended-Spectrum Beta-Lactamases (ESBL) and VRE (e.g. Euro), but not of MRSA, or the other way round (e.g. US Dollar). While a variety of factors such as community hygiene levels, people’s behaviour, and antimicrobial resistance rates at community level obviously have influence on the transmission of resistant microorganisms, the type of banknote-paper may be an additional variable to consider. PMID:23985137

  1. Silver enhances antibiotic activity against gram-negative bacteria.

    PubMed

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  2. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria.

    PubMed

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D

    2014-07-01

    An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. The anthracycline Antibiotic 301A(1) was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure-activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A(1) abolishes activity. Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Influences of Media Compositions on Characteristics of Isolated Bacteria Exhibiting Lignocellulolytic Activities from Various Environmental Sites.

    PubMed

    Gong, Gyeongtaek; Lee, Sun-Mi; Woo, Han Min; Park, Tai Hyun; Um, Youngsoon

    2017-11-01

    Efficient isolation of lignocellulolytic bacteria is essential for the utilization of lignocellulosic biomass. In this study, bacteria with cellulolytic, xylanolytic, and lignolytic activities were isolated from environmental sites such as mountain, wetland, and mudflat using isolation media containing the combination of lignocellulose components (cellulose, xylan, and lignin). Eighty-nine isolates from the isolation media were characterized by analyzing taxonomic ranks and cellulolytic, xylanolytic, and lignolytic activities. Most of the cellulolytic bacteria showed multienzymatic activities including xylanolytic activity. The isolation media without lignin were efficient in isolating bacteria exhibiting multienzymatic activities even including lignolytic activity, whereas a lignin-containing medium was effective to isolate bacteria exhibiting lignolytic activity only. Multienzymatic activities were mainly observed in Bacillus and Streptomyces, while Burkholderia was the most abundant genus with lignolytic activity only. This study provides insight into isolation medium for efficient isolation of lignocellulose-degrading microorganisms.

  4. Diverse Bacteria Inhabit Living Hyphae of Phylogenetically Diverse Fungal Endophytes▿ †

    PubMed Central

    Hoffman, Michele T.; Arnold, A. Elizabeth

    2010-01-01

    Both the establishment and outcomes of plant-fungus symbioses can be influenced by abiotic factors, the interplay of fungal and plant genotypes, and additional microbes associated with fungal mycelia. Recently bacterial endosymbionts were documented in soilborne Glomeromycota and Mucoromycotina and in at least one species each of mycorrhizal Basidiomycota and Ascomycota. Here we show for the first time that phylogenetically diverse endohyphal bacteria occur in living hyphae of diverse foliar endophytes, including representatives of four classes of Ascomycota. We examined 414 isolates of endophytic fungi, isolated from photosynthetic tissues of six species of cupressaceous trees in five biogeographic provinces, for endohyphal bacteria using microscopy and molecular techniques. Viable bacteria were observed within living hyphae of endophytic Pezizomycetes, Dothideomycetes, Eurotiomycetes, and Sordariomycetes from all tree species and biotic regions surveyed. A focus on 29 fungus/bacterium associations revealed that bacterial and fungal phylogenies were incongruent with each other and with taxonomic relationships of host plants. Overall, eight families and 15 distinct genotypes of endohyphal bacteria were recovered; most were members of the Proteobacteria, but a small number of Bacillaceae also were found, including one that appears to occur as an endophyte of plants. Frequent loss of bacteria following subculturing suggests a facultative association. Our study recovered distinct lineages of endohyphal bacteria relative to previous studies, is the first to document their occurrence in foliar endophytes representing four of the most species-rich classes of fungi, and highlights for the first time their diversity and phylogenetic relationships with regard both to the endophytes they inhabit and the plants in which these endophyte-bacterium symbiota occur. PMID:20435775

  5. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water.

    PubMed

    Khan, Sadia; Beattie, Tara K; Knapp, Charles W

    2016-06-01

    Chlorination is commonly used to control levels of bacteria in drinking water; however, viable bacteria may remain due to chlorine resistance. What is concerning is that surviving bacteria, due to co-selection factors, may also have increased resistance to common antibiotics. This would pose a public health risk as it could link resistant bacteria in the natural environment to human population. Here, we investigated the relationship between chlorine- and antibiotic-resistances by harvesting 148 surviving bacteria from chlorinated drinking-water systems and compared their susceptibilities against chlorine disinfectants and antibiotics. Twenty-two genera were isolated, including members of Paenibacillus, Burkholderia, Escherichia, Sphingomonas and Dermacoccus species. Weak (but significant) correlations were found between chlorine-tolerance and minimum inhibitory concentrations against the antibiotics tetracycline, sulfamethoxazole and amoxicillin, but not against ciprofloxacin; this suggest that chlorine-tolerant bacteria are more likely to also be antibiotic resistant. Further, antibiotic-resistant bacteria survived longer than antibiotic-sensitive organisms when exposed to free chlorine in a contact-time assay; however, there were little differences in susceptibility when exposed to monochloramine. Irrespective of antibiotic-resistance, spore-forming bacteria had higher tolerance against disinfection compounds. The presence of chlorine-resistant bacteria surviving in drinking-water systems may carry additional risk of antibiotic resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, H.I.

    1984-10-09

    A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings

  7. Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria

    PubMed Central

    McTaggart, Tami L.; Beck, David A. C.; Setboonsarng, Usanisa; Shapiro, Nicole; Woyke, Tanja; Lidstrom, Mary E.; Kalyuzhnaya, Marina G.; Chistoserdova, Ludmila

    2015-01-01

    Gram-positive methylotrophic bacteria have been known for a long period of time, some serving as model organisms for characterizing the specific details of methylotrophy pathways/enzymes within this group. However, genome-based knowledge of methylotrophy within this group has been so far limited to a single species, Bacillus methanolicus (Firmicutes). The paucity of whole-genome data for Gram-positive methylotrophs limits our global understanding of methylotrophy within this group, including their roles in specific biogeochemical cycles, as well as their biotechnological potential. Here, we describe the isolation of seven novel strains of Gram-positive methylotrophs that include two strains of Bacillus and five representatives of Actinobacteria classified within two genera, Arthrobacter and Mycobacterium. We report whole-genome sequences for these isolates and present comparative analysis of the methylotrophy functional modules within these genomes. The genomic sequences of these seven novel organisms, all capable of growth on methylated amines, present an important reference dataset for understanding the genomic basis of methylotrophy in Gram-positive methylotrophic bacteria. This study is a major contribution to the field of methylotrophy, aimed at closing the gap in the genomic knowledge of methylotrophy within this diverse group of bacteria. PMID:27682081

  8. Streptomyces pini sp. nov., an actinomycete isolated from phylloplane of pine (Pinus sylvestris L.) needle-like leaves.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Saravanan, Venkatakrishnan Sivaraj; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah; Pragatheswari, Dhandapani; Santhanakrishnan, Palani; Kim, Soo-Jin; Weon, Hang-Yeon; Kwon, Soon-Wo

    2016-10-01

    A novel siderophore-producing actinomycete, designated PL19T, was isolated from the Scots-pine needle-like leaves collected from TNAU campus, Coimbatore, India. The isolate was chemoorganotrophic in nutrition and able to grow at 30 °C, and the optimum pH and NaCl facilitated the growth pH 6-11 and 0-8 % (w/v), respectively. The cells are filamentous and the mycelia formed are basically of wide and intricately branched substrate mycelium from which aerial mycelia arises, later gets differentiated into spores that are warty and arranged spirally. The 16S rRNA gene of strain PL19T was sequenced and was highly similar to the type strains of species of the genus Streptomyces, including Streptomyces barkulensis RC1831T (98.8 % pairwise similarity), Streptomyces fenghuangensis GIMN4.003T (98.2 %), Streptomyces nanhaiensis SCSIO 01248T (98.0 %), Streptomyces radiopugnans R97T (97.9 %), Streptomyces atacamensis C60T (97.8 %) and Streptomyces macrosporus NBRC 14749T (97.2 %), all of which were subjected to taxonomical characterization using a polyphasic approach. The strains showed unique carbon utilization patterns, and it possesses iso-C16 : 0 anteiso-C15 : 0 and anteiso-C17 : 0 as a major cellular fatty acids. The cell-wall was dominated with ll-type diaminopimelic acid, and the menaquinone type was MK-9(H6, H8). These chemotaxonomic evidences placed strain PL19T within the genus Streptomyces. The determination of G+C ratio (69.5 mol%) and DNA-DNA hybridization values (13.4-31.8 % with the phylogenetically related species) helped in further hierarchical classification of strain PL19T. Based on morphological, physiological and chemotaxonomic data as well as DNA-DNA hybridization values, strain PL19T could be distinguished from the evolutionarily closest species currently available. All these collective data show that strain PL19T represents a novel species of the genus Streptomyces, for which the name Streptomyces pini sp. nov. is proposed

  9. Microbispora camponoti sp. nov., a novel actinomycete isolated from the cuticle of Camponotus japonicus Mayr.

    PubMed

    Han, Chuanyu; Liu, Chongxi; Zhao, Junwei; Guo, Lifeng; Lu, Chang; Li, Jiansong; Jia, Feiyu; Wang, Xiangjing; Xiang, Wensheng

    2016-02-01

    A novel actinomycete, designated strain 2C-HV3(T), was isolated from the cuticle of Camponotus japonicus Mayr collected from Harbin, Heilongjiang province, north China and characterised using a polyphasic approach. The 16S rRNA gene sequence of strain 2C-HV3(T) showed that it has high sequence similarities with Microbispora bryophytorum NEAU-TX2-2(T) (99.9 %), Microbispora amethystogenes JCM 3021(T) (98.9 %) and Microbispora rosea subsp. rosea JCM 3006(T) (98.6 %). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences demonstrated that strain 2C-HV3(T) clusters with M. bryophytorum NEAU-TX2-2(T) using two tree-making algorithms. Moreover, key morphological and chemotaxonomic properties also confirmed the affiliation of strain 2C-HV3(T) to the genus Microbispora. Longitudinal paired spores were observed to be born on short sporophores branching from the aerial hyphae. The cell wall was found to contain meso-diaminopimelic acid as the diagnostic diamino acid; madurose was found in the whole cell hydrolysate. The polar lipid profile was found to consist of diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside, ninhydrin-positive glycophospholipids, an unidentified phospholipid and an unidentified glycolipid. The predominant menaquinones were identified as MK-9(H2) and MK-9(H4). The major fatty acids were identified as 10-methyl C17:0 and iso-C16:0. However, a combination of DNA-DNA hybridization results and some phenotypic characteristics demonstrated that strain 2C-HV3(T) can be distinguished from its closely related relatives. Consequently, it is proposed that strain 2C-HV3(T) represents a new species of the genus Microbispora, for which the name Microbispora camponoti sp. nov. is proposed. The type strain is 2C-HV3(T) (=CGMCC 4.7281(T) = DSM 100527(T)).

  10. Sphaerisporangium dianthi sp. nov., an endophytic actinomycete isolated from a root of Dianthus chinensis L.

    PubMed

    Xing, Jia; Liu, Chongxi; Zhang, Yuejing; He, Hairong; Zhou, Ying; Li, Lianjie; Zhao, Junwei; Liu, Shuanghe; Wang, Xiangjing; Xiang, Wensheng

    2015-01-01

    A novel actinomycete, designated strain NEAU-CY18(T), was isolated from the root of a Chinese medicinal plant Dianthus chinensis L and subjected to a polyphasic taxonomic study. The novel strain was found to develop spherical sporangia with non-motile spores on aerial mycelium. The cell-wall peptidoglycan was found to contain meso-diaminopimelic acid. The whole-cell sugars were identified as madurose, mannose, ribose, galactose and glucose. The phospholipid profile was found to contain diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylmethylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides and an unidentified phospholipid. The predominant menaquinones were identified as MK-9(H4), MK-9(H2) and MK-9(H6). The major fatty acids were identified as C17:0 10-methyl, iso-C16:0 and C16:0. EzTaxon-e analysis of the 16S rRNA gene sequence indicated that the strain belongs to the genus Sphaerisporangium and was most closely related to Sphaerisporangium cinnabarinum JCM 3291(T) (98.9 %) and Sphaerisporangium melleum JCM 13064(T) (98.3 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-CY18(T) forms a monophyletic clade with S. cinnabarinum JCM 3291(T), an association that was supported by a bootstrap value of 97 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. Comparisons of some phenotypic properties and low DNA-DNA relatedness values enabled the strain to be differentiated from S. cinnabarinum JCM 3291(T) and S. melleum JCM 13064(T). Therefore, it is concluded that strain NEAU-CY18(T) represents a novel Sphaerisporangium species, for which the name Sphaerisporangium dianthi sp. nov. is proposed. The type strain is NEAU-CY18(T) ( = CGMCC 4.7132(T) = DSM 46736(T)).

  11. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change

    PubMed Central

    Lladó, Salvador; López-Mondéjar, Rubén

    2017-01-01

    SUMMARY The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. PMID:28404790

  12. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    PubMed

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  13. Re-engineering bacteria for ethanol production

    DOEpatents

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  14. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  15. Influence of surfaces on sulphidogenic bacteria.

    PubMed

    Bass, C J; Webb, J S; Sanders, P F; Lappin-Scott, H M

    1996-01-01

    Sulphidogenic bacteria in oil reservoirs are of great economic importance in terms of souring, fouling and corrosion. Mixed cultures containing these bacteria were isolated from chalk formations in North Sea oil reservoirs. These were thermophilic cultures, growing optimally at 60°C. Oil formations are porous matrices, providing a very large surface area and ideal conditions for bacterial attachment, survival and growth. This study included assessments of sulphide production rates of thermophilic (t-)sulphidogen consortia with and without additional surfaces. The availability of a surface contributed significantly to the rate and extent of sulphide generation. Surfaces were offered in varying amounts to growing planktonic cultures: significantly more sulphide was produced from cultures in contact with a surface than from identical cultures in the absence of a surface. In another series of experiments, t-sulphidogens were added to chalk rock chips in the presence of nutrients and incubated for several months. This resulted in rapid sulphide generation, the final concentration being related to the initial nutrient concentration. Subsequent nutrient addition resulted in renewed sulphide generation. It is suggested that bacteria in reservoirs can withstand long periods of nutrient deprivation while attached within the porous rock matrix and opportunistically utilise nutrients when they become available.

  16. Efflux-Mediated Drug Resistance in Bacteria: an Update

    PubMed Central

    Li, Xian-Zhi; Nikaido, Hiroshi

    2010-01-01

    Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past five years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria. PMID:19678712

  17. Salivary Periodontopathic Bacteria in Children and Adolescents with Down Syndrome

    PubMed Central

    Lopes Devito, Karina; Ribeiro, Luiz Cláudio

    2016-01-01

    Objective To assess and compare salivary periodontopathic bacteria between groups of Down syndrome and non-Down syndrome children and adolescents. Materials and Methods This study included a sample of 30 Down syndrome children and adolescents (G-DS) and 30 age- and sex-matched non-Down syndrome subjects (G-ND). Clinical examination determined the gingival bleeding index (GBI) and plaque index. Unstimulated whole saliva samples were collected from all participants. The fluorescence in situ hybridization (FISH) technique identified the presence and density of eight periodontopathic bacteria in saliva. The statistical analysis included chi-square and Mann-Whitney U tests. Results In the G-DS group, bleeding on probing was more frequent (p = 0.037) and higher densities of Campylobacter rectus (p = 0.013), Porphyromonas gingivalis (p = 0.025), Treponema denticola (p = 0.026), Fusobacterium nucleatum (p = 0.013), Prevotella intermedia (p = 0.001) and Prevotella nigrescens (p = 0.008) were observed. Besides, in the G-DS, the densities of bacteria from the orange complex were significantly higher in the age group 3–7 years for F. nucleatum (p = 0.029), P. intermedia (p = 0.001) and P. nigrescens (p = 0.006). C. rectus was higher in the age group 8–12 years (p = 0.045). Conclusion The results showed that children and adolescents with Down syndrome have higher susceptibility to periodontal disease and number of periodontopathic bacteria. PMID:27727287

  18. Social behavior of bacteria: from physics to complex organization

    NASA Astrophysics Data System (ADS)

    Ben-Jacob, E.

    2008-10-01

    I describe how bacteria develop complex colonial patterns by utilizing intricate communication capabilities, such as quorum sensing, chemotactic signaling and exchange of genetic information (plasmids) Bacteria do not store genetically all the information required for generating the patterns for all possible environments. Instead, additional information is cooperatively generated as required for the colonial organization to proceed. Each bacterium is, by itself, a biotic autonomous system with its own internal cellular informatics capabilities (storage, processing and assessments of information). These afford the cell certain plasticity to select its response to biochemical messages it receives, including self-alteration and broadcasting messages to initiate alterations in other bacteria. Hence, new features can collectively emerge during self-organization from the intra-cellular level to the whole colony. Collectively bacteria store information, perform decision make decisions (e.g. to sporulate) and even learn from past experience (e.g. exposure to antibiotics)-features we begin to associate with bacterial social behavior and even rudimentary intelligence. I also take Schrdinger’s’ “feeding on negative entropy” criteria further and propose that, in addition organisms have to extract latent information embedded in the environment. By latent information we refer to the non-arbitrary spatio-temporal patterns of regularities and variations that characterize the environmental dynamics. In other words, bacteria must be able to sense the environment and perform internal information processing for thriving on latent information embedded in the complexity of their environment. I then propose that by acting together, bacteria can perform this most elementary cognitive function more efficiently as can be illustrated by their cooperative behavior.

  19. Streptomyces lasiicapitis sp. nov., an actinomycete that produces kanchanamycin, isolated from the head of an ant (Lasius fuliginosus L.).

    PubMed

    Ye, Lan; Zhao, Shanshan; Li, Yao; Jiang, Shanwen; Zhao, Yue; Li, Jinmeng; Yan, Kai; Wang, Xiangjing; Xiang, Wensheng; Liu, Chongxi

    2017-05-01

    During a screening for novel and biotechnologically useful actinobacteria in insects, a kanchanamycin-producing actinomycete with antifungal activity, designated strain 3H-HV17(2)T, was isolated from the head of an ant (Lasius fuliginosus L.) and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain 3H-HV17(2)T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces spectabilis NBRC 13424T (98.90 %, with which it phylogenetically clustered, Streptomyces alboflavus NRRL B-2373T (98.65 %) and Streptomyces flavofungini NBRC 13371T (98.36 %). Phylogenetic analysis based on the gyrB gene also supported the close relationship of these strains. The morphological and chemotaxonomic properties of the strain are also consistent with those members of the genus Streptomyces. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 3H-HV17(2)T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that strain 3H-HV17(2)T could be distinguished from these strains. Therefore, strain 3H-HV17(2)T is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces lasiicapitis sp. nov. is proposed. The type strain is 3H-HV17(2)T (=CGMCC 4.7349T=DSM 103124T).

  20. Potential sources of bacteria that are isolated from contact lenses during wear.

    PubMed

    Willcox, M D; Power, K N; Stapleton, F; Leitch, C; Harmis, N; Sweeney, D F

    1997-12-01

    The aim of this paper was to determine the possible contamination sources of contact lenses during wear. Potential sources of the microbiota that colonized hydrogel contact lenses during wear were examined. The microorganisms that colonize contact lenses were grown, identified, and compared to those microorganisms that colonized the lower lid margins, upper bulbar conjunctiva, hands, and contact lens cases of contact lens wearers. In addition, the incidence of contamination of the domestic water supply in the Sydney area was obtained, and this was compared to the incidence of colonization of contact lenses by microorganisms in general and gram-negative bacteria in particular. There was a wide diversity of bacteria that were isolated from each site sampled. Coagulase-negative staphylococci and Propionibacterium spp. were the most common isolates from all ocular sites examined, and constituted the normal ocular microbiota. Other bacteria, including members of the families Enterobacteriaceae and Pseudomonadaceae, were isolated infrequently from all sites, but most frequently from contact lens cases. Statistical analysis revealed that there was a correlation between the isolation of bacteria from the contact lens and the lower lid margin (p < 0.001). Analysis of this correlation revealed that this was true for the normal microbiota. A correlation was also noted between the colonization of contact lenses by gram-negative bacteria and contamination of the domestic water supply. This study has demonstrated that the likely route for the normal ocular microbiota colonizing contact lenses is via the lid margins, whereas colonization by gram-negative bacteria, including potential agents of microbial keratitis, is likely to be from the domestic water supply.

  1. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter.

    PubMed

    Liu, Huan; Zhang, Xu; Zhang, Hao; Yao, Xiangwu; Zhou, Meng; Wang, Jiaqi; He, Zhanfei; Zhang, Huihui; Lou, Liping; Mao, Weihua; Zheng, Ping; Hu, Baolan

    2018-02-01

    In recent years, air pollution events have occurred frequently in China during the winter. Most studies have focused on the physical and chemical composition of polluted air. Some studies have examined the bacterial bioaerosols both indoors and outdoors. But few studies have focused on the relationship between air pollution and bacteria, especially pathogenic bacteria. Airborne PM samples with different diameters and different air quality index values were collected in Hangzhou, China from December 2014 to January 2015. High-throughput sequencing of 16S rRNA was used to categorize the airborne bacteria. Based on the NCBI database, the "Human Pathogen Database" was established, which is related to human health. Among all the PM samples, the diversity and concentration of total bacteria were lowest in the moderately or heavily polluted air. However, in the PM2.5 and PM10 samples, the relative abundances of pathogenic bacteria were highest in the heavily and moderately polluted air respectively. Considering the PM samples with different particle sizes, the diversities of total bacteria and the proportion of pathogenic bacteria in the PM10 samples were different from those in the PM2.5 and TSP samples. The composition of PM samples with different sizes range may be responsible for the variances. The relative humidity, carbon monoxide and ozone concentrations were the main factors, which affected the diversity of total bacteria and the proportion of pathogenic bacteria. Among the different environmental samples, the compositions of the total bacteria were very similar in all the airborne PM samples, but different from those in the water, surface soil, and ground dust samples. Which may be attributed to that the long-distance transport of the airflow may influence the composition of the airborne bacteria. This study of the pathogenic bacteria in airborne PM samples can provide a reference for environmental and public health researchers. Copyright © 2017 Elsevier Ltd

  2. Actinomadura barringtoniae sp. nov., an endophytic actinomycete isolated from the roots of Barringtonia acutangula (L.) Gaertn.

    PubMed

    Rachniyom, Hathairat; Matsumoto, Atsuko; Inahashi, Yuki; Take, Akira; Takahashi, Yoko; Thamchaipenet, Arinthip

    2018-05-01

    A novel actinomycete strain, designated GKU 128 T , isolated from the roots of an Indian oak tree [Barringtonia acutangula (L.) Gaertn.] at Khao Khitchakut district, Chantaburi province, Thailand, was characterized by using a polyphasic approach. The strain formed a branched substrate and aerial mycelia which differentiated into straight to flexuous chains of smooth-ornamented spores. Analysis of the cell wall revealed the presence of meso-diaminopimelic acid and N-acetylmuramic acid in the peptidoglycan. The whole-cell sugars were glucose, madurose, mannose, rhamnose and ribose. Mycolic acids were absent. The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositolmannoside. The predominant menaquinones were MK-9(H6), MK-9(H8), MK-9(H0) and MK-9(H4). The major fatty acids were C16 : 0, C18 : 1ω9c and 10-methyl C18 : 0 (tuberculostearic acid). The genomic DNA G+C content was 70.5 mol%. Based on 16S rRNA gene sequence analysis, strain GKU 128 T was closely related to the type strains of Actinomadura nitritigenes NBRC 15918 T (99.2 % sequence similarity) and Actinomadura fibrosa JCM 9371 T (98.7 %). The levels of DNA-DNA relatedness between strain GKU 128 T and the closely related type species were less than 19 %. On the basis of phenotypic and genotypic characteristics, strain GKU 128 T could be distinguished from its closely related type strains and represents a novel species of the genus Actinomadura, for which the name Actinomadura barringtoniae sp. nov. (=TBRC 7225 T =NBRC 113074 T ) is proposed.

  3. The impact of bacteria of circulating water on apatite-nepheline ore flotation.

    PubMed

    Evdokimova, G A; Gershenkop, A Sh; Fokina, N V

    2012-01-01

    A new phenomenon has been identified and studied-the impact of bacteria on the benefication process of non-sulphide ores using circulating water supply-a case study of apatite-nepheline ore. It is shown that bacteria deteriorate the floatability of apatite due to their interaction with active centres of calcium-containing minerals and intense flocculation, resulting in a decrease of the flotation process selectivity thus deteriorating the quality of concentrate. Based on the comparative analysis of primary sequences of 16S rRNA genes, there have been identified dominating bacteria species, recovered from the circulating water used at apatite-nepheline concentrating mills, and their phylogenetic position has been determined. All the bacteria were related to γ-Proteobacteria, including the Acinetobacter species, Pseudomonas alcaliphila, Ps. plecoglossicida, Stenotrophomonas rhizophila. A method of non-sulphide ores flotation has been developed with consideration of the bacterial factor. It consists in use of small concentrations of sodium hypochlorite, which inhibits the development of bacteria in the flotation of apatite-nepheline ores.

  4. 40 CFR 165.43 - Scope of pesticide products included.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of pesticide products included. (a) Are manufacturing use products subject to the regulations in this subpart? No, the regulations in this subpart do not apply to manufacturing use products, as defined in... other chemical substances from contamination, fouling, or deterioration caused by bacteria, viruses...

  5. Streptomyces capitiformicae sp. nov., a novel actinomycete producing angucyclinone antibiotics isolated from the head of Camponotus japonicus Mayr.

    PubMed

    Jiang, Shanwen; Piao, Chenyu; Yu, Yang; Cao, Peng; Li, Chenxu; Yang, Fan; Li, Mutong; Xiang, Wensheng; Liu, Chongxi

    2018-01-01

    A novel actinomycete, designated strain 1H-SSA4 T , was isolated from the head of an ant (Camponotus japonicus Mayr) and was found to produce angucyclinone antibiotics. A polyphasic approach was used to determine the taxonomic status of strain 1H-SSA4 T . The DNA G+C content of the draft genome sequence, consisting of 11.4 Mbp, was 70.0 mol%. 16S rRNA gene sequence similarity studies showed that strain 1H-SSA4 T belongs to the genus Streptomyces with the highest sequence similarity to Streptomyces hygroscopicus subsp. ossamyceticus NBRC 13983 T (98.9 %), and phylogenetically clustered with this species, Streptomyces torulosus LMG 20305 T (98.8 %), Streptomyces ipomoeae NBRC 13050 T (98.5 %) and Streptomyces decoyicus NRRL 2666 T (98.4 %). The morphological and chemotaxonomic properties of the strain were also consistent with those members of the genus Streptomyces. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-SSA4 T and the above-mentioned strains, which further clarified their relatedness and demonstrated that strain 1H-SSA4 T could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces capitiformicae sp. nov. is proposed. The type strain is 1H-SSA4 T (=CGMCC 4.7403 T =DSM 104537 T ).

  6. Diallylthiosulfinate (Allicin), a Volatile Antimicrobial from Garlic (Allium sativum), Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor.

    PubMed

    Reiter, Jana; Levina, Natalja; van der Linden, Mark; Gruhlke, Martin; Martin, Christian; Slusarenko, Alan J

    2017-10-12

    Garlic ( Allium sativum ) has potent antimicrobial activity due to allicin (diallylthiosulfinate) synthesized by enzyme catalysis in damaged garlic tissues. Allicin gives crushed garlic its characteristic odor and its volatility makes it potentially useful for combating lung infections. Allicin was synthesized (>98% pure) by oxidation of diallyl disulfide by H₂O₂ using formic acid as a catalyst and the growth inhibitory effect of allicin vapor and allicin in solution to clinical isolates of lung pathogenic bacteria from the genera Pseudomonas , Streptococcus , and Staphylococcus , including multi-drug resistant (MDR) strains, was demonstrated. Minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) were determined and compared to clinical antibiotics using standard European Committee on Antimicrobial Susceptibility Testing (EUCAST) procedures. The cytotoxicity of allicin to human lung and colon epithelial and murine fibroblast cells was tested in vitro and shown to be ameliorated by glutathione (GSH). Similarly, the sensitivity of rat precision-cut lung slices (PCLS) to allicin was decreased by raising the [GSH] to the approximate blood plasma level of 1 mM. Because allicin inhibited bacterial growth as a vapor, it could be used to combat bacterial lung infections via direct inhalation. Since there are no volatile antibiotics available to treat pulmonary infections, allicin, particularly at sublethal doses in combination with oral antibiotics, could make a valuable addition to currently available treatments.

  7. Label-Free in Situ Discrimination of Live and Dead Bacteria by Surface-Enhanced Raman Scattering.

    PubMed

    Zhou, Haibo; Yang, Danting; Ivleva, Natalia P; Mircescu, Nicoleta E; Schubert, Sören; Niessner, Reinhard; Wieser, Andreas; Haisch, Christoph

    2015-07-07

    Techniques to distinguish between live and dead bacteria in a quantitative manner are in high demand in numerous fields including medical care, food safety, and public security as well as basic science research. This work demonstrates new nanostructures (silver nanoparticles coating bacteria structure, Bacteria@AgNPs) and their utility for rapid counting of live and dead bacteria by surface-enhanced Raman scattering (SERS). We found that suspensions containing Gram-negative organisms as well as AgNPs give strong SERS signals of live bacteria when generated selectively on the particle surface. However, almost no SERS signals can be detected from Bacteria@AgNPs suspensions containing dead bacteria. We demonstrate successful quantification of different percentages of dead bacteria both in bulk liquid and on glass surfaces by using SERS mapping on a single cell basis. Furthermore, different chemicals have been used to elucidate the mechanism involved in this observation. Finally, we used the Bacteria@AgNPs method to detect antibiotic resistance of E. coli strains against several antibiotics used in human medicine.

  8. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?

    PubMed

    Celli, Jean; Tsolis, Renée M

    2015-02-01

    The unfolded protein response (UPR) is a cytoprotective response that is aimed at restoring cellular homeostasis following physiological stress exerted on the endoplasmic reticulum (ER), which also invokes innate immune signalling in response to invading microorganisms. Although it has been known for some time that the UPR is modulated by various viruses, recent evidence indicates that it also has multiple roles during bacterial infections. In this Review, we describe how bacteria interact with the ER, including how bacteria induce the UPR, how subversion of the UPR promotes bacterial proliferation and how the UPR contributes to innate immune responses against invading bacteria.

  9. The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes

    PubMed Central

    Jończyk-Matysiak, Ewa; Łusiak-Szelachowska, Marzanna; Kłak, Marlena; Bubak, Barbara; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata; Żaczek, Maciej; Fortuna, Wojciech; Rogóż, Paweł; Letkiewicz, Sławomir; Szufnarowski, Krzysztof; Górski, Andrzej

    2015-01-01

    Intracellular killing of bacteria is one of the fundamental mechanisms against invading pathogens. Impaired intracellular killing of bacteria by phagocytes may be the reason of chronic infections and may be caused by antibiotics or substances that can be produced by some bacteria. Therefore, it was of great practical importance to examine whether phage preparations may influence the process of phagocyte intracellular killing of bacteria. It may be important especially in the case of patients qualified for experimental phage therapy (approximately half of the patients with chronic bacterial infections have their immunity impaired). Our analysis included 51 patients with chronic Gram-negative and Gram-positive bacterial infections treated with phage preparations at the Phage Therapy Unit in Wroclaw. The aim of the study was to investigate the effect of experimental phage therapy on intracellular killing of bacteria by patients' peripheral blood monocytes and polymorphonuclear neutrophils. We observed that phage therapy does not reduce patients' phagocytes' ability to kill bacteria, and it does not affect the activity of phagocytes in patients with initially reduced ability to kill bacteria intracellularly. Our results suggest that experimental phage therapy has no significant adverse effects on the bactericidal properties of phagocytes, which confirms the safety of the therapy. PMID:26783541

  10. Metabolic plasticity for isoprenoid biosynthesis in bacteria.

    PubMed

    Pérez-Gil, Jordi; Rodríguez-Concepción, Manuel

    2013-05-15

    Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.

  11. Bacteria entombed in the center of cholesterol gallstones induce fewer infectious manifestations than bacteria in the matrix of pigment stones.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2007-10-01

    The clinical significance of bacteria in the pigment centers of cholesterol stones is unknown. We compared the infectious manifestations and characteristics of bacteria from pigment stones and predominantly cholesterol stones. Three hundred forty patients were studied. Bile was cultured. Gallstones were cultured and examined with scanning electron microscopy. Level of bacterial immunoglobulin G (bile, serum), complement killing, and tumor necrosis factor-alpha production were determined. Twenty-three percent of cholesterol stones and 68% of pigment stones contained bacteria (P < 0.0001). Stone culture correlated with scanning electron microscopy results. Pigment stone bacteria were more often present in bile and blood. Cholesterol stone bacteria caused more severe infections (19%) than sterile stones (0%), but less than pigment stone bacteria (57%) (P < 0.0001). Serum and bile from patients with cholesterol stone bacteria had less bacterial-specific immunoglobulin G. Cholesterol stone bacteria produced more slime. Pigment stone bacteria were more often killed by a patient's serum. Tumor necrosis factor-alpha production of the groups was similar. Bacteria are readily cultured from cholesterol stones with pigment centers, allowing for analysis of their virulence factors. Bacteria sequestered in cholesterol stones cause infectious manifestations, but less than bacteria in pigment stones. Possibly because of their isolation, cholesterol stone bacteria were less often present in bile and blood, induced less immunoglobulin G, were less often killed by a patient's serum, and demonstrated fewer infectious manifestations than pigment stone bacteria. This is the first study to analyze the clinical relevance of bacteria within cholesterol gallstones.

  12. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing.

    PubMed

    Brady, Allyson L; Sharp, Christine E; Grasby, Stephen E; Dunfield, Peter F

    2015-01-01

    Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g(-1) (wet weight) day(-1) within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using (13)CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in (13)CO incubations. The predominant bacteria that assimilated (13)C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.

  13. Intervening in disease through genetically-modified bacteria.

    PubMed

    Ferreira, Adilson K; Mambelli, Lisley I; Pillai, Saravanan Y

    2017-12-01

    The comprehension of the molecular basis of different diseases is rapidly being dissected as a consequence of advancing technology. Consequently, proteins with potential therapeutic usefulness, including cytokines and signaling molecules have been identified in the last decades. However, their clinical use is hampered by disadvantageous functional and economic considerations. One of the most important of these considerations is targeted topical delivery and also the synthesis of such proteins, which for intravenous use requires rigorous purification whereas proteins often do not withstand digestive degradation and thus cannot be applied per os. Recently, the idea of using genetically modified bacteria has emerged as an attempt to evade these important barriers. Using such bacteria can deliver therapeutic proteins or other molecules at place of disease, especially when disease is at a mucosal surface. Further, whereas intravenously applied therapeutic proteins require expensive methodology in order to become endotoxin-free, this is not necessary for local application of therapeutic proteins in the intestine. In addition, once created further propagation of genetically modified bacteria is both cheap and requires relatively little in conditioning with respect to transport of the medication, making such organisms also suitable for combating disease in developing countries with poor infrastructure. Although first human trials with such bacteria were already performed more as a decade ago, the recent revolution in our understanding of the role of human gut microbiome in health and diseases has unleashed a revolution in this field resulting in a plethora of potential novel prophylactic and therapeutic intervention against disease onset and development employing such organisms. Today, the engineering of human microbiome for health benefits and related applications now chances many aspects of biology, nanotechnology and chemistry. Here, we review genetically modified

  14. Human body may produce bacteria.

    PubMed

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mechanism of lethal action of 2,450-MHz radiation on microorganisms.

    PubMed Central

    Vela, G R; Wu, J F

    1979-01-01

    Various bacteria, actinomycetes, fungi, and bacteriophages were exposed to microwaves of 2,450 +/- 20 MHz in the presence and in the absence of water. It was found that microorganisms were inactivated only when in the presence of water and that dry or lyophilized organisms were not affected even by extended exposures. The data presented here prove that microorganisms are killed by "thermal effect" only and that, most likely, there is no "nonthermal effect"; cell constituents other than water do not absorb sufficient energy to kill microbial cells. PMID:453828

  16. Growth of saprotrophic fungi and bacteria in soil.

    PubMed

    Rousk, Johannes; Bååth, Erland

    2011-10-01

    Bacterial and fungal growth rate measurements are sensitive variables to detect changes in environmental conditions. However, while considerable progress has been made in methods to assess the species composition and biomass of fungi and bacteria, information about growth rates remains surprisingly rudimentary. We review the recent history of approaches to assess bacterial and fungal growth rates, leading up to current methods, especially focusing on leucine/thymidine incorporation to estimate bacterial growth and acetate incorporation into ergosterol to estimate fungal growth. We present the underlying assumptions for these methods, compare estimates of turnover times for fungi and bacteria based on them, and discuss issues, including for example elusive conversion factors. We review what the application of fungal and bacterial growth rate methods has revealed regarding the influence of the environmental factors of temperature, moisture (including drying/rewetting), pH, as well as the influence of substrate additions, the presence of plants and toxins. We highlight experiments exploring the competitive and facilitative interaction between bacteria and fungi enabled using growth rate methods. Finally, we predict that growth methods will be an important complement to molecular approaches to elucidate fungal and bacterial ecology, and we identify methodological concerns and how they should be addressed. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Some bacteria are beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  18. Enteric bacteria in aerobically digested sludge.

    PubMed Central

    Farrah, S R; Bitton, G

    1984-01-01

    Indicator bacteria, Salmonella spp., and total aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic digestion. Aerobic sludge digestion reduced the level of indicator bacteria by 1 to 2 log10 per g. The level of Salmonella spp. was also reduced during aerobic treatment of sludge. In general, aerobic treatment of sludge reduced, but did not eliminate, indicator bacteria and Salmonella spp. PMID:6721492

  19. Antibiotic Production by Anaerobic Bacteria1

    PubMed Central

    Sturgen, Nancy O.; Casida, L. E.

    1962-01-01

    Soils from aerobic and anaerobic sources were investigated for the possible presence of bacteria which produce antibiotics under anaerobic conditions of growth. The screening techniques devised for this study yielded 157 soil bacteria which, during anaerobic growth, produced antibiotic activity against aerobic test bacteria. Studies on choice of media, presence of oxygen, and changes in antibiotic activity during growth indicated that representative strains of these bacteria produced mixtures of antibiotics. The activity was heat labile. PMID:13918037

  20. Fluctuating hydrodynamics and microrheology of a dilute suspension of swimming bacteria.

    PubMed

    Lau, A W C; Lubensky, T C

    2009-07-01

    A bacterial bath is a model active system consisting of a population of rodlike motile or self-propelled bacteria suspended in a fluid environment. This system can be viewed as an active, nonequilibrium version of a lyotropic liquid crystal or as a generalization of a driven diffusive system. We derive a set of phenomenological equations, which include the effects of internal force generators in the bacteria, describing the hydrodynamic flow, orientational dynamics of the bacteria, and fluctuations induced by both thermal and nonthermal noises. These equations violate the fluctuation dissipation theorem and the Onsager reciprocity relations. We use them to provide a quantitative account of results from recent microrheological experiments on bacterial baths.

  1. In vitro activity of daptomycin against clinical isolates of Gram-positive bacteria.

    PubMed

    Piper, Kerryl E; Steckelberg, James M; Patel, Robin

    2005-08-01

    We determined the activity of daptomycin, a recently FDA-approved antimicrobial agent, against clinical isolates of Gram-positive bacteria, including viridans group streptococci (16 Streptococcus mitis species group, 12 S. mutans species group, 9 S. anginosus species group, 8 S. sanguinis species group, 5 S. salivarius species group) from patients with infective endocarditis, 32 methicillin-resistant Staphylococcus aureus, 32 high-level penicillin-resistant Streptococcus pneumoniae, 38 vancomycin-resistant enterococci (including 1 linezolid-resistant isolate), and the following unusual Gram-positive bacteria: 3 Listeria monocytogenes, 4 Erysipelothrix rhusiopathiae, 9 Corynebacterium species, 10 Abiotrophia/Granulicatella species, 2 Rothia (Stomatococcus) mucilaginosus, and 4 Gemella morbillorum. Daptomycin minimum inhibitory concentration (MIC)(90) values for the viridans group streptococci, methicillin-resistant S. aureus, penicillin-resistant S. pneumoniae, and Enterococcus species were 0.5, 0.5, < or =0.125, and 4 microg/ml, respectively. The daptomycin MIC range for the unusual Gram-positive bacteria was < or =0.125-2 microg/ml. We conclude that daptomycin has in vitro activity against viridans group streptococci associated with endocarditis as well as against several types of unusual Gram-positive bacteria that can cause endocarditis.

  2. Actinoplanes rhizophilus sp. nov., an actinomycete isolated from the rhizosphere of Sansevieria trifasciata Prain.

    PubMed

    He, Hairong; Xing, Jia; Liu, Chongxi; Li, Chuang; Ma, Zhaoxu; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing

    2015-12-01

    A novel actinomycete, designated strain NEAU-A-2T, was isolated from the rhizosphere soil of Sansevieria trifasciata Prain collected from Heilongjiang province, north-east China. The taxonomic status of this organism was established using a polyphasic approach. The isolate formed irregular sporangia containing motile spores on the substrate mycelium. The whole-cell sugars were xylose and galactose. The predominant menaquinones were MK-9(H10), MK-9(H2), MK-10(H2) and MK-10(H4). The major fatty acids were iso-C15 : 0, iso-C16 : 0 and anteiso-C15 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, three unidentified phospholipids and an unidentified glycolipid. 16S rRNA gene sequence similarity studies showed that strain NEAU-A-2T belongs to the genus Actinoplanes with the highest sequence similarities to Actinoplanes globisporus NBRC 13912T (97.7 % 16S rRNA gene sequence similarity), Actinoplanes ferrugineus IMSNU 22125T (97.5 %), Actinoplanes toevensis MN07-A0368T (97.2 %) and Actinoplanes rishiriensis NBRC 108556T (97.2 %); similarities to type strains of other species of this genus were < 97 %. Two tree-making algorithms showed that strain NEAU-A-2T formed a distinct clade with A. globisporus NBRC 13912T and A. rishiriensis NBRC 108556T. However, low DNA-DNA relatedness values allowed the isolate to be differentiated from the above-mentioned two species of the genus Actinoplanes. Moreover, strain NEAU-A-2T could also be distinguished from the most closely related species by morphological and physiological characteristics. Therefore, in conclusion, isolate NEAU-A-2T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes rhizophilus sp. nov. is proposed. The type strain is NEAU-A-2T ( = CGMCC 4.7133T = DSM 46672T).

  3. Bioprospecting saline gradient of a Wildlife Sanctuary for bacterial diversity and antimicrobial activities.

    PubMed

    DeLuca, Mara; King, Riley; Morsy, Mustafa

    2017-08-11

    Antibiotic-resistant bacteria are becoming a global crisis, causing death of thousands of people and significant economic impact. The discovery of novel antibiotics is crucial to saving lives and reducing healthcare costs. To address the antibiotic-resistant crisis, in collaboration the Small World Initiative, which aims to crowdsource novel antibiotic discovery, this study aimed to identify antimicrobial producing bacteria and bacterial diversity in the soil of the Stimpson Wildlife Sanctuary, an inland area with a soil salt gradient. Approximately 4500 bacterial colonies were screened for antimicrobial activity and roughly 100 bacteria were identified as antimicrobial producers, which belong to Entrococcaceae (74%), Yersiniaceae (19%), and unidentified families (7%). Several bacterial isolates showed production of broad spectrum inhibitory compounds, while others were more specific to certain pathogens. The data obtained from the current study provide a resource for further characterization of the soil bacteria with antimicrobial activity, with an aim to discover novel ones. The study showed no correlation between soil salt level and the presence of bacteria with antimicrobial activities. However, most of the identified antimicrobial producing bacteria do not belong to actinomycetes, the most common phyla of antibiotic producing bacteria and this could potentially lead to the discovery of novel antibiotics.

  4. Seasonal dynamics and diversity of bacteria in retail oyster tissues.

    PubMed

    Wang, Dapeng; Zhang, Qian; Cui, Yan; Shi, Xianming

    2014-03-03

    Oysters are one of the important vehicles for the transfer of foodborne pathogens. It was reported that bacteria could be bio-accumulated mainly in the gills and digestive glands. In artificially treated oysters, bacterial communities have been investigated by culture-independent methods after harvest. However, little information is available on the seasonal dynamics of bacterial accumulation in retail oyster tissues. In this study, retail oysters were collected from local market in different seasons. The seasonal dynamics and diversity of bacteria in oyster tissues, including the gills, digestive glands and residual tissues, were analyzed by denaturing gradient gel electrophoresis (DGGE). It was interesting that the highest bacterial diversity appeared in the Fall season, not in summer. Our results indicated that Proteobacteria was the predominant member (23/46) in oyster tissues. Our results also suggested that bacterial diversity in gills was higher than that in digestive glands and other tissues. In addition, not all the bacteria collected from surrounding water by gills were transferred to digestive glands. On the other hand, few bacteria were found in oyster tissues except in the gills. Therefore, the gills could be the best candidate target tissue for monitoring of pathogenic bacteria either to human or to oyster. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria

    PubMed Central

    Delmotte, Nathanaël; Knief, Claudia; Chaffron, Samuel; Innerebner, Gerd; Roschitzki, Bernd; Schlapbach, Ralph; von Mering, Christian; Vorholt, Julia A.

    2009-01-01

    Aerial plant surfaces represent the largest biological interface on Earth and provide essential services as sites of carbon dioxide fixation, molecular oxygen release, and primary biomass production. Rather than existing as axenic organisms, plants are colonized by microorganisms that affect both their health and growth. To gain insight into the physiology of phyllosphere bacteria under in situ conditions, we performed a culture-independent analysis of the microbiota associated with leaves of soybean, clover, and Arabidopsis thaliana plants using a metaproteogenomic approach. We found a high consistency of the communities on the 3 different plant species, both with respect to the predominant community members (including the alphaproteobacterial genera Sphingomonas and Methylo bacterium) and with respect to their proteomes. Observed known proteins of Methylobacterium were to a large extent related to the ability of these bacteria to use methanol as a source of carbon and energy. A remarkably high expression of various TonB-dependent receptors was observed for Sphingomonas. Because these outer membrane proteins are involved in transport processes of various carbohydrates, a particularly large substrate utilization pattern for Sphingomonads can be assumed to occur in the phyllosphere. These adaptations at the genus level can be expected to contribute to the success and coexistence of these 2 taxa on plant leaves. We anticipate that our results will form the basis for the identification of unique traits of phyllosphere bacteria, and for uncovering previously unrecorded mechanisms of bacteria-plant and bacteria-bacteria relationships. PMID:19805315

  6. Nasal septal abscess caused by anaerobic bacteria of oral flora.

    PubMed

    Hyo, Yukiyoshi; Fukushima, Hisaki; Harada, Tamotsu; Hara, Hirotaka

    2018-06-07

    Although nasal septal abscess (NSA) was formerly common, it has become rare since the development of antibiotics. NSA, if left untreated, can lead to intracranial complications such as meningitis and eventually result in saddle-nose deformity. NSA often occurs after injury, and indigenous skin bacteria such as Staphylococcus aureus are frequently detected. We treated a patient who had injured the upper alveolus in a fall on the stairs and developed NSA two weeks later. Anaerobic bacteria, including Veillonella parvula and Peptostreptococcus sp., were detected. Symptoms were relieved by needle and incisional drainage. Our patient represents a very rare case of NSA in terms of the cause of onset and the detected bacteria. Early drainage can result in good outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Impact of production systems on swine confinement buildings bioaerosols.

    PubMed

    Létourneau, Valérie; Nehmé, Benjamin; Mériaux, Anne; Massé, Daniel; Duchaine, Caroline

    2010-02-01

    Hog production has been substantially intensified in Eastern Canada. Hogs are now fattened in swine confinement buildings with controlled ventilation systems and high animal densities. Newly designed buildings are equipped with conventional manure handling and management systems, shallow or deep litter systems, or source separation systems to manage the large volumes of waste. However, the impacts of those alternative production systems on bioaerosol concentrations within the barns have never been evaluated. Bioaerosols were characterized in 18 modern swine confinement buildings, and the differences in bioaerosol composition in the three different production systems were evaluated. Total dust, endotoxins, culturable actinomycetes, fungi, and bacteria were collected with various apparatuses. The total DNA of the air samples was extracted, and quantitative polymerase chain reaction (PCR) was used to assess the total number of bacterial genomes, as a total (culturable and nonculturable) bacterial assessment. The measured total dust and endotoxin concentrations were not statistically different in the three studied production systems. In buildings with sawdust beds, actinomycetes and molds were found in higher concentrations than in the conventional barns. Aspergillus, Cladosporium, Penicillium, and Scopulariopsis species were identified in all the studied swine confinement buildings. A. flavus, A. terreus, and A. versicolor were abundantly present in the facilities with sawdust beds. Thermotolerant A. fumigatus and Mucor were usually found in all the buildings. The culturable bacteria concentrations were higher in the barns with litters than in the conventional buildings, while real-time PCR revealed nonstatistically different concentrations of total bacteria in all the studied swine confinement buildings. In terms of workers' respiratory health, barns equipped with a solid/liquid separation system may offer better air quality than conventional buildings or barns with

  8. Dust at Various Workplaces—Microbiological and Toxicological Threats

    PubMed Central

    Gutarowska, Beata; Szulc, Justyna; Otlewska, Anna; Jachowicz, Anita; Majchrzycka, Katarzyna

    2018-01-01

    The aim of the present study was to evaluate the relation between the chemical (analysis of elements and pH) and microbiological composition (culture and metagenomics analysis) of the dust at various workplaces (cement plant, composting plant, poultry farm, and cultivated area) and the cytotoxicity effect on the human adenocarcinoma lung epithelial adherent cell line A-549 (MTT assay test). Analysis of the Particulate Matter (PM) fraction showed that the dust concentration in cultivated areas exceeded the OELs. For the remaining workplaces examined, the dust concentration was lower than OELs limits. The number of microorganisms in the dust samples was 3.8 × 102–1.6 × 108 CFU/g bacteria and 1.5 × 102–6.5 × 106 CFU/g fungi. The highest number of microorganisms was noted for dust from cultivated areas (total number of bacteria, actinomycetes, P. fluorescens) and composting plants (xerophilic fungi and staphylococci), while the least number of microorganisms was observed for dust from cement plants. Many types of potentially pathogenic microorganisms have been identified, including bacteria, such as Bacillus, Actinomyces, Corynebacterium, Prevotella, Clostridium, and Rickettsia, and fungi, such as Alternaria, Cladosporium, Penicillium, and Aspergillus. The most cytotoxic to the human lung cell line A-549 was dust from cultivated areas (IC50 = 3.8 mg/mL after 72 h). The cytotoxicity of the tested dust samples depends on the PM concentration, the number of microorganisms, including potentially pathogenic genera, and the exposure time. PMID:29702619

  9. Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database.

    PubMed

    Pan, Xubin; Jones, Kim D

    2012-01-01

    Bacteria are one of the major causes of surface water impairments in the USA. Over the past several years, best management practices, including detention basins, manufactured devices, grass swales, filters and bioretention cells have been used to remove bacteria and other pollutants from stormwater runoff. However, there are data gaps in the comprehensive studies of bacteria concentrations in stormwater runoff. In this paper, the event mean concentration (EMC) of fecal indicator bacteria (Enterococcus, Escherichia coli, fecal Streptococcus group bacteria, and fecal coliform) across the USA was retrieved from the international stormwater best management practices database to analyze the seasonal variations of inflow and outflow event mean concentrations and removal efficiencies. The Kruskal-Wallis test was employed to determine the seasonal variations of bacteria indicator concentrations and removals, and the two-sample Kolmogorov-Smirnov test was used for comparing different seasonal outcomes. The results indicate that all the inflow EMC of FIB in stormwater runoff is above the water quality criteria. The seasonal differences of fecal Streptococcus group bacteria and fecal coliform are significant. Summer has the potential to increase the bacteria EMC and illustrate the seasonal differences.

  10. Antibiotic-resistant bacteria in the Hudson River Estuary linked to wet weather sewage contamination.

    PubMed

    Young, Suzanne; Juhl, Andrew; O'Mullan, Gregory D

    2013-06-01

    Heterotrophic bacteria resistant to tetracycline and ampicillin were assessed in waterways of the New York City metropolitan area using culture-dependent approaches and 16S rRNA gene sequence analysis of resultant isolates. Resistant microbes were detected at all 10 sampling sites in monthly research cruises on the lower Hudson River Estuary (HRE), with highest concentrations detected at nearshore sites. Higher frequency sampling was conducted in Flushing Bay, to enumerate resistant microbes under both dry and wet weather conditions. Concentrations of ampicillin- and tetracycline-resistant bacteria, in paired samples, were positively correlated with one another and increased following precipitation. Counts of the fecal indicator, Enterococcus, were positively correlated with levels of resistant bacteria, suggesting a shared sewage-associated source. Analysis of 16S rRNA from isolates identified a phylogenetically diverse group of resistant bacteria, including genera containing opportunistic pathogens. The occurrence of Enterobacteriaceae, a family of enteric bacteria, was found to be significantly higher in resistant isolates compared to total heterotrophic bacteria and increased following precipitation. This study is the first to document the widespread distribution of antibiotic-resistant bacteria in the HRE and to demonstrate clearly a link between the abundance of antibiotic-resistant bacteria and levels of sewage-associated bacteria in an estuary.

  11. Heme and menaquinone induced electron transport in lactic acid bacteria

    PubMed Central

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species. PMID:19480672

  12. Heme and menaquinone induced electron transport in lactic acid bacteria.

    PubMed

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-05-29

    For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  13. Spirotetronate antibiotics with anti-Clostridium activity from Actinomadura sp. 2EPS.

    PubMed

    Euanorasetr, Jirayut; Intra, Bungonsiri; Mongkol, Phayungsak; Chankhamhaengdecha, Surang; Tuchinda, Patoomratana; Mori, Mihoko; Shiomi, Kazuro; Nihira, Takuya; Panbangred, Watanalai

    2015-02-01

    The rare actinomycetes strain 2EPS was isolated from soil and analysis of cultural, morphological characteristics, diaminopimelic acid content of its cell wall, and 16S rRNA gene sequence indicates that 2EPS belongs to genus Actinomadura. In addition, neighbor-joining phylogenetic tree also confirmed the relationships of this strain to other members of Actinomadura. A butanol extract with antibacterial activity was purified by reversed-phase chromatography to obtain three bioactive compounds, designated as compounds 1, 2 and 3. The structures of these compounds were determined using spectroscopic analysis ((1)H-NMR and (13)C-NMR) and mass spectrometric analysis (HR-TOF-MS). Compounds 1-3 were identified and found to be the same as those included in the Japanese patent number JP 09227587 for spirotetronate antibiotics and are BE-45722A (1), BE-45722B (2) and BE-45722C (3), respectively. All compounds were active against Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 14579, and B. subtilis ATCC 6633) with low MIC values between 0.08 and 5.0 µg/ml. Moreover, both 1 and 3 also exhibited strong activity, with similar MIC values, against Clostridium perfringens S107 at 0.63 µg/ml and C. difficile 630 at 0.08 µg/ml. These results suggest the identified spirotetronate compounds may have potential in the treatment of Clostridium infections. Overall, this analysis demonstrates that rare actinomycetes are a promising source for discovery of antimicrobial compounds.

  14. Bacteriophage sensitivity patterns among bacteria isolated from marine waters

    NASA Astrophysics Data System (ADS)

    Moebus, K.; Nattkemper, H.

    1981-09-01

    Phage-host cross-reaction tests were performed with 774 bacterial strains and 298 bacteriophages. The bacteria (bacteriophages) were isolated at different times from water samples collected in the Atlantic Ocean between the European continental shelf and the Sargasso Sea: 733 (258) strains; in the North Sea near Helgoland: 31 (31) strains; and in the Bay of Biscay: 10 (9) strains. Of the Atlantic Ocean bacteria 326 were found to be susceptible to one or more Atlantic Ocean bacteriophage(s). The bacteriophage sensitivity patterns of these bacteria vary considerably, placing 225 of them in two large clusters of bacteriophage-host systems. Taking all into account, 250 of the 326 Atlantic Ocean bacteria are different from each other. This high degree of variation among the bacteria distinguishes microbial populations derived from widely separated eastern and western regions of the Atlantic Ocean. It also sets apart from each other the populations derived from samples collected at successive stations some 200 miles apart, although to a lesser degree. With bacterial populations found from samples collected on the way back and forth between Europe and the Sargasso Sea a gradual change was observed from "western" phage sensitivity patterns to "eastern" ones. Sixty-nine Atlantic Ocean bacteria are sensitive to bacteriophages isolated from the North Sea and the Bay of Biscay; of these only 26 strains are also susceptible to Atlantic Ocean phages. The interpretation of the results is based on the hydrographical conditions prevailing in the northern Atlantic Ocean including the North Sea, and on the assumption that the microbial populations investigated have undergone genetic changes while being transported within water masses from west to east.

  15. Relatedness of amylase-producing, endospore-forming bacteria from the alimentary tract of commercially processed broilers

    USDA-ARS?s Scientific Manuscript database

    Introduction: Competitive exclusion (CE) by bacteria from adult poultry reduces colonization of young chicks by Salmonella. CE might include the ability of these bacteria to breakdown complex carbohydrates to produce metabolites that inhibit Salmonella growth. Purpose: To isolate amylase producing, ...

  16. Controlling Magnetotactic Bacteria through an Integrated Nanofabricated Metallic Island and Optical Microscope Approach

    PubMed Central

    González, Lina M.; Ruder, Warren C.; Leduc, Philip R.; Messner, William C.

    2014-01-01

    Herein, we demonstrate the control of magnetotactic bacteria through the application of magnetic field gradients with real-time visualization. We accomplish this control by integrating a pair of macroscale Helmholtz coils and lithographically fabricated nanoscale islands composed of permalloy (Ni80Fe20). This system enabled us to guide and steer amphitrichous Magnetospirillum magneticum strain AMB-1 to specific location via magnetic islands. The geometries of the islands allowed us to have control over the specific magnetic field gradients on the bacteria. We estimate that magnetotactic bacteria located less than 1 μm from the edge of a diamond shaped island experience a maximum force of approximately 34 pN, which engages the bacteria without trapping them. Our system could be useful for a variety of applications including magnetic fabrication, self-assembly, and probing the sensing apparatus of magnetotactic bacteria. PMID:24553101

  17. Degradation and induction specificity in actinomycetes that degrade p-nitrophenol.

    PubMed Central

    Hanne, L F; Kirk, L L; Appel, S M; Narayan, A D; Bains, K K

    1993-01-01

    We have isolated two soil bacteria (identified as Arthrobacter aurescens TW17 and Nocardia sp. strain TW2) capable of degrading p-nitrophenol (PNP) and numerous other phenolic compounds. A. aurescens TW17 contains a large plasmid which correlated with the PNP degradation phenotype. Degradation of PNP by A. aurescens TW17 was induced by preexposure to PNP, 4-nitrocatechol, 3-methyl-4-nitrophenol, or m-nitrophenol, whereas PNP degradation by Nocardia sp. strain TW2 was induced by PNP, 4-nitrocatechol, phenol, p-cresol, or m-nitrophenol. A. aurescens TW17 initially degraded PNP to hydroquinone and nitrite. Nocardia sp. strain TW2 initially converted PNP to hydroquinone or 4-nitrocatechol, depending upon the inducing compound. PMID:8250573

  18. Rhizocola hellebori gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae containing 3,4-dihydroxydiaminopimelic acid in the cell-wall peptidoglycan.

    PubMed

    Matsumoto, Atsuko; Kawaguchi, Yoko; Nakashima, Takuji; Iwatsuki, Masato; Ōmura, Satoshi; Takahashi, Yōko

    2014-08-01

    An actinomycete strain, K12-0602(T), was isolated from the root of a Helleborus orientalis plant in Japan. The 16S rRNA gene sequence of strain K12-0602(T) showed that it had a close relationship with members of the family Micromonosporaceae and the 16S rRNA gene sequence similarity values between strain K12-0602(T) and type strains of type species of 27 genera belonging to the family Micromonosporaceae were below 96.2%. MK-9 (H4) and MK-9 (H6) were detected as major menaquinones, and galactose, xylose, mannose and ribose were present in the whole-cell hydrolysate. The acyl type of the peptidoglycan was glycolyl. Major fatty acids were iso-C(15 : 0), iso-C(16 : 0), C(17 : 1)ω9c and anteiso-C(17 : 0). Phosphatidylethanolamine was detected as the phospholipid corresponding to phospholipid type II. The G+C content of the genomic DNA was 67 mol%. Analyses of the cell-wall peptidoglycan by TLC and LC/MS showed that it was composed of alanine, glycine, hydroxylglutamic acid and an unknown amino acid, which was subsequently determined to be 3,4-dihydroxydiaminopimelic acid using instrumental analyses, including NMR and mass spectrometry. On the basis of the phylogenetic analysis and chemotaxonomic characteristics, strain K12-0602(T) represents a novel species of a new genus in the family Micromonosporaceae, for which the name Rhizocola hellebori gen. nov., sp. nov. is proposed. The type strain of the type species is K12-0602(T) ( = NBRC 109834(T) = DSM 45988(T)). This is the first report, to our knowledge, of 3,4-dihydroxydiaminopimelic acid being found as a diamino acid in bacterial cell-wall peptidoglycan. © 2014 IUMS.

  19. Energetics and Application of Heterotrophy in Acetogenic Bacteria

    PubMed Central

    Schuchmann, Kai

    2016-01-01

    Acetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2 fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogen Acetobacterium woodii. Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2 reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens. PMID:27208103

  20. PCR detection of uncultured rumen bacteria.

    PubMed

    Rosero, Jaime A; Strosová, Lenka; Mrázek, Jakub; Fliegerová, Kateřina; Kopečný, Jan

    2012-07-01

    16S rRNA sequences of ruminal uncultured bacterial clones from public databases were phylogenetically examined. The sequences were found to form two unique clusters not affiliated with any known bacterial species: cluster of unidentified sequences of free floating rumen fluid uncultured bacteria (FUB) and cluster of unidentified sequences of bacteria associated with rumen epithelium (AUB). A set of PCR primers targeting 16S rRNA of ruminal free uncultured bacteria and rumen epithelium adhering uncultured bacteria was designed based on these sequences. FUB primers were used for relative quantification of uncultured bacteria in ovine rumen samples. The effort to increase the population size of FUB group has been successful in sulfate reducing broth and culture media supplied with cellulose.

  1. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake

    USGS Publications Warehouse

    Urbach, Ena; Vergin, Kevin L.; Morse, Ariel

    2001-01-01

    The bacterioplankton assemblage in Crater Lake, Oregon (U.S.A.), is different from communities found in other oxygenated lakes, as demonstrated by four small subunit ribosomal ribonucleic acid (SSU rRNA) gene clone libraries and oligonucleotide probe hybridization to RNA from lake water. Populations in the euphotic zone of this deep (589 m), oligotrophic caldera lake are dominated by two phylogenetic clusters of currently uncultivated bacteria: CL120-10, a newly identified cluster in the verrucomicrobiales, and ACK4 actinomycetes, known as a minor constituent of bacterioplankton in other lakes. Deep-water populations at 300 and 500 m are dominated by a different pair of uncultivated taxa: CL500-11, a novel cluster in the green nonsulfur bacteria, and group I marine crenarchaeota. b-Proteobacteria, dominant in most other freshwater environments, are relatively rare in Crater Lake (<=16% of nonchloroplast bacterial rRNA at all depths). Other taxa identified in Crater Lake libraries include a newly identified candidate bacterial division, ABY1, and a newly identified subcluster, CL0-1, within candidate division OP10. Probe analyses confirmed vertical stratification of several microbial groups, similar to patterns observed in open-ocean systems. Additional similarities between Crater Lake and ocean microbial populations include aphotic zone dominance of group I marine crenarchaeota and green nonsulfur bacteria. Comparison of Crater Lake to other lakes studied by rRNA methods suggests that selective factors structuring Crater Lake bacterioplankton populations may include low concentrations of available trace metals and dissolved organic matter, chemistry of infiltrating hydrothermal waters, and irradiation by high levels of ultraviolet light.

  2. NC10 bacteria in marine oxygen minimum zones

    PubMed Central

    Padilla, Cory C; Bristow, Laura A; Sarode, Neha; Garcia-Robledo, Emilio; Gómez Ramírez, Eddy; Benson, Catherine R; Bourbonnais, Annie; Altabet, Mark A; Girguis, Peter R; Thamdrup, Bo; Stewart, Frank J

    2016-01-01

    Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic oxygen minimum zones (OMZs) off northern Mexico and Costa Rica. NC10 16S rRNA genes were detected at all sites, peaking in abundance in the anoxic zone with elevated nitrite and methane concentrations. Phylogenetic analysis of particulate methane monooxygenase genes further confirmed the presence of NC10. rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized to participate in O2-producing NO dismutation. These findings confirm pelagic OMZs as a niche for NC10, suggesting a role for this group in OMZ nitrogen, methane and oxygen cycling. PMID:26918666

  3. Identification of gram-negative and gram-positive bacteria by fluorescence studies

    NASA Astrophysics Data System (ADS)

    Demchak, Jonathan; Calabrese, Joseph; Tzolov, Marian

    2011-03-01

    Several type strains of bacteria including Vibrio fischeri, Azotobacter vinelandii, Enterobacter cloacae, and Corynebacterium xerosis, were cultured in the laboratory following standard diagnostic protocol based on their individual metabolic strategies. The bacterial cultures were not further treated and they were studied in their pristine state (pure culture - axenic). The fluorescent studies were applied using a continuous wave and a pulsed excitation light sources. Emission and excitation spectra were recorded for the continuous wave excitation and they all show similar spectral features with the exception of the gram positive bacteria showing vibronic structures. The vibrational modes involved in these vibronic bands have energy typical for carbon-carbon vibrations. The fluorescence is quenched in addition of water, even a very thin layer, which confirms that the observed spectral features originate from the outer parts of the bacteria. These results allow to conclude that the fluorescence spectroscopy can be used as a method for studying the membranes of the bacteria and eventually to discriminate between gram positive and gram negative bacteria. The pulsed experiments show that the fluorescence lifetime is in the sub-microsecond range. The results indicate that the observed spectra are superposition of the emission with different lifetimes.

  4. Prevalence of pathogenic bacteria in Ixodes ricinus ticks in Central Bohemia.

    PubMed

    Klubal, Radek; Kopecky, Jan; Nesvorna, Marta; Sparagano, Olivier A E; Thomayerova, Jana; Hubert, Jan

    2016-01-01

    Bacteria associated with the tick Ixodes ricinus were assessed in specimens unattached or attached to the skin of cats, dogs and humans, collected in the Czech Republic. The bacteria were detected by PCR in 97 of 142 pooled samples including 204 ticks, i.e. 1-7 ticks per sample, collected at the same time from one host. A fragment of the bacterial 16S rRNA gene was amplified, cloned and sequenced from 32 randomly selected samples. The most frequent sequences were those related to Candidatus Midichloria midichlori (71% of cloned sequences), followed by Diplorickettsia (13%), Spiroplasma (3%), Rickettsia (3%), Pasteurella (3%), Morganella (3%), Pseudomonas (2%), Bacillus (1%), Methylobacterium (1%) and Phyllobacterium (1%). The phylogenetic analysis of Spiroplasma 16S rRNA gene sequences showed two groups related to Spiroplasma eriocheiris and Spiroplasma melliferum, respectively. Using group-specific primers, the following potentially pathogenic bacteria were detected: Borellia (in 20% of the 142 samples), Rickettsia (12%), Spiroplasma (5%), Diplorickettsia (5%) and Anaplasma (2%). In total, 68% of I. ricinus samples (97/142) contained detectable bacteria and 13% contained two or more putative pathogenic groups. The prevalence of tick-borne bacteria was similar to the observations in other European countries.

  5. Airborne microorganisms associated with grain handling.

    PubMed

    Swan, J R; Crook, B

    1998-01-01

    There is substantial evidence that workers handling grain develop allergic respiratory symptoms. Microbiological contaminants are likely to be a significant contributing factor. Worker's exposure to microorganisms contaminating grain dust in the UK was therefore examined. Aerobiological studies were made when grain was being handled on farms and also during bulk handling of grain in dockside terminals. A quantitative and qualitative microbiological examination of the airborne grain dust was carried out. Samples of airborne grain dust were collected and viable bacteria, fungi and actinomycetes were grown, isolated and identified. It was found that workers handling grain or working close to grain at farms and docks were frequently exposed to more than 1 million bacteria and fungi per m3 air, and that airborne bacteria and fungi exceeded 10(4) per m3 air in all areas sampled. The qualitative examination of the samples showed that the predominant microorganisms present differed between freshly harvested grain and stored grain, but not between different types of grain.

  6. Horizontal gene transfer between bacteria.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  7. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights.

    PubMed

    Masschelein, J; Jenner, M; Challis, G L

    2017-07-01

    Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.

  8. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  9. Effect of postharvest practices including degreening on citrus carpoplane microbial biomes.

    PubMed

    Gomba, A; Chidamba, L; Korsten, L

    2017-04-01

    To investigate the effect of commercial citrus packhouse processing steps on the fruit surface microbiome of Clementines and Palmer navel oranges. Viable bacteria, yeast and fungi counts, and the pyrosequencing analysis of the 16S rRNA and ITS were used to evaluate the community structure and population dynamics of phylloepiphytic bacteria and fungi associated with commercial postharvest processing. Drenching significantly reduced microbial counts in all cases except for yeasts on navels, while the extent of degreening effects varied between the citrus varieties. Pyrosequencing analysis showed a total of 4409 bacteria and 5792 fungi nonchimeric unique sequences with an average of 1102 bacteria and 1448 fungi reads per sample. Dominant phyla on the citrus carpoplane were Proteobacteria (53·5%), Actinobacteria (19·9%), Bacteroidetes (5·6%) and Deinococcus-Thermus (5·4%) for bacteria and Ascomycota (80·5%) and Basidiomycota (9·8%) for fungi. Beginning with freshly harvested fruit fungal diversity declined significantly after drenching, but had little effect on bacteria and populations recovered during degreening treatments, including those for Penicillium sp. Packhouse processing greatly influences microbial communities on the citrus carpoplane. A broad orange biome was described with pyrosequencing and gave insight into the likely survival and persistence of pathogens, especially as they may affect the quality and safety of the packed product. A close examination of the microbiota of fruit and the impact of intervention strategies on the ecological balance may provide a more durable approach to reduce losses and spoilage. © 2017 The Society for Applied Microbiology.

  10. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  11. Deployable micro-traps to sequester motile bacteria

    NASA Astrophysics Data System (ADS)

    di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  12. Deployable micro-traps to sequester motile bacteria

    PubMed Central

    Di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-01-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria. PMID:28378786

  13. Deployable micro-traps to sequester motile bacteria.

    PubMed

    Di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-05

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  14. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    PubMed Central

    Brady, Allyson L.; Sharp, Christine E.; Grasby, Stephen E.; Dunfield, Peter F.

    2015-01-01

    Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g−1 (wet weight) day−1 within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies. PMID:26388850

  15. Mycorrhiza helper bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveau, Aurelie; Labbe, Jessy

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help usmore » to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.« less

  16. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria

    PubMed Central

    Wang, Yixian; Ye, Zunzhong; Ying, Yibin

    2012-01-01

    The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018

  17. Bacterial Swarms Recruit Cargo Bacteria To Pave the Way in Toxic Environments

    PubMed Central

    Finkelshtein, Alin; Roth, Dalit

    2015-01-01

    ABSTRACT Swarming bacteria are challenged by the need to invade hostile environments. Swarms of the flagellated bacterium Paenibacillus vortex can collectively transport other microorganisms. Here we show that P. vortex can invade toxic environments by carrying antibiotic-degrading bacteria; this transport is mediated by a specialized, phenotypic subpopulation utilizing a process not dependent on cargo motility. Swarms of beta-lactam antibiotic (BLA)-sensitive P. vortex used beta-lactamase-producing, resistant, cargo bacteria to detoxify BLAs in their path. In the presence of BLAs, both transporter and cargo bacteria gained from this temporary cooperation; there was a positive correlation between BLA resistance and dispersal. P. vortex transported only the most beneficial antibiotic-resistant cargo (including environmental and clinical isolates) in a sustained way. P. vortex displayed a bet-hedging strategy that promoted the colonization of nontoxic niches by P. vortex alone; when detoxifying cargo bacteria were not needed, they were lost. This work has relevance for the dispersal of antibiotic-resistant microorganisms and for strategies for asymmetric cooperation with agricultural and medical implications. PMID:25968641

  18. Isolation and identification of bacteria from paperboard food packaging

    PubMed Central

    Mashhadi Mohammadzadeh-Vazifeh, Mojtaba; Khajeh-Nasiri, Shamsolmoluk; Hashemi, Shabnam; Fakhari, Javad

    2015-01-01

    Background and Objectives: Paper and paperboard packaging play an important role in safety and quality of food products. Common bacteria of paper and paperboard food packaging could grow due to specific conditions included humidity, temperature and major nutrition to contaminate the food. The purpose of this research was to investigate numbers and the types of bacteria in the food packaging paperboard. Materials and Methods: The surface and the depth of the each paperboard sample were examined by the dimension of one cm2 and one gram. The paperboard samples were randomly collected from popular confectionaries and fast food restaurants in Tehran, Iran. Results: The results indicated the range of 0.2×103 to >1.0×105 cfu/1g bacterial contamination in paperboard food packaging. Also, most detected bacteria were from spore forming and family Bacillaceae. Conclusion: The bioburden paperboard used for food packaging showed high contamination rate more than standard acceptance level. PMID:26719786

  19. Review - Lactic acid bacteria in traditional fermented Asian foods.

    PubMed

    Azam, Mariya; Mohsin, Mashkoor; Ijaz, Hira; Tulain, Ume Ruqia; Ashraf, Muhammad Adnan; Fayyaz, Ahad; Abadeen, Zainul; Kamran, Qindeel

    2017-09-01

    Lactic acid bacteria play vital roles in various fermented foods in Asia. This paper reviews many types of the world's lactic acid fermented foods and discusses the beneficial effects of lactic acid fermentation of food. The lactic acid bacteria associated with foods now include species of the genera Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. Lactic acid bacteria (LAB) are involved in many fermentation processes of Asian traditional foods, demonstrating their profound effects on improving food quality and food safety. During the past few decades' interest has arisen in the use of the varied antagonistic activities of LAB to extent the shelf-life of protein-rich products such as meats and fish. This review article outlines the main types of LAB fermentation as well as their typical fermented foods such as idli, kishk, sauerkraut, koumiss, Suan-tsai, stinky tofu, Chinese sausage and kefir. The roles of LAB and the reasons for their common presence are also discussed.

  20. Aerobiological Stabilities of Different Species of Gram-Negative Bacteria, Including Well-Known Biothreat Simulants, in Single-Cell Particles and Cell Clusters of Different Compositions

    PubMed Central

    Skogan, Gunnar

    2017-01-01

    ABSTRACT The ability to perform controlled experiments with bioaerosols is a fundamental enabler of many bioaerosol research disciplines. A practical alternative to using hazardous biothreat agents, e.g., for detection equipment development and testing, involves using appropriate model organisms (simulants). Several species of Gram-negative bacteria have been used or proposed as biothreat simulants. However, the appropriateness of different bacterial genera, species, and strains as simulants is still debated. Here, we report aerobiological stability characteristics of four species of Gram-negative bacteria (Pantoea agglomerans, Serratia marcescens, Escherichia coli, and Xanthomonas arboricola) in single-cell particles and cell clusters produced using four spray liquids (H2O, phosphate-buffered saline[PBS], spent culture medium[SCM], and a SCM-PBS mixture). E. coli showed higher stability in cell clusters from all spray liquids than the other species, but it showed similar or lower stability in single-cell particles. The overall stability was higher in cell clusters than in single-cell particles. The highest overall stability was observed for bioaerosols produced using SCM-containing spray liquids. A key finding was the observation that stability differences caused by particle size or compositional changes frequently followed species-specific patterns. The results highlight how even moderate changes to one experimental parameter, e.g., bacterial species, spray liquid, or particle size, can strongly affect the aerobiological stability of Gram-negative bacteria. Taken together, the results highlight the importance of careful and informed selection of Gram-negative bacterial biothreat simulants and also the accompanying particle size and composition. The outcome of this work contributes to improved selection of simulants, spray liquids, and particle size for use in bioaerosol research. IMPORTANCE The outcome of this work contributes to improved selection of simulants

  1. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  2. Molecular Determinants in Phagocyte-Bacteria Interactions.

    PubMed

    Kaufmann, Stefan H E; Dorhoi, Anca

    2016-03-15

    Phagocytes are crucial for host defense against bacterial pathogens. As first demonstrated by Metchnikoff, neutrophils and mononuclear phagocytes share the capacity to engulf, kill, and digest microbial invaders. Generally, neutrophils focus on extracellular, and mononuclear phagocytes on intracellular, pathogens. Reciprocally, extracellular pathogens often capitalize on hindering phagocytosis and killing of phagocytes, whereas intracellular bacteria frequently allow their engulfment and then block intracellular killing. As foreseen by Metchnikoff, phagocytes become highly versatile by acquiring diverse phenotypes, but still retaining some plasticity. Further, phagocytes engage in active crosstalk with parenchymal and immune cells to promote adjunctive reactions, including inflammation, tissue healing, and remodeling. This dynamic network allows the host to cope with different types of microbial invaders. Here we present an update of molecular and cellular mechanisms underlying phagocyte functions in antibacterial defense. We focus on four exemplary bacteria ranging from an opportunistic extracellular to a persistent intracellular pathogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China

    PubMed Central

    Lv, Fenglian; Xue, Sha; Wang, Guoliang; Zhang, Chao

    2017-01-01

    Atmospheric nitrogen (N) deposition profoundly alters the soil microbial communities and will thus affect nutrient cycles. The effects of N availability on microbial community, however, are not clear. We used PLFA analysis to evaluate the effects of a gradient of N addition (0, 2.8, 5.6, 11.2, and 22.4 g N m-2 y-1) for three years on the rhizospheric microbial community of Pinus tabuliformis seedlings. The main factors influencing the community were quantified using structural equation modelling and redundancy analysis. At the microbial-community level, N addition increased the total phospholipid fatty acids content by increasing the dissolved organic carbon (DOC) and root biomass. Increases in soil microbial biomass carbon and N, however, was attributed to the increased DOC, N content and decreased pH. At the microbial-groups level, Fungal, arbuscular mycorrhizal fungal (AMF), gram-positive bacterial (GP) abundances and the GP:GN ratio first increased and then decreased with N addition. Nitrogen addition increased the abundances of bacteria, fungi, and actinomycetes mainly by increasing the DOC content and decreasing root biomass. Additionally, the decrease of pH and ammonium N caused by N addition increased the fungal abundances and reduced actinomycete abundances, respectively. Nitrogen addition shifted the rhizospheric microbial community mainly by altering the DOC content and root biomass. The current rate of N deposition (2.5 g N m-2 y-1) benefits plant growth and increases the abundances of fungi, arbuscular mycorrhizal fungi, GP, actinomycetes and the GP:GN ratio. PMID:28234932

  4. Bacteria and wound healing.

    PubMed

    Edwards, Ruth; Harding, Keith G

    2004-04-01

    Wound healing is a complex process with many potential factors that can delay healing. There is increasing interest in the effects of bacteria on the processes of wound healing. All chronic wounds are colonized by bacteria, with low levels of bacteria being beneficial to the wound healing process. Wound infection is detrimental to wound healing, but the diagnosis and management of wound infection is controversial, and varies between clinicians. There is increasing recognition of the concept of critical colonization or local infection, when wound healing may be delayed in the absence of the typical clinical features of infection. The progression from wound colonization to infection depends not only on the bacterial count or the species present, but also on the host immune response, the number of different species present, the virulence of the organisms and synergistic interactions between the different species. There is increasing evidence that bacteria within chronic wounds live within biofilm communities, in which the bacteria are protected from host defences and develop resistance to antibiotic treatment. An appreciation of the factors affecting the progression from colonization to infection can help clinicians with the interpretation of clinical findings and microbiological investigations in patients with chronic wounds. An understanding of the physiology and interactions within multi-species biofilms may aid the development of more effective methods of treating infected and poorly healing wounds. The emergence of consensus guidelines has helped to optimize clinical management.

  5. Laser-Based Identification of Pathogenic Bacteria

    ERIC Educational Resources Information Center

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  6. Biodegradation of cis-1,4-Polyisoprene Rubbers by Distinct Actinomycetes: Microbial Strategies and Detailed Surface Analysis

    PubMed Central

    Linos, Alexandros; Berekaa, Mahmoud M.; Reichelt, Rudolf; Keller, Ulrike; Schmitt, Jürgen; Flemming, Hans-Curt; Kroppenstedt, Reiner M.; Steinbüchel, Alexander

    2000-01-01

    Several actinomycetes isolated from nature were able to use both natural rubber (NR) and synthetic cis-1,4-polyisoprene rubber (IR) as a sole source of carbon. According to their degradation behavior, they were divided into two groups. Representatives of the first group grew only in direct contact to the rubber substrate and led to considerable disintegration of the material during cultivation. The second group consisted of weaker rubber decomposers that did not grow adhesively, as indicated by the formation of clear zones (translucent halos) around bacterial colonies after cultivation on NR dispersed in mineral agar. Taxonomic analysis of four selected strains based on 16S rRNA similarity examinations revealed two Gordonia sp. strains, VH2 and Kb2, and one Mycobacterium fortuitum strain, NF4, belonging to the first group as well as one Micromonospora aurantiaca strain, W2b, belonging to the second group. Schiff's reagent staining tests performed for each of the strains indicated colonization of the rubber surface, formation of a bacterial biofilm, and occurrence of compounds containing aldehyde groups during cultivation with NR latex gloves. Detailed analysis by means of scanning electron microscopy yielded further evidence for the two different microbial strategies and clarified the colonization efficiency. Thereby, strains VH2, Kb2, and NF4 directly adhered to and merged into the rubber material, while strain W2b produced mycelial corridors, especially on the surface of IR. Fourier transform infrared spectroscopy comprising the attenuated total reflectance technique was applied on NR latex gloves overgrown by cells of the Gordonia strains, which were the strongest rubber decomposers. Spectra demonstrated the decrease in number of cis-1,4 double bonds, the formation of carbonyl groups, and the change of the overall chemical environment, indicating that an oxidative attack at the double bond is the first metabolic step of the biodegradation process. PMID:10742254

  7. A novel method for single bacteria identification by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schultz, Emmanuelle; Simon, Anne-Catherine; Strola, Samy Andrea; Perenon, Rémi; Espagnon, Isabelle; Allier, Cédric; Claustre, Patricia; Jary, Dorothée.; Dinten, Jean-Marc

    2014-03-01

    In this paper we present results on single bacteria rapid identification obtained with a low-cost and compact Raman spectrometer. At present, we demonstrate that a 1 minute procedure, including the localization of single bacterium, is sufficient to acquire comprehensive Raman spectrum in the range of 600 to 3300 cm-1. Localization and detection of single bacteria is performed by means of lensfree imaging over a large field of view of 24 mm2. An excitation source of 532 nm and 30 mW illuminates single bacteria to collect Raman signal into a Tornado Spectral Systems prototype spectrometer (HTVS technology). The acquisition time to record a single bacterium spectrum is as low as 10 s owing to the high light throughput of this spectrometer. The spectra processing features different steps for cosmic spikes removal, background subtraction, and gain normalization to correct the residual inducted fluorescence and substrate fluctuations. This allows obtaining a fine chemical fingerprint analysis. We have recorded a total of 1200 spectra over 7 bacterial species (E. coli, Bacillus species, S. epidermis, M. luteus, S. marcescens). The analysis of this database results in a high classification score of almost 90 %. Hence we can conclude that our setup enables automatic recognition of bacteria species among 7 different species. The speed and the sensitivity (<30 minutes for localization and spectra collection of 30 single bacteria) of our Raman spectrometer pave the way for high-throughput and non-destructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic and environmental applications.

  8. Rubrobacter-related bacteria associated with rosy discolouration of masonry and lime wall paintings.

    PubMed

    Schabereiter-Gurtner, C; Piñar, G; Vybiral, D; Lubitz, W; Rölleke, S

    2001-11-01

    A molecular approach was chosen to analyse the correlation between bacterial colonisation and rosy discolouration of masonry and lime wall paintings of two historically important buildings in Austria and Germany. The applied molecular method included PCR amplification of genes encoding the small subunit rRNA of bacteria (16S rDNA), genetic fingerprinting by denaturing gradient gel electrophoresis (DGGE), construction of 16S rDNA clone libraries, and comparative phylogenetic sequence analyses. The bacterial community of one red-pigmented biofilm sampled in Herberstein (Austria) contained bacteria phylogenetically related to the genera Saccharopolyspora, Nocardioides, Pseudonocardia, Rubrobacter, and to a Kineococcus-like bacterium. The bacterial community of the second red-pigmented biofilm sampled in Herberstein contained bacteria related to Arthrobacter, Comamonas, and to Rubrobacter. Rubrobacter-related 16S rDNA sequences were the most abundant. In the red-pigmented biofilm sampled in Burggen (Germany), only Rubrobacter-related bacteria were identified. No Rubrobacter-related bacteria were detected in non-rosy biofilms. The majority of sequences (70%) obtained from the bacterial communities of the three investigated rosy biofilms were related to sequences of the genus Rubrobacter (red-pigmented bacteria), demonstrating a correlation between Rubrobacter-related bacteria and the phenomenon of rosy discolouration of masonry and lime wall paintings.

  9. Lactic acid bacteria found in fermented fish in Thailand.

    PubMed

    Tanasupawat, Somboon; Okada, Sanae; Komagata, Kazuo

    1998-06-01

    Forty-seven strains of homofermentative rod-shaped and 5 heterofermentative sphere-shaped lactic acid bacteria were isolated from 4 kinds of fermented fish (pla-ra, pla-chom, kung-chom, and hoi-dong) in Thailand. These bacteria were separated into four groups by phenotypic and chemotaxonomic characteristics, including fluorometric DNA-DNA hybridization. Five strains (Group I) contained meso-diaminopimelic acid in the cell wall. Four strains were identified as Lactobacillus pentosus, and one strain was L. plantarum. Tested strains of this group produced DL-lactic acid. The rest of the rod-shaped bacteria, 23 strains (Group II) and 19 strains (Group III), lacked meso-diaminopimelic acid in the cell wall and were identified as L. farciminis and Lactobacillus species, respectively. The tested strains of these groups produced L-lactic acid. The amount of cellular fatty acids of C16:0 and C18:1, and the DNA base compositions were significant for differentiating the strains in Groups II and III. Five strains of cocci in chains (Group IV) produced gas from glucose. The tested strains of this group produced d-lactic acid. They were identified as a Leuconostoc species. The distribution of these bacteria in fermented fish in Thailand is discussed.

  10. Effects of Grazing on Bacteria-Mediated Corrosion of Metals in Seawater

    DTIC Science & Technology

    1986-05-01

    NUMBEER2. GOVT ACCESSION NO. 3. RECIPIENT’S CATA’.00 NJUMIIER 4. TITLE (mESubtitle) S*TYPE OF REPORT a ’!;.iOO COVERED IL’ Effects of Grazing on... Effects of Grazing on Bacteria-Mediated Corrosion of Metals in Seawater ONR Contract No. : N00014-83-0652 Project Period: August 1983-August, 1985 Principal...the laboratory to address the next two objectives. II. Effect of Protozoa on Total Numbers of Bacteria on Metals This objective included testing a

  11. Does virus-bacteria coinfection increase the clinical severity of acute respiratory infection?

    PubMed

    Damasio, Guilherme A C; Pereira, Luciane A; Moreira, Suzana D R; Duarte dos Santos, Claudia N; Dalla-Costa, Libera M; Raboni, Sonia M

    2015-09-01

    This retrospective cohort study investigated the presence of bacteria in respiratory secretions of patients hospitalized with acute respiratory infections and analyzed the impact of viral and bacterial coinfection on severity and the mortality rate. A total of 169 patients with acute respiratory infections were included, viruses and bacteria in respiratory samples were detected using molecular methods. Among all samples, 73.3% and 59.7% were positive for viruses and bacteria, respectively; 45% contained both virus and bacteria. Bacterial coinfection was more frequent in patients infected by community respiratory viruses than influenza A H1N1pdm (83.3% vs. 40.6%). The most frequently bacteria detected were Streptococcus pneumoniae and Haemophilus influenzae. Both species were co-detected in 54 patients and identified alone in 22 and 21 patients, respectively. Overall, there were no significant differences in the period of hospitalization, severity, or mortality rate between patients infected with respiratory viruses alone and those coinfected by viruses and bacteria. The detection of mixed respiratory pathogens is frequent in hospitalized patients with acute respiratory infections, but its impact on the clinical outcome does not appear substantial. However, it should be noted that most of the patients received broad-spectrum antibiotic therapy, which may have contributed to this favorable outcome. © 2015 Wiley Periodicals, Inc.

  12. Event extraction of bacteria biotopes: a knowledge-intensive NLP-based approach

    PubMed Central

    2012-01-01

    Background Bacteria biotopes cover a wide range of diverse habitats including animal and plant hosts, natural, medical and industrial environments. The high volume of publications in the microbiology domain provides a rich source of up-to-date information on bacteria biotopes. This information, as found in scientific articles, is expressed in natural language and is rarely available in a structured format, such as a database. This information is of great importance for fundamental research and microbiology applications (e.g., medicine, agronomy, food, bioenergy). The automatic extraction of this information from texts will provide a great benefit to the field. Methods We present a new method for extracting relationships between bacteria and their locations using the Alvis framework. Recognition of bacteria and their locations was achieved using a pattern-based approach and domain lexical resources. For the detection of environment locations, we propose a new approach that combines lexical information and the syntactic-semantic analysis of corpus terms to overcome the incompleteness of lexical resources. Bacteria location relations extend over sentence borders, and we developed domain-specific rules for dealing with bacteria anaphors. Results We participated in the BioNLP 2011 Bacteria Biotope (BB) task with the Alvis system. Official evaluation results show that it achieves the best performance of participating systems. New developments since then have increased the F-score by 4.1 points. Conclusions We have shown that the combination of semantic analysis and domain-adapted resources is both effective and efficient for event information extraction in the bacteria biotope domain. We plan to adapt the method to deal with a larger set of location types and a large-scale scientific article corpus to enable microbiologists to integrate and use the extracted knowledge in combination with experimental data. PMID:22759462

  13. Event extraction of bacteria biotopes: a knowledge-intensive NLP-based approach.

    PubMed

    Ratkovic, Zorana; Golik, Wiktoria; Warnier, Pierre

    2012-06-26

    Bacteria biotopes cover a wide range of diverse habitats including animal and plant hosts, natural, medical and industrial environments. The high volume of publications in the microbiology domain provides a rich source of up-to-date information on bacteria biotopes. This information, as found in scientific articles, is expressed in natural language and is rarely available in a structured format, such as a database. This information is of great importance for fundamental research and microbiology applications (e.g., medicine, agronomy, food, bioenergy). The automatic extraction of this information from texts will provide a great benefit to the field. We present a new method for extracting relationships between bacteria and their locations using the Alvis framework. Recognition of bacteria and their locations was achieved using a pattern-based approach and domain lexical resources. For the detection of environment locations, we propose a new approach that combines lexical information and the syntactic-semantic analysis of corpus terms to overcome the incompleteness of lexical resources. Bacteria location relations extend over sentence borders, and we developed domain-specific rules for dealing with bacteria anaphors. We participated in the BioNLP 2011 Bacteria Biotope (BB) task with the Alvis system. Official evaluation results show that it achieves the best performance of participating systems. New developments since then have increased the F-score by 4.1 points. We have shown that the combination of semantic analysis and domain-adapted resources is both effective and efficient for event information extraction in the bacteria biotope domain. We plan to adapt the method to deal with a larger set of location types and a large-scale scientific article corpus to enable microbiologists to integrate and use the extracted knowledge in combination with experimental data.

  14. Mineral deposition in bacteria-filled and bacteria-free calcium bodies in the crustacean Hyloniscus riparius (Isopoda: Oniscidea).

    PubMed

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species.

  15. Mineral Deposition in Bacteria-Filled and Bacteria-Free Calcium Bodies in the Crustacean Hyloniscus riparius (Isopoda: Oniscidea)

    PubMed Central

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species. PMID:23554963

  16. Cable Bacteria in Freshwater Sediments

    PubMed Central

    Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  17. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  18. Application of MALDI-TOF MS for the Identification of Food Borne Bacteria

    PubMed Central

    Pavlovic, Melanie; Huber, Ingrid; Konrad, Regina; Busch, Ulrich

    2013-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful tool for the routine identification of clinical isolates. MALDI-TOF MS based identification of bacteria has been shown to be more rapid, accurate and cost-efficient than conventional phenotypic techniques or molecular methods. Rapid and reliable identification of food-associated bacteria is also of crucial importance for food processing and product quality. This review is concerned with the applicability of MALDI-TOF MS for routine identification of foodborne bacteria taking the specific requirements of food microbiological laboratories and the food industry into account. The current state of knowledge including recent findings and new approaches are discussed. PMID:24358065

  19. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  20. Energetics and Application of Heterotrophy in Acetogenic Bacteria.

    PubMed

    Schuchmann, Kai; Müller, Volker

    2016-07-15

    Acetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2 fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogen Acetobacterium woodii Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2 reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.