Sample records for bacteria pseudomonas syringae

  1. Recombineering Pseudomonas syringae

    USDA-ARS?s Scientific Manuscript database

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  2. New strategies for genetic engineering Pseudomonas syringae using recombination

    USDA-ARS?s Scientific Manuscript database

    Here we report that DNA oligonucleotides (oligos) introduced directly into bacteria by electroporation can recombine with the bacterial chromosome. This phenomenon was identified in Pseudomonas syringae and we subsequently found that Escherichia coli, Salmonella typhimurium and Shigella flexneri are...

  3. Genetically modified luminescent bacteria Ralostonia solanacerum, Pseudomonas syringae, Pseudomonas savastanoi, and wild type bacterium Vibrio fischeri in biosynthesis of gold nanoparticles from gold chloride trihydrate.

    PubMed

    Attaran, Neda; Eshghi, Hossein; Rahimizadeh, Mohammad; Mashreghi, Mansour; Bakavoli, Mehdi

    2014-08-04

    The effect of different genetically engineered bacteria, Pseudomonas syringae, Pseudomonas savastanoi, and Ralostonia solanacerum and also a natural marine bacterial species, Vibrio fischeri NRRL B-11177, is studied in producing gold nanoparticles. This is the first report about the biosynthesis of gold nanoparticles by natural and genetically engineered luminescent bacteria. These microorganisms reduced gold ions and produced fairly monodisperse nanoparticles. TEM analysis indicated that spherical nano gold particles in the different diameters and shapes were obtained at pH values of 6.64. In this biosynthesis protocol, the gold nanoparticles with desired shape and size can be prepared.

  4. Recombineering using RecET from Pseudomonas syringae

    USDA-ARS?s Scientific Manuscript database

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  5. AlgU controls expression of virulence genes in Pseudomonas syringae pv. tomato DC3000

    USDA-ARS?s Scientific Manuscript database

    Plant pathogenic bacteria are able to integrate information about their environment and adjust gene expression to provide adaptive functions. AlgU, an ECF sigma factor encoded by Pseudomonas syringae, controls expression of genes for alginate biosynthesis and is active while the bacteria are associa...

  6. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae is a Gram-negative bacterial pathogen that causes disease on more than 100 different plant species, including the model plant Arabidopsis thaliana. Dissection of the Arabidopsis thaliana-Pseudomonas syringae pathosystem has identified many factors that contribute to successful ...

  7. Diversity and Abundance of Ice Nucleating Strains of Pseudomonas syringae in a Freshwater Lake in Virginia, USA.

    PubMed

    Pietsch, Renée B; Vinatzer, Boris A; Schmale, David G

    2017-01-01

    The bacterium Pseudomonas syringae is found in a variety of terrestrial and aquatic environments. Some strains of P. syringae express an ice nucleation protein (hereafter referred to as Ice+) allowing them to catalyze the heterogeneous freezing of water. Though P. syringae has been sampled intensively from freshwater sources in France, little is known about the genetic diversity of P. syringae in natural aquatic habitats in North America. We collected samples of freshwater from three different depths in Claytor Lake, Virginia, USA between November 2015 and June 2016. Samples were plated on non-selective medium (TSA) and on medium selective for Pseudomonas (KBC) and closely related species to estimate the total number of culturable bacteria and of Pseudomonas , respectively. A droplet freezing assay was used to screen colonies for the Ice+ phenotype. Ice+ colonies were then molecularly identified based on the cts (citrate synthase) gene and the 16S rDNA gene. Phylogenetic analysis of cts sequences showed a surprising diversity of phylogenetic subgroups of P. syringae . Frequencies of Ice+ isolates on P. syringae selective medium ranged from 0 to 15% per sample with the highest frequency being found in spring. Our work shows that freshwater lakes can be a significant reservoir of Ice+ P. syringae . Future work is needed to determine the contribution of P. syringae from freshwater lakes to the P. syringae populations present in the atmosphere and on plants and, in particular, if freshwater lakes could be an inoculum source of P. syringae -caused plant disease outbreaks.

  8. 40 CFR 180.1145 - Pseudomonas syringae; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FOOD Exemptions From Tolerances § 180.1145 Pseudomonas syringae; exemption from the requirement of a tolerance. Pseudomonas syringae is exempted from the requirement of a tolerance on all raw agricultural...

  9. 40 CFR 180.1145 - Pseudomonas syringae; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FOOD Exemptions From Tolerances § 180.1145 Pseudomonas syringae; exemption from the requirement of a tolerance. Pseudomonas syringae is exempted from the requirement of a tolerance on all raw agricultural...

  10. Strains of Pseudomonas syringae pv. syringae from pea are phylogenetically and pathogenically diverse.

    PubMed

    Martín-Sanz, Alberto; de la Vega, Marcelino Pérez; Murillo, Jesús; Caminero, Constantino

    2013-07-01

    Pseudomonas syringae pv. syringae causes extensive yield losses in the pea crop worldwide, although there is little information on its host specialization and its interactions with pea. A collection of 88 putative P. syringae pv. syringae strains (including 39 strains isolated from pea) was characterized by repetitive polymerase chain reaction (rep-PCR), multilocus sequence typing (MLST), and syrB amplification and evaluated for pathogenicity and virulence. rep-PCR data grouped the strains from pea into two groups (1B and 1C) together with strains from other hosts; a third group (1A) was formed exclusively with strains isolated from non-legume species. MLST data included all strains from pea in the genomospecies 1 of P. syringae pathovars defined in previous studies; they were distributed in the same three groups defined by rep-PCR. The inoculations performed in two pea cultivars showed that P. syringae pv. syringae strains from groups 1A and 1C were less virulent than strains from group 1B, suggesting a possible pathogenic specialization in this group. This study shows the existence of genetically and pathogenically distinct P. syringae pv. syringae strain groups from pea, which will be useful for the diagnostic and epidemiology of this pathogen and for disease resistance breeding.

  11. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  12. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  13. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  14. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  15. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  16. The Facultative Symbiont Rickettsia Protects an Invasive Whitefly against Entomopathogenic Pseudomonas syringae Strains

    PubMed Central

    Hunter, Martha S.; Baltrus, David A.

    2014-01-01

    Facultative endosymbionts can benefit insect hosts in a variety of ways, including context-dependent roles, such as providing defense against pathogens. The role of some symbionts in defense may be overlooked, however, when pathogen infection is transient, sporadic, or asymptomatic. The facultative endosymbiont Rickettsia increases the fitness of the sweet potato whitefly (Bemisia tabaci) in some populations through mechanisms that are not yet understood. In this study, we investigated the role of Rickettsia in mediating the interaction between the sweet potato whitefly and Pseudomonas syringae, a common environmental bacterium, some strains of which are pathogenic to aphids. Our results show that P. syringae multiplies within whiteflies, leading to host death, and that whiteflies infected with Rickettsia show a decreased rate of death due to P. syringae. Experiments using plants coated with P. syringae confirmed that whiteflies can acquire the bacteria at a low rate while feeding, leading to increased mortality, particularly when the whiteflies are not infected with Rickettsia. These results suggest that P. syringae may affect whitefly populations in nature and that Rickettsia can ameliorate this effect. This study highlights the possible importance of interactions among opportunistic environmental pathogens and endosymbionts of insects. PMID:25217020

  17. Cellulose production in Pseudomonas syringae pv. syringae: a compromise between epiphytic and pathogenic lifestyles.

    PubMed

    Arrebola, Eva; Carrión, Víctor J; Gutiérrez-Barranquero, José Antonio; Pérez-García, Alejandro; Rodríguez-Palenzuela, Pablo; Cazorla, Francisco M; de Vicente, Antonio

    2015-07-01

    Genome sequencing and annotation have revealed a putative cellulose biosynthetic operon in the strain Pseudomonas syringae pv. syringae UMAF0158, the causal agent of bacterial apical necrosis. Bioinformatics analyses and experimental methods were used to confirm the functionality of the cellulose biosynthetic operon. In addition, the results showed the contribution of the cellulose operon to important aspects of P. syringae pv. syringae biology, such as the formation of biofilms and adhesion to the leaf surface of mango, suggesting that this operon increases epiphytic fitness. However, based on the incidence and severity of the symptoms observed in tomato leaflets, cellulose expression reduces virulence, as cellulose-deficient mutants increased the area of necrosis, whereas the cellulose-overproducing strain decreased the area of necrosis compared with the wild type. In conclusion, the results of this study show that the epiphytic and pathogenic stages of the P. syringae pv. syringae UMAF0158 lifestyle are intimately affected by cellulose production. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae

    USDA-ARS?s Scientific Manuscript database

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L.) in the central and western U.S. and has been reported in Australia and Europe. The disease is not always recognized because symptoms are often associated with frost damage. Two culti...

  19. Cloning of genes required for hypersensitivity and pathogenicity in Pseudomonas syringae pv. aptata.

    PubMed

    Minardi, P

    1995-01-01

    A genomic library of Pseudomonas syringae pv. aptata strain NCPPB 2664, which causes bacterial blight of sugar beet, lettuce and other plants, was constructed in the cosmid vector pCPP31. The 13.4 kb EcoRI fragment of the cosmid pHIR11, containing the hrp (hypersensitive response and pathogenicity) gene cluster of the closely related bacterium Pseudomonas syringae pv. syringae strain 61, was used as a probe to identify a homologous hrp gene cluster in P. syringae pv. aptata. Thirty of 2500 cosmid clones, screened by colony hybridization, gave a strong hybridization signal with the probe, but none of these conferred to the non-pathogenic bacterium, Pseudomonas fluorescens, the ability to elicit the hypersensitive response (HR) in tobacco. Southern blot analysis of EcoRI-digested genomic DNA of P. syringae pv. aptata showed hybridizing bands of 12 kb and 4.4 kb. Only a 12 kb fragment hybridized in digests of the cosmids. Cosmid clone pCPP1069 was mutagenized with Tn10-minitet and marker-exchanged into the genome of P. syringae pv. aptata. Three resulting prototrophic mutant strains failed to elicit the HR in tobacco and to cause disease in lettuce. The DNA flanking the Tn10-minitet insertions from mutated derivatives of pCPP1069 hybridized with the 10.6 kb Bg/II fragment of pHIR11. These results indicate that P. syringae pv. aptata harbours hrp genes that are similar to, but arranged differently from, homologous hrp genes of P. syringae pv. syringae.

  20. The Facultative Symbiont Rickettsia Protects an Invasive Whitefly against Entomopathogenic Pseudomonas syringae Strains.

    PubMed

    Hendry, Tory A; Hunter, Martha S; Baltrus, David A

    2014-12-01

    Facultative endosymbionts can benefit insect hosts in a variety of ways, including context-dependent roles, such as providing defense against pathogens. The role of some symbionts in defense may be overlooked, however, when pathogen infection is transient, sporadic, or asymptomatic. The facultative endosymbiont Rickettsia increases the fitness of the sweet potato whitefly (Bemisia tabaci) in some populations through mechanisms that are not yet understood. In this study, we investigated the role of Rickettsia in mediating the interaction between the sweet potato whitefly and Pseudomonas syringae, a common environmental bacterium, some strains of which are pathogenic to aphids. Our results show that P. syringae multiplies within whiteflies, leading to host death, and that whiteflies infected with Rickettsia show a decreased rate of death due to P. syringae. Experiments using plants coated with P. syringae confirmed that whiteflies can acquire the bacteria at a low rate while feeding, leading to increased mortality, particularly when the whiteflies are not infected with Rickettsia. These results suggest that P. syringae may affect whitefly populations in nature and that Rickettsia can ameliorate this effect. This study highlights the possible importance of interactions among opportunistic environmental pathogens and endosymbionts of insects. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Characterization of Pseudomonas syringae from blueberry fields in Oregon and Washington

    USDA-ARS?s Scientific Manuscript database

    Bacterial canker, caused by Pseudomonas syringae, is a common disease that kills buds and stems in blueberry fields in Oregon and western Washington. Management is primarily through application of copper; antibiotics are not registered for blueberry. Little is known about the diversity of P. syringa...

  2. Characterization of Pseudomonas syringae pv. syringae, Causal Agent of Citrus Blast of Mandarin in Montenegro.

    PubMed

    Ivanović, Žarko; Perović, Tatjana; Popović, Tatjana; Blagojević, Jovana; Trkulja, Nenad; Hrnčić, Snježana

    2017-02-01

    Citrus blast caused by bacterium Pseudomonas syringae is a very important disease of citrus occuring in many areas of the world, but with few data about genetic structure of the pathogen involved. Considering the above fact, this study reports genetic characterization of 43 P. syringae isolates obtained from plant tissue displaying citrus blast symptoms on mandarin ( Citrus reticulata ) in Montenegro, using multilocus sequence analysis of gyrB , rpoD , and gap1 gene sequences. Gene sequences from a collection of 54 reference pathotype strains of P. syringae from the Plant Associated and Environmental Microbes Database (PAMDB) was used to establish a genetic relationship with our isolates obtained from mandarin. Phylogenetic analyses of gyrB , rpoD , and gap1 gene sequences showed that P. syringae pv. syringae causes citrus blast in mandarin in Montenegro, and belongs to genomospecies 1. Genetic homogeneity of isolates suggested that the Montenegrian population might be clonal which indicates a possible common source of infection. These findings may assist in further epidemiological studies of this pathogen and for determining mandarin breeding strategies for P. syringae control.

  3. Characterization of Pseudomonas syringae pv. syringae, Causal Agent of Citrus Blast of Mandarin in Montenegro

    PubMed Central

    Ivanović, Žarko; Perović, Tatjana; Popović, Tatjana; Blagojević, Jovana; Trkulja, Nenad; Hrnčić, Snježana

    2017-01-01

    Citrus blast caused by bacterium Pseudomonas syringae is a very important disease of citrus occuring in many areas of the world, but with few data about genetic structure of the pathogen involved. Considering the above fact, this study reports genetic characterization of 43 P. syringae isolates obtained from plant tissue displaying citrus blast symptoms on mandarin (Citrus reticulata) in Montenegro, using multilocus sequence analysis of gyrB, rpoD, and gap1 gene sequences. Gene sequences from a collection of 54 reference pathotype strains of P. syringae from the Plant Associated and Environmental Microbes Database (PAMDB) was used to establish a genetic relationship with our isolates obtained from mandarin. Phylogenetic analyses of gyrB, rpoD, and gap1 gene sequences showed that P. syringae pv. syringae causes citrus blast in mandarin in Montenegro, and belongs to genomospecies 1. Genetic homogeneity of isolates suggested that the Montenegrian population might be clonal which indicates a possible common source of infection. These findings may assist in further epidemiological studies of this pathogen and for determining mandarin breeding strategies for P. syringae control. PMID:28167885

  4. Pseudomonas caspiana sp. nov., a citrus pathogen in the Pseudomonas syringae phylogenetic group.

    PubMed

    Busquets, Antonio; Gomila, Margarita; Beiki, Farid; Mulet, Magdalena; Rahimian, Heshmat; García-Valdés, Elena; Lalucat, Jorge

    2017-07-01

    In a screening by multilocus sequence analysis of Pseudomonas strains isolated from diverse origins, 4 phylogenetically closely related strains (FBF58, FBF102 T , FBF103, and FBF122) formed a well-defined cluster in the Pseudomonas syringae phylogenetic group. The strains were isolated from citrus orchards in northern Iran with disease symptoms in the leaves and stems and its pathogenicity against citrus plants was demonstrated. The whole genome of the type strain of the proposed new species (FBF102 T =CECT 9164 T =CCUG 69273 T ) was sequenced and characterized. Comparative genomics with the 14 known Pseudomonas species type strains of the P. syringae phylogenetic group demonstrated that this strain belonged to a new genomic species, different from the species described thus far. Genome analysis detected genes predicted to be involved in pathogenesis, such as an atypical type 3 secretion system and two type 6 secretion systems, together with effectors and virulence factors. A polyphasic taxonomic characterization demonstrated that the 4 plant pathogenic strains represented a new species, for which the name Pseudomonas caspiana sp. nov. is proposed. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Tomato–Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata

    PubMed Central

    Li, Xin; Sun, Zenghui; Shao, Shujun; Zhang, Shuai; Ahammed, Golam Jalal; Zhang, Guanqun; Jiang, Yuping; Zhou, Jie; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Shi, Kai

    2015-01-01

    Increasing atmospheric CO2 concentrations ([CO2]) in agricultural and natural ecosystems is known to reduce plant stomatal opening, but it is unclear whether these CO2-induced stomatal alterations are associated with foliar pathogen infections. In this study, tomato plants were grown under ambient and elevated [CO2] and inoculated with Pseudomonas syringae pv. tomato strain DC3000, a strain that is virulent on tomato plants. We found that elevated [CO2] enhanced tomato defence against P. syringae. Scanning electron microscopy analysis revealed that stomatal aperture of elevated [CO2] plants was considerably smaller than their ambient counterparts, which affected the behaviour of P. syringae bacteria on the upper surface of epidermal peels. Pharmacological experiments revealed that nitric oxide (NO) played a role in elevated [CO2]-induced stomatal closure. Silencing key genes involved in NO generation and stomatal closing, nitrate reductase (NR) and guard cell slow-type anion channel 1 (SLAC1), blocked elevated [CO2]-induced stomatal closure and resulted in significant increases in P. syringae infection. However, the SLAC1-silenced plants, but not the NR-silenced plants, still had significantly higher defence under elevated [CO2] compared with plants treated with ambient [CO2]. Similar results were obtained when the stomata-limiting factor for P. syringae entry was excluded by syringe infiltration inoculation. These results indicate that elevated [CO2] induces defence against P. syringae in tomato plants, not only by reducing the stomata-mediated entry of P. syringae but also by invoking a stomata-independent pathway to counteract P. syringae. This information is valuable for designing proper strategies against bacterial pathogens under changing agricultural and natural ecosystems. PMID:25336683

  6. Entomopathogenicity to Two Hemipteran Insects Is Common but Variable across Epiphytic Pseudomonas syringae Strains.

    PubMed

    Smee, Melanie R; Baltrus, David A; Hendry, Tory A

    2017-01-01

    Strains of the well-studied plant pathogen Pseudomonas syringae show large differences in their ability to colonize plants epiphytically and to inflict damage to hosts. Additionally, P. syringae can infect some sap-sucking insects and at least one P. syringae strain is highly virulent to insects, causing death to most individuals within as few as 4 days and growing to high population densities within insect hosts. The likelihood of agricultural pest insects coming into contact with transient populations of P. syringae while feeding on plants is high, yet the ecological implications of these interactions are currently not well understood as virulence has not been tested across a wide range of strains. To investigate virulence differences across strains we exposed the sweet potato whitefly, Bemisia tabaci , and the pea aphid, Acyrthosiphon pisum , both of which are cosmopolitan agricultural pests, to 12 P. syringae strains. We used oral inoculations with bacteria suspended in artificial diet in order to assay virulence while controlling for other variables such as differences in epiphytic growth ability. Generally, patterns of pathogenicity remain consistent across the two species of hemipteran insects, with bacterial strains from phylogroup II, or genomospecies 1, causing the highest rate of mortality with up to 86% of individuals dead after 72 h post infection. The rate of mortality is highly variable across strains, some significantly different from negative control treatments and others showing no discernable difference. Interestingly, one of the most pathogenic strains to both aphids and whiteflies (Cit7) is thought to be non-pathogenic on plants. We also found Cit7 to establish the highest epiphytic population after 48 h on fava beans. Between the nine P. syringae strains tested for epiphytic ability there is also much variation, but epiphytic ability was positively correlated with pathogenicity to insects, suggesting that the two traits may be linked and that

  7. Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a

    PubMed Central

    2011-01-01

    Background Pseudomonas syringae pv. phaseolicola 1448a (P. syringae 1448a), the causative agent of bean halo blight, is a bacterium capable of occupying diverse biological niches. Under conditions of iron starvation P. syringae 1448a secretes siderophores for active uptake of iron. The primary siderophore of P. syringae 1448a is pyoverdine, a fluorescent molecule that is assembled from amino acid precursors by non-ribosomal peptide synthetase (NRPS) enzymes. Whereas other species of Pseudomonas often exhibit structural variations in the pyoverdine produced by different strains, all P. syringae pathovars previously tested have been found to make an identical pyoverdine molecule. P. syringae 1448a also appears to have the genetic potential to make two secondary siderophores, achromobactin and yersiniabactin, each of which has previously been detected in different P. syringae pathovars. Results Five putative pyoverdine NRPS genes in P. syringae 1448a were characterized in-silico and their role in pyoverdine biosynthesis was confirmed by gene knockout. Pyoverdine was purified from P. syringae 1448a and analyzed by MALDI-TOF and MS/MS spectroscopy. Peaks were detected corresponding to the expected sizes for the pyoverdine structure previously found in other P. syringae pathovars, but surprisingly P. syringae 1448a appears to also produce a variant pyoverdine species that has an additional 71 Da monomer incorporated into the peptide side chain. Creation of pyoverdine null mutants of P. syringae 1448a revealed that this strain also produces achromobactin as a temperature-regulated secondary siderophore, but does not appear to make yersiniabactin. Pyoverdine and achromobactin null mutants were characterized in regard to siderophore production, iron uptake, virulence and growth in iron limited conditions. Conclusions This study provides the first evidence of a P. syringae pathovar producing a side chain variant form of pyoverdine. We also describe novel IC50 and liquid CAS

  8. Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley.

    PubMed

    Bull, Carolee T; Clarke, Christopher R; Cai, Rongman; Vinatzer, Boris A; Jardini, Teresa M; Koike, Steven T

    2011-07-01

    Since 2002, severe leaf spotting on parsley (Petroselinum crispum) has occurred in Monterey County, CA. Either of two different pathovars of Pseudomonas syringae sensu lato were isolated from diseased leaves from eight distinct outbreaks and once from the same outbreak. Fragment analysis of DNA amplified between repetitive sequence polymerase chain reaction; 16S rDNA sequence analysis; and biochemical, physiological, and host range tests identified the pathogens as Pseudomonas syringae pv. apii and P. syringae pv. coriandricola. Koch's postulates were completed for the isolates from parsley, and host range tests with parsley isolates and pathotype strains demonstrated that P. syringae pv. apii and P. syringae pv. coriandricola cause leaf spot diseases on parsley, celery, and coriander or cilantro. In a multilocus sequence typing (MLST) approach, four housekeeping gene fragments were sequenced from 10 strains isolated from parsley and 56 pathotype strains of P. syringae. Allele sequences were uploaded to the Plant-Associated Microbes Database and a phylogenetic tree was built based on concatenated sequences. Tree topology directly corresponded to P. syringae genomospecies and P. syringae pv. apii was allocated appropriately to genomospecies 3. This is the first demonstration that MLST can accurately allocate new pathogens directly to P. syringae sensu lato genomospecies. According to MLST, P. syringae pv. coriandricola is a member of genomospecies 9, P. cannabina. In a blind test, both P. syringae pv. coriandricola and P. syringae pv. apii isolates from parsley were correctly identified to pathovar. In both cases, MLST described diversity within each pathovar that was previously unknown.

  9. [Production of inhibiting plant growth and development hormones by pathogenic for legumes Pseudomonas genus bacteria].

    PubMed

    Dankevich, L A

    2013-01-01

    It has been studied the ability of pathogenic for legumes pathovars of Pseudomonas genus to produce ethylene and abscisic acid in vitro. A direct correlation between the level of ethylene production by agent of bacterial pea burn--Pseudomonas syringae pv. pisi and level of its aggressiveness for plants has been found. It is shown that the amount of abscisic acid synthesized by pathogenic for legumes Pseudomonas genus bacteria correlates with their aggressiveness for plants.

  10. The Biology and Biological Activity of Pseudomonas syringae pv. tagetis

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae pv. tagetis (Pst) is a disease of plants in the family Asteraceae. A distinctive characteristic of this bacterial pathogen is the symptom of apical chlorosis in infected plants, caused by the phytotoxin tagetitoxin. Strains of Pst have been isolated from several plant species ...

  11. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco-Pseudomonas syringae Interactions.

    PubMed

    Bozsó, Zoltán; Ott, Péter G; Kámán-Tóth, Evelin; Bognár, Gábor F; Pogány, Miklós; Szatmári, Ágnes

    2016-01-01

    In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco-Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca(2+) influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were

  12. A Proposal for a Genome Similarity-Based Taxonomy for Plant-Pathogenic Bacteria that Is Sufficiently Precise to Reflect Phylogeny, Host Range, and Outbreak Affiliation Applied to Pseudomonas syringae sensu lato as a Proof of Concept.

    PubMed

    Vinatzer, Boris A; Weisberg, Alexandra J; Monteil, Caroline L; Elmarakeby, Haitham A; Sheppard, Samuel K; Heath, Lenwood S

    2017-01-01

    Taxonomy of plant pathogenic bacteria is challenging because pathogens of different crops often belong to the same named species but current taxonomy does not provide names for bacteria below the subspecies level. The introduction of the host range-based pathovar system in the 1980s provided a temporary solution to this problem but has many limitations. The affordability of genome sequencing now provides the opportunity for developing a new genome-based taxonomic framework. We already proposed to name individual bacterial isolates based on pairwise genome similarity. Here, we expand on this idea and propose to use genome similarity-based codes, which we now call life identification numbers (LINs), to describe and name bacterial taxa. Using 93 genomes of Pseudomonas syringae sensu lato, LINs were compared with a P. syringae genome tree whereby the assigned LINs were found to be informative of a majority of phylogenetic relationships. LINs also reflected host range and outbreak association for strains of P. syringae pathovar actinidiae, a pathovar for which many genome sequences are available. We conclude that LINs could provide the basis for a new taxonomic framework to address the shortcomings of the current pathovar system and to complement the current taxonomic system of bacteria in general.

  13. Management of Bacterial Blight of Lilac Caused by Pseudomonas syringae by Growing Plants under Plastic Shelters

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae pv. syringae causes some of the most economically-important bacterial diseases affecting woody perennials grown by the nursery industry in the Pacific Northwest of the United States. In this study, we evaluated a cultural control practice, placement of plants in plastic shelter...

  14. Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen.

    PubMed

    Scortichini, Marco; Marcelletti, Simone; Ferrante, Patrizia; Petriccione, Milena; Firrao, Giuseppe

    2012-09-01

    Pseudomonas syringae pv. actinidiae is the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa) and yellow-fleshed kiwifruit (A. chinensis). A recent, sudden, re-emerging wave of this disease has occurred, almost contemporaneously, in all of the main areas of kiwifruit production in the world, suggesting that it can be considered as a pandemic disease. Recent in-depth genetic studies performed on P. syringae pv. actinidiae strains have revealed that this pathovar is composed of four genetically different populations which, to different extents, can infect crops of the genus Actinidia worldwide. Genome comparisons of these strains have revealed that this pathovar can gain and lose the phaseolotoxin gene cluster, as well as mobile genetic elements, such as plasmids and putative prophages, and that it can modify the repertoire of the effector gene arrays. In addition, the strains currently causing worldwide severe economic losses display an extensive set of genes related to the ecological fitness of the bacterium in planta, such as copper and antibiotic resistance genes, multiple siderophore genes and genes involved in the degradation of lignin derivatives and other phenolics. This pathogen can therefore easily colonize hosts throughout the year. Bacteria; Proteobacteria, gamma subdivision; Order Pseudomonadales; Family Pseudomonadaceae; Genus Pseudomonas; Pseudomonas syringae species complex, genomospecies 8; Pathovar actinidiae. Gram-negative, aerobic, motile, rod-shaped, polar flagella, oxidase-negative, arginine dihydrolase-negative, DNA 58.5-58.8 mol.% GC, elicits the hypersensitive response on tobacco leaves. Primarily studied as the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa), it has also been isolated from yellow-fleshed kiwifruit (A. chinensis). In both species, it causes severe economic losses worldwide. It has also been isolated from wild A. arguta and A. kolomikta. In green-fleshed and

  15. Clarification of Taxonomic Status within the Pseudomonas syringae Species Group Based on a Phylogenomic Analysis

    PubMed Central

    Gomila, Margarita; Busquets, Antonio; Mulet, Magdalena; García-Valdés, Elena; Lalucat, Jorge

    2017-01-01

    The Pseudomonas syringae phylogenetic group comprises 15 recognized bacterial species and more than 60 pathovars. The classification and identification of strains is relevant for practical reasons but also for understanding the epidemiology and ecology of this group of plant pathogenic bacteria. Genome-based taxonomic analyses have been introduced recently to clarify the taxonomy of the whole genus. A set of 139 draft and complete genome sequences of strains belonging to all species of the P. syringae group available in public databases were analyzed, together with the genomes of closely related species used as outgroups. Comparative genomics based on the genome sequences of the species type strains in the group allowed the delineation of phylogenomic species and demonstrated that a high proportion of strains included in the study are misclassified. Furthermore, representatives of at least 7 putative novel species were detected. It was also confirmed that P. ficuserectae, P. meliae, and P. savastanoi are later synonyms of P. amygdali and that “P. coronafaciens” should be revived as a nomenspecies. PMID:29270162

  16. Clarification of Taxonomic Status within the Pseudomonas syringae Species Group Based on a Phylogenomic Analysis.

    PubMed

    Gomila, Margarita; Busquets, Antonio; Mulet, Magdalena; García-Valdés, Elena; Lalucat, Jorge

    2017-01-01

    The Pseudomonas syringae phylogenetic group comprises 15 recognized bacterial species and more than 60 pathovars. The classification and identification of strains is relevant for practical reasons but also for understanding the epidemiology and ecology of this group of plant pathogenic bacteria. Genome-based taxonomic analyses have been introduced recently to clarify the taxonomy of the whole genus. A set of 139 draft and complete genome sequences of strains belonging to all species of the P. syringae group available in public databases were analyzed, together with the genomes of closely related species used as outgroups. Comparative genomics based on the genome sequences of the species type strains in the group allowed the delineation of phylogenomic species and demonstrated that a high proportion of strains included in the study are misclassified. Furthermore, representatives of at least 7 putative novel species were detected. It was also confirmed that P. ficuserectae, P. meliae , and P. savastanoi are later synonyms of P. amygdali and that " P. coronafaciens " should be revived as a nomenspecies.

  17. Resistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants

    PubMed Central

    Scalschi, Loredana; Camañes, Gemma; Llorens, Eugenio; Fernández-Crespo, Emma; López, María M.; García-Agustín, Pilar; Vicedo, Begonya

    2014-01-01

    The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria. PMID:25244125

  18. The release of alginate lyase from growing Pseudomonas syringae pathovar phaseolicola

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Day, D. F.; Koenig, D. W.; Pierson, D. L.

    2001-01-01

    Pseudomonas syringae pathovar phaseolicola, which produces alginate during stationary growth phase, displayed elevated extracellular alginate lyase activity during both mid-exponential and late-stationary growth phases of batch growth. Intracellular activity remained below 22% of the total activity during exponential growth, suggesting that alginate lyase has an extracellular function for this organism. Extracellular enzyme activity in continuous cultures, grown in either nutrient broth or glucose-simple salts medium, peaked at 60% of the washout rate, although nutrient broth-grown cultures displayed more than twice the activity per gram of cell mass. These results imply that growth rate, nutritional composition, or both initiate a release of alginate lyase from viable P. syringae pv. phaseolicola, which could modify its entrapping biofilm.

  19. EFFECT OF PHENOTYPIC PLASTICITY ON EPIPHYTIC SURVIVAL AND COLONIZATION BY PSEUDOMONAS SYRINGAE

    EPA Science Inventory

    The bacterial epiphyte Pseudomonas syringas MF714R was cultured on agar or in broth or collected form colonized leaves; it was then inoculated onto greenhouse-grown bean plants incubated in a growth chamber at low relative humidity or in the field or onto field-grown bean plants....

  20. A Mathematical model to investigate quorum sensing regulation and its heterogenecity in pseudomonas syringae on leaves

    USDA-ARS?s Scientific Manuscript database

    The bacterium Pseudomonas syringae is a plant-pathogen, which through quorum sensing (QS), controls virulence. In this paper, by means of mathematical modeling, we investigate QS of this bacterium when living on leaf surfaces. We extend an existing stochastic model for the formation of Pseudomonas s...

  1. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae.

    PubMed

    Pecenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-09-01

    Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root

  2. Biosynthesis and regulation of coronatine, a non-host-specific phytotoxin produced by Pseudomonas syringae.

    PubMed

    Bender, C L; Palmer, D A; Peñaloza-Vázquez, A; Rangaswamy, V; Ullrich, M

    1998-01-01

    Many P. syringae pathovars are known to produce low-molecular-weight, diffusible toxins in infected host plants. These phytotoxins reproduce some of the symptoms of the relevant bacterial disease and are effective at very low concentrations. Phytotoxins generally enhance the virulence of the P. syringae pathovar which produces them, but are not required for pathogenesis. Genes encoding phytotoxin production have been identified and cloned from several P. syringae pathovars. With the exception of coronatine, toxin biosynthetic gene clusters are generally chromosomally encoded. In several pathovars, the toxin biosynthetic gene cluster also contains a resistance gene which functions to protect the producing strain from the biocidal effects of the toxin. In the case of phaseolotoxin, a resistance gene (argK) has been utilized to engineer phaseolotoxin-resistant tobacco plants. Although P. syringae phytotoxins can induce very similar effects in plants (chlorosis and necrosis), their biosynthesis and mode of action can be quite different. Knowledge of the biosynthetic pathways to these toxins and the cloning of the structural genes for their biosynthesis has relevance to the development of new bioactive compounds with altered specificity. For example, polyketides constitute a huge family of structurally diverse natural products including antibiotics, chemotherapeutic compounds, and antiparasitics. Most of the research on polyketide synthesis in bacteria has focused on compounds synthesized by Streptomyces or other actinomycetes. It is also important to note that it is now possible to utilize a genetic rather than synthetic approach to biosynthesize novel polyketides with altered biological properties (Hutchinson and Fujii, 1995; Kao et al., 1994; Donadio et al., 1993; Katz and Donadio, 1993). Most of the reprogramming or engineering of novel polyketides has been done using actinomycete PKSs, but much of this technology could also be applied to polyketides synthesized by

  3. Characterization of Pseudomonas pathovars isolated from rosaceous fruit trees in East Algeria.

    PubMed

    Harzallah, D; Sadallah, S; Larous, L

    2004-01-01

    A survey of bacterial diseases due to Pseudomonas on rosaceous fruit trees was conducted. In forty two orchards located in the Constantine region ( East Algeria). Pseudomonas isolates were identified on the bases of their cultural and biochemical characteristics . A total of fifty nine phytopathogenic bacteria were isolated from diseased pome and stone fruit trees. Thirty one strains comparable to Pseudomonas syringae pv. syringae were isolated from cherry (Prunus avium L.), plum (P. domestica L.), apricot (P. armeniaca L.), almond (P. dulcis L.) and pear trees (Pirus communis L.); sixteen strains comparable to Pseudomonas syringae pv. morsprunorum were obtained from samples of cherry and plum. Twelve strains of Pseudomonas viridiflava were isolated from cherry, apricot and peach (Prunus persica L.).

  4. Bactericidal Compounds Controlling Growth of the Plant Pathogen Pseudomonas syringae pv. actinidiae, Which Forms Biofilms Composed of a Novel Exopolysaccharide

    PubMed Central

    Ghods, Shirin; Sims, Ian M.; Moradali, M. Fata

    2015-01-01

    Pseudomonas syringae pv. actinidiae is the major cause of bacterial canker and is a severe threat to kiwifruit production worldwide. Many aspects of the disease caused by P. syringae pv. actinidiae, such as the pathogenicity-relevant formation of a biofilm composed of extracellular polymeric substances (EPSs), are still unknown. Here, a highly virulent strain of P. syringae pv. actinidiae, NZ V-13, was studied with respect to biofilm formation and architecture using a flow cell system combined with confocal laser scanning microscopy. The biofilm formed by P. syringae pv. actinidiae NZ V-13 was heterogeneous, consisting of a thin cellular base layer 5 μm thick and microcolonies with irregular structures. The major component of the EPSs produced by P. syringae pv. actinidiae NZ V-13 bacteria was isolated and identified to be an exopolysaccharide. Extensive compositional and structural analysis showed that rhamnose, fucose, and glucose were the major constituents, present at a ratio of 5:1.5:2. Experimental evidence that P. syringae pv. actinidiae NZ V-13 produces two polysaccharides, a branched α-d-rhamnan with side chains of terminal α-d-Fucf and an α-d-1,4-linked glucan, was obtained. The susceptibility of the cells in biofilms to kasugamycin and chlorine dioxide was assessed. About 64 and 73% of P. syringae pv. actinidiae NZ V-13 cells in biofilms were killed when kasugamycin and chlorine dioxide were used at 5 and 10 ppm, respectively. Kasugamycin inhibited the attachment of P. syringae pv. actinidiae NZ V-13 to solid surfaces at concentrations of 80 and 100 ppm. Kasugamycin was bacteriostatic against P. syringae pv. actinidiae NZ V-13 growth in the planktonic mode, with the MIC being 40 to 60 ppm and a bactericidal effect being found at 100 ppm. Here we studied the formation, architecture, and composition of P. syringae pv. actinidiae biofilms as well as used the biofilm as a model to assess the efficacies of bactericidal compounds. PMID:25841017

  5. Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae.

    PubMed

    Shubchynskyy, Volodymyr; Boniecka, Justyna; Schweighofer, Alois; Simulis, Justinas; Kvederaviciute, Kotryna; Stumpe, Michael; Mauch, Felix; Balazadeh, Salma; Mueller-Roeber, Bernd; Boutrot, Freddy; Zipfel, Cyril; Meskiene, Irute

    2017-02-01

    Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates

    PubMed Central

    Romanchuk, Artur; Chang, Jeff H.; Mukhtar, M. Shahid; Cherkis, Karen; Roach, Jeff; Grant, Sarah R.; Jones, Corbin D.; Dangl, Jeffery L.

    2011-01-01

    Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species. PMID:21799664

  7. Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola.

    PubMed Central

    Robinette, D; Matthysse, A G

    1990-01-01

    Injection into tobacco leaves of biotype 1 Agrobacterium tumefaciens or of Pseudomonas savastanoi inhibited the development of a visible hypersensitive response to the subsequent injection at the same site of Pseudomonas syringae pv. phaseolicola. This interference with the hypersensitive response was not seen with injection of bacterial growth medium or Escherichia coli cells. Live A. tumefaciens cells were required for the inhibitory effect. Various mutants and strains of A. tumefaciens were examined to determine the genes involved. Known chromosomal mutations generally had no effect on the ability of A. tumefaciens to inhibit the hypersensitive response, except for chvB mutants which showed a reduced (but still significant) inhibition of the hypersensitive response. Ti plasmid genes appeared to be required for the inhibition of the hypersensitive response. The bacteria did not need to be virulent in order to inhibit the hypersensitive response. Deletion of the vir region from pTi had no effect on the inhibition. However, the T region of the Ti plasmid was required for inhibition. Studies of transposon mutants suggested that the tms but not tmr or ocs genes were required. These genes were not acting after transfer to plant cells since they were effective in strains lacking vir genes and thus unable to transfer DNA to plant cells. The results suggest that the expression of the tms genes in the bacteria may inhibit the development of the hypersensitive response by the plant. An examination of the genes required in P. savastanoi for the inhibition of the hypersensitive response suggested that bacterial production of auxin was also required for the inhibition of the hypersensitive response by these bacteria. Images PMID:2211508

  8. Subcellular Localization of Pseudomonas syringae pv. tomato Effector Proteins in Plants.

    PubMed

    Aung, Kyaw; Xin, Xiufang; Mecey, Christy; He, Sheng Yang

    2017-01-01

    Animal and plant pathogenic bacteria use type III secretion systems to translocate proteinaceous effectors to subvert innate immunity of their host organisms. Type III secretion/effector systems are a crucial pathogenicity factor in many bacterial pathogens of plants and animals. Pseudomonas syringae pv. tomato (Pst) DC3000 injects a total of 36 protein effectors that target a variety of host proteins. Studies of a subset of Pst DC3000 effectors demonstrated that bacterial effectors, once inside the host cell, are localized to different subcellular compartments, including plasma membrane, cytoplasm, mitochondria, chloroplast, and Trans-Golgi network, to carry out their virulence functions. Identifying the subcellular localization of bacterial effector proteins in host cells could provide substantial clues to understanding the molecular and cellular basis of the virulence activities of effector proteins. In this chapter, we present methods for transient or stable expression of bacterial effector proteins in tobacco and/or Arabidopsis thaliana for live cell imaging as well as confirming the subcellular localization in plants using fluorescent organelle markers or chemical treatment.

  9. CML8, an Arabidopsis Calmodulin-Like Protein, Plays a Role in Pseudomonas syringae Plant Immunity.

    PubMed

    Zhu, Xiaoyang; Robe, Eugénie; Jomat, Lucile; Aldon, Didier; Mazars, Christian; Galaud, Jean-Philippe

    2017-02-01

    Calcium is a universal second messenger involved in various cellular processes including plant development and stress responses. Its conversion into biological responses requires the presence of calcium sensor relays such as calmodulin (CaM) and calmodulin-like (CML) proteins. While the role of CaM is well described, the functions CML proteins remain largely uncharacterized. Here, we show that Arabidopsis CML8 expression is strongly and transiently induced by Pseudomonas syringae, and reverse genetic approaches indicated that the overexpression of CML8 confers on plants a better resistance to pathogenic bacteria compared with wild-type, knock-down and knock-out lines, indicating that CML8 participates as a positive regulator in plant immunity. However, this difference disappeared when inoculations were performed using bacteria unable to inject effectors into a plant host cell or deficient for some effectors known to target the salicylic acid (SA) signaling pathway. SA content and PR1 protein accumulation were altered in CML8 transgenic lines, supporting a role for CML8 in SA-dependent processes. Pathogen-associated molecular pattern (PAMP) treatments with flagellin and elf18 peptides have no effects on CML8 gene expression and do not modify root growth of CML8 knock-down and overexpressing lines compared with wild-type plants. Collectively, our results support a role for CML8 in plant immunity against P. syringae. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Miniature Transposable Sequences Are Frequently Mobilized in the Bacterial Plant Pathogen Pseudomonas syringae pv. phaseolicola

    PubMed Central

    Bardaji, Leire; Añorga, Maite; Jackson, Robert W.; Martínez-Bilbao, Alejandro; Yanguas-Casás, Natalia; Murillo, Jesús

    2011-01-01

    Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10−5 and 1.1×10−6, depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total

  11. Miniature transposable sequences are frequently mobilized in the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola.

    PubMed

    Bardaji, Leire; Añorga, Maite; Jackson, Robert W; Martínez-Bilbao, Alejandro; Yanguas-Casás, Natalia; Murillo, Jesús

    2011-01-01

    Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10(-5) and 1.1×10(-6), depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total

  12. HOPM1 mediated disease resistance to Pseudomonas syringae in Arabidopsis

    DOEpatents

    He, Sheng Yang [Okemos, MI; Nomura, Kinya [East Lansing, MI

    2011-11-15

    The present invention relates to compositions and methods for enhancing plant defenses against pathogens. More particularly, the invention relates to enhancing plant immunity against bacterial pathogens, wherein HopM1.sub.1-300 mediated protection is enhanced, such as increased protection to Pseudomonas syringae pv. tomato DC3000 HopM1 and/or there is an increase in activity of an ATMIN associated plant protection protein, such as ATMIN7. Reagents of the present invention further provide a means of studying cellular trafficking while formulations of the present inventions provide increased pathogen resistance in plants.

  13. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle.

    PubMed

    Morris, Cindy E; Sands, David C; Vinatzer, Boris A; Glaux, Catherine; Guilbaud, Caroline; Buffière, Alain; Yan, Shuangchun; Dominguez, Hélène; Thompson, Brian M

    2008-03-01

    Pseudomonas syringae is a plant pathogen well known for its capacity to grow epiphytically on diverse plants and for its ice-nucleation activity. The ensemble of its known biology and ecology led us to postulate that this bacterium is also present in non-agricultural habitats, particularly those associated with water. Here, we report the abundance of P. syringae in rain, snow, alpine streams and lakes and in wild plants, in addition to the previously reported abundance in epilithic biofilms. Each of these substrates harbored strains that corresponded to P. syringae in terms of biochemical traits, pathogenicity and pathogenicity-related factors and that were ice-nucleation active. Phylogenetic comparisons of sequences of four housekeeping genes of the non-agricultural strains with strains of P. syringae from disease epidemics confirmed their identity as P. syringae. Moreover, strains belonging to the same clonal lineage were isolated from snow, irrigation water and a diseased crop plant. Our data suggest that the different substrates harboring P. syringae modify the structure of the associated populations. Here, we propose a comprehensive life cycle for P. syringae--in agricultural and non-agricultural habitats--driven by the environmental cycle of water. This cycle opens the opportunity to evaluate the importance of non-agricultural habitats in the evolution of a plant pathogen and the emergence of virulence. The ice-nucleation activity of all strains from snow, unlike from other substrates, strongly suggests that P. syringae plays an active role in the water cycle as an ice nucleus in clouds.

  14. High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE.

    PubMed

    Fan, Jun; Crooks, Casey; Lamb, Chris

    2008-01-01

    Bioluminescent strains of the Arabidopsis thaliana pathogens Pseudomonas syringae pathovar (pv.) tomato and pv. maculicola were made by insertion of the luxCDABE operon from Photorhabdus luminescens into the P. syringae chromosome under the control of a constitutive promoter. Stable integration of luxCDABE did not affect bacterial fitness, growth in planta or disease outcome. Luminescence accurately and reliably reported bacterial growth in infected Arabidopsis leaves both with a fixed inoculum followed over time and with varying inocula assayed at a single time point. Furthermore, the bioluminescence assay could detect a small (1.3-fold) difference in bacterial growth between different plant genotypes with a precision comparable to that of the standard plate assay. Luminescence of luxCDABE-tagged P. syringae allows rapid and convenient quantification of bacterial growth without the tissue extraction, serial dilution, plating and manual scoring involved in standard assays of bacterial growth by colony formation in plate culture of samples from infected tissue. The utility of the bioluminescence assay was illustrated by surveying the 500-fold variation in growth of the universally virulent P. syringae pv. maculicola ES4326 among more than 100 Arabidopsis ecotypes and identification of two quantitative trait loci accounting for 48% and 16%, respectively, of the variance of basal resistance to P. syringae pv. tomato DC3000 in the Col-0 x Fl-1 F(2) population. Luminescence assay of bacteria chromosomally tagged with luxCDABE should greatly facilitate the genetic dissection of quantitative differences in gene-for-gene, basal and acquired disease resistance and other aspects of plant interactions with bacterial pathogens requiring high-throughput assays or large-scale quantitative screens.

  15. Antagonism of Lactic Acid Bacteria against Phytopathogenic Bacteria

    PubMed Central

    Visser, Ronèl; Holzapfel, Wilhelm H.; Bezuidenhout, Johannes J.; Kotzé, Johannes M.

    1986-01-01

    A variety of lactic acid bacteria, isolated from plant surfaces and plant-associated products, were found to be antagonistic to test strains of the phytopathogens Xanthomonas campestris, Erwinia carotovora, and Pseudomonas syringae. Effective “in vitro” inhibition was found both on agar plates and in broth cultures. In pot trials, treatment of bean plants with a Lactobacillus plantarum strain before inoculation with P. syringae caused a significant reduction of the disease incidence. Images PMID:16347150

  16. Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle

    PubMed Central

    Arrebola, Eva; Carrión, Víctor J.; Gutiérrez-Barranquero, José Antonio; Pérez-García, Alejandro; Ramos, Cayo; Cazorla, Francisco M.; de Vicente, Antonio

    2015-01-01

    The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In this study we report the complete sequence and annotation of P. syringae pv. syringae UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158 chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes. Bioinformatics analysis revealed the presence of genes potentially implicated in the virulence and epiphytic fitness of this strain. We identified several genetic features, which are absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango trees: the mangotoxin biosynthetic operon mbo, a gene cluster for cellulose production, two different type III and two type VI secretion systems, and a particular T3SS effector repertoire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences compared to wild-type during its interaction with host and non-host plants and worms. Here we report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to a woody plant host. Our data also shed light on the genetic factors that possibly determine the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further analysis on specific mechanisms that enable this strain to infect woody plants and for the functional analysis of host specificity in the P

  17. AtMIN7 mediated disease resistance to Pseudomonas syringae in Arabidopsis

    DOEpatents

    He, Sheng Yang [Okemos, MI; Nomura, Kinya [East Lansing, MI

    2011-07-26

    The present invention relates to compositions and methods for enhancing plant defenses against pathogens. More particularly, the invention relates to enhancing plant immunity against bacterial pathogens, wherein AtMIN7 mediated protection is enhanced and/or there is a decrease in activity of an AtMIN7 associated virulence protein such as a Pseudomonas syringae pv. tomato DC3000 HopM1. Reagents of the present invention provide a means of studying cellular trafficking while formulations of the present inventions provide increased pathogen resistance in plants.

  18. Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae

    PubMed Central

    Hockett, Kevin L.; Burch, Adrien Y.; Lindow, Steven E.

    2013-01-01

    Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30°C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin) and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis) were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30°C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30°C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated. PMID:23527276

  19. Coronatine Facilitates Pseudomonas syringae Infection of Arabidopsis Leaves at Night.

    PubMed

    Panchal, Shweta; Roy, Debanjana; Chitrakar, Reejana; Price, Lenore; Breitbach, Zachary S; Armstrong, Daniel W; Melotto, Maeli

    2016-01-01

    In many land plants, the stomatal pore opens during the day and closes during the night. Thus, periods of darkness could be effective in decreasing pathogen penetration into leaves through stomata, the primary sites for infection by many pathogens. Pseudomonas syringae pv. tomato (Pst) DC3000 produces coronatine (COR) and opens stomata, raising an intriguing question as to whether this is a virulence strategy to facilitate bacterial infection at night. In fact, we found that (a) biological concentration of COR is effective in opening dark-closed stomata of Arabidopsis thaliana leaves, (b) the COR defective mutant Pst DC3118 is less effective in infecting Arabidopsis in the dark than under light and this difference in infection is reduced with the wild type bacterium Pst DC3000, and (c) cma, a COR biosynthesis gene, is induced only when the bacterium is in contact with the leaf surface independent of the light conditions. These findings suggest that Pst DC3000 activates virulence factors at the pre-invasive phase of its life cycle to infect plants even when environmental conditions (such as darkness) favor stomatal immunity. This functional attribute of COR may provide epidemiological advantages for COR-producing bacteria on the leaf surface.

  20. Coronatine Facilitates Pseudomonas syringae Infection of Arabidopsis Leaves at Night

    PubMed Central

    Panchal, Shweta; Roy, Debanjana; Chitrakar, Reejana; Price, Lenore; Breitbach, Zachary S.; Armstrong, Daniel W.; Melotto, Maeli

    2016-01-01

    In many land plants, the stomatal pore opens during the day and closes during the night. Thus, periods of darkness could be effective in decreasing pathogen penetration into leaves through stomata, the primary sites for infection by many pathogens. Pseudomonas syringae pv. tomato (Pst) DC3000 produces coronatine (COR) and opens stomata, raising an intriguing question as to whether this is a virulence strategy to facilitate bacterial infection at night. In fact, we found that (a) biological concentration of COR is effective in opening dark-closed stomata of Arabidopsis thaliana leaves, (b) the COR defective mutant Pst DC3118 is less effective in infecting Arabidopsis in the dark than under light and this difference in infection is reduced with the wild type bacterium Pst DC3000, and (c) cma, a COR biosynthesis gene, is induced only when the bacterium is in contact with the leaf surface independent of the light conditions. These findings suggest that Pst DC3000 activates virulence factors at the pre-invasive phase of its life cycle to infect plants even when environmental conditions (such as darkness) favor stomatal immunity. This functional attribute of COR may provide epidemiological advantages for COR-producing bacteria on the leaf surface. PMID:27446113

  1. Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification.

    USDA-ARS?s Scientific Manuscript database

    Since 2002, severe leaf spotting on parsley (Petroselinum crispum L.) has occurred in Monterey County, California. One of two different pathovars of Pseudomonas syringae sensu lato were isolated from diseased leaves from seven distinct outbreaks and twice from the same outbreak (2002 and 2009). Frag...

  2. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  3. Virulence of Pseudomonas syringae pv. tomato DC3000 is modulated through the Catabolite Repression Control protein Crc

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae (P.s.) infects diverse plant species and several P.s. pathovars have been used in the study of molecular events that occur during plant-microbe interactions. Although the relationship between bacterial metabolism, nutrient acquisition and virulence has attracted increasing atten...

  4. Virulence of Pseudomonas syringae pv. tomato DC3000 is influenced by the catabolite repression control protein Crc

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae infects diverse plant species and is widely used as a model system in the study of effector function and the molecular basis of plant diseases. Although the relationship between bacterial metabolism, nutrient acquisition, and virulence has attracted increasing attention in bacte...

  5. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis.

    PubMed

    Kang, Yongsung; Jelenska, Joanna; Cecchini, Nicolas M; Li, Yujie; Lee, Min Woo; Kovar, David R; Greenberg, Jean T

    2014-06-01

    A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.

  6. The life history of Pseudomonas syringae: linking agriculture to earth system processes.

    PubMed

    Morris, Cindy E; Monteil, Caroline L; Berge, Odile

    2013-01-01

    The description of the ecology of Pseudomonas syringae is moving away from that of a ubiquitous epiphytic plant pathogen to one of a multifaceted bacterium sans frontières in fresh water and other ecosystems linked to the water cycle. Discovery of the aquatic facet of its ecology has led to a vision of its life history that integrates spatial and temporal scales spanning billions of years and traversing catchment basins, continents, and the planet and that confronts the implication of roles that are potentially conflicting for agriculture (as a plant pathogen and as an actor in processes leading to rain and snowfall). This new ecological perspective has also yielded insight into epidemiological phenomena linked to disease emergence. Overall, it sets the stage for the integration of more comprehensive contexts of ecology and evolutionary history into comparative genomic analyses to elucidate how P. syringae subverts the attack and defense responses of the cohabitants of the diverse environments it occupies.

  7. Biophysical characterization of soluble Pseudomonas syringae ice nucleation protein InaZ fragments.

    PubMed

    Han, Yu Jin; Song, HyoJin; Lee, Chang Woo; Ly, Nguyễn Hoàng; Joo, Sang-Woo; Lee, Jun Hyuck; Kim, Soon-Jong; Park, SangYoun

    2017-01-01

    Ice nucleation protein (INP) with its functional domain consisting of multiple 48-residue repeat units effectively induces super-cooled water into ice. Circular dichroism and infrared deconvolution analyses on a soluble 240-residue fragment of Pseudomonas syringae InaZ (InaZ240) containing five 48-residue repeat units indicated that it is mostly composed of β-sheet and random coil. Analytical ultracentrifugation suggested that InaZ240 behaves as a monomer of an elongated ellipsoid. However, InaZ240 showed only minimum ice binding compared to anti-freeze proteins. Other P. syringae InaZ proteins with more 48-residue repeat units were made, in which the largest soluble fragment obtainable was an InaZ with twelve 48-residue repeat units. Size-exclusion chromatography analyses further suggested that the overall shape of the expressed InaZ fragments is pH-dependent, which becomes compact as the numbers of 48-residue repeat unit increase. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Pseudomonas syringae Catalases Are Collectively Required for Plant Pathogenesis

    PubMed Central

    Guo, Ming; Block, Anna; Bryan, Crystal D.; Becker, Donald F.

    2012-01-01

    The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 must detoxify plant-produced hydrogen peroxide (H2O2) in order to survive in its host plant. Candidate enzymes for this detoxification include the monofunctional catalases KatB and KatE and the bifunctional catalase-peroxidase KatG of DC3000. This study shows that KatG is the major housekeeping catalase of DC3000 and provides protection against menadione-generated endogenous H2O2. In contrast, KatB rapidly and substantially accumulates in response to exogenous H2O2. Furthermore, KatB and KatG have nonredundant roles in detoxifying exogenous H2O2 and are required for full virulence of DC3000 in Arabidopsis thaliana. Therefore, the nonredundant ability of KatB and KatG to detoxify plant-produced H2O2 is essential for the bacteria to survive in plants. Indeed, a DC3000 catalase triple mutant is severely compromised in its ability to grow in planta, and its growth can be partially rescued by the expression of katB, katE, or katG. Interestingly, our data demonstrate that although KatB and KatG are the major catalases involved in the virulence of DC3000, KatE can also provide some protection in planta. Thus, our results indicate that these catalases are virulence factors for DC3000 and are collectively required for pathogenesis. PMID:22797762

  9. Pathovars of Pseudomonas syringae Causing Bacterial Brown Spot and Halo Blight in Phaseolus vulgaris L. Are Distinguishable by Ribotyping

    PubMed Central

    González, Ana J.; Landeras, Elena; Mendoza, M. Carmen

    2000-01-01

    Ribotyping was evaluated as a method to differentiate between Pseudomonas syringae pv. phaseolicola and pv. syringae strains causing bacterial brown spot and halo blight diseases in Phaseolus vulgaris L. Ribotyping, with restriction enzymes BglI and SalI and using the Escherichia coli rrnB operon as the probe, differentiated 11 and 14 ribotypes, respectively, and a combination of data from both procedures yielded 19 combined ribotypes. Cluster analysis of the combined ribotypes differentiated the pathovars phaseolicola and syringae, as well as different clonal lineages within these pathovars. The potential of ribotyping to screen for correlations between lineages and factors such as geographical region and/or bean varieties is also reported. PMID:10653764

  10. Cloning and expression of the tabtoxin biosynthetic region from Pseudomonas syringae.

    PubMed Central

    Kinscherf, T G; Coleman, R H; Barta, T M; Willis, D K

    1991-01-01

    Pseudomonas syringae BR2, a causal agent of bean wildfire, was subjected to Tn5 mutagenesis in an effort to isolate mutants unable to produce the beta-lactam antibiotic tabtoxin. Three of the tabtoxin-minus (Tox-) mutants generated appeared to have physically linked Tn5 insertions and retained their resistance to the active toxin form, tabtoxnine-beta-lactam (T beta L). The wild-type DNA corresponding to the mutated region was cloned and found to restore the Tn5 mutants to toxin production. The use of cloned DNA from the region as hybridization probes revealed that the region is highly conserved among tabtoxin-producing pathovars of P. syringae and that the region deletes at a relatively high frequency (10(-3)/CFU) in BR2. The Tox- deletion mutants also lost resistance to tabtoxinine-beta-lactam. A cosmid designated pRTBL823 restored toxin production and resistance to BR2 deletion mutants. This cosmid also converted the tabtoxin-naive P. syringae epiphyte Cit7 to toxin production and resistance, indicating that pRTBL823 contains a complete set of biosynthetic and resistance genes. Tox- derivatives of BR2 did not produce disease symptoms on bean. Clones that restored toxin production to both insertion and deletion mutants also restored the ability to cause disease. However, tabtoxin-producing Cit7 derivatives remained nonpathogenic on bean and tobacco, suggesting that tabtoxin production alone is not sufficient to cause disease. Images PMID:1648077

  11. Mutations in y-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid '-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome h...

  12. Diel Variation in Population Size and Ice Nucleation Activity of Pseudomonas syringae on Snap Bean Leaflets.

    PubMed

    Hirano, S S; Upper, C D

    1989-03-01

    The extent to which diel changes in the physical environment affect changes in population size and ice nucleation activity of Pseudomonas syringae on snap bean leaflets was determined under field conditions. To estimate bacterial population size and ice nucleation activity, bean leaflets were harvested at 2-h intervals during each of three 26-h periods. A tube nucleation test was used to assay individual leaflets for ice nuclei. Population sizes of P. syringae were determined by dilution plating of leaflet homogenates. The overall diel changes in P. syringae population sizes differed during each of the 26-h periods. In one 26-h period, there was a continuous increase in the logarithm of P. syringae population size despite intense solar radiation, absence of free moisture on leaf surfaces, and low relative humidity during the day. A mean doubling time of approximately 4.9 h was estimated for the 28-fold increase in P. syringae population size that occurred from 0900 to 0900 h during the 26-h period. However, doubling times of 3.3 and 1.9 h occurred briefly during this period from 1700 to 2300 h and from 0100 to 0700 h, respectively. Thus, growth rates of P. syringae in association with leaves in the field were of the same order of magnitude as optimal rates measured in the laboratory. The frequency with which leaflets bore ice nuclei active at -2.0, -2.2, and -2.5 degrees C varied greatly within each 26-h period. These large diel changes were inversely correlated primarily with the diel changes in air temperature and reflected changes in nucleation frequency rather than changes in population size of P. syringae. Thus, the response of bacterial ice nucleation activity to the physical environment was distinct from the changes in population size of ice nucleation-active P. syringae.

  13. Effects of Botrytis cinerea and Pseudomonas syringae infection on the antioxidant profile of Mesembryanthemum crystallinum C3/CAM intermediate plant.

    PubMed

    Libik-Konieczny, Marta; Surówka, Ewa; Kuźniak, Elżbieta; Nosek, Michał; Miszalski, Zbigniew

    2011-07-01

    Mesembryathemum crystallinum plants performing C(3) or CAM (crassulacean acid metabolism) appear to be highly resistant to Botrytis cinerea as well as to Pseudomonas syringae. Fungal hyphae growth was restricted to 48h post-inoculation (hpi) in both metabolic types and morphology of hyphae differed between those growing in C(3) and CAM plants. Growth of bacteria was inhibited significantly 24 hpi in both C(3) and CAM plants. B. cinerea and P. syringae infection led to an increase in the concentration of H(2)O(2) in C(3) plants 3 hpi, while a decrease in H(2)O(2) content was observed in CAM performing plants. The concentration of H(2)O(2) returned to the control level 24 and 48 hpi. Changes in H(2)O(2) content corresponded with the activity of guaiacol peroxidase (POD), mostly 3 hpi. We noted that its activity decreased significantly in C(3) plants and increased in CAM plants in response to inoculation with both pathogens. On the contrary, changes in the activity of CAT did not correlate with H(2)O(2) level. It increased significantly after interaction of C(3) plants with B. cinerea or P. syringae, but in CAM performing plants, the activity of this enzyme was unchanged. Inoculation with B. cinerea or P. syringae led to an increase in the total SOD activity in C(3) plants while CAM plants did not exhibit changes in the total SOD activity after interaction with both pathogens. In conclusion, the pathogen-induced changes in H(2)O(2) content and in SOD, POD and CAT activities in M. crystallinum leaves, were related to the photosynthetic metabolism type of the stressed plants rather than to the lifestyle of the invading pathogen. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae

    PubMed Central

    Laue, Bridget E.; Sharp, Paul M.; Green, Sarah

    2016-01-01

    Summary The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae. PMID:27145446

  15. An Extracytoplasmic Function Sigma Factor-Mediated Cell Surface Signaling System in Pseudomonas syringae pv. tomato DC3000 Regulates Gene Expression in Response to Heterologous Siderophores ▿ †

    PubMed Central

    Markel, Eric; Maciak, Charlene; Butcher, Bronwyn G.; Myers, Christopher R.; Stodghill, Paul; Bao, Zhongmeng; Cartinhour, Sam; Swingle, Bryan

    2011-01-01

    The diversity of regulatory systems encoded by bacteria provides an indication of the variety of stresses and interactions that these organisms encounter in nature. We have been investigating how the plant pathogen Pseudomonas syringae pv. tomato DC3000 responds to iron limitation and have focused on the iron starvation (IS) sigma factors to identify regulon members and to explore the mechanistic details of genetic control for this class of regulators. In the study described in this report, we used chromatin immunoprecipitation paired with high-throughput sequencing (ChIP-Seq) to screen the genome for locations associated with binding of the P. syringae IS sigma factor PSPTO_1203. We used multiple methods to demonstrate differential regulation of two genes identified in the ChIP-Seq screen and characterize the promoter elements that facilitate PSPTO_1203-dependent regulation. The genes regulated by PSPTO_1203 encode a TonB-dependent transducer (PSPTO_1206) and a cytoplasmic membrane protein (PSPTO_2145), which is located in the P. syringae pyoverdine cluster. Additionally, we identified siderophores that induce the activity of PSPTO_1203 and used this information to investigate the functional components of the signal transduction cascade. PMID:21840980

  16. The conserved hypothetical protein PSPTO_3957 is essential for virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000

    USDA-ARS?s Scientific Manuscript database

    The plant pathogen Pseudomonas syringae accounts for substantial crop losses and is considered an important agricultural issue. Although many genes involved in interactions of this pathogen with hosts have been identified and characterized, little is known about processes involving bacterial metabol...

  17. Characterization of the hrpZ gene from Pseudomonas syringae pv. maculicola M2.

    PubMed

    Álvarez-Mejía, César; Rodríguez-Ríos, Dalia; Hernández-Guzmán, Gustavo; López-Ramírez, Varinia; Valenzuela-Soto, Humberto; Marsch, Rodolfo

    2015-01-01

    Pseudomonas syringae pv. maculicola is a natural pathogen of members of the Brassicaceae plant family. Using a transposon-based mutagenesis strategy in Pseudomonas syringaepv. maculicola M2 (PsmM2), we conducted a genetic screen to identify mutants that were capable of growing in M9 medium supplemented with a crude extract from the leaves of Arabidopsis thaliana. A mutant containing a transposon insertion in the hrpZ gene (PsmMut8) was unable to infect adult plants from Arabidopsis thaliana or Brassica oleracea, suggesting a loss of pathogenicity. The promotorless cat reporter present in the gene trap was expressed if PsmMut8 was grown in minimal medium (M9) supplemented with the leaf extract but not if grown in normal rich medium (KB). We conducted phylogenetic analysis using hrpAZB genes, showing the classical 5-clade distribution, and nucleotide diversity analysis, showing the putative position for selective pressure in this operon. Our results indicate that the hrpAZB operon from Pseudomonas syringaepv. maculicola M2 is necessary for its pathogenicity and that its diversity would be under host-mediated diversifying selection.

  18. Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. glycinea.

    PubMed

    Ullrich, M S; Schergaut, M; Boch, J; Ullrich, B

    2000-10-01

    Plant-pathogenic bacteria may sense variations in environmental factors, such as temperature, to adapt to plant-associated habitats during pathogenesis or epiphytic growth. The bacterial blight pathogen of soybean, Pseudomonas syringae pv. glycinea PG4180, preferentially produces the phytotoxin coronatine at 18 degrees C and infects the host plant under conditions of low temperature and high humidity. A miniTn5-based promoterless glucuronidase (uidA) reporter gene was used to identify genetic loci of PG4180 preferentially expressed at 18 or 28 degrees C. Out of 7500 transposon mutants, 61 showed thermoregulated uidA expression as determined by a three-step screening procedure. Two-thirds of these mutants showed an increased reporter gene expression at 18 degrees C whilst the remainder exhibited higher uidA expression at 28 degrees C. MiniTn5-uidA insertion loci from these mutants were subcloned and their nucleotide sequences were determined. Several of the mutants induced at 18 degrees C contained the miniTn5-uidA insertion within the 32.8 kb coronatine biosynthetic gene cluster. Among the other mutants with increased uidA expression at 18 degrees C, insertions were found in genes encoding formaldehyde dehydrogenase, short-chain dehydrogenase and mannuronan C-5-epimerase, in a plasmid-borne replication protein, and in the hrpT locus, involved in pathogenicity of P. syringae. Among the mutants induced at 28 degrees C, insertions disrupted loci with similarities to a repressor of conjugal plasmid transfer, UV resistance determinants, an isoflavanoid-degrading enzyme, a HU-like DNA-binding protein, two additional regulatory proteins, a homologue of bacterial adhesins, transport proteins, LPS synthesis enzymes and two proteases. Genetic loci from 13 mutants did not show significant similarities to any database entries. Results of plant inoculations showed that three of the mutants tested were inhibited in symptom development and in planta multiplication rates

  19. Identification of the CvsSR regulon in Pseudomonas syringae reveals overlap with the Type-III secretion and AlgU regulons

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae pv. tomato DC3000 (Pto) lives epiphytically and endophytically during its infection cycle. Two-component systems (TCSs) and extracytoplasmic function (ECF) sigma factors are used by Pto to sense environmental changes within the leaf apoplast during pathogenesis. The TCS, CvsSR i...

  20. Inhibitory effect of Thymus vulgaris and Origanum vulgare essential oils on virulence factors of phytopathogenic Pseudomonas syringae strains.

    PubMed

    Carezzano, M E; Sotelo, J P; Primo, E; Reinoso, E B; Paletti Rovey, M F; Demo, M S; Giordano, W F; Oliva, M de Las M

    2017-07-01

    Pseudomonas syringae is a phytopathogenic bacterium that causes lesions in leaves during the colonisation process. The damage is associated with production of many virulence factors, such as biofilm and phytotoxins. The essential oils of Thymus vulgaris (thyme) and Origanum vulgare (oregano) have been demonstrated to inhibit P. syringae. The aim of this study was to investigate the effects of T. vulgaris and O. vulgare essential oils on production of virulence factors of phytopathogenic P. syringae strains, including anti-biofilm and anti-toxins activities. The broth microdilution method was used for determination of MIC and biofilm inhibition assays. Coronatine, syringomycin and tabtoxin were pheno- and genotypically evaluated. Both oils showed good inhibitory activity against P. syringae, with MIC values from 1.43 to 11.5 mg·ml -1 for thyme and 5.8 to 11.6 mg·ml -1 for oregano. Biofilm formation, production of coronatine, syringomycin and tabtoxin were inhibited by thyme and oregano essential oil in most strains. The results presented here are promising, demonstrating the bactericidal activity and reduction of virulence factor production after treatment with thyme and oregano oil, providing insight into how they exert their antibacterial activity. These natural products could be considered in the future for the control of diseases caused by P. syringae. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Characterization of the Transcriptional Activators SalA and SyrF, Which Are Required for Syringomycin and Syringopeptin Production by Pseudomonas syringae pv. syringae

    PubMed Central

    Wang, Nian; Lu, Shi-En; Records, Angela R.; Gross, Dennis C.

    2006-01-01

    Production of the phytotoxins syringomycin and syringopeptin by Pseudomonas syringae pv. syringae is controlled by the regulatory genes salA and syrF. Analysis with 70-mer oligonucleotide microarrays established that the syr-syp genes responsible for synthesis and secretion of syringomycin and syringopeptin belong to the SyrF regulon. Vector pMEKm12 was successfully used to express both SalA and SyrF proteins fused to a maltose-binding protein (MBP) in Escherichia coli and P. syringae pv. syringae. Both the MBP-SalA and MBP-SyrF fusion proteins were purified by maltose affinity chromatography. Gel shift analysis revealed that the purified MBP-SyrF, but not the MBP-SalA fusion protein, bound to a 262-bp fragment of the syrB1 promoter region containing the syr-syp box. Purified MBP-SalA caused a shift of a 324-bp band containing the putative syrF promoter. Gel filtration analysis and cross-linking experiments indicated that both SalA and SyrF form homodimers in vitro. Overexpression of the N-terminal regions of SalA and SyrF resulted in decreased syringomycin production by strain B301D and reduced levels of β-glucuronidase activities of the sypA::uidA and syrB1::uidA reporters by 59% to 74%. The effect of SalA on the expression of the syr-syp genes is mediated by SyrF, which activates the syr-syp genes by directly binding to the promoter regions. Both SalA and SyrF resemble other LuxR family proteins in dimerization and interaction with promoter regions of target genes. PMID:16621822

  2. The presence of INA proteins on the surface of single cells of Pseudomonas syringae R10.79 isolated from rain

    NASA Astrophysics Data System (ADS)

    Šantl-Temkiv, Tina; Ling, Meilee; Holm, Stine; Finster, Kai; Boesen, Thomas

    2016-04-01

    One of the important open questions in atmospheric ice nucleation is the impact of bioaerosols on the ice content of mix phase clouds (DeMott and Prenni 2010). Biogenic ice nuclei have a unique capacity of facilitating ice formation at temperatures between -1 and -10 °C. The model biogenic ice nuclei are produced by a few species of plant-surface bacteria, such as Pseudomonas syringae, that are commonly transported through the atmosphere. These bacterial species have highly specialized proteins, the so-called ice nucleation active (INA) proteins, which are exposed at the outer membrane surface of the cell where they promote ice particle formation. The mechanisms behind the onset of INA protein synthesis in single bacterial cells are not well understood. We performed a laboratory study in order to (i) investigate the presence of INA proteins on single bacterial cells and (ii) understand the conditions that induce INA protein production. We previously isolated an INA-positive strain of Pseudomonas syringae from rain samples collected in Denmark. Bacterial cells initiated ice nucleation activity at temperatures ≤-2°C and the cell fragments at temperatures ≤-8°C (Šantl-Temkiv et al 2015). We determined the amino-acid sequence of the INA protein and used the sequence to produce custom-made antibodies (GenScript, Germany). These antibodies were used to specifically stain and visualize the INA protein on the surfaces of single cells, which can then be quantified by a technique called flow cytometry. The synthesis of INA proteins by individual cells was followed during a batch growth experiment. An unusually high proportion of cells that were adapting to the new conditions prior to growth produced INA proteins (~4.4% of all cells). A smaller fraction of actively growing cells was carrying INA proteins (~1.2 % of all cells). The cells that stopped growing due to unfavorable conditions had the lowest fraction of cells carrying INA proteins (~0.5 % of all cells). To

  3. Spatiotemporal Monitoring of Pseudomonas syringae Effectors via Type III Secretion Using Split Fluorescent Protein Fragments[OPEN

    PubMed Central

    2017-01-01

    Pathogenic gram-negative bacteria cause serious diseases in animals and plants. These bacterial pathogens use the type III secretion system (T3SS) to deliver effector proteins into host cells; these effectors then localize to different subcellular compartments to attenuate immune responses by altering biological processes of the host cells. The fluorescent protein (FP)-based approach to monitor effectors secreted from bacteria into the host cells is not possible because the folded FP prevents effector delivery through the T3SS. Therefore, we optimized an improved variant of self-assembling split super-folder green fluorescent protein (sfGFPOPT) system to investigate the spatiotemporal dynamics of effectors delivered through bacterial T3SS into plant cells. In this system, effectors are fused to 11th β-strand of super-folder GFP (sfGFP11), and when delivered into plant cells expressing sfGFP1-10 β-strand (sfGFP1-10OPT), the two proteins reconstitute GFP fluorescence. We generated a number of Arabidopsis thaliana transgenic lines expressing sfGFP1-10OPT targeted to various subcellular compartments to facilitate localization of sfGFP11-tagged effectors delivered from bacteria. We demonstrate the efficacy of this system using Pseudomonas syringae effectors AvrB and AvrRps4 in Nicotiana benthamiana and transgenic Arabidopsis plants. The versatile split sfGFPOPT system described here will facilitate a better understanding of bacterial invasion strategies used to evade plant immune responses. PMID:28619883

  4. Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae—a Pathogen, Ice Nucleus, and Epiphyte

    PubMed Central

    Hirano, Susan S.; Upper, Christen D.

    2000-01-01

    The extremely large number of leaves produced by terrestrial and aquatic plants provide habitats for colonization by a diversity of microorganisms. This review focuses on the bacterial component of leaf microbial communities, with emphasis on Pseudomonas syringae—a species that participates in leaf ecosystems as a pathogen, ice nucleus, and epiphyte. Among the diversity of bacteria that colonize leaves, none has received wider attention than P. syringae, as it gained notoriety for being the first recombinant organism (Ice− P. syringae) to be deliberately introduced into the environment. We focus on P. syringae to illustrate the attractiveness and somewhat unique opportunities provided by leaf ecosystems for addressing fundamental questions of microbial population dynamics and mechanisms of plant-bacterium interactions. Leaf ecosystems are dynamic and ephemeral. The physical environment surrounding phyllosphere microbes changes continuously with daily cycles in temperature, radiation, relative humidity, wind velocity, and leaf wetness. Slightly longer-term changes occur as weather systems pass. Seasonal climatic changes impose still a longer cycle. The physical and physiological characteristics of leaves change as they expand, mature, and senesce and as host phenology changes. Many of these factors influence the development of populations of P. syringae upon populations of leaves. P. syringae was first studied for its ability to cause disease on plants. However, disease causation is but one aspect of its life strategy. The bacterium can be found in association with healthy leaves, growing and surviving for many generations on the surfaces of leaves as an epiphyte. A number of genes and traits have been identified that contribute to the fitness of P. syringae in the phyllosphere. While still in their infancy, such research efforts demonstrate that the P. syringae-leaf ecosystem is a particularly attractive system with which to bridge the gap between what is known

  5. Characterization of the hrpZ gene from Pseudomonas syringae pv. maculicolaM2

    PubMed Central

    Álvarez-Mejía, César; Rodríguez-Ríos, Dalia; Hernández-Guzmán, Gustavo; López-Ramírez, Varinia; Valenzuela-Soto, Humberto; Marsch, Rodolfo

    2015-01-01

    Pseudomonas syringae pv. maculicola is a natural pathogen of members of the Brassicaceae plant family. Using a transposon-based mutagenesis strategy in Pseudomonas syringaepv. maculicola M2 (PsmM2), we conducted a genetic screen to identify mutants that were capable of growing in M9 medium supplemented with a crude extract from the leaves of Arabidopsis thaliana. A mutant containing a transposon insertion in the hrpZ gene (PsmMut8) was unable to infect adult plants from Arabidopsis thaliana or Brassica oleracea, suggesting a loss of pathogenicity. The promotorless cat reporter present in the gene trap was expressed if PsmMut8 was grown in minimal medium (M9) supplemented with the leaf extract but not if grown in normal rich medium (KB). We conducted phylogenetic analysis using hrpAZB genes, showing the classical 5-clade distribution, and nucleotide diversity analysis, showing the putative position for selective pressure in this operon. Our results indicate that the hrpAZB operon from Pseudomonas syringaepv. maculicola M2 is necessary for its pathogenicity and that its diversity would be under host-mediated diversifying selection. PMID:26413080

  6. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens

    PubMed Central

    Monteil, Caroline L.; Yahara, Koji; Studholme, David J.; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E.

    2016-01-01

    Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae. PMID:28348830

  7. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens.

    PubMed

    Monteil, Caroline L; Yahara, Koji; Studholme, David J; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E; Vinatzer, Boris A; Sheppard, Samuel K

    2016-10-01

    Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1 , to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae .

  8. Light Regulation of Swarming Motility in Pseudomonas syringae Integrates Signaling Pathways Mediated by a Bacteriophytochrome and a LOV Protein

    PubMed Central

    Wu, Liang; McGrane, Regina S.; Beattie, Gwyn A.

    2013-01-01

    ABSTRACT The biological and regulatory roles of photosensory proteins are poorly understood for nonphotosynthetic bacteria. The foliar bacterial pathogen Pseudomonas syringae has three photosensory protein-encoding genes that are predicted to encode the blue-light-sensing LOV (light, oxygen, or voltage) histidine kinase (LOV-HK) and two red/far-red-light-sensing bacteriophytochromes, BphP1 and BphP2. We provide evidence that LOV-HK and BphP1 form an integrated network that regulates swarming motility in response to multiple light wavelengths. The swarming motility of P. syringae B728a deletion mutants indicated that LOV-HK positively regulates swarming motility in response to blue light and BphP1 negatively regulates swarming motility in response to red and far-red light. BphP2 does not detectably regulate swarming motility. The histidine kinase activity of each LOV-HK and BphP1 is required for this regulation based on the loss of complementation upon mutation of residues key to their kinase activity. Surprisingly, mutants lacking both lov and bphP1 were similar in motility to a bphP1 single mutant in blue light, indicating that the loss of bphP1 is epistatic to the loss of lov and also that BphP1 unexpectedly responds to blue light. Moreover, whereas expression of bphP1 did not alter motility under blue light in a bphP1 mutant, it reduced motility in a mutant lacking lov and bphP1, demonstrating that LOV-HK positively regulates motility by suppressing negative regulation by BphP1. These results are the first to show cross talk between the LOV protein and phytochrome signaling pathways in bacteria, and the similarity of this regulatory network to that of photoreceptors in plants suggests a possible common ancestry. PMID:23760465

  9. The widespread plant-colonizing bacterial species Pseudomonas syringae detects and exploits an extracellular pool of choline in hosts.

    PubMed

    Chen, Chiliang; Li, Shanshan; McKeever, Dana R; Beattie, Gwyn A

    2013-09-01

    The quaternary ammonium compound (QAC) choline is a major component of membrane lipids in eukaryotes and, if available to microbial colonists of plants, could provide benefits for growth and protection from stress. Free choline is found in homogenized plant tissues, but its subcellular location and availability to plant microbes are not known. Whole-cell bacterial bioreporters of the phytopathogen Pseudomonas syringae were constructed that couple a QAC-responsive transcriptional fusion with well-characterized bacterial QAC transporters. These bioreporters demonstrated the presence of abundant free choline compounds released from germinating seeds and seedlings of the bean Phaseolus vulgaris, and a smaller but consistently detectable amount of QACs, probably choline, from leaves. The localization of P. syringae bioreporter cells to the surface and intercellular sites of plant tissues demonstrated the extracellular location of these QAC pools. Moreover, P. syringae mutants that were deficient in the uptake of choline compounds exhibited reduced fitness on leaves, highlighting the importance of extracellular choline to P. syringae on leaves. Our data support a model in which this choline pool is derived from the phospholipid phosphatidylcholine through plant-encoded phospholipases that release choline into the intercellular spaces of plant tissues, such as for membrane lipid recycling. The consequent extracellular release of choline compounds enables their interception and exploitation by plant-associated microbes, and thus provides a selective advantage for microbes such as P. syringae that are adapted to maximally exploit choline. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  10. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  11. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  12. Pseudomonas syringae pv. Tomato DC3000 Type III secretion effector polymutants reveal an interplay between hopAD1 and AvrPtoB

    USDA-ARS?s Scientific Manuscript database

    The model pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of plants by injecting a complex repertoire of effector proteins into host cells via the type III secretion system. The model effector AvrPtoB has multiple domains and plant protein interactors i...

  13. Pseudomonas syringae pv. phaseolicola isolated from weeds in bean crop fields.

    PubMed

    Fernández-Sanz, A M; Rodicio, M R; González, A J

    2016-04-01

    Pseudomonas syringae pv. phaseolicola, the causative agent of halo blight in common bean (Phaseolus vulgaris L.), was isolated from weeds associated with bean crops in Spain. The bacterium was recovered from Fumaria sp, Mercurialis annua, Solanum nigrum and Sonchus oleraceus. Ps. s. pv. phaseolicola had previously been isolated from leguminous plants and S. nigrum, but to our knowledge, this is the first time it was recovered from the other three species. The isolates were phenotypically and genetically characterized, and they were compared with isolates recovered from common beans. Five different genotypic profiles were detected by PmeI-PFGE, two of them being of new description. Weed isolates were as pathogenic on bean plants as bean isolates, but they were not pathogenic on S. nigrum. Regarding the survival of the pathogen in weeds, Ps. s. pv. phaseolicola was isolated from So. oleraceus 11 weeks after the end of the bean crop. These results strongly support the idea of weeds as a potential source of inoculum for halo blight in bean. It has traditionally been considered that the main source of inoculum of Pseudomonas syringae pv. phaseolicola causing halo blight disease in Phaseolus vulgaris are the bean seeds, and that the host range of the bacterium is almost restricted to leguminous plants. In this study, the bacterium was recovered from four nonleguminous weed species collected in bean fields, and its permanence in weeds for at least 11 weeks after the harvesting of the beans was demonstrated. We have also proved that the strains isolated from weeds were pathogenic on bean plants. Accordingly, the host range of Ps. s. pv. phaseolicola could be broader than previously thought and weeds appear to be acting as a reservoir of the pathogen until the next crop. © 2016 The Society for Applied Microbiology.

  14. Arabidopsis Heterotrimeric G-Proteins Play a Critical Role in Host and Nonhost Resistance against Pseudomonas syringae Pathogens

    PubMed Central

    Lee, Seonghee; Rojas, Clemencia M.; Ishiga, Yasuhiro; Pandey, Sona; Mysore, Kirankumar S.

    2013-01-01

    Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae. PMID:24349286

  15. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae.

    PubMed

    Frampton, Rebekah A; Acedo, Elena Lopez; Young, Vivienne L; Chen, Danni; Tong, Brian; Taylor, Corinda; Easingwood, Richard A; Pitman, Andrew R; Kleffmann, Torsten; Bostina, Mihnea; Fineran, Peter C

    2015-06-24

    Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.

  16. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae.

    PubMed

    Nemchinov, Lev G; Shao, Jonathan; Lee, Maya N; Postnikova, Olga A; Samac, Deborah A

    2017-01-01

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties.

  17. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae

    PubMed Central

    Shao, Jonathan; Lee, Maya N.; Postnikova, Olga A.; Samac, Deborah A.

    2017-01-01

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties. PMID:29244864

  18. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae.

    PubMed

    Mammarella, Nicole D; Cheng, Zhenyu; Fu, Zheng Qing; Daudi, Arsalan; Bolwell, G Paul; Dong, Xinnian; Ausubel, Frederick M

    2015-04-01

    Reactive oxygen species (ROS) generated by NADPH oxidases or apoplastic peroxidases play an important role in the plant defense response. Diminished expression of at least two Arabidopsis thaliana peroxidase encoding genes, PRX33 (At3g49110) and PRX34 (At3g49120), as a consequence of anti-sense expression of a heterologous French bean peroxidase gene (asFBP1.1), were previously shown to result in reduced levels of ROS following pathogen attack, enhanced susceptibility to a variety of bacterial and fungal pathogens, and reduced levels of callose production and defense-related gene expression in response to the microbe associated molecular pattern (MAMP) molecules flg22 and elf26. These data demonstrated that the peroxidase-dependent oxidative burst plays an important role in the elicitation of pattern-triggered immunity (PTI). Further work reported in this paper, however, shows that asFBP1.1 antisense plants are not impaired in all PTI-associated responses. For example, some but not all flg22-elicited genes are induced to lower levels by flg22 in asFPB1.1, and callose deposition in asFPB1.1 is similar to wild-type following infiltration with a Pseudomonas syringae hrcC mutant or with non-host P. syringae pathovars. Moreover, asFPB1.1 plants did not exhibit any apparent defect in their ability to mount a hypersensitive response (HR). On the other hand, salicylic acid (SA)-mediated activation of PR1 was dramatically impaired in asFPB1.1 plants. In addition, P. syringae-elicited expression of many genes known to be SA-dependent was significantly reduced in asFBP1.1 plants. Consistent with this latter result, in asFBP1.1 plants the key regulator of SA-mediated responses, NPR1, showed both dramatically decreased total protein abundance and a failure to monomerize, which is required for its translocation into the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum.

    PubMed

    Yu, Sumei; Teng, Chunying; Liang, Jinsong; Song, Tao; Dong, Liying; Bai, Xin; Jin, Yu; Qu, Juanjuan

    2017-11-01

    In this study, an antagonistic bacterium against Fusarium oxysporum was identified and designated as Pseudomonas syringae strain BAF.1 on the basis of 16S rDNA sequence analysis and physiological-biochemical characteristics. It produced catechol-species siderophore at a molecular weight of 488.59 Da and a maximum amount of 55.27 μg/ml with glucose as a carbon source and asparagine as a nitrogen source at a C/N ratio of 10:1, 30°C and pH 7. The siderophore exhibited prominent antagonistic activity against Fusarium oxysporum with a maximum inhibition rate of 95.24% and had also suppressive effects on other kinds of 11 phytopathogenic fungi in the absence of FeCl 3 ·6H 2 O. Spore germination was completely inhibited by 50 μl of the siderophorecontaining solution, and the ultrastructures of mycelia and spores were also considerably suppressed by siderophore treatment as established by electron microscopy observation. These results indicate that the siderophore produced by Pseudomonas syringae BAF.1 could be potentially used for biocontrol of pathogenic Fusarium oxysporum.

  20. Molecular mechanisms of two-component system RhpRS regulating type III secretion system in Pseudomonas syringae

    PubMed Central

    Deng, Xin; Liang, Haihua; Chen, Kai; He, Chuan; Lan, Lefu; Tang, Xiaoyan

    2014-01-01

    Pseudomonas syringae uses the two-component system RhpRS to regulate the expression of type III secretion system (T3SS) genes and bacterial virulence. However, the molecular mechanisms and the regulons of RhpRS have yet to be fully elucidated. Here, we show that RhpS functions as a kinase and a phosphatase on RhpR and as an autokinase upon itself. RhpR is phosphorylated by the small phosphodonor acetyl phosphate. A specific RhpR-binding site containing the inverted repeat (IR) motif GTATC-N6-GATAC, was mapped to its own promoter by a DNase I footprint analysis. Electrophoretic mobility shift assay indicated that P-RhpR has a higher binding affinity to the IR motif than RhpR. To identify additional RhpR targets in P. syringae, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) and detected 167 enriched loci including the hrpR promoter, suggesting the direct regulation of T3SS cascade genes by RhpR. A genome-wide microarray analysis showed that, in addition to the T3SS cascade genes, RhpR differentially regulates a large set of genes with various functions in response to different growth conditions. Together, these results suggested that RhpRS is a global regulator that allows P. syringae to sense and respond to environmental changes by coordinating T3SS expression and many other biological processes. PMID:25249629

  1. Draft Whole Genome Sequence Analyses on Pseudomonas syringae pv. actinidiae Hypersensitive Response Negative Strains Detected from Kiwifruit Bleeding Sap Samples.

    PubMed

    Biondi, Enrico; Zamorano, Alan; Vega, Ernesto; Ardizzi, Stefano; Sitta, Davide; De Salvador, Flavio Roberto; Campos-Vargas, Reinaldo; Meneses, Claudio; Perez, Set; Bertaccini, Assunta; Fiore, Nicola

    2018-05-01

    Kiwifruit bleeding sap samples, collected in Italian and Chilean orchards from symptomatic and asymptomatic plants, were evaluated for the presence of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker. The saps were sampled during the spring in both hemispheres, before the bud sprouting, during the optimal time window for the collection of an adequate volume of sample for the early detection of the pathogen, preliminarily by molecular assays, and then through its direct isolation and identification. The results of molecular analyses showed more effectiveness in the P. syringae pv. actinidiae detection when compared with those of microbiological analyses through the pathogen isolation on the nutritive and semiselective media selected. The bleeding sap analyses allowed the isolation and identification of two hypersensitive response (HR) negative and hypovirulent P. syringae pv. actinidiae strains from different regions in Italy. Moreover, multilocus sequence analysis (MLSA) and whole genome sequence (WGS) were carried out on selected Italian and Chilean P. syringae pv. actinidiae virulent strains to verify the presence of genetic variability compared with the HR negative strains and to compare the variability of selected gene clusters between strains isolated in both countries. All the strains showed the lack of argK and coronatine gene clusters as reported for the biovar 3 P. syringae pv. actinidiae strains. Despite the biologic differences obtained in the tobacco bioassays and in pathogenicity assays, the MLSA and WGS analyses did not show significant differences between the WGS of the HR negative and HR positive strains; the difference, on the other hand, between PAC_ICE sequences of Italian and Chilean P. syringae pv. actinidiae strains was confirmed. The inability of the hypovirulent strains IPV-BO 8893 and IPV-BO 9286 to provoke HR in tobacco and the low virulence shown in this host could not be associated with mutations or

  2. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys?

    PubMed

    Block, Anna; Alfano, James R

    2011-02-01

    The phytopathogenic bacterium Pseudomonas syringae can suppress both pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) by the injection of type III effector (T3E) proteins into host cells. T3Es achieve immune suppression using a variety of strategies including interference with immune receptor signaling, blocking RNA pathways and vesicle trafficking, and altering organelle function. T3Es can be recognized indirectly by resistance proteins monitoring specific T3E targets resulting in ETI. It is presently unclear whether the monitored targets represent bona fide virulence targets or guarded decoys. Extensive overlap between PTI and ETI signaling suggests that T3Es may suppress both pathways through common targets and by possessing multiple activities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Isolation and sequence analysis of the Pseudomonas syringae pv. tomato gene encoding a 2,3-diphosphoglycerate-independent phosphoglyceromutase.

    PubMed

    Morris, V L; Jackson, D P; Grattan, M; Ainsworth, T; Cuppels, D A

    1995-04-01

    Pseudomonas syringae pv. tomato DC3481, a Tn5-induced mutant of the tomato pathogen DC3000, cannot grow and elicit disease symptoms on tomato seedlings. It also cannot grow on minimal medium containing malate, citrate, or succinate, three of the major organic acids found in tomatoes. We report here that this mutant also cannot use, as a sole carbon and/or energy source, a wide variety of hexoses and intermediates of hexose catabolism. Uptake studies have shown that DC3481 is not deficient in transport. A 3.8-kb EcoRI fragment of DC3000 DNA, which complements the Tn5 mutation, has been cloned and sequenced. The deduced amino acid sequences of two of the three open reading frames (ORFs) present on this fragment, ORF2 and ORF3, had no significant homology with sequences in the GenBank databases. However, the 510-amino-acid sequence of ORF1, the site of the Tn5 insertion, strongly resembled the deduced amino acid sequences of the Bacillus subtilis and Zea mays genes encoding 2,3-diphosphoglycerate (DPG)-independent phosphoglyceromutase (PGM) (52% identity and 72% similarity and 37% identity and 57% similarity, respectively). PGMs not requiring the cofactor DPG are usually found in plants and algae. Enzyme assays confirmed that P. syringae PGM activity required an intact ORF1. Not only is DC3481 the first PGM-deficient pseudomonad mutant to be described, but the P. syringae pgm gene is the first gram-negative bacterial gene identified that appears to code for a DPG-independent PGM. PGM activity appears essential for the growth and pathogenicity of P. syringae pv. tomato on its host plant.

  4. Isolation and sequence analysis of the Pseudomonas syringae pv. tomato gene encoding a 2,3-diphosphoglycerate-independent phosphoglyceromutase.

    PubMed Central

    Morris, V L; Jackson, D P; Grattan, M; Ainsworth, T; Cuppels, D A

    1995-01-01

    Pseudomonas syringae pv. tomato DC3481, a Tn5-induced mutant of the tomato pathogen DC3000, cannot grow and elicit disease symptoms on tomato seedlings. It also cannot grow on minimal medium containing malate, citrate, or succinate, three of the major organic acids found in tomatoes. We report here that this mutant also cannot use, as a sole carbon and/or energy source, a wide variety of hexoses and intermediates of hexose catabolism. Uptake studies have shown that DC3481 is not deficient in transport. A 3.8-kb EcoRI fragment of DC3000 DNA, which complements the Tn5 mutation, has been cloned and sequenced. The deduced amino acid sequences of two of the three open reading frames (ORFs) present on this fragment, ORF2 and ORF3, had no significant homology with sequences in the GenBank databases. However, the 510-amino-acid sequence of ORF1, the site of the Tn5 insertion, strongly resembled the deduced amino acid sequences of the Bacillus subtilis and Zea mays genes encoding 2,3-diphosphoglycerate (DPG)-independent phosphoglyceromutase (PGM) (52% identity and 72% similarity and 37% identity and 57% similarity, respectively). PGMs not requiring the cofactor DPG are usually found in plants and algae. Enzyme assays confirmed that P. syringae PGM activity required an intact ORF1. Not only is DC3481 the first PGM-deficient pseudomonad mutant to be described, but the P. syringae pgm gene is the first gram-negative bacterial gene identified that appears to code for a DPG-independent PGM. PGM activity appears essential for the growth and pathogenicity of P. syringae pv. tomato on its host plant. PMID:7896694

  5. Isolation and characterisation of EfeM, a periplasmic component of the putative EfeUOBM iron transporter of Pseudomonas syringae pv. syringae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajasekaran, Mohan B; Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS; Mitchell, Sue A

    2010-07-30

    Research highlights: {yields} Bioinformatic analysis reveals EfeM is a metallopeptidase with conserved HXXE motif. {yields} Mass spectrometry confirms EfeM consists of 251 residues, molecular weight 27,772Da. {yields} SRCD spectroscopy shows an {alpha}-helical secondary structure. {yields} Single crystals of EfeM are orthorhombic and diffract to 1.6A resolution. {yields} Space group is P22{sub 1}2{sub 1} with cell dimensions a = 46.74, b = 95.17 and c = 152.61 A. -- Abstract: The EfeM protein is a component of the putative EfeUOBM iron-transporter of Pseudomonas syringae pathovar syringae and is thought to act as a periplasmic, ferrous-iron binding protein. It contains a signalmore » peptide of 34 amino acid residues and a C-terminal 'Peptidase{sub M}75' domain of 251 residues. The C-terminal domain contains a highly conserved 'HXXE' motif thought to act as part of a divalent cation-binding site. In this work, the gene (efeM or 'Psyr{sub 3}370') encoding EfeM was cloned and over-expressed in Escherichia coli, and the mature protein was purified from the periplasm. Mass spectrometry confirmed the identity of the protein (M{sub W} 27,772 Da). Circular dichroism spectroscopy of EfeM indicated a mainly {alpha}-helical structure, consistent with bioinformatic predictions. Purified EfeM was crystallised by hanging-drop vapor diffusion to give needle-shaped crystals that diffracted to a resolution of 1.6 A. This is the first molecular study of a peptidase M75 domain with a presumed iron transport role.« less

  6. Intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-Pseudomonas syringae interactions

    PubMed Central

    Wilson, Daniel C; Carella, Philip; Cameron, Robin K

    2014-01-01

    The phytohormone salicylic acid (SA) plays an important role in several disease resistance responses. During the Age-Related Resistance (ARR) response that occurs in mature Arabidopsis responding to Pseudomonas syringae pv tomato (Pst), SA accumulates in the intercellular space where it may act as an antimicrobial agent. Recently we measured intracellular and intercellular SA levels in young, ARR-incompetent plants responding to virulent and avirulent strains of Pst to determine if intercellular SA accumulation is a component of additional defense responses to Pst. In young plants virulent Pst suppressed both intra- and intercellular SA accumulation in a coronatine-dependent manner. In contrast, high levels of intra- and intercellular SA accumulated in response to avirulent Pst. Our results support the idea that SA accumulation in the intercellular space is an important component of multiple defense responses. Future research will include understanding how mature plants counteract the effects of coronatine during the ARR response. PMID:25763618

  7. Glycine Betaine Catabolism Contributes to Pseudomonas syringae Tolerance to Hyperosmotic Stress by Relieving Betaine-Mediated Suppression of Compatible Solute Synthesis

    PubMed Central

    Li, Shanshan; Yu, Xilan

    2013-01-01

    Many bacteria can accumulate glycine betaine for osmoprotection and catabolize it as a growth substrate, but how they regulate these opposing roles is poorly understood. In Pseudomonas syringae B728a, expression of the betaine catabolism genes was reduced by an osmotic upshift to an intermediate stress level, consistent with betaine accumulation, but was increased by an upshift to a high stress level, as confirmed by an accompanying increase in degradation of radiolabeled betaine. Deletion of the gbcAB betaine catabolism genes reduced osmotolerance at a high osmolarity, and this reduction was due to the relief of betaine-mediated suppression of compatible solute synthesis. This conclusion was supported by the findings that, at high osmolarity, the ΔgbcAB mutant accumulated high betaine levels and low endogenous solutes and exhibited reduced expression of the solute synthesis genes. Moreover, the ΔgbcAB mutant and a mutant deficient in the synthesis of the compatible solutes NAGGN and trehalose exhibited similar reductions in osmotolerance and also in fitness on bean leaves. Activation of betaine catabolism at high osmotic stress resulted, in part, from induction of gbdR, which encodes the transcriptional activator GbdR. Betaine catabolism was subject to partial repression by succinate under hyperosmotic stress conditions, in contrast to strong repression in the absence of stress, suggesting that betaine functions both in nutrition and as an intracellular signal modulating solute synthesis under hyperosmotic stress conditions. Collectively, these results begin to provide a detailed mechanistic understanding of how P. syringae transitions from reliance on exogenously derived betaine to the use of endogenous solutes during adaptation to hyperosmotic conditions. PMID:23524610

  8. The induction of tomato leucine aminopeptidase genes (LapA) after Pseudomonas syringae pv. tomato infection is primarily a wound response triggered by coronatine.

    PubMed

    Pautot, V; Holzer, F M; Chaufaux, J; Walling, L L

    2001-02-01

    Tomato plants constitutively express a neutral leucine aminopeptidase (LAP-N) and an acidic LAP (LAP-A) during floral development and in leaves in response to insect infestation, wounding, and Pseudomonas syringae pv. tomato infection. To assess the physiological roles of LAP-A, a LapA-antisense construct (35S:asLapA1) was introduced into tomato. The 35S:asLapA1 plants had greatly reduced or showed undetectable levels of LAP-A and LAP-N proteins in healthy and wounded leaves and during floral development. Despite the loss of these aminopeptidases, no global changes in protein profiles were noted. The 35S:asLapA1 plants also exhibited no significant alteration in floral development and did not impact the growth and development of Manduca sexta and P. syringae pv. tomato growth rates during compatible or incompatible infections. To investigate the mechanism underlying the strong induction of LapA upon P. syringae pv. tomato infection, LapA expression was monitored after infection with coronatine-producing and -deficient P. syringae pv. tomato strains. LapA RNA and activity were detected only with the coronatine-producing P. syringae pv. tomato strain. Coronatine treatment of excised shoots caused increases in RNAs for jasmonic acid (JA)-regulated wound-response genes (LapA and pin2) but did not influence expression of a JA-regulated pathogenesis-related protein gene (PR-1). These results indicated that coronatine mimicked the wound response but was insufficient to activate JA-regulated PR genes.

  9. Origin of the Outbreak in France of Pseudomonas syringae pv. actinidiae Biovar 3, the Causal Agent of Bacterial Canker of Kiwifruit, Revealed by a Multilocus Variable-Number Tandem-Repeat Analysis.

    PubMed

    Cunty, A; Cesbron, S; Poliakoff, F; Jacques, M-A; Manceau, C

    2015-10-01

    The first outbreaks of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 were detected in France in 2010. P. syringae pv. actinidiae causes leaf spots, dieback, and canker that sometimes lead to the death of the vine. P. syringae pv. actinidifoliorum, which is pathogenic on kiwi as well, causes only leaf spots. In order to conduct an epidemiological study to track the spread of the epidemics of these two pathogens in France, we developed a multilocus variable-number tandem-repeat (VNTR) analysis (MLVA). MLVA was conducted on 340 strains of P. syringae pv. actinidiae biovar 3 isolated in Chile, China, France, Italy, and New Zealand and on 39 strains of P. syringae pv. actinidifoliorum isolated in Australia, France, and New Zealand. Eleven polymorphic VNTR loci were identified in the genomes of P. syringae pv. actinidiae biovar 3 ICMP 18744 and of P. syringae pv. actinidifoliorum ICMP 18807. MLVA enabled the structuring of P. syringae pv. actinidiae biovar 3 and P. syringae pv. actinidifoliorum strains in 55 and 16 haplotypes, respectively. MLVA and discriminant analysis of principal components revealed that strains isolated in Chile, China, and New Zealand are genetically distinct from P. syringae pv. actinidiae strains isolated in France and in Italy, which appear to be closely related at the genetic level. In contrast, no structuring was observed for P. syringae pv. actinidifoliorum. We developed an MLVA scheme to explore the diversity within P. syringae pv. actinidiae biovar 3 and to trace the dispersal routes of epidemic P. syringae pv. actinidiae biovar 3 in Europe. We suggest using this MLVA scheme to trace the dispersal routes of P. syringae pv. actinidiae at a global level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Origin of the Outbreak in France of Pseudomonas syringae pv. actinidiae Biovar 3, the Causal Agent of Bacterial Canker of Kiwifruit, Revealed by a Multilocus Variable-Number Tandem-Repeat Analysis

    PubMed Central

    Cunty, A.; Cesbron, S.; Poliakoff, F.; Jacques, M.-A.

    2015-01-01

    The first outbreaks of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 were detected in France in 2010. P. syringae pv. actinidiae causes leaf spots, dieback, and canker that sometimes lead to the death of the vine. P. syringae pv. actinidifoliorum, which is pathogenic on kiwi as well, causes only leaf spots. In order to conduct an epidemiological study to track the spread of the epidemics of these two pathogens in France, we developed a multilocus variable-number tandem-repeat (VNTR) analysis (MLVA). MLVA was conducted on 340 strains of P. syringae pv. actinidiae biovar 3 isolated in Chile, China, France, Italy, and New Zealand and on 39 strains of P. syringae pv. actinidifoliorum isolated in Australia, France, and New Zealand. Eleven polymorphic VNTR loci were identified in the genomes of P. syringae pv. actinidiae biovar 3 ICMP 18744 and of P. syringae pv. actinidifoliorum ICMP 18807. MLVA enabled the structuring of P. syringae pv. actinidiae biovar 3 and P. syringae pv. actinidifoliorum strains in 55 and 16 haplotypes, respectively. MLVA and discriminant analysis of principal components revealed that strains isolated in Chile, China, and New Zealand are genetically distinct from P. syringae pv. actinidiae strains isolated in France and in Italy, which appear to be closely related at the genetic level. In contrast, no structuring was observed for P. syringae pv. actinidifoliorum. We developed an MLVA scheme to explore the diversity within P. syringae pv. actinidiae biovar 3 and to trace the dispersal routes of epidemic P. syringae pv. actinidiae biovar 3 in Europe. We suggest using this MLVA scheme to trace the dispersal routes of P. syringae pv. actinidiae at a global level. PMID:26209667

  11. Ornithine Transcarbamylase ArgK Plays a Dual role for the Self-defense of Phaseolotoxin Producing Pseudomonas syringae pv. phaseolicola.

    PubMed

    Chen, Li; Li, Pin; Deng, Zixin; Zhao, Changming

    2015-08-10

    Pseudomonas syringae is a phytopathogenic bacterium widely spread on terrestrial plants. Sulfodiaminophosphinyl tripeptide Phaseolotoxins (PHTs), produced by P. syringae pv. phaseolicola and P. syringae pv. actinidiae, represent a kind of antimetabolic phytotoxins. PHTs inhibit host cell Ornithine transcarbamylase (OTCase) activity and induce Arginine auxotrophic phenotype. The biosynthesis of PHT is temperature dependent, being optically produced at around 18 °C, while blocked above 28 °C. PHT resistant OTCase ArgK acts as a functional replacement of housekeeping OTCase ArgF, which is the acting target of PHT, to confer PHT producers with self-resistance. It was postulated that argK might be regulated directly by a PHT biosynthetic precursor and indirectly by temperature with an unknown manner. Neither transcriptional regulator nor thermal regulation related protein encoding gene was detected from PHT biosynthetic gene cluster. The tripeptide, Cit-Ala-hArg, was identified to be a by-product of PHT biosynthetic pathway in this report. Formation of Cit-Ala-hArg was catalyzed by ArgK with tripeptide Orn-Ala-hArg and carbamyl phosphate as substrates. It showed that ArgK not only provided alternative Arginine source as reported previously, but also controlled the production of PHTs by converting PHT biosynthetic precursors to nontoxic Cit-Ala-hArg reservoir for producers' self-defense.

  12. Ornithine Transcarbamylase ArgK Plays a Dual role for the Self-defense of Phaseolotoxin Producing Pseudomonas syringae pv. phaseolicola

    PubMed Central

    chen, Li; li, Pin; deng, Zixin; zhao, Changming

    2015-01-01

    Pseudomonas syringae is a phytopathogenic bacterium widely spread on terrestrial plants. Sulfodiaminophosphinyl tripeptide Phaseolotoxins (PHTs), produced by P. syringae pv. phaseolicola and P. syringae pv. actinidiae, represent a kind of antimetabolic phytotoxins. PHTs inhibit host cell Ornithine transcarbamylase (OTCase) activity and induce Arginine auxotrophic phenotype. The biosynthesis of PHT is temperature dependent, being optically produced at around 18 °C, while blocked above 28 °C. PHT resistant OTCase ArgK acts as a functional replacement of housekeeping OTCase ArgF, which is the acting target of PHT, to confer PHT producers with self-resistance. It was postulated that argK might be regulated directly by a PHT biosynthetic precursor and indirectly by temperature with an unknown manner. Neither transcriptional regulator nor thermal regulation related protein encoding gene was detected from PHT biosynthetic gene cluster. The tripeptide, Cit-Ala-hArg, was identified to be a by-product of PHT biosynthetic pathway in this report. Formation of Cit-Ala-hArg was catalyzed by ArgK with tripeptide Orn-Ala-hArg and carbamyl phosphate as substrates. It showed that ArgK not only provided alternative Arginine source as reported previously, but also controlled the production of PHTs by converting PHT biosynthetic precursors to nontoxic Cit-Ala-hArg reservoir for producers’ self-defense. PMID:26256666

  13. Ice-nucleating bacteria control the order and dynamics of interfacial water

    DOE PAGES

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; ...

    2016-04-22

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less

  14. Ice-nucleating bacteria control the order and dynamics of interfacial water

    PubMed Central

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-01-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  15. Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection

    PubMed Central

    Jiang, Zhenhong; Dong, Xiaobao; Li, Zhi-Gang; He, Fei; Zhang, Ziding

    2016-01-01

    Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, we analyzed Arabidopsis defense responses to P. syringae through differential coexpression analysis. Overall, we found that differential coexpression was a common phenomenon of plant immunity. Genes that were frequently involved in differential coexpression tend to be related to plant immune responses. Importantly, many of those genes have similar average expression levels between normal plant growth and pathogen infection but have different coexpression partners. By integrating the Arabidopsis regulatory network into our analysis, we identified several transcription factors that may be regulators of differential coexpression during plant immune responses. We also observed extensive differential coexpression between genes within the same metabolic pathways. Several metabolic pathways, such as photosynthesis light reactions, exhibited significant changes in expression correlation between normal growth and pathogen infection. Taken together, differential coexpression analysis provides a new strategy for analyzing transcriptional data related to plant defense responses and new insights into the understanding of plant-pathogen interactions. PMID:27721457

  16. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis

    PubMed Central

    Großkinsky, Dominik K.; Tafner, Richard; Moreno, María V.; Stenglein, Sebastian A.; García de Salamone, Inés E.; Nelson, Louise M.; Novák, Ondřej; Strnad, Miroslav; van der Graaff, Eric; Roitsch, Thomas

    2016-01-01

    Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience. PMID:26984671

  17. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis.

    PubMed

    Großkinsky, Dominik K; Tafner, Richard; Moreno, María V; Stenglein, Sebastian A; García de Salamone, Inés E; Nelson, Louise M; Novák, Ondřej; Strnad, Miroslav; van der Graaff, Eric; Roitsch, Thomas

    2016-03-17

    Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience.

  18. The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response

    PubMed Central

    Butcher, Bronwyn G.; Bao, Zhongmeng; Wilson, Janet; Swingle, Bryan; Filiatrault, Melanie; Schneider, David; Cartinhour, Samuel

    2017-01-01

    The bacterial plant pathogen Pseudomonas syringae adapts to changes in the environment by modifying its gene expression profile. In many cases, the response is mediated by the activation of extracytoplasmic function (ECF) sigma factors that direct RNA polymerase to transcribe specific sets of genes. In this study we focus on PSPTO_1043, one of ten ECF sigma factors in P. syringae pv. tomato DC3000 (DC3000). PSPTO_1043, together with PSPTO_1042, encode an RpoERsp/ChrR-like sigma/anti-sigma factor pair. Although this gene pair is unique to the P. syringae group among the pseudomonads, homologous genes can be found in photosynthetic genera such as Rhodospirillum, Thalassospira, Phaeospirillum and Parvibaculum. Using ChIP-Seq, we detected 137 putative PSPTO_1043 binding sites and identified a likely promoter motif. We characterized 13 promoter candidates, six of which regulate genes that appear to be found only in P. syringae. PSPTO_1043 responds to the presence of singlet oxygen (1O2) and tert-butyl hydroperoxide (tBOOH) and several of the genes regulated by PSPTO_1043 appear to be involved in response to oxidative stress. PMID:28700608

  19. The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response.

    PubMed

    Butcher, Bronwyn G; Bao, Zhongmeng; Wilson, Janet; Stodghill, Paul; Swingle, Bryan; Filiatrault, Melanie; Schneider, David; Cartinhour, Samuel

    2017-01-01

    The bacterial plant pathogen Pseudomonas syringae adapts to changes in the environment by modifying its gene expression profile. In many cases, the response is mediated by the activation of extracytoplasmic function (ECF) sigma factors that direct RNA polymerase to transcribe specific sets of genes. In this study we focus on PSPTO_1043, one of ten ECF sigma factors in P. syringae pv. tomato DC3000 (DC3000). PSPTO_1043, together with PSPTO_1042, encode an RpoERsp/ChrR-like sigma/anti-sigma factor pair. Although this gene pair is unique to the P. syringae group among the pseudomonads, homologous genes can be found in photosynthetic genera such as Rhodospirillum, Thalassospira, Phaeospirillum and Parvibaculum. Using ChIP-Seq, we detected 137 putative PSPTO_1043 binding sites and identified a likely promoter motif. We characterized 13 promoter candidates, six of which regulate genes that appear to be found only in P. syringae. PSPTO_1043 responds to the presence of singlet oxygen (1O2) and tert-butyl hydroperoxide (tBOOH) and several of the genes regulated by PSPTO_1043 appear to be involved in response to oxidative stress.

  20. Pseudomonas syringae pv. tomato DC3000 CmaL (PSPTO4723), a DUF1330 family member, is needed to produce L-allo-isoleucine, a precursor for the phytotoxin coronatine

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae pathovar tomato DC3000 produces the phytotoxin coronatine, a major determinant of the leaf chlorosis associated with DC3000 pathogenesis. The DC3000 PSPTO4723 (cmaL) gene is located in a genomic region encoding type III effectors, however it promotes chlorosis in the model plant...

  1. Survival, growth, and localization of epiphytic fitness mutants of pseudomonas syringae on leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beattie, G.A.; Lindow, S.E.

    Among 82 epiphytic fitness mutants of a Pseudomonas syringae pv. syringae strain that were characterized in a previous study, 4 mutants were particularly intolerant of the stresses associated with dry leaf surfaces. These four mutants each exhibited distinctive behaviors when inoculated into and into plant leaves. For example, while non showed measurable growth on dry potato leaf surfaces, they grew to different population sizes in the intercellular space of bean leaves and on dry bean leaf surfaces, and one mutant appeared incapable of growth in both environments although it grew well on moist bean leaves. The presence of the parentalmore » strain did not influence the survival of the mutants immediately following exposure of leaves to dry, high-light incubation conditions, suggesting that the reduced survival of the mutants did not result from an inability to produce extracellular factors in planta. On moist bean leaves that were colonized by either a mutant or the wild type, the proportion of the total epiphytic population that was located in sizes protected from a surface sterilant was smaller for the mutants than for the wild type, indicating that the mutants were reduced in their ability to locate, multiply in, and/or survive in such protected sites. This reduced ability was only one of possible several factors contributing to the reduced epiphytic fitness of each mutant. Their reduced fitness was not specific to the host plant bean, since they also exhibited reduced fitness on the nonhost plant potato; the functions altered in these strains are thus of interest for their contribution to the general fitness of bacterial epiphytes. 52 refs., 6 figs., 1 tab.« less

  2. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants.

    PubMed

    Xin, Xiu-Fang; He, Sheng Yang

    2013-01-01

    Since the early 1980s, various strains of the gram-negative bacterial pathogen Pseudomonas syringae have been used as models for understanding plant-bacterial interactions. In 1991, a P. syringae pathovar tomato (Pst) strain, DC3000, was reported to infect not only its natural host tomato but also Arabidopsis in the laboratory, a finding that spurred intensive efforts in the subsequent two decades to characterize the molecular mechanisms by which this strain causes disease in plants. Genomic analysis shows that Pst DC3000 carries a large repertoire of potential virulence factors, including proteinaceous effectors that are secreted through the type III secretion system and a polyketide phytotoxin called coronatine, which structurally mimics the plant hormone jasmonate (JA). Study of Pst DC3000 pathogenesis has not only provided several conceptual advances in understanding how a bacterial pathogen employs type III effectors to suppress plant immune responses and promote disease susceptibility but has also facilitated the discovery of the immune function of stomata and key components of JA signaling in plants. The concepts derived from the study of Pst DC3000 pathogenesis may prove useful in understanding pathogenesis mechanisms of other plant pathogens.

  3. [Fatty acids composition of cellular lipids of the collected and newly isolated Pseudomonas lupini strains].

    PubMed

    Hvozdiak, R I; Dankevych, L A; Votselko, S K; Holubets', O V

    2005-01-01

    Fatty acid composition of cellular lipids of 23 Pseudomonas lupini strains (Beltjukova et Koroljova 1968) has been investigated. Cellular fatty acids which contained from C10 to C19 carbon atoms have been identified. Basic fatty acid of those Pseudomonas cells are hexadecanoic, hexadecenoic and octadecanoic acids. The 3-hydroxydecanoic (C10:0 3OH), 3-hydroxydodecanoic (C12:0 3OH), 2-hydroxydodecanoic (C12:0 2OH) and cyclopropane fatty acids which contain 17 and 19 carbon atoms have been detected in cellular lipids. The cellular fatty acids spectra of 22 P. lupini strains are similar to cellular fatty acids spectrum of the type strain Pseudomonas syringae pv. syringae 8511. Pathogenic isolate 2, which fatty acid content of cell lipids significantly differ from lipids of cell fatty acids from P. lupini strains and cell lipids of fatty acids of typical strains Pseudomonas syringae pv. syringae 8511 and Pseudomonas savastanoi pv. phaseolicola 9066 is the exception.

  4. LOV-domain photoreceptor, encoded in a genomic island, attenuates the virulence of Pseudomonas syringae in light-exposed Arabidopsis leaves.

    PubMed

    Moriconi, Victoria; Sellaro, Romina; Ayub, Nicolás; Soto, Gabriela; Rugnone, Matías; Shah, Rashmi; Pathak, Gopal P; Gärtner, Wolfgang; Casal, Jorge J

    2013-10-01

    In Arabidopsis thaliana, light signals modulate the defences against bacteria. Here we show that light perceived by the LOV domain-regulated two-component system (Pst-Lov) of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) modulates virulence against A. thaliana. Bioinformatic analysis and the existence of an episomal circular intermediate indicate that the locus encoding Pst-Lov is present in an active genomic island acquired by horizontal transfer. Strains mutated at Pst-Lov showed enhanced growth on minimal medium and in leaves of A. thaliana exposed to light, but not in leaves incubated in darkness or buried in the soil. Pst-Lov repressed the expression of principal and alternative sigma factor genes and their downstream targets linked to bacterial growth, virulence and quorum sensing, in a strictly light-dependent manner. We propose that the function of Pst-Lov is to distinguish between soil (dark) and leaf (light) environments, attenuating the damage caused to host tissues while releasing growth out of the host. Therefore, in addition to its direct actions via photosynthesis and plant sensory receptors, light may affect plants indirectly via the sensory receptors of bacterial pathogens. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  5. Virulence of Pseudomonas syringae pv. tomato DC3000 Is Influenced by the Catabolite Repression Control Protein Crc.

    PubMed

    Chakravarthy, Suma; Butcher, Bronwyn G; Liu, Yingyu; D'Amico, Katherine; Coster, Matthew; Filiatrault, Melanie J

    2017-04-01

    Pseudomonas syringae infects diverse plant species and is widely used as a model system in the study of effector function and the molecular basis of plant diseases. Although the relationship between bacterial metabolism, nutrient acquisition, and virulence has attracted increasing attention in bacterial pathology, it is largely unexplored in P. syringae. The Crc (catabolite repression control) protein is a putative RNA-binding protein that regulates carbon metabolism as well as a number of other factors in the pseudomonads. Here, we show that deletion of crc increased bacterial swarming motility and biofilm formation. The crc mutant showed reduced growth and symptoms in Arabidopsis and tomato when compared with the wild-type strain. We have evidence that the crc mutant shows delayed hypersensitive response (HR) when infiltrated into Nicotiana benthamiana and tobacco. Interestingly, the crc mutant was more susceptible to hydrogen peroxide, suggesting that, in planta, the mutant may be sensitive to reactive oxygen species generated during pathogen-associated molecular pattern-triggered immunity (PTI). Indeed, HR was further delayed when PTI-induced tissues were challenged with the crc mutant. The crc mutant did not elicit an altered PTI response in plants compared with the wild-type strain. We conclude that Crc plays an important role in growth and survival during infection.

  6. Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development

    PubMed Central

    Xiao, Fangming; Mark Goodwin, S; Xiao, Yanmei; Sun, Zhaoyu; Baker, Douglas; Tang, Xiaoyan; Jenks, Matthew A; Zhou, Jian-Min

    2004-01-01

    Pseudomonas syringae relies on type III secretion system to deliver effector proteins into the host cell for parasitism. Type III genes are induced in planta, but host factors affecting the induction are poorly understood. Here we report on the identification of an Arabidopsis mutant, att1 (for aberrant induction of type three genes), that greatly enhances the expression of bacterial type III genes avrPto and hrpL. att1 plants display enhanced disease severity to a virulent strain of P. syringae, suggesting a role of ATT1 in disease resistance. ATT1 encodes CYP86A2, a cytochrome P450 monooxygenase catalyzing fatty acid oxidation. The cutin content is reduced to 30% in att1, indicating that CYP86A2 plays a major role in the biosynthesis of extracellular lipids. att1 has a loose cuticle membrane ultrastructure and shows increased permeability to water vapor, demonstrating the importance of the cuticle membrane in controlling water loss. The enhanced avrPto-luc expression is specific to att1, but not another cuticle mutant, wax2. The results suggest that certain cutin-related fatty acids synthesized by CYP86A2 may repress bacterial type III gene expression in the intercellular spaces. PMID:15241470

  7. Redox proteomics of tomato in response to Pseudomonas syringae infection

    PubMed Central

    Balmant, Kelly Mayrink; Parker, Jennifer; Yoo, Mi-Jeong; Zhu, Ning; Dufresne, Craig; Chen, Sixue

    2015-01-01

    Unlike mammals with adaptive immunity, plants rely on their innate immunity based on pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) for pathogen defense. Reactive oxygen species, known to play crucial roles in PTI and ETI, can perturb cellular redox homeostasis and lead to changes of redox-sensitive proteins through modification of cysteine sulfhydryl groups. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, little is known about redox proteins and how they function in PTI and ETI. In this study, cysTMT proteomics technology was used to identify similarities and differences of protein redox modifications in tomato resistant (PtoR) and susceptible (prf3) genotypes in response to Pseudomonas syringae pv tomato (Pst) infection. In addition, the results of the redox changes were compared and corrected with the protein level changes. A total of 90 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, biosynthesis of cysteine, sucrose and brassinosteroid, cell wall biogenesis, polysaccharide/starch biosynthesis, cuticle development, lipid metabolism, proteolysis, tricarboxylic acid cycle, protein targeting to vacuole, and oxidation–reduction. This inventory of previously unknown protein redox switches in tomato pathogen defense lays a foundation for future research toward understanding the biological significance of protein redox modifications in plant defense responses. PMID:26504582

  8. Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato.

    PubMed

    Richter, Carolin; Dirks, Mareike E; Gronover, Christian Schulze; Prüfer, Dirk; Moerschbacher, Bruno M

    2012-02-01

    Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.

  9. CrcZ and CrcX regulate carbon utilization in Pseudomonas syringae pathovar tomato strain DC3000

    USDA-ARS?s Scientific Manuscript database

    Small non-coding RNAs (ncRNAs) are important components of many regulatory pathways in bacteria and play key roles in regulating factors important for virulence. Carbon catabolite repression control is modulated by small RNAs (crcZ or crcZ and crcY) in Pseudomonas aeruginosa and Pseudomonas putida. ...

  10. Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy

    PubMed Central

    Lamichhane, Jay Ram; Bartoli, Claudia; Varvaro, Leonardo

    2016-01-01

    Pseudomonas avellanae (Pav) has been reported as the causal agent of bacterial decline and bacterial canker of hazelnut in Italy and Greece, respectively. Both hazelnut diseases were reported to be similar in terms of symptoms, severity and persistence. In this study, we found that both symptomatic and asymptomatic trees in the field were colonized by Pav. Multilocus Sequence Typing (MLST) analysis showed that Pav strains isolated during this study in Italy belong to the P. syringae phylogroup 1 and they are closely related to Pav strains previously isolated in Greece from hazelnut bacterial canker. On the other hand, strains isolated in earlier studies from hazelnut decline in Italy belong to both phylogroup 1 and 2 of P. syringae. Both phylogroup 1 strains of P. syringae from Greece and Italy are different than strains isolated in this study in terms of their capacity to excrete fluorescent pigments on different media. Despite the same plant genotype and cropping practices adopted, the incidence of hazelnut decline ranged from nearly 0 to 91% across our study sites. No disease developed on plants inoculated with Pav through wounding while leaf scar inoculations produced only mild disease symptoms. Based on our results and the previously reported correlation between pedo-climatic conditions and hazelnut decline, we conclude that hazelnut decline in central Italy could be incited by a combination of predisposing (adverse pedo-climatic conditions) and contributing factors (Pav). Because this is a true decline different from “bacterial canker” described in Greece, we refer to it as hazelnut decline (HD). PMID:26840951

  11. Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy.

    PubMed

    Lamichhane, Jay Ram; Bartoli, Claudia; Varvaro, Leonardo

    2016-01-01

    Pseudomonas avellanae (Pav) has been reported as the causal agent of bacterial decline and bacterial canker of hazelnut in Italy and Greece, respectively. Both hazelnut diseases were reported to be similar in terms of symptoms, severity and persistence. In this study, we found that both symptomatic and asymptomatic trees in the field were colonized by Pav. Multilocus Sequence Typing (MLST) analysis showed that Pav strains isolated during this study in Italy belong to the P. syringae phylogroup 1 and they are closely related to Pav strains previously isolated in Greece from hazelnut bacterial canker. On the other hand, strains isolated in earlier studies from hazelnut decline in Italy belong to both phylogroup 1 and 2 of P. syringae. Both phylogroup 1 strains of P. syringae from Greece and Italy are different than strains isolated in this study in terms of their capacity to excrete fluorescent pigments on different media. Despite the same plant genotype and cropping practices adopted, the incidence of hazelnut decline ranged from nearly 0 to 91% across our study sites. No disease developed on plants inoculated with Pav through wounding while leaf scar inoculations produced only mild disease symptoms. Based on our results and the previously reported correlation between pedo-climatic conditions and hazelnut decline, we conclude that hazelnut decline in central Italy could be incited by a combination of predisposing (adverse pedo-climatic conditions) and contributing factors (Pav). Because this is a true decline different from "bacterial canker" described in Greece, we refer to it as hazelnut decline (HD).

  12. Abscisic Acid-Cytokinin Antagonism Modulates Resistance Against Pseudomonas syringae in Tobacco.

    PubMed

    Großkinsky, Dominik K; van der Graaff, Eric; Roitsch, Thomas

    2014-12-01

    Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco, antagonistic interaction of these phytohormones in plant immunity was identified. Kinetin reduced abscisic acid levels in tobacco, while increased abscisic acid levels by exogenous application or inhibition of abscisic acid catabolism by diniconazole neutralized kinetin-induced resistance. Based on these results, we conclude that reduction of abscisic acid levels by enhanced abscisic acid catabolism strongly contributes to cytokinin-mediated resistance effects. Thus, the identified cytokinin-abscisic acid antagonism is a novel regulatory mechanism in plant immunity.

  13. NH4 + protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation

    PubMed Central

    Fernández-Crespo, Emma; Scalschi, Loredana; Llorens, Eugenio; García-Agustín, Pilar; Camañes, Gemma

    2015-01-01

    NH4 + nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 + nutrition (N-NH4 +)-induced resistance (NH4 +-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 + plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 + toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 + plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 +-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 +-IR. The metabolic profile revealed that infected N-NH4 + plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 + nutrition) and resistance to subsequent Pst infection. PMID:26246613

  14. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation.

    PubMed

    Fernández-Crespo, Emma; Scalschi, Loredana; Llorens, Eugenio; García-Agustín, Pilar; Camañes, Gemma

    2015-11-01

    NH4 (+) nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 (+) nutrition (N-NH4 (+))-induced resistance (NH4 (+)-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 (+) plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 (+) toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 (+) plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 (+)-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 (+)-IR. The metabolic profile revealed that infected N-NH4 (+) plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 (+) nutrition) and resistance to subsequent Pst infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Threats and opportunities of plant pathogenic bacteria.

    PubMed

    Tarkowski, Petr; Vereecke, Danny

    2014-01-01

    Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. An in vitro study of the anti-biofilm properties of proanthocyanidin and chitosan in Pseudomonas syringae pv. papulans

    NASA Astrophysics Data System (ADS)

    Song, Kai

    Biofilm-forming bacteria are a form of planktonic microorganisms that can become resistant against conventional antibiotics. Because they are difficult to eradicate, biofilm-forming bacteria are extremely problematic for the medical industry areas. Thus, materials that can distort biofilm structure would be helpful for eliminating chronic infection and decreasing bacterial resistance. The primary objective of this study is to evaluate the anti-biofilm effect of two bio-derived substances, proanthocyanidin and chitosan. Proanthocyanidins are secondary plant metabolites that are reported to have antibiotic and antioxidant functions. Chitosan (poly [beta-(1, 4)-amino-2-deoxy-beta-D-glucose]) is a deacetylated derivative of chitin, which is abundant in the exoskeleton of crustaceans and insects. It is reported to be a suitable substitute for conventional fungicides and can enhance the proanthocyanidin content in plants when used as an agrochemical. Chitosan-tripolyphosphate (TPP) nanoparticles, which have good neutral water solubility and are nanoscale in size, can be used as carriers for gene and drug therapy and are thus favorable to be tested as a treatment method against bacterial biofilms. In this study, the anti-biofilm and antibacterial properties of proanthocyanidin, chitosan-TPP nanoparticles and proanthocyanidins-loaded chitosan-TPP nanoparticles were tested using the model plant bacterium, Pseudomonas syringae pv. papulans (Psp), a pathogen isolated from infected apples. At a lower concentration (1 mg/mL and 2.5 mg/mL), both chitosan nanoparticles and proanthocyanidins can postpone the formation of biofilms and eventually disrupted part of the biofilm. While higher concentration (above 5 mg/mL) of chitosan nanoparticles or proanthocyanidins can eliminate most of the biofilm in this study. PAC-loaded chitosan nanoparticles also can also distort biofilms. Both proanthocyanidins and chitosan-TPP nanoparticle showed a mild antibacterial property. PAC

  17. Comparative Genome Analysis Provides Insights into the Evolution and Adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum

    PubMed Central

    Green, Sarah; Studholme, David J.; Laue, Bridget E.; Dorati, Federico; Lovell, Helen; Arnold, Dawn; Cottrell, Joan E.; Bridgett, Stephen; Blaxter, Mark; Huitema, Edgar; Thwaites, Richard; Sharp, Paul M.

    2010-01-01

    A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree. PMID:20419105

  18. Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum.

    PubMed

    Green, Sarah; Studholme, David J; Laue, Bridget E; Dorati, Federico; Lovell, Helen; Arnold, Dawn; Cottrell, Joan E; Bridgett, Stephen; Blaxter, Mark; Huitema, Edgar; Thwaites, Richard; Sharp, Paul M; Jackson, Robert W; Kamoun, Sophien

    2010-04-19

    A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.

  19. Pseudomonas syringae pv. actinidiae from Recent Outbreaks of Kiwifruit Bacterial Canker Belong to Different Clones That Originated in China

    PubMed Central

    Butler, Margi I.; Stockwell, Peter A.; Black, Michael A.; Day, Robert C.; Lamont, Iain L.; Poulter, Russell T. M.

    2013-01-01

    A recently emerged plant disease, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis), is caused by Pseudomonas syringae pv. actinidiae (PSA). The disease was first reported in China and Japan in the 1980s. A severe outbreak of PSA began in Italy in 2008 and has spread to other European countries. PSA was found in both New Zealand and Chile in 2010. To study the evolution of the pathogen and analyse the transmission of PSA between countries, genomes of strains from China and Japan (where the genus Actinidia is endemic), Italy, New Zealand and Chile were sequenced. The genomes of PSA strains are very similar. However, all strains from New Zealand share several single nucleotide polymorphisms (SNPs) that distinguish them from all other PSA strains. Similarly, all the PSA strains from the 2008 Italian outbreak form a distinct clonal group and those from Chile form a third group. In addition to the rare SNPs present in the core genomes, there is abundant genetic diversity in a genomic island that is part of the accessory genome. The island from several Chinese strains is almost identical to the island present in the New Zealand strains. The island from a different Chinese strain is identical to the island present in the strains from the recent Italian outbreak. The Chilean strains of PSA carry a third variant of this island. These genomic islands are integrative conjugative elements (ICEs). Sequencing of these ICEs provides evidence of three recent horizontal transmissions of ICE from other strains of Pseudomonas syringae to PSA. The analyses of the core genome SNPs and the ICEs, combined with disease history, all support the hypothesis of an independent Chinese origin for both the Italian and the New Zealand outbreaks and suggest the Chilean strains also originate from China. PMID:23555547

  20. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates.

    PubMed

    Ude, Susanne; Arnold, Dawn L; Moon, Christina D; Timms-Wilson, Tracey; Spiers, Andrew J

    2006-11-01

    The ability to form biofilms is seen as an increasingly important colonization strategy among both pathogenic and environmental bacteria. A survey of 185 plant-associated, phytopathogenic, soil and river Pseudomonas isolates resulted in 76% producing biofilms at the air-liquid (A-L) interface after selection in static microcosms. Considerable variation in biofilm phenotype was observed, including waxy aggregations, viscous and floccular masses, and physically cohesive biofilms with continuously varying strengths over 1500-fold. Calcofluor epifluorescent microscopy identified cellulose as the matrix component in biofilms produced by Pseudomonas asplenii, Pseudomonas corrugata, Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas putida, Pseudomonas savastanoi and Pseudomonas syringae isolates. Cellulose expression and biofilm formation could be induced by the constitutively active WspR19 mutant of the cyclic-di-GMP-associated, GGDEF domain-containing response regulator involved in the P. fluorescens SBW25 wrinkly spreader phenotype and cellular aggregation in Pseudomonas aeruginosa PA01. WspR19 could also induce P. putida KT2440, which otherwise did not produce a biofilm or express cellulose, as well as Escherichia coli K12 and Salmonella typhimurium LT2, both of which express cellulose yet lack WspR homologues. Statistical analysis of biofilm parameters suggest that biofilm development is a more complex process than that simply described by the production of attachment and matrix components and bacterial growth. This complexity was also seen in multivariate analysis as a species-ecological habitat effect, underscoring the fact that in vitro biofilms are abstractions of those surface and volume colonization processes used by bacteria in their natural environments.

  1. [Erwinia amylovora--the fire blight pathogen of trees in Ukraine].

    PubMed

    Iakovleva, L M; Moroz, S N; Shcherbina, T N; Ogorodnik, L E; Gvozdiak, R I; Patyka, V F

    2014-01-01

    Niduses of fire blight of fruit and ornamental trees have been found in the Kyiv and Vinnitsa regions of Ukraine. Pathogen Erwinia amylovora was isolated between April and October. The pathogen was often accompanied by bacteria Pseudomonas syringae pv. syringae. Artificial infection with a mixture of bacteria E. amylovora and P. syringae pv. syringae accelerates and enhances the disease process in the laboratory.

  2. Pseudomonas savastanoi pv. savastanoi: some like it knot.

    PubMed

    Ramos, Cayo; Matas, Isabel M; Bardaji, Leire; Aragón, Isabel M; Murillo, Jesús

    2012-12-01

    Pseudomonas savastanoi pv. savastanoi is the causal agent of olive (Olea europaea) knot disease and an unorthodox member of the P. syringae complex, causing aerial tumours instead of the foliar necroses and cankers characteristic of most members of this complex. Olive knot is present wherever olive is grown; although losses are difficult to assess, it is assumed that olive knot is one of the most important diseases of the olive crop. The last century witnessed a large number of scientific articles describing the biology, epidemiology and control of this pathogen. However, most P. savastanoi pv. savastanoi strains are highly recalcitrant to genetic manipulation, which has effectively prevented the pathogen from benefitting from the scientific progress in molecular biology that has elevated the foliar pathogens of the P. syringae complex to supermodels. A number of studies in recent years have made significant advances in the biology, ecology and genetics of P. savastanoi pv. savastanoi, paving the way for the molecular dissection of its interaction with other nonpathogenic bacteria and their woody hosts. The selection of a genetically pliable model strain was soon followed by the development of rapid methods for virulence assessment with micropropagated olive plants and the analysis of cellular interactions with the plant host. The generation of a draft genome of strain NCPPB 3335 and the closed sequence of its three native plasmids has allowed for functional and comparative genomic analyses for the identification of its pathogenicity gene complement. This includes 34 putative type III effector genes and genomic regions, shared with other pathogens of woody hosts, which encode metabolic pathways associated with the degradation of lignin-derived compounds. Now, the time is right to explore the molecular basis of the P. savastanoi pv. savastanoi-olive interaction and to obtain insights into why some pathovars like it necrotic and why some like it knot

  3. Histological Examination of Horse Chestnut Infection by Pseudomonas syringae pv. aesculi and Non-Destructive Heat Treatment to Stop Disease Progression

    PubMed Central

    de Keijzer, Jeroen; van den Broek, Lambertus A. M.; Ketelaar, Tijs; van Lammeren, André A. M.

    2012-01-01

    Since its emergence in Northwest Europe as a pathogen that infects trunks and branches of Aesculus spp. (the horse chestnuts) approximately one decade ago, Pseudomonas syringae pv. aesculi has rapidly established itself as major threat to these trees. Infected trees exhibit extensive necrosis of phloem and cambium, which can ultimately lead to dieback. The events after host entry leading to extensive necrosis are not well documented. In this work, the histopathology of this interaction is investigated and heat-treatment is explored as method to eradicate bacteria associated with established infections. The early wound-repair responses of A. hippocastanum, both in absence and presence of P. s. pv. aesculi, included cell wall lignification by a distinct layer of phloem and cortex parenchyma cells. The same cells also deposited suberin lamellae later on, suggesting this layer functions in compartmentalizing healthy from disrupted tissues. However, monitoring bacterial ingress, its construction appeared inadequate to constrain pathogen spread. Microscopic evaluation of bacterial dispersal in situ using immunolabelling and GFP-tagging of P. s. pv. aesculi, revealed two discriminative types of bacterial colonization. The forefront of lesions was found to contain densely packed bacteria, while necrotic areas housed bacterial aggregates with scattered individuals embedded in an extracellular matrix of bacterial origin containing alginate. The endophytic localization and ability of P. s. pv aesculi to create a protective matrix render it poorly accessible for control agents. To circumvent this, a method based on selective bacterial lethality at 39°C was conceived and successfully tested on A. hippocastanum saplings, providing proof of concept for controlling this disease by heat-treatment. This may be applicable for curing other tree cankers, caused by related phytopathogens. PMID:22808044

  4. Histological examination of horse chestnut infection by Pseudomonas syringae pv. aesculi and non-destructive heat treatment to stop disease progression.

    PubMed

    de Keijzer, Jeroen; van den Broek, Lambertus A M; Ketelaar, Tijs; van Lammeren, André A M

    2012-01-01

    Since its emergence in Northwest Europe as a pathogen that infects trunks and branches of Aesculus spp. (the horse chestnuts) approximately one decade ago, Pseudomonas syringae pv. aesculi has rapidly established itself as major threat to these trees. Infected trees exhibit extensive necrosis of phloem and cambium, which can ultimately lead to dieback. The events after host entry leading to extensive necrosis are not well documented. In this work, the histopathology of this interaction is investigated and heat-treatment is explored as method to eradicate bacteria associated with established infections. The early wound-repair responses of A. hippocastanum, both in absence and presence of P. s. pv. aesculi, included cell wall lignification by a distinct layer of phloem and cortex parenchyma cells. The same cells also deposited suberin lamellae later on, suggesting this layer functions in compartmentalizing healthy from disrupted tissues. However, monitoring bacterial ingress, its construction appeared inadequate to constrain pathogen spread. Microscopic evaluation of bacterial dispersal in situ using immunolabelling and GFP-tagging of P. s. pv. aesculi, revealed two discriminative types of bacterial colonization. The forefront of lesions was found to contain densely packed bacteria, while necrotic areas housed bacterial aggregates with scattered individuals embedded in an extracellular matrix of bacterial origin containing alginate. The endophytic localization and ability of P. s. pv aesculi to create a protective matrix render it poorly accessible for control agents. To circumvent this, a method based on selective bacterial lethality at 39 °C was conceived and successfully tested on A. hippocastanum saplings, providing proof of concept for controlling this disease by heat-treatment. This may be applicable for curing other tree cankers, caused by related phytopathogens.

  5. Ethylene-producing bacteria that ripen fruit.

    PubMed

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples.

  6. Pseudomonas blight discovered on raspberry in Watsonville

    USDA-ARS?s Scientific Manuscript database

    In the winter (February) of 2013, a field of raspberries in Watsonville was discovered to be infected with Pseudomonas syringae, the causal agent of Pseudomonas blight disease. This was the first documentation of this disease on raspberry in our region. The infection of raspberry plants is manifeste...

  7. Thienopyrimidine-type compounds protect Arabidopsis plants against the hemibiotrophic fungal pathogen Colletotrichum higginsianum and bacterial pathogen Pseudomonas syringae pv. maculicola.

    PubMed

    Narusaka, Mari; Narusaka, Yoshihiro

    2017-03-04

    Plant activators activate systemic acquired resistance-like defense responses or induced systemic resistance, and thus protect plants from pathogens. We screened a chemical library composed of structurally diverse small molecules. We isolated six plant immune-inducing thienopyrimidine-type compounds and their analogous compounds. It was observed that the core structure of thienopyrimidine plays a role in induced resistance in plants. Furthermore, we highlight the protective effect of thienopyrimidine-type compounds against both hemibiotrophic fungal pathogen, Colletotrichum higginsianum, and bacterial pathogen, Pseudomonas syringae pv. maculicola, in Arabidopsis thaliana. We suggest that thienopyrimidine-type compounds could be potential lead compounds as novel plant activators, and can be useful and effective agrochemicals against various plant diseases.

  8. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    PubMed Central

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  9. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees.

    PubMed

    Etminani, Faegheh; Harighi, Behrouz

    2018-06-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees ( Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas , Stenotrophomonas , Bacillus , Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea , Bacillus , Pseudomonas , Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

  10. Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity

    PubMed Central

    Sohn, Kee Hoon; Hughes, Richard K.; Piquerez, Sophie J.; Jones, Jonathan D. G.; Banfield, Mark J.

    2012-01-01

    Gram-negative phytopathogenic bacteria translocate effector proteins into plant cells to subvert host defenses. These effectors can be recognized by plant nucleotide-binding–leucine-rich repeat immune receptors, triggering defense responses that restrict pathogen growth. AvrRps4, an effector protein from Pseudomonas syringae pv. pisi, triggers RPS4-dependent immunity in resistant accessions of Arabidopsis. To better understand the molecular basis of AvrRps4-triggered immunity, we determined the crystal structure of processed AvrRps4 (AvrRps4C, residues 134–221), revealing that it forms an antiparallel α-helical coiled coil. Structure-informed mutagenesis reveals an electronegative surface patch in AvrRps4C required for recognition by RPS4; mutations in this region can also uncouple triggering of the hypersensitive response from disease resistance. This uncoupling may result from a lower level of defense activation, sufficient for avirulence but not for triggering a hypersensitive response. Natural variation in AvrRps4 reveals distinct recognition specificities that involve a surface-exposed residue. Recently, a direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 has been implicated in activation of immunity. However, we were unable to detect direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 after coexpression in Nicotiana benthamiana or in yeast cells. How intracellular plant immune receptors activate defense upon effector perception remains an unsolved problem. The structure of AvrRps4C, and identification of functionally important residues for its activation of plant immunity, advances our understanding of these processes in a well-defined model pathosystem. PMID:22988101

  11. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean.

    PubMed

    Whalen, M C; Innes, R W; Bent, A F; Staskawicz, B J

    1991-01-01

    To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.

  12. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    PubMed

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  13. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae.

    PubMed

    Ellis, Christine; Karafyllidis, Ioannis; Turner, John G

    2002-10-01

    In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.

  14. Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall.

    PubMed

    Brown, I R; Mansfield, J W; Taira, S; Roine, E; Romantschuk, M

    2001-03-01

    The Hrp pilus, composed of HrpA subunits, is an essential component of the type III secretion system in Pseudomonas syringae. We used electron microscopy (EM) and immunocytochemistry to examine production of the pilus in vitro from P. syringae pv. tomato strain DC3000 grown under hrp-inducing conditions on EM grids. Pili, when labeled with antibodies to HrpA, developed rapidly in a nonpolar manner shortly after the detection of the hrpA transcript and extended up to 5 microm into surrounding media. Structures at the base of the pilus were clearly differentiated from the basal bodies of flagella. The HrpZ protein, also secreted via the type III system, was found by immunogold labeling to be associated with the pilus in vitro. Accumulation and secretion of HrpA and HrpZ were also examined quantitatively after the inoculation of wild-type DC3000 and hrpA and hrpZ mutants into leaves of Arabidopsis thaliana. The functional pilus crossed the plant cell wall to generate tracks of immunogold labeling for HrpA and HrpZ. Mutants that produced HrpA but did not assemble pili were nonpathogenic, did not secrete HrpA protein, and were compromised for the accumulation of HrpZ. A model is proposed in which the rapidly elongating Hrp pilus acts as a moving conveyor, facilitating transfer of effector proteins from bacteria to the plant cytoplasm across the formidable barrier of the plant cell wall.

  15. Reference gene selection for normalization of RT-qPCR gene expression data from Actinidia deliciosa leaves infected with Pseudomonas syringae pv. actinidiae

    PubMed Central

    Petriccione, Milena; Mastrobuoni, Francesco; Zampella, Luigi; Scortichini, Marco

    2015-01-01

    Normalization of data, by choosing the appropriate reference genes (RGs), is fundamental for obtaining reliable results in reverse transcription-quantitative PCR (RT-qPCR). In this study, we assessed Actinidia deliciosa leaves inoculated with two doses of Pseudomonas syringae pv. actinidiae during a period of 13 days for the expression profile of nine candidate RGs. Their expression stability was calculated using four algorithms: geNorm, NormFinder, BestKeeper and the deltaCt method. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and protein phosphatase 2A (PP2A) were the most stable genes, while β-tubulin and 7s-globulin were the less stable. Expression analysis of three target genes, chosen for RGs validation, encoding the reactive oxygen species scavenging enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT) indicated that a combination of stable RGs, such as GAPDH and PP2A, can lead to an accurate quantification of the expression levels of such target genes. The APX level varied during the experiment time course and according to the inoculum doses, whereas both SOD and CAT resulted down-regulated during the first four days, and up-regulated afterwards, irrespective of inoculum dose. These results can be useful for better elucidating the molecular interaction in the A. deliciosa/P. s. pv. actinidiae pathosystem and for RGs selection in bacteria-plant pathosystems. PMID:26581656

  16. The conserved upstream region of lscB/C determines expression of different levansucrase genes in plant pathogen Pseudomonas syringae

    PubMed Central

    2014-01-01

    Background Pseudomonas syringae pv. glycinea PG4180 is an opportunistic plant pathogen which causes bacterial blight of soybean plants. It produces the exopolysaccharide levan by the enzyme levansucrase. Levansucrase has three gene copies in PG4180, two of which, lscB and lscC, are expressed while the third, lscA, is cryptic. Previously, nucleotide sequence alignments of lscB/C variants in various P. syringae showed that a ~450-bp phage-associated promoter element (PAPE) including the first 48 nucleotides of the ORF is absent in lscA. Results Herein, we tested whether this upstream region is responsible for the expression of lscB/C and lscA. Initially, the transcriptional start site for lscB/C was determined. A fusion of the PAPE with the ORF of lscA (lscB UpN A) was generated and introduced to a levan-negative mutant of PG4180. Additionally, fusions comprising of the non-coding part of the upstream region of lscB with lscA (lscB Up A) or the upstream region of lscA with lscB (lscA Up B) were generated. Transformants harboring the lscB UpN A or the lscB Up A fusion, respectively, showed levan formation while the transformant carrying lscA Up B did not. qRT-PCR and Western blot analyses showed that lscB UpN A had an expression similar to lscB while lscB Up A had a lower expression. Accuracy of protein fusions was confirmed by MALDI-TOF peptide fingerprinting. Conclusions Our data suggested that the upstream sequence of lscB is essential for expression of levansucrase while the N-terminus of LscB mediates an enhanced expression. In contrast, the upstream region of lscA does not lead to expression of lscB. We propose that lscA might be an ancestral levansucrase variant upstream of which the PAPE got inserted by potentially phage-mediated transposition events leading to expression of levansucrase in P. syringae. PMID:24670199

  17. Evolutionary Relationship of Disease Resistance Genes in Soybean and Arabidopsis Specific for the Pseudomonas syringae Effectors AvrB and AvrRpm11[W][OPEN

    PubMed Central

    Ashfield, Tom; Redditt, Thomas; Russell, Andrew; Kessens, Ryan; Rodibaugh, Natalie; Galloway, Lauren; Kang, Qing; Podicheti, Ram; Innes, Roger W.

    2014-01-01

    In Arabidopsis (Arabidopsis thaliana), the Pseudomonas syringae effector proteins AvrB and AvrRpm1 are both detected by the RESISTANCE TO PSEUDOMONAS MACULICOLA1 (RPM1) disease resistance (R) protein. By contrast, soybean (Glycine max) can distinguish between these effectors, with AvrB and AvrRpm1 being detected by the Resistance to Pseudomonas glycinea 1b (Rpg1b) and Rpg1r R proteins, respectively. We have been using these genes to investigate the evolution of R gene specificity and have previously identified RPM1 and Rpg1b. Here, we report the cloning of Rpg1r, which, like RPM1 and Rpg1b, encodes a coiled-coil (CC)-nucleotide-binding (NB)-leucine-rich repeat (LRR) protein. As previously found for Rpg1b, we determined that Rpg1r is not orthologous with RPM1, indicating that the ability to detect both AvrB and AvrRpm1 evolved independently in soybean and Arabidopsis. The tightly linked soybean Rpg1b and Rpg1r genes share a close evolutionary relationship, with Rpg1b containing a recombination event that combined a NB domain closely related to Rpg1r with CC and LRR domains from a more distantly related CC-NB-LRR gene. Using structural modeling, we mapped polymorphisms between Rpg1b and Rpg1r onto the predicted tertiary structure of Rpg1b, which revealed highly polymorphic surfaces within both the CC and LRR domains. Assessment of chimeras between Rpg1b and Rpg1r using a transient expression system revealed that AvrB versus AvrRpm1 specificity is determined by the C-terminal portion of the LRR domain. The P. syringae effector AvrRpt2, which targets RPM1 INTERACTOR4 (RIN4) proteins in both Arabidopsis and soybean, partially blocked recognition of both AvrB and AvrRpm1 in soybean, suggesting that both Rpg1b and Rpg1r may detect these effectors via modification of a RIN4 homolog. PMID:25034017

  18. Survival differences among freeze-dried genetically engineered and wild-type bacteria.

    PubMed Central

    Israeli, E; Shaffer, B T; Hoyt, J A; Lighthart, B; Ganio, L M

    1993-01-01

    Because the death mechanisms of freeze-dried and air-dried bacteria are thought to be similar, freeze-drying was used to investigate the survival differences between potentially airborne genetically engineered microorganisms and their wild types. To this end, engineered strains of Escherichia coli and Pseudomonas syringae were freeze-dried and exposed to air, visible light, or both. The death rates of all engineered strains were significantly higher than those of their parental strains. Light and air exposure were found to increase the death rates of all strains. Application of death rate models to freeze-dried engineered bacteria to be released into the environment is discussed. PMID:8434925

  19. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

    PubMed Central

    Etminani, Faegheh; Harighi, Behrouz

    2018-01-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity. PMID:29887777

  20. Potential application of Northern Argentine propolis to control some phytopathogenic bacteria.

    PubMed

    Ordóñez, R M; Zampini, I C; Moreno, M I Nieva; Isla, M I

    2011-10-20

    The antimicrobial activity of samples of Northern Argentine propolis (Tucumán, Santiago del Estero and Chaco) against phytopathogenic bacteria was assessed and the most active samples were identified. Minimal inhibitory concentration (MIC) values were determined by agar macrodilution and broth microdilution assays. Strong antibacterial activity was detected against Erwinia carotovora spp carotovora CECT 225, Pseudomonas syringae pvar tomato CECT 126, Pseudomonas corrugata CECT 124 and Xanthomonas campestris pvar vesicatoria CECT 792. The most active propolis extract (Tucumán, T1) was selected to bioguide isolation and identified for antimicrobial compound (2',4'-dihydroxychalcone). The antibacterial chalcone was more active than the propolis ethanolic extract (MIC values of 0.5-1 μg ml(-1) and 9.5-15 μg ml(-1), respectively). Phytotoxicity assays were realized and the propolis extracts did not retard germination of lettuce seeds or the growth of onion roots. Propolis solutions applied as sprays on tomato fruits infected with P. syringae reduced the severity of disease. Application of the Argentine propolis extracts diluted with water may be promising for the management of post harvest diseases of fruits. Copyright © 2010 Elsevier GmbH. All rights reserved.

  1. Induction of plant defense gene expression by plant activators and Pseudomonas syringae pv. tomato in greenhouse-grown tomatoes.

    PubMed

    Herman, M A B; Davidson, J K; Smart, C D

    2008-11-01

    Plant activators provide an appealing management option for bacterial diseases of greenhouse-grown tomatoes. Two types of plant activators, one that induces systemic acquired resistance (SAR) and a second that activates induced systemic resistance (ISR), were evaluated for control of Pseudomonas syringae pv. tomato and effect on plant defense gene activation. Benzothiadiazole (BTH, SAR-inducing compound) effectively reduced bacterial speck incidence and severity, both alone and in combination with the ISR-inducing product. Application of BTH also led to elevated activation of salicylic acid and ethylene-mediated responses, based on real-time polymerase chain reaction analysis of marker gene expression levels. In contrast, the ISR-inducing product (made up of plant growth-promoting rhizobacteria) inconsistently modified defense gene expression and did not provide disease control to the same level as did BTH. No antagonism was observed by combining the two activators as control of bacterial speck was similar to or better than BTH alone.

  2. Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence.

    PubMed

    Yang, Li; Teixeira, Paulo José Pereira Lima; Biswas, Surojit; Finkel, Omri M; He, Yijian; Salas-Gonzalez, Isai; English, Marie E; Epple, Petra; Mieczkowski, Piotr; Dangl, Jeffery L

    2017-02-08

    Independently evolved pathogen effectors from three branches of life (ascomycete, eubacteria, and oomycete) converge onto the Arabidopsis TCP14 transcription factor to manipulate host defense. However, the mechanistic basis for defense control via TCP14 regulation is unknown. We demonstrate that TCP14 regulates the plant immune system by transcriptionally repressing a subset of the jasmonic acid (JA) hormone signaling outputs. A previously unstudied Pseudomonas syringae (Psy) type III effector, HopBB1, interacts with TCP14 and targets it to the SCF COI1 degradation complex by connecting it to the JA signaling repressor JAZ3. Consequently, HopBB1 de-represses the TCP14-regulated subset of JA response genes and promotes pathogen virulence. Thus, HopBB1 fine-tunes host phytohormone crosstalk by precisely manipulating part of the JA regulon to avoid pleiotropic host responses while promoting pathogen proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads.

    PubMed

    Weng, Lindong; Tessier, Shannon N; Swei, Anisa; Stott, Shannon L; Toner, Mehmet

    2017-04-01

    The control of ice nucleation is of fundamental significance in many process technologies related to food and pharmaceutical science and cryobiology. Mechanical perturbation, electromagnetic fields and ice-nucleating agents (INAs) have been known to induce ice nucleation in a controlled manner. But these ice-nucleating methods may suffer from cumbersome manual operations, safety concerns of external fields, and biocompatibility and recovery issues of INA particles, especially when used in living systems. Given the automatic ice-seeding nature of INAs, a promising solution to overcome some of the above limitations is to engineer a biocomposite that accommodates the INA particles but minimizes their interactions with biologics, as well as enabling the recovery of used particles. In this study, freeze-dried Pseudomonas syringae, a model ice-nucleating agent, was encapsulated into microliter-sized alginate beads. We evaluated the performance of the bacterial hydrogel beads to initiate ice nucleation in water and aqueous glycerol solution by investigating factors including the size and number of the beads and the local concentration of INA particles. In the aqueous sample of a fixed volume, the total mass of the INA particles (m) was found to be the governing parameter that is solely responsible for determining the ice nucleation performance of the bacterial hydrogel beads. The freezing temperature has a strong positive linear correlation with log 10 m. The findings in this study provide an effective, predictable approach to control ice nucleation, which can improve the outcome and standardization of many ice-assisted process technologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean, soybean, and Arabidopsis

    PubMed Central

    Chen, Nicolas W. G.; Sévignac, Mireille; Thareau, Vincent; Magdelenat, Ghislaine; David, Perrine; Ashfield, Tom; Innes, Roger W.; Geffroy, Valérie

    2010-01-01

    Summary In plants, the evolution of specific resistance is poorly understood. Pseudomonas syringae effectors AvrB and AvrRpm1 are recognized by phylogenetically distinct resistance (R) proteins in Arabidopsis (Brassicaceae) and soybean (Glycine max, Fabaceae). In soybean, these resistances are encoded by two tightly linked R genes Rpg1-b and Rpg1-r. To study the evolution of these specific resistances, we investigated AvrB- and AvrRpm1-induced responses in common bean (Phaseolus vulgaris, Fabaceae).Common bean genotypes of various geographical origins were inoculated with P. syringae strains expressing AvrB or AvrRpm1. A common bean recombinant-inbred-line (RIL) population was used to map R genes to AvrRpm1.No common bean genotypes recognized AvrB. By contrast, multiple genotypes responded to AvrRpm1, and two independent R genes conferring AvrRpm1-specific resistance were mapped to the ends of linkage group B11 (Rpsar-1) and B8 (Rpsar-2). Rpsar-1 is located in a region syntenic with the soybean Rpg1 cluster. However, mapping of specific Rpg1 homologous genes suggests that AvrRpm1 recognition evolved independently in common bean and soybean.The conservation of genomic position of AvrRpm1-specific genes between soybean and common bean suggests a model whereby specific clusters of R genes are predisposed to evolve recognition of the same effector molecules. PMID:20561214

  5. Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000.

    PubMed

    Lewis, Laura A; Polanski, Krzysztof; de Torres-Zabala, Marta; Jayaraman, Siddharth; Bowden, Laura; Moore, Jonathan; Penfold, Christopher A; Jenkins, Dafyd J; Hill, Claire; Baxter, Laura; Kulasekaran, Satish; Truman, William; Littlejohn, George; Prusinska, Justyna; Mead, Andrew; Steinbrenner, Jens; Hickman, Richard; Rand, David; Wild, David L; Ott, Sascha; Buchanan-Wollaston, Vicky; Smirnoff, Nick; Beynon, Jim; Denby, Katherine; Grant, Murray

    2015-11-01

    Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae. © 2015 American Society of Plant Biologists. All rights reserved.

  6. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.

    PubMed

    Marinho, Palloma Rodrigues; Moreira, Ana Paula Barbosa; Pellegrino, Flávia Lúcia Piffano Costa; Muricy, Guilherme; Bastos, Maria do Carmo de Freire; Santos, Kátia Regina Netto dos; Giambiagi-deMarval, Marcia; Laport, Marinella Silva

    2009-08-01

    Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  7. Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis.

    PubMed

    Wei, Hai-Lei; Zhang, Wei; Collmer, Alan

    2018-05-08

    The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E) proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Pseudomonas syringae effector avrB confers soybean cultivar-specific avirulence on Soybean mosaic virus adapted for transgene expression but effector avrPto does not.

    PubMed

    Wang, Li; Eggenberger, Alan; Hill, John; Bogdanove, Adam J

    2006-03-01

    Soybean mosaic virus (SMV) was adapted for transgene expression in soybean and used to examine the function of avirulence genes avrB and avrPto of Pseudomonas syringae pvs. glycinea and tomato, respectively. A cloning site was introduced between the P1 and HC-Pro genes in 35S-driven infectious cDNAs of strains SMV-N and SMV-G7. Insertion of the uidA gene or the green fluorescent protein gene into either modified cDNA and bombardment into primary leaves resulted in systemic expression that reflected the pattern of viral movement into uninoculated leaves. Insertion of avrB blocked symptom development and detectable viral movement in cv. Harosoy, which carries the Rpg1-b resistance gene corresponding to avrB, but not in cvs. Keburi or Hurrelbrink, which lack Rpg1-b. In Keburi and Hurrelbrink, symptoms caused by SMV carrying avrB appeared more quickly and were more severe than those caused by the virus without avrB. Insertion of avrPto enhanced symptoms in Harosoy, Hurrelbrink, and Keburi. This result was unexpected because avrPto was reported to confer avirulence on P. syringae pv. glycinea inoculated to Harosoy. We inoculated Harosoy with P syringae pv. glycinea expressing avrPto, but observed no hypersensitive reaction, avrPto-dependent induction of pathogenesis-related protein la, or limitation of bacterial population growth. In Hurrelbrink, avrPto enhanced bacterial multiplication and exacerbated symptoms. Our results establish SMV as an expression vector for soybean. They demonstrate that resistance triggered by avrB is effective against SMV, and that avrB and avrPto have general virulence effects in soybean. The results also led to a reevaluation of the reported avirulence activity of avrPto in this plant.

  9. GABA (γ-Aminobutyric Acid) Uptake Via the GABA Permease GabP Represses Virulence Gene Expression in Pseudomonas syringae pv. tomato DC3000.

    PubMed

    McCraw, S L; Park, D H; Jones, R; Bentley, M A; Rico, A; Ratcliffe, R G; Kruger, N J; Collmer, A; Preston, G M

    2016-12-01

    The nonprotein amino acid γ-aminobutyric acid (GABA) is the most abundant amino acid in the tomato (Solanum lycopersicum) leaf apoplast and is synthesized by Arabidopsis thaliana in response to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000). High levels of exogenous GABA have previously been shown to repress the expression of the type III secretion system (T3SS) in DC3000, resulting in reduced elicitation of the hypersensitive response (HR) in the nonhost plant tobacco (Nicotiana tabacum). This study demonstrates that the GABA permease GabP provides the primary mechanism for GABA uptake by DC3000 and that the gabP deletion mutant ΔgabP is insensitive to GABA-mediated repression of T3SS expression. ΔgabP displayed an enhanced ability to elicit the HR in young tobacco leaves and in tobacco plants engineered to produce increased levels of GABA, which supports the hypothesis that GABA uptake via GabP acts to regulate T3SS expression in planta. The observation that P. syringae can be rendered insensitive to GABA through loss of gabP but that gabP is retained by this bacterium suggests that GabP is important for DC3000 in a natural setting, either for nutrition or as a mechanism for regulating gene expression. [Formula: see text] Copyright © 2016 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

  10. Arabidopsis PECTIN METHYLESTERASEs Contribute to Immunity against Pseudomonas syringae1[C][W][OPEN

    PubMed Central

    Bethke, Gerit; Grundman, Rachael E.; Sreekanta, Suma; Truman, William; Katagiri, Fumiaki; Glazebrook, Jane

    2014-01-01

    Pectins, major components of dicot cell walls, are synthesized in a heavily methylesterified form in the Golgi and are partially deesterified by pectin methylesterases (PMEs) upon export to the cell wall. PME activity is important for the virulence of the necrotrophic fungal pathogen Botrytis cinerea. Here, the roles of Arabidopsis PMEs in pattern-triggered immunity and immune responses to the necrotrophic fungus Alternaria brassicicola and the bacterial hemibiotroph Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) were studied. Plant PME activity increased during pattern-triggered immunity and after inoculation with either pathogen. The increase of PME activity in response to pathogen treatment was concomitant with a decrease in pectin methylesterification. The pathogen-induced PME activity did not require salicylic acid or ethylene signaling, but was dependent on jasmonic acid signaling. In the case of induction by A. brassicicola, the ethylene response factor, but not the MYC2 branch of jasmonic acid signaling, contributed to induction of PME activity, whereas in the case of induction by Pma ES4326, both branches contributed. There are 66 PME genes in Arabidopsis, suggesting extensive genetic redundancy. Nevertheless, selected pme single, double, triple and quadruple mutants allowed significantly more growth of Pma ES4326 than wild-type plants, indicating a role of PMEs in resistance to this pathogen. No decreases in total PME activity were detected in these pme mutants, suggesting that the determinant of immunity is not total PME activity; rather, it is some specific effect of PMEs such as changes in the pattern of pectin methylesterification. PMID:24367018

  11. Genomics-Based Exploration of Virulence Determinants and Host-Specific Adaptations of Pseudomonas syringae Strains Isolated from Grasses

    PubMed Central

    Dudnik, Alexey; Dudler, Robert

    2014-01-01

    The Pseudomonas syringae species complex has recently been named the number one plant pathogen, due to its economic and environmental impacts, as well as for its role in scientific research. The bacterium has been repeatedly reported to cause outbreaks on bean, cucumber, stone fruit, kiwi and olive tree, as well as on other crop and non-crop plants. It also serves as a model organism for research on the Type III secretion system (T3SS) and plant-pathogen interactions. While most of the current work on this pathogen is either carried out on one of three model strains found on dicot plants with completely sequenced genomes or on isolates obtained from recent outbreaks, not much is known about strains isolated from grasses (Poaceae). Here, we use comparative genomics in order to identify putative virulence-associated genes and other Poaceae-specific adaptations in several newly available genome sequences of strains isolated from grass species. All strains possess only a small number of known Type III effectors, therefore pointing to the importance of non-Type III secreted virulence factors. The implications of this finding are discussed. PMID:25437611

  12. Phospholipid analysis and fractional reconstitution of the ice nucleation protein activity purified from Escherichia coli overexpressing the inaZ gene of Pseudomonas syringae.

    PubMed

    Palaiomylitou, M A; Kalimanis, A; Koukkou, A I; Drainas, C; Anastassopoulos, E; Panopoulos, N J; Ekateriniadou, L V; Kyriakidis, D A

    1998-08-01

    Ice nucleation protein was partially purified from the membrane fraction of E. coli carrying inaZ from Pseudomonas syringae. The ice nucleation protein was totally localized in the bacterial envelope and was extracted by either salt (0.25 M NH4Cl) or the nonionic detergent Tween 20. The extracted protein was partially purified by sequential passage through DEAE-52 cellulose and Sephacryl-S400 columns. The activity of the purified protein was lost after treatment with phospholipase C, and its activity was subsequently restored by addition of the naturally occurring lipid phosphatidylethanolamine. These results suggest that ice nucleation proteins have a requirement for lipids that reconstitute a physiological hydrophobic environment similar to the one existing in vivo, to attain and maintain a structure that enables ice catalysis. Copyright 1998 Academic Press.

  13. Pseudomonas aeruginosa Type III Secretory Toxin ExoU and Its Predicted Homologs.

    PubMed

    Sawa, Teiji; Hamaoka, Saeko; Kinoshita, Mao; Kainuma, Atsushi; Naito, Yoshifumi; Akiyama, Koichi; Kato, Hideya

    2016-10-26

    Pseudomonas aeruginosa ExoU, a type III secretory toxin and major virulence factor with patatin-like phospholipase activity, is responsible for acute lung injury and sepsis in immunocompromised patients. Through use of a recently updated bacterial genome database, protein sequences predicted to be homologous to Ps. aeruginosa ExoU were identified in 17 other Pseudomonas species ( Ps. fluorescens , Ps. lundensis , Ps. weihenstephanensis , Ps. marginalis, Ps. rhodesiae, Ps. synxantha , Ps. libanensis , Ps. extremaustralis , Ps. veronii , Ps. simiae , Ps. trivialis , Ps. tolaasii , Ps. orientalis , Ps. taetrolens , Ps. syringae , Ps. viridiflava , and Ps. cannabina ) and 8 Gram-negative bacteria from three other genera ( Photorhabdus , Aeromonas , and Paludibacterium ). In the alignment of the predicted primary amino acid sequences used for the phylogenetic analyses, both highly conserved and nonconserved parts of the toxin were discovered among the various species. Further comparative studies of the predicted ExoU homologs should provide us with more detailed information about the unique characteristics of the Ps. aeruginosa ExoU toxin.

  14. Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases

    PubMed Central

    Bender, Carol L.; Alarcón-Chaidez, Francisco; Gross, Dennis C.

    1999-01-01

    Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents. PMID:10357851

  15. Regulation of miR163 and its targets in defense against Pseudomonas syringae in Arabidopsis thaliana.

    PubMed

    Chow, Hiu Tung; Ng, Danny W-K

    2017-04-12

    Small RNAs are important regulators for a variety of biological processes, including leaf development, flowering-time, embryogenesis and defense responses. miR163 is a non-conserved miRNA and its locus has evolved recently through inverted duplication of its target genes to which they belong to the SABATH family of related small-molecule methyltransferases (MTs). In Arabidopsis thaliana, previous study demonstrated that miR163 accumulation was induced by alamethicin treatment, suggesting its roles in defense response pathways. Enhanced resistance against Pseudomonas syringae pv. tomato (Pst) was observed in the mir163 mutant, whereas transgenic lines overexpressing miR163 showed increase sensitivity to Pst, suggesting that miR163 is a negative regulator of defense response. Elevated level of miR163 and its targets in A. thaliana were observed upon Pst treatment, suggesting a modulating relationship between miR163 and its targets. In addition, miR163 and histone deacetylase were found to act cooperatively in mediating defense against Pst. Transgenic plants overexpressing miR163-resistant targets suggested their different contributions in defense. Results from this study revealed that the stress-inducible miR163 and its targets act in concert to modulate defense responses against bacterial pathogen in A. thaliana.

  16. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    PubMed

    Gilardi, G L; Faur, Y C

    1984-10-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. The remaining seven strains represented an undescribed taxon. These pink bacteria appear to be invaders of debilitated patients with an underlying chronic disease.

  17. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    PubMed Central

    Gilardi, G L; Faur, Y C

    1984-01-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. The remaining seven strains represented an undescribed taxon. These pink bacteria appear to be invaders of debilitated patients with an underlying chronic disease. PMID:6490848

  18. Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000[OPEN

    PubMed Central

    Lewis, Laura A.; Polanski, Krzysztof; de Torres-Zabala, Marta; Bowden, Laura; Jenkins, Dafyd J.; Hill, Claire; Baxter, Laura; Truman, William; Prusinska, Justyna; Hickman, Richard; Wild, David L.; Ott, Sascha; Buchanan-Wollaston, Vicky; Beynon, Jim

    2015-01-01

    Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae. PMID:26566919

  19. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels ofmore » GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.« less

  20. Release of cell-free ice nuclei from Halomonas elongata expressing the ice nucleation gene inaZ of Pseudomonas syringae.

    PubMed

    Tegos, G; Vargas, C; Perysinakis, A; Koukkou, A I; Christogianni, A; Nieto, J J; Ventosa, A; Drainas, C

    2000-11-01

    Release of ice nuclei in the growth medium of recombinant Halomonas elongata cells expressing the inaZ gene of Pseudomonas syringae was studied in an attempt to produce cell-free active ice nuclei for biotechnological applications. Cell-free ice nuclei were not retained by cellulose acetate filters of 0.2 microm pore size. Highest activity of cell-free ice nuclei was obtained when cells were grown in low salinity (0.5-5% NaCl, w/v). Freezing temperature threshold, estimated to be below -7 degrees C indicating class C nuclei, was not affected by medium salinity. Their density, as estimated by Percoll density centrifugation, was 1.018 +/- 0.002 gml(-1) and they were found to be free of lipids. Ice nuclei are released in the growth medium of recombinant H. elongata cells probably because of inefficient anchoring of the ice-nucleation protein aggregates in the outer membrane. The ice+ recombinant H. elongata cells could be useful for future use as a source of active cell-free ice nucleation protein.

  1. The Tomato Kinase Pti1 Contributes to Production of Reactive Oxygen Species in Response to Two Flagellin-Derived Peptides and Promotes Resistance to Pseudomonas syringae Infection.

    PubMed

    Schwizer, Simon; Kraus, Christine M; Dunham, Diane M; Zheng, Yi; Fernandez-Pozo, Noé; Pombo, Marina A; Fei, Zhangjun; Chakravarthy, Suma; Martin, Gregory B

    2017-09-01

    The Pti1 kinase was identified from a reverse genetic screen as contributing to pattern-triggered immunity (PTI) against Pseudomonas syringae pv. tomato (Pst). The tomato genome has two Pti1 genes, referred to as Pti1a and Pti1b. A hairpin-Pti1 (hpPti1) construct was developed and was used to generate two independent stable transgenic tomato lines that had reduced transcript abundance of both genes. In response to P. syringae pv. tomato inoculation, these hpPti1 plants developed more severe disease symptoms, supported higher bacterial populations, and had reduced transcript accumulation of PTI-associated genes, as compared with wild-type plants. In response to two flagellin-derived peptides, the hpPti1 plants produced lesser amounts of reactive oxygen species (ROS) but showed no difference in mitogen-activated protein kinase (MAPK). Synthetic Pti1a and Pti1b genes designed to avoid silencing were transiently expressed in the hpPti1 plants and restored the ability of the plants to produce wild-type levels of ROS. Our results identify a new component of PTI in tomato that, because it affects ROS production but not MAPK signaling, appears to act early in the immune response.

  2. Drought Stress Predominantly Endures Arabidopsis thaliana to Pseudomonas syringae Infection

    PubMed Central

    Gupta, Aarti; Dixit, Sandeep K.; Senthil-Kumar, Muthappa

    2016-01-01

    Plant responses to a combination of drought and bacterial pathogen infection, an agronomically important and altogether a new stress, are not well-studied. While occurring concurrently, these two stresses can lead to synergistic or antagonistic effects on plants due to stress-interaction. It is reported that plant responses to the stress combinations consist of both strategies, unique to combined stress and those shared between combined and individual stresses. However, the combined stress response mechanisms governing stress interaction and net impact are largely unknown. In order to study these adaptive strategies, an accurate and convenient methodology is lacking even in model plants like Arabidopsis thaliana. The gradual nature of drought stress imposition protocol poses a hindrance in simultaneously applying pathogen infection under laboratory conditions to achieve combined stress. In present study we aimed to establish systematic combined stress protocol and to study physiological responses of the plants to various degrees of combined stress. Here, we have comprehensively studied the impact of combined drought and Pseudomonas syringae pv. tomato DC3000 infection on A. thaliana. Further, by employing different permutations of drought and pathogen stress intensities, an attempt was made to dissect the contribution of each individual stress effects during their concurrence. We hereby present two main aspects of combined stress viz., stress interaction and net impact of the stress on plants. Mainly, this study established a systematic protocol to assess the impact of combined drought and bacterial pathogen stress. It was observed that as a result of net impact, some physiological responses under combined stress are tailored when compared to the plants exposed to individual stresses. We also infer that plant responses under combined stress in this study are predominantly influenced by the drought stress. Our results show that pathogen multiplication was reduced by

  3. Improvement of the Efficacy of Linear Undecapeptides against Plant-Pathogenic Bacteria by Incorporation of d-Amino Acids ▿

    PubMed Central

    Güell, Imma; Cabrefiga, Jordi; Badosa, Esther; Ferre, Rafael; Talleda, Montserrat; Bardají, Eduard; Planas, Marta; Feliu, Lidia; Montesinos, Emilio

    2011-01-01

    A set of 31 undecapeptides, incorporating 1 to 11 d-amino acids and derived from the antimicrobial peptide BP100 (KKLFKKILKYL-NH2), was designed and synthesized. This set was evaluated for inhibition of growth of the plant-pathogenic bacteria Erwinia amylovora, Pseudomonas syringae pv. syringae, and Xanthomonas axonopodis pv. vesicatoria, hemolysis, and protease degradation. Two derivatives were as active as BP100, and 10 peptides displayed improved activity, with the all-d isomer being the most active. Twenty-six peptides were less hemolytic than BP100, and all peptides were more stable against protease degradation. Plant extracts inhibited the activity of BP100 as well as that of the d-isomers. Ten derivatives incorporating one d-amino acid each were tested in an infectivity inhibition assay with the three plant-pathogenic bacteria by using detached pear and pepper leaves and pear fruits. All 10 peptides studied were active against E. amylovora, 6 displayed activity against P. syringae pv. syringae, and 2 displayed activity against X. axonopodis pv. vesicatoria. Peptides BP143 (KKLFKKILKYL-NH2) and BP145 (KKLFKKILKYL-NH2), containing one d-amino acid at positions 4 and 2 (underlined), respectively, were evaluated in whole-plant assays for the control of bacterial blight of pepper and pear and fire blight of pear. Peptide BP143 was as effective as streptomycin in the three pathosystems, was more effective than BP100 against bacterial blight of pepper and pear, and equally effective against fire blight of pear. PMID:21335383

  4. In-silico Taxonomic Classification of 373 Genomes Reveals Species Misidentification and New Genospecies within the Genus Pseudomonas.

    PubMed

    Tran, Phuong N; Savka, Michael A; Gan, Han Ming

    2017-01-01

    The genus Pseudomonas has one of the largest diversity of species within the Bacteria kingdom. To date, its taxonomy is still being revised and updated. Due to the non-standardized procedure and ambiguous thresholds at species level, largely based on 16S rRNA gene or conventional biochemical assay, species identification of publicly available Pseudomonas genomes remains questionable. In this study, we performed a large-scale analysis of all Pseudomonas genomes with species designation (excluding the well-defined P. aeruginosa ) and re-evaluated their taxonomic assignment via in silico genome-genome hybridization and/or genetic comparison with valid type species. Three-hundred and seventy-three pseudomonad genomes were analyzed and subsequently clustered into 145 distinct genospecies. We detected 207 erroneous labels and corrected 43 to the proper species based on Average Nucleotide Identity Multilocus Sequence Typing (MLST) sequence similarity to the type strain. Surprisingly, more than half of the genomes initially designated as Pseudomonas syringae and Pseudomonas fluorescens should be classified either to a previously described species or to a new genospecies. Notably, high pairwise average nucleotide identity (>95%) indicating species-level similarity was observed between P. synxantha-P. libanensis, P. psychrotolerans - P. oryzihabitans , and P. kilonensis- P. brassicacearum , that were previously differentiated based on conventional biochemical tests and/or genome-genome hybridization techniques.

  5. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

    PubMed Central

    Song, Yu-Rim; Choi, Min-Seon; Choi, Geun-Won; Park, Il-Kwon; Oh, Chang-Sik

    2016-01-01

    Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker disease in kiwifruit. Antibacterial activity of plant essential oils (PEOs) originating from 49 plant species were tested against Psa by a vapor diffusion and a liquid culture assays. The five PEOs from Pimenta racemosa, P. dioica, Melaleuca linariifolia, M. cajuputii, and Cinnamomum cassia efficiently inhibited Psa growth by either assays. Among their major components, estragole, eugenol, and methyl eugenol showed significant antibacterial activity by only the liquid culture assay, while cinnamaldehyde exhibited antibacterial activity by both assays. The minimum inhibitory concentrations (MICs) of estragole and cinnamaldehyde by the liquid culture assay were 1,250 and 2,500 ppm, respectively. The MIC of cinnamaldehyde by the vapor diffusion assay was 5,000 ppm. Based on the formation of clear zones or the decrease of optical density caused by these compounds, they might kill the bacterial cells and this feature might be useful for managing the bacterial canker disease in kiwifruit. PMID:27493612

  6. Response of tobacco to the Pseudomonas syringae pv. Tomato DC3000 is mainly dependent on salicylic acid signaling pathway.

    PubMed

    Liu, Yang; Wang, Li; Cai, Guohua; Jiang, Shanshan; Sun, Liping; Li, Dequan

    2013-07-01

    Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) was the first pathogen to be demonstrated to infect Arabidopsis and to cause disease symptoms in the laboratory setting. However, the defense response to Pst DC3000 was unclear in tobacco. In this report, the expression profiles of twelve defense response-related genes were analyzed after treatment with salicylic acid (SA), jasmonic acid (JA), and pathogen Pst DC3000 by qRT-PCR. According to our results, it could be presented that the genes primarily induced by SA were also induced to higher levels after Pst DC3000 infection. SA accumulation could be induced to a higher level than that of JA after Pst DC3000 infection. In addition, SA could result in hypersensitive response (HR), which did not completely depend on accumulation of reactive oxygen species. These results indicated that tobacco mainly depended on SA signaling pathway rather than on JA signaling pathway in response to Pst DC3000. Further study demonstrated that JA could significantly inhibit the accumulation of SA and the generation of the HR induced by Pst DC3000. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar

    PubMed Central

    González, Ana M.; Godoy, Luís

    2017-01-01

    Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F2 populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype. PMID:29168746

  8. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae.

    PubMed

    Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun

    2015-09-01

    Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: Physiology of phytopathogenic bacteria

    PubMed Central

    2013-01-01

    Background Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. Results A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. Conclusions From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development. PMID:23587016

  10. Clay-Bacteria Systems and Biofilm Production

    NASA Astrophysics Data System (ADS)

    Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

    2007-12-01

    Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

  11. In-silico Taxonomic Classification of 373 Genomes Reveals Species Misidentification and New Genospecies within the Genus Pseudomonas

    PubMed Central

    Tran, Phuong N.; Savka, Michael A.; Gan, Han Ming

    2017-01-01

    The genus Pseudomonas has one of the largest diversity of species within the Bacteria kingdom. To date, its taxonomy is still being revised and updated. Due to the non-standardized procedure and ambiguous thresholds at species level, largely based on 16S rRNA gene or conventional biochemical assay, species identification of publicly available Pseudomonas genomes remains questionable. In this study, we performed a large-scale analysis of all Pseudomonas genomes with species designation (excluding the well-defined P. aeruginosa) and re-evaluated their taxonomic assignment via in silico genome-genome hybridization and/or genetic comparison with valid type species. Three-hundred and seventy-three pseudomonad genomes were analyzed and subsequently clustered into 145 distinct genospecies. We detected 207 erroneous labels and corrected 43 to the proper species based on Average Nucleotide Identity Multilocus Sequence Typing (MLST) sequence similarity to the type strain. Surprisingly, more than half of the genomes initially designated as Pseudomonas syringae and Pseudomonas fluorescens should be classified either to a previously described species or to a new genospecies. Notably, high pairwise average nucleotide identity (>95%) indicating species-level similarity was observed between P. synxantha-P. libanensis, P. psychrotolerans–P. oryzihabitans, and P. kilonensis- P. brassicacearum, that were previously differentiated based on conventional biochemical tests and/or genome-genome hybridization techniques. PMID:28747902

  12. Plant Innate Immunity Induced by Flagellin Suppresses the Hypersensitive Response in Non-Host Plants Elicited by Pseudomonas syringae pv. averrhoi

    PubMed Central

    Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen

    2012-01-01

    A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction. PMID:22911741

  13. Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. averrhoi.

    PubMed

    Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen

    2012-01-01

    A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction.

  14. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... biological control agent to growing agricultural crops in accordance with good agricultural practices. [57 FR... 742RS; exemptions from the requirement of a tolerance. The biological pesticides Pseudomonas fluorescens...

  15. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... biological control agent to growing agricultural crops in accordance with good agricultural practices. [57 FR... 742RS; exemptions from the requirement of a tolerance. The biological pesticides Pseudomonas fluorescens...

  16. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... biological control agent to growing agricultural crops in accordance with good agricultural practices. [57 FR... 742RS; exemptions from the requirement of a tolerance. The biological pesticides Pseudomonas fluorescens...

  17. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... biological control agent to growing agricultural crops in accordance with good agricultural practices. [57 FR... 742RS; exemptions from the requirement of a tolerance. The biological pesticides Pseudomonas fluorescens...

  18. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... biological control agent to growing agricultural crops in accordance with good agricultural practices. [57 FR... 742RS; exemptions from the requirement of a tolerance. The biological pesticides Pseudomonas fluorescens...

  19. The receptor-like cytoplasmic kinase PCRK1 contributes to pattern-triggered immunity against Pseudomonas syringae in Arabidopsis thaliana.

    PubMed

    Sreekanta, Suma; Bethke, Gerit; Hatsugai, Noriyuki; Tsuda, Kenichi; Thao, Amanda; Wang, Lin; Katagiri, Fumiaki; Glazebrook, Jane

    2015-07-01

    In this paper we describe PATTERN-TRIGGERED IMMUNITY (PTI) COMPROMISED RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (PCRK1) of Arabidopsis thaliana, an RLCK that is important for defense against the pathogen Pseudomonas syringae pv. maculicola ES4326 (Pma ES4326). We examined defense responses such as bacterial growth, production of reactive oxygen species (ROS) and callose deposition in pcrk1 mutant plants to determine the role of PCRK1 during pathogen infection. Expression of PCRK1 was induced following pathogen infection. Pathogen growth was significantly higher in pcrk1 mutant lines than in wild-type Col-0. Mutant pcrk1 plants showed reduced pattern-triggered immunity (PTI) against Pma ES4326 after pretreatment with peptides derived from flagellin (flg22), elongation factor-Tu (elf18), or an endogenous protein (pep1). Deposition of callose was reduced in pcrk1 plants, indicating a role of PCRK1 in activation of early immune responses. A PCRK1 transgene containing a mutation in a conserved lysine residue important for phosphorylation activity of kinases (K118E) failed to complement a pcrk1 mutant for the Pma ES4326 growth phenotype. Our study shows that PCRK1 plays an important role during PTI and that a conserved lysine residue in the putative kinase domain is important for PCRK1 function. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Effect of Plant Species and Environmental Conditions on Ice Nucleation Activity of Pseudomonas syringae on Leaves.

    PubMed

    O'brien, R D; Lindow, S E

    1988-09-01

    Selected plant species and environmental conditions were investigated for their influences on expression of ice nucleation activity by 15 Pseudomonas syringae strains grown on plants in constant-temperature growth chamber studies. Ice nucleation frequencies (INFs), the fraction of cells that expressed ice nucleation at -5 or -9 degrees C, of individual strains varied greatly, both on plants and in culture. This suggests that the probability of frost injury, which is proportional to the number of ice nuclei on leaf surfaces, is strongly determined by the particular bacterial strains that are present on a leaf surface. The INFs of strains were generally higher when they were grown on plants than when they were grown in culture. In addition, INFs in culture did not correlate closely with INFs on plants, suggesting that frost injury prediction should be based on INF measurements of cells grown on plants rather than in culture. The relative INFs of individual strains varied with plant host and environment. However, none of seven plant species tested optimized the INFs of all 15 strains. Similarly, incubation for 48 h at near 100% relative humidity with short photoperiods did not always decrease the INF when compared with a 72 h, 40% relative humidity, long-photoperiod incubation. Pathogenic strains on susceptible hosts were not associated with higher or lower INFs relative to their INFs on nonsusceptible plant species. The ice nucleation activity of individual bacterial strains on plants therefore appears to be controlled by complex and interacting factors such as strain genotype, environment, and host plant species.

  1. [Characteristics of natural strains of naphthalene-utilizing bacteria of the genus Pseudomonas].

    PubMed

    Levchuk, A A; Vasilenko, S L; Bulyga, I M; Titok, M A; Thomas, K M

    2005-01-01

    Sixty-three strains of bacteria capable of utilizing naphthalene as the sole source of carbon and energy were isolated from 137 samples of soil taken in different sites in Belarus. All isolated bacteria contained extrachromosomal genetic elements of 45 to 150 kb in length. It was found that bacteria of 31 strains contained the IncP-9 incompatibility group plasmids, bacteria of one strain carried a plasmid containing replicons IncP-9 and IncP-7, and bacteria of 31 strains contained unidentified plasmids. Primary identification showed that the hosts of plasmids of naphthalene biodegradation are fluorescent bacteria of the genus Pseudomonas (P. putida and P. aeruginosa; a total of 47 strains) and unidentified nonfluorescent microorganisms (a total of 16 strains). In addition to the ability to utilize naphthalene, some strains exhibited the ability to stimulate the growth and development of the root system of Secale cereale.

  2. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae1[OPEN

    PubMed Central

    Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun

    2015-01-01

    Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. PMID:26265775

  3. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    NASA Astrophysics Data System (ADS)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  4. Changes in cultivar-specificity toward pea can result from transfer of plasmid RP4 and other incompatibility group P1 replicons to Pseudomonas syringae pv. pisi.

    PubMed

    Moulton, P J; Vivian, A; Hunter, P J; Taylor, J D

    1993-12-01

    Transfer of RP4 and related replicons belonging to the Escherichia coli incompatibility group P (Pseudomonas aeruginosa IncP1) to races 2 and 6 of P. syringae pv. pisi was associated with the creation of two types of transconjugant, one resembling the parental race and the other showing an altered cultivar-specificity towards pea. The latter, irrespective of the parental race, exhibited a novel pattern of interaction with pea that corresponded to race 4; consequently such transconjugants were termed race 4-like. Curing of RP4 did not affect the phenotype, except in relation to the antibiotic resistances specified by RP4. The race 4-like strains were non-fluorescent when cultured on appropriate media (in contrast to the particular isolates of races 2 and 6 from which they were derived), showed an enhanced ability to inherit RP4 subsequently (at frequencies up to 10(-1) per recipient) and differed from their parental race in their pattern of plasmid profile. The plasmid profiles were similar for all race 4-like strains irrespective of origin. There was no evidence that RP4 had recombined with DNA in the recipient and probing failed to detect the retention of any part of RP4 in cured strains. The inheritance of the related cosmid vector, pLAFR3, had similar effects in races 2 and 6. This observation is important since this vector has been widely used to clone avirulence genes in plant pathogenic bacteria. Transfer of the IncW plasmids S-a and R388 did not cause any changes in the fluorescence or cultivar-specificity of races 2 or 6.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine

    PubMed Central

    Zhou, Yeling; Vroegop-Vos, Irene; Schuurink, Robert C.; Pieterse, Corné M. J.; Van Wees, Saskia C. M.

    2017-01-01

    Atmospheric CO2 influences plant growth and stomatal aperture. Effects of high or low CO2 levels on plant disease resistance are less well understood. Here, resistance of Arabidopsis thaliana against the foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) was investigated at three different CO2 levels: high (800 ppm), ambient (450 ppm), and low (150 ppm). Under all conditions tested, infection by Pst resulted in stomatal closure within 1 h after inoculation. However, subsequent stomatal reopening at 4 h, triggered by the virulence factor coronatine (COR), occurred only at ambient and high CO2, but not at low CO2. Moreover, infection by Pst was reduced at low CO2 to the same extent as infection by mutant Pst cor-. Under all CO2 conditions, the ABA mutants aba2-1 and abi1-1 were as resistant to Pst as wild-type plants under low CO2, which contained less ABA. Moreover, stomatal reopening mediated by COR was dependent on ABA. Our results suggest that reduced ABA levels at low CO2 contribute to the observed enhanced resistance to Pst by deregulation of virulence responses. This implies that enhanced ABA levels at increasing CO2 levels may have a role in weakening plant defense. PMID:28559899

  6. cis-antisense RNA, another level of gene regulation in bacteria.

    PubMed

    Georg, Jens; Hess, Wolfgang R

    2011-06-01

    A substantial amount of antisense transcription is a hallmark of gene expression in eukaryotes. However, antisense transcription was first demonstrated in bacteria almost 50 years ago. The transcriptomes of bacteria as different as Helicobacter pylori, Bacillus subtilis, Escherichia coli, Synechocystis sp. strain PCC6803, Mycoplasma pneumoniae, Sinorhizobium meliloti, Geobacter sulfurreducens, Vibrio cholerae, Chlamydia trachomatis, Pseudomonas syringae, and Staphylococcus aureus have now been reported to contain antisense RNA (asRNA) transcripts for a high percentage of genes. Bacterial asRNAs share functional similarities with trans-acting regulatory RNAs, but in addition, they use their own distinct mechanisms. Among their confirmed functional roles are transcription termination, codegradation, control of translation, transcriptional interference, and enhanced stability of their respective target transcripts. Here, we review recent publications indicating that asRNAs occur as frequently in simple unicellular bacteria as they do in higher organisms, and we provide a comprehensive overview of the experimentally confirmed characteristics of asRNA actions and intimately linked quantitative aspects. Emerging functional data suggest that asRNAs in bacteria mediate a plethora of effects and are involved in far more processes than were previously anticipated. Thus, the functional impact of asRNAs should be considered when developing new strategies against pathogenic bacteria and when optimizing bacterial strains for biotechnology.

  7. cis-Antisense RNA, Another Level of Gene Regulation in Bacteria

    PubMed Central

    Georg, Jens; Hess, Wolfgang R.

    2011-01-01

    Summary: A substantial amount of antisense transcription is a hallmark of gene expression in eukaryotes. However, antisense transcription was first demonstrated in bacteria almost 50 years ago. The transcriptomes of bacteria as different as Helicobacter pylori, Bacillus subtilis, Escherichia coli, Synechocystis sp. strain PCC6803, Mycoplasma pneumoniae, Sinorhizobium meliloti, Geobacter sulfurreducens, Vibrio cholerae, Chlamydia trachomatis, Pseudomonas syringae, and Staphylococcus aureus have now been reported to contain antisense RNA (asRNA) transcripts for a high percentage of genes. Bacterial asRNAs share functional similarities with trans-acting regulatory RNAs, but in addition, they use their own distinct mechanisms. Among their confirmed functional roles are transcription termination, codegradation, control of translation, transcriptional interference, and enhanced stability of their respective target transcripts. Here, we review recent publications indicating that asRNAs occur as frequently in simple unicellular bacteria as they do in higher organisms, and we provide a comprehensive overview of the experimentally confirmed characteristics of asRNA actions and intimately linked quantitative aspects. Emerging functional data suggest that asRNAs in bacteria mediate a plethora of effects and are involved in far more processes than were previously anticipated. Thus, the functional impact of asRNAs should be considered when developing new strategies against pathogenic bacteria and when optimizing bacterial strains for biotechnology. PMID:21646430

  8. Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae

    PubMed Central

    Zhang, Renshan; Qi, Hua; Sun, Yuzhe; Xiao, Shi

    2017-01-01

    Disease resistance exerts a fitness cost on plants, presumably due to the extra consumption of energy and carbon. In this study, we examined whether transgenic Arabidopsis thaliana with increased levels of ATP and sucrose is more resistant or susceptible to pathogen infection. Lines of A. thaliana over-expressing purple acid phosphatase 2 (AtPAP2) (OE lines) contain increased levels of ATP and sucrose, with improved growth rate and seed production. Compared to wild type (WT) and pap2 lines, the OE lines were more susceptible to several Pseudomonas syringae pv. tomato (Pst) strains carrying AvrRpm1, AvrRpt2 AvrRps4, AvrPtoB, HrcC and WT strain DC3000. The increased susceptibility of the OE lines to Pst strains cannot solely be attributed to the suppressed expression of R-genes but must also be attributed to the suppression of downstream signaling components, such as MOS2, EDS1 and EDS5. Before infection, the levels of salicylic acid (SA) and jasmonic acid (JA) precursor OPDA were similar in the leaves of OE, pap2 and WT plants, whereas the levels of JA and its derivative JA-Ile were significantly lower in the leaves of OE lines and higher in the pap2 line. The expression of JA marker defense gene PDF1.2 was up-regulated in the OE lines compared to the WT prior to Pst DC3000 infection, but its expression was lower in the OE lines after infection. In summary, high fitness Arabidopsis thaliana exhibited altered JA metabolism and broad suppression of R-genes and downstream genes as well as a higher susceptibility to Pst infections. PMID:28152090

  9. Antibiotic Resistance in Plant-Pathogenic Bacteria.

    PubMed

    Sundin, George W; Wang, Nian

    2018-06-01

    Antibiotics have been used for the management of relatively few bacterial plant diseases and are largely restricted to high-value fruit crops because of the expense involved. Antibiotic resistance in plant-pathogenic bacteria has become a problem in pathosystems where these antibiotics have been used for many years. Where the genetic basis for resistance has been examined, antibiotic resistance in plant pathogens has most often evolved through the acquisition of a resistance determinant via horizontal gene transfer. For example, the strAB streptomycin-resistance genes occur in Erwinia amylovora, Pseudomonas syringae, and Xanthomonas campestris, and these genes have presumably been acquired from nonpathogenic epiphytic bacteria colocated on plant hosts under antibiotic selection. We currently lack knowledge of the effect of the microbiome of commensal organisms on the potential of plant pathogens to evolve antibiotic resistance. Such knowledge is critical to the development of robust resistance management strategies to ensure the safe and effective continued use of antibiotics in the management of critically important diseases. Expected final online publication date for the Annual Review of Phytopathology Volume 56 is August 25, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  10. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time.

    PubMed

    Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh

    2017-09-01

    Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Genomic Structural Variations Affecting Virulence During Clonal Expansion of Pseudomonas syringae pv. actinidiae Biovar 3 in Europe.

    PubMed

    Firrao, Giuseppe; Torelli, Emanuela; Polano, Cesare; Ferrante, Patrizia; Ferrini, Francesca; Martini, Marta; Marcelletti, Simone; Scortichini, Marco; Ermacora, Paolo

    2018-01-01

    Pseudomonas syringae pv. actinidiae (Psa) biovar 3 caused pandemic bacterial canker of Actinidia chinensis and Actinidia deliciosa since 2008. In Europe, the disease spread rapidly in the kiwifruit cultivation areas from a single introduction. In this study, we investigated the genomic diversity of Psa biovar 3 strains during the primary clonal expansion in Europe using single molecule real-time (SMRT), Illumina and Sanger sequencing technologies. We recorded evidences of frequent mobilization and loss of transposon Tn6212, large chromosome inversions, and ectopic integration of IS sequences (remarkably ISPsy31, ISPsy36, and ISPsy37). While no phenotype change associated with Tn6212 mobilization could be detected, strains CRAFRU 12.29 and CRAFRU 12.50 did not elicit the hypersensitivity response (HR) on tobacco and eggplant leaves and were limited in their growth in kiwifruit leaves due to insertion of ISPsy31 and ISPsy36 in the hrpS and hrpR genes, respectively, interrupting the hrp cluster. Both strains had been isolated from symptomatic plants, suggesting coexistence of variant strains with reduced virulence together with virulent strains in mixed populations. The structural differences caused by rearrangements of self-genetic elements within European and New Zealand strains were comparable in number and type to those occurring among the European strains, in contrast with the significant difference in terms of nucleotide polymorphisms. We hypothesize a relaxation, during clonal expansion, of the selection limiting the accumulation of deleterious mutations associated with genome structural variation due to transposition of mobile elements. This consideration may be relevant when evaluating strategies to be adopted for epidemics management.

  12. Genomic Structural Variations Affecting Virulence During Clonal Expansion of Pseudomonas syringae pv. actinidiae Biovar 3 in Europe

    PubMed Central

    Firrao, Giuseppe; Torelli, Emanuela; Polano, Cesare; Ferrante, Patrizia; Ferrini, Francesca; Martini, Marta; Marcelletti, Simone; Scortichini, Marco; Ermacora, Paolo

    2018-01-01

    Pseudomonas syringae pv. actinidiae (Psa) biovar 3 caused pandemic bacterial canker of Actinidia chinensis and Actinidia deliciosa since 2008. In Europe, the disease spread rapidly in the kiwifruit cultivation areas from a single introduction. In this study, we investigated the genomic diversity of Psa biovar 3 strains during the primary clonal expansion in Europe using single molecule real-time (SMRT), Illumina and Sanger sequencing technologies. We recorded evidences of frequent mobilization and loss of transposon Tn6212, large chromosome inversions, and ectopic integration of IS sequences (remarkably ISPsy31, ISPsy36, and ISPsy37). While no phenotype change associated with Tn6212 mobilization could be detected, strains CRAFRU 12.29 and CRAFRU 12.50 did not elicit the hypersensitivity response (HR) on tobacco and eggplant leaves and were limited in their growth in kiwifruit leaves due to insertion of ISPsy31 and ISPsy36 in the hrpS and hrpR genes, respectively, interrupting the hrp cluster. Both strains had been isolated from symptomatic plants, suggesting coexistence of variant strains with reduced virulence together with virulent strains in mixed populations. The structural differences caused by rearrangements of self-genetic elements within European and New Zealand strains were comparable in number and type to those occurring among the European strains, in contrast with the significant difference in terms of nucleotide polymorphisms. We hypothesize a relaxation, during clonal expansion, of the selection limiting the accumulation of deleterious mutations associated with genome structural variation due to transposition of mobile elements. This consideration may be relevant when evaluating strategies to be adopted for epidemics management. PMID:29675009

  13. RELATIVE EXPRESSION AND STABILITY OF A CHROMOSOMALLY INTEGRATED AND PLASMID-BORNE MARKER GENE FUSION IN ENVIRONMENTALLY COMPETENT BACTERIA

    EPA Science Inventory

    A xyIE-iceC transcriptional fusion was created by ligating a DNA fragment harboring the cloned xyIE structural gene from the TOL plasmid of Pseudomonas putida mt-2 into the cloned iceC gene of Pseudomonas syringae Cit7. This fusion construct was integrated into chromosome of Pseu...

  14. Pseudomonas screening assay

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth (Inventor)

    1993-01-01

    A method for the detection of Pseudomonas bacteria is described where an Azurin-specific antibody is employed for detecting the presence of Azurin in a test sample. The detection of the presence of Azurin in the sample is a conclusive indicator of the presence of the Pseudomonas bacteria since the Azurin protein is a specific marker for this bacterial strain.

  15. Antibacterial activity of caffeine against plant pathogenic bacteria.

    PubMed

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  16. High quality draft genome sequences of Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonas cremoricolorata DSM 17059 T type strains

    DOE PAGES

    Peña, Arantxa; Busquets, Antonio; Gomila, Margarita; ...

    2016-09-01

    Pseudomonas has the highest number of species out of any genus of Gram-negative bacteria and is phylogenetically divided into several groups. The Pseudomonas putida phylogenetic branch includes at least 13 species of environmental and industrial interest, plant-associated bacteria, insect pathogens, and even some members that have been found in clinical specimens. In the context of the Genomic Encyclopedia of Bacteria and Archaea project, we present the permanent, high-quality draft genomes of the type strains of 3 taxonomically and ecologically closely related species in the Pseudomonas putida phylogenetic branch: Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonasmore » cremoricolorata DSM 17059T. All three genomes are comparable in size (4.6-4.9Mb), with 4,119-4,459 protein-coding genes. Average nucleotide identity based on BLAST comparisons and digital genome-to-genome distance calculations are in good agreement with experimental DNA-DNA hybridization results. The genome sequences presented here will be very helpful in elucidating the taxonomy, phylogeny and evolution of the Pseudomonas putida species complex.« less

  17. High quality draft genome sequences of Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonas cremoricolorata DSM 17059 T type strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peña, Arantxa; Busquets, Antonio; Gomila, Margarita

    Pseudomonas has the highest number of species out of any genus of Gram-negative bacteria and is phylogenetically divided into several groups. The Pseudomonas putida phylogenetic branch includes at least 13 species of environmental and industrial interest, plant-associated bacteria, insect pathogens, and even some members that have been found in clinical specimens. In the context of the Genomic Encyclopedia of Bacteria and Archaea project, we present the permanent, high-quality draft genomes of the type strains of 3 taxonomically and ecologically closely related species in the Pseudomonas putida phylogenetic branch: Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonasmore » cremoricolorata DSM 17059T. All three genomes are comparable in size (4.6-4.9Mb), with 4,119-4,459 protein-coding genes. Average nucleotide identity based on BLAST comparisons and digital genome-to-genome distance calculations are in good agreement with experimental DNA-DNA hybridization results. The genome sequences presented here will be very helpful in elucidating the taxonomy, phylogeny and evolution of the Pseudomonas putida species complex.« less

  18. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases.

    PubMed

    Romero, Fernando M; Marina, María; Pieckenstain, Fernando L

    2016-04-01

    This work aimed to characterize potentially endophytic culturable bacteria from leaves of cultivated tomato and analyze their potential for growth promotion and biocontrol of diseases caused by Botrytis cinerea and Pseudomonas syringae. Bacteria were obtained from inner tissues of surface-disinfected tomato leaves of field-grown plants. Analysis of 16S rRNA gene sequences identified bacterial isolates related to Exiguobacterium aurantiacum (isolates BT3 and MT8), Exiguobacterium spp. (isolate GT4), Staphylococcus xylosus (isolate BT5), Pantoea eucalypti (isolate NT6), Bacillus methylotrophicus (isolate MT3), Pseudomonas veronii (isolates BT4 and NT2), Pseudomonas rhodesiae (isolate BT2) and Pseudomonas cichorii (isolate NT3). After seed inoculation, BT2, BT4, MT3, MT8, NT2 and NT6 were re-isolated from leaf extracts. NT2, BT2, MT3 and NT6 inhibited growth of Botrytis cinerea and Pseudomonas syringae pv. tomato in vitro, produced antimicrobial compounds and reduced leaf damage caused by B. cinerea. Some of these isolates also promoted growth of tomato plants, produced siderophores, the auxin indole-3-acetic and solubilized inorganic phosphate. Thus, bacterial communities of leaves from field-grown tomato plants were found to harbor potentially endophytic culturable beneficial bacteria capable of antagonizing pathogenic microorganisms and promoting plant growth, which could be used as biological control agents and biofertilizers/biostimulators for promotion of tomato plant growth. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection.

    PubMed

    Ederli, Luisa; Madeo, Laura; Calderini, Ornella; Gehring, Chris; Moretti, Chiaraluce; Buonaurio, Roberto; Paolocci, Francesco; Pasqualini, Stefania

    2011-10-15

    In plants, the cysteine-rich repeat kinases (CRKs) are a sub-family of receptor-like protein kinases that contain the DUF26 motif in their extracellular domains. It has been shown that in Arabidopsis thaliana, CRK20 is transcriptionally induced by pathogens, salicylic acid and ozone (O(3)). However, its role in responses to biotic and abiotic stress remains to be elucidated. To determine the function of CRK20 in such responses, two CRK20 loss-of-function mutants, crk20-1 and crk20-2, were isolated from public collections of Arabidopsis T-DNA tagged lines and examined for responses to O(3) and Pseudomonas syringae pv. tomato (Pst) DC3000. crk20-1 and crk20-2 showed similar O(3) sensitivities and no differences in the expression of defense genes when compared with the wild-type. However, pathogen growth was significantly reduced, while there were no differences in the induction of salicylic acid related defense genes or salicylic acid accumulation. Furthermore, correlation analysis of CRK20 gene expression suggests that it has a role in the control of H(2)O and/or nutrient transport. We therefore propose that CRK20 promotes conditions that are favorable for Pst DC3000 growth in Arabidopsis, possibly through the regulation of apoplastic homeostasis, and consequently, of the environment of this biotrophic pathogen. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Pseudomonas syringae pv. tomato DC3000 CmaL (PSPTO4723), a DUF1330 Family Member, Is Needed To Produce l-allo-Isoleucine, a Precursor for the Phytotoxin Coronatine

    PubMed Central

    Worley, Jay N.; Russell, Alistair B.; Wexler, Aaron G.; Bronstein, Philip A.; Kvitko, Brian H.; Krasnoff, Stuart B.; Munkvold, Kathy R.; Swingle, Bryan

    2013-01-01

    Pseudomonas syringae pv. tomato DC3000 produces the phytotoxin coronatine, a major determinant of the leaf chlorosis associated with DC3000 pathogenesis. The DC3000 PSPTO4723 (cmaL) gene is located in a genomic region encoding type III effectors; however, it promotes chlorosis in the model plant Nicotiana benthamiana in a manner independent of type III secretion. Coronatine is produced by the ligation of two moieties, coronafacic acid (CFA) and coronamic acid (CMA), which are produced by biosynthetic pathways encoded in separate operons. Cross-feeding experiments, performed in N. benthamiana with cfa, cma, and cmaL mutants, implicate CmaL in CMA production. Furthermore, analysis of bacterial supernatants under coronatine-inducing conditions revealed that mutants lacking either the cma operon or cmaL accumulate CFA rather than coronatine, supporting a role for CmaL in the regulation or biosynthesis of CMA. CmaL does not appear to regulate CMA production, since the expression of proteins with known roles in CMA production is unaltered in cmaL mutants. Rather, CmaL is needed for the first step in CMA synthesis, as evidenced by the fact that wild-type levels of coronatine production are restored to a ΔcmaL mutant when it is supplemented with 50 μg/ml l-allo-isoleucine, the starting unit for CMA production. cmaL is found in all other sequenced P. syringae strains with coronatine biosynthesis genes. This characterization of CmaL identifies a critical missing factor in coronatine production and provides a foundation for further investigation of a member of the widespread DUF1330 protein family. PMID:23144243

  1. Plasmid Replicons from Pseudomonas Are Natural Chimeras of Functional, Exchangeable Modules

    PubMed Central

    Bardaji, Leire; Añorga, Maite; Ruiz-Masó, José A.; del Solar, Gloria; Murillo, Jesús

    2017-01-01

    Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from Pseudomonas syringae pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of Pseudomonas, including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities. PMID:28243228

  2. Bacterial effector HopF2 interacts with AvrPto and suppresses Arabidopsis innate immunity at the plasma membrane

    USDA-ARS?s Scientific Manuscript database

    Plant pathogenic bacteria inject a cocktail of effector proteins into host plant cells to modulate the host immune response, thereby promoting pathogenicity. How or whether these effectors work cooperatively is largely unknown. The Pseudomonas syringae DC3000 effector HopF2 suppresses the host plan...

  3. Evolutionary Plasticity of AmrZ Regulation in Pseudomonas

    PubMed Central

    Dougherty, Kevin; Diaz, Beatriz; Murillo, Rachel

    2018-01-01

    ABSTRACT amrZ encodes a master regulator protein conserved across pseudomonads, which can be either a positive or negative regulator of swimming motility depending on the species examined. To better understand plasticity in the regulatory function of AmrZ, we characterized the mode of regulation for this protein for two different motility-related phenotypes in Pseudomonas stutzeri. As in Pseudomonas syringae, AmrZ functions as a positive regulator of swimming motility within P. stutzeri, which suggests that the functions of this protein with regard to swimming motility have switched at least twice across pseudomonads. Shifts in mode of regulation cannot be explained by changes in AmrZ sequence alone. We further show that AmrZ acts as a positive regulator of colony spreading within this strain and that this regulation is at least partially independent of swimming motility. Closer investigation of mechanistic shifts in dual-function regulators like AmrZ could provide unique insights into how transcriptional pathways are rewired between closely related species. IMPORTANCE Microbes often display finely tuned patterns of gene regulation across different environments, with major regulatory changes controlled by a small group of “master” regulators within each cell. AmrZ is a master regulator of gene expression across pseudomonads and can be either a positive or negative regulator for a variety of pathways depending on the strain and genomic context. Here, we demonstrate that the phenotypic outcomes of regulation of swimming motility by AmrZ have switched at least twice independently in pseudomonads, so that AmrZ promotes increased swimming motility in P. stutzeri and P. syringae but represses this phenotype in Pseudomonas fluorescens and Pseudomonas aeruginosa. Since examples of switches in regulatory mode are relatively rare, further investigation into the mechanisms underlying shifts in regulator function for AmrZ could provide unique insights into the

  4. Effect on lipopolysaccharide structure of aeration during growth of a plum isolate of Pseudomonas syringae pv. morsprunorum.

    PubMed

    Smith, A R; Munro, S M; Wait, R; Hignett, R C

    1994-07-01

    The composition of lipopolysaccharide (LPS) extracted with aqueous phenol from a virulent English plum isolate of Pseudomonas syringae pv. morsprunorum varied according to the partial pressure of oxygen (pO2) in the culture medium at the time of harvest. When pO2 was low, the organism grew slowly and produced smooth LPS bearing rhamnan sidechains. As pO2 was raised, the rate of growth increased and smooth LPS was replaced by a rough species deficient in rhamnose, which co-extracted with a D-glucan. Organization of rhamnose and glucose into separate polymers was shown by the selective susceptibility of the rhamnose-containing polymer to hydrolysis by rhamnanase of the phage A7. By methylation analysis, GC-MS, and 1H- and 13C-NMR spectroscopy, the glucan was shown to consist of alpha (1-->4)-linked residues with alpha (1-->4,6)-branch points and non-reducing terminal residues in the approximate ratio 4:1:1, resembling glycogen in composition. A glucan which co-extracted with LPS using phenol/water from an avirulent plum isolate that was resistant to lysis by phages A1 and A7 was shown by methylation analysis to have a similar structure. Whether the effect on LPS composition was due directly to pO2, or was dependent on the rate of growth, has not been established. It is suggested that, because epiphytic growth would entail exposure to high pO2, English plum isolates growing on the surfaces of host plants might be unable to produce smooth LPS. Since cell surface composition affects virulence in plant-pathogenic pseudomonads, this effect could account for the observed failure of the English plum isolates to enter the host via leaf scars.

  5. Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders.

    PubMed

    Cottyn, Bart; Heylen, Kim; Heyrman, Jeroen; Vanhouteghem, Katrien; Pauwelyn, Ellen; Bleyaert, Peter; Van Vaerenbergh, Johan; Höfte, Monica; De Vos, Paul; Maes, Martine

    2009-05-01

    Bacterial midrib rot of greenhouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) is an emerging disease in Flanders (Belgium) and fluorescent pseudomonads are suspected to play an important role in the disease. Isolations from infected lettuces, collected from 14 commercial greenhouses in Flanders, yielded 149 isolates that were characterized polyphasically, which included morphological characteristics, pigmentation, pathogenicity tests by both injection and spraying of lettuce, LOPAT characteristics, FAME analysis, BOX-PCR fingerprinting, 16S rRNA and rpoB gene sequencing, as well as DNA-DNA hybridization. Ninety-eight isolates (66%) exhibited a fluorescent pigmentation and were associated with the genus Pseudomonas. Fifty-five of them induced an HR+ (hypersensitive reaction in tobacco leaves) response. The other 43 fluorescent isolates were most probably saprophytic bacteria and about half of them were able to cause rot on potato tuber slices. BOX-PCR genomic fingerprinting was used to assess the genetic diversity of the Pseudomonas midrib rot isolates. The delineated BOX-PCR patterns matched quite well with Pseudomonas morphotypes defined on the basis of colony appearance and variation in fluorescent pigmentation. 16S rRNA and rpoB gene sequence analyses allowed most of the fluorescent isolates to be allocated to Pseudomonas, and they belonged to either the Pseudomonas fluorescens group, Pseudomonas putida group, or the Pseudomonas cichorii/syringae group. In particular, the isolates allocated to this latter group constituted the vast majority of HR+ isolates and were identified as P. cichorii by DNA-DNA hybridization. They were demonstrated by spray-inoculation tests on greenhouse-grown lettuce to induce the midrib rot disease and could be re-isolated from lesions of inoculated plants. Four HR+ non-fluorescent isolates associated with one sample that showed an atypical midrib rot were identified as Dickeya sp.

  6. Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth.

    PubMed

    Magnucka, Elżbieta G; Pietr, Stanisław J

    2015-12-01

    The study evaluates the effect of rhizobacteria having 1-aminocyclopropane-1-carboxylate deaminase (ACCd) on the development of wheat seedlings. This enzyme has been proposed to play a key role in microbe-plant association. Three fluorescent pseudomonads containing this deaminase were selected from 70 strains of pseudomonads isolated from rhizosphere of wheat (Triticum aestivum L.) and rape (Brassica napus L.). These bacteria, varied significantly in the ability to both biosynthesize auxins and hydrolyze ACC. Among them, Pseudomonas brassicacearum subsp. brassicacearum strain RZ310 presented the highest activities of ACC deaminase during 96h of growth in liquid Dworkin and Foster (DF) salt medium. Additionally, this rape rhizosphere strain did not produce indoles. Two other isolates, Pseudomonas sp. PO283 and Pseudomonas sp. PO366, secreted auxins only in the presence of their precursor. Phylogenetic analysis of the 16S rRNA gene and four other protein-encoding genes indicated that these wheat rhizosphere isolates belonged to the fluorescent Pseudomonas group. Moreover, the effects of these strains on wheat seedling growth under in vitro conditions were markedly dependent on both their cell suspensions used to grain inoculation and nutrient conditions. Strains tested had beneficial influence on wheat seedlings mainly at low cell densities. In addition, access to nutrients markedly changed bacteria action on cereal growth. Their presence generally favored the positive effects of pseudomonads on length and the estimated biomasses of wheat coleoptiles. Despite these general rules, impacts of each isolate on the growth parameters of cereal seedlings were unique. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria.

    PubMed

    Ji, Dongjin; Yi, Youngkeun; Kang, Ga-Hwa; Choi, Yong-Hwa; Kim, Pankyung; Baek, Nam-In; Kim, Yonggyun

    2004-10-15

    An entomopathogenic bacterium, Xenorhabdus nematophila, is known to have potent antibiotic activities to maintain monoxenic condition in its insect host for effective pathogenesis and ultimately for optimal development of its nematode symbiont, Steinernema carpocapsae. In this study we assess its antibacterial activity against plant-pathogenic bacteria and identify its unknown antibiotics. The bacterial culture broth had significant antibacterial activity that increased with development of the bacteria and reached its maximum at the stationary growth phase. The antibiotic activities were significant against five plant-pathogenic bacterial strains: Agrobacterium vitis, Pectobacterium carotovorum subsp. atrosepticum, P. carotovorum subsp. carotovorum, Pseudomonas syringae pv. tabaci, and Ralstonia solanacearum. The antibacterial factors were extracted with butanol and fractionated using column chromatography with the eluents of different hydrophobic intensities. Two active antibacterial subfractions were purified, and the higher active fraction was further fractionated and identified as a single compound of benzylideneacetone (trans-4-phenyl-3-buten-2-one). With heat stability, the synthetic compound showed equivalent antibiotic activity and spectrum to the purified compound. This study reports a new antibiotic compound synthesized by X. nematophila, which is a monoterpenoid compound and active against some Gram-negative bacteria.

  8. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000.

    PubMed

    Wang, Mengnan; Zhu, Yanxun; Han, Rui; Yin, Wuchen; Guo, Chunlei; Li, Zhi; Wang, Xiping

    2018-03-01

    Ethylene response factor (ERF) transcription factors play important roles in regulating immune responses in plants. In our study, we characterized a member of the ERF transcription factor family, VaERF20 , from the Chinese wild Vitis genotype, V. amurensis Rupr "Shuangyou". Phylogenetic analysis indicated that VaERF20 belongs to group IXc of the ERF family, in which many members are known to contribute to fighting pathogen infection. Consistent with this, expression of VaERF20 was induced by treatment with the necrotrophic fungal pathogen Botrytis cinerea (B. cinerea ) in "Shuangyou" and V. vinifera "Red Globe". Arabidopsis thaliana plants over-expressing VaERF20 displayed enhanced resistance to B. cinerea and the bacterium Pseudomonas syringae pv. tomato ( Pst ) DC3000. Patterns of pathogen-induced reactive oxygen species (ROS) accumulation were entirely distinct in B. cinerea and Pst DC3000 inoculated plants. Examples of both salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) responsive defense genes were up-regulated after B. cinerea and Pst DC3000 inoculation of the VaERF20 -overexpressing transgenic A. thaliana plants. Evidence of pattern-triggered immunity (PTI), callose accumulation and stomatal defense, together with increased expression of PTI genes, was also greater in the transgenic lines. These data indicate that VaERF20 participates in various signal transduction pathways and acts as an inducer of immune responses.

  9. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000

    PubMed Central

    Wang, Mengnan; Zhu, Yanxun; Han, Rui; Yin, Wuchen; Guo, Chunlei; Li, Zhi; Wang, Xiping

    2018-01-01

    Ethylene response factor (ERF) transcription factors play important roles in regulating immune responses in plants. In our study, we characterized a member of the ERF transcription factor family, VaERF20, from the Chinese wild Vitis genotype, V. amurensis Rupr “Shuangyou”. Phylogenetic analysis indicated that VaERF20 belongs to group IXc of the ERF family, in which many members are known to contribute to fighting pathogen infection. Consistent with this, expression of VaERF20 was induced by treatment with the necrotrophic fungal pathogen Botrytis cinerea (B. cinerea) in “Shuangyou” and V. vinifera “Red Globe”. Arabidopsis thaliana plants over-expressing VaERF20 displayed enhanced resistance to B. cinerea and the bacterium Pseudomonas syringae pv. tomato (Pst) DC3000. Patterns of pathogen-induced reactive oxygen species (ROS) accumulation were entirely distinct in B. cinerea and PstDC3000 inoculated plants. Examples of both salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) responsive defense genes were up-regulated after B. cinerea and PstDC3000 inoculation of the VaERF20-overexpressing transgenic A. thaliana plants. Evidence of pattern-triggered immunity (PTI), callose accumulation and stomatal defense, together with increased expression of PTI genes, was also greater in the transgenic lines. These data indicate that VaERF20 participates in various signal transduction pathways and acts as an inducer of immune responses. PMID:29494485

  10. Transposon insertion libraries for the characterization of mutants from the kiwifruit pathogen Pseudomonas syringae pv. actinidiae

    PubMed Central

    Mesarich, Carl H.; Rees-George, Jonathan; Gardner, Paul P.; Ghomi, Fatemeh Ashari; Gerth, Monica L.; Andersen, Mark T.; Rikkerink, Erik H. A.; Fineran, Peter C.

    2017-01-01

    Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit canker, is one of the most devastating plant diseases of recent times. We have generated two mini-Tn5-based random insertion libraries of Psa ICMP 18884. The first, a ‘phenotype of interest’ (POI) library, consists of 10,368 independent mutants gridded into 96-well plates. By replica plating onto selective media, the POI library was successfully screened for auxotrophic and motility mutants. Lipopolysaccharide (LPS) biosynthesis mutants with ‘Fuzzy-Spreader’-like morphologies were also identified through a visual screen. The second, a ‘mutant of interest’ (MOI) library, comprises around 96,000 independent mutants, also stored in 96-well plates, with approximately 200 individuals per well. The MOI library was sequenced on the Illumina MiSeq platform using Transposon-Directed Insertion site Sequencing (TraDIS) to map insertion sites onto the Psa genome. A grid-based PCR method was developed to recover individual mutants, and using this strategy, the MOI library was successfully screened for a putative LPS mutant not identified in the visual screen. The Psa chromosome and plasmid had 24,031 and 1,236 independent insertion events respectively, giving insertion frequencies of 3.65 and 16.6 per kb respectively. These data suggest that the MOI library is near saturation, with the theoretical probability of finding an insert in any one chromosomal gene estimated to be 97.5%. However, only 47% of chromosomal genes had insertions. This surprisingly low rate cannot be solely explained by the lack of insertions in essential genes, which would be expected to be around 5%. Strikingly, many accessory genes, including most of those encoding type III effectors, lacked insertions. In contrast, 94% of genes on the Psa plasmid had insertions, including for example, the type III effector HopAU1. These results suggest that some chromosomal sites are rendered inaccessible to transposon insertion, either

  11. Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria

    PubMed Central

    Murphy, Andrew R. J.; Scanlan, David J.; Bending, Gary D.; Jones, Alexandra M. E.; Moore, Jonathan D.; Goodall, Andrew; Hammond, John P.; Wellington, Elizabeth M. H.

    2016-01-01

    Summary Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial‐driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD‐1 (BIRD‐1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole‐cell proteomic analysis of BIRD‐1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well‐characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD‐1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO‐dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P. PMID:27233093

  12. Powdery mildews on lilac in western North America include Phyllactinia syringae, sp. nov.

    PubMed

    Larsen, Harold J; Braun, Uwe; Blomquist, Cheryl; Woods, Patrick; Mohan, S Krishna

    2017-01-01

    Two powdery mildews, Erysiphe syringae and the previously undescribed Phyllactinia syringae, sp. nov., occur on lilac in western North America. Phyllactinia syringae is found on common lilac, whereas E. syringae is found on Chinese lilac and, occasionally, common lilac. Infection by P. syringae is extremely unobtrusive until formation of a hypophyllous mycelial mat with chasmothecia in late fall. Infection by E. syringae in late summer is conspicuous, with its thick, superficial mycelial mat on the leaf upper surface detracting from the aesthetic appearance of the bush.

  13. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    DOE PAGES

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; ...

    2016-04-06

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplificationmore » of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.« less

  14. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae.

    PubMed

    Pogorelko, Gennady V; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A; Rodermel, Steven R

    2016-01-01

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.

  15. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplificationmore » of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.« less

  16. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China.

    PubMed

    Wang, Rulin; Li, Qing; He, Shisong; Liu, Yuan; Wang, Mingtian; Jiang, Gan

    2018-01-01

    Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to the kiwifruit industry throughout the world and accounts for substantial economic losses in China. The aim of the present study was to test and explore the possibility of using MaxEnt (maximum entropy models) to predict and analyze the future large-scale distribution of Psa in China. Based on the current environmental factors, three future climate scenarios, which were suggested by the fifth IPCC report, and the current distribution sites of Psa, MaxEnt combined with ArcGIS was applied to predict the potential suitable areas and the changing trend of Psa in China. The jackknife test and correlation analysis were used to choose dominant climatic factors. The receiver operating characteristic curve (ROC) drawn by MaxEnt was used to evaluate the accuracy of the simulation. The results showed that under current climatic conditions, the area from latitude 25° to 36°N and from longitude 101° to 122°E is the primary potential suitable area of Psa in China. The highly suitable area (with suitability between 66 and 100) was mainly concentrated in Northeast Sichuan, South Shaanxi, most of Chongqing, West Hubei and Southwest Gansu and occupied 4.94% of land in China. Under different future emission scenarios, both the areas and the centers of the suitable areas all showed differences compared with the current situation. Four climatic variables, i.e., maximum April temperature (19%), mean temperature of the coldest quarter (14%), precipitation in May (11.5%) and minimum temperature in October (10.8%), had the largest impact on the distribution of Psa. The MaxEnt model is potentially useful for forecasting the future adaptive distribution of Psa under climate change, and it provides important guidance for comprehensive management.

  17. Protection of Arabidopsis thaliana against Leaf-Pathogenic Pseudomonas syringae by Sphingomonas Strains in a Controlled Model System ▿ †

    PubMed Central

    Innerebner, Gerd; Knief, Claudia; Vorholt, Julia A.

    2011-01-01

    Diverse bacterial taxa live in association with plants without causing deleterious effects. Previous analyses of phyllosphere communities revealed the predominance of few bacterial genera on healthy dicotyl plants, provoking the question of whether these commensals play a particular role in plant protection. Here, we tested two of them, Methylobacterium and Sphingomonas, with respect to their ability to diminish disease symptom formation and the proliferation of the foliar plant pathogen Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Plants were grown under gnotobiotic conditions in the absence or presence of the potential antagonists and then challenged with the pathogen. No effect of Methylobacterium strains on disease development was observed. However, members of the genus Sphingomonas showed a striking plant-protective effect by suppressing disease symptoms and diminishing pathogen growth. A survey of different Sphingomonas strains revealed that most plant isolates protected A. thaliana plants from developing severe disease symptoms. This was not true for Sphingomonas strains isolated from air, dust, or water, even when they reached cell densities in the phyllosphere comparable to those of the plant isolates. This suggests that plant protection is common among plant-colonizing Sphingomonas spp. but is not a general trait conserved within the genus Sphingomonas. The carbon source profiling of representative isolates revealed differences between protecting and nonprotecting strains, suggesting that substrate competition plays a role in plant protection by Sphingomonas. However, other mechanisms cannot be excluded at this time. In conclusion, the ability to protect plants as shown here in a model system may be an unexplored, common trait of indigenous Sphingomonas spp. and may be of relevance under natural conditions. PMID:21421777

  18. Disinfection of gram-negative and gram-positive bacteria using DynaJets® hydrodynamic cavitating jets.

    PubMed

    Loraine, Gregory; Chahine, Georges; Hsiao, Chao-Tsung; Choi, Jin-Keun; Aley, Patrick

    2012-05-01

    Cavitating jet technologies (DynaJets®) were investigated as a means of disinfection of gram-negative Escherichia coli, Klebsiellapneumoniae, Pseudomonas syringae, and Pseudomonas aeruginosa, and gram-positive Bacillus subtilis. The hydrodynamic cavitating jets were found to be very effective in reducing the concentrations of all of these species. In general, the observed rates of disinfection of gram-negative species were higher than for gram-positive species. However, different gram-negative species also showed significant differences (P. syringae 6-log(10) reduction, P. aeruginosa 2-log(10) reduction) under the same conditions. Disinfection of E. coli repeatedly showed five orders of magnitude reduction in concentration within 45-60-min at low nozzle pressure (2.1 bar). Optimization of nozzle design and operating pressures increased disinfection rates per input energy by several orders of magnitude. The power efficiencies of the hydrodynamic cavitating jets were found to be 10-100 times greater than comparable ultrasonic systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Analysis of the ZAR1 immune complex reveals determinants for immunity and molecular interactions

    USDA-ARS?s Scientific Manuscript database

    Plants depend on innate immunity to prevent disease. Plant pathogenic bacteria, like Pseudomonas syringae and Xanthomonas campestris, use the type III secretion system as a molecular syringe to inject type III secreted effector (T3SE) proteins in plants. The primary function of most T3SEs is to supp...

  20. Photoinhibition and photoinhibition-like damage to the photosynthetic apparatus in tobacco leaves induced by pseudomonas syringae pv. Tabaci under light and dark conditions.

    PubMed

    Cheng, Dan-Dan; Zhang, Zi-Shan; Sun, Xing-Bin; Zhao, Min; Sun, Guang-Yu; Chow, Wah Soon

    2016-01-25

    Pseudomonas syringae pv. tabaci (Pst), which is the pathogen responsible for tobacco wildfire disease, has received considerable attention in recent years. The objective of this study was to clarify the responses of photosystem I (PSI) and photosystem II (PSII) to Pst infection in tobacco leaves. The net photosynthetic rate (Pn) and carboxylation efficiency (CE) were inhibited by Pst infection. The normalized relative variable fluorescence at the K step (W k) and the relative variable fluorescence at the J step (V J) increased while the maximal quantum yield of PSII (F v/F m) and the density of Q A-reducing PSII reaction centers per cross section (RC/CSm) decreased, indicating that the reaction centers, and the donor and acceptor sides of PSII were all severely damaged after Pst infection. The PSI activity decreased as the infection progressed. Furthermore, we observed a considerable overall degradation of PsbO, D1, PsaA proteins and an over-accumulation of reactive oxygen species (ROS). Photoinhibition and photoinhibition-like damage were observed under light and dark conditions, respectively, after Pst infection of tobacco leaves. The damage was greater in the dark. ROS over-accumulation was not the primary cause of the photoinhibition and photoinhibition-like damage. The PsbO, D1 and PsaA proteins appear to be the targets during Pst infection under light and dark conditions.

  1. pA506, a Conjugative Plasmid of the Plant Epiphyte Pseudomonas fluorescens A506

    PubMed Central

    Stockwell, Virginia O.; Davis, Edward W.; Carey, Alyssa; Shaffer, Brenda T.; Mavrodi, Dmitri V.; Hassan, Karl A.; Hockett, Kevin; Thomashow, Linda S.; Paulsen, Ian T.

    2013-01-01

    Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces. PMID:23811504

  2. Quantitative proteomics reveals a role of JAZ7 in plant defense response to Pseudomonas syringae DC3000.

    PubMed

    Zhang, Tong; Meng, Li; Kong, Wenwen; Yin, Zepeng; Wang, Yang; Schneider, Jacqueline D; Chen, Sixue

    2018-03-20

    Jasmonate ZIM-domain (JAZ) proteins are key transcriptional repressors regulating various biological processes. Although many studies have studied JAZ proteins by genetic and biochemical analyses, little is known about JAZ7-associated global protein networks and how JAZ7 contributes to bacterial pathogen defense. In this study, we aim to fill this knowledge gap by conducting unbiased large-scale quantitative proteomics using tandem mass tags (TMT). We compared the proteomes of a JAZ7 knock-out line, a JAZ7 overexpression line, as well as the wild type Arabidopsis plants in the presence and absence of Pseudomonas syringae DC3000 infection. Both pairwise comparison and multi-factor analysis of variance reveal that differential proteins are enriched in biological processes such as primary and secondary metabolism, redox regulation, and response to stress. The differential regulation in these pathways may account for the alterations in plant size, redox homeostasis and accumulation of glucosinolates. In addition, possible interplay between genotype and environment is suggested as the abundance of seven proteins is influenced by the interaction of the two factors. Collectively, we demonstrate a role of JAZ7 in pathogen defense and provide a list of proteins that are uniquely responsive to genetic disruption, pathogen infection, or the interaction between genotypes and environmental factors. We report proteomic changes as a result of genetic perturbation of JAZ7, and the contribution of JAZ7 in plant immunity. Specifically, the similarity between the proteomes of a JAZ7 knockout mutant and the wild type plants confirmed the functional redundancy of JAZs. In contrast, JAZ7 overexpression plants were much different, and proteomic analysis of the JAZ7 overexpression plants under Pst DC3000 infection revealed that JAZ7 may regulate plant immunity via ROS modulation, energy balance and glucosinolate biosynthesis. Multiple variate analysis for this two-factor proteomics

  3. Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana.

    PubMed

    Choi, Sera; Jayaraman, Jay; Segonzac, Cécile; Park, Hye-Jee; Park, Hanbi; Han, Sang-Wook; Sohn, Kee Hoon

    2017-01-01

    Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium -mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa , Psa -NZ V13 and Psa -NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana . Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium -mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1 , NDR1 , or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana . In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta .

  4. Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana

    PubMed Central

    Choi, Sera; Jayaraman, Jay; Segonzac, Cécile; Park, Hye-Jee; Park, Hanbi; Han, Sang-Wook; Sohn, Kee Hoon

    2017-01-01

    Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium-mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa, Psa-NZ V13 and Psa-NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana. Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium-mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1, NDR1, or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana. In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta. PMID:29326748

  5. Pseudomonas syringae pv. actinidiae (PSA) Isolates from Recent Bacterial Canker of Kiwifruit Outbreaks Belong to the Same Genetic Lineage

    PubMed Central

    Taratufolo, Maria C.; Cai, Rongman; Almeida, Nalvo F.; Goodman, Tokia; Guttman, David S.; Vinatzer, Boris A.; Balestra, Giorgio M.

    2012-01-01

    Intercontinental spread of emerging plant diseases is one of the most serious threats to world agriculture. One emerging disease is bacterial canker of kiwi fruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (PSA). The disease first occurred in China and Japan in the 1980s and in Korea and Italy in the 1990s. A more severe form of the disease broke out in Italy in 2008 and in additional countries in 2010 and 2011 threatening the viability of the global kiwi fruit industry. To start investigating the source and routes of international transmission of PSA, genomes of strains from China (the country of origin of the genus Actinidia), Japan, Korea, Italy and Portugal have been sequenced. Strains from China, Italy, and Portugal have been found to belong to the same clonal lineage with only 6 single nucleotide polymorphisms (SNPs) in 3,453,192 bp and one genomic island distinguishing the Chinese strains from the European strains. Not more than two SNPs distinguish each of the Italian and Portuguese strains from each other. The Japanese and Korean strains belong to a separate genetic lineage as previously reported. Analysis of additional European isolates and of New Zealand isolates exploiting genome-derived markers showed that these strains belong to the same lineage as the Italian and Chinese strains. Interestingly, the analyzed New Zealand strains are identical to European strains at the tested SNP loci but test positive for the genomic island present in the sequenced Chinese strains and negative for the genomic island present in the European strains. Results are interpreted in regard to the possible direction of movement of the pathogen between countries and suggest a possible Chinese origin of the European and New Zealand outbreaks. PMID:22590555

  6. Light Suppresses Bacterial Population through the Accumulation of Hydrogen Peroxide in Tobacco Leaves Infected with Pseudomonas syringae pv. tabaci

    PubMed Central

    Cheng, Dan-Dan; Liu, Mei-Jun; Sun, Xing-Bin; Zhao, Min; Chow, Wah S.; Sun, Guang-Yu; Zhang, Zi-Shan; Hu, Yan-Bo

    2016-01-01

    Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant’s tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection. PMID:27148334

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less

  8. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121.

    PubMed

    An, Chuanfu; Wang, Chenggang; Mou, Zhonglin

    2017-05-01

    Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3'-diaminobenzidine and aniline blue staining. The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation. Mutations in Elongator also attenuate the ROS-SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes. As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Pulmonary inflammation induced by bacteria-free outer membrane vesicles from Pseudomonas aeruginosa.

    PubMed

    Park, Kyong-Su; Lee, Jaewook; Jang, Su Chul; Kim, Sae Rom; Jang, Myoung Ho; Lötvall, Jan; Kim, Yoon-Keun; Gho, Yong Song

    2013-10-01

    Pseudomonas aeruginosa is often involved in lung diseases such as cystic fibrosis. These bacteria can release outer membrane vesicles (OMVs), which are bilayered proteolipids with diameters of approximately 20 to 250 nm. In vitro, these OMVs activate macrophages and airway epithelial cells. The aim of this study was to determine whether OMVs from P. aeruginosa can induce pulmonary inflammation in vivo and to elucidate the mechanisms involved. Bacteria-free OMVs were isolated from P. aeruginosa cultures. Wild-type, Toll-like receptor (TLR)2 and TLR4 knockout mice were exposed to OMVs by the airway, and inflammation in the lung was assessed using differential counts, histology, and quantification of chemokines and cytokines. The involvement of the TLR2 and TLR4 pathways was studied in human cells using transfection. OMVs given to the mouse lung caused dose- and time-dependent pulmonary cellular inflammation. Furthermore, OMVs increased concentrations of several chemokines and cytokines in the mouse lungs and mouse alveolar macrophages. The inflammatory responses to OMVs were comparable to those of live bacteria and were only partly regulated by the TLR2 and TLR4 pathways, according to studies in knockout mice. This study shows that OMVs from P. aeruginosa cause pulmonary inflammation without live bacteria in vivo. This effect is only partly controlled by TLR2 and TLR4. The role of OMVs in clinical disease warrants further studies because targeting of OMVs in addition to live bacteria may add clinical benefit compared with treating with antibiotics alone.

  10. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    PubMed

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  11. Pseudomonas fluorescens-like bacteria from the stomach: a microbiological and molecular study.

    PubMed

    Patel, Saurabh Kumar; Pratap, Chandra Bhan; Verma, Ajay Kumar; Jain, Ashok Kumar; Dixit, Vinod Kumar; Nath, Gopal

    2013-02-21

    To characterize oxidase- and urease-producing bacterial isolates, grown aerobically, that originated from antral biopsies of patients suffering from acid peptic diseases. A total of 258 antral biopsy specimens were subjected to isolation of bacteria followed by tests for oxidase and urease production, acid tolerance and aerobic growth. The selected isolates were further characterized by molecular techniques viz. amplifications for 16S rRNA using universal eubacterial and HSP60 gene specific primers. The amplicons were subjected to restriction analysis and partial sequencing. A phylogenetic tree was generated using unweighted pair group method with arithmetic mean (UPGMA) from evolutionary distance computed with bootstrap test of phylogeny. Assessment of acidity tolerance of bacteria isolated from antrum was performed using hydrochloric acid from 10(-7) mol/L to 10(-1) mol/L. Of the 258 antral biopsy specimens collected from patients, 179 (69.4%) were positive for urease production by rapid urease test and 31% (80/258) yielded typical Helicobacter pylori (H. pylori) after 5-7 d of incubation under a microaerophilic environment. A total of 240 (93%) antral biopsies yielded homogeneous semi-translucent and small colonies after overnight incubation. The partial 16S rRNA sequences revealed that the isolates had 99% similarity with Pseudomonas species. A phylogenetic tree on the basis of 16S rRNA sequences denoted that JQ927226 and JQ927227 were likely to be related to Pseudomonas fluorescens (P. fluorescens). On the basis of HSP60 sequences applied to the UPGMA phylogenetic tree, it was observed that isolated strains in an aerobic environment were likely to be P. fluorescens, and HSP60 sequences had more discriminatory potential rather than 16S rRNA sequences. Interestingly, this bacterium was acid tolerant for hours at low pH. Further, a total of 250 (96.9%) genomic DNA samples of 258 biopsy specimens and DNA from 240 bacterial isolates were positive for the 613 bp

  12. Effects of bovine milk lactoperoxidase system on some bacteria.

    PubMed

    Cankaya, M; Sişecioğlu, M; Bariş, O; Güllüce, M; Ozdemir, H

    2010-01-01

    Bovine lactoperoxidase (LPO) was purified from skimmed milk using amberlite CG-50-H+ resin, CM sephadex C-50 ion-exchange chromatography, and sephadex G-100 gel filtration chromatography. Lactoperoxidase was purified 20.45-fold with a yield of 28.8%. Purity of enzyme checked by sodium dodecyl sulphate-polyacrylamide gel electrophoresis method and a single band was observed. Km was 0.25 mM at 20 degrees C, Vmax value was 7.95 micromol/ml min at 20 degrees C (pH 6.0). Antibacterial study was done by disk diffusion method of Kir-by-Bauer using Mueller-Hinton agar medium with slight modification. Bovine LPO showed high antibacterial activity in 100 mM thiocyanate-100 mM H2O2 medium for some bacteria (Brevibacillus centrosaurus, B. choshinensis, B. lyticum, Cedecea davisae, Chryseobacterium indoltheticum, Clavibacter michiganense pv. insidiosum, Kocuria erythromyxa, K. kristinae, K. rosea, K. varians, Paenibacillus validus, Pseudomonas syringae pv. populans, Ralstonia pickettii, Rhodococcus wratislaviensis, Serratia fonticola, Streptomyces violaceusniger, Vibrio cholerae-nonO1) respectively, and compared with well known antibacterial substances (levofloxacin, netilmicin). LPO system has inhibition effects on all type bacteria and concentration is really important such as LPO-100 mM thiocyanate-100 mM H2O2 system was proposed as an effective agent against many factors causing several diseases.

  13. RNA degradation in Archaea and Gram-negative bacteria different from Escherichia coli.

    PubMed

    Evguenieva-Hackenberg, Elena; Klug, Gabriele

    2009-01-01

    Exoribonucleolytic and endoribonucleolytic activities are important for controlled degradation of RNA and contribute to the regulation of gene expression at the posttranscriptional level by influencing the half-lives of specific messenger RNAs. The RNA half-lives are determined by the characteristics of the RNA substrates and by the availability and the properties of the involved proteins-ribonucleases and assisting polypeptides. Much is known about RNA degradation in Eukarya and Bacteria, but there is limited information about RNA-degrading enzymes and RNA destabilizing or stabilizing elements in the domain of the Archaea. The recent progress in the understanding of the structure and function of the archaeal exosome, a protein complex with RNA-degrading and RNA-tailing capabilities, has given some first insights into the mechanisms of RNA degradation in the third domain of life and into the evolution of RNA-degrading enzymes. Moreover, other archaeal RNases with degrading potential have been described and a new mechanism for protection of the 5'-end of RNA in Archaea was discovered. Here, we summarize the current knowledge on RNA degradation in the Archaea. Additionally, RNA degradation mechanisms in Rhodobacter capsulatus and Pseudomonas syringae are compared to those in the major model organism for Gram-negatives, Escherichia coli, which dominates our view on RNA degradation in Bacteria.

  14. Induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens strains that produce the polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are among the most effective rhizobacteria that suppress root and crown rots, wilts and damping-off diseases of a variety of crops, and they play a key role in the natural suppressiveness of ...

  15. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis.

    PubMed

    Song, Geun C; Choi, Hye K; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  16. NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense.

    PubMed

    Stukkens, Yvan; Bultreys, Alain; Grec, Sébastien; Trombik, Tomasz; Vanham, Delphine; Boutry, Marc

    2005-09-01

    Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family.

  17. NpPDR1, a Pleiotropic Drug Resistance-Type ATP-Binding Cassette Transporter from Nicotiana plumbaginifolia, Plays a Major Role in Plant Pathogen Defense1

    PubMed Central

    Stukkens, Yvan; Bultreys, Alain; Grec, Sébastien; Trombik, Tomasz; Vanham, Delphine; Boutry, Marc

    2005-01-01

    Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family. PMID:16126865

  18. Pseudomonas syringae pv. actinidiae Draft Genomes Comparison Reveal Strain-Specific Features Involved in Adaptation and Virulence to Actinidia Species

    PubMed Central

    Marcelletti, Simone; Ferrante, Patrizia; Petriccione, Milena; Firrao, Giuseppe; Scortichini, Marco

    2011-01-01

    A recent re-emerging bacterial canker disease incited by Pseudomonas syringae pv. actinidiae (Psa) is causing severe economic losses to Actinidia chinensis and A. deliciosa cultivations in southern Europe, New Zealand, Chile and South Korea. Little is known about the genetic features of this pathovar. We generated genome-wide Illumina sequence data from two Psa strains causing outbreaks of bacterial canker on the A. deliciosa cv. Hayward in Japan (J-Psa, type-strain of the pathovar) and in Italy (I-Psa) in 1984 and 1992, respectively as well as from a Psa strain (I2-Psa) isolated at the beginning of the recent epidemic on A. chinensis cv. Hort16A in Italy. All strains were isolated from typical leaf spot symptoms. The phylogenetic relationships revealed that Psa is more closely related to P. s. pv. theae than to P. avellanae within genomospecies 8. Comparative genomic analyses revealed both relevant intrapathovar variations and putative pathovar-specific genomic regions in Psa. The genomic sequences of J-Psa and I-Psa were very similar. Conversely, the I2-Psa genome encodes four additional effector protein genes, lacks a 50 kb plasmid and the phaseolotoxin gene cluster, argK-tox but has acquired a 160 kb plasmid and putative prophage sequences. Several lines of evidence from the analysis of the genome sequences support the hypothesis that this strain did not evolve from the Psa population that caused the epidemics in 1984–1992 in Japan and Italy but rather is the product of a recent independent evolution of the pathovar actinidiae for infecting Actinidia spp. All Psa strains share the genetic potential for copper resistance, antibiotic detoxification, high affinity iron acquisition and detoxification of nitric oxide of plant origin. Similar to other sequenced phytopathogenic pseudomonads associated with woody plant species, the Psa strains isolated from leaves also display a set of genes involved in the catabolism of plant-derived aromatic compounds. PMID

  19. Bacteria mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of Pseudomonas putida bacteria - an effect on Pb remobilization in the environment

    NASA Astrophysics Data System (ADS)

    Flis, Justyna; Manecki, Maciej; Merkel, Broder J.; Latowski, Dariusz

    2010-05-01

    The objective of the study was to determine the mechanisms of microbially enhanced dissolution of lead phosphate-pyromorphite Pb5(PO4)3Cl). Contrary to the current literature, the results of our experiments indicate a great potential for Pb remobilization in the environment by an aerobic microorganism acquiring phosphates. Broad knowledge exists about the role of Pb-apatites in regulating the behavior and the bioavailability of Pb in soils and wastewater. In situ Pb immobilization is one of the methods now routinely applied for the reclamation of Pb-contaminated soils, including shallow unconfined aquifers (Magalhaes & Silva, 2003; Magalhaes, 2002; Ma et al. 1993). This method is based on the principle that aqueous phosphates added to soil pore solutions form a very stable (insoluble) mineral pyromorphite (Pb-apatite) Pb5(PO4)3Cl. Bioavailability of aqueous Pb is thus minimized due to the very low solubility and the high thermodynamic stability of pyromorphite (Flis, 2007; Nriagu, 1974). Several reports have examined the ability of different bacterial species including Pseudomonas to solubilise insoluble inorganic phosphate compounds for example apatites (Welch et al., 2002; Maurice et al., 1999; Rodriguez and Fraga, 1999 ). Various species of Pseudomonas genera are encountered as common inhabitants of soils and wastes in the industrial areas under strong pollution influence. To date, there has not been any published evidence of microbial dissolution of pyromorphite. The major objective of the project was to study Pseudomonas putida growth in the presence of Pb-apatite (Pb5(PO4)3Cl) as the sole source of phosphate. It was to test the hypothesis that in the phosphate deficient environment bacteria are able to actively scavenge for P from the Pb-apatite which results in remobilization of Pb in the environment. The bacteria growth was investigated at 22oC. Commercially available Pseudomonas putida strain was used throughout. The experiment and its controls were run in

  20. Films of Bacteria at Interfaces (FBI): Remodeling of Fluid Interfaces by Pseudomonas aeruginosa.

    PubMed

    Niepa, Tagbo H R; Vaccari, Liana; Leheny, Robert L; Goulian, Mark; Lee, Daeyeon; Stebe, Kathleen J

    2017-12-19

    Bacteria at fluid interfaces endure physical and chemical stresses unique to these highly asymmetric environments. The responses of Pseudomonas aeruginosa PAO1 and PA14 to a hexadecane-water interface are compared. PAO1 cells form elastic films of bacteria, excreted polysaccharides and proteins, whereas PA14 cells move actively without forming an elastic film. Studies of PAO1 mutants show that, unlike solid-supported biofilms, elastic interfacial film formation occurs in the absence of flagella, pili, or certain polysaccharides. Highly induced genes identified in transcriptional profiling include those for putative enzymes and a carbohydrate metabolism enzyme, alkB2; this latter gene is not upregulated in PA14 cells. Notably, PAO1 mutants lacking the alkB2 gene fail to form an elastic layer. Rather, they form an active film like that formed by PA14. These findings demonstrate that genetic expression is altered by interfacial confinement, and suggest that the ability to metabolize alkanes may play a role in elastic film formation at oil-water interfaces.

  1. Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi.

    PubMed

    Chavshin, Ali Reza; Oshaghi, Mohammad Ali; Vatandoost, Hasan; Yakhchali, Bagher; Zarenejad, Fahimeh; Terenius, Olle

    2015-01-21

    Pseudomonas is a genus of bacteria commonly found in investigations of gut microbes in malaria mosquitoes. Among those mosquitoes is the dominating malaria vector in Asia, Anopheles stephensi, where Pseudomonas is a prevailing bacterium and natural inhabitant of its breeding places. In order to explore the reason for finding Pseudomonas so frequently, an investigation of its localization and transstadial properties was undertaken. A Pseudomonas isolate from An. stephensi was transformed successfully with an endogenous plasmid modified to express green fluorescent protein (GFP). Subsequently, the Pseudomonas-GFP was added to the laboratory larval breeding place of An. stephensi and taken up by the larvae. After 24 hours, the larvae were cleaned and moved to a bath with double-distilled water. Also, female adults were fed sugar solution containing Pseudomonas-GFP. The Pseudomonas-GFP was traced in the alimentary canal of larvae, pupae and adults. Fluorescent microscopy and PCR assays showed that the Pseudomonas bacteria underwent transstadial transmission from larvae to pupae and then to adults. In blood-fed female mosquitoes, the bacteria increased in numbers and remained in the mosquito body for at least three weeks after eclosion. In addition to the midgut, the Malpighian tubules of both larvae and adult mosquitoes were colonized by the bacteria. Also Pseudomonas-GFP that was distributed through sugar solution was able to colonize the Malpighian tubules of adult females. Colonization of the Malpighian tubules by Pseudomonas bacteria seems to be important for the transstadial passage from larvae to adult and presumably for the longevity of the bacteria in the adult mosquito. The existence of an entry point in the larval stage, and the long duration in the female gut, opens up for a possible use of Pseudomonas in mosquito paratransgenesis.

  2. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors.

    PubMed

    Wei, Hai-Lei; Collmer, Alan

    2017-12-25

    Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  3. Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Rehse, Steven J.; Diedrich, Jonathan; Palchaudhuri, Sunil

    2007-10-01

    Pseudomonas aeruginosa bacteria colonies have been analyzed by laser-induced breakdown spectroscopy using nanosecond laser pulses. LIBS spectra were obtained after transferring the bacteria from a nutrient-rich culture medium to a nutrient-free agar plate for laser ablation. To study the dependence of the LIBS spectrum on growth and environmental conditions, colonies were cultured on three different nutrient media: a trypticase soy agar (TSA) plate, a blood agar plate, and a medium chosen deliberately to induce bacteria membrane changes, a MacConkey agar plate containing bile salts. Nineteen atomic and ionic emission lines in the LIBS spectrum, which was dominated by inorganic elements such as calcium, magnesium and sodium, were used to identify and classify the bacteria. A discriminant function analysis was used to discriminate between the P. aeruginosa bacteria and two strains of E. coli: a non-pathogenic environmental strain and the pathogenic strain enterohemorrhagic E. coli 0157:H7 (EHEC). Nearly identical spectra were obtained from P. aeruginosa grown on the TSA plate and the blood agar plate, while the bacteria grown on the MacConkey plate exhibited easily distinguishable differences from the other two. All P. aeruginosa samples, independent of initial growth conditions, were readily discriminated from the two E. coli strains.

  4. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity.

    PubMed

    Pfeilmeier, Sebastian; Saur, Isabel Marie-Luise; Rathjen, John Paul; Zipfel, Cyril; Malone, Jacob George

    2016-05-01

    The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour. © 2015 THE AUTHORS MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  5. The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia

    PubMed Central

    Fox, Amy C.; McConnell, Kevin W.; Yoseph, Benyam P.; Breed, Elise; Liang, Zhe; Clark, Andrew T.; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A.; Dunne, W. Michael; Burd, Eileen M.; Coopersmith, Craig M.

    2012-01-01

    The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within two days while 44% of conventional mice survived for 7 days (p=0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. GF mice had significantly lower levels of TNF and IL-1β in BAL fluid compared to conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, since sepsis induces a greater increase in gut apoptosis in Rag-1−/− mice than wild type (WT) mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1−/− mice and septic GF WT mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local pro-inflammatory response. Additionally, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria. PMID:23042193

  6. The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia.

    PubMed

    Fox, Amy C; McConnell, Kevin W; Yoseph, Benyam P; Breed, Elise; Liang, Zhe; Clark, Andrew T; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-11-01

    The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ-free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within 2 days, whereas 44% of conventional mice survived for 7 days (P = 0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. Germ-free mice had significantly lower levels of tumor necrosis factor and interleukin 1β in bronchoalveolar lavage fluid compared with conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, because sepsis induces a greater increase in gut apoptosis in Rag-1 mice than in wild-type mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1 mice and septic GF wild-type mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local proinflammatory response. In addition, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria.

  7. Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves

    PubMed Central

    Ryffel, Florian; Helfrich, Eric JN; Kiefer, Patrick; Peyriga, Lindsay; Portais, Jean-Charles; Piel, Jörn; Vorholt, Julia A

    2016-01-01

    The phyllosphere, which is defined as the parts of terrestrial plants above the ground, is a large habitat for different microorganisms that show a high extent of adaption to their environment. A number of hypotheses were generated by culture-independent functional genomics studies to explain the competitiveness of specialized bacteria in the phyllosphere. In contrast, in situ data at the metabolome level as a function of bacterial colonization are lacking. Here, we aimed to obtain new insights into the metabolic interplay between host and epiphytes upon colonization of Arabidopsis thaliana leaves in a controlled laboratory setting using environmental metabolomics approaches. Quantitative nuclear magnetic resonance (NMR) and imaging high-resolution mass spectrometry (IMS) methods were used to identify Arabidopsis leaf surface compounds and their possible involvement in the epiphytic lifestyle by relative changes in compound pools. The dominant carbohydrates on the leaf surfaces were sucrose, fructose and glucose. These sugars were significantly and specifically altered after epiphytic leaf colonization by the organoheterotroph Sphingomonas melonis or the phytopathogen Pseudomonas syringae pv. tomato, but only to a minor extent by the methylotroph Methylobacterium extorquens. In addition to carbohydrates, IMS revealed surprising alterations in arginine metabolism and phytoalexin biosynthesis that were dependent on the presence of bacteria, which might reflect the consequences of bacterial activity and the recognition of not only pathogens but also commensals by the plant. These results highlight the power of environmental metabolomics to aid in elucidating the molecular basis underlying plant–epiphyte interactions in situ. PMID:26305156

  8. Investigation of Intercellular Salicylic Acid Accumulation during Compatible and Incompatible Arabidopsis-Pseudomonas syringae Interactions Using a Fast Neutron-Generated Mutant Allele of EDS5 Identified by Genetic Mapping and Whole-Genome Sequencing

    PubMed Central

    Catana, Vasile; Golding, Brian; Weretilnyk, Elizabeth A.; Cameron, Robin K.

    2014-01-01

    A whole-genome sequencing technique developed to identify fast neutron-induced deletion mutations revealed that iap1-1 is a new allele of EDS5 (eds5-5). RPS2-AvrRpt2-initiated effector-triggered immunity (ETI) was compromised in iap1-1/eds5-5 with respect to in planta bacterial levels and the hypersensitive response, while intra- and intercellular free salicylic acid (SA) accumulation was greatly reduced, suggesting that SA contributes as both an intracellular signaling molecule and an antimicrobial agent in the intercellular space during ETI. During the compatible interaction between wild-type Col-0 and virulent Pseudomonas syringae pv. tomato (Pst), little intercellular free SA accumulated, which led to the hypothesis that Pst suppresses intercellular SA accumulation. When Col-0 was inoculated with a coronatine-deficient strain of Pst, high levels of intercellular SA accumulation were observed, suggesting that Pst suppresses intercellular SA accumulation using its phytotoxin coronatine. This work suggests that accumulation of SA in the intercellular space is an important component of basal/PAMP-triggered immunity as well as ETI to pathogens that colonize the intercellular space. PMID:24594657

  9. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava.

    PubMed

    Dietrich, Diane; Illman, Barbara; Crooks, Casey

    2013-06-04

    The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides arabinose, xylose, glucose and mannose. We examined the sensitivity of seven polyhydroxyalkanoate producing bacteria: Azohydromonas lata, Bacillus megaterium, Bacillus cereus, Burkholderia cepacia, Pseudomonas olevorans, Pseudomonas pseudoflava and Ralstonia eutropha, against seven fermentation inhibitors produced by the saccharification of lignocellulose: acetic acid, levulinic acid, coumaric acid, ferulic acid, syringaldehyde, furfural, and hyroxymethyfurfural. There was significant variation in the sensitivity of these microbes to representative phenolics ranging from 0.25-1.5 g/L coumaric and ferulic acid and between 0.5-6.0 g/L syringaldehyde. Inhibition ranged from 0.37-4 g/L and 0.75-6 g/L with acetic acid and levulinic acid, respectively. B. cepacia and P. pseudoflava were selected for further analysis of polyhydroxyalkanoate production. We find significant differences in sensitivity to the fermentation inhibitors tested and find these variations to be over a relevant concentration range given the concentrations of inhibitors typically found in lignocellulosic hydrolysates. Of the seven bacteria tested, B. cepacia demonstrated the greatest inhibitor tolerance. Similarly, of two organisms examined for polyhydroxybutyrate production, B. cepacia was notably more efficient when fermenting pentose substrates.

  10. The Phytopathogen Pseudomonas syringae pv. tomato DC3000 Has Three High-Affinity Iron-Scavenging Systems Functional under Iron Limitation Conditions but Dispensable for Pathogenesis▿¶

    PubMed Central

    Jones, Alexander M.; Wildermuth, Mary C.

    2011-01-01

    High-affinity iron scavenging through the use of siderophores is a well-established virulence determinant in mammalian pathogenesis. However, few examples have been reported for plant pathogens. Here, we use a genetic approach to investigate the role of siderophores in Pseudomonas syringae pv. tomato DC3000 (DC3000) virulence in tomato. DC3000, an agronomically important pathogen, has two known siderophores for high-affinity iron scavenging, yersiniabactin and pyoverdin, and we uncover a third siderophore, citrate, required for growth when iron is limiting. Though growth of a DC3000 triple mutant unable to either synthesize or import these siderophores is severely restricted in iron-limited culture, it is fully pathogenic. One explanation for this phenotype is that the DC3000 triple mutant is able to directly pirate plant iron compounds such as heme/hemin or iron-nicotianamine, and our data indicate that DC3000 can import iron-nicotianamine with high affinity. However, an alternative explanation, supported by data from others, is that the pathogenic environment of DC3000 (i.e., leaf apoplast) is not iron limited but is iron replete, with available iron of >1 μM. Growth of the triple mutant in culture is restored to wild-type levels by supplementation with a variety of iron chelates at >1 μM, including iron(III) dicitrate, a dominant chelate of the leaf apoplast. This suggests that lower-affinity iron import would be sufficient for DC3000 iron nutrition in planta and is in sharp contrast to the high-affinity iron-scavenging mechanisms required in mammalian pathogenesis. PMID:21441525

  11. A Critical Role of STAYGREEN/Mendel’s I Locus in Controlling Disease Symptom Development during Pseudomonas syringae pv tomato Infection of Arabidopsis1[W][OA

    PubMed Central

    Mecey, Christy; Hauck, Paula; Trapp, Marisa; Pumplin, Nathan; Plovanich, Anne; Yao, Jian; He, Sheng Yang

    2011-01-01

    Production of disease symptoms represents the final phase of infectious diseases and is a main cause of crop loss and/or marketability. However, little is known about the molecular basis of disease symptom development. In this study, a genetic screening was conducted to identify Arabidopsis (Arabidopsis thaliana) mutants that are impaired specifically in the development of disease symptoms (leaf chlorosis and/or necrosis) after infection with the bacterial pathogen Pseudomonas syringae pv tomato (Pst) DC3000. An ethyl methanesulfonate-induced Arabidopsis mutant (no chlorosis1 [noc1]) was identified. In wild-type plants, the abundance of chlorophylls decreased markedly after Pst DC3000 infection, whereas the total amount of chlorophylls remained relatively unchanged in the noc1 mutant. Interestingly, noc1 mutant plants also exhibited reduced disease symptoms in response to the fungal pathogen Alternaria brassicicola. Genetic and molecular analyses showed that the nuclear gene STAYGREEN (SGR; or Mendel’s I locus) is mutated (resulting in the aspartic acid to tyrosine substitution at amino acid position 88) in noc1 plants. Transforming wild-type SGR cDNA into the noc1 mutant rescued the chlorosis phenotype in response to Pst DC3000 infection. The SGR transcript was highly induced by Pst DC3000, A. brassicicola, or coronatine (COR), a bacterial phytotoxin that promotes chlorosis. The induction of SGR expression by COR is dependent on COI1, a principal component of the jasmonate receptor complex. These results suggest that pathogen/COR-induced expression of SGR is a critical step underlying the development of plant disease chlorosis. PMID:21994350

  12. Does the presence of bacteria effect basaltic glass dissolution rates? 1: Dead Pseudomonas reactants

    NASA Astrophysics Data System (ADS)

    Stockmann, Gabrielle J.; Shirokova, Liudmila S.; Pokrovsky, Oleg S.; Oelkers, Eric H.; Benezeth, Pascale

    2010-05-01

    Basaltic glass and crystalline basalt formations in Iceland have been suggested for industrial CO2 storage due to their porous and permeable properties and high reactivity. Acid CO2-saturated waters in contact with basaltic glass will lead to rapid dissolution of the glass and release of divalent cations, (Ca2+, Mg2+, Fe2+) that can react to form stable carbonates and thereby trap the CO2. However, the basalt formations in Iceland not only contains glass and mineral assemblages, but also host microbiological communities that either by their presence or by active involvement in chemical reactions could affect the amount of basaltic glass being dissolved and CO2 being trapped. Samples of natural bacteria communities from the CO2 storage grounds in Iceland were collected, separated, and purified using agar plate technique and cultured under laboratory conditions in nutrient broth-rich media. Heterotrophic aerobic Gram-negative strain of Pseudomonas reactants was selected for a series of flow-through experiments aimed at evaluation of basaltic glass dissolution rate in the presense of increasing amounts of dead bacteria and their lysis products. The experiments were carried out using mixed-flow reactors at pH 4, 6, 8 and 10 at 25 °C. Each of the four reactors contained 1 gram of basaltic glass of the size fraction 45-125 μm. This glass was dissolved in ~ 0.01 M buffer solutions (acetate, MES, bicarbonate and carbonate+bicarbonate mixture) of the desired pH. All experiments ran 2 months, keeping the flowrate and temperature stable and only changing the concentration of dead bacteria in the inlet solutions (from 0 to 430 mg/L). Experiments were performed in sterile conditions, and bacterial growth was prevented by adding NaN3 to the inlet solutions. Routine culturing of bacteria on the agar plates confirmed the sterility of experiments. Samples of outlet solutions were analyzed for major cations and trace elements by ICP-MS. Results demonstrate a slight decrease in the

  13. Small-Molecule Inhibition of Choline Catabolism in Pseudomonas aeruginosa and Other Aerobic Choline-Catabolizing Bacteria ▿ †

    PubMed Central

    Fitzsimmons, Liam F.; Flemer, Stevenson; Wurthmann, A. Sandy; Deker, P. Bruce; Sarkar, Indra Neil; Wargo, Matthew J.

    2011-01-01

    Choline is abundant in association with eukaryotes and plays roles in osmoprotection, thermoprotection, and membrane biosynthesis in many bacteria. Aerobic catabolism of choline is widespread among soil proteobacteria, particularly those associated with eukaryotes. Catabolism of choline as a carbon, nitrogen, and/or energy source may play important roles in association with eukaryotes, including pathogenesis, symbioses, and nutrient cycling. We sought to generate choline analogues to study bacterial choline catabolism in vitro and in situ. Here we report the characterization of a choline analogue, propargylcholine, which inhibits choline catabolism at the level of Dgc enzyme-catalyzed dimethylglycine demethylation in Pseudomonas aeruginosa. We used genetic analyses and 13C nuclear magnetic resonance to demonstrate that propargylcholine is catabolized to its inhibitory form, propargylmethylglycine. Chemically synthesized propargylmethylglycine was also an inhibitor of growth on choline. Bioinformatic analysis suggests that there are genes encoding DgcA homologues in a variety of proteobacteria. We examined the broader utility of propargylcholine and propargylmethylglycine by assessing growth of other members of the proteobacteria that are known to grow on choline and possess putative DgcA homologues. Propargylcholine showed utility as a growth inhibitor in P. aeruginosa but did not inhibit growth in other proteobacteria tested. In contrast, propargylmethylglycine was able to inhibit choline-dependent growth in all tested proteobacteria, including Pseudomonas mendocina, Pseudomonas fluorescens, Pseudomonas putida, Burkholderia cepacia, Burkholderia ambifaria, and Sinorhizobium meliloti. We predict that chemical inhibitors of choline catabolism will be useful for studying this pathway in clinical and environmental isolates and could be a useful tool to study proteobacterial choline catabolism in situ. PMID:21602374

  14. Flexible exportation mechanisms of arthrofactin in Pseudomonas sp. MIS38.

    PubMed

    Lim, S P; Roongsawang, N; Washio, K; Morikawa, M

    2009-07-01

    To obtain further insights into transportation mechanisms of a most effective biosurfactant, arthrofactin in Pseudomonas sp. MIS38. A cluster genes arfA/B/C encodes an arthrofactin synthetase complex (ArfA/B/C). Downstream of the arfA/B/C lie genes encoding a putative periplasmic protein (ArfD, 362 aa) and a putative ATP-binding cassette transporter (ArfE, 651 aa), namely arfD and arfE, respectively. The arfA/B/C, arfD, and arfE form an operon suggesting their functional connection. Gene knockout mutants ArfD:Km, ArfE:Km, ArfD:Tc/ArfE:Km, and gene overexpression strains MIS38(pME6032_arfD/E) and ArfE:Km(pME6032_arfD/E) were prepared and analysed for arthrofactin production profiles. It was found that the production levels of arthrofactin were temporally reduced in the mutants or increased in the gene overexpression strains, but they eventually became similar level to that of MIS38. Addition of ABC transporter inhibitors, glibenclamide and sodium ortho-vanadate dramatically reduced the production levels of arthrofactin. This excludes a possibility that arthrofactin is exported by diffusion with the aid of its own high surfactant activity. ArfD/E is not an exclusive but a primary exporter of arthrofactin during early growth stage. Reduction in the arthrofactin productivity of arfD and arfE knockout mutants was eventually rescued by another ABC transporter system. Effects of arfD and arfE overexpression were evident only for 1-day cultivation. Multiple ATP dependent active transporter systems are responsible for the production of arthrofactin. Pseudomonas bacteria are characterized to be endued with multiple exporter and efflux systems for secondary metabolites including antibiotics, plant toxins, and biosurfactants. The present work demonstrates exceptionally flexible and highly controlled transportation mechanisms of a most effective lipopeptide biosurfactant, arthrofactin in Pseudomonas sp. MIS38. Because lipopeptide biosurfactants are known to enhance efficacy of

  15. The hrpZ Gene of Pseudomonas syringae pv. phaseolicola Enhances Resistance to Rhizomania Disease in Transgenic Nicotiana benthamiana and Sugar Beet

    PubMed Central

    Pavli, Ourania I.; Kelaidi, Georgia I.; Tampakaki, Anastasia P.; Skaracis, George N.

    2011-01-01

    To explore possible sources of transgenic resistance to the rhizomania-causing Beet necrotic yellow vein virus (BNYVV), Nicotiana benthamiana plants were constructed to express the harpin of Pseudomonas syringae pv. phaseolicola (HrpZPsph). The HrpZ protein was expressed as an N-terminal fusion to the PR1 signal peptide (SP/HrpZ) to direct harpin accumulation to the plant apoplast. Transgene integration was verified by mPCR in all primary transformants (T0), while immunoblot analysis confirmed that the protein HrpZPsph was produced and the signal peptide was properly processed. Neither T0 plants nor selfed progeny (T1) showed macroscopically visible necrosis or any other macroscopic phenotypes. However, plants expressing the SP/HrpZPsph showed increased vigor and grew faster in comparison with non-transgenic control plants. Transgenic resistance was assessed after challenge inoculation with BNYVV on T1 progeny by scoring of disease symptoms and by DAS-ELISA at 20 and 30 dpi. Transgenic and control lines showed significant differences in terms of the number of plants that became infected, the timing of infection and the disease symptoms displayed. Plants expressing the SP/HrpZPsph developed localized leaf necrosis in the infection area and had enhanced resistance upon challenge with BNYVV. In order to evaluate the SP/HrpZ-based resistance in the sugar beet host, A. rhizogenes-mediated root transformation was exploited as a transgene expression platform. Upon BNYVV inoculation, transgenic sugar beet hairy roots showed high level of BNYVV resistance. In contrast, the aerial non-transgenic parts of the same seedlings had virus titers that were comparable to those of the seedlings that were untransformed or transformed with wild type R1000 cells. These findings indicate that the transgenically expressed SP/HrpZ protein results in enhanced rhizomania resistance both in a model plant and sugar beet, the natural host of BNYVV. Possible molecular mechanisms underlying the

  16. The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet.

    PubMed

    Pavli, Ourania I; Kelaidi, Georgia I; Tampakaki, Anastasia P; Skaracis, George N

    2011-03-04

    To explore possible sources of transgenic resistance to the rhizomania-causing Beet necrotic yellow vein virus (BNYVV), Nicotiana benthamiana plants were constructed to express the harpin of Pseudomonas syringae pv. phaseolicola (HrpZ(Psph)). The HrpZ protein was expressed as an N-terminal fusion to the PR1 signal peptide (SP/HrpZ) to direct harpin accumulation to the plant apoplast. Transgene integration was verified by mPCR in all primary transformants (T0), while immunoblot analysis confirmed that the protein HrpZ(Psph) was produced and the signal peptide was properly processed. Neither T0 plants nor selfed progeny (T1) showed macroscopically visible necrosis or any other macroscopic phenotypes. However, plants expressing the SP/HrpZ(Psph) showed increased vigor and grew faster in comparison with non-transgenic control plants. Transgenic resistance was assessed after challenge inoculation with BNYVV on T1 progeny by scoring of disease symptoms and by DAS-ELISA at 20 and 30 dpi. Transgenic and control lines showed significant differences in terms of the number of plants that became infected, the timing of infection and the disease symptoms displayed. Plants expressing the SP/HrpZ(Psph) developed localized leaf necrosis in the infection area and had enhanced resistance upon challenge with BNYVV. In order to evaluate the SP/HrpZ-based resistance in the sugar beet host, A. rhizogenes-mediated root transformation was exploited as a transgene expression platform. Upon BNYVV inoculation, transgenic sugar beet hairy roots showed high level of BNYVV resistance. In contrast, the aerial non-transgenic parts of the same seedlings had virus titers that were comparable to those of the seedlings that were untransformed or transformed with wild type R1000 cells. These findings indicate that the transgenically expressed SP/HrpZ protein results in enhanced rhizomania resistance both in a model plant and sugar beet, the natural host of BNYVV. Possible molecular mechanisms

  17. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava

    PubMed Central

    2013-01-01

    Background The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides arabinose, xylose, glucose and mannose. Findings We examined the sensitivity of seven polyhydroxyalkanoate producing bacteria: Azohydromonas lata, Bacillus megaterium, Bacillus cereus, Burkholderia cepacia, Pseudomonas olevorans, Pseudomonas pseudoflava and Ralstonia eutropha, against seven fermentation inhibitors produced by the saccharification of lignocellulose: acetic acid, levulinic acid, coumaric acid, ferulic acid, syringaldehyde, furfural, and hyroxymethyfurfural. There was significant variation in the sensitivity of these microbes to representative phenolics ranging from 0.25-1.5 g/L coumaric and ferulic acid and between 0.5-6.0 g/L syringaldehyde. Inhibition ranged from 0.37-4 g/L and 0.75-6 g/L with acetic acid and levulinic acid, respectively. B. cepacia and P. pseudoflava were selected for further analysis of polyhydroxyalkanoate production. Conclusions We find significant differences in sensitivity to the fermentation inhibitors tested and find these variations to be over a relevant concentration range given the concentrations of inhibitors typically found in lignocellulosic hydrolysates. Of the seven bacteria tested, B. cepacia demonstrated the greatest inhibitor tolerance. Similarly, of two organisms examined for polyhydroxybutyrate production, B. cepacia was notably more efficient when fermenting pentose substrates. PMID:23734728

  18. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides.

    PubMed

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn M; Johnson, Courtney M; Martin, Stanton L; Land, Miriam L; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A

    2012-11-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated.

  19. Occurrence of squalene in methanol-grown bacteria.

    PubMed Central

    Goldberg, I; Shechter, I

    1978-01-01

    The nonpolar lipids of methanol-grown bacteria which utilize one-carbon (C1) compounds via the RMP pathway (Pseudomonas C, Pseudomonas methylotropha, and Methylomonas methanolica) were found to contain squalene in concentrations between 0.1 to 1.16 mg/g of cell (dry weight). Squalene could not be detected in lipid extracts of methanol-grown bacteria which utilize C1 compounds via the serine pathway. PMID:98521

  20. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    PubMed Central

    Utturkar, Sagar M.; Klingeman, Dawn M.; Johnson, Courtney M.; Martin, Stanton L.; Land, Miriam L.; Lu, Tse-Yuan S.; Schadt, Christopher W.; Doktycz, Mitchel J.

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated. PMID:23045501

  1. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn Marie

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  2. A combined computational-experimental analyses of selected metabolic enzymes in Pseudomonas species.

    PubMed

    Perumal, Deepak; Lim, Chu Sing; Chow, Vincent T K; Sakharkar, Kishore R; Sakharkar, Meena K

    2008-09-10

    Comparative genomic analysis has revolutionized our ability to predict the metabolic subsystems that occur in newly sequenced genomes, and to explore the functional roles of the set of genes within each subsystem. These computational predictions can considerably reduce the volume of experimental studies required to assess basic metabolic properties of multiple bacterial species. However, experimental validations are still required to resolve the apparent inconsistencies in the predictions by multiple resources. Here, we present combined computational-experimental analyses on eight completely sequenced Pseudomonas species. Comparative pathway analyses reveal that several pathways within the Pseudomonas species show high plasticity and versatility. Potential bypasses in 11 metabolic pathways were identified. We further confirmed the presence of the enzyme O-acetyl homoserine (thiol) lyase (EC: 2.5.1.49) in P. syringae pv. tomato that revealed inconsistent annotations in KEGG and in the recently published SYSTOMONAS database. These analyses connect and integrate systematic data generation, computational data interpretation, and experimental validation and represent a synergistic and powerful means for conducting biological research.

  3. Detection of and Response to Signals Involved in Host-Microbe Interactions by Plant-Associated Bacteria

    PubMed Central

    Brencic, Anja; Winans, Stephen C.

    2005-01-01

    Diverse interactions between hosts and microbes are initiated by the detection of host-released chemical signals. Detection of these signals leads to altered patterns of gene expression that culminate in specific and adaptive changes in bacterial physiology that are required for these associations. This concept was first demonstrated for the members of the family Rhizobiaceae and was later found to apply to many other plant-associated bacteria as well as to microbes that colonize human and animal hosts. The family Rhizobiaceae includes various genera of rhizobia as well as species of Agrobacterium. Rhizobia are symbionts of legumes, which fix nitrogen within root nodules, while Agrobacterium tumefaciens is a pathogen that causes crown gall tumors on a wide variety of plants. The plant-released signals that are recognized by these bacteria are low-molecular-weight, diffusible molecules and are detected by the bacteria through specific receptor proteins. Similar phenomena are observed with other plant pathogens, including Pseudomonas syringae, Ralstonia solanacearum, and Erwinia spp., although here the signals and signal receptors are not as well defined. In some cases, nutritional conditions such as iron limitation or the lack of nitrogen sources seem to provide a significant cue. While much has been learned about the process of host detection over the past 20 years, our knowledge is far from being complete. The complex nature of the plant-microbe interactions makes it extremely challenging to gain a comprehensive picture of host detection in natural environments, and thus many signals and signal recognition systems remain to be described. PMID:15755957

  4. [Effects of Pseudomonas syringae pv. tabaci infection on tobacco photosynthetic apparatus under light or dark conditions.

    PubMed

    Cheng, Dan Dan; Sun, Jian Ping; Chai, Yuan; Zhu, Yi Yong; Zhao, Min; Sun, Guang Yu; Sun, Xing Bin

    2016-08-01

    Pseudomonas syringae pv. tabaci (Pst) is a hemi-biotrophic bacterial pathogen that causes the formation of brown spots named wildfire disease. Pst has received considerable attention in recent years. However, most of the studies focused on the tolerance and defense mechanisms of the host and non-host plants against Pst infection and a toxin originally described as being from Pst named tabtoxin, little information is available on the photosynthetic performance of tobacco leaves after Pst infection. Exploring the effects of Pst on the photosystem Ⅱ (PSⅡ) will not only help in clarifying tobacco-Pst interaction mechanisms, but also deepen the understanding of bacterial pathogen disease from a physiological perspective. By analyzing chlorophyll a fluorescence transient, performing western blot of thylakoid membrane and measuring the content of reactive oxygen species (ROS) and total chlorophyll, the effects of Pst on PS2 in tobacco were studied under light (200 μmol·m -2 ·s -1 ) or dark conditions. The results showed that chlorophyll content significantly decreased and significant chlorosis of the infiltrated zone was observed compared to the untreated ones, and tobacco leaves exhibited a visible and overt wildfire symptom at 3 days post Pst infection (dpi) under light and dark conditions. The H 2 O 2 content increased at 3 dpi compared to untreated ones in tobacco leaves under light and dark conditions, and was much higher under light than dark condition. Besides, markedly increase of the normalized relative variable fluorescence at the K step (W K ) and the relative variable fluorescence at the J step (V J ), significant decrease of maximal quantum yield of PS2 (F v /F m ) and density of Q A - reducing PS2 reaction centers per cross section (RC/CSm) were observed in tobacco leaves after Pst infection at 3 dpi under light and dark conditions. Moreover, inhibition of the K and J steps was more pronounced in the dark, as indicated by the greater increase of W K

  5. Over-expression of the Pseudomonas syringae harpin-encoding gene hrpZm confers enhanced tolerance to Phytophthora root and stem rot in transgenic soybean.

    PubMed

    Du, Qian; Yang, Xiangdong; Zhang, Jinhua; Zhong, Xiaofang; Kim, Kyung Seok; Yang, Jing; Xing, Guojie; Li, Xiaoyu; Jiang, Zhaoyuan; Li, Qiyun; Dong, Yingshan; Pan, Hongyu

    2018-06-01

    Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T 2 -T 4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.

  6. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria.

    PubMed

    Browne, Patrick; Barret, Matthieu; O'Gara, Fergal; Morrissey, John P

    2010-11-25

    Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation

  7. Molecular and chemical dialogues in bacteria-protozoa interactions.

    PubMed

    Song, Chunxu; Mazzola, Mark; Cheng, Xu; Oetjen, Janina; Alexandrov, Theodore; Dorrestein, Pieter; Watrous, Jeramie; van der Voort, Menno; Raaijmakers, Jos M

    2015-08-06

    Protozoan predation of bacteria can significantly affect soil microbial community composition and ecosystem functioning. Bacteria possess diverse defense strategies to resist or evade protozoan predation. For soil-dwelling Pseudomonas species, several secondary metabolites were proposed to provide protection against different protozoan genera. By combining whole-genome transcriptome analyses with (live) imaging mass spectrometry (IMS), we observed multiple changes in the molecular and chemical dialogues between Pseudomonas fluorescens and the protist Naegleria americana. Lipopeptide (LP) biosynthesis was induced in Pseudomonas upon protozoan grazing and LP accumulation transitioned from homogeneous distributions across bacterial colonies to site-specific accumulation at the bacteria-protist interface. Also putrescine biosynthesis was upregulated in P. fluorescens upon predation. We demonstrated that putrescine induces protozoan trophozoite encystment and adversely affects cyst viability. This multifaceted study provides new insights in common and strain-specific responses in bacteria-protozoa interactions, including responses that contribute to bacterial survival in highly competitive soil and rhizosphere environments.

  8. Long-Chain Alkyl Cyanides: Unprecedented Volatile Compounds Released by Pseudomonas and Micromonospora Bacteria.

    PubMed

    Montes Vidal, Diogo; von Rymon-Lipinski, Anna-Lena; Ravella, Srinivasa; Groenhagen, Ulrike; Herrmann, Jennifer; Zaburannyi, Nestor; Zarbin, Paulo H G; Varadarajan, Adithi R; Ahrens, Christian H; Weisskopf, Laure; Müller, Rolf; Schulz, Stefan

    2017-04-03

    The analysis of volatiles from bacterial cultures revealed long-chain aliphatic nitriles, a new class of natural products. Such nitriles are produced by both Gram-positive Micromonospora echinospora and Gram-negative Pseudomonas veronii bacteria, although the structures differ. A variable sequence of chain elongation and dehydration in the fatty acid biosynthesis leads to either unbranched saturated or unsaturated nitriles with an ω-7 double bond, such as (Z)-11-octadecenenitrile, or methyl-branched unsaturated nitriles with the double bond located at C-3, such as (Z)-13-methyltetradec-3-enenitrile. The nitrile biosynthesis starts from fatty acids, which are converted into their amides and finally dehydrated. The structures and biosyntheses of the 19 naturally occurring compounds were elucidated by mass spectrometry, synthesis, and feeding experiments with deuterium-labeled precursors. Some of the nitriles showed antimicrobial activity, for example, against multiresistant Staphylococcus aureus strains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Killer Pigments in Bacteria: An Ecological Nightmare.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Saccardi, Marion

    2000-01-01

    Describes an alternative to teaching ecology by using bacteria to test competitor survival. Students observe a time-dependent selective killing of other unrelated bacteria by Pseudomonas aeruginosa. (SAH)

  10. Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae

    PubMed Central

    Matern, Sanja; Peskan-Berghoefer, Tatjana; Gromes, Roland; Kiesel, Rebecca Vazquez; Rausch, Thomas

    2015-01-01

    The role of the redox-active tripeptide glutathione in plant defence against pathogens has been studied extensively; however, the impact of changes in cellular glutathione redox potential on signalling processes during defence reactions has remained elusive. This study explored the impact of elevated glutathione content on the cytosolic redox potential and on early defence signalling at the level of mitogen-activated protein kinases (MAPKs), as well as on subsequent defence reactions, including changes in salicylic acid (SA) content, pathogenesis-related gene expression, callose depositions, and the hypersensitive response. Wild-type (WT) Nicotiana tabacum L. and transgenic high-glutathione lines (HGL) were transformed with the cytosol-targeted sensor GRX1-roGFP2 to monitor the cytosolic redox state. Surprisingly, HGLs displayed an oxidative shift in their cytosolic redox potential and an activation of the tobacco MAPKs wound-induced protein kinase (WIPK) and SA-induced protein kinase (SIPK). This activation occurred in the absence of any change in free SA content, but was accompanied by constitutively increased expression of several defence genes. Similarly, rapid activation of MAPKs could be induced in WT tobacco by exposure to either reduced or oxidized glutathione. When HGL plants were challenged with adapted or non-adapted Pseudomonas syringae pathovars, the cytosolic redox shift was further amplified and the defence response was markedly increased, showing a priming effect for SA and callose; however, the initial and transient hyperactivation of MAPK signalling was attenuated in HGLs. The results suggest that, in tobacco, MAPK and SA signalling may operate independently, both possibly being modulated by the glutathione redox potential. Possible mechanisms for redox-mediated MAPK activation are discussed. PMID:25628332

  11. Backbone and stereospecific (13)C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc.

    PubMed

    Sharma, Rakhi; Sahu, Bhubanananda; Ray, Malay K; Deshmukh, Mandar V

    2015-04-01

    Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific (13)C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W.

  12. An insight into the photodynamic approach versus copper formulations in the control of Pseudomonas syringae pv. actinidiae in kiwi plants.

    PubMed

    Jesus, Vânia; Martins, Diana; Branco, Tatiana; Valério, Nádia; Neves, Maria G P M S; Faustino, Maria A F; Reis, Luís; Barreal, Esther; Gallego, Pedro P; Almeida, Adelaide

    2018-02-14

    In the last decade, the worldwide production of kiwi fruit has been highly affected by Pseudomonas syringae pv. actinidiae (Psa), a phytopathogenic bacterium; this has led to severe economic losses that are seriously affecting the kiwi fruit trade. The available treatments for this disease are still scarce, with the most common involving frequently spraying the orchards with copper derivatives, in particular cuprous oxide (Cu 2 O). However, these copper formulations should be avoided due to their high toxicity; therefore, it is essential to search for new approaches for controlling Psa. Antimicrobial photodynamic therapy (aPDT) may be an alternative approach to inactivate Psa. aPDT consists in the use of a photosensitizer molecule (PS) that absorbs light and by transference of the excess of energy or electrons to molecular oxygen forms highly reactive oxygen species (ROS) that can affect different molecular targets, thus being very unlikely to lead to the development of microbe resistance. The aim of the present study was to evaluate the effectiveness of aPDT to photoinactivate Psa, using the porphyrin Tetra-Py + -Me and different light intensities. The degree of inactivation of Psa was assessed using the PS at 5.0 μM under low irradiance (4.0 mW cm -2 ). Afterward, ex vivo experiments, using artificially contaminated kiwi leaves, were conducted with a PS at 50 μM under 150 mW cm -2 and sunlight irradiation. A reduction of 6 log in the in vitro assays after 90 min of irradiation was observed. In the ex vivo tests, the decrease was lower, approximately 1.8 log reduction at an irradiance of 150 mW cm -2 , 1.2 log at 4.0 mW cm -2 , and 1.5 log under solar radiation. However, after three successive cycles of treatment under 150 mW cm -2 , a 4 log inactivation was achieved. No negative effects were observed on leaves after treatment. Assays using Cu 2 O were also performed at the recommended concentration by law (50 g h L -1 ) and at concentrations 10 times

  13. [Risk factors for Pseudomonas aeruginosa infections, resistant to carbapenem].

    PubMed

    Ghibu, Laura; Miftode, Egidia; Teodor, Andra; Bejan, Codrina; Dorobăţ, Carmen Mihaela

    2010-01-01

    Since their introduction in clinical practice,carbapenems have been among the most powerful antibiotics for treating serious infections cased by Gram-negative nosocomial pathogens, including Pseudomonas aeruginosa. The emergence of betalactamases with carbapenem-hydrolyzing activity is of major clinical concern. Pseudomonas aeruginosa is a leading cause of nosocomial infection. Risk factors for colonization with carbapenems-resistant Pseudomonas in hospital are: history of P. aeruginosa infection or colonization within the previous year, (length of hospital stay, being bedridden or in the ICU, mechanical ventilation, malignant disease, and history of chronic obstructive pulmonary disease have all been identified as independent risk factors for MDR P. aeruginosa infection. Long-term-care facilities are also reservoirs of resistant bacteria. Risk factors for colonization of LTCF residents with resistant bacteria included age > 86 years, antibiotic treatment in the previous 3 months, indwelling devices, chronic obstructive pulmonary disease, physical disability, and the particular LTCF unit.

  14. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000.

    PubMed

    Li, Dayong; Zhang, Huijuan; Song, Qiuming; Wang, Lu; Liu, Shixia; Hong, Yongbo; Huang, Lei; Song, Fengming

    2015-06-14

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases. MMPs have been characterized in detail in mammals and shown to play key roles in many physiological and pathological processes. Although MMPs in some plant species have been identified, the function of MMPs in biotic stress responses remains elusive. A total of five MMP genes were identified in tomato genome. qRT-PCR analysis revealed that expression of Sl-MMP genes was induced with distinct patterns by infection of Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 and by treatment with defense-related hormones such as salicylic acid, jasmonic acid and ethylene precursor 1-amino cyclopropane-1-carboxylic acid. Virus-induced gene silencing (VIGS)-based knockdown of individual Sl-MMPs and disease assays indicated that silencing of Sl3-MMP resulted in reduced resistance to B. cinerea and Pst DC3000, whereas silencing of other four Sl-MMPs did not affect the disease resistance against these two pathogens. The Sl3-MMP-silenced tomato plants responded with increased accumulation of reactive oxygen species and alerted expression of defense genes after infection of B. cinerea. Transient expression of Sl3-MMP in leaves of Nicotiana benthamiana led to an enhanced resistance to B. cinerea and upregulated expression of defense-related genes. Biochemical assays revealed that the recombinant mature Sl3-MMP protein had proteolytic activities in vitro with distinct preferences for specificity of cleavage sites. The Sl3-MMP protein was targeted onto the plasma membrane of plant cells when transiently expressed in onion epidermal cells. VIGS-based knockdown of Sl3-MMP expression in tomato and gain-of-function transient expression of Sl3-MMP in N. benthamiana demonstrate that Sl3-MMP functions as a positive regulator of defense response against B. cinerea and Pst DC3000.

  15. Photochemical formation of chitosan-stabilized near-infrared-absorbing silver Nanoworms: A "Green" synthetic strategy and activity on Gram-negative pathogenic bacteria.

    PubMed

    Marpu, Sreekar; Kolailat, Samar S; Korir, Daniel; Kamras, Brian L; Chaturvedi, Ratnesh; Joseph, Abel; Smith, Christopher M; Palma, Misael C; Shah, Jyoti; Omary, Mohammad A

    2017-12-01

    A facile, single-step, non-seeded photochemical protocol for producing a new type of anisotropic silver nanostructure, "nanoworms", with curved longer dimensions and smooth, rounded edges. The nanoworms exhibit surface plasmon resonance (SPR) absorption in the near-infrared window (NIRW) region and are stabilized using biocompatible polymer chitosan, rendering biocompatibility and amplified safety for biological utility of the composition. Both NIRW-absorbing nanoworms and visible-absorbing nanospheres herein are attained exclusively by employing green chemistry principles. Contrary to seed-mediated or polyol techniques, the protocol demonstrates the feasibility to selectively synthesize NIRW-absorbing silver nanostructures in a single step and in complete absence of any known reducing agent. The effect of irradiation, pH, and concentration of starting materials on the formation of nanoworms vs nanospheres is investigated in detail and analyzed by optical spectroscopy and electron microscopy. The dominant SPR obtained in the NIRW region of the nanoworms results from anisotropic AgNPs, as opposed to agglomeration. From TEM images, it is also very clear that a strong correlation exists between the SPR peak maximum and the size distribution of the anisotropic nanoworm structures, with SPR peak maximum exhibiting red shift with the increase in the size of the nanoworm population. Although there is significant size variation of different nanoworms of a given population, all samples exhibit remarkable stability. The nanoworms retained their NIRW-absorbing features even at physiological pH and at a constant ionic strength. The nanodispersions also retained their SPR features in King's B medium. Antipathogenic assays reveal that the anisotropic NIRW-absorbing nanoworms exhibit the highest growth inhibition compared to other spherical nanosilver and molecular silver forms on Gram-negative pathogenic bacteria, Pseudomonas syringae pv. maculicola ES4326 and P. syringae pv

  16. Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts.

    PubMed

    Li, Guangyong; Froehlich, John E; Elowsky, Christian; Msanne, Joseph; Ostosh, Andrew C; Zhang, Chi; Awada, Tala; Alfano, James R

    2014-01-01

    The pathogen Pseudomonas syringae requires a type-III protein secretion system and the effector proteins it injects into plant cells for pathogenesis. The primary role for P. syringae type-III effectors is the suppression of plant immunity. The P. syringae pv. tomato DC3000 HopK1 type-III effector was known to suppress the hypersensitive response (HR), a programmed cell death response associated with effector-triggered immunity. Here we show that DC3000 hopK1 mutants are reduced in their ability to grow in Arabidopsis, and produce reduced disease symptoms. Arabidopsis transgenically expressing HopK1 are reduced in PAMP-triggered immune responses compared with wild-type plants. An N-terminal region of HopK1 shares similarity with the corresponding region in the well-studied type-III effector AvrRps4; however, their C-terminal regions are dissimilar, indicating that they have different effector activities. HopK1 is processed in planta at the same processing site found in AvrRps4. The processed forms of HopK1 and AvrRps4 are chloroplast localized, indicating that the shared N-terminal regions of these type-III effectors represent a chloroplast transit peptide. The HopK1 contribution to virulence and the ability of HopK1 and AvrRps4 to suppress immunity required their respective transit peptides, but the AvrRps4-induced HR did not. Our results suggest that a primary virulence target of these type-III effectors resides in chloroplasts, and that the recognition of AvrRps4 by the plant immune system occurs elsewhere. Moreover, our results reveal that distinct type-III effectors use a cleavable transit peptide to localize to chloroplasts, and that targets within this organelle are important for immunity. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  17. [The effect of biyuanshu oral liquid on the formation of Pseudomonas aeruginosa biofilms in vitro].

    PubMed

    Liu, Xiang; Chen, Haihong; Wang, Shengqing

    2012-07-01

    To observe the effect of biyuanshu oral liquid on the formation of pseudomonas aeruginosa biofilms in vitro. Pseudomonas aeruginosa biofilm was established by plate culture and detected by Scanning electron microscopy and AgNO3 staining. After treated with different dosages of biyuanshu oral liquid and erythromycin, the pseudomonas aeruginosa biofilms were observed by AgNO3 staining and the number of viable bacteria were measured by serial dilution. The pseudomonas aeruginosa biofilms could be detected by SEM at the seventh culture day and it was consistent with the detection of AgNO3 staining. The biyuanshu oral liquid and erythromycin have the effect on inhibiting the formation of pseudomonas aeruginosa biofilms. But with the already formed pseudomonas aeruginosa biofilms the inhibition was not significant. The serial dilution method showed that the viable counts of bacteria of biyuanshu oral liquid and erythromycin treated groups were significantly lower than those untreated groups (P < 0.05). The biyuanshu oral liquid and erythromycin can inhibit the formation of pseudomonas aeruginosa biofilms in vitro.

  18. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection.

    PubMed

    Khawaldeh, A; Morales, S; Dillon, B; Alavidze, Z; Ginn, A N; Thomas, L; Chapman, S J; Dublanchet, A; Smithyman, A; Iredell, J R

    2011-11-01

    We describe the success of adjunctive bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection in the context of bilateral ureteric stents and bladder ulceration, after repeated failure of antibiotics alone. No bacteriophage-resistant bacteria arose, and the kinetics of bacteriophage and bacteria in urine suggest self-sustaining and self-limiting infection.

  19. Pseudomonas biofilm matrix composition and niche biology

    PubMed Central

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  20. Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae.

    PubMed

    Matern, Sanja; Peskan-Berghoefer, Tatjana; Gromes, Roland; Kiesel, Rebecca Vazquez; Rausch, Thomas

    2015-04-01

    The role of the redox-active tripeptide glutathione in plant defence against pathogens has been studied extensively; however, the impact of changes in cellular glutathione redox potential on signalling processes during defence reactions has remained elusive. This study explored the impact of elevated glutathione content on the cytosolic redox potential and on early defence signalling at the level of mitogen-activated protein kinases (MAPKs), as well as on subsequent defence reactions, including changes in salicylic acid (SA) content, pathogenesis-related gene expression, callose depositions, and the hypersensitive response. Wild-type (WT) Nicotiana tabacum L. and transgenic high-glutathione lines (HGL) were transformed with the cytosol-targeted sensor GRX1-roGFP2 to monitor the cytosolic redox state. Surprisingly, HGLs displayed an oxidative shift in their cytosolic redox potential and an activation of the tobacco MAPKs wound-induced protein kinase (WIPK) and SA-induced protein kinase (SIPK). This activation occurred in the absence of any change in free SA content, but was accompanied by constitutively increased expression of several defence genes. Similarly, rapid activation of MAPKs could be induced in WT tobacco by exposure to either reduced or oxidized glutathione. When HGL plants were challenged with adapted or non-adapted Pseudomonas syringae pathovars, the cytosolic redox shift was further amplified and the defence response was markedly increased, showing a priming effect for SA and callose; however, the initial and transient hyperactivation of MAPK signalling was attenuated in HGLs. The results suggest that, in tobacco, MAPK and SA signalling may operate independently, both possibly being modulated by the glutathione redox potential. Possible mechanisms for redox-mediated MAPK activation are discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Mycorrhization between Cistus ladanifer L. and Boletus edulis Bull is enhanced by the mycorrhiza helper bacteria Pseudomonas fluorescens Migula.

    PubMed

    Mediavilla, Olaya; Olaizola, Jaime; Santos-del-Blanco, Luis; Oria-de-Rueda, Juan Andrés; Martín-Pinto, Pablo

    2016-02-01

    Boletus edulis Bull. is one of the most economically and gastronomically valuable fungi worldwide. Sporocarp production normally occurs when symbiotically associated with a number of tree species in stands over 40 years old, but it has also been reported in 3-year-old Cistus ladanifer L. shrubs. Efforts toward the domestication of B. edulis have thus focused on successfully generating C. ladanifer seedlings associated with B. edulis under controlled conditions. Microorganisms have an important role mediating mycorrhizal symbiosis, such as some bacteria species which enhance mycorrhiza formation (mycorrhiza helper bacteria). Thus, in this study, we explored the effect that mycorrhiza helper bacteria have on the efficiency and intensity of the ectomycorrhizal symbiosis between C. ladanifer and B. edulis. The aim of this work was to optimize an in vitro protocol for the mycorrhizal synthesis of B. edulis with C. ladanifer by testing the effects of fungal culture time and coinoculation with the helper bacteria Pseudomonas fluorescens Migula. The results confirmed successful mycorrhizal synthesis between C. ladanifer and B. edulis. Coinoculation of B. edulis with P. fluorescens doubled within-plant mycorrhization levels although it did not result in an increased number of seedlings colonized with B. edulis mycorrhizae. B. edulis mycelium culture time also increased mycorrhization levels but not the presence of mycorrhizae. These findings bring us closer to controlled B. edulis sporocarp production in plantations.

  2. Isolation and Identification of cellulolytic bacteria from mangrove sediment in Bangka Island

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Prihanto, A. A.; Sari, S. P.; Febriyanti, D.; Kurniawan, A.; Sambah, A. B.; Asriani, E.

    2018-04-01

    Cellulolytic bacteria is bacteria which hydrolyze cellulose to reducing sugars. This research aims to obtain cellulolytic bacteria from the sediment of mangroves in Bangka island. Reasearch was conducted from March to August 2017. Sampling was conducted at Sungailiat, and Tukak Sadai, South of Bangka. Bacteria was isolated using 1% Carboxymetyl Cellulosa (CMC). The isolation resulted in four isolates from Sungailiat and nine isolates from Tukak Sadai. Total five isolates, namely Bacillus pumilus, Pseudomonas sp., Bacillus amyloliquefacien, Bacillus alvei, Bacillus coagulant were identified. The best isolates that produced cellulose was Pseudomonas aeruginosa.

  3. Antibiotic Resistance Patterns of Pseudomonas spp. Isolated from the River Danube

    PubMed Central

    Kittinger, Clemens; Lipp, Michaela; Baumert, Rita; Folli, Bettina; Koraimann, Günther; Toplitsch, Daniela; Liebmann, Astrid; Grisold, Andrea J.; Farnleitner, Andreas H.; Kirschner, Alexander; Zarfel, Gernot

    2016-01-01

    Spread and persistence of antibiotic resistance pose a severe threat to human health, yet there is still lack of knowledge about reservoirs of antibiotic resistant bacteria in the environment. We took the opportunity of the Joint Danube Survey 3 (JDS3), the world's biggest river research expedition of its kind in 2013, to analyse samples originating from different sampling points along the whole length of the river. Due to its high clinical relevance, we concentrated on the characterization of Pseudomonas spp. and evaluated the resistance profiles of Pseudomonas spp. which were isolated from eight sampling points. In total, 520 Pseudomonas isolates were found, 344 (66.0%) isolates were identified as Pseudomonas putida, and 141 (27.1%) as Pseudomonas fluorescens, all other Pseudomonas species were represented by less than five isolates, among those two P. aeruginosa isolates. Thirty seven percent (37%) of all isolated Pseudomonas species showed resistance to at least one out of 10 tested antibiotics. The most common resistance was against meropenem (30.4%/158 isolates) piperacillin/tazobactam (10.6%/55 isolates) and ceftazidime (4.2%/22 isolates). 16 isolates (3.1%/16 isolates) were multi-resistant. For each tested antibiotic at least one resistant isolate could be detected. Sampling points from the upper stretch of the River Danube showed more resistant isolates than downriver. Our results suggest that antibiotic resistance can be acquired by and persists even in Pseudomonas species that are normally not in direct contact with humans. A possible scenario is that these bacteria provide a reservoir of antibiotic resistance genes that can spread to related human pathogens by horizontal gene transfer. PMID:27199920

  4. Localization of Burkholderia cepacia Complex Bacteria in Cystic Fibrosis Lungs and Interactions with Pseudomonas aeruginosa in Hypoxic Mucus

    PubMed Central

    Abdullah, Lubna H.; Perlmutt, Olivia S.; Albert, Daniel; Davis, C. William; Arnold, Roland R.; Yankaskas, James R.; Gilligan, Peter; Neubauer, Heiner; Randell, Scott H.; Boucher, Richard C.

    2014-01-01

    The localization of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) lungs, alone or during coinfection with Pseudomonas aeruginosa, is poorly understood. We performed immunohistochemistry for Bcc and P. aeruginosa bacteria on 21 coinfected or singly infected CF lungs obtained at transplantation or autopsy. Parallel in vitro experiments examined the growth of two Bcc species, Burkholderia cenocepacia and Burkholderia multivorans, in environments similar to those occupied by P. aeruginosa in the CF lung. Bcc bacteria were predominantly identified in the CF lung as single cells or small clusters within phagocytes and mucus but not as “biofilm-like structures.” In contrast, P. aeruginosa was identified in biofilm-like masses, but densities appeared to be reduced during coinfection with Bcc bacteria. Based on chemical analyses of CF and non-CF respiratory secretions, a test medium was defined to study Bcc growth and interactions with P. aeruginosa in an environment mimicking the CF lung. When test medium was supplemented with alternative electron acceptors under anaerobic conditions, B. cenocepacia and B. multivorans used fermentation rather than anaerobic respiration to gain energy, consistent with the identification of fermentation products by high-performance liquid chromatography (HPLC). Both Bcc species also expressed mucinases that produced carbon sources from mucins for growth. In the presence of P. aeruginosa in vitro, both Bcc species grew anaerobically but not aerobically. We propose that Bcc bacteria (i) invade a P. aeruginosa-infected CF lung when the airway lumen is anaerobic, (ii) inhibit P. aeruginosa biofilm-like growth, and (iii) expand the host bacterial niche from mucus to also include macrophages. PMID:25156735

  5. Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber

    NASA Astrophysics Data System (ADS)

    Amato, P.; Joly, M.; Schaupp, C.; Attard, E.; Möhler, O.; Morris, C. E.; Brunet, Y..; Delort, A.-M.

    2015-02-01

    The residence time of bacterial cells in the atmosphere is predictable by numerical models. However, estimations of their aerial dispersion as living entities are limited by lacks of information concerning survival rates and behavior in relation to atmospheric water. Here we investigate the viability and ice nucleation (IN) activity of typical atmospheric ice nucleation active bacteria (Pseudomonas syringae and P. fluorescens) when airborne in a cloud simulation chamber (AIDA, Karlsruhe, Germany). Cell suspensions were sprayed into the chamber and aerosol samples were collected by impingement at designated times over a total duration of up to 18 h, and at some occasions after dissipation of a cloud formed by depressurization. Aerosol concentration was monitored simultaneously by online instruments. The cultivability of airborne cells decreased exponentially over time with a half-life time of 250 ± 30 min (about 3.5 to 4.5 h). In contrast, IN activity remained unchanged for several hours after aerosolization, demonstrating that IN activity was maintained after cell death. Interestingly, the relative abundance of IN active cells still airborne in the chamber was strongly decreased after cloud formation and dissipation. This illustrates the preferential precipitation of IN active cells by wet processes. Our results indicate that from 106 = cells aerosolized from a surface, one would survive the average duration of its atmospheric journey estimated at 3.4 days. Statistically, this corresponds to the emission of 1 cell that achieves dissemination every ~33 min per m2 of cultivated crops fields, a strong source of airborne bacteria. Based on the observed survival rates, depending on wind speed, the trajectory endpoint could be situated several hundreds to thousands of kilometers from the emission source. These results should improve the representation of the aerial dissemination of bacteria in numeric models.

  6. Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber

    NASA Astrophysics Data System (ADS)

    Amato, P.; Joly, M.; Schaupp, C.; Attard, E.; Möhler, O.; Morris, C. E.; Brunet, Y.; Delort, A.-M.

    2015-06-01

    The residence time of bacterial cells in the atmosphere is predictable by numerical models. However, estimations of their aerial dispersion as living entities are limited by a lack of information concerning survival rates and behavior in relation to atmospheric water. Here we investigate the viability and ice nucleation (IN) activity of typical atmospheric ice nucleation active bacteria (Pseudomonas syringae and P. fluorescens) when airborne in a cloud simulation chamber (AIDA, Karlsruhe, Germany). Cell suspensions were sprayed into the chamber and aerosol samples were collected by impingement at designated times over a total duration of up to 18 h, and at some occasions after dissipation of a cloud formed by depressurization. Aerosol concentration was monitored simultaneously by online instruments. The cultivability of airborne cells decreased exponentially over time with a half-life time of 250 ± 30 min (about 3.5 to 4.5 h). In contrast, IN activity remained unchanged for several hours after aerosolization, demonstrating that IN activity was maintained after cell death. Interestingly, the relative abundance of IN active cells still airborne in the chamber was strongly decreased after cloud formation and dissipation. This illustrates the preferential precipitation of IN active cells by wet processes. Our results indicate that from 106 cells aerosolized from a surface, one would survive the average duration of its atmospheric journey estimated at 3.4 days. Statistically, this corresponds to the emission of 1 cell that achieves dissemination every ~ 33 min m-2 of cultivated crops fields, a strong source of airborne bacteria. Based on the observed survival rates, depending on wind speed, the trajectory endpoint could be situated several hundreds to thousands of kilometers from the emission source. These results should improve the representation of the aerial dissemination of bacteria in numeric models.

  7. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis

    Treesearch

    Jun Fan; Casey Crooks; Gary Creissen; Lionel Hill; Shirley Fairhurst; Peter Doerner; Chris Lamb

    2011-01-01

    Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas...

  8. Show us your spots! Researchers need samples of bacterial leaf spots on celery, cilantro, parsley, and other crops.

    USDA-ARS?s Scientific Manuscript database

    Since 2002, a severe leaf spot disease on parsley has occurred throughout central coastal California and particularly in Monterey County. Three different bacterial pathogens (Pseudomonas syringae pv. apii, P. syringae pv. coriandricola and an organism very closely related to P. viridiflava) have bee...

  9. Bacterial Leaf Spot of Parsley: Characterization of a New Disease

    USDA-ARS?s Scientific Manuscript database

    Since 2002, a severe leaf spot disease on parsley has occurred throughout central coastal California and particularly in Monterey County. Two different bacterial pathogens (Pseudomonas syringae pv. apii, and P. syringae pv. coriandricola) have been associated these outbreaks on parsley. Our research...

  10. Influence of Storage Conditions on the Growth of Pseudomonas Species in Refrigerated Raw Milk▿ †

    PubMed Central

    De Jonghe, Valerie; Coorevits, An; Van Hoorde, Koenraad; Messens, Winy; Van Landschoot, Anita; De Vos, Paul; Heyndrickx, Marc

    2011-01-01

    The refrigerated storage of raw milk throughout the dairy chain prior to heat treatment creates selective conditions for growth of psychrotolerant bacteria. These bacteria, mainly belonging to the genus Pseudomonas, are capable of producing thermoresistant extracellular proteases and lipases, which can cause spoilage and structural defects in pasteurized and ultra-high-temperature-treated milk (products). To map the influence of refrigerated storage on the growth of these pseudomonads, milk samples were taken after the first milking turn and incubated laboratory scale at temperatures simulating optimal and suboptimal preprocessing storage conditions. The outgrowth of Pseudomonas members was monitored over time by means of cultivation-independent denaturing gradient gel electrophoresis (DGGE). Isolates were identified by a polyphasic approach. These incubations revealed that outgrowth of Pseudomonas members occurred from the beginning of the dairy chain (farm tank) under both optimal and suboptimal storage conditions. An even greater risk for outgrowth, as indicated by a vast increase of about 2 log CFU per ml raw milk, existed downstream in the chain, especially when raw milk was stored under suboptimal conditions. This difference in Pseudomonas outgrowth between optimal and suboptimal storage was already statistically significant within the farm tank. The predominant taxa were identified as Pseudomonas gessardii, Pseudomonas gessardii-like, Pseudomonas fluorescens-like, Pseudomonas lundensis, Pseudomonas fragi, and Pseudomonas fragi-like. Those taxa show an important spoilage potential as determined on elective media for proteolysis and lipolysis. PMID:21115713

  11. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7.

    PubMed

    Nicaise, Valerie; Joe, Anna; Jeong, Byeong-ryool; Korneli, Christin; Boutrot, Freddy; Westedt, Isa; Staiger, Dorothee; Alfano, James R; Zipfel, Cyril

    2013-03-06

    Pathogens target important components of host immunity to cause disease. The Pseudomonas syringae type III-secreted effector HopU1 is a mono-ADP-ribosyltransferase required for full virulence on Arabidopsis thaliana. HopU1 targets several RNA-binding proteins including GRP7, whose role in immunity is still unclear. Here, we show that GRP7 associates with translational components, as well as with the pattern recognition receptors FLS2 and EFR. Moreover, GRP7 binds specifically FLS2 and EFR transcripts in vivo through its RNA recognition motif. HopU1 does not affect the protein-protein associations between GRP7, FLS2 and translational components. Instead, HopU1 blocks the interaction between GRP7 and FLS2 and EFR transcripts in vivo. This inhibition correlates with reduced FLS2 protein levels upon Pseudomonas infection in a HopU1-dependent manner. Our results reveal a novel virulence strategy used by a microbial effector to interfere with host immunity.

  12. Spoilage bacteria of fresh broiler chicken carcasses.

    PubMed

    Russell, S M; Fletcher, D L; Cox, N A

    1995-12-01

    Studies were conducted to identify the bacteria responsible for spoilage of fresh broiler chicken carcasses and to characterize the off-odors these bacteria produce. Broiler carcasses were collected from processing plants in the northeast Georgia area, the southeastern U.S., Arkansas, California, and North Carolina. The carcasses were allowed to spoil under controlled conditions at 3 C and spoilage bacteria were isolated. Each spoilage bacterium was separately inoculated into a sterile chicken skin medium, incubated at 25 C for 48 h, and subjectively evaluated for odor. The bacteria isolated from spoiled carcasses that consistently produced off-odors in the chicken skin medium, regardless of the geographical location from which the chickens were obtained, were Shewanella putrefaciens A, B, and D, Pseudomonas fluorescens A, B, and D, and Pseudomonas fragi. These bacteria produced off-odors that resembled "sulfur", "dishrag", "ammonia", "wet dog", "skunk", "dirty socks", "rancid fish", "unspecified bad odor", or a sweet smell resembling "canned corn". Odors produced by the spoilage bacteria were varied; however, odors most associated with spoiled poultry, such as "dishraggy" odors, were produced by the bacteria that were most consistently isolated, such as S. putrefaciens and the pseudomonads.

  13. Discovery of Phloeophagus Beetles as a Source of Pseudomonas Strains That Produce Potentially New Bioactive Substances and Description of Pseudomonas bohemica sp. nov.

    PubMed

    Saati-Santamaría, Zaki; López-Mondéjar, Rubén; Jiménez-Gómez, Alejandro; Díez-Méndez, Alexandra; Větrovský, Tomáš; Igual, José M; Velázquez, Encarna; Kolarik, Miroslav; Rivas, Raúl; García-Fraile, Paula

    2018-01-01

    Antimicrobial resistance is a worldwide problem that threatens the effectiveness of treatments for microbial infection. Consequently, it is essential to study unexplored niches that can serve for the isolation of new microbial strains able to produce antimicrobial compounds to develop new drugs. Bark beetles live in phloem of host trees and establish symbioses with microorganisms that provide them with nutrients. In addition, some of their associated bacteria play a role in the beetle protection by producing substances that inhibit antagonists. In this study the capacity of several bacterial strains, isolated from the bark beetles Ips acuminatus, Pityophthorus pityographus Cryphalus piceae , and Pityogenes bidentatus , to produce antimicrobial compounds was analyzed. Several isolates exhibited the capacity to inhibit Gram-positive and Gram-negative bacteria, as well as fungi. The genome sequence analysis of three Pseudomonas isolates predicted the presence of several gene clusters implicated in the production of already described antimicrobials and moreover, the low similarity of some of these clusters with those previously described, suggests that they encode new undescribed substances, which may be useful for developing new antimicrobial agents. Moreover, these bacteria appear to have genetic machinery for producing antitumoral and antiviral substances. Finally, the strain IA19 T showed to represent a new species of the genus Pseudomonas . The 16S rRNA gene sequence analysis showed that its most closely related species include Pseudomonas lutea, Pseudomonas graminis, Pseudomonas abietaniphila and Pseudomonas alkylphenolica, with 98.6, 98.5 98.4, and 98.4% identity, respectively. MLSA of the housekeeping genes gyr B, rpo B, and rpo D confirmed that strain IA19 T clearly separates from its closest related species. Average nucleotide identity between strains IA19 T and P. abietaniphila ATCC 700689 T , P. graminis DSM 11363 T , P. alkylphenolica KL28 T and P. lutea

  14. A rapid seedling resistance assay identifies wild tomato lines that are resistant to Psuedomonas syringe pv. tomato race 1

    USDA-ARS?s Scientific Manuscript database

    Bacterial speck caused by Pseudomonas syringae has historically been controlled by the Pto/Prf gene cluster. Emerging strains like P. syringae pv. tomato race 1 overcome resistance conferred by Pto/Prf, and can cause serious crop loss under appropriate environmental conditions. We developed a rapid ...

  15. Foliar Diseases of Apiaceae Crops in Coastal California

    USDA-ARS?s Scientific Manuscript database

    The number of outbreaks of leaf spot, blight and streak diseases on celery, cilantro, fennel and parsley has been increasing throughout central coastal California and particularly in Monterey County since 2002. Two different bacterial pathogens (Pseudomonas syringae pv. apii, and P. syringae pv. cor...

  16. On the usage of classical nucleation theory in predicting the impact of bacteria on weather and climate

    NASA Astrophysics Data System (ADS)

    Sahyoun, Maher; Woetmann Nielsen, Niels; Havskov Sørensen, Jens; Finster, Kai; Bay Gosewinkel Karlson, Ulrich; Šantl-Temkiv, Tina; Smith Korsholm, Ulrik

    2014-05-01

    Bacteria, e.g. Pseudomonas syringae, have previously been found efficient in nucleating ice heterogeneously at temperatures close to -2°C in laboratory tests. Therefore, ice nucleation active (INA) bacteria may be involved in the formation of precipitation in mixed phase clouds, and could potentially influence weather and climate. Investigations into the impact of INA bacteria on climate have shown that emissions were too low to significantly impact the climate (Hoose et al., 2010). The goal of this study is to clarify the reason for finding the marginal impact on climate when INA bacteria were considered, by investigating the usability of ice nucleation rate parameterization based on classical nucleation theory (CNT). For this purpose, two parameterizations of heterogeneous ice nucleation were compared. Both parameterizations were implemented and tested in a 1-d version of the operational weather model (HIRLAM) (Lynch et al., 2000; Unden et al., 2002) in two different meteorological cases. The first parameterization is based on CNT and denoted CH08 (Chen et al., 2008). This parameterization is a function of temperature and the size of the IN. The second parameterization, denoted HAR13, was derived from nucleation measurements of SnomaxTM (Hartmann et al., 2013). It is a function of temperature and the number of protein complexes on the outer membranes of the cell. The fraction of cloud droplets containing each type of IN as percentage in the cloud droplets population were used and the sensitivity of cloud ice production in each parameterization was compared. In this study, HAR13 produces more cloud ice and precipitation than CH08 when the bacteria fraction increases. In CH08, the increase of the bacteria fraction leads to decreasing the cloud ice mixing ratio. The ice production using HAR13 was found to be more sensitive to the change of the bacterial fraction than CH08 which did not show a similar sensitivity. As a result, this may explain the marginal impact of

  17. Biological aerosol particles in the atmosphere and their impact on clouds (BIOCLOUDS)

    NASA Astrophysics Data System (ADS)

    Amato, Pierre; Attard, Eleonore; Deguillaume, Laurent; Delort, Anne-Marie; Flossmann, Andrea; Good, Nicholas; Joly, Muriel; Koop, Thomas; Möhler, Ottmar; Monier, Marie; Morris, Cindy; Oehm, Caroline; Pöschl, Ulrich; Sancelme, Martine

    2015-04-01

    The project BIOCLOUDS aimed at investigating and quantifying the role of bioaerosols in tropospheric clouds. We focused on the studies on microorganisms, mainly bacteria. To reach our objective we (1) isolated and identified INA bacterial strains in cloud waters, (2) studied in more details IN properties of bacteria isolated from cloud waters in laboratories and cloud chamber, (3) used new data as input to cloud models. 1. Isolation and Identification of INA bacterial strains in cloud waters Cloud water samples were collected at the puy de Dôme station under sterile conditions, microorganisms were cultured on agar plates and further identified by DNA sequencing coding for16SrRNA. 257 bacterial strains isolated from 25 cloud events were screened and 44 isolates were selected as they belonged to Pseudomonas, Xanthomonas and Erwinia genera which are potential INA candidates. Using the classical "Droplet Freezing method" as ice nucleation test, 7 strains were shown INA+. Their cumulative IN frequency profiles were established and showed that some of them are very efficient, for example the strain Pseudomonas syringae 13b74 started to nucleate a t-3°C and 4% of the cells were active at- 5°C. 2. Further laboratory investigations of IN properties of cloud bacterial strains All the experiments presented in this section were carried out with 3 Pseudomonas syringae strains. We tested the influence of O3, NO, UV and pH, which are atmospheric markers of anthropogenic activity, on the IN activity of the Pseudomonas strains. It was clearly shown that pH had a main influence, acidic pHs decreased the IN activity of the strains. This suggests a negative impact of human emissions on the natural capacity of bacteria to precipitate with rain. The 3 Pseudomas strains were sprayed in the AIDA cloud chamber. The survival of these strains with time before cloud formation was measured and will be used in the future to parameterize models for bacterial transport. After cloud formation

  18. Whole-Genome Sequence of Pseudomonas fluorescens EK007-RG4, a Promising Biocontrol Agent against a Broad Range of Bacteria, Including the Fire Blight Bacterium Erwinia amylovora.

    PubMed

    Habibi, Roghayeh; Tarighi, Saeed; Behravan, Javad; Taheri, Parissa; Kjøller, Annelise Helene; Brejnrod, Asker; Madsen, Jonas Stenløkke; Sørensen, Søren Johannes

    2017-03-30

    Here, we report the first draft whole-genome sequence of Pseudomonas fluorescens strain EK007-RG4, which was isolated from the phylloplane of a pear tree. P. fluorescens EK007-RG4 displays strong antagonism against Erwinia amylovora , the causal agent for fire blight disease, in addition to several other pathogenic and non-pathogenic bacteria. Copyright © 2017 Habibi et al.

  19. Ultrastructural characteristics of some bacteria after treatment with Lubrol W.

    PubMed

    Cherepova, N; Spasova, D

    1994-01-01

    Specific ultrastructural changes occurred mainly in the cell wall and cytoplasmic membrane of Listeria monocytogenes, Salmonella typhimurium, Pseudomonas pseudomallei and Pseudomonas aeruginosa bacteria when treated with 0.5% and 1% Lubrol W1 by means of transmission and scanning electron microscopy.

  20. Colonizing ability of Pseudomonas fluorescens 2112, among collections of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens spp. in pea rhizosphere.

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens 2112, isolated in Korea as an indigenous antagonistic bacteria, can produce 2,4-diacetylphloroglucinol (2,4-DAPG) and the siderophore pyoveridin2112 for the control of Phytophthora blight of red-pepper. P. fluorescens 2112 was classified into a new genotype C among the 17 gen...

  1. Sequence determination and analysis of three plasmids of Pseudomonas sp. GLE121, a psychrophile isolated from surface ice of Ecology Glacier (Antarctica).

    PubMed

    Dziewit, Lukasz; Grzesiak, Jakub; Ciok, Anna; Nieckarz, Marta; Zdanowski, Marek K; Bartosik, Dariusz

    2013-09-01

    Pseudomonas sp. GLE121 (a psychrophilic Antarctic strain) carries three plasmids: pGLE121P1 (6899 bp), pGLE121P2 (8330 bp) and pGLE121P3 (39,583 bp). Plasmids pGLE121P1 and pGLE121P2 show significant sequence similarity to members of the IncP-9 and IncP-7 incompatibility groups, respectively, while the largest replicon, pGLE121P3, is highly related to plasmid pNCPPB880-40 of Pseudomonas syringae pathovar tomato NCPPB880. All three plasmids have a narrow host range, limited to members of the genus Pseudomonas. Plasmid pGLE121P3 encodes a conjugal transfer system, while pGLE121P1 carries only a putative MOB module, conserved in many mobilizable plasmids. Plasmid pGLE121P3 contains an additional load of genetic information, including a pair of genes with homology to the rulAB operon, responsible for ultraviolet radiation (UVR) tolerance. Given the increasing UV exposure in Antarctic regions, the expression of these genes is likely to be an important adaptive response. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Characterization of para-Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing.

    PubMed

    Kowalczyk, Agnieszka; Eyice, Özge; Schäfer, Hendrik; Price, Oliver R; Finnegan, Christopher J; van Egmond, Roger A; Shaw, Liz J; Barrett, Glyn; Bending, Gary D

    2015-10-01

    Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [(13)C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. The observation of mitochondrial movement and ATG5 position in Arabidopsis during the process of infection with virulent and avirulent P. syringae strains

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Ma, Chao; Chen, Wen li

    2012-03-01

    Infection of plants with pathogens leads to programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. In this study, the effects of infection by virulent Pseudomonas syringae pv. tomato (Pst) DC3000 and strains harboring avirulence factors AvrRps4 on the induction of HR-PCD were compared. We used Arabidopsis thaliana plants as materials, which expressed green fluorescent protein labeled mitochondria (mito-GFP) and green fluorescent protein tagged ATG5 (ATG5-GFP), these GFP are instantaneous expression. We found both Pst DC3000 and Pst-avrRps4 could induce mitochondria to assemble, the effect of Pst DC3000 was more obvious. ATG5 was located in chloroplasts after infection with Pst DC3000 or Pst-avrRps4. Under the condition of Pst-avrRps4, the expression of ATG5 was stronger than Pst DC3000 treatment.

  4. Transcriptome analysis of Pseudomonas syringae identifies new genes, ncRNAs, and antisense activity

    USDA-ARS?s Scientific Manuscript database

    To fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method t...

  5. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation.

    PubMed

    Pezzoni, Magdalena; Meichtry, Martín; Pizarro, Ramón A; Costa, Cristina S

    2015-01-01

    One of the main stress factors that bacteria face in the environment is solar ultraviolet-A (UVA) radiation, which leads to lethal effects through oxidative damage. The aim of this work was to investigate the role of 2-heptyl-3-hydroxi-4-quinolone (the Pseudomonas quinolone signal or PQS) in the response of Pseudomonas aeruginosa to UVA radiation. PQS is an intercellular quorum sensing signal associated to membrane vesicles which, among other functions, regulates genes related to iron acquisition, forms stable complexes with iron and participates in oxidative phenomena. UVA exposure of the wild-type PAO1 strain and a pqsA mutant unable to produce PQS revealed a sensitising role for this signal. Research into the mechanism involved in this phenomenon revealed that catalase, an essential factor in the UVA defence, is not related to PQS-mediated UVA sensitivity. Absorption of UVA by PQS produced its own photo-degradation, oxidation of the probe 2',7'- dichlorodihydrofluorescein and generation of singlet oxygen and superoxide anion, suggesting that this signal could be acting as an endogenous photosensitiser. The results presented in this study could explain the high sensitivity to UVA of P. aeruginosa when compared to enteric bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The effect of zinc limitation on the transcriptome of Pseudomonas fluorescens Pf-5

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens Pf-5 is a soil bacterium that can protect several plant species from diseases caused by fungal and bacterial pathogens. Zinc is a vital micronutrient for bacteria but is deficient in some soil environments and toxic in large quantities. Hence, bacteria have evolved elaborate ...

  7. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression.

    PubMed

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2012-01-01

    The Crc protein is a translational repressor that recognizes a specific target at some mRNAs, controlling catabolite repression and co-ordinating carbon metabolism in pseudomonads. In Pseudomonas aeruginosa, the levels of free Crc protein are controlled by CrcZ, a sRNA that sequesters Crc, acting as an antagonist. We show that, in Pseudomonas putida, the levels of free Crc are controlled by CrcZ and by a novel 368 nt sRNA named CrcY. CrcZ and CrcY, which contain six potential targets for Crc, were able to bind Crc specifically in vitro. The levels of CrcZ and CrcY were low under conditions generating a strong catabolite repression, and increased strongly when catabolite repression was absent. Deletion of either crcZ or crcY had no effect on catabolite repression, but the simultaneous absence of both sRNAs led to constitutive catabolite repression that compromised growth on some carbon sources. Overproduction of CrcZ or CrcY significantly reduced repression. We propose that CrcZ and CrcY act in concert, sequestering and modulating the levels of free Crc according to metabolic conditions. The CbrA/CbrB two-component system activated crcZ transcription, but had little effect on crcY. CrcY was detected in P. putida, Pseudomonas fluorescens and Pseudomonas syringae, but not in P. aeruginosa. © 2011 Blackwell Publishing Ltd.

  8. Optimization of Cellulase Production from Bacteria Isolated from Soil

    PubMed Central

    Sethi, Sonia; Datta, Aparna; Gupta, B. Lal; Gupta, Saksham

    2013-01-01

    Cellulase-producing bacteria were isolated from soil and identified as Pseudomonas fluorescens, Bacillus subtilIs, E. coli, and Serratia marcescens. Optimization of the fermentation medium for maximum cellulase production was carried out. The culture conditions like pH, temperature, carbon sources, and nitrogen sources were optimized. The optimum conditions found for cellulase production were 40°C at pH 10 with glucose as carbon source and ammonium sulphate as nitrogen source, and coconut cake stimulates the production of cellulase. Among bacteria, Pseudomonas fluorescens is the best cellulase producer among the four followed by Bacillus subtilis, E. coli, and Serratia marscens. PMID:25937986

  9. Exchange of Xcp (Gsp) secretion machineries between Pseudomonas aeruginosa and Pseudomonas alcaligenes: species specificity unrelated to substrate recognition.

    PubMed

    de Groot, A; Koster, M; Gérard-Vincent, M; Gerritse, G; Lazdunski, A; Tommassen, J; Filloux, A

    2001-02-01

    Pseudomonas aeruginosa and Pseudomonas alcaligenes are gram-negative bacteria that secrete proteins using the type II or general secretory pathway, which requires at least 12 xcp gene products (XcpA and XcpP to -Z). Despite strong conservation of this secretion pathway, gram-negative bacteria usually cannot secrete exoproteins from other species. Based on results obtained with Erwinia, it has been proposed that the XcpP and/or XcpQ homologs determine this secretion specificity (M. Linderberg, G. P. Salmond, and A. Collmer, Mol. Microbiol. 20:175-190, 1996). In the present study, we report that XcpP and XcpQ of P. alcaligenes could not substitute for their respective P. aeruginosa counterparts. However, these complementation failures could not be correlated to species-specific recognition of exoproteins, since these bacteria could secrete exoproteins of each other. Moreover, when P. alcaligenes xcpP and xcpQ were expressed simultaneously in a P. aeruginosa xcpPQ deletion mutant, complementation was observed, albeit only on agar plates and not in liquid cultures. After growth in liquid culture the heat-stable P. alcaligenes XcpQ multimers were not detected, whereas monomers were clearly visible. Together, our results indicate that the assembly of a functional Xcp machinery requires species-specific interactions between XcpP and XcpQ and between XcpP or XcpQ and another, as yet uncharacterized component(s).

  10. Hydrogel Dressing with a Nano-Formula against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Diabetic Foot Bacteria.

    PubMed

    El-Naggar, Moustafa Y; Gohar, Yousry M; Sorour, Magdy A; Waheeb, Marian G

    2016-02-01

    This study proposes an alternative approach for the use of chitosan silver-based dressing for the control of foot infection with multidrug-resistant bacteria. Sixty-five bacterial isolates were isolated from 40 diabetic patients. Staphylococcus aureus (37%) and Pseudomonas aeruginosa (18.5%) were the predominant isolates in the ulcer samples. Ten antibiotics were in vitro tested against diabetic foot clinical bacterial isolates. The most resistant S. aureus and P. aeruginosa isolates were then selected for further study. Three chitosan sources were tested individually for chelating silver nanoparticles. Squilla chitosan silver nanoparticles (Sq. Cs-Ag(0)) showed the maximum activity against the resistant bacteria when mixed with amikacin that showed the maximum synergetic index. This, in turn, resulted in the reduction of the amikacin MIC value by 95%. For evaluation of the effectiveness of the prepared dressing using Artemia salina as the toxicity biomarker, the LC50 was found to be 549.5, 18,000, and 10,000 μg/ml for amikacin, Sq. Cs-Ag(0), and dressing matrix, respectively. Loading the formula onto chitosan hydrogel dressing showed promising antibacterial activities, with responsive healing properties for the wounds in normal rats of those diabetic rats (polymicrobial infection). It is quite interesting to note that no emergence of any side effect on either kidney or liver biomedical functions was noticed.

  11. Heterotrophic bacteria associated with the degradation of zooplankton fecal pellets in Lake Michigan. [Mysis relicta, pseudomonas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrante, J.G.; Ptak, D.J.

    1978-01-01

    Heterotrophic microbes decompose most of the calanoid copepod fecal pellets produced in Lake Michigan before they reach the sediment. Rod-shaped nonfermenters isolated from copepod and Mysis relicta fecal pellets were identified as Pseudomonas maltophilia and Pseudomonas fluorescens species. No enterobacteriaceae or fungal hyphae were found on or in any pellets. This investigation suggests that Pseudomonas species are attached to and may degrade Mysis relicta and calanoid copepod fecal pellets in the water column of Lake Michigan.

  12. ATMOSPHERIC NITROGEN FIXATION BY METHANE-OXIDIZING BACTERIA

    PubMed Central

    Davis, J. B.; Coty, V. F.; Stanley, J. P.

    1964-01-01

    Davis, J. B. (Socony Mobil Oil Co., Inc., Dallas, Tex.), V. F. Coty, and J. P. Stanley. Atmospheric nitrogen fixation by methane-oxidizing bacteria. J. Bacteriol. 88:468–472. 1964.—Methane-oxidizing bacteria capable of fixing atmospheric nitrogen were isolated from garden soil, pond mud, oil field soil, and soil exposed to natural gas, indicating a rather wide prevalence in nature. This may explain the high concentration of organic nitrogen commonly found in soils exposed to gas leakage from pipelines or natural-gas seeps. Added molybdenum was a requirement for growth in a nitrogen-free mineral salts medium. All nitrogen-fixing, methane-oxidizing bacteria isolated were gram-negative, nonsporeforming, usually motile rods. Colonies were light yellow, yellow, or white. The most common isolate, which formed light-yellow colonies, is referred to as Pseudomonas methanitrificans sp. n., and is distinguished from Pseudomonas (Methanomonas) methanica by nitrogen-fixing ability and a preponderance of poly-β-hydroxybutyrate in the cellular lipid fraction. Images PMID:14203365

  13. Evidence for a missing source of efficient ice nuclei

    NASA Astrophysics Data System (ADS)

    Du, Rui; Du, Pengrui; Lu, Zedong; Ren, Weishan; Liang, Zongmin; Qin, Saisai; Li, Ziming; Wang, Yaling; Fu, Pingqing

    2017-01-01

    It has been known for several decades that some bioaerosols, such as ice-nucleation-active (INA) bacteria, especially Pseudomonas syringae strains, may play a critical potential role in the formation of clouds and precipitation. We investigated bacterial and fungal ice nuclei (IN) in rainwater samples collected from the Hulunber temperate grasslands in North China. The median freezing temperatures (T50) for three years’ worth of unprocessed rain samples were greater than -10 °C based on immersion freezing testing. The heat and filtration treatments inactivated 7-54% and 2-89%, respectively, of the IN activity at temperatures warmer than -10 °C. We also determined the composition of the microbial community. The majority of observed Pseudomonas strains were distantly related to the verified ice-nucleating Pseudomonas strains, as revealed by phylogenetic analysis. Here, we show that there are submicron INA particles <220 nm in rainwater that are not identifiable as the known species of high-INA bacteria and fungi and there may be a new potential type of efficient submicroscale or nanoscale ice nucleator in the regional rainwater samplers. Our results suggest the need for a reinterpretation of the source of high-INA material in the formation of precipitation and contribute to the search for new methods of weather modification.

  14. [Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa].

    PubMed

    Teng, Songshan; Liu, Yanping; Zhao, Lei

    2010-11-01

    We Isolated and characterized 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing endophytic bacteria from halophyte Suaeda salsa to understand the interactions between endophytes and halophyte. ACC deaminase-containing endophytic bacteria were isolated from root, stalk and leaf of Suaeda salsa and were identified based on morphological, physiological-biochemical properties, API and 16S rRNA sequence analysis. Isolates were evaluated for their ACC deaminase, antifungal, protease activity, siderophores and phytohormones, such as indole-3-acetic acid, gibberellic acid and abscisic acid production, as well as atmospheric nitrogen fixation and phosphate solubilization. Four ACC deaminase-containing endophytic bacteria strains named as LP11, SS12, TW1 and TW2 were isolated and identified as Pseudomonas oryzihabitans, Pseudomonas sp., Pantoea agglomerans and Pseudomonas putida respectively. All the strains possessed the phosphate-solubilizing ability and could produce siderophores and phytohormones more or less. None of them could fix atmospheric nitrogen or produce protease. Only strain SS12 showed antagonism against two phytopathogenic fungi viz Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. cucumerinum. ACC deaminase-containing endophytic bacteria of Pseudomonas sp. and Pantoea sp. isolated from halophyte Suaeda salsa have abundant biological characteristics related to plant growth promotion, stress homeostasis regulation and biocontrol activity.

  15. Isolation of Lightning-Competent Soil Bacteria

    PubMed Central

    Cérémonie, Hélène; Buret, François; Simonet, Pascal; Vogel, Timothy M.

    2004-01-01

    Artificial transformation is typically performed in the laboratory by using either a chemical (CaCl2) or an electrical (electroporation) method. However, laboratory-scale lightning has been shown recently to electrotransform Escherichia coli strain DH10B in soil. In this paper, we report on the isolation of two “lightning-competent” soil bacteria after direct electroporation of the Nycodenz bacterial ring extracted from prairie soil in the presence of the pBHCRec plasmid (Tcr, Spr, Smr). The electrotransformability of the isolated bacteria was measured both in vitro (by electroporation cuvette) and in situ (by lightning in soil microcosm) and then compared to those of E. coli DH10B and Pseudomonas fluorescens C7R12. The electrotransformation frequencies measured reached 10−3 to 10−4 by electroporation and 10−4 to 10−5 by simulated lightning, while no transformation was observed in the absence of electrical current. Two of the isolated lightning-competent soil bacteria were identified as Pseudomonas sp. strains. PMID:15466589

  16. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems.

    PubMed

    Flores Ribeiro, Angela; Bodilis, Josselin; Alonso, Lise; Buquet, Sylvaine; Feuilloley, Marc; Dupont, Jean-Paul; Pawlak, Barbara

    2014-08-15

    Aquatic environments could play a role in the spread of antibiotic resistance genes by enabling antibiotic-resistant bacteria transferred through wastewater inputs to connect with autochthonous bacteria. Consequently, drinking water could be a potential pathway to humans and animals for antibiotic resistance genes. The aim of this study was to investigate occurrences of Escherichia coli and Pseudomonas spp. in drinking water produced from a karst, a vulnerable aquifer with frequent increases in water turbidity after rainfall events and run-offs. Water samples were collected throughout the system from the karstic springs to the drinking water tap during three non-turbid periods and two turbid events. E. coli densities in the springs were 10- to 1000-fold higher during the turbid events than during the non-turbid periods, indicating that, with increased turbidity, surface water had entered the karstic system and contaminated the spring water. However, no E. coli were isolated in the drinking water. In contrast, Pseudomonas spp. were isolated from the drinking water only during turbid events, while the densities in the springs were from 10- to 100-fold higher than in the non-turbid periods. All the 580 Pseudomonas spp. isolates obtained from the sampling periods were resistant (to between 1 and 10 antibiotics), with similar resistance patterns. Among all the Pseudomonas isolated throughout the drinking water production system, between 32% and 86% carried the major resistance pattern: ticarcillin, ticarcillin-clavulanic acid, cefsulodin, and/or aztreonam, and/or sulfamethoxazol-trimethoprim, and/or fosfomycin. Finally, 8 Pseudomonas spp. isolates, related to the Pseudomonas putida and Pseudomonas fluorescens species, were isolated from the drinking water. Thus, Pseudomonas could be involved in the dissemination of antibiotic resistance via drinking water during critical periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Activity of different proteinaceous ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Hartmann, Susann; Augustin-Bauditz, Stefanie; Grawe, Sarah; Ling, Meilee; Hellner, Lisa; Zapf, Jean-Michel; Šantl-Temkiv, Tina; Pummer, Bernhard; Boesen, Thomas; Wex, Heike; Finster, Kai; Stratmann, Frank

    2017-04-01

    A variety of microorganisms (bacteria, fungi, lichen) from land produce protein structures, which act as a template for ice nucleation [1]. Also marine sources of ice nucleating particles (INPs) came in focus in the recent years. The atmospheric spatio-temporal distribution of INPs from microorganisms is still not well known. However, it is often assumed that the observed onset of atmospheric ice nucleation (T>-20°C) is due to the existence of ice-nucleation active biological particles. In this study we compare the ice nucleation activity of different proteinaceous particles produced by bacteria and fungi. For bacteria we investigate (i) cells and fragments of Pseudomonas syringae from commercially available SnomaxTM and (ii) the Pseudomonas syringae INA protein expressed in living Escherichia coli bacteria. We also analyzed freeze-dried leaves [2] where we assume that proteinaceous particles are responsible for the ice nucleation activity. For fungi the widespread soil fungus Mortierella alpina was investigated which had been extracted from natural soil [3]. Immersion freezing experiments are performed at the cold stage LINA (Leipzig Ice Nucleation Array). We attempt to describe the activity of a single proteinaceous ice nucleating particle [4] in order to achieve direct comparability. Further, the results are compared with complex natural systems e.g. soil dust. The objectives of this study are to clarify potential differences in the ice nucleation potential of proteinaceous particles and to draw conclusions concerning the need to differentiate them for modelling purposes. 1. Szyrmer, W. and I. Zawadzki, Biogenic and anthropogenic sources of ice-forming nuclei: A review, Bull. Amer. Meteorol. Soc., 1997. 2. Schnell, R.C. and G. Vali, Biogenic ice nucleai .1: Terrestrial and marine sources, doi: 10.1175/1520-0469(1976)033<1554:binpit>2.0.co;2, 1976. 3. Froehlich-Nowoisky, J. et al., Ice nucleation activity in the widespread soil fungus Mortierella alpina, doi: 10

  18. Inhibition of fish bacteria pathogen in tilapia using a concoction three of Borneo plant extracts

    NASA Astrophysics Data System (ADS)

    Hardi, EH; Saptiani, G.; Kusuma, IW; Suwinarti, W.; Sudaryono, A.

    2018-04-01

    This study was conducted to evaluate the antibacterial activity of concoction Solanum ferox, Boesenbergia pandurata and Zingimber zerumbetextract (SF, BP, and ZZ) to inhibit pathogenic bacteria in tilapia with the each concentrations 600 ppm BP, 900 ppm SF and 200 ppm ZZ. Antibacterial activity was measured by testing the concoction of three plants extract against single isolate Aeromonas hydrophila and Pseudomonas sp. and combined both bacteria (105 colony-forming units per milliliter). In this research, oxytetracycline was used as a control. Clear zone inhibition was observed at 6, 12, 18 and 24 hours after incubation at 30 °C. The results showed that the different concoction of BP: SF: ZZ have inhibitory zones against both single and joint isolate bacteria. The ratio of3:3:4 and 1:8:1 had higher antibacterial activity towards Pseudomonas sp. and 1:1:3 ratios both inhibit joint bacteria. The ZI% higher of concoction extracts against A.hydrophila is 1:1:8; 1:3:1; 3:4:3. The ZI% concoction extracts against Pseudomonas sp. ware 3:3:4 and 1:8:1 ratio. While the two bacteria combined, just 1:1:3 ratio had higher Z%. The conclusion is that a concoction of SF:BP:ZZ is effective to inhibit the growth of A.hydrophila and Pseudomonas sp., even its antibacterial ability is similar to the effectiveness of antibiotic oxytetracycline.

  19. Pseudomonas protegens Pf-5 causes discoloration and pitting of mushroom caps due to the production of antifungal metabolites

    USDA-ARS?s Scientific Manuscript database

    Bacteria in the diverse P. fluorescens group include mushroom pathogens, such as Pseudomonas tolaasii, and rhizosphere inhabitants known for their antifungal metabolite production and biological control of plant disease, such as Pseudomonas protegens Pf-5. Here, we report that strain Pf-5 causes bro...

  20. Silencing of AtRAP, a target gene of a bacteria-induced small RNA, triggers antibacterial defense responses through activation of LSU2 and down-regulation of GLK1

    PubMed Central

    Wang, Huan; Seo, Jang-Kyun; Gao, Shang; Cui, Xinping; Jin, Hailing

    2017-01-01

    Summary Plants fine-tune their sophisticated immunity systems in response to pathogen infections. We previously showed that AtlsiRNA-1, a bacteria-induced plant endogenous small interfering RNA, silences the AtRAP gene, which encodes a putative RNA binding protein.In this study, we demonstrate that AtRAP functions as a negative regulator in plant immunity by characterizing molecular and biological responses of the knockout mutant and overexpression lines of AtRAP upon bacterial infection.AtRAP is localized in chloroplasts and physically interacts with Low Sulfur Upregulated 2 (LSU2), which positively regulates plant defense. Our results suggest that AtRAP negatively regulates defense responses by suppressing LSU2 through physical interaction. We also detected downregulation of the transcription factor GOLDEN2-LIKE 1 (GLK1) in atrap-1 using microarray analysis. The glk1 glk2 double mutant showed enhanced resistance to Pseudomonas syringae pv. tomato, which is consistent with a previous study showing enhanced resistance of a glk1 glk2 double mutant to Hyaloperonospora arabidopsidis.Taken together, our data suggest that silencing of AtRAP by AtlsiRNA-1 upon bacterial infection triggers defense responses through regulation of LSU2 and GLK1. PMID:28656601

  1. Phenotypic and genotypic characterization of phenanthrene-degrading fluorescent Pseudomonas biovars.

    PubMed Central

    Johnsen, K; Andersen, S; Jacobsen, C S

    1996-01-01

    A total of 41 phenanthrene degraders were isolated from a former coal gasification site by using Pseudomonas-selective Gould's S1 medium. All isolates were found to belong to the fluorescent Pseudomonas group and were subjected to characterization by phenotypic methods, including classical taxonomic tests, API 20NE, and Biolog GN, and the strains were further characterized by the genotypic method repetitive extragenic palindromic PCR (REP-PCR). By using classical tests, the population was found to consist of 38 strains belonging to P. fluorescens, 2 P. putida strains, and 1 Pseudomonas sp. Bacteria in phenograms from Biolog GN and REP-PCR data were divided into groups, which were in good agreement with classical test and API 20NE results. We found a nonfluorescent group of 22 bacteria inconsistent with any Pseudomonas sp. in Bergey's Manual of Systematic Bacteriology. The group showed small differences in the genotypic test, indicating that all 22 isolates were not recent clones of the same isolate. Analyses of the nonfluorescent group indicated that it belonged to Pseudomonas, but the group could not be affiliated with P. fluorescens because of differences in DNA-DNA hybridization. Identifications using classical tests and API 20NE were found to correlate, but Biolog GN identifications after 24-h incubation resulted very often in the distantly related P. corrugata. The reproducibilities of individual tests of each phenotypic method were assessed, and low reproducibilities were mainly found to be associated with specific Biolog GN test wells. Classical tests and API 20NE proved to be the best for identification of isolates, whereas Biolog GN and REP-PCR were found to be the best tests for high resolution among these closely related isolates. PMID:8837438

  2. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis.

    PubMed

    Chen, Huamin; Xue, Li; Chintamanani, Satya; Germain, Hugo; Lin, Huiqiong; Cui, Haitao; Cai, Run; Zuo, Jianru; Tang, Xiaoyan; Li, Xin; Guo, Hongwei; Zhou, Jian-Min

    2009-08-01

    Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) trigger plant immunity that forms the first line inducible defenses in plants. The regulatory mechanism of MAMP-triggered immunity, however, is poorly understood. Here, we show that Arabidopsis thaliana transcription factors ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1), previously known to mediate ethylene signaling, also negatively regulate PAMP-triggered immunity. Plants lacking EIN3 and EIL1 display enhanced PAMP defenses and heightened resistance to Pseudomonas syringae bacteria. Conversely, plants overaccumulating EIN3 are compromised in PAMP defenses and exhibit enhanced disease susceptibility to Pseudomonas syringae. Microarray analysis revealed that EIN3 and EIL1 negatively control PAMP response genes. Further analyses indicated that SALICYLIC ACID INDUCTION DEFICIENT2 (SID2), which encodes isochorismate synthase required for pathogen-induced biosynthesis of salicylic acid (SA), is a key target of EIN3 and EIL1. Consistent with this, the ein3-1 eil1-1 double mutant constitutively accumulates SA in the absence of pathogen attack, and a mutation in SID2 restores normal susceptibility in the ein3 eil1 double mutant. EIN3 can specifically bind SID2 promoter sequence in vitro and in vivo. Taken together, our data provide evidence that EIN3/EIL1 directly target SID2 to downregulate PAMP defenses.

  3. The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways.

    PubMed

    Wathugala, Deepthi L; Hemsley, Piers A; Moffat, Caroline S; Cremelie, Pieter; Knight, Marc R; Knight, Heather

    2012-07-01

    • Arabidopsis SENSITIVE TO FREEZING6 (SFR6) controls cold- and drought-inducible gene expression and freezing- and osmotic-stress tolerance. Its identification as a component of the MEDIATOR transcriptional co-activator complex led us to address its involvement in other transcriptional responses. • Gene expression responses to Pseudomonas syringae, ultraviolet-C (UV-C) irradiation, salicylic acid (SA) and jasmonic acid (JA) were investigated in three sfr6 mutant alleles by quantitative real-time PCR and susceptibility to UV-C irradiation and Pseudomonas infection were assessed. • sfr6 mutants were more susceptible to both Pseudomonas syringae infection and UV-C irradiation. They exhibited correspondingly weaker PR (pathogenesis-related) gene expression than wild-type Arabidopsis following these treatments or after direct application of SA, involved in response to both UV-C and Pseudomonas infection. Other genes, however, were induced normally in the mutants by these treatments. sfr6 mutants were severely defective in expression of plant defensin genes in response to JA; ectopic expression of defensin genes was provoked in wild-type but not sfr6 by overexpression of ERF5. • SFR6/MED16 controls both SA- and JA-mediated defence gene expression and is necessary for tolerance of Pseudomonas syringae infection and UV-C irradiation. It is not, however, a universal regulator of stress gene transcription and is likely to mediate transcriptional activation of specific regulons only. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  4. Inactivation of bacteria via photosensitization of vitamin K3 by UV-A light.

    PubMed

    Xu, Fei; Vostal, Jaroslav G

    2014-09-01

    This study investigated inactivation of bacteria with ultraviolet light A irradiation in combination with vitamin K3 as a photosensitizer. Six bacteria including Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, and Escherichia coli suspended in vitamin K3 aqueous solution were exposed to ultraviolet light A. Five of six bacteria, with the exception of Pseudomonas aeruginosa, were reduced by eight logs with 1600 μM of vitamin K3 and 5.8 J cm(-2) UV-A irradiation. Pseudomonas aeruginosa was reduced by four logs under these conditions. Reactive oxygen species including singlet oxygen, hydroxyl radical and superoxide anion radical were generated in vitamin K3 aqueous solution under UV-A irradiation. These results suggest that vitamin K3 and UV-A irradiation may be effective for bacterial inactivation in environmental and medical applications. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  5. [The action of quaternary ammonium derivatives on respiration and nitrate reduction in Pseudomonas aeruginosa].

    PubMed

    Bievskiĭ, A N

    1994-01-01

    It was revealed that the same dosages of quaternary ammonium derivatives, such as decamethoxin and cetyltrimethylammonium bromide, inhibited the respiratory chains and caused destruction of Pseudomonas aeruginosa under aerobic conditions more effectively than under anaerobic ones when anions of nitric acid were the terminal acceptors of electrons. It was also registered that Pseudomonas were able to dissimilatory nitrate reduction in the media under the polysaccharide layer that was produced by these bacteria: this fact possibly proves the possibility of survival of denitrifying bacteria in solutions with high concentrations of quaternary ammonium salts. The data obtained permit supposing that inhibitors of respiratory chains and oxidizers may be used as potentiators of the antimicrobial action of quaternary ammonium derivatives.

  6. Ultrastructural localization of acid phosphatase in some bacteria, after treatment with Lubrol W1.

    PubMed

    Cherepova, N; Spasova, D

    1996-01-01

    The ultracytochemical localization of acid phosphatase from some bacteria (Listeria monocytogenes, Salmonella typhimurium, Pseudomonas pseudomallei and Pseudomonas aeruginosa) was dependent on the changes in the lipoprotein content of the membranes as a result of the action of the Lubrol W1.

  7. [Agriculture microbiology and microbe interaction with plants].

    PubMed

    Caballero-Mellado, Jesús

    2006-01-01

    About the characterization and distribution of novel nitrogen-fixing Burkholderia species associated with maize and other plants and their potential use on the plant growth was presented in this symposium. The symposium included studies directed to the revegetation of eroded areas by using plant growth promoting rhizo-bacteria and mycorrizal fungi associated with desert plants, as well as studies related with the resistance of arbuscular mycorrhizal fungi to heavy metals associated with the environmental pollution. In addition, the identification and characterization of a 31-kb chromosomal fragment from Pseudomonas syringae pv. phaseolicola was presented; such a fragment, involved with the phaseolotoxin synthesis, showed characteristic features of a bacterial pathogenicity island.

  8. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system

    PubMed Central

    Mazzola, Priscila G; Martins, Alzira MS; Penna, Thereza CV

    2006-01-01

    Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite

  9. Olivine dissolution in the presence of heterotrophic bacteria (Pseudomonas reactants) extracted from Icelandic groundwater of the CO2 injection pilot site

    NASA Astrophysics Data System (ADS)

    Shirokova, Liudmila; Pokrovsky, Oleg; Benezeth, Pascale; Gerard, Emmanuelle; Menez, Benedicte; Alfredsson, Helgi

    2010-05-01

    This work is aimed at experimental modeling of the effect of heterotrophic bacteria on dissolution of important rock-forming mineral, olivine, at the conditions of CO2 storage and sequestration. Heterotrophic aerobic gram-negative bacteria were extracted from deep underground water (HK31, 1700 m deep and, t = 25-30°C) of basaltic aquifer located within the Hellisheidi CO2 injection pilot site (Iceland). Following this sampling, we separated, using culture on nutrient agar plates, four different groups of gram-negative aerobic bacteria. The enzymatic activity of studied species has been evaluated using Biolog Ecoplates and their genetic identification was performed using 18-S RNA analysis. The optimal growth conditions of bacteria on Brain Hearth Broth nutrient have been determined as 5 to 37°C and growth media pH varied from 7.0-8.2. Culturing experiments allowed determining the optimal physico-chemical conditions for bacteria experiments in the presence of basic Ca, Mg-containing silicates. Olivine (Fo92) was chosen as typical mineral of basalt, widely considered in carbon dioxide sequestration mechanisms. Dissolution experiments were performed in constant-pH (7 to 9), bicarbonate-buffered (0.001 to 0.05 M) nutrient-diluted media in batch reactors at 0-30 bars of CO2 in the presence of various biomass of Pseudomonas reactants. The release rate of magnesium, silica and iron was measured as a function of time in the presence of live, actively growing, dead (autoclaved or glutaraldehyde-treated) cells and bacteria exometabolites. Both nutrient media diluted 10 times (to 100 mg DOC/L) and inert electrolyte (NaCl, no DOC) were used. Our preliminary results indicate that the pH and dissolved organic matter are the first-order parameters that control the element release from olivine at far from equilibrium conditions. The SEM investigation of reacted surfaces reveal formation of surface roughness with much stronger mineral alteration in the presence of live bacteria

  10. Ultrastructural localization of succinate dehydrogenase in some bacteria, after treatment with Lubrol W1.

    PubMed

    Cherepova, N; Spasova, D; Radoevska, S

    2001-01-01

    The localization of succinate dehydrogenase in some gram-negative and gram-positive bacteria (Salmonella typhimurium, Pseudomonas pseudomallei, Pseudomonas aeruginosa and Listeria monocytogenes) treated with the surface membrane active agent, Lubrol W1, was studied by a cytochemical method combined with electron microscopy.

  11. Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas.

    PubMed

    De-La-Peña, Clelia; Rangel-Cano, Alicia; Alvarez-Venegas, Raúl

    2012-05-01

    Genes in eukaryotic organisms function within the context of chromatin, and the mechanisms that modulate the structure of chromatin are defined as epigenetic. In Arabidopsis, pathogen infection induces the expression of at least one histone deacetylase, suggesting that histone acetylation/deacetylation has an important role in the pathogenic response in plants. How/whether histone methylation affects gene response to pathogen infection is unknown. To gain a better understanding of the epigenetic mechanisms regulating the interaction between Pseudomonas syringae and Arabidopsis thaliana, we analysed three different Arabidopsis ash1-related (absent, small or homeotic discs 1) mutants. We found that the loss of function of ASHH2 and ASHR1 resulted in faster hypersensitive responses (HRs) to both mutant (hrpA) and pathogenic (DC3000) strains of P. syringae, whereas control (Col-0) and ashr3 mutants appeared to be more resistant to the infection after 2 days. Furthermore, we showed that, in the ashr3 background, the PR1 gene (PATHOGENESIS-RELATED GENE 1) displayed the highest expression levels on infection with DC3000, correlating with increased resistance against this pathogen. Our results show that, in both the ashr1 and ashh2 backgrounds, the histone H3 lysine 4 dimethylation (H3K4me2) levels decreased at the promoter region of PR1 on infection with the DC3000 strain, suggesting that an epigenetically regulated PR1 expression is involved in the plant defence. Our results suggest that histone methylation in response to pathogen infection may be a critical component in the signalling and defence processes occurring between plants and microbes. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  12. Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith.

    PubMed

    Chávez-Gómez, B; Quintero, R; Esparza-García, F; Mesta-Howard, A M; Zavala Díaz de la Serna, F J; Hernández-Rodríguez, C H; Gillén, T; Poggi-Varaldo, H M; Barrera-Cortés, J; Rodríguez-Vázquez, R

    2003-09-01

    Sixteen co-cultures composed of four bacteria and four fungi grown on sugarcane bagasse pith were tested for phenanthrene degradation in soil. The four bacteria were identified as Pseudomonas aeruginose, Ralstonia pickettii, Pseudomonas sp. and Pseudomonas cepacea. The four fungi were identified as: Penicillium sp., Trichoderma viride, Alternaria tenuis and Aspergillus terrus that were previously isolated from different hydrocarbon-contaminated soils. Fungi had a statistically significant positive (0.0001bacteria removed the compound by an order of 20%. Co-cultures B. cepacea-Penicillium sp., R. pickettii-Penicillium sp., and P. aeruginose-Penicillium sp. exhibited synergism for phenanthrene removal, reaching 72.84+/-3.85%, 73.61+/-6.38% and 69.47+/-4.91%; in 18 days, respectively.

  13. Pseudomonas spp. diversity is negatively associated with suppression of the wheat take-all pathogen

    PubMed Central

    Mehrabi, Zia; McMillan, Vanessa E.; Clark, Ian M.; Canning, Gail; Hammond-Kosack, Kim E.; Preston, Gail; Hirsch, Penny R.; Mauchline, Tim H.

    2016-01-01

    Biodiversity and ecosystem functioning research typically shows positive diversity- productivity relationships. However, local increases in species richness can increase competition within trophic levels, reducing the efficacy of intertrophic level population control. Pseudomonas spp. are a dominant group of soil bacteria that play key roles in plant growth promotion and control of crop fungal pathogens. Here we show that Pseudomonas spp. richness is positively correlated with take-all disease in wheat and with yield losses of ~3 t/ha in the field. We modeled the interactions between Pseudomonas and the take-all pathogen in abstract experimental microcosms, and show that increased bacterial genotypic richness escalates bacterial antagonism and decreases the ability of the bacterial community to inhibit growth of the take-all pathogen. Future work is required to determine the generality of these negative biodiversity effects on different media and directly at infection zones on root surfaces. However, the increase in competition between bacteria at high genotypic richness and the potential loss of fungal biocontrol activity highlights an important mechanism to explain the negative Pseudomonas diversity-wheat yield relationship we observed in the field. Together our results suggest that the effect of biodiversity on ecosystem functioning can depend on both the function and trophic level of interest. PMID:27549739

  14. Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance

    PubMed Central

    Imperiali, Nicola; Chiriboga, Xavier; Schlaeppi, Klaus; Fesselet, Marie; Villacrés, Daniela; Jaffuel, Geoffrey; Bender, S. Franz; Dennert, Francesca; Blanco-Pérez, Ruben; van der Heijden, Marcel G. A.; Maurhofer, Monika; Mascher, Fabio; Turlings, Ted C. J.; Keel, Christoph J.; Campos-Herrera, Raquel

    2017-01-01

    In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas, mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by

  15. Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance.

    PubMed

    Imperiali, Nicola; Chiriboga, Xavier; Schlaeppi, Klaus; Fesselet, Marie; Villacrés, Daniela; Jaffuel, Geoffrey; Bender, S Franz; Dennert, Francesca; Blanco-Pérez, Ruben; van der Heijden, Marcel G A; Maurhofer, Monika; Mascher, Fabio; Turlings, Ted C J; Keel, Christoph J; Campos-Herrera, Raquel

    2017-01-01

    In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas , mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by

  16. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens.

    PubMed

    Cheng, Xu; Etalo, Desalegn W; van de Mortel, Judith E; Dekkers, Ester; Nguyen, Linh; Medema, Marnix H; Raaijmakers, Jos M

    2017-11-01

    Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. The lilac cultivar Syringa ‘Charisma’ is a new host for ‘Candidatus Phytoplasma pruni’, the group 16SrIII, subgroup A, phytoplasma

    USDA-ARS?s Scientific Manuscript database

    The lilac cultivar ‘Charisma’ (Syringa x prestoniae ‘Charisma’) was derived by the propagation of a witches’ broom cutting taken from the Preston Lilac ‘Royalty’ (Syringa x prestoniae ‘Royalty). Because lilac witches’ broom disease has previously been shown to be associated with infection by ‘Candi...

  18. Nosocomial outbreak of Pseudomonas aeruginosa endophthalmitis.

    PubMed

    Mateos, I; Valencia, R; Torres, M J; Cantos, A; Conde, M; Aznar, J

    2006-11-01

    We describe an outbreak of nosocomial endophthalmitis due to a common source, which was determined to be trypan blue solution prepared in the hospital's pharmacy service. We assume that viable bacteria probably gained access to the trypan blue stock solution during cooling after autoclaving. The temporal cluster of Pseudomonas aeruginosa endophthalmitis was readily perceived on the basis of clinical and microbiological findings, and an exogenous source of contamination was unequivocally identified by means of DNA fingerprinting.

  19. Bad bacteria in acute appendicitis: rare but relevant.

    PubMed

    Reinisch, Alexander; Malkomes, Patrizia; Habbe, Nils; Bechstein, Wolf Otto; Liese, Juliane

    2017-09-01

    Bacterial infections are a factor for morbidity in patients with acute appendicitis (AA). The spreading of multidrug-resistant (MDR) bacteria is a significant problem in surgery, and the most relevant MDR pathogens are summarized as Enterobacteriaceae, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococci (ESKAPE) bacteria. Data regarding the species and distribution of bacteria in AA are available, but information about the resistances and their relevance is deficient. In this retrospective study, we analyzed microbiological swabs of patients with AA. The outcome parameters of patients after laparoscopic appendectomy were analyzed against microbiological results, including antibiotic resistance testing. Positive swabs were compared with bacteria cultivated after alternative abdominal emergency surgery (AES). In total, 584 patients with AA were included and had a mean age of 35.5 years. In 216 patients (36.9%), a swab was taken, and in 128 (59.3%) swabs, bacteria could be cultivated. The most frequent organisms were Escherichia coli, Bacteroides species, and Pseudomonas. In 9.4% of the positive AA swabs, MDR germs were cultivated, and all of them were ESKAPE pathogens. Patients with MDR bacteria in AA suffered more infectious complications (p = 0.006) and needed longer hospitalizations (p < 0.009). In AES, aside from appendicitis, a different spectrum containing more MDR bacteria was cultivated (5.9 vs. 20.9%; p < 0.0001). Although they occur less frequently in appendectomy compared to emergency surgeries for other abdominal diseases, MDR bacteria are traceable in this common disease and contribute to additional morbidity.

  20. Irrigation Differentially Impacts Populations of Indigenous Antibiotic-Producing Pseudomonas spp. in the Rhizosphere of Wheat

    PubMed Central

    Mavrodi, Olga V.; Mavrodi, Dmitri V.; Parejko, James A.; Thomashow, Linda S.

    2012-01-01

    This work determined the impact of irrigation on the seasonal dynamics of populations of Pseudomonas spp. producing the antibiotics phenazine-1-carboxylic acid (Phz+) and 2,4-diacetylphloroglucinol (Phl+) in the rhizosphere of wheat grown in the low-precipitation zone (150 to 300 mm annually) of the Columbia Plateau of the Inland Pacific Northwest. Population sizes and plant colonization frequencies of Phz+ and Phl+ Pseudomonas spp. were determined in winter and spring wheat collected during the growing seasons from 2008 to 2009 from selected commercial dryland and irrigated fields in central Washington State. Only Phz+ bacteria were detected on dryland winter wheat, with populations ranging from 4.8 to 6.3 log CFU g−1 of root and rhizosphere colonization frequencies of 67 to 100%. The ranges of population densities of Phl+ and Phz+ Pseudomonas spp. recovered from wheat grown under irrigation were similar, but 58 to 100% of root systems were colonized by Phl+ bacteria whereas only 8 to 50% of plants harbored Phz+ bacteria. In addition, Phz+ Pseudomonas spp. were abundant in the rhizosphere of native plant species growing in nonirrigated areas adjacent to the sampled dryland wheat fields. This is the first report that documents the impact of irrigation on indigenous populations of two closely related groups of antibiotic-producing pseudomonads that coinhabit the rhizosphere of an economically important cereal crop. These results demonstrate how crop management practices can influence indigenous populations of antibiotic-producing pseudomonads with the capacity to suppress soilborne diseases of wheat. PMID:22389379

  1. Triclosan- resistant bacteria isolated from feedlot and residential soils

    PubMed Central

    WELSCH, TANNER T.; GILLOCK, ERIC T.

    2014-01-01

    Triclosan is an antimicrobial agent that is currently incorporated into hundreds of consumer and medical products. It can be either a bacteriostatic or bactericidal agent, depending on its formulation. It has activity against Gram-positive and Gram-negative bacteria, as well as some viruses and protists. The purpose of this study was to determine whether triclosan-resistant bacteria could be isolated from the soil. Soils from cattle feedlots and residential lawns were collected and assayed for the presence of these organisms by plating samples on growth media containing triclosan. Organisms were subsequently identified by partial 16S rRNA sequencing analysis. All the organisms isolated in this study were Gram-negative rods, with members of genus Pseudomonas being particularly well represented. This result may not be surprising because Gram-negative organisms are generally more resistant to triclosan, and since Pseudomonas bacteria are known to have numerous efflux mechanisms for dealing with harmful substances. PMID:21391038

  2. DAPG-producing Pseudomonas fluorescens: beneficial agents for suppression of plant-parasitic nematodes?

    USDA-ARS?s Scientific Manuscript database

    Some beneficial strains of the bacterium Pseudomonas fluorescens produce the antibiotic 2, 4-diacetylphloroglucinol (DAPG). DAPG is active against a number of organisms, including viruses, bacteria, fungi and plants, and DAPG-producing P. fluorescens can also induce plant resistance against pathogen...

  3. Engineering the Soil Bacterium Pseudomonas putida for Arsenic Methylation

    PubMed Central

    Chen, Jian; Qin, Jie; Zhu, Yong-Guan; de Lorenzo, Víctor

    2013-01-01

    Accumulation of arsenic has potential health risks through consumption of food. Here, we inserted the arsenite [As(III)] S-adenosylmethionine methyltransferase (ArsM) gene into the chromosome of Pseudomonas putida KT2440. Recombinant bacteria methylate inorganic arsenic into less toxic organoarsenicals. This has the potential for bioremediation of environmental arsenic and reducing arsenic contamination in food. PMID:23645194

  4. Lignification induced by pseudomonads harboring avirulent genes on Arabidopsis.

    PubMed

    Lee, S; Sharm, Y; Lee, T K; Chang, M; Davis, K R

    2001-08-31

    The responses of Arabidopsis thaliana ecotypes to the bacterial pathogen Pseudomonas syringae pv. maculicola 4326 (Psm4326) harboring cloned avirulence genes avrB and avrRpt2 from P. syringae pv. glycinea were examined. Psm4326 containing avirulent genes, avrB and avrRpt2 induced lignification and peroxidase activities in the bacteria infiltrated leaves of Col-O only and not in Mt-O, Bla-2 and Po-1. However, Arabidopsis ecotypes infiltrated with Psm4326 harboring with and without avirulent genes all showed differential induction of mRNA for peroxidase gene and lignin accumulation up to 24 h after infiltration. Only avrB gene in Col-O showed strong corelationship between peroxidase mRNA expression as well as lignification gradually up to 36 h after infiltration. These results extend previous observations that avirulence genes from pathogens of one host plant can be recognized by non-host plants and provide the genetic framework for analysis of the plant-specific response to the bacterial avirulent gene products in A. thaliana.

  5. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    NASA Astrophysics Data System (ADS)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  6. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    PubMed

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Experimental Keratitis Due to Pseudomonas aeruginosa: Model for Evaluation of Antimicrobial Drugs

    PubMed Central

    Davis, Starkey D.; Chandler, John W.

    1975-01-01

    An improved method for experimental keratitis due to Pseudomonas aeruginosa is described. Essential features of the method are use of inbred guinea pigs, intracorneal injection of bacteria, subconjunctival injection of antibiotics, “blind” evaluation of results, and statistical analysis of data. Untreated ocular infections were most severe 5 to 7 days after infection. Sterilized bacterial suspensions caused no abnormalities on day 5. Tobramycin and polymyxin B were more active than gentamicin against two strains of Pseudomonas. This model is suitable for many types of quantitative studies on experimental keratitis. Images PMID:810084

  8. Biosynthesis of silver nanoparticles by Pseudomonas spp. isolated from effluent of an electroplating industry.

    PubMed

    Punjabi, Kapil; Yedurkar, Snehal; Doshi, Sejal; Deshapnde, Sunita; Vaidya, Shashikant

    2017-08-01

    The aim of this study was to isolate and screen bacteria from soil and effluent of electroplating industries for the synthesis of silver nanoparticles and characterize the potential isolate. Soil and effluent of electroplating industries from Mumbai were screened for bacteria capable of synthesizing silver nanoparticles. From two soils and eight effluent samples 20 bacterial isolates were obtained, of these, one was found to synthesize silver nanoparticles. Synthesis of silver nanoparticle by bacteria was confirmed by undertaking characterization studies of nanoparticles that involved spectroscopy and electron microscopic techniques. The potential bacteria was found to be Gram-negative short rods with its biochemical test indicating Pseudomonas spp . Molecular characterization of the isolate by 16S r DNA sequencing was carried out which confirmed its relation to Pseudomonas hibiscicola ATCC 19867. Stable nanoparticles synthesized were 50 nm in size and variable shapes as seen in SEM micrographs. The XRD and FTIR confirmed the crystalline structure of nanoparticles and presence of biomolecules mainly proteins as agents for reduction and capping of nanoparticles. The study demonstrates synthesis of nanoparticles by bacteria from effluent of electroplating industry. This can be used for large scale synthesis of nanoparticles by cost effective and environmentally benign mode of synthesis.

  9. Electrophoretic analysis of cyanide depletion by Pseudomonas alcaligenes.

    PubMed

    Zaugg, S E; Davidson, R A; Walker, J C; Walker, E B

    1997-02-01

    Bacterial-facilitated depletion of cyanide is under development for remediation of heap leach operations in the gold mining industry. Capillary electrophoresis was found to be a powerful tool for quantifying cyanide depletion. Changes in cyanide concentration in aqueous suspensions of Pseudomonas alcaligenes bacteria and cyanide at elevated pH were easily monitored by capillary electrophoresis. The resulting data can be used to study rates of cyanide depletion by this strain of bacteria. Concentrations of these bacteria at 10(5) cells/mL were found to reduce cyanide from 100 ppm to less than 8 ppm in four days. In addition, other ions of interest in cyanide metabolism, such as formate, can be simultaneously analyzed. Direct UV detection of cyanide at 192 nm further simplifies the analytical method for these ions.

  10. Phosphorylation of Arabidopsis MAP Kinase Phosphatase 1 (MKP1) Is Required for PAMP Responses and Resistance against Bacteria1[OPEN

    PubMed Central

    Jiang, Lingyan; Anderson, Jeffrey C.; Besteiro, Marina A. González

    2017-01-01

    Plants perceive potential pathogens via the recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors, which initiates a series of intracellular responses that ultimately limit bacterial growth. PAMP responses include changes in intracellular protein phosphorylation, including the activation of mitogen-activated protein kinase (MAPK) cascades. MAP kinase phosphatases (MKPs), such as Arabidopsis (Arabidopsis thaliana) MKP1, are important negative regulators of MAPKs and play a crucial role in controlling the intensity and duration of MAPK activation during innate immune signaling. As such, the mkp1 mutant lacking MKP1 displays enhanced PAMP responses and resistance against the virulent bacterium Pseudomonas syringae pv tomato DC3000. Previous in vitro studies showed that MKP1 can be phosphorylated and activated by MPK6, suggesting that phosphorylation may be an important mechanism for regulating MKP1. We found that MKP1 was phosphorylated during PAMP elicitation and that phosphorylation stabilized the protein, resulting in protein accumulation after elicitation. MKP1 also can be stabilized by the proteasome inhibitor MG132, suggesting that MKP1 is constitutively degraded through the proteasome in the resting state. In addition, we investigated the role of MKP1 posttranslational regulation in plant defense by testing whether phenotypes of the mkp1 Arabidopsis mutant could be complemented by expressing phosphorylation site mutations of MKP1. The phosphorylation of MKP1 was found to be required for some, but not all, of MKP1’s functions in PAMP responses and defense against bacteria. Together, our results provide insight into the roles of phosphorylation in the regulation of MKP1 during PAMP signaling and resistance to bacteria. PMID:29070514

  11. Biotransformation of geosmin by terpene-degrading bacteria.

    USDA-ARS?s Scientific Manuscript database

    Two terpene-degrading bacteria that are able to transform geosmin have been identified. Pseudomonas sp. SBR3-tpnb, isolated on -terpinene, converts geosmin to several products; the major products are keto-geosmins. This geosmin transformation ability is inducible by -terpinene. Rhodococcus wratisl...

  12. Exploration of indigenous bacteria in an intensive aquaculture system of African catfish (Clarias sp.) in Banyuwangi, Indonesia

    NASA Astrophysics Data System (ADS)

    Prayogo; Rahardja, B. S.; Asshanti, A. N.; Dewi, N. N.; Santanumurti, M. B.

    2018-04-01

    Intensive African catfish culture in tarpaulin pond was popular in Banyuwangi, Indonesia since the government supported the fisheries sector. Unfortunately, the failure of African catfish culture still occurred since the waste from fish metabolite process and feed residue decreased the water quality. Bacteria in the water could be the solution to increase the success rate of aquaculture by improving the water quality. This study purpose was to obtained indigenous bacteria in intensive aquaculture system of African catfish to improve water quality. This study successfully isolated bacteria contained with amylase, protease and lipase characteristic. Isolated bacteria in this study were identified as Pseudomonas pseudomallei (97.81%), Bacillus subtilis (95.81%) and Pseudomonas stutzeri (61.21%).

  13. Type III Effector Diversification via Both Pathoadaptation and Horizontal Transfer in Response to a Coevolutionary Arms Race

    PubMed Central

    Ma, Wenbo; Dong, Frederick F. T; Stavrinides, John; Guttman, David S

    2006-01-01

    The concept of the coevolutionary arms race holds a central position in our understanding of pathogen–host interactions. Here we identify the molecular mechanisms and follow the stepwise progression of an arms race in a natural system. We show how the evolution and function of the HopZ family of type III secreted effector proteins carried by the plant pathogen Pseudomonas syringae are influenced by a coevolutionary arms race between pathogen and host. We surveyed 96 isolates of P. syringae and identified three homologs (HopZ1, HopZ2, and HopZ3) distributed among ∼45% of the strains. All alleles were sequenced and their expression was confirmed. Evolutionary analyses determined that the diverse HopZ1 homologs are ancestral to P. syringae, and have diverged via pathoadaptive mutational changes into three functional and two degenerate forms, while HopZ2 and HopZ3 have been brought into P. syringae via horizontal transfer from other ecologically similar bacteria. A PAML selection analysis revealed that the C terminus of HopZ1 is under strong positive selection. Despite the extensive genetic variation observed in this family, all three homologs have cysteine–protease activity, although their substrate specificity may vary. The introduction of the ancestral hopZ1 allele into strains harboring alternate alleles results in a resistance protein-mediated defense response in their respective hosts, which is not observed with the endogenous allele. These data indicate that the P. syringae HopZ family has undergone allelic diversification via both pathoadaptive mutational changes and horizontal transfer in response to selection imposed by the host defense system. This genetic diversity permits the pathogen to avoid host defenses while still maintaining a virulence-associated protease, thereby allowing it to thrive on its current host, while simultaneously impacting its host range. PMID:17194219

  14. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

    PubMed

    Cross, Megan; Biberacher, Sonja; Park, Suk-Youl; Rajan, Siji; Korhonen, Pasi; Gasser, Robin B; Kim, Jeong-Sun; Coster, Mark J; Hofmann, Andreas

    2018-04-24

    The opportunistic bacterium Pseudomonas aeruginosa has been recognized as an important pathogen of clinical relevance and is a leading cause of hospital-acquired infections. The presence of a glycolytic enzyme in Pseudomonas, which is known to be inhibited by trehalose 6-phosphate (T6P) in other organisms, suggests that these bacteria may be vulnerable to the detrimental effects of intracellular T6P accumulation. In the present study, we explored the structural and functional properties of trehalose 6-phosphate phosphatase (TPP) in P. aeruginosa in support of future target-based drug discovery. A survey of genomes revealed the existence of 2 TPP genes with either chromosomal or extrachromosomal location. Both TPPs were produced as recombinant proteins, and characterization of their enzymatic properties confirmed specific, magnesium-dependent catalytic hydrolysis of T6P. The 3-dimensional crystal structure of the chromosomal TPP revealed a protein dimer arising through β-sheet expansion of the individual monomers, which possess the overall fold of halo-acid dehydrogenases.-Cross, M., Biberacher, S., Park, S.-Y., Rajan, S., Korhonen, P., Gasser, R. B., Kim, J.-S., Coster, M. J., Hofmann, A. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

  15. Mineralization of a Malaysian crude oil by Pseudomonas sp. and Achromabacter sp. isolated from coastal waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, J.; Ahmad, M.F.

    1995-12-31

    Regarded as being a potentially effective tool to combat oil pollution, bioremediation involves mineralization, i.e., the conversion of complex hydrocarbons into harmless CO{sub 2} and water by action of microorganisms. Therefore, in achieving optimum effectiveness from the application of these products on crude oil in local environments, the capability of the bacteria to mineralize hydrocarbons was evaluated. The microbial laboratory testing of mineralization on local oil degraders involved, first, isolation of bacteria found at a port located on the west coast of Peninsular Malaysia. Subsequently, these bacteria were identified by means of Biomereux`s API 20E and 20 NE systems andmore » later screened by their growth on a Malaysian crude oil. Selected strains of Pseudomonas sp. and Achromabacter sp. were then exposed individually to a similar crude oil in a mineralization unit and monitored for 16 days for release of CO{sub 2}. Pseudomonas paucimobilis was found to produce more CO{sub 2} than Achromobacter sp. When tested under similar conditions, mixed populations of these two taxa produced more CO{sub 2} than that produced by any individual strain. Effective bioremediation of local crude in Malaysian waters can therefore be achieved from biochemically developed Pseudomonas sp. strains.« less

  16. Activity of Topical Antimicrobial Agents Against Multidrug-Resistant Bacteria Recovered from Burn Patients

    DTIC Science & Technology

    2010-01-01

    produced by Pseudomonas fluorescens [19] Inhibition of RNA and protein synthesis by targeting the isoleucine-binding site on the isoleucyl-transfer-RNA...multidrug-resistant (MDR) bacteria. We compared two methods of determining topical antimicrobial susceptibilities. Methods: Isolates of Pseudomonas ...aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), extended spectrum beta-lactamase (ESBL) producing Klebsiella pneumoniae, and

  17. [A correlative study on heterotrophic bacteria and the main pollutant in city lakes' water].

    PubMed

    Huang, Li-Jing; Yun, Luo-Jia; Wang, Lin; Zhang, Xiao-He

    2005-01-01

    To provide scientific basis for bioremediation of city lake, the distribution of heterotrophic bacteria and its correlation with major pollutions condition were studied. Puping Lake and Moshui Lake of Wu Han City were choosen as the objects of our study. COD(cr) TOC, TP and TN were determined in sampled freshwater and sediment via the standard methods. At the same time the bacteria was cultivated. The average value of COD(cr), TOC, TP and TN were 8. 934 mg/L, 5.125 mg/L, 0.089 mg/L, 4.739 mg/L in Puping Lake and 86.296 mg/L,13.255 mg/ L, 1.796 mg/L, 7.325 mg/L in Moshui Lake. Ten strains of heterotrophic bacteria were isolated from the sample and they are Pseudomonas, Bacillus, Enterobateriaceae, Aeromonas and Coccus. The dominant strain in water was Pseudomonas. The proportion of Bacillus in sediment was relatively higher. In the two lakes, the average bacteria counts were 1.90 x 10(3) CFU and 5.53 x 10(4) CFU per mL in water, 3.12 x 10(5) CFU and 5.06 x 10(5) CFU per g in sediment. Puping Lake and Moshui Lake were polluted seriously according to the standard; Gram negative rods were the main types in water, and the dominant type was Pseudomonas, the Gram positive bacteria was Bacillus; The type and quantity of bacteria in Moshui Lake were higher than those in Puping Lake, and there were correlations between the quantity of bacteria and the pollutants.

  18. Natural Transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in Soil

    PubMed Central

    Demanèche, Sandrine; Kay, Elisabeth; Gourbière, François; Simonet, Pascal

    2001-01-01

    Little information is available concerning the occurrence of natural transformation of bacteria in soil, the frequency of such events, and the actual role of this process on bacterial evolution. This is because few bacteria are known to possess the genes required to develop competence and because the tested bacteria are unable to reach this physiological state in situ. In this study we found that two soil bacteria, Agrobacterium tumefaciens and Pseudomonas fluorescens, can undergo transformation in soil microcosms without any specific physical or chemical treatment. Moreover, P. fluorescens produced transformants in both sterile and nonsterile soil microcosms but failed to do so in the various in vitro conditions we tested. A. tumefaciens could be transformed in vitro and in sterile soil samples. These results indicate that the number of transformable bacteria could be higher than previously thought and that these bacteria could find the conditions necessary for uptake of extracellular DNA in soil. PMID:11375171

  19. Fluorescent cellular assay for screening agents inhibiting Pseudomonas aeruginosa adherence.

    PubMed

    Nosková, Libuše; Kubíčková, Božena; Vašková, Lucie; Bláhová, Barbora; Wimmerová, Michaela; Stiborová, Marie; Hodek, Petr

    2015-01-16

    Antibodies against Pseudomonas aeruginosa (PA) lectin, PAIIL, which is a virulence factor mediating the bacteria binding to epithelium cells, were prepared in chickens and purified from egg yolks. To examine these antibodies as a prophylactic agent preventing the adhesion of PA we developed a well plate assay based on fluorescently labeled bacteria and immortalized epithelium cell lines derived from normal and cystic fibrosis (CF) human lungs. The antibodies significantly inhibited bacteria adhesion (up to 50%) in both cell lines. In agreement with in vivo data, our plate assay showed higher susceptibility of CF cells towards the PA adhesion as compared to normal epithelium. This finding proved the reliability of the developed experimental system.

  20. Mining Genomes of Biological Control Strains of Pseudomonas spp.: Unexpected Gems and Tailings

    USDA-ARS?s Scientific Manuscript database

    The biocontrol bacterium Pseudomonas fluorescens Pf-5 suppresses numerous soilborne plant diseases and produces an array of structurally-characterized secondary metabolites that are toxic to plant pathogenic bacteria, fungi and Oomycetes. Biosynthetic gene clusters for these metabolites compose nea...

  1. Interactions of Seedborne Bacterial Pathogens with Host and Non-Host Plants in Relation to Seed Infestation and Seedling Transmission

    PubMed Central

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1×106 colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized

  2. Extracellular polysaccharides produced by cooling water tower biofilm bacteria and their possible degradation.

    PubMed

    Ceyhan, Nur; Ozdemir, Guven

    2008-01-01

    The extracellular polymers (EPS) of biofilm bacteria that can cause heat and mass transfer problems in cooling water towers in the petrochemical industry were investigated. In addition, these microorganisms were screened for their ability to grow and degrade their own EPS and the EPS of other species. Twelve bacteria producing the most EPS were isolated from cooling water towers and characterized biochemically by classic and commercial systems. These were species of Pseudomonas, Burkholderia, Aeromonas, Pasteurella, Pantoea, Alcaligenes and Sphingomonas. EPS of these species were obtained by propan-2-ol precipitation and centrifugation from bacterial cultures in media enriched with glucose, sucrose or galactose. EPS yields were of 1.68-4.95 g l(-1). These EPS materials were characterized for total sugar and protein contents. Their total sugar content ranged from 24 to 56% (g sugar g(-1) EPS), and their total protein content ranged from 10 to 28% (g protein g(-1) EPS). The monosaccharide compositions of EPS were determined by HPLC. Generally, these compositions were enriched in galactose and glucose, with lesser amounts of mannose, rhamnose, fructose and arabinose. All bacteria were investigated in terms of EPS degradation. Eight of the bacteria were able to utilize EPS from Burkholderia cepacia, seven of the bacteria were able to utilize EPS from Pseudomonas sp. and Sphingomonas paucimobilis. The greatest viscosity reduction of B. cepacia was obtained with Pseudomonas sp. The results show that the bacteria in this study are able to degrade EPS from biofilms in cooling towers.

  3. Endophytic colonization of olive roots by the biocontrol strain Pseudomonas fluorescens PICF7.

    PubMed

    Prieto, Pilar; Mercado-Blanco, Jesús

    2008-05-01

    Confocal microscopy combined with three-dimensional olive root tissue sectioning was used to provide evidence of the endophytic behaviour of Pseudomonas fluorescens PICF7, an effective biocontrol strain against Verticillium wilt of olive. Two derivatives of the green fluorescent protein (GFP), the enhanced green and the red fluorescent proteins, have been used to visualize simultaneously two differently fluorescently tagged populations of P. fluorescens PICF7 within olive root tissues at the single cell level. The time-course of colonization events of olive roots cv. Arbequina by strain PICF7 and the localization of tagged bacteria within olive root tissues are described. First, bacteria rapidly colonized root surfaces and were predominantly found in the differentiation zone. Thereafter, microscopy observations showed that PICF7-tagged populations eventually disappeared from the root surface, and increasingly colonized inner root tissues. Localized and limited endophytic colonization by the introduced bacteria was observed over time. Fluorescent-tagged bacteria were always visualized in the intercellular spaces of the cortex region, and no colonization of the root xylem vessels was detected at any time. To the best of our knowledge, this is the first time this approach has been used to demonstrate endophytism of a biocontrol Pseudomonas spp. strain in a woody host such as olive using a nongnotobiotic system.

  4. A Natural Chimeric Pseudomonas Bacteriocin with Novel Pore-Forming Activity Parasitizes the Ferrichrome Transporter.

    PubMed

    Ghequire, Maarten G K; Kemland, Lieselore; Anoz-Carbonell, Ernesto; Buchanan, Susan K; De Mot, René

    2017-02-21

    Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin's activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities. IMPORTANCE In their continuous struggle for ecological space, bacteria face a huge load of contenders, including phylogenetically related strains that compete for the same niche. One important group of secreted antibacterial proteins assisting in eliminating these rivals are modular bacteriocins of Gram-negative bacteria, comprising a domain for docking onto the

  5. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    PubMed

    Barah, Pankaj; Winge, Per; Kusnierczyk, Anna; Tran, Diem Hong; Bones, Atle M

    2013-01-01

    Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth) during insect Brevicoryne brassicae (B. brassicae henceforth) and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth) attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and

  6. Tolerance of an Antarctic Bacterium to Multiple Environmental Stressors.

    PubMed

    Sengupta, Dipanwita; Sangu, Kavya; Shivaji, Sisinthy; Chattopadhyay, Madhab K

    2015-10-01

    A population of cold-tolerant Antarctic bacteria was screened for their ability to tolerate other environmental stress factors. Besides low temperature, they were predominantly found to be tolerant to alkali. Attempt was also made to postulate a genetic basis of their multistress-tolerance. Transposon mutagenesis of an isolate Pseudomonas syringae Lz4W was performed, and mutants with delayed growth at low temperature were further screened for sensitivity to some other stress factors. A number of multistress-sensitive mutants were isolated. The mutated gene in one of the mutants sensitive to low temperature, acid and alkali was found to encode citrate synthase. Possible role of citrate synthase in conferring multistress-tolerance was postulated.

  7. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12.

    PubMed

    Kang, Du-Kyeong; Lee, Cho-Ryong; Lee, Sun Hee; Bae, Jung-Hoon; Park, Young-Kwon; Rhee, Young Ha; Sung, Bong Hyun; Sohn, Jung-Hoon

    2017-05-28

    Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use in diverse applications is prohibited by high production costs. To reduce these costs, the conversion by Pseudomonas strains of P HAs from crude s ludge p alm oil ( SPO) a s an inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel permeation chromatography, and differential scanning calorimetry. These findings may contribute to more widespread use of PHAs by reducing PHA production costs.

  8. Chemical Modification and Detoxification of the Pseudomonas aeruginosa Toxin 2-Heptyl-4-hydroxyquinoline N-Oxide by Environmental and Pathogenic Bacteria.

    PubMed

    Thierbach, Sven; Birmes, Franziska S; Letzel, Matthias C; Hennecke, Ulrich; Fetzner, Susanne

    2017-09-15

    2-Heptyl-4-hydroxyquinoline N-oxide (HQNO), a major secondary metabolite and virulence factor produced by the opportunistic pathogen Pseudomonas aeruginosa, acts as a potent inhibitor of respiratory electron transfer and thereby affects host cells as well as microorganisms. In this study, we demonstrate the previously unknown capability of environmental and pathogenic bacteria to transform and detoxify this compound. Strains of Arthrobacter and Rhodococcus spp. as well as Staphylococcus aureus introduced a hydroxyl group at C-3 of HQNO, whereas Mycobacterium abscessus, M. fortuitum, and M. smegmatis performed an O-methylation, forming 2-heptyl-1-methoxy-4-oxoquinoline as the initial metabolite. Bacillus spp. produced the glycosylated derivative 2-heptyl-1-(β-d-glucopyranosydyl)-4-oxoquinoline. Assaying the effects of these metabolites on cellular respiration and on quinol oxidase activity of membrane fractions revealed that their EC 50 values were up to 2 orders of magnitude higher than that of HQNO. Furthermore, cellular levels of reactive oxygen species were significantly lower in the presence of the metabolites than under the influence of HQNO. Therefore, the capacity to transform HQNO should lead to a competitive advantage against P. aeruginosa. Our findings contribute new insight into the metabolic diversity of bacteria and add another layer of complexity to the metabolic interactions which likely contribute to shaping polymicrobial communities comprising P. aeruginosa.

  9. Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species

    PubMed Central

    Wright, Mitchell H.; Geszvain, Kati; Oldham, Véronique E.; Luther, George W.; Tebo, Bradley M.

    2018-01-01

    The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of

  10. Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species.

    PubMed

    Wright, Mitchell H; Geszvain, Kati; Oldham, Véronique E; Luther, George W; Tebo, Bradley M

    2018-01-01

    The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of

  11. Phylogenetic Analysis of Polygalacturonase-Producing Bacillus and Pseudomonas Isolated From Plant Waste Material

    PubMed Central

    Sohail, Muhammad; Latif, Zakia

    2016-01-01

    Background: Keeping in mind the commercial application of polygalacturonase (PG) in juice and beverages industry, bacterial strains were isolated from rotten fruits and vegetables to screen for competent producers of PG. Objectives: In this study, the plate method was used for preliminary screening of polygalacturonase-producing bacteria, while the Dinitrosalicylic Acid (DNS) method was used for quantifications of PG. Materials and Methods: Biochemically-identified polygalacturonase-producing Bacillus and Pseudomonas species were further characterized by molecular markers. The genetic diversity among these selected strains was analyzed by investigating microsatellite distribution in their genome. Out of 110 strains, 17 competent strains of Bacillus and eight strains of Pseudomonas were selected, identified and confirmed biochemically. Selected strains were characterized by 16S rRNA sequencing and data was submitted to the national center for biotechnology information (NCBI) website for accession numbers. Results: Among the Bacillus, Bacillus vallismortis (JQ990307) isolated from mango was the most competent producer of PG; producing up to 4.4 U/µL. Amongst Pseudomonas, Pseudomonas aeruginosa (JQ990314) isolated from oranges was the most competent PG producer equivalent to B. vallismortis (JQ990307). To determine genetic diversity of different strains of Pseudomonas and Bacillus varying in PG production, fingerprinting was done on the basis of Simple Sequence Repeats (SSR) or microsatellites. The data was analyzed and a phylogenetic tree was constructed using the Minitab 3 software for comparison of bacterial isolates producing different concentrations of PG. Fingerprinting showed that presence or absence of certain microsatellites correlated with the ability of PG production. Conclusions: Bacteria from biological waste were competent producers of PG and must be used on an industrial scale to cope with the demand of PG in the food industry. PMID:27099686

  12. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  13. Stimulating Central Carbon Metabolism to Re-sensitize Pseudomonas aeruginosa to Aminoglycosides.

    PubMed

    Martins, Dorival; Nguyen, Dao

    2017-02-16

    In this issue of Cell Chemical Biology, Meylan et al. (2017) examine how stimulation of central carbon metabolism of Pseudomonas aeruginosa modulates aminoglycoside lethality in tolerant bacteria. They identify fumarate as a tobramycin potentiator that stimulates proton motive force-dependent drug uptake and increases respiration-dependent killing. Copyright © 2017. Published by Elsevier Ltd.

  14. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens

    PubMed Central

    Powers, Matthew J.; Sanabria-Valentín, Edgardo; Bowers, Albert A.

    2015-01-01

    ABSTRACT Interspecies interactions have been described for numerous bacterial systems, leading to the identification of chemical compounds that impact bacterial physiology and differentiation for processes such as biofilm formation. Here, we identified soil microbes that inhibit biofilm formation and sporulation in the common soil bacterium Bacillus subtilis. We did so by creating a reporter strain that fluoresces when the transcription of a biofilm-specific gene is repressed. Using this reporter in a coculture screen, we identified Pseudomonas putida and Pseudomonas protegens as bacteria that secrete compounds that inhibit biofilm gene expression in B. subtilis. The active compound produced by P. protegens was identified as the antibiotic and antifungal molecule 2,4-diacetylphloroglucinol (DAPG). Colonies of B. subtilis grown adjacent to a DAPG-producing P. protegens strain had altered colony morphologies relative to B. subtilis colonies grown next to a DAPG-null P. protegens strain (phlD strain). Using a subinhibitory concentration of purified DAPG in a pellicle assay, we saw that biofilm-specific gene transcription was delayed relative to transcription in untreated samples. These transcriptional changes also corresponded to phenotypic alterations: both biofilm biomass and spore formation were reduced in B. subtilis liquid cultures treated with subinhibitory concentrations of DAPG. Our results add DAPG to the growing list of antibiotics that impact bacterial development and physiology at subinhibitory concentrations. These findings also demonstrate the utility of using coculture as a means to uncover chemically mediated interspecies interactions between bacteria. IMPORTANCE Biofilms are communities of bacteria adhered to surfaces by an extracellular matrix; such biofilms can have important effects in both clinical and agricultural settings. To identify chemical compounds that inhibited biofilm formation, we used a fluorescent reporter to screen for bacteria that

  15. IDENTITY OF THE PINK-PIGMENTED METHANOL-OXIDIZING BACTERIA AS VIBRIO EXTORQUENS

    PubMed Central

    Stocks, Peter K.; McCleskey, C. S.

    1964-01-01

    Stocks, Peter K. (Louisiana State University, Baton Rouge), and C. S. McCleskey. Identity of the pink-pigmented methanol-oxidizing bacteria as Vibrio extorquens. J. Bacteriol. 88:1065–1070. 1964.—Pink-pigmented bacteria isolated from enrichment cultures of methane oxidizers were found to possess similar morphological, cultural, and physiological characteristics. All the strains utilized methanol, formate, oxalate, succinate, glycerol, and benzene as sole carbon sources; methanol, formate, and glycerol afforded best growth. Most strains utilized fructose and ribose; other carbohydrates tested were not available as carbon and energy sources. There was strain variation in the use of hexane, heptane, n-propanol, n-butanol, acetate, and propionate. Methane, ethane, n-propane, and n-butane were not utilized. Our isolates, and Pseudomonas methanica of Harrington and Kallio (not the methane-dependent P. methanica of Dworkin and Foster), Pseudomonas AM1 of Peele and Quayle, Pseudomonas PRL-W4 of Kaneda and Roxburgh, and Protaminobacter ruber den Dooren de Jong are nearly identical with Vibrio extorquens (Bassalik) Bhat and Barker, and should be considered the same species. Images PMID:14219020

  16. IDENTITY OF THE PINK-PIGMENTED METHANOL-OXIDIZING BACTERIA AS VIBRIO EXTORQUENS.

    PubMed

    STOCKS, P K; MCCLESKEY, C S

    1964-10-01

    Stocks, Peter K. (Louisiana State University, Baton Rouge), and C. S. McCleskey. Identity of the pink-pigmented methanol-oxidizing bacteria as Vibrio extorquens. J. Bacteriol. 88:1065-1070. 1964.-Pink-pigmented bacteria isolated from enrichment cultures of methane oxidizers were found to possess similar morphological, cultural, and physiological characteristics. All the strains utilized methanol, formate, oxalate, succinate, glycerol, and benzene as sole carbon sources; methanol, formate, and glycerol afforded best growth. Most strains utilized fructose and ribose; other carbohydrates tested were not available as carbon and energy sources. There was strain variation in the use of hexane, heptane, n-propanol, n-butanol, acetate, and propionate. Methane, ethane, n-propane, and n-butane were not utilized. Our isolates, and Pseudomonas methanica of Harrington and Kallio (not the methane-dependent P. methanica of Dworkin and Foster), Pseudomonas AM1 of Peele and Quayle, Pseudomonas PRL-W4 of Kaneda and Roxburgh, and Protaminobacter ruber den Dooren de Jong are nearly identical with Vibrio extorquens (Bassalik) Bhat and Barker, and should be considered the same species.

  17. Whole-Genome Sequence and Classification of 11 Endophytic Bacteria from Poison Ivy (Toxicodendron radicans)

    PubMed Central

    Tran, Phuong N.; Tan, Nicholas E. H.; Lee, Yin Peng; Gan, Han Ming; Polter, Steven J.; Dailey, Lucas K.; Hudson, André O.

    2015-01-01

    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy. PMID:26586879

  18. The effect of zinc limitation on the transcriptome of Pseudomonas protegens Pf-5

    USDA-ARS?s Scientific Manuscript database

    Zinc is an important nutrient but can be lacking in some soil environments, influencing the physiology of soil-dwelling bacteria. Hence, we studied the global effect of zinc limitation on the transcriptome of the rhizosphere biocontrol strain Pseudomonas protegens Pf-5. We observed that the expressi...

  19. Plastic Encapsulation of Stabilized Escherichia coli and Pseudomonas putida

    PubMed Central

    Manzanera, M.; Vilchez, S.; Tunnacliffe, A.

    2004-01-01

    Escherichia coli and Pseudomonas putida dried in hydroxyectoine or trehalose are shown to be highly resistant to the organic solvents chloroform and acetone, and consequently, they can be encapsulated in a viable form in solid plastic materials. Bacteria are recovered by rehydration after physical disruption of the plastic. P. putida incorporated into a plastic coating of maize seeds was shown to colonize roots efficiently after germination. PMID:15128579

  20. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Ram; Heffron, Fred; McDermott, Jason E.

    2009-04-24

    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates, effector proteins, are not. We have used a machine learning approach to identify new secreted effectors. The method integrates evolutionary measures, such as the pattern of homologs in a range of other organisms, and sequence-based features, such as G+C content, amino acid composition and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from Salmonella typhimurium and validated on a corresponding set of effectors from Pseudomonas syringae, aftermore » eliminating effectors with detectable sequence similarity. The method was able to identify all of the known effectors in P. syringae with a specificity of 84% and sensitivity of 82%. The reciprocal validation, training on P. syringae and validating on S. typhimurium, gave similar results with a specificity of 86% when the sensitivity level was 87%. These results show that type III effectors in disparate organisms share common features. We found that maximal performance is attained by including an N-terminal sequence of only 30 residues, which agrees with previous studies indicating that this region contains the secretion signal. We then used the method to define the most important residues in this putative secretion signal. Finally, we present novel predictions of secreted effectors in S. typhimurium, some of which have been experimentally validated, and apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis. This approach is a novel and effective way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.« less

  1. Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1.

    PubMed

    Rajesh, P S; Ravishankar Rai, V

    2014-01-01

    Quorum sensing mechanism allows the microorganisms to resist the antibiotic treatment by forming biofilms. Quorum quenching is one of the mechanisms to control the development of drug resistance in microbes. Endophyte bacteria are beneficial to plant growth as they support the immune system against the pathogen attack. The endophytic bacteria present in Pterocarpus santalinus were screened for the presence of N-acyl homoserine lactones (AHLs) degrading bacteria using biosensor strains and further confirmed by quantifying the violacein production. Cell-free lysate of endophytic bacteria, Bacillus firmus PT18 and Enterobacter asburiae PT39 exhibited potent AHL degrading ability by inhibiting about 80% violacein production in biosensor strain. Furthermore, when the cell-free lysate was applied to Pseudomonas aeruginosa PAO1 and PAO1-JP2 biofilm it resulted in significant (p<0.01) inhibition of biofilm formation. The biofilm inhibition was confirmed by visualization of biofilm slides under fluorescence microscopy, which showed decrease in total biomass formation in treated slides. Isolation and amplification of the gene (aiiA) indicated that the presence of AHL lactonase in cell-free lysate and sequence alignment indicated that AiiA contains a "HXHXDH" zinc-binding motif that is being conserved in several groups of metallohydrolases. Therefore, the study shows the potential of AHLs degradation by AHL lactonase present in cell-free lysate of isolated endophytic bacteria and inhibition of quorum sensing regulated biofilm formation in P. aeruginosa PAO1. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Toxicity of Pseudomonas fluorescens strain Pf-5 to Drosophila larvae is due to downstream gene targets of the GacA/GacS signal transduction system

    USDA-ARS?s Scientific Manuscript database

    Given the vast number of microorganisms in the environment, surprisingly, only a few are lethal or cause morbidity to host organisms. Pseudomonas spp are a diverse genus of Gram-negative bacteria commonly found in soil, water, or in association with plants and animals. Pseudomonas fluorescens has be...

  3. The Influence of Pseudomonas fluorescens on Corrosion Products of Archaeological Tin-Bronze Analogues

    NASA Astrophysics Data System (ADS)

    Ghiara, G.; Grande, C.; Ferrando, S.; Piccardo, P.

    2018-01-01

    In this study, tin-bronze analogues of archaeological objects were investigated in the presence of an aerobic Pseudomonas fluorescens strain in a solution, containing chlorides, sulfates, carbonates and nitrates according to a previous archaeological characterization. Classical fixation protocols were employed in order to verify the attachment capacity of such bacteria. In addition, classical metallurgical analytical techniques were used to detect the effect of bacteria on the formation of uncommon corrosion products in such an environment. Results indicate quite a good attachment capacity of the bacteria to the metallic surface and the formation of the uncommon corrosion products sulfates and sulfides is probably connected to the bacterial metabolism.

  4. Whole-Genome Sequence and Classification of 11 Endophytic Bacteria from Poison Ivy (Toxicodendron radicans).

    PubMed

    Tran, Phuong N; Tan, Nicholas E H; Lee, Yin Peng; Gan, Han Ming; Polter, Steven J; Dailey, Lucas K; Hudson, André O; Savka, Michael A

    2015-11-19

    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy. Copyright © 2015 Tran et al.

  5. Use of Tetra-ammonium Tetrakis(4-Sulphonato)Phenyl Porphyrin for Pseudomonas and Bacillus Cell Imaging

    PubMed Central

    Sujatha, V.; Sridhar, Bharat; Krishnamurthy, Srinath; Vinod Kumar, K. S.; Senthil Kumar, K.; Gautam, Pennathur

    2010-01-01

    The use of tetraammonium tetrakis(4-sulphonato)phenyl porphyrin (TPPS), a water-soluble anionic compound, as a stain to analyse bacterial cells using fluorescent microscopy was investigated. TPPS was effectively used to analyse two different bacteria: Pseudomonas aeruginosa and Bacillus cereus. The variation in brightness with varying concentrations of TPPS was studied. The patterns of variations for these bacteria were found to be the same, but with consistently higher brightness for Bacillus cereus. PMID:20811478

  6. Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by gacA.

    PubMed

    Shi, Xiang Yang; Dumenyo, C Korsi; Hernandez-Martinez, Rufina; Azad, Hamid; Cooksey, Donald A

    2009-04-01

    The xylem-limited, insect-transmitted bacterium Xylella fastidiosa causes Pierce's disease in grapes through cell aggregation and vascular clogging. GacA controls various physiological processes and pathogenicity factors in many gram-negative bacteria, including biofilm formation in Pseudomonas syringae pv. tomato DC3000. Cloned gacA of X. fastidiosa was found to restore the hypersensitive response and pathogenicity in gacA mutants of P. syringae pv. tomato DC3000 and Erwinia amylovora. A gacA mutant of X. fastidiosa (DAC1984) had significantly reduced abilities to adhere to a glass surface, form biofilm, and incite disease symptoms on grapevines, compared with the parent (A05). cDNA microarray analysis identified 7 genes that were positively regulated by GacA, including xadA and hsf, predicted to encode outer membrane adhesion proteins, and 20 negatively regulated genes, including gumC and an antibacterial polypeptide toxin gene, cvaC. These results suggest that GacA of X. fastidiosa regulates many factors, which contribute to attachment and biofilm formation, as well as some physiological processes that may enhance the adaptation and tolerance of X. fastidiosa to environmental stresses and the competition within the host xylem.

  7. Bacterial Tethering Analysis Reveals a “Run-Reverse-Turn” Mechanism for Pseudomonas Species Motility

    PubMed Central

    Qian, Chen; Wong, Chui Ching; Swarup, Sanjay

    2013-01-01

    We have developed a program that can accurately analyze the dynamic properties of tethered bacterial cells. The program works especially well with cells that tend to give rise to unstable rotations, such as polar-flagellated bacteria. The program has two novel components. The first dynamically adjusts the center of the cell's rotational trajectories. The second applies piecewise linear approximation to the accumulated rotation curve to reduce noise and separate the motion of bacteria into phases. Thus, it can separate counterclockwise (CCW) and clockwise (CW) rotations distinctly and measure rotational speed accurately. Using this program, we analyzed the properties of tethered Pseudomonas aeruginosa and Pseudomonas putida cells for the first time. We found that the Pseudomonas flagellar motor spends equal time in both CCW and CW phases and that it rotates with the same speed in both phases. In addition, we discovered that the cell body can remain stationary for short periods of time, leading to the existence of a third phase of the flagellar motor which we call “pause.” In addition, P. aeruginosa cells adopt longer run lengths, fewer pause frequencies, and shorter pause durations as part of their chemotactic response. We propose that one purpose of the pause phase is to allow the cells to turn at a large angle, where we show that pause durations in free-swimming cells positively correlate with turn angle sizes. Taken together, our results suggest a new “run-reverse-turn” paradigm for polar-flagellated Pseudomonas motility that is different from the “run-and-tumble” paradigm established for peritrichous Escherichia coli. PMID:23728820

  8. Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis.

    PubMed

    Nwokoro, Ogbonnaya; Dibua, Marie Esther Uju

    2014-03-01

    The aim of this investigation was to study whether certain bacteria could be used for cyanide degradation in soil. The bacteria Pseudomonas stutzeri and Bacillus subtilis were selected based on their good growth in a minimal medium containing 0.8 mg mL-1 potassium cyanide (KCN). In this study we tested their ability to reduce cyanide levels in a medium containing 1.5 mg mL-1 of KCN. Although both microorganisms reduced cyanide levels, Pseudomonas stutzeri was the more effective test organism. Later on, the selected cultures were grown, diluted and their various cell concentrations were used individually and in combination to test their ability of cyanide degradation in soil samples collected around a cassava processing mill. Bacillus subtilis caused degradation of soil cyanide from 0.218 mg g-1 soil immediately with an inoculum concentration of 0.1 (OD600nm) to 0.072 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) implying a 66.9 % reduction. Pseudomonas stutzeri cell concentration of 0.1 (OD600nm) decreased soil cyanide from 0.218 mg g-1 soil initially to 0.061 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) (72 % reduction). The mixed culture of the two bacteria produced the best degradation of soil cyanide from 0.218 mg g-1 soil sample with a combined inoculum concentration of 0.1 (OD600nm) initially to 0.025 mg g-1 soil with a combined inoculum concentration of 0.6 (OD600nm) after 10 days incubation resulting in an 88.5 % degradation of soil cyanide. The analysed bacteria displayed high cyanide degradation potential and may be useful for efficient decontamination of cyanide contaminated sites.

  9. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery.

    PubMed

    Zhao, Feng; Zhou, Ji-Dong; Ma, Fang; Shi, Rong-Jiu; Han, Si-Qin; Zhang, Jie; Zhang, Ying

    2016-05-01

    Sulfate-reducing bacteria (SRB) are widely existed in oil production system, and its H2S product inhibits rhamnolipid producing bacteria. In-situ production of rhamnolipid is promising for microbial enhanced oil recovery. Inhibition of SRB, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl were investigated. Strain Rhl can simultaneously remove S(2-) (>92%) and produce rhamnolipid (>136mg/l) under S(2-) stress below 33.3mg/l. Rhl reduced the SRB numbers from 10(9) to 10(5)cells/ml, and the production of H2S was delayed and decreased to below 2mg/l. Rhl also produced rhamnolipid and removed S(2-) under laboratory simulated oil reservoir conditions. High-throughput sequencing data demonstrated that addition of strain Rhl significantly changed the original microbial communities of oilfield production water and decreased the species and abundance of SRB. Bioaugmentation of strain Rhl in oilfield is promising for simultaneous control of SRB, removal of S(2-) and enhance oil recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Living on the edge: Emergence of spontaneous gac mutations in Pseudomonas protegens during swarming motility

    USDA-ARS?s Scientific Manuscript database

    Swarming motility is a flagella-driven multicellular behavior that allows bacteria to colonize new niches and escape competition. Here, we investigated the spatial distribution and evolution of ‘social cheaters’ in swarming colonies of Pseudomonas protegens Pf-5. Lipopeptide surfactants in the orfam...

  11. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China.

    PubMed

    Zhang, Zhennan; Yin, Naiyi; Cai, Xiaolin; Wang, Zhenzhou; Cui, Yanshan

    2016-09-01

    A mesophilic, Gram-negative, arsenite[As(III)]-oxidizing and arsenate[As(V)]-reducing bacterial strain, Pseudomonas sp. HN-2, was isolated from an As-contaminated soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Pseudomonas stutzeri. Under aerobic conditions, this strain oxidized 92.0% (61.4μmol/L) of arsenite to arsenate within 3hr of incubation. Reduction of As(V) to As(III) occurred in anoxic conditions. Pseudomonas sp. HN-2 is among the first soil bacteria shown to be capable of both aerobic As(III) oxidation and anoxic As(V) reduction. The strain, as an efficient As(III) oxidizer and As(V) reducer in Pseudomonas, has the potential to impact arsenic mobility in both anoxic and aerobic environments, and has potential application in As remediation processes. Copyright © 2016. Published by Elsevier B.V.

  12. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy

    PubMed Central

    Davis, Michael L.; Mounteer, Leslie C.; Stevens, Lindsey K.; Miller, Charles D.; Zhou, Anhong

    2011-01-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout exponential growth phase (~20.9 µm/sec), while maximum velocities peak early in exponential growth phase at a velocity of 51.2 µm/sec. Pseudomonas putida KT2440 also favor smaller turn angles indicating they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. PMID:21334971

  13. Molecular detection of six (endo-) symbiotic bacteria in Belgian mosquitoes: first step towards the selection of appropriate paratransgenesis candidates.

    PubMed

    Raharimalala, Fara Nantenaina; Boukraa, S; Bawin, T; Boyer, S; Francis, F

    2016-04-01

    Actually, the use of symbiotic bacteria is one of alternative solution to avoid vector resistance to pesticides. In Belgium, among 31 identified mosquito species, 10 were considered as potential vectors. Given to introduction risks of arbovirosis, the purpose of this study was to investigate the presence of symbiosis bacteria in potential mosquito vectors. Eleven species caught from 12 sites in Belgium were used: Culex pipiens s.l., Culex torrentium, Culex hortensis, Anopheles claviger, Anopheles maculipennis s.l., Anopheles plumbeus, Culiseta annulata, Ochlerotatus geniculatus, Ochlerotatus dorsalis, Aedes albopictus, and Coquillettidia richiardii. Six genera of symbiotic bacteria were screened: Wolbachia sp., Comamonas sp, Delftia sp., Pseudomonas sp., Acinetobacter sp., and Asaia sp. A total of 173 mosquito individuals (144 larvae and 29 adults) were used for the polymerase chain reaction screening. Wolbachia was not found in any Anopheles species nor Cx. torrentium. A total absence of Comamonas and Delftia was observed in all species. Acinetobacter, Pseudomonas, and Asaia were found in most of species with a high prevalence for Pseudomonas. These results were discussed to develop potential strategy and exploit the variable occurrence of symbiotic bacteria to focus on them to propose biological ways of mosquito control.

  14. Phaseolotoxin transport in Escherichia coli and Salmonella typhimurium via the oligopeptide permease.

    PubMed Central

    Staskawicz, B J; Panopoulos, N J

    1980-01-01

    Phaseolotoxin [(N delta-phosphosulfamyl)ornithylalanylhomoarginine], a phytotoxic tripeptide produced by Pseudomonas syringae pv. phaseolicola that inhibits ornithine carbamoyltransferase, is transported into Escherichia coli and Salmonella typhimurium via the oligopeptide transport system (Opp). Mutants defective in oligopeptide permease (Opp-) were resistant to phaseolotoxin. Spontaneous phaseolotoxin-resistant mutants (Toxr) lacked the Opp function as evidenced by their cross-resistance to triornithine and failure to utilize glycylhistidylglycine as a source of histidine. Growth inhibition by phaseolotoxin was prevented by peptides known to be transported via the Opp system and by treatment of the toxin with L-aminopeptidase. In both E. coli and S. typhimurium, Toxr mutations were cotransducible with trp, suggesting that the opp locus occupies similar positions in genetic maps of these bacteria. PMID:6991475

  15. RELATIONSHIP BETWEEN CELL SURFACE PROPERTIES AND TRANSPORT OF BACTERIA THROUGH SOIL

    EPA Science Inventory

    A study was conducted to relate the properties of Enterobacter, Pseudomonas, Bacillus, Achromobacter, Flavobacterium, and Arthrobacter strains to their transport with water moving through soil. the bacteria differed markedly in their extent of transport; their hydrophobicity, as...

  16. Screening for and isolation and identification of malathion-degrading bacteria: cloning and sequencing a gene that potentially encodes the malathion-degrading enzyme, carboxylestrase in soil bacteria.

    PubMed

    Goda, Sayed K; Elsayed, Iman E; Khodair, Taha A; El-Sayed, Walaa; Mohamed, Mervat E

    2010-11-01

    Five malathion-degrading bacterial strains were enriched and isolated from soil samples collected from different agricultural sites in Cairo, Egypt. Malathion was used as a sole source of carbon (50 mg/l) to enumerate malathion degraders, which were designated as IS1, IS2, IS3, IS4, and IS5. They were identified, based on their morphological and biochemical characteristics, as Pseudomonas sp., Pseudomonas putida, Micrococcus lylae, Pseudomonas aureofaciens, and Acetobacter liquefaciens, respectively. IS1 and IS2, which showed the highest degrading activity, were selected for further identification by partial sequence analysis of their 16S rRNA genes. The 16S rRNA gene of IS1 shared 99% similarity with that of Alphaprotoebacterium BAL284, while IS2 scored 100% similarity with that of Pseudomonas putida 32zhy. Malathion residues almost completely disappeared within 6 days of incubation in IS2 liquid cultures. LC/ESI-MS analysis confirmed the degradation of malathion to malathion monocarboxylic and dicarboxylic acids, which formed as a result of carboxylesterase activity. A carboxylesterase gene (CE) was amplified from the IS2 genome by using specifically designed PCR primers. The sequence analysis showed a significant similarity to a known CE gene in different Pseudomonas sp. We report here the isolation of a new malathion-degrading bacteria from soils in Egypt that may be very well adapted to the climatic and environmental conditions of the country. We also report the partial cloning of a new CE gene. Due to their high biodegradation activity, the bacteria isolated from this work merit further study as potential biological agents for the remediation of soil, water, or crops contaminated with the pesticide malathion.

  17. [Mutant prevention concentrations of antibacterial agents to ocular pathogenic bacteria].

    PubMed

    Liang, Qing-Feng; Wang, Zhi-Qun; Li, Ran; Luo, Shi-Yun; Deng, Shi-Jing; Sun, Xu-Guang

    2009-01-01

    To establish a method to measure mutant prevention concentration (MPC) in vitro, and to measure MPC of antibacterial agents for ocular bacteria caused keratitis. It was an experimental study. Forty strains of ocular bacteria were separated from cornea in Beijing Institute of Ophthalmology, which included 8 strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Pseudomonas aeruginosa and Klebsiella pneumoniae respectively. The minimal inhibitory concentration (MIC) of the levofloxacin (LVF), ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NFL), tobramycin (TOB) and chloromycetin (CHL) were determined by agar dilution method from National Committee of Clinical Laboratory Standard (NCCLS). The MPC were measured by accumulate-bacterial methods with bacterial population inoculated more than 1.2 x 10(10) colony forming units per milliliter with Mueller-Hinton broth and tryptic soy agar plate. With the software of SPSS 11.0, the datum such as the range of MIC, MPC, MIC90 and MPC90 were calculated, and the selection index (MPC90/ MI90) and mutant selection window (MSW) were obtained. The MI90 of LVF and TOB (4 mg/L) to Staphylococcus aureus strains were the lowest. CIP showed the lowest MIC90 (0.25 mg/L) to Pseudomonas aeruginosa among six kinds of antibacterial agents. The MIC90 of LVF to Staphylococcus epidermidis (256 mg/L), Streptococcus pneumoniae (1 mg/L) and Klebsiella pneumoniae (0.25 mg/L) were lower than other antibacterial agents. The MPC90, MSW and the MPC90/MIC90 of levofloxacin showed lower values compared with other antibacterial medicines. From all the datum, the MIC90 of CHL was the highest and the activity was the weakest. Although the activity of LVF was higher to every kind of bacteria, CIP had the highest activity antibacterial to Pseudomonas aeruginosa. The capacity of CHL and TOB was weaker than Quinolones for restricting resistant mutants on ocular bacteria. LVF had the strongest capacity for restricting resistant

  18. [Multiresistant Pseudomonas spp. in vitro susceptibility to a combination of two antibiotics].

    PubMed

    Pliego-Castañeda, Q F B Amanda; Yánez-Viguri, Jorge Antonio; López-Valle, Tiburcio

    2005-01-01

    In vitro antibiotic combination testing would guide therapy selection in patients severely affected by multi-drug resistant Pseudomonas. In vitro, a two-antibiotic combination susceptible against multi-drug resistant Pseudomonas isolated at the Laboratorio Clínico of the Hospital de Oncología, Centro Médico Nacional Siglo XXI in Mexico City were analyzed to determine which antibiotic combination showed the best bactericidal activity. During 10 months, 30 multi-drug resistant Pseudomonas strains were tested. An automated method was used, including a diluting solution with a well-known concentration of a second antibiotic. Quality controls recommended by the NCCLS were used. Pseudomonas aeruginosa ATCC 27853; Escherichia coli ATCC 25922; and Escherichia coli ATCC 35218. Combinations were betalactamics-aminoglycosides; carbapenemis-amikacin; fluoroquinolones-cefepime; and ciprofloxacin-ampicillin. Ampicillin-ciprofloxacin combination was bactericidal against 100% of the isolates. Cefazolin, cefixime and ticarcillin with amikacin: <50%; aztreonam, cefoxilin, cefuroxime, cefotaxime, ceftazidime and piperacillin with amikacin: 50-60%; cefepime with gentamicin: 76%; cefepime with amikacin: 86%; imipenem and meropenem with amikacin: 70% and 76%; cefepime with ciprofloxacin: 83%; cefepime with levofloxacin: 73%. In vitro antibiotic combination susceptibilities against multi-drug resistant bacteria would be the only way to guide clinicians to select the best therapy in severe infections. We found that the ampicillin-ciprofloxacin combination showed the best in vitro effect against multi-drug resistant Pseudomonas.

  19. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  20. Distribution and survival of Pseudomonas sp. on Italian ryegrass and Curly dock in Georgia

    USDA-ARS?s Scientific Manuscript database

    Yellow bud, caused by Pseudomonas sp. is an emerging bacterial disease of onion. Polymerase chain reaction (PCR) assay based on the coronafacate ligase (cfl) and HrpZ genes were used to detect initial suspected bacteria on weeds. Growth on an agar medium, ability to cause a hypersensitive response i...

  1. Mycoplasma and associated bacteria isolated from ovine pink-eye.

    PubMed

    Langford, E V

    1971-01-01

    A mycoplasma was recovered from the untreated conjunctival membranes of nine sheep affected by Pink-eye. It was neither isolated from the conjunctiva of treated animals which were affected nor from the conjunctiva of normal animals either in contact or not in contact with affected animals. Bacteria found on normal conjunctival membranes were Neisseria ovis, Escherichia coli, Staphylococcus epidermididis, Streptococcus and Bacillus spp. Bacteria found in clinical cases of Pink-eye were N. ovis, E. coli, a Streptococcus and Pseudomonas spp.

  2. Regulation of Pseudomonas aeruginosa chemotaxis by the nitrogen source.

    PubMed Central

    Craven, R; Montie, T C

    1985-01-01

    The regulation of amino acid chemotaxis by nitrogen was investigated in the gram-negative bacterium Pseudomonas aeruginosa. The quantitative capillary tube technique was used to measure chemotactic responses of bacteria to spatial gradients of amino acids and other attractants. Chemotaxis toward serine, arginine, and alpha-aminoisobutyrate was sharply dependent on the form in which nitrogen was presented to the bacteria. Bacteria grown on mineral salts-succinate with potassium nitrate gave responses to amino acids that were 2 to 3 times those of cells grown on ammonium sulfate and 10 to 20 times those of cells grown in mineral salts-succinate with Casamino Acids as the nitrogen source. A combination of ammonium sulfate and glutamate was as effective as Casamino Acids in depressing serine taxis. The threshold concentration for alpha-aminoisobutyrate taxis was consistently lower in nitrate-grown bacteria than in ammonia-grown bacteria. Responsiveness to sodium succinate, however, was not subject to regulation by nitrogen, and glucose chemotaxis was inhibited, rather than enhanced, in nitrate-grown bacteria. These results indicate that chemotaxis of P. aeruginosa toward amino acids is subject to regulation by nitrogen and that this regulation probably is expressed at the level of the chemoreceptors or transducers. PMID:3932326

  3. Bioremediation of coractive blue dye by using Pseudomonas spp. isolated from the textile dye wastewater

    NASA Astrophysics Data System (ADS)

    Sunar, N. M.; Mon, Z. K.; Rahim, N. A.; Leman, A. M.; Airish, N. A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Wastewater released from the textile industry contains variety substances, mainly dyes that contains a high concentration of color and organic. In this study the potential for bacterial decolorization of coractive blue dye was examined that isolated from textile wastewater. The optimum conditions were determined for pH, temperature and initial concentration of the dye. The bacteria isolated was Pseudomonas spp. The selected bacterium shows high decolorization in static condition at an optimum of pH 7.0. The Pseudomonas spp. could decolorize coractive blue dye by 70% within 24 h under static condition, with the optimum of pH 7.0. Decolorization was confirmed by using UV-VIS spectrophotometer. This present study suggests the potential of Pseudomonas spp. as an approach in sustainable bioremediation that provide an efficient method for decolorizing coractive blue dye.

  4. Adding Selectivity to Antimicrobial Peptides: Rational Design of a Multidomain Peptide against Pseudomonas spp.

    PubMed Central

    Eckert, Randal; Qi, Fengxia; Yarbrough, Daniel K.; He, Jian; Anderson, Maxwell H.; Shi, Wenyuan

    2006-01-01

    Currently available antimicrobials exhibit broad killing with regard to bacterial genera and species. Indiscriminate killing of microbes by these conventional antibiotics can disrupt the ecological balance of the indigenous microbial flora, often resulting in negative clinical consequences. Species-specific antimicrobials capable of precisely targeting pathogenic bacteria without damaging benign microorganisms provide a means of avoiding this problem. In this communication, we report the successful creation of the first synthetic, target-specific antimicrobial peptide, G10KHc, via addition of a rationally designed Pseudomonas-specific targeting moiety (KH) to a generally killing peptide (novispirin G10). The resulting chimeric peptide showed enhanced bactericidal activity and faster killing kinetics against Pseudomonas spp. than G10 alone. The enhanced killing activities are due to increased binding and penetration of the outer membrane of Pseudomonas sp. cells. These properties were not observed in tests of untargeted bacterial species, and this specificity allowed G10KHc to selectively eliminate Pseudomonas spp. from mixed cultures. This work lays a foundation for generating target-specific “smart” antimicrobials to complement currently available conventional antibiotics. PMID:16569868

  5. Gene expression analysis of six GC-rich Gram-negative phytopathogens.

    PubMed

    Fu, Qing-Shan; Li, Feng; Chen, Ling-Ling

    2005-07-01

    Predicted highly expressed (PHX) genes are comparatively analyzed for six GC-rich Gram-negative phytopathogens, i.e., Ralstonia solanacearum, Agrobacterium tumefaciens, Xanthomonas campestris pv. campestris (Xcc), Xanthomonas axonopodis pv. citri (Xac), Pseudomonas syringae pv. tomato, and Xylella fastidiosa. Enzymes involved in energy metabolism, such as ATP synthase, and genes involved in TCA cycle, are PHX in most bacteria except X. fastidiosa, which prefers an anaerobic environment. Most pathogenicity-related factors, including flagellar proteins and some outer membrane proteins, are PHX, except that flagellar proteins are missing in X. fastidiosa which is spread by insects and does not need to move during invasion. Although type III secretion system apparatus are homologous to flagellar proteins, none of them is PHX, which support the viewpoint that the two types of genes have evolved independently. Furthermore, it is revealed that some biosynthesis-related enzymes are highly expressed in certain bacteria. The PHX genes may provide potential drug targets for the design of new bactericide.

  6. Adhesion of Pseudomonas aeruginosa to orthokeratology and alignment lenses.

    PubMed

    Choo, Jennifer D; Holden, Brien A; Papas, Eric B; Willcox, Mark D P

    2009-02-01

    To determine whether contact lenses designed for orthokeratology (OK) are colonized by greater numbers of bacteria compared with standard (alignment fitted) design rigid gas permeable lenses before and after lens wear. Eighteen 1-year-old cats were randomly fitted with an OK lens in one eye and an alignment fitted (AF) lens in the other eye. Both lenses were made in the same diameter and central thickness and of the same material. Two separate wearing periods of 2 weeks and 6 weeks were used. After each wearing period, lenses were soaked in Pseudomonas aeruginosa (6294 or 6206) for 10 min. The lenses were then reinserted onto their respective corneas for a wearing period of 16 hours after which lenses were collected and remaining adhered bacteria quantified. Unworn control lenses were also soaked and bacteria enumerated for comparison. There were no significant differences in the number of bacteria adherent to unworn AF and OK lenses. Analysis of lenses after wear showed OK lenses retained significantly higher numbers of viable bacteria than AF lenses in all studies. OK lenses retain more bacteria than AF rigid gas permeable lenses after bacteria-loaded overnight lens wear. This may increase the risk for an infection in OK patients should suitable conditions be present. Specific education on the cleaning of OK lenses is essential.

  7. Contamination of salmon fillets and processing plants with spoilage bacteria.

    PubMed

    Møretrø, Trond; Moen, Birgitte; Heir, Even; Hansen, Anlaug Å; Langsrud, Solveig

    2016-11-21

    The processing environment of salmon processing plants represents a potential major source of bacteria causing spoilage of fresh salmon. In this study, we have identified major contamination routes of important spoilage associated species within the genera Pseudomonas, Shewanella and Photobacterium in pre-rigor processing of salmon. Bacterial counts and culture-independent 16S rRNA gene analysis on salmon fillet from seven processing plants showed higher levels of Pseudomonas spp. and Shewanella spp. in industrially processed fillets compared to salmon processed under strict hygienic conditions. Higher levels of Pseudomonas spp. and Shewanella spp. were found on fillets produced early on the production day compared to later processed fillets. The levels of Photobacterium spp. were not dependent on the processing method or time of processing. In follow-up studies of two plants, bacterial isolates (n=2101) from the in-plant processing environments (sanitized equipment/machines and seawater) and from salmon collected at different sites in the production were identified by partial 16S rRNA gene sequencing. Pseudomonas spp. dominated in equipment/machines after sanitation with 72 and 91% of samples from the two plants being Pseudomonas-positive. The phylogenetic analyses, based on partial 16S rRNA gene sequencing, showed 48 unique sequence profiles of Pseudomonas of which two were dominant. Only six profiles were found on both machines and in fillets in both plants. Shewanella spp. were found on machines after sanitation in the slaughter department while Photobacterium spp. were not detected after sanitation in any parts of the plants. Shewanella spp. and Photobacterium spp. were found on salmon in the slaughter departments. Shewanella was frequently present in seawater tanks used for bleeding/short term storage. In conclusion, this study provides new knowledge on the processing environment as a source of contamination of salmon fillets with Pseudomonas spp. and

  8. Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens

    USDA-ARS?s Scientific Manuscript database

    Bacteria can be both highly communicative and highly competitive in natural habitats and antibiotics are thought to play a role in both of these processes. The soil bacterium Pseudomonas protegens Pf-5 produces a spectrum of antibiotics, two of which, pyoluteorin and 2,4-diacetylphloroglucinol (DAP...

  9. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1.

    PubMed

    Garbeva, Paolina; Tyc, Olaf; Remus-Emsermann, Mitja N P; van der Wal, Annemieke; Vos, Michiel; Silby, Mark; de Boer, Wietse

    2011-01-01

    Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures. We measured the possible cost of antibiotic production for Pseudomonas fluorescens Pf0-1 by monitoring changes in growth rate with and without induction of antibiotic production by supernatant of a bacterial competitor, namely Pedobacter sp.. Experiments were performed in liquid as well as on semi-solid media under nutrient-limited conditions that are expected to most clearly reveal fitness costs. Our results did not reveal any significant costs for production of antibiotics by Pseudomonas fluorescens Pf0-1. Comparison of growth rates of the antibiotic-producing wild-type cells with those of non-antibiotic producing mutants did not reveal costs of antibiotic production either. Based on our findings we propose that the facultative production of antibiotics might not be selected to mitigate metabolic costs, but instead might be advantageous because it limits the risk of competitors evolving resistance, or even the risk of competitors feeding on the compounds produced.

  10. Pseudomonas blight caused by Pseudomonas syringae on raspberry in California

    USDA-ARS?s Scientific Manuscript database

    Plantings of red raspberry (Rubus idaeus var. strigosus) exhibited symptoms of a previously undocumented disease. Lesions were observable from both adaxial and abaxial leaf surfaces. As disease progressed, lesions enlarged and coalesced, resulting in significant dark brown to black blighting of the ...

  11. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.

    PubMed

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.

  12. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    PubMed Central

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  13. Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast.

    PubMed

    Santos, O C S; Soares, A R; Machado, F L S; Romanos, M T V; Muricy, G; Giambiagi-deMarval, M; Laport, M S

    2015-02-01

    Marine bacteria are a rich source of structurally unique natural compounds, several of which have shown a wide variety of biological activities. In this study, the metabolites present in the culture supernatants of the eight sponge-associated bacteria were extracted using ethyl acetate, and all extracts showed activity against Staphylococcus aureus. Subsequently, the extracts of the Pseudomonas fluorescens H40 and H41, and Pseudomonas aeruginosa H51 were subjected to solvent partitioning, and the active fractions were submitted to chromatographic separation. Three different active fractions were obtained, one of which was identified as diketopiperazine cyclo-(L-Leu-L-Pro). This substance was bactericidal for Staph. aureus and Ps. aeruginosa and showed cytotoxic activity against HEp-2 tumour cells. Putative gene fragments coding for the type I polyketide synthase (PKS-I) and nonribosomal peptide synthetase (NRPS) domains were PCR-amplified from five and three strains, respectively. The results suggest that sponge-associated bacteria analysed in this study may represent a potential source for production of antimicrobial substances against bacterial pathogens of medical importance. © 2014 The Society for Applied Microbiology.

  14. Peritoneal dialysis-related peritonitis caused by Pseudomonas species: Insight from a post-millennial case series.

    PubMed

    Lu, Wanhong; Kwan, Bonnie Ching-Ha; Chow, Kai Ming; Pang, Wing-Fai; Leung, Chi Bon; Li, Philip Kam-To; Szeto, Cheuk Chun

    2018-01-01

    Pseudomonas peritonitis is a serious complication of peritoneal dialysis (PD). However, the clinical course of Pseudomonas peritonitis following the adoption of international guidelines remains unclear. We reviewed the clinical course and treatment response of 153 consecutive episodes of PD peritonitis caused by Pseudomonas species from 2001 to 2015. Pseudomonas peritonitis accounted for 8.3% of all peritonitis episodes. The bacteria isolated were resistant to ceftazidime in 32 cases (20.9%), and to gentamycin in 18 cases (11.8%). In 20 episodes (13.1%), there was a concomitant exit site infection (ESI); in another 24 episodes (15.7%), there was a history of Pseudomonas ESI in the past. The overall primary response rate was 53.6%, and complete cure rate 42.4%. There was no significant difference in the complete cure rate between patients who treated with regimens of 3 and 2 antibiotics. Amongst 76 episodes (46.4%) that failed to respond to antibiotics by day 4, 37 had immediate catheter removal; the other 24 received salvage antibiotics, but only 6 achieved complete cure. Antibiotic resistance is common amongst Pseudomonas species causing peritonitis. Adoption of the treatment guideline leads to a reasonable complete cure rate of Pseudomonas peritonitis. Treatment with three antibiotics is not superior than the conventional two antibiotics regimen. When there is no clinical response after 4 days of antibiotic treatment, early catheter removal should be preferred over an attempt of salvage antibiotic therapy.

  15. Isolation and identification of local bacteria endophyte and screening of its antimicrobial property against pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Fikri, Ahmad Syairazie Ibrahim; Rahman, Irman Abdul; Nor, Norefrina Shafinaz Md; Hamzah, Ainon

    2018-04-01

    Endophytes are organisms, often fungi and bacteria that live in living plant cells. These organisms reside in the living tissues of the host plant in a variety of relationships, ranging from symbiotic to slightly pathogenic. The endophytes may produce a plethora of substances that have potential to be used in modern medicine, agriculture and industry. The aims of this study are to isolate, identify and screening antimicrobial activity of bacterial endophytes. The endophytes were isolated using nutrient agar, incubated at 37°C for 48 hours. Identification of the isolates were done based on morphological characteristics, biochemical tests and 16S rDNA molecular analysis. Disk diffusion method was used to screen for antimicrobial activity of metabolites from endophytes against pathogenic bacteria. Screening for antifungal activity of selected endophytes was done using dual culture method againts pathogenic fungi followed by Kirby-Bauer method. Results showed endophytes designated as B2c and B7b have positive antimicrobial activity. The metabolites from isolate B2c showed antimicrobial activity against pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and Staphylococcus epidermis, while isolate B7b have positive activities againts MRSA, S. aureus and Pseudomonas aeruginosa. Isolates B2c displayed antifungal activity against Fusarium oxysporum, Fusarium solani, Phytophthora palmivora and Colletotrichum gloeosporioides. Identification using biochemical tests and 16S rDNA sequences identified isolate B2c as Pseudomonas resinovorans with 97% homology and isolate B7b as Bacillus subtilis with 98% homology.

  16. Biodegradation of 2,4'-dichlorobiphenyl, a congener of polychlorinated biphenyl, by Pseudomonas isolates GSa and GSb.

    PubMed

    Gayathri, D; Shobha, K J

    2015-08-01

    Bioegradation of 2,4'-dichlorobiphenyl (2,4 CB), by two isolates of Pseudomonas (GSa and GSb) was compared using GC-MS. Transformer oil polluted soil was used for the isolation of 2,4 CB degrading bacteria. GC-MS analysis of the solvent extracts obtained from Pseudomonas sp. GSa spent culture indicated the presence of Phenol 2,6-bis (1,1-dimethyl)-4-methyl (C15H24O). Further, the enzyme analysis of the cell free extracts showed the presence of 2,4'-dichlorobiphenyl dehalogenase (CBD), 2,4'-dichlorobiphenyl-NADPH-oxido-reductase (2,4 CBOR) and 2,3-dihydroxybiphenyl-NADPH-oxido-reductase (2,3 DHOR) with specific activity of 6.00, 0.4 and 0.22 pmol/min/mg of protein, suggesting that dechlorination as an important step during 2,4 CB catabolism. Further, the cell free extract of GSb showed only 2,4'-dichlorobiphenyl-NADPH-oxido-reductase (2,4 CBOR) and 2,3-dihydroxybiphenyl-NADPH-oxido-reductase (2,3 DHOR), with specific activity of 0.3 and 0.213 μmol/min/mg of protein, suggesting attack on non-chlorinated aromatic ring of 2,4 CB, releasing chlorinated intermediates which are toxic to the environment. Although, both the isolated bacteria (GSa and GSb) belong to Pseudomonas spp., they exhibited different metabolic potential.

  17. Phloroglucinol functions as an intercellular chemical messenger with broad transcriptional effects in Pseudomonas protegens Pf-5

    USDA-ARS?s Scientific Manuscript database

    Bacteria can be both highly communicative and highly competitive in the rhizosphere and antibiotics play a role in both of these processes. Among the large spectrum of antibiotics produced by the rhizosphere bacterium Pseudomonas protegens Pf-5, two—pyoluteorin and 2,4-diacetylphloroglucinol (DAPG)...

  18. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.

    PubMed

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina

    2014-12-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Ice nucleation rates of single protein complexes and single macromolecules

    NASA Astrophysics Data System (ADS)

    Stratmann, F.; Wex, H.; Niedermeier, D.; Hartmann, S.; Augustin, S.; Clauss, T.; Voigtlaender, J.; Pummer, B.; Grothe, H.

    2012-12-01

    With our flow-tube LACIS (Leipzig Aerosol cloud Interaction Simulator), we measured immersion freezing of droplets containing biological ice nucleating (IN) agents. From our measurements, we were able to deduce ice nucleation rates for single IN protein complexes (for Snomax) and for IN macromolecules (in the case of Birch pollen). For the measurements, aerosol particles were produced from solutions/suspensions of either Snomax (deadened and partly fractionalized pseudomonas syringae bacteria) or of Birch pollen washing water (BW in the following). All particles were dried and size selected before entering LACIS. In LACIS, particles were activated to droplets, and we measured the fraction of all droplets that froze (F(ice)) as function of temperature. For Snomax, a strong increase in F(ice) was observed around -7 to -10°C, for BW around -19 to -25°C, respectively. After this initial steep increase, F(ice) stayed constant for both examined substances down to -35°C. We found that the values of F(ice) in the plateau region depended on the dry particle size. The initial solution used to generate the particles contained parts of bacteria with ice active protein complexes on them in the case of Snomax, or IN macromolecules in the case of BW (Pummer et al., 2011). We show that the distribution of the IN proteins or IN molecules in the aerosol particles follows the Poisson distribution. With this knowledge, derivation of the ice nucleation rates for single IN protein complexes or for single IN macromolecules is possible. Combining the Poisson distribution with a stochastic model and using the derived nucleation rates, we can reproduce not only our measurements for both examined substances, but also past measurements done for Snomax and even pseudomonas syringae bacteria. As an additional peculiarity, we seem to observe two different macromolecules being ice active for Birch trees growing in Central Europe or Northern Europe, with the latter initiating freezing at

  20. Ecology and Biogenesis of Functional Amyloids in Pseudomonas.

    PubMed

    Rouse, Sarah L; Matthews, Stephen J; Dueholm, Morten S

    2018-05-16

    Functional amyloids can be found in the extracellular matrix produced by many bacteria during biofilm growth. They mediate the initial attachment of bacteria to surfaces and provide stability and functionality to mature biofilms. Efficient amyloid biogenesis requires a highly coordinated system of amyloid subunits, molecular chaperones and transport systems. The functional amyloid of Pseudomonas (Fap) represents such a system. Here, we review the phylogenetic diversification of the Fap system, its potential ecological role and the dedicated machinery required for Fap biogenesis, with a particular focus on the amyloid exporter FapF, the structure of which has been recently resolved. We also present a sequence covariance-based in silico model of the FapC fiber-forming subunit. Finally, we highlight key questions that remain unanswered and we believe deserve further attention by the scientific community. Copyright © 2018. Published by Elsevier Ltd.

  1. Computer-aided discovery in antimicrobial research: In silico model for virtual screening of potent and safe anti-pseudomonas agents.

    PubMed

    Speck-Planche, Alejandro; Cordeiro, Maria N D S

    2015-01-01

    Resistance of bacteria to current antibiotics is an alarming health problem. In this sense, Pseudomonas represents a genus of Gram-negative pathogens, which has emerged as one of the most dangerous species causing nosocomial infections. Despite the effort of the scientific community, drug resistant strains of bacteria belonging to Pseudomonas spp. prevail. The high costs associated to drug discovery and the urgent need for more efficient antimicrobial chemotherapies envisage the fact that computeraided methods can rationalize several stages involved in the development of a new drug. In this work, we introduce a chemoinformatic methodology devoted to the construction of a multitasking model for quantitative-structure biological effect relationships (mtk-QSBER). The purpose of this model was to perform simultaneous predictions of anti-Pseudomonas activities and ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties of organic compounds. The mtk-QSBER model was created from a large and heterogeneous dataset (more than 54000 cases) and displayed accuracies higher than 90% in both training and prediction sets. In order to demonstrate the applicability of our mtk-QSBER model, we used the investigational antibacterial drug delafloxacin as a case of study, for which experimental results were recently reported. The predictions performed for many biological effects of this drug exhibited a remarkable convergence with the experimental assays, confirming that our model can serve as useful tool for virtual screening of potent and safer anti-Pseudomonas agents.

  2. Synergy and Order Effects of Antibiotics and Phages in Killing Pseudomonas aeruginosa Biofilms

    PubMed Central

    Chaudhry, Waqas Nasir; Concepción-Acevedo, Jeniffer; Park, Taehyun; Andleeb, Saadia; Bull, James J.

    2017-01-01

    In contrast to planktonic cells, bacteria imbedded biofilms are notoriously refractory to treatment by antibiotics or bacteriophage (phage) used alone. Given that the mechanisms of killing differ profoundly between drugs and phages, an obvious question is whether killing is improved by combining antibiotic and phage therapy. However, this question has only recently begun to be explored. Here, in vitro biofilm populations of Pseudomonas aeruginosa PA14 were treated singly and with combinations of two phages and bactericidal antibiotics of five classes. By themselves, phages and drugs commonly had only modest effects in killing the bacteria. However some phage-drug combinations reduced bacterial densities to well below that of the best single treatment; in some cases, bacterial densities were reduced even below the level expected if both agents killed independently of each other (synergy). Furthermore, there was a profound order effect in some cases: treatment with phages before drugs achieved maximum killing. Combined treatment was particularly effective in killing in Pseudomonas biofilms grown on layers of cultured epithelial cells. Phages were also capable of limiting the extent to which minority populations of bacteria resistant to the treating antibiotic ascend. The potential of combined antibiotic and phage treatment of biofilm infections is discussed as a realistic way to evaluate and establish the use of bacteriophage for the treatment of humans. PMID:28076361

  3. Toxicity assessment of SiC nanofibers and nanorods against bacteria.

    PubMed

    Szala, Mateusz; Borkowski, Andrzej

    2014-02-01

    In the present study, evidence of the antibacterial effects of silicon carbide (SiC) nanofibers (NFSiC) and nanorods (NRSiC) obtained by combustion synthesis has been presented. It has been shown that the examined bacteria, Pseudomonas putida, could bind to the surface of the investigated SiC nanostructures. The results of respiration measurements, dehydrogenase activity measurements, and evaluation of viable bacteria after incubation with NFSiC and NRSiC demonstrated that the nanostructures of SiC affect the growth and activity of the bacteria examined. The direct count of bacteria stained with propidium iodide after incubation with SiC nanostructures revealed that the loss of cell membrane integrity could be one of the main effects leading to the death of the bacteria. © 2013 Published by Elsevier Inc.

  4. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization.

    PubMed

    Udikovic-Kolic, Nikolina; Wichmann, Fabienne; Broderick, Nichole A; Handelsman, Jo

    2014-10-21

    The increasing prevalence of antibiotic-resistant bacteria is a global threat to public health. Agricultural use of antibiotics is believed to contribute to the spread of antibiotic resistance, but the mechanisms by which many agricultural practices influence resistance remain obscure. Although manure from dairy farms is a common soil amendment in crop production, its impact on the soil microbiome and resistome is not known. To gain insight into this impact, we cultured bacteria from soil before and at 10 time points after application of manure from cows that had not received antibiotic treatment. Soil treated with manure contained a higher abundance of β-lactam-resistant bacteria than soil treated with inorganic fertilizer. Functional metagenomics identified β-lactam-resistance genes in treated and untreated soil, and indicated that the higher frequency of resistant bacteria in manure-amended soil was attributable to enrichment of resident soil bacteria that harbor β-lactamases. Quantitative PCR indicated that manure treatment enriched the blaCEP-04 gene, which is highly similar (96%) to a gene found previously in a Pseudomonas sp. Analysis of 16S rRNA genes indicated that the abundance of Pseudomonas spp. increased in manure-amended soil. Populations of other soil bacteria that commonly harbor β-lactamases, including Janthinobacterium sp. and Psychrobacter pulmonis, also increased in response to manure treatment. These results indicate that manure amendment induced a bloom of certain antibiotic-resistant bacteria in soil that was independent of antibiotic exposure of the cows from which the manure was derived. Our data illustrate the unintended consequences that can result from agricultural practices, and demonstrate the need for empirical analysis of the agroecosystem.

  5. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization

    PubMed Central

    Udikovic-Kolic, Nikolina; Wichmann, Fabienne; Broderick, Nichole A.; Handelsman, Jo

    2014-01-01

    The increasing prevalence of antibiotic-resistant bacteria is a global threat to public health. Agricultural use of antibiotics is believed to contribute to the spread of antibiotic resistance, but the mechanisms by which many agricultural practices influence resistance remain obscure. Although manure from dairy farms is a common soil amendment in crop production, its impact on the soil microbiome and resistome is not known. To gain insight into this impact, we cultured bacteria from soil before and at 10 time points after application of manure from cows that had not received antibiotic treatment. Soil treated with manure contained a higher abundance of β-lactam–resistant bacteria than soil treated with inorganic fertilizer. Functional metagenomics identified β-lactam–resistance genes in treated and untreated soil, and indicated that the higher frequency of resistant bacteria in manure-amended soil was attributable to enrichment of resident soil bacteria that harbor β-lactamases. Quantitative PCR indicated that manure treatment enriched the blaCEP-04 gene, which is highly similar (96%) to a gene found previously in a Pseudomonas sp. Analysis of 16S rRNA genes indicated that the abundance of Pseudomonas spp. increased in manure-amended soil. Populations of other soil bacteria that commonly harbor β-lactamases, including Janthinobacterium sp. and Psychrobacter pulmonis, also increased in response to manure treatment. These results indicate that manure amendment induced a bloom of certain antibiotic-resistant bacteria in soil that was independent of antibiotic exposure of the cows from which the manure was derived. Our data illustrate the unintended consequences that can result from agricultural practices, and demonstrate the need for empirical analysis of the agroecosystem. PMID:25288759

  6. Dissecting the regulon of the two-component system CvsSR: Identifying new virulence genes in Pseudomonas syringae pv. tomato DC3000

    USDA-ARS?s Scientific Manuscript database

    Recognition of environmental changes and regulation of genes that allow for adaption to those changes is essential for survival of bacteria. Two-component systems (TCSs) allow bacteria to sense and adapt to their environment. We previously identified the TCS CvsSR in the bacterial plant pathogen Pse...

  7. An In Vitro Attempt for Controlling Severe Phytopathogens and Human Pathogens Using Essential Oils from Mediterranean Plants of Genus Schinus.

    PubMed

    Elshafie, Hazem Salaheldin; Ghanney, Nadia; Mang, Stefania Mirela; Ferchichi, Ali; Camele, Ippolito

    2016-03-01

    Growing concerns about food safety and environmental protection enhanced the need for new and safe plant disease control strategies. The chemical composition of the three essential oils (EOs) extracted from leaves and fruits of Schinus terebinthifolius and leaves of Schinus molle, growing in Tunisia, was studied by GC and GC-MS. In all, 12 compounds were identified. The oils were mainly composed of terpene compounds. α-Pinene, α-phellandrene, and D-limonene were the major constituents. The aim of the current study was to evaluate the in vitro antimicrobial effectiveness of three EOs derived from plants of genus Schinus and extracted from leaves and fruits of S. terebinthifolius and leaves of S. molle. Both antifungal and antibacterial activities of the EOs were examined. The antifungal activity of the studied EOs was investigated against Colletotrichum acutatum and Botrytis cinerea in comparison with the systemic fungicide azoxystrobin used at 0.8 μL mL(-1). The antibacterial activity was evaluated against three strains of Gram-positive (G+ve) bacteria (Bacillus megaterium, Bacillus mojavensis and Clavibacter michiganensis) and four strains of Gram-negative (G-ve) bacteria (Escherichia coli, Xanthomonas campestris, Pseudomonas savastanoi, and Pseudomonas syringae pv. phaseolicola) compared with the synthetic antibiotic tetracycline at a concentration of 1600 μg mL(-1). The minimum inhibitory concentration of the studied EOs has been evaluated against the above microorganisms using the 96-well microplate method. Tested microorganisms exhibited different levels of sensitivity to each tested EO. All investigated EOs reduced the fungal mycelial growth when used at low concentrations from 250 to 1000 ppm and from 2000 to 8000 ppm against C. acutatum and B. cinerea, respectively. Higher concentrations of the same EOs exhibited a fungicidal effect against both mitosporic fungi. The EO extracted from leaves of S. terebinthifolius significantly inhibited the growth

  8. Pseudomonas aestusnigri sp. nov., isolated from crude oil-contaminated intertidal sand samples after the Prestige oil spill.

    PubMed

    Sánchez, David; Mulet, Magdalena; Rodríguez, Ana C; David, Zoyla; Lalucat, Jorge; García-Valdés, Elena

    2014-03-01

    Strains VGXO14(T) and Vi1 were isolated from the Atlantic intertidal shore from Galicia, Spain, after the Prestige oil spill. Both strains were Gram-negative rod-shaped bacteria with one polar inserted flagellum, strictly aerobic, and able to grow at 18-37°C, pH 6-10 and 2-10% NaCl. A preliminary analysis of the 16S rRNA and the partial rpoD gene sequences indicated that these strains belonged to the Pseudomonas genus but were distinct from any known Pseudomonas species. A polyphasic taxonomic approach including phylogenetic, chemotaxonomic, phenotypic and genotypic data confirmed that the strains belonged to the Pseudomonas pertucinogena group. In a multilocus sequence analysis, the similarity of VGXO14(T) and Vi1 to the closest type strain of the group, Pseudomonas pachastrellae, was 90.4%, which was lower than the threshold of 97% established to discriminate species in the Pseudomonas genus. The DNA-DNA hybridisation similarity between strains VGXO14(T) and Vi1 was 79.6%, but below 70% with the type strains in the P. pertucinogena group. Therefore, the strains should be classified within the genus Pseudomonas as a novel species, for which the name Pseudomonas aestusnigri is proposed. The type strain is VGXO14(T) (=CCUG 64165(T)=CECT 8317(T)). Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Mn-oxidizing Bacteria in Oak Ridge, TN and the Potential for Mercury Remediation

    NASA Astrophysics Data System (ADS)

    Wright, K. L.; McNeal, K. S.; Han, F. X.

    2012-12-01

    East Fork Poplar Creek (EFPC) in Oak Ridge, TN was highly contaminated with elemental mercury in the 1950 and 1960. The area is still experiencing the effects of mercury contamination, and researchers are searching for ways to remediate the EFPC. One possible mechanism for bioremediation is the use of biogenic Mn oxides to remove heavy metals from water systems. Six native Pseudomonas bacteria species were isolated from the EFPC in order to examine biogenic Mn oxides production and bioremediation of Oak Ridge slurries. To investigate the biochemical interactions of Pseudomonas and the native microbial communities with Hg, Mn, Fe, S, six different slurry treatment groups were compared using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and cold vapor atomic absorption spectrometry (CVAAS). Oak Ridge slurries were autoclaved to inhibit microbial growth (group 1), autoclaved and amended with HgS (group 2), autoclaved and amended with Pseudomonas isolates and additional HgS (group 3), untreated slurry (group 4), normal slurry amended with HgS (group 5), and normal slurry amended with Pseudomonas isolates and additional HgS (group 6). The comparison of the autoclaved groups with the counterpart untreated and normal Oak Ridge slurries highlighted important microbial interactions. Also, the Pseudomonas isolates were grown separately in a MnSO4 media, and the individual bacteria were monitored for Mn-oxidization using ICP-AES and transmission electron microscopy (TEM). In the slurry sediments, the Pseudomonas isolates did produce Mn oxides which bound to mercury, and mercury bound to organic matter significantly decreased. However, after a significant decrease of dissolved mercury in the water, dissolved mercury was cycled back into the water system on day 10 of the study. Additionally, two individual native Oak Ridge Pseudomonas isolates demonstrated Mn-oxidization. Biogenic Mn oxides have the potential to decrease mercury cycling, however there is

  10. Draft genome sequences of bacteria isolated from the Deschampsia antarctica phyllosphere.

    PubMed

    Cid, Fernanda P; Maruyama, Fumito; Murase, Kazunori; Graether, Steffen P; Larama, Giovanni; Bravo, Leon A; Jorquera, Milko A

    2018-05-01

    Genome analyses are being used to characterize plant growth-promoting (PGP) bacteria living in different plant compartiments. In this context, we have recently isolated bacteria from the phyllosphere of an Antarctic plant (Deschampsia antarctica) showing ice recrystallization inhibition (IRI), an activity related to the presence of antifreeze proteins (AFPs). In this study, the draft genomes of six phyllospheric bacteria showing IRI activity were sequenced and annotated according to their functional gene categories. Genome sizes ranged from 5.6 to 6.3 Mbp, and based on sequence analysis of the 16S rRNA genes, five strains were identified as Pseudomonas and one as Janthinobacterium. Interestingly, most strains showed genes associated with PGP traits, such as nutrient uptake (ammonia assimilation, nitrogen fixing, phosphatases, and organic acid production), bioactive metabolites (indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase), and antimicrobial compounds (hydrogen cyanide and pyoverdine). In relation with IRI activity, a search of putative AFPs using current bioinformatic tools was also carried out. Despite that genes associated with reported AFPs were not found in these genomes, genes connected to ice-nucleation proteins (InaA) were found in all Pseudomonas strains, but not in the Janthinobacterium strain.

  11. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  12. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2012-10-01

    In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the

  13. The study of formulated Zoush ointment against wound infection and gene expression of virulence factors Pseudomonas aeruginosa.

    PubMed

    Meskini, Maryam; Esmaeili, Davoud

    2018-06-15

    The outbreak of MDR and XDR strains of Pseudomonas aeruginosa and increased resistance to infection in burn patients recommend the issue of infection control. In this research, we study ZOUSH herbal ointment for gene silencing of Pseudomonas aeruginosa. The herbal ZOUSH ointment was formulated by alcoholic extracts of plants Satureja khuzestaniea, Zataria multiflora, Mentha Mozaffariani Jamzad, honey, and polyurethane. The MIC and disk diffusion tests were examined by single, binary, tertiary and five compounds. Three-week-old mice were considered to be second-degree infections by Pseudomonas aeruginosa. During the interval of 5 days, cultures were done from the liver, blood, and wound by four consecutive quarters and counting of Pseudomonas aeruginosa was reported in the liver. In this study, silver sulfadiazine ointments and Akbar were used as a positive control. The gene gyrA reference was used as the control. Real-time RT-PCR results were evaluated based on Livak as the comparative Ct method. The In vitro results indicated that wound infection was improved by healing wound size in the treatment groups compared to control treatment group. In this research, the changes in gene expression were evaluated by molecular technique Real-time RT-PCR. The results showed downregulation exoS, lasA, and lasB after treatment with ZOUSH ointment. SPSS Analyses showed that reduction of expressions in genes exoS, lasA and lasB after treatment with ZOUSH ointment were significantly meaningful (p < 0.05). Our study showed that ZOUSH ointment has the positive effect for gene silencing Pseudomonas aeruginosa in the mouse model with the second-degree burn. The positive effects decreased in the number of bacteria by reducing the expression of virulence bacteria genes as exoS, lasA and lasB and improvement of wound healing.

  14. Vaccines for Pseudomonas aeruginosa: a long and winding road.

    PubMed

    Priebe, Gregory P; Goldberg, Joanna B

    2014-04-01

    Despite the recognition of Pseudomonas aeruginosa as an opportunistic pathogen, no vaccine against this bacteria has come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed.

  15. A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion

    USDA-ARS?s Scientific Manuscript database

    The eukaryotic cytoskeleton is essential for structural support and intracellular transport, and is therefore a common target of animal pathogens. However, no phytopathogenic effector has yet been demonstrated to specifically target the plant cytoskeleton. Here we show that the Pseudomonas syringae...

  16. THE EFFECT OF AEROSOLIZATION ON SUBSEQUENT BACTERIAL SURVIVAL

    EPA Science Inventory

    To determine whether aerosolization could impair baterial survival, Pseudomonas syringae and Erwinia herbicola were aerosolized in a greenhouse, the aerosol was sampled at various distances from the site of release by using all-glass impingers, and bacterial survival was followed...

  17. Getting to PTI of bacterial RNAs: Triggering plant innate immunity by extracellular RNAs from bacteria.

    PubMed

    Park, Yong-Soon; Lee, Boyoung; Ryu, Choong-Min

    2016-07-02

    Defense against diverse biotic and abiotic stresses requires the plant to distinguish between self and non-self signaling molecules. Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are pivotal for triggering innate immunity in plants. Unlike in animals and humans, the precise roles of nucleic acids in plant innate immunity are unclear. We therefore investigated the effects of infiltration of total Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) RNAs into Arabidopsis plants. The pathogen population was 10-fold lower in bacterial RNAs pre-treated Arabidopsis plants than in the control. Bacterial RNAs purity was confirmed by physical (sonication) and chemical (RNase A and proteinase K digestion) methods. The perception of bacterial RNAs, especially rRNAs, positively regulated mitogen-activated protein kinase (MAPK) and induced a reactive oxygen species burst, callose deposition, salicylic acid (SA) and jasmonic acid (JA) signaling, and defense-related genes. Therefore, bacterial RNAs function as a new MAMP that activates plant innate immunity, providing a new paradigm for plant-microbe interactions.

  18. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid.

    PubMed

    Sanchez, Lisa; Courteaux, Barbara; Hubert, Jane; Kauffmann, Serge; Renault, Jean-Hugues; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan

    2012-11-01

    Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens.

  19. No Apparent Costs for Facultative Antibiotic Production by the Soil Bacterium Pseudomonas fluorescens Pf0-1

    PubMed Central

    Garbeva, Paolina; Tyc, Olaf; Remus-Emsermann, Mitja N. P.; van der Wal, Annemieke; Vos, Michiel; Silby, Mark; de Boer, Wietse

    2011-01-01

    Background Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures. Methodology and Principal Findings We measured the possible cost of antibiotic production for Pseudomonas fluorescens Pf0-1 by monitoring changes in growth rate with and without induction of antibiotic production by supernatant of a bacterial competitor, namely Pedobacter sp.. Experiments were performed in liquid as well as on semi-solid media under nutrient-limited conditions that are expected to most clearly reveal fitness costs. Our results did not reveal any significant costs for production of antibiotics by Pseudomonas fluorescens Pf0-1. Comparison of growth rates of the antibiotic-producing wild-type cells with those of non-antibiotic producing mutants did not reveal costs of antibiotic production either. Significance Based on our findings we propose that the facultative production of antibiotics might not be selected to mitigate metabolic costs, but instead might be advantageous because it limits the risk of competitors evolving resistance, or even the risk of competitors feeding on the compounds produced. PMID:22110622

  20. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments

    NASA Astrophysics Data System (ADS)

    Šantl-Temkiv, Tina; Sahyoun, Maher; Finster, Kai; Hartmann, Susan; Augustin-Bauditz, Stefanie; Stratmann, Frank; Wex, Heike; Clauss, Tina; Nielsen, Niels Woetmann; Sørensen, Jens Havskov; Korsholm, Ulrik Smith; Wick, Lukas Y.; Karlson, Ulrich Gosewinkel

    2015-05-01

    Some bacteria have the unique capacity of synthesising ice-nucleation-active (INA) proteins and exposing them at their outer membrane surface. As INA bacteria enter the atmosphere, they may impact the formation of clouds and precipitation. We studied members of airborne bacterial communities for their capacity to catalyse ice formation and we report on the excretion of INA proteins by airborne Pseudomonas sp. We also observed for the first time that INA biological fragments <220 nm were present in precipitation samples (199 and 482 INA fragments per L of precipitation), which confirms the presence of submicron INA biological fragments in the atmosphere. During 14 precipitation events, strains affiliated with the genus Pseudomonas, which are known to carry ina genes, were dominant. A screening for INA properties revealed that ∼12% of the cultivable bacteria caused ice formation at ≤-7 °C. They had likely been emitted to the atmosphere from terrestrial surfaces, e.g. by convective transport. We tested the ability of isolated INA strains to produce outer membrane vesicles and found that two isolates could do so. However, only very few INA vesicles were released per INA cell. Thus, the source of the submicron INA proteinaceous particles that we detected in the atmosphere remains to be elucidated.

  1. The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent

    PubMed Central

    Banin, Ehud; Lozinski, Alina; Brady, Keith M.; Berenshtein, Eduard; Butterfield, Phillip W.; Moshe, Maya; Chevion, Mordechai; Greenberg, Everett Peter; Banin, Eyal

    2008-01-01

    The opportunistic pathogen Pseudomonas aeruginosa causes infections that are difficult to treat by antibiotic therapy. This bacterium can cause biofilm infections where it shows tolerance to antibiotics. Here we report the novel use of a metallo-complex, desferrioxamine-gallium (DFO-Ga) that targets P. aeruginosa iron metabolism. This complex kills free-living bacteria and blocks biofilm formation. A combination of DFO-Ga and the anti-Pseudomonas antibiotic gentamicin caused massive killing of P. aeruginosa cells in mature biofilms. In a P. aeruginosa rabbit corneal infection, topical administration of DFO-Ga together with gentamicin decreased both infiltrate and final scar size by about 50% compared to topical application of gentamicin alone. The use of DFO-Ga as a Trojan horse delivery system that interferes with iron metabolism shows promise as a treatment for P. aeruginosa infections. PMID:18931304

  2. Community-acquired pneumonia due to gram-negative bacteria and pseudomonas aeruginosa: incidence, risk, and prognosis.

    PubMed

    Arancibia, Francisco; Bauer, Torsten T; Ewig, Santiago; Mensa, Josep; Gonzalez, Julia; Niederman, Michael S; Torres, Antoni

    2002-09-09

    Initial empirical antimicrobial treatment of patients with community-acquired pneumonia (CAP) is based on expected microbial patterns. We determined the incidence of, prognosis of, and risk factors for CAP due to gram-negative bacteria (GNB), including Pseudomonas aeruginosa. Consecutive patients with CAP hospitalized in our 1000-bed tertiary care university teaching hospital were studied prospectively. Independent risk factors for CAP due to GNB and for death were identified by means of stepwise logistic regression analysis. From January 1, 1997, until December 31, 1998, 559 hospitalized patients with CAP were included. Sixty patients (11%) had CAP due to GNB, including P aeruginosa in 39 (65%). Probable aspiration (odds ratio [OR], 2.3; 95% confidence interval [CI], 1.02-5.2; P =.04), previous hospital admission (OR, 3.5; 95% CI, 1.7-7.1; P<.001), previous antimicrobial treatment (OR, 1.9; 95% CI, 1.01-3.7; P =.049), and the presence of pulmonary comorbidity (OR, 2.8; 95% CI, 1.5-5.5; P =.02) were independent predictors of GNB. In a subgroup analysis of P aeruginosa pneumonia, pulmonary comorbidity (OR, 5.8; 95% CI, 2.2-15.3; P<.001) and previous hospital admission (OR, 3.8; 95% CI, 1.8-8.3; P =.02) were predictive. Infection with GNB was independently associated with death (relative risk, 3.4; 95% CI, 1.6-7.4; P =.002). In our setting, in every tenth patient with CAP, an etiology due to GNB has to be considered. Patients with probable aspiration, previous hospitalization or antimicrobial treatment, and pulmonary comorbidity are especially prone to GNB. These pathogens are also an independent risk factor for death in patients with CAP.

  3. Coronafacoyl Phytotoxin Biosynthesis and Evolution in the Common Scab Pathogen Streptomyces scabiei

    PubMed Central

    Bown, Luke; Li, Yuting; Berrué, Fabrice; Verhoeven, Joost T. P.; Dufour, Suzanne C.

    2017-01-01

    ABSTRACT Coronafacoyl phytotoxins are an important family of plant toxins that are produced by several different phytopathogenic bacteria, including the gammaproteobacterium Pseudomonas syringae and the actinobacterium Streptomyces scabiei (formerly Streptomyces scabies). The phytotoxins consist of coronafacic acid (CFA) linked via an amide bond to different amino acids or amino acid derivatives. Previous work suggested that S. scabiei and P. syringae use distinct biosynthetic pathways for producing CFA, which is subsequently linked to its amino acid partner to form the complete phytotoxin. Here, we provide further evidence that the S. scabiei CFA biosynthetic pathway is novel by characterizing the role of CYP107AK1, a predicted cytochrome P450 that has no homologue in P. syringae. Deletion of the CYP107AK1 gene abolished production of coronafacoyl-isoleucine (CFA-Ile), the primary coronafacoyl phytotoxin produced by S. scabiei. Structural elucidation of accumulated biosynthetic intermediates in the ΔCYP107AK1 mutant indicated that CYP107AK1 is required for introducing the oxygen atom that ultimately forms the carbonyl group in the CFA backbone. The CYP107AK1 gene along with two additional genes involved in CFA-Ile biosynthesis in S. scabiei were found to be associated with putative CFA biosynthetic genes in other actinobacteria but not in other organisms. Analysis of the overall genetic content and organization of known and putative CFA biosynthetic gene clusters, together with phylogenetic analysis of the core biosynthetic genes, indicates that horizontal gene transfer has played an important role in the dissemination of the gene cluster and that rearrangement, insertion, and/or deletion events have likely contributed to the divergent biosynthetic evolution of coronafacoyl phytotoxins in bacteria. IMPORTANCE The ability of plants to defend themselves against invading pathogens relies on complex signaling pathways that are controlled by key phytohormones such as

  4. Secondary metabolite production by Pseudomonas fluorescens strain Pf-5 confers protection against Naegleria americana in the wheat rhizosphere

    USDA-ARS?s Scientific Manuscript database

    Bacteria employ a variety of morphological and metabolic mechanisms to avoid protozoan predation. In Pseudomonas fluorescens strains SS101 and SBW25, cyclic lipopeptide (CLP) production served as a defense mechanism that limited predation by the amoeba-flagellate Naegleria americana, and secondary m...

  5. Pseudomonas aeruginosa Microcolonies in Coronary Thrombi from Patients with ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Hansen, Gorm Mørk; Belstrøm, Daniel; Nilsson, Martin; Helqvist, Steffen; Nielsen, Claus Henrik; Holmstrup, Palle; Tolker-Nielsen, Tim; Givskov, Michael; Hansen, Peter Riis

    2016-01-01

    Chronic infection is associated with an increased risk of atherothrombotic disease and direct bacterial infection of arteries has been suggested to contribute to the development of unstable atherosclerotic plaques. In this study, we examined coronary thrombi obtained in vivo from patients with ST-segment elevation myocardial infarction (STEMI) for the presence of bacterial DNA and bacteria. Aspirated coronary thrombi from 22 patients with STEMI were collected during primary percutaneous coronary intervention and arterial blood control samples were drawn from radial or femoral artery sheaths. Analyses were performed using 16S polymerase chain reaction and with next-generation sequencing to determine bacterial taxonomic classification. In selected thrombi with the highest relative abundance of Pseudomonas aeruginosa DNA, peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) with universal and species specific probes was performed to visualize bacteria within thrombi. From the taxonomic analysis we identified a total of 55 different bacterial species. DNA from Pseudomonas aeruginosa represented the only species that was significantly associated with either thrombi or blood and was >30 times more abundant in thrombi than in arterial blood (p<0.0001). Whole and intact bacteria present as biofilm microcolonies were detected in selected thrombi using universal and P. aeruginosa-specific PNA-FISH probes. P. aeruginosa and vascular biofilm infection in culprit lesions may play a role in STEMI, but causal relationships remain to be determined. PMID:28030624

  6. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India.

    PubMed

    Balasubramanian, V; Natarajan, K; Hemambika, B; Ramesh, N; Sumathi, C S; Kottaimuthu, R; Rajesh Kannan, V

    2010-08-01

    Assessment of high-density polyethylene (HDPE)-degrading bacteria isolated from plastic waste dumpsites of Gulf of Mannar. Rationally, 15 bacteria (GMB1-GMB15) were isolated by enrichment technique. GMB5 and GMB7 were selected for further studies based on their efficiency to degrade the HDPE and identified as Arthrobacter sp. and Pseudomonas sp., respectively. Assessed weight loss of HDPE after 30 days of incubation was nearly 12% for Arthrobacter sp. and 15% for Pseudomonas sp. The bacterial adhesion to hydrocarbon (BATH) assay showed that the cell surface hydrophobicity of Pseudomonas sp. was higher than Arthrobacter sp. Both fluorescein diacetate hydrolysis and protein content of the biofilm were used to test the viability and protein density of the biomass. Acute peak elevation was observed between 2 and 5 days of inoculation for both bacteria. Fourier transform infrared (FT-IR) spectrum showed that keto carbonyl bond index (KCBI), Ester carbonyl bond index (ECBI) and Vinyl bond index (VBI) were increased indicating changes in functional group(s) and/or side chain modification confirming the biodegradation. The results pose us to suggest that both Pseudomonas sp. and Arthrobacter sp. were proven efficient to degrade HDPE, albeit the former was more efficacious, yet the ability of latter cannot be neglected. Recent alarm on ecological threats to marine system is dumping plastic waste in the marine ecosystem and coastal arena by anthropogenic activity. In maintenance phase of the plastic-derived polyethylene waste, the microbial degradation plays a major role; the information accomplished in this work will be the initiating point for the degradation of polyethylene by indigenous bacterial population in the marine ecosystem and provides a novel eco-friendly solution in eco-management.

  7. Psychrotrophic bacteria in milk: How much do we really know?

    PubMed Central

    de Oliveira, Gislene B.; Favarin, Luciana; Luchese, Rosa H.; McIntosh, Douglas

    2015-01-01

    The occurrence of psychrotrophic bacteria in raw milk is studied worldwide due to the difficulties associated with controlling their growth during cold storage and the consequent negative effects upon fluid milk or dairy products. Among the psychrotrophic bacteria, the genus Pseudomonas (represented primarily by P. fluorescens) has been highlighted as the cause of numerous defects in dairy products. In light of its perceived predominance, this species has frequently been chosen as a model organism to assess the effects of psychrotrophic bacteria on milk or to evaluate the efficacy of control measures. However, recent findings derived from the application of molecular biological techniques have exposed a number of deficiencies in our knowledge of the biology of milk-associated psychrotrophs. Furthermore, it has been revealed that microbe to microbe communication plays a significant role in determining both the identities and the extent to which different groups of microbes develop during cold storage. The application of molecular identification methods has exposed errors in the classification of members of the genus Pseudomonas isolated from cold stored milk and has stimulated a reevaluation of the presumed status of P. fluorescens as the predominant milk-associated psychrotrophic species. This article presents a succinct review of data from studies on psychrotrophic bacteria in milk, some of which contest established theories in relation to the microbiology of cold stored raw milk, and poses the question: how much do we really know? PMID:26273245

  8. Psychrotrophic bacteria in milk: How much do we really know?

    PubMed

    de Oliveira, Gislene B; Favarin, Luciana; Luchese, Rosa H; McIntosh, Douglas

    2015-06-01

    The occurrence of psychrotrophic bacteria in raw milk is studied worldwide due to the difficulties associated with controlling their growth during cold storage and the consequent negative effects upon fluid milk or dairy products. Among the psychrotrophic bacteria, the genus Pseudomonas (represented primarily by P. fluorescens) has been highlighted as the cause of numerous defects in dairy products. In light of its perceived predominance, this species has frequently been chosen as a model organism to assess the effects of psychrotrophic bacteria on milk or to evaluate the efficacy of control measures. However, recent findings derived from the application of molecular biological techniques have exposed a number of deficiencies in our knowledge of the biology of milk-associated psychrotrophs. Furthermore, it has been revealed that microbe to microbe communication plays a significant role in determining both the identities and the extent to which different groups of microbes develop during cold storage. The application of molecular identification methods has exposed errors in the classification of members of the genus Pseudomonas isolated from cold stored milk and has stimulated a reevaluation of the presumed status of P. fluorescens as the predominant milk-associated psychrotrophic species. This article presents a succinct review of data from studies on psychrotrophic bacteria in milk, some of which contest established theories in relation to the microbiology of cold stored raw milk, and poses the question: how much do we really know?

  9. Phosphatase activity of aerobic and facultative anaerobic bacteria.

    PubMed

    Pácová, Z; Kocur, M

    1978-10-01

    1115 strains of aerobic and facultatively anaerobic bacteria were tested for phosphatase activity by a conventional plate method and a microtest. The microtest was devised to allow results to be read after 4 h cultivation. Phosphatase activity was found in wide range of species and strains. Besides staphylococci, where the test for phosphatase is successfully used, it may be applied as one of the valuable tests for the differentiation of the following species: Bacillus cereus, B. licheniformis, Aeromonas spp., Vibrio parahaemolyticus, Actinobacillus spp., Pasteurella spp., Xanthomonas spp., Flavobacterium spp., Alteromonas putrefaciens, Pseudomonas maltophilia, Ps. cepacia, and some other species of Pseudomonas. The species which gave uniformly negative phosphatase reaction were as follows: Staph. saprophyticus, Acinetobacter calcoaceticus, Alcaligenes faecalis, and Bordetella bronchiseptica.

  10. Diversity of endophytic Pseudomonas in Halimione portulacoides from metal(loid)-polluted salt marshes.

    PubMed

    Rocha, Jaqueline; Tacão, Marta; Fidalgo, Cátia; Alves, Artur; Henriques, Isabel

    2016-07-01

    Phytoremediation assisted by bacteria is seen as a promising alternative to reduce metal contamination in the environment. The main goal of this study was to characterize endophytic Pseudomonas isolated from Halimione portulacoides, a metal-accumulator plant, in salt marshes contaminated with metal(loid)s. Phylogenetic analysis based on 16S rRNA and gyrB genes showed that isolates affiliated with P. sabulinigri (n = 16), P. koreensis (n = 10), P. simiae (n = 5), P. seleniipraecipitans (n = 2), P. guineae (n = 2), P. migulae (n = 1), P. fragi (n = 1), P. xanthomarina (n = 1), and Pseudomonas sp. (n = 1). Most of these species have never been described as endophytic. The majority of the isolates were resistant to three or more metal(loid)s. Antibiotic resistance was frequent among the isolates but most likely related to species-intrinsic features. Common acquired antibiotic resistance genes and integrons were not detected. Plasmids were detected in 43.6 % of the isolates. Isolates that affiliated with different species shared the same plasmid profile but attempts to transfer metal resistance to receptor strains were not successful. Phosphate solubilization and IAA production were the most prevalent plant growth promoting traits, and 20 % of the isolates showed activity against phytopathogenic bacteria. Most isolates produced four or more extracellular enzymes. Preliminary results showed that two selected isolates promote Arabidopsis thaliana root elongation. Results highlight the diversity of endophytic Pseudomonas in H. portulacoides from contaminated sites and their potential to assist phytoremediation by acting as plant growth promoters and as environmental detoxifiers.

  11. Antimicrobial Susceptibility as a Diagnostic Aid in the Identification of Nonfermenting Gram-Negative Bacteria

    PubMed Central

    Gilardi, G. L.

    1971-01-01

    Antimicrobial susceptibility data regarding nonfermentative, gram-negative bacteria (Pseudomonas, Alcaligenes, Acinetobacter, Moraxella, Flavobacterium) are presented showing that the antibiograms of most species examined can be used as an important auxillary aid in their differentiation. PMID:5132093

  12. Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves

    PubMed Central

    2017-01-01

    Plants utilize an innate immune system to protect themselves from disease. While many molecular components of plant innate immunity resemble the innate immunity of animals, plants also have evolved a number of truly unique defense mechanisms, particularly at the physiological level. Plant’s flexible developmental program allows them the unique ability to simply produce new organs as needed, affording them the ability to replace damaged organs. Here we develop a system to study pathogen-triggered leaf abscission in Arabidopsis. Cauline leaves infected with the bacterial pathogen Pseudomonas syringae abscise as part of the defense mechanism. Pseudomonas syringae lacking a functional type III secretion system fail to elicit an abscission response, suggesting that the abscission response is a novel form of immunity triggered by effectors. HAESA/HAESA-like 2, INFLORESCENCE DEFICIENT IN ABSCISSION, and NEVERSHED are all required for pathogen-triggered abscission to occur. Additionally phytoalexin deficient 4, enhanced disease susceptibility 1, salicylic acid induction-deficient 2, and senescence-associated gene 101 plants with mutations in genes necessary for bacterial defense and salicylic acid signaling, and NahG transgenic plants with low levels of salicylic acid fail to abscise cauline leaves normally. Bacteria that physically contact abscission zones trigger a strong abscission response; however, long-distance signals are also sent from distal infected tissue to the abscission zone, alerting the abscission zone of looming danger. We propose a threshold model regulating cauline leaf defense where minor infections are handled by limiting bacterial growth, but when an infection is deemed out of control, cauline leaves are shed. Together with previous results, our findings suggest that salicylic acid may regulate both pathogen- and drought-triggered leaf abscission. PMID:29253890

  13. IDENTIFICATION OF BACTERIA IN BLOOD CULTURES FROM CLINICALLY ILL CAPTIVE ANTILLEAN MANATEES (TRICHECHUS MANATUS MANATUS).

    PubMed

    Silva, Mariana C O; Attademo, Fernanda F L; Freire, Augusto C B; Sousa, Glaucia P; Luna, Fábia O; Lima, Débora C V; Mota, Rinaldo A; Mendes, Emiko S; Silva, Jean C R

    2017-03-01

    Between September 2001 and March 2013, 62 bacterial cultures (37 aerobic and 25 anaerobic) were performed on 37 blood samples from 23 Antillean manatees ( Trichechus manatus manatus) that were kept in captivity at the Brazilian National Center for Research and Conservation of Aquatic Mammals (CMA) in Pernambuco (CMA-PE) and Alagoas (CMA-AL), Brazil. All of the animals sampled exhibited clinical signs at the time of sampling including abscesses (n = 8), debilitation and anorexia (n = 22), and profound lethargy-moribundity (n = 7). The 4 animals with profound lethargy-moribundity died shortly after sampling of unknown causes. Bacteria were isolated from 15/37 (40.5%) and aerobic blood cultures from 13/23 animals (56.5%). None of the anaerobic cultures were positive. Aeromonas caviae , Aeromonas hydrophila , Aeromonas sp., Escherichia coli , Leclercia adecarboxylata , Pantoea agglomerans , Pseudomonas aeruginosa , Pseudomonas stutzeri , Pseudomonas sp., Sphingomonas paucimobilis , coagulase-negative Staphylococcus, and Staphylococcus epidermidis were each found in only one animal; Staphylococcus spp. was found in two; and Vibrio fluvialis in four. Thirteen samples had only one bacteria isolated, one sample had two bacteria, and one sample had three bacteria isolated. Regarding sex, age group, and origin among the manatees examined, 54.5% (6/11) of the females, 58.3% (7/12) of the males, 40% (2/5) of the calves, 66.7% (8/12) of the juveniles, 50% (3/6) of the adults, 55.5% (10/18) at CMA-PE, and 60% (3/5) at CMA-AL were found to be positive for bacterial growth during at least one sampling time. All Antillean manatees were clinically ill. Regarding clinical signs, bacteria were found in 50% (11/22) of blood samples of the animals showing debilitation and anorexia, 1 of 8 (12.5%) of blood samples of the animals showing abscesses, and 3 of 7 (42.9%) of blood samples of the animals showing profound lethargy-moribundity.

  14. Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections.

    PubMed

    Ghodhbane, Hanen; Elaidi, Sabrine; Sabatier, Jean-Marc; Achour, Sami; Benhmida, Jeannette; Regaya, Imed

    2015-01-01

    Multiresistant Gram-negative bacteria are the prime mover of nosocomial infections. Some are naturally resistant to antibiotics, their genetic makes them insensitive to certain families of antibiotics and they transmit these resistors to their offspring. Moreover, when bacteria are subjected to antibiotics, they eventually develop resistance against drugs to which they were previously sensitive. In recent years, many bacteriocins active against gram-negative bacteria have been identified proving their efficacy in treating infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of bacteriocins acting on the most common infectious gram negative bacteria (Klebsiella, Acinetobacter, Pseudomonas aeruginosa and E. coli).

  15. Fungal Disease Prevention in Seedlings of Rice (Oryza sativa) and Other Grasses by Growth-Promoting Seed-Associated Endophytic Bacteria from Invasive Phragmites australis

    PubMed Central

    Verma, Satish K.; Kingsley, Kathryn L.; Bergen, Marshall S.; White, James F.

    2018-01-01

    Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil borne. Several species of Fusarium, Pythium and other water moulds cause seed rots during germination. Fusarium blights of seedlings are also very common and significantly affect seedling development. In the present study we screened nine endophytic bacteria isolated from the seeds of invasive Phragmites australis by inoculating onto rice, Bermuda grass (Cynodon dactylon), or annual bluegrass (Poa annua) seeds to evaluate plant growth promotion and protection from disease caused by Fusarium oxysporum. We found that three bacteria belonging to genus Pseudomonas spp. (SLB4-P. fluorescens, SLB6-Pseudomonas sp. and SY1-Pseudomonas sp.) promoted seedling development, including enhancement of root and shoot growth, and stimulation of root hair formation. These bacteria were also found to increase phosphate solubilization in in vitro experiments. Pseudomonas sp. (SY1) significantly protected grass seedlings from Fusarium infection. In co-culture experiments, strain SY1 strongly inhibited fungal pathogens with 85.71% growth inhibition of F. oxysporum, 86.33% growth inhibition of Curvularia sp. and 82.14% growth inhibition of Alternaria sp. Seedlings previously treated with bacteria were found much less infected by F. oxysporum in comparison to non-treated controls. On microscopic observation we found that bacteria appeared to degrade fungal mycelia actively. Metabolite products of strain SY1 in agar were also found to inhibit fungal growth on nutrient media. Pseudomonas sp. (SY1) was found to produce antifungal volatiles. Polymerase chain reaction (PCR) amplification using specific primers for pyrrolnitirin synthesis and HCN (hydrogen cyanide) production suggested presence of

  16. Fungal Disease Prevention in Seedlings of Rice (Oryza sativa) and Other Grasses by Growth-Promoting Seed-Associated Endophytic Bacteria from Invasive Phragmites australis.

    PubMed

    Verma, Satish K; Kingsley, Kathryn L; Bergen, Marshall S; Kowalski, Kurt P; White, James F

    2018-03-08

    Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil borne. Several species of Fusarium , Pythium and other water moulds cause seed rots during germination. Fusarium blights of seedlings are also very common and significantly affect seedling development. In the present study we screened nine endophytic bacteria isolated from the seeds of invasive Phragmites australis by inoculating onto rice, Bermuda grass ( Cynodon dactylon ), or annual bluegrass ( Poa annua ) seeds to evaluate plant growth promotion and protection from disease caused by Fusarium oxysporum . We found that three bacteria belonging to genus Pseudomonas spp. (SLB4- P. fluorescens , SLB6- Pseudomonas sp. and SY1- Pseudomonas sp.) promoted seedling development, including enhancement of root and shoot growth, and stimulation of root hair formation. These bacteria were also found to increase phosphate solubilization in in vitro experiments. Pseudomonas sp. (SY1) significantly protected grass seedlings from Fusarium infection. In co-culture experiments, strain SY1 strongly inhibited fungal pathogens with 85.71% growth inhibition of F. oxysporum , 86.33% growth inhibition of Curvularia sp. and 82.14% growth inhibition of Alternaria sp. Seedlings previously treated with bacteria were found much less infected by F. oxysporum in comparison to non-treated controls. On microscopic observation we found that bacteria appeared to degrade fungal mycelia actively. Metabolite products of strain SY1 in agar were also found to inhibit fungal growth on nutrient media. Pseudomonas sp. (SY1) was found to produce antifungal volatiles. Polymerase chain reaction (PCR) amplification using specific primers for pyrrolnitirin synthesis and HCN (hydrogen cyanide) production suggested

  17. Detection of pathogenic gram negative bacteria using infrared thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

    2012-11-01

    Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

  18. [Influence of electromagnetic emission at the frequencies of molecular absorption and emission spectra of oxygen and nitrogen oxide on the adhesion and formation of Pseudomonas aeruginosa biofilm].

    PubMed

    Pronina, E A; Shvidenko, I G; Shub, G M; Shapoval, O G

    2011-01-01

    Evaluate the influence of electromagnetic emission (EME) at the frequencies of molecular absorption and emission spectra of atmospheric oxygen and nitrogen oxide (MAES 02 and MAES NO respectively) on the adhesion, population progress and biofilm formation of Pseudomonas aeruginosa. Adhesive activity was evaluated by mean adhesion index (MAI) of bacteria on human erythrocytes. Population growth dynamic was assessed by optical density index of broth cultures; biofilm formation--by values of optical density of the cells attached to the surface of polystyrol wells. P.aeruginosa bacteria had high adhesive properties that have increased under the influence of MAES 02 frequency emission and have not changed under the influence of MAES NO frequency. Exposure of bacteria to MAES NO frequency did not influence the population progress; exposure to MAES 02 frequency stimulated the biofilm formation ability of the bacteria, and MAES NO--decreased this ability. EME at MAES NO frequency can be used to suppress bacterial biofilm formation by pseudomonas.

  19. Detection of Intracellular Bacteria in the Buds of Scotch Pine (Pinus sylvestris L.) by In Situ Hybridization

    PubMed Central

    Pirttilä, Anna Maria; Laukkanen, Hanna; Pospiech, Helmut; Myllylä, Raili; Hohtola, Anja

    2000-01-01

    Bacterial isolates were obtained from pine (Pinus sylvestris L.) tissue cultures and identified as Methylobacterium extorquens and Pseudomonas synxantha. The existence of bacteria in pine buds was investigated by 16S rRNA in situ hybridization. Bacteria inhabited the buds of every tree examined, primarily colonizing the cells of scale primordia and resin ducts. PMID:10877808

  20. Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid1[C][W

    PubMed Central

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.

    2014-01-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505

  1. A novel enterocin T1 with anti-Pseudomonas activity produced by Enterococcus faecium T1 from Chinese Tibet cheese.

    PubMed

    Liu, Hui; Zhang, Lanwei; Yi, Huaxi; Han, Xue; Gao, Wei; Chi, Chunliang; Song, Wei; Li, Haiying; Liu, Chunguang

    2016-02-01

    An enterocin-producing Enterococcus faecium T1 was isolated from Chinese Tibet cheese. The enterocin was purified by SP-Sepharose and reversed phase HPLC. It was identified as unique from other reported bacteriocins based on molecular weight (4629 Da) and amino acid compositions; therefore it was subsequently named enterocin T1. Enterocin T1 was stable at 80-100 °C and over a wide pH range, pH 3.0-10.0. Protease sensitivity was observed to trypsin, pepsin, papain, proteinase K, and pronase E. Importantly, enterocin T1 was observed to inhibit the growth of numerous Gram-negative and Gram-positive bacteria including Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Escherichia coli, Salmonella typhimurium, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, Listeria monocytogenes. Take together, these results suggest that enterocin T1 is a novel bacteriocin with the potential to be used as a bio-preservative to control Pseudomonas spp. in food.

  2. Investigation for zoonotic disease pathogens (Aeromonas hydrophila, Pseudomonas fluorescens, Streptococcus iniae) seen in carp farms in Duhok region of Northern Iraq by molecular methods

    NASA Astrophysics Data System (ADS)

    Mohammed, Kamiran Abdulrahman; Arabacı, Muhammed; Önalan, Şükrü

    2017-04-01

    The aim of this study was to determine the zoonotic bacteria in carp farms in Duhok region of the Northern Iraq. Carp is the main fish species cultured in the Duhok region. The most common zoonotic bacteria generally seen in carp farms are Aeromonas hydrophila, Pseudomonas fluorescens and Streptococcus iniae. Samples were collected from 20 carp farms in the Duhok Region of the Northern Iraq. Six carp samples were collected from each carp farm. Head kidney tissue samples and intestine tissue samples were collected from each carp sample. Than head kidney and intestine tissue samples were pooled. The total bacterial DNA extraction from the pooled each 20 head kidney tissue samples and pooled each 20 intestinal tissue samples. Primers for pathogens were originally designed from 16S Ribosomal gene region. Zoonotic bacteria were scanned in all tissue samples by absent / present analysis in the RT-PCR. After RT-PCR, Capillary gel electrophoresis bands were used for the confirmation of the size of amplicon which was planned during primer designing stage. As a result, one sample was positive in respect to Aeromonas hydrophila, from intestine and one carp farm was positive in respect to Pseudomonas fluorescens from intestine and two carp farms were positive in respect to Streptococcus iniae. Totally 17 of 20 carp farms were negative in respect to the zoonotic bacteria. In conclusion the zoonotic bacteria were very low (15 %) in carp farms from the Duhok Region in the Northern Iraq. Only in one Carp farms, both Aeromonas hydrophila and Pseudomonas fluorescens were positive. Also Streptococcus inia were positive in two carp farms.

  3. Electron transfer of Pseudomonas aeruginosa CP1 in electrochemical reduction of nitric oxide.

    PubMed

    Zhou, Shaofeng; Huang, Shaobin; He, Jiaxin; Li, Han; Zhang, Yongqing

    2016-10-01

    This study reports catalytic electro-chemical reduction of nitric oxide (NO) enhanced by Pseudomonas aeruginosa strain CP1. The current generated in the presence of bacteria was 4.36times that in the absence of the bacteria. The strain was able to catalyze electro-chemical reduction of NO via indirect electron transfer with an electrode, revealed by a series of cyclic voltammetry experiments. Soluble electron shuttles secreted into solution by live bacteria were responsible for the catalytic effects. The enhancement of NO reduction was also confirmed by detection of nitrous oxide; the level of this intermediate was 46.4% higher in the presence of bacteria than in controls, illustrated that the electron transfer pathway did not directly reduce nitric oxide to N2. The findings of this study may offer a new model for bioelectrochemical research in the field of NO removal by biocatalysts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Eradication of Pseudomonas aeruginosa Biofilms by Atmospheric Pressure Non-Thermal Plasma

    PubMed Central

    Alkawareek, Mahmoud Y.; Algwari, Qais Th.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; O'Connell, Deborah; Gilmore, Brendan F.

    2012-01-01

    Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (∼10′s s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity. PMID

  5. Methods and Guidance for Testing the Efficacy of Antimicrobials against Biofilm Bacteria on Hard, Non-Porous Surfaces

    EPA Pesticide Factsheets

    EPA is announcing the availability of two test methods (MB-19 and MB-20) for evaluating the efficacy of antimicrobial pesticides against two biofilm bacteria, Pseudomonas aeruginosa and Staphylococcus aureus.

  6. Screening for biosurfactant production by 2,4,6-trinitrotoluene-transforming bacteria.

    PubMed

    Avila-Arias, H; Avellaneda, H; Garzón, V; Rodríguez, G; Arbeli, Z; Garcia-Bonilla, E; Villegas-Plazas, M; Roldan, F

    2017-08-01

    To isolate and identify TNT-transforming cultures from explosive-contaminated soils with the ability to produce biosurfactants. Bacteria (pure and mixed cultures) were selected based on their ability to transform TNT in minimum media with TNT as the sole nitrogen source and an additional carbon source. TNT-transforming bacteria were identified by 16S rRNA gene sequencing. TNT transformation rates were significantly lower when no additional carbon or nitrogen sources were added. Surfactant production was enabled by the presence of TNT. Fourteen cultures were able to transform the explosive (>50%); of these, five showed a high transformation capacity (>90%), and six produced surfactants. All explosive-transforming cultures contained Proteobacteria of the genera Achromobacter, Stenotrophomonas, Pseudomonas, Sphingobium, Raoultella, Rhizobium and Methylopila. These cultures transformed TNT when an additional carbon source was added. Remarkably, Achromobacter spanius S17 and Pseudomonas veronii S94 have high TNT transformation rates and are surfactant producers. TNT is a highly toxic, mutagenic and carcinogenic nitroaromatic explosive; therefore, bioremediation to eliminate or mitigate its presence in the environment is essential. TNT-transforming cultures that produce surfactants are a promising method for remediation. To the best of our knowledge, this is the first report that links surfactant production and TNT transformation by bacteria. © 2017 The Society for Applied Microbiology.

  7. A peptide of heparin cofactor II inhibits endotoxin-mediated shock and invasive Pseudomonas aeruginosa infection.

    PubMed

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; van der Plas, Mariena J A; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2014-01-01

    Sepsis and septic shock remain important medical problems with high mortality rates. Today's treatment is based mainly on using antibiotics to target the bacteria, without addressing the systemic inflammatory response, which is a major contributor to mortality in sepsis. Therefore, novel treatment options are urgently needed to counteract these complex sepsis pathologies. Heparin cofactor II (HCII) has recently been shown to be protective against Gram-negative infections. The antimicrobial effects were mapped to helices A and D of the molecule. Here we show that KYE28, a 28 amino acid long peptide representing helix D of HCII, is antimicrobial against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida albicans. Moreover, KYE28 binds to LPS and thereby reduces LPS-induced pro-inflammatory responses by decreasing NF-κB/AP-1 activation in vitro. In mouse models of LPS-induced shock, KYE28 significantly enhanced survival by dampening the pro-inflammatory cytokine response. Finally, in an invasive Pseudomonas infection model, the peptide inhibited bacterial growth and reduced the pro-inflammatory response, which lead to a significant reduction of mortality. In summary, the peptide KYE28, by simultaneously targeting bacteria and LPS-induced pro-inflammatory responses represents a novel therapeutic candidate for invasive infections.

  8. A Peptide of Heparin Cofactor II Inhibits Endotoxin-Mediated Shock and Invasive Pseudomonas aeruginosa Infection

    PubMed Central

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; van der Plas, Mariena J. A.; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2014-01-01

    Sepsis and septic shock remain important medical problems with high mortality rates. Today's treatment is based mainly on using antibiotics to target the bacteria, without addressing the systemic inflammatory response, which is a major contributor to mortality in sepsis. Therefore, novel treatment options are urgently needed to counteract these complex sepsis pathologies. Heparin cofactor II (HCII) has recently been shown to be protective against Gram-negative infections. The antimicrobial effects were mapped to helices A and D of the molecule. Here we show that KYE28, a 28 amino acid long peptide representing helix D of HCII, is antimicrobial against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida albicans. Moreover, KYE28 binds to LPS and thereby reduces LPS-induced pro-inflammatory responses by decreasing NF-κB/AP-1 activation in vitro. In mouse models of LPS-induced shock, KYE28 significantly enhanced survival by dampening the pro-inflammatory cytokine response. Finally, in an invasive Pseudomonas infection model, the peptide inhibited bacterial growth and reduced the pro-inflammatory response, which lead to a significant reduction of mortality. In summary, the peptide KYE28, by simultaneously targeting bacteria and LPS-induced pro-inflammatory responses represents a novel therapeutic candidate for invasive infections. PMID:25047075

  9. Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria.

    PubMed

    Paulo, Ana M S; Aydin, Rozelin; Dimitrov, Mauricio R; Vreeling, Harm; Cavaleiro, Ana J; García-Encina, Pedro A; Stams, Alfons J M; Plugge, Caroline M

    2017-06-01

    The surfactant sodium lauryl ether sulfate (SLES) is widely used in the composition of detergents and frequently ends up in wastewater treatment plants (WWTPs). While aerobic SLES degradation is well studied, little is known about the fate of this compound in anoxic environments, such as denitrification tanks of WWTPs, nor about the bacteria involved in the anoxic biodegradation. Here, we used SLES as sole carbon and energy source, at concentrations ranging from 50 to 1000 mg L -1 , to enrich and isolate nitrate-reducing bacteria from activated sludge of a WWTP with the anaerobic-anoxic-oxic (A 2 /O) concept. In the 50 mg L -1 enrichment, Comamonas (50%), Pseudomonas (24%), and Alicycliphilus (12%) were present at higher relative abundance, while Pseudomonas (53%) became dominant in the 1000 mg L -1 enrichment. Aeromonas hydrophila strain S7, Pseudomonas stutzeri strain S8, and Pseudomonas nitroreducens strain S11 were isolated from the enriched cultures. Under denitrifying conditions, strains S8 and S11 degraded 500 mg L -1 SLES in less than 1 day, while strain S7 required more than 6 days. Strains S8 and S11 also showed a remarkable resistance to SLES, being able to grow and reduce nitrate with SLES concentrations up to 40 g L -1 . Strain S11 turned out to be the best anoxic SLES degrader, degrading up to 41% of 500 mg L -1 . The comparison between SLES anoxic and oxic degradation by strain S11 revealed differences in SLES cleavage, degradation, and sulfate accumulation; both ester and ether cleavage were probably employed in SLES anoxic degradation by strain S11.

  10. Oily wastewaters treatment using Pseudomonas sp. isolated from the compost fertilizer

    PubMed Central

    2014-01-01

    Background Discharging the oily wastewater in the environment causes serious problems, because of the oil compounds and organic materials presence. Applying biological methods using the lipase enzyme producer microorganisms can be an appropriate choice for treatment of these wastewaters. The aim of this study is to treat those oil wastewaters having high concentration of oil by applying lipase enzyme producer bacteria. Materials and methods Oil concentration measurement was conducted using the standard method of gravimetric and the wastewater under study was synthetically made and contained olive, canola and sunflower oil. The strain used in this study was Pseudomonas strain isolated from compost fertilizer. The oil under study had concentration of 1.5 to 22 g/l. Results The oil removal amount in concentrations lower than 8.4 g/l was over 95 ± 1.5%. Increase of the oil's concentration to 22 g/l decreases the amount of removal in retention time of 44 hours to 85 ± 2.5%. The best yield of removing this strain in retention time of 44 hours and temperature of 30°C was achieved using Ammonium Nitrate as the nitrogen resource which yield was about 95 percent. Conclusion The findings of the research showed that Pseudomonas bacteria isolated from the compost fertilizer can degrade high concentration oils. PMID:24876932

  11. In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria.

    PubMed

    de Boer, Wietse; Wagenaar, Anne-Marieke; Klein Gunnewiek, Paulien J A; van Veen, Johannes A

    2007-01-01

    We hypothesized that apparently non-antagonistic soil bacteria may contribute to suppression of fungi during competitive interactions with other bacteria. Four soil bacteria (Brevundimonas sp., Luteibacter sp., Pedobacter sp. and Pseudomonas sp.) that exhibited little or no visible antifungal activity on different agar media were prescribed. Single and mixed strains of these species were tested for antagonism on a nutrient-poor agar medium against the plant pathogenic fungi Fusarium culmorum and Rhizoctonia solani and the saprotrophic fungus Trichoderma harzianum. Single bacterial strains caused little to moderate growth reduction of fungi (quantified as ergosterol), most probably due to nutrient withdrawal from the media. Growth reduction of fungi by the bacterial mixture was much stronger than that by the single strains. This appeared to be mostly due to competitive interactions between the Pseudomonas and Pedobacter strains. We argue that cohabitation of these strains triggered antibiotic production via interspecific interactions and that the growth reduction of fungi was a side-effect caused by the sensitivity of the fungi to bacterial secondary metabolites. Induction of gliding behavior in the Pedobacter strain by other strains was also observed. Our results indicate that apparently non-antagonistic soil bacteria may be important contributors to soil suppressiveness and fungistasis when in a community context.

  12. Pyogranulomatous panniculitis in ferrets (Mustela putorius furo) with intralesional demonstration of Pseudomonas luteola.

    PubMed

    Baum, B; Richter, B; Reifinger, M; Klang, A; Finnberg, C; Loncaric, I; Spergser, J; Eisenberg, T; Künzel, F; Preis, S; Pantchev, N; Rütgen, B; Guija de Arespacochaga, A; Hewicker-Trautwein, M

    2015-01-01

    One ferret (Mustela putorius furo) from Finland and two ferrets from Austria, aged 1-4.5 years and of both genders, were presented with pyogranulomatous subcutaneous inflammation affecting the inguinal, preputial and femoral regions, respectively. Histologically, microorganisms were detected within the lesions. The organisms had a capsule that stained positively by the periodic acid-Schiff reaction. Pseudomonas spp. were cultured from the lesions in two cases. In the third case, electron microscopy revealed a prokaryotic organism surrounded by an electron lucent matrix. 16S rRNA gene sequencing showed highest sequence homology to Pseudomonas luteola in all three cases. In combination with recent reports of pleuropneumonia in ferrets due to P. luteola infection, these cases might indicate a predisposition of ferrets for infection by these bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans, and Drosophila melanogaster

    PubMed Central

    Popova, Alexandra A.; Koksharova, Olga A.; Lipasova, Valentina A.; Zaitseva, Julia V.; Katkova-Zhukotskaya, Olga A.; Eremina, Svetlana Iu.; Mironov, Alexander S.; Chernin, Leonid S.; Khmel, Inessa A.

    2014-01-01

    In previous research, volatile organic compounds (VOCs) emitted by various bacteria into the chemosphere were suggested to play a significant role in the antagonistic interactions between microorganisms occupying the same ecological niche and between bacteria and target eukaryotes. Moreover, a number of volatiles released by bacteria were reported to suppress quorum-sensing cell-to-cell communication in bacteria, and to stimulate plant growth. Here, volatiles produced by Pseudomonas and Serratia strains isolated mainly from the soil or rhizosphere exhibited bacteriostatic action on phytopathogenic Agrobacterium tumefaciens and fungi and demonstrated a killing effect on cyanobacteria, flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans). VOCs emitted by the rhizospheric Pseudomonas chlororaphis strain 449 and by Serratia proteamaculans strain 94 isolated from spoiled meat were identified using gas chromatography-mass spectrometry analysis, and the effects of the main headspace compounds—ketones (2-nonanone, 2-heptanone, 2-undecanone) and dimethyl disulfide—were inhibitory toward the tested microorganisms, nematodes, and flies. The data confirmed the role of bacterial volatiles as important compounds involved in interactions between organisms under natural ecological conditions. PMID:25006575

  14. Cultivar and Metal-Specific Effects of Endophytic Bacteria in Helianthus tuberosus Exposed to Cd and Zn

    PubMed Central

    Thijs, Sofie; Lobo, Mª Carmen; Weyens, Nele; Pérez-Sanz, Araceli

    2017-01-01

    Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262-green fluorescent protein (GFP) colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils. PMID:28934107

  15. Cultivar and Metal-Specific Effects of Endophytic Bacteria in Helianthus tuberosus Exposed to Cd and Zn.

    PubMed

    Montalbán, Blanca; Thijs, Sofie; Lobo, Mª Carmen; Weyens, Nele; Ameloot, Marcel; Vangronsveld, Jaco; Pérez-Sanz, Araceli

    2017-09-21

    Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262 - green fluorescent protein (GFP) colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils.

  16. Pattern Triggered Immunity (PTI) in Tobacco: Isolation of Activated Genes Suggests Role of the Phenylpropanoid Pathway in Inhibition of Bacterial Pathogens

    PubMed Central

    Szatmári, Ágnes; Zvara, Ágnes; Móricz, Ágnes M.; Besenyei, Eszter; Szabó, Erika; Ott, Péter G.; Puskás, László G.; Bozsó, Zoltán

    2014-01-01

    Background Pattern Triggered Immunity (PTI) or Basal Resistance (BR) is a potent, symptomless form of plant resistance. Upon inoculation of a plant with non-pathogens or pathogenicity-mutant bacteria, the induced PTI will prevent bacterial proliferation. Developed PTI is also able to protect the plant from disease or HR (Hypersensitive Response) after a challenging infection with pathogenic bacteria. Our aim was to reveal those PTI-related genes of tobacco (Nicotiana tabacum) that could possibly play a role in the protection of the plant from disease. Methodology/Principal Findings Leaves were infiltrated with Pseudomonas syringae pv. syringae hrcC- mutant bacteria to induce PTI, and samples were taken 6 and 48 hours later. Subtraction Suppressive Hybridization (SSH) resulted in 156 PTI-activated genes. A cDNA microarray was generated from the SSH clone library. Analysis of hybridization data showed that in the early (6 hpi) phase of PTI, among others, genes of peroxidases, signalling elements, heat shock proteins and secondary metabolites were upregulated, while at the late phase (48 hpi) the group of proteolysis genes was newly activated. Microarray data were verified by real time RT-PCR analysis. Almost all members of the phenyl-propanoid pathway (PPP) possibly leading to lignin biosynthesis were activated. Specific inhibition of cinnamic-acid-4-hydroxylase (C4H), rate limiting enzyme of the PPP, decreased the strength of PTI - as shown by the HR-inhibition and electrolyte leakage tests. Quantification of cinnamate and p-coumarate by thin-layer chromatography (TLC)-densitometry supported specific changes in the levels of these metabolites upon elicitation of PTI. Conclusions/Significance We believe to provide first report on PTI-related changes in the levels of these PPP metabolites. Results implicated an actual role of the upregulation of the phenylpropanoid pathway in the inhibition of bacterial pathogenic activity during PTI. PMID:25101956

  17. A Natural Chimeric Pseudomonas Bacteriocin with Novel Pore-Forming Activity Parasitizes the Ferrichrome Transporter

    PubMed Central

    Kemland, Lieselore; Anoz-Carbonell, Ernesto; Buchanan, Susan K.; De Mot, René

    2017-01-01

    ABSTRACT Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin’s activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities. PMID:28223456

  18. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors.

    PubMed

    Newman, Karyn L; Chatterjee, Subhadeep; Ho, Kimberly A; Lindow, Steven E

    2008-03-01

    Diffusible signal factor (DSF) is a fatty acid signal molecule involved in regulation of virulence in several Xanthomonas species as well as Xylella fastidiosa. In this study, we identified a variety of bacteria that could disrupt DSF-mediated induction of virulence factors in Xanthomonas campestris pv. campestris. While many bacteria had the ability to degrade DSF, several bacterial strains belonging to genera Bacillus, Paenibacillus, Microbacterium, Staphylococcus, and Pseudomonas were identified that were capable of particularly rapid degradation of DSF. The molecular determinants for rapid degradation of DSF in Pseudomonas spp. strain G were elucidated. Random transposon mutants of strain G lacking the ability to degrade DSF were isolated. Cloning and characterization of disrupted genes in these strains revealed that carAB, required for the synthesis of carbamoylphosphate, a precursor for pyrimidine and arginine biosynthesis is required for rapid degradation of DSF in strain G. Complementation of carAB mutants restored both pyrimidine prototrophy and DSF degradation ability of the strain G mutant. An Escherichia coli strain harboring carAB of Pseudomonas spp. strain G degrades DSF more rapidly than the parental strain, and overexpression of carAB in trans increased the ability of Pseudomonas spp. strain G to degrade as compared with the parental strain. Coinoculation of X. campestris pv. campestris with DSF-degrading bacteria into mustard and cabbage leaves reduced disease severity up to twofold compared with plants inoculated only with the pathogen. Likewise, disease incidence and severity in grape stems coinoculated with Xylella fastidiosa and DSF-degrading strains were significantly reduced compared with plants inoculated with the pathogen alone. Coinoculation of grape plants with a carAB mutant of Pseudomonas spp. strain G complemented with carAB in trans reduced disease severity as well or better than the parental strain. These results indicate that

  19. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography

    PubMed Central

    Shaw, Paul D.; Ping, Gao; Daly, Sean L.; Cha, Chung; Cronan, John E.; Rinehart, Kenneth L.; Farrand, Stephen K.

    1997-01-01

    Many Gram-negative bacteria regulate gene expression in response to their population size by sensing the level of acyl-homoserine lactone signal molecules which they produce and liberate to the environment. We have developed an assay for these signals that couples separation by thin-layer chromatography with detection using Agrobacterium tumefaciens harboring lacZ fused to a gene that is regulated by autoinduction. With the exception of N-butanoyl-l-homoserine lactone, the reporter detected acyl-homoserine lactones with 3-oxo-, 3-hydroxy-, and 3-unsubstituted side chains of all lengths tested. The intensity of the response was proportional to the amount of the signal molecule chromatographed. Each of the 3-oxo- and the 3-unsubstituted derivatives migrated with a unique mobility. Using the assay, we showed that some bacteria produce as many as five detectable signal molecules. Structures could be assigned tentatively on the basis of mobility and spot shape. The dominant species produced by Pseudomonas syringae pv. tabaci chromatographed with the properties of N-(3-oxohexanoyl)-l-homoserine lactone, a structure that was confirmed by mass spectrometry. An isolate of Pseudomonas fluorescens produced five detectable species, three of which had novel chromatographic properties. These were identified as the 3-hydroxy- forms of N-hexanoyl-, N-octanoyl-, and N-decanoyl-l-homoserine lactone. The assay can be used to screen cultures of bacteria for acyl-homoserine lactones, for quantifying the amounts of these molecules produced, and as an analytical and preparative aid in determining the structures of these signal molecules. PMID:9177164

  20. [Nah-plasmids of IncP-9 group from natural strains of Pseudomonas].

    PubMed

    Levchuk, A A; Bulyga, I M; Izmalkova, T Iu; Sevast'ianovich, Ia R; Kosheleva, I A; Thomas, C M; Titok, M A

    2006-01-01

    Use of polymerase chain reaction helped to establish that the most frequent among naphthalene utilizing bacteria, isolated on the territory of Belarus, are Nah-plasmids of IncP-9 incompatibility group and those with indefinite systematic belonging. With the help of classical test of incompatibility, restriction and sequence analyses three new subgroups within the IncP-9 group were discovered (zeta, eta and IncP-9-like replicons). Conducting of restriction analysis for amplification products of nahG and nahAc genes allowed us to reveal, in addition to known sequences of stated determinants, two new types of nahG gene. Restriction analysis performed on amplification products of 16S RNA genes (ARDRA method) showed that native hosts of Nah-plasmids of IncP-9 group are not only fluorescent bacteria from genus Pseudomonas (P. fluorescens, P. putida, P. aeruginosa, P. species), but also non-fluorescent bacteria with indefinite specific belonging.